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Estimating Flood Magnitude and Frequency on Streams
and Rivers in Connecticut, Based on Data Through

Water Year 2015

By Elizabeth A. Ahearn and Glenn A. Hodgkins

Abstract

The U.S. Geological Survey, in cooperation with the
Connecticut Department of Transportation, updated flood-
frequency estimates with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and
0.2-percent annual exceedance probabilities (2-, 5-, 10-, 25-,
50-, 100-, 200-, and 500-year recurrence intervals, respec-
tively) for 141 streamgages in Connecticut and 11 streamgages
in adjacent States using annual peak-flow data through water
year 2015. Peak-flow regression equations were derived for
estimating flows at ungaged stream sites with annual exceed-
ance probabilities from 50 to 0.2 percent. Methods for estimat-
ing prediction intervals for the peak-flow regression equations
are presented. The regression equations are applicable for
basins in Connecticut with drainage areas ranging from 0.69 to
325 square miles that are not affected by flood-control regula-
tion or flow diversions.

The flood discharges for select annual exceedance
probabilities were estimated following new (2018) national
guidelines for flood-frequency analyses. New guidelines have
improved statistical methods for flood-frequency analysis
including (1) the expected moments algorithm to help describe
uncertainty in annual peak flows and to better represent miss-
ing and historical record and (2) the generalized multiple
Grubbs-Beck test to screen out potentially influential low
outliers and to better fit the upper end of the peak-flow distri-
bution. Additionally, a new regional skew (0.37) derived for
New England was used in the flood-frequency analysis for the
streamgages.

Annual peak flows were analyzed for trends for four time
periods (30, 50, 70, and 90 years) through 2015. Trend results
show some statistical evidence of increasing peak flows in
each of the time periods analyzed; however, multidecadal cli-
mate cycles may be influencing the number and magnitude of
the trends. Historical peak-flow trends in and near Connecticut
do not offer clear and convincing evidence for incorporating
trends into flood-frequency analyses. For this study, the tradi-
tional assumption of stationarity is used with no adjustment
for trends.

Generalized least squares regression techniques were
used to develop the final set of multivariable regression equa-
tions for estimating flood discharges with 50-, 20-, 10-, 4-, 2-,
1-, 0.5-, and 0.2-percent annual exceedance probabilities. The
standard error of prediction for the regional regression equa-
tions ranged from 26.3 to 45.0 percent. The standard error of
prediction was slightly smaller in the current study compared
to the 2004 study, indicating an improvement in the predictive
ability of the equations (6 percent smaller at the 50-percent
annual exceedance probability to about 1 percent smaller at
the 1-percent annual exceedance probability). Generalized
least squares regression techniques also were used to develop
a one-variable (drainage-area-only) equation. Drainage-area-
only equations can be used as an alternative to the multiex-
planatory variable statewide regression equations if decreased
accuracy is acceptable.

The revised statistical procedures and additional
streamgage data applied in the current study result in a more
accurate representation of peak-flow conditions in Connecticut
than was previously available. The regional regression equa-
tions will be integrated in the U.S. Geological Survey Stream-
Stats program, which estimates basin and climatic charac-
teristics and streamflow statistics at user-selected ungaged
stream sites.

Introduction

Flooding in Connecticut has caused millions of dollars in
damage to towns and cities and has disrupted major transpor-
tation systems (Bogart, 1960; L.R. Johnston Associates, 1983).
Additionally, riverine infrastructure inadequately designed for
flood discharges can result in a multitude of problems result-
ing in danger to human life, extensive loss and damage to
public and private property, and damage to the environment
(impaired aquatic biota and aquatic habitat).

To minimize the damage from floods, protect human
health and safety, and conserve wildlife habitat, reliable
estimates of the magnitude and frequency of floods are
essential. Federal, State, regional, and local agencies rely on
accurate estimates of the magnitude and frequency of flood
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discharges to effectively plan and manage land use and water
resources, protect lives and property, and administer flood
insurance programs. Flood-frequency statistics compiled
from records maintained at streamgages provide a basis for
the design of infrastructure, such as roads and bridges; the
management of flood risk; the protection of aquatic species;
and other engineering and environmental analyses. Flood-
frequency statistics can be computed directly for a particular
streamgage with a suitable length of record. For short-record
streamgages or ungaged sites, regression equations developed
from flood-frequency statistics and basin characteristics for a
regional group of streamgages can provide estimates of flood-
frequency statistics.

The U.S. Geological Survey (USGS) has published
reports that provide methods for estimating flood-frequency
statistics at gaged and ungaged sites in States across the
United States, including Connecticut. This report is the fourth
in a series of reports presenting techniques for estimating flood
discharges for ungaged stream sites in Connecticut. Previous
flood regionalization studies for Connecticut were conducted
by Bigwood and Thomas (1955), Weiss (1975, 1983), and
Ahearn (2004).

These studies benefit from periodic updates to incorpo-
rate new streamflow information, improved measurements
of basin characteristics, and improved computational tech-
niques. Recently (2018), the national guidelines for flood-
frequency analysis (Bulletin 17C; England and others, 2018)
were updated with improved statistical techniques for flood-
frequency analysis. This present flood-frequency study for
Connecticut was undertaken by the USGS, in cooperation with
the Connecticut Department of Transportation, to incorpo-
rate (1) 14 or more additional years of streamflow data at
most sites, (2) updated basin characteristics using new digital
geospatial datasets, and (3) improved statistical techniques
for flood-frequency analysis including the expected moments
algorithm (EMA) and the multiple Grubbs-Beck test (MGBT).
This study also incorporates the most current regional skew
estimate.

Purpose and Scope

The purpose of this report is to (1) update the flood dis-
charges at gaged locations for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-,
and 0.2-percent annual exceedance probabilities (AEPs) using
data through water year 2015, (2) update regional regression
equations for estimating flood discharges at ungaged stream
sites in Connecticut, and (3) provide a method for estimat-
ing the 70-, 80-, 90-, 95-, and 99-percent prediction intervals
estimated from the regression equations. Results are integrated
into StreamStats, a web-based USGS map tool that provides a
graphical means of interactively selecting a location and auto-
matically calculating the associated streamflow statistics.

The information presented herein supersedes previous
USGS data and reports on estimation of peak-flow magnitude
and frequency on streams in Connecticut. The new regression

equations are based on an additional 14 or more years of flow
data and improved statistical techniques for flood frequency
(EMA, MGBT, regional skew, corrected confidence intervals
described in the national guidelines for flood-frequency analy-
ses, denoted as Bulletin 17C [England and others, 2018]).

Description of Study Area

The area considered for flood-frequency analysis in this
study, referred to in this report as the “study area,” includes
the State of Connecticut, an area of about 5,000 square miles
(mi2), and a 5-mile (mi) buffer extending into Massachusetts,
New York, and Rhode Island (fig. 1). Streamgages outside of
Connecticut but near the State border can provide additional
information representative of the varied hydrologic response
in the State. Three streamgages in Rhode Island are outside the
5-mi buffer but parts of their basins are within the 5-mi buffer
and were considered representative regional peak flows for
the regression. Connecticut extends approximately 60 mi from
north to south and 90 mi from west to east. Connecticut has
four physiographic regions: Northwestern Uplands, Eastern
Uplands, Lower Connecticut River Valley, and Southern
New England Coastal Lowlands. Both uplands regions are
characterized by steep hills and are heavily forested. The
Northwestern Uplands generally have the steepest topography;
land-surface elevations range from about 500 to 2,300 feet (ft)
above the North American Vertical Datum of 1988 (NAVD 88)
with average slopes of about 11 percent. The Eastern Uplands
have land-surface elevations ranging from about 500 to
1,300 ft above NAVD 88 with average slopes of about 8 per-
cent. The Lower Connecticut River Valley traverses the center
of the State and averages about 30 mi wide. Most of the land
is gently to moderately sloping, except for the narrow trap
rock ridges that run from Long Island Sound to Massachusetts.
The trap rock ridges rise to more than 1,000 ft above sea level.
The Southern New England Coastal Lowlands extend along
the southern shore of the State, accounting for about 460 mi of
actual coastline forming a narrow strip of land ranging from
about 6 to 16 mi wide. Densely populated urban areas are
prominent along the southwestern-coastal and central-valley
regions.

Connecticut’s climate is characterized by cold, snowy
winters and warm, humid summers (Runkle and others, 2017).
The weather pattern is highly variable with abundant precipi-
tation that is normally evenly distributed throughout the year.
The annual average temperature is 49 degrees Fahrenheit (°F)
with average temperatures of 26 °F in January and 72 °F in
July. The maximum annual precipitation during the century
was 64 inches (in.), and the minimum was 31 in. with a stan-
dard deviation of 7.3 in. The average annual precipitation is
44.2 in. for Hartford, Connecticut, and 42.8 in. for Bridgeport,
Conn. (U.S. Climate Data, 2019). Precipitation averages
from 3 to 4 in. per month with occasional large storms in any
month. The average snowfall is about 30 in. along the coast,
40 in. inland, and 50 in. in the northwestern corner of the



3

Description of Study Area

sishjeue uoissaifial uy pasn
1aqunu afefweans pue abebweang v

Jaqunu afefweans pue abebweang

'SMo|} yead jo sasAjeue uoissalbal pue Aouanbalj-pooyy 8yl ul pasn sajels uaoelpe pue 1nonoauuos ul sabebweanys Asaing |ea160j0ag *S ) 8y} JO SUOILIOT

'} ainbi4

NOLLYNY1dX3 000'Z£:1 ‘8107 '8seg UBAIQ PLIOA 1S3 W01} Bseg
== T T Ty
SHILINOTI 02 oL g i s i Y 14 e
T T Vs P 4 NI Q
3TN 07 0l \.wr i E \ w\)\ A
o=
L= \ — ANNOS ANVISI DNOT 10660210
S W ke
P Y ~~ 0160210
47006 o 10
3 NVEADO DIINVILY s mN%cN 858 _ﬁo
N A
NU = msmﬁs %%85 5585
i
N 00960210
P . s.. t\v \8595 0gg0710
P g rSS%&s -{ il 0BBLT0
x> e Y 01g6110 f Smwoﬁrﬁ%mmﬁs
L VAN \ mmﬁmcﬁo 0201
-~ o ¥/ 882 10 0080210
\;l g 85_5 _
03L81410° ) g9/ 7110 gm_a:o oowmm:o \c%mm:c ocmmﬁs N\
! ﬁ; Nﬂ 8@25
8%:5 00015110 T \« Smmﬁs @aﬁs
IR/ 00LLZL10 00996L10) (780710 {
| Euiomzzoo ) 0ZIg610 w J 8385
0008LL10 i
0012110 Smm:o 00780210 8%85
o 000€0210
I ommoﬁs .,
/w\.w 8§:o mggﬁ ]
000£2110 BY56L10
oessLLI0 ogmss 8;85 msts 8§~_
S— Ll 8825 000zt 00690210 L)
oomNoN_c
006061102
AOHY o310 e I i gsea e
0092110 cwmm:c 0£006L10y. 5700616110 { U
3 009611 10° -4 001 { 852 8;25
I m_:o ¥ v~ N il ol 0608810 00250210
0St6LLL0 Sms_s 00016110 '
Iy SSN_S Q onm:S v ﬁmwBFS 00950210 ommSN_
815110 y 0088110 * Ds166110 QN%_
mmmN:o .88:5 882 10) 88& 10 \
006szLLy SmmN: / SQMM_ 5 /om:w:m\ <l SN%:Q
06452110
00092110 8225 a mmmmw:a 00568110 %825
_m;ﬁs 8§_s SE:O P
e 00€5Z110 cc.mw—:o ocmqw:o oooww:o ommmw:o 09986110 ccom_m:o I
o015z ¥~ (semmiiie R —.00:2¢
e ALY QQSN:FLI 2171 - 1060E8LL0 \. _B;w:o 00586110 ._.
S0tz11 I == = |
D czL10, SLLASNHOVSSY 00€£8110 - ¢ /1
001g8LI0.
v B o Js P ¢

Ovoll~

08.EL~



4 Estimating Flood Magnitude and Frequency on Streams and Rivers in Connecticut, Based on Data Through 2015

State (Miller and others, 2002). Extreme precipitation events,
nor’easters, winter storms, tornadoes, and hurricanes are part
of Connecticut’s climate. During hurricane season, tropi-
cal cyclones often affect the region. Thunderstorms are most
frequent during the summer, occurring on average 30 times
annually. These storms can be severe and contribute substan-
tial rainfall amounts to the region (Paulson and others, 1940).
Hurricanes, remnants of hurricanes, and storms that
never developed to hurricane strength are major causes of
floods in Connecticut. The National Oceanic and Atmospheric
Administration (NOAA) indicates that 44 hurricanes, tropi-
cal storms, tropical depressions, and extratropical storms
have passed within a 75-mi radius of New Haven, Conn.,
since 1851 (NOAA, 2019; appendix 1). These storms typi-
cally originate in the central Atlantic Ocean and often fol-
low a track along the eastern United States up through New
England. The Great New England Hurricane of 1938 was
the first catastrophic hurricane to impact New England since
1869 (early climate records) and holds the record for the worst
natural disaster in the State’s 350-year history (Runkle and
others, 2017). Historical flooding in Connecticut has been well
chronicled (Thomson and others, 1964). The most severe and
memorable floods in Connecticut include September 1938,
August 1955, October 1955, and June 1982.

Data Compilation

Peak-flow records were retrieved from the USGS
National Water Information System database (U.S. Geological
Survey, 2016). Selection considerations for flood-frequency
analysis and regionalization of peak flows included record
length and the effect of any streamflow regulation or diver-
sion, urbanization, or natural damming of water affecting peak
flow. Peak-flow data for the selected sites were reviewed to
assure the quality of the records and tested for homogeneity
or presence of trends over time, which could invalidate the
assumptions of the analyses. Once the peak-flow records were
compiled and reviewed, then physical and climatic character-
istics of gaged basins were derived from various geospatial
datasets for regionalization of peak flows.

Peak-Flow Records

Annual peak-flow data collected through September 2015
were obtained for 152 gaging stations that had at least 15 con-
secutive years of record (table 1) (U.S. Geological Survey,
2016a). Of these sites, 141 are in Connecticut, and 11 are in
adjacent States. Although this study is focused on Connecticut,

Table 1.
and regionalization of peaks flows in Connecticut.

[Table available for download at https://doi.org/10.3133/sir20205054]

many more than 11 records from gaging stations in adjacent
States were investigated for use in development of regression
equations. Peak-flow records from adjacent States used in the
final analysis included 3 stations in Massachusetts, 5 stations
in Rhode Island, and 3 stations in New York.

Peak-flow records were inspected for anomalous val-
ues, and qualification codes associated with the peaks were
reviewed for accuracy. Revisions were applied prior to an
analysis of streamflow data for this study. Peak flows for
which a discharge qualification code was published in the
peak-flow file were included or omitted in the flood-frequency
analysis according to procedures described for USGS flood-
frequency analysis program PeakFQ version 7.1 (Flynn and
others, 2006). Peak-flow records from regulated streams were
reviewed individually to determine the effect of the unknown
(code 5) or known (code 6) degree of regulation and whether
the peak-flow data were suitable for regional regression
analysis.

Trends in Peak Flows

The traditional assumption underlying flood-frequency
analysis is stationarity in time. The assumption allows
researchers to estimate the flood magnitude and frequency
from past records and apply them to the future without adjust-
ments. Milly and others (2008) called the assumption of
climate-related stationarity into question and advocated for
new methods to replace models based on stationarity. Several
studies have documented increases in low and median flows
across the United States (McCabe and Wolock, 2002; Lins
and Slack, 2005; Small and others, 2006), but trends in peak
flows are less evident in the literature. In New England, Walter
and Vogel (2010) found increasing high flows in urbanizing
basins, and Hodgkins and Dudley (2005), Collins (2009), and
Huntington and others (2009) found increasing high flows
in basins minimally affected by urbanization. If peak-flow
increases continue in the future, flood magnitude and fre-
quency estimates based on historical data may underestimate
flood risk.

Increasing and decreasing trends in the magnitude and
frequency of peak flows are difficult to estimate and apply
to traditional flood-frequency analysis. Peak flows can be
extremely variable; trends depend on the time period analyzed
and can also vary substantially from site to site. Peak flows
can be affected by decadal changes or may have decadal trends
superimposed on long-term trends.

For the trend analysis, peak-flow data were analyzed for
long-term trends in the magnitude of peaks for streamgages
on unregulated streams in Connecticut and surrounding

Descriptions of U.S. Geological Survey streamgages in Connecticut and adjacent States used in the flood-frequency analysis
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States extending about 50 mi from the Connecticut border.
Streamgages in adjacent States can provide additional infor-
mation on regional streamflow trends. Subsets of streamgages
with long records were created to evaluate trends during the
past 30, 50, 70, and 90 years through 2015. All 10-year blocks
within each time period analyzed were required to be at least
80 percent complete so that no part of the time series would
have substantial missing data. These length and completeness
criteria resulted in 79 streamgages for the 30-year period,

64 streamgages for the 50-year period, 44 streamgages for the
70-year period, and 9 streamgages for the 90-year period.

The magnitudes of the trends were computed with Sen
slope (also known as the Kendall-Theil robust line), the
median of all possible pairwise slopes in each time series
(Helsel and Hirsch, 2002). The Sen slope is multiplied by
the number of years of peaks to obtain the magnitude of the
trend or total change in the annual peak flows over the period
analyzed. For example, a Sen slope of 23.18 cubic feet per
second (ft3/s) multiplied by 70 for the 70-year period results
in a trend magnitude of 1,623 ft3/s for the Salmon River near
East Hampton (station 01193500).

The trends were computed with methods that consider the
possibility of short- and long-term persistence in the temporal
data. This is an important issue that is often ignored in trend
studies. Trends over time are sensitive to assumptions of
whether underlying hydroclimatic data are independent, have
short-term persistence, or have long-term persistence (Cohn
and Lins, 2005; Koutsoyiannis and Montanari, 2007; Hamed,
2008; Khaliq and others, 2009; Kumar and others, 2009).
Short- and long-term persistence may represent the occurrence
of wet or dry conditions that tend to cluster from year to year
(Koutsoyiannis and Montanari, 2007; Hodgkins and others,
2017). For further discussion and references on persistence,
see Hodgkins and Dudley (2011).

Because the long-term time-series structure of peak-
flow data is not well understood, temporal trend significance
with three different null hypotheses of the serial structure of
the data are reported: independence, short-term persistence
(STP), and long-term persistence (LTP) (Hamed and Rao,
1998; Hamed, 2008). The serial structure of data referred to
as “independence” means annual peaks from year to year
are independent from each other (ignores any short or long
clusters of wet and dry years). Trends were considered statisti-
cally significant at p<0.05; this level represents a 5-percent
probability that a trend is due to random chance. Results from
the trend analysis for 30-, 50-, 70- and 90-year time periods
under the three serial correlation structures, magnitudes of Sen
slopes, and p-values are shown in tables 2 through 5. Peak-
flow trend results depend on the period of record analyzed and
assumptions about the serial correlation structure of the annual
peak flows.

Increasing trends were detected in each of the four time
periods (30, 50, 70, and 90 years) analyzed. For the 30-year
period (1986-2015), 19.0 percent of streamgages (15 of 79)

Data Compilation 5

have increasing trends if independence of annual peak flows

is assumed (table 2). If STP is assumed, 10.1 percent of
streamgages (8 of 79) have increasing trends, and if LTP is
assumed, no streamgages have trends. There are no decreasing
trends for any assumption of the serial correlation structure.

For the 50-year period (1966-2015), there are consid-
erably fewer trends detected than for the three other time
periods analyzed (table 3); 6.2 percent of streamgages (4 of
64) have increasing trends if independence of annual peak
flows is assumed. If STP is assumed, 1.6 percent (1 of 64) of
streamgages have increasing trends, and none have trends if
LTP is assumed. As with the 30-year trends, there were no
significant decreasing trends.

There was a relatively high percentage of increasing
trends detected for the 70-year period (1946-2015) with the
assumption of independence; 47.7 percent of streamgages
had increasing trends (21 of 44) (table 4). Assuming STP, this
percentage decreased to 36.4 percent of streamgages (16 of
44) and decreased to 9.1 percent of streamgages (4 of 44)
if LTP is assumed. For the limited number of streamgages
with adequate data for 90 years (1926-2015), 33.3 percent
of streamgages (3 of 9) had increasing trends if indepen-
dence or STP is assumed. If LTP is assumed, 11.1 percent
of streamgages (1 of 9) had increasing trends (table 5). No
streamgages showed significant decreasing trends for the
70- or 90-year periods.

In the 70- and 90-year periods, increasing trends
were detected under all three serial correlation structures,

4 streamgages in the 70-year period and | streamgage in the
90-year period. The Quinnipiac River (station 01196500)
showed an increasing trend in all three serial correlation struc-
tures in the 70-year period. Based on a trend magnitude of
1,548 {t3/s for the 70-year period, the annual peak flows on the
Quinnipiac River (station 01196500; fig. 1) increased by about
22 ft3/s per year (or 220 ft3/s every decade).

In summary, there is no evidence for decreasing annual
peak flows over time and some evidence of increasing peak
flows over time. The difference in the percentage of statisti-
cally significant (p<0.05) increasing trends based on the period
analyzed indicates that multidecadal cycles may be present
and influencing the magnitude of the trends. For example,
many of the streamgages with increasing peak-flow trends
for the 70-year period (1946-2015) had many low-magnitude
peaks prior to 1965 or 1970. There are fewer trends in the
50-year period (1966-2015); this period largely comes after
the period that had many low-magnitude peaks. Flood-poor
and flood-rich periods may be related to multidecadal climate
cycles. The number of major peaks flows (flows with annual
exceedance probabilities less than 0.4 percent [25-year recur-
rence interval]) have been shown to be related to the phase
of the Atlantic Multidecadal Oscillation for relatively large
basins (>386 mi2) in parts of North America that include the
Northeast United States (Hodgkins and others, 2017).
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Bulletin 17C (England and others, 2018) acknowledges
concern about changes in flood risk associated with climate
variability but does not include methods to account for such
changes in flood-frequency analysis. Vogel and others (2011)
recommend use of magnification and recurrence reduction
factors to examine how a linear trend would affect flood
magnitudes and recurrence intervals at a future time. Zarriello
(2017) applied the magnification factor to two streamgages
with long-term records that showed increasing trends (inde-
pendence was assumed) in peak flows—Ipswich River at
Ipswich, Massachusetts (station 01102000), and Mill River
at Northampton, Mass. (station 01171500). The application
of the magnification factor method indicated a flood with a
given annual exceedance probability will, on average, be 2,

4, and 7 percent greater in magnitude in 10, 20, and 30 years,
respectively. The trends observed in the data used in this study
and the effects on flood frequency will require further work as
the science evolves and new data are obtained.

Historical peak-flow trends in and near Connecticut do
not offer clear and convincing evidence of the need to incorpo-
rate trends into flood-frequency analyses. If the evidence was
clear, a well-defined deterministic mechanism should be iden-
tified prior to incorporating trends (Salas and others, 2018).
For this study, the traditional assumption of stationarity is used
with no adjustment for historical trends.

Physical and Climatic Basin Characteristics

Peak-flow information can be estimated at ungaged sites
through a multiple regression analysis that develops a rela-
tion between peak-flow characteristics (such as the 1-percent
annual exceedance probability flow) and selected physical and
climatic basin characteristics for gaged drainage basins. Thirty
basin characteristics were selected as potential explanatory
variables in the regression analyses on the basis of their theo-
retical relations to peak flows, results of previous peak-flow
studies in similar hydrologic regions, and the ability to mea-
sure the basin characteristics using digital datasets and geo-
graphic information system (GIS) technology (table 6). The
ability to measure the basin characteristics using GIS technol-
ogy was important to facilitate automation of the process for
measuring the basin characteristics and solving the regression
equations in StreamStats, the USGS Streamflow Statistics
and Spatial Analysis Tools for Water-Resources Applications
(https://streamstats.usgs.gov). Basin characteristics were
derived from various national geospatial datasets, including
the National Land Cover Dataset (USGS, 2014a), the National
Elevation Dataset (USGS, 2017a), the National Hydrologic
Dataset Plus (USGS, 2017b), the Soil Survey Geographic
(SSURGO) database (Soil Survey Staff, Natural Resources
Conservation Service, U.S. Department of Agriculture, 2017),
the National Quaternary Sediments in the Glaciated United

States Dataset (USGS, 1970), the National Wetlands Dataset,
the Parameter-elevation Regressions on Independent Slopes
Model (PRISM) dataset, and the NOAA National Weather Ser-
vice (NWS) precipitation frequency datasets (NOAA, 2015).
Basin-characteristic names, descriptions, units of measure, and
sources of information are listed in table 6. These variables
can be broadly characterized by topography, climate, geology,
soils, and land use type.

Magnitude and Frequency of Flood
Discharges at Gaged Sites

Flood-frequency analysis is a statistical technique used
to estimate the magnitude and frequency of streamflow at
a streamgage site. The objective of frequency analysis is to
relate the magnitude of streamflow to its frequency of occur-
rence through probability distribution that describes flood risk.
The probabilities computed correspond to the AEP, the prob-
ability in any year that a flood threshold is exceeded.

The flood-frequency analyses in this report follow
the methodology described in the current version of the
national guidelines for flood-frequency analyses, Bulletin
17C (England and others, 2018). The guidelines for flood-
frequency analyses have undergone several updates since they
were first published in 1967. Recent (2018) updates include
the following: adoption of a generalized representation of
flood data that allows for interval and censored data types; a
new method, called the EMA, which extends the method of
moments so that it can accommodate interval data; a general-
ized approach to identification of low outliers in flood data
using the MGBT low-outlier test; and an improved method for
deriving regional skew coefficients and computing confidence
intervals.

The Bulletin 17C methodology continues to prescribe
the Pearson type 111 distribution with log transformation of the
flood data (LP3 distribution) as the basic distribution for defin-
ing the annual flood series (U.S. Water Resources Council,
1967, 1976; Interagency Advisory Committee on Water Data,
1981). The LP3 distribution is a three-parameter distribution
that requires estimates of the mean, the standard deviation, and
the skew coefficient of the population of logarithms of annual
peak discharge at each gaged site. The mean, the standard
deviation, and the skew coefficient, which describe the mid-
point, slope, and curvature of the peak-flow frequency curve,
respectively, can be estimated from the available sample data
(annual peak discharges). The basic equation for determining
flood frequency from the three parameters is the following:

log 0, = X +K,S, (1)


https://streamstats.usgs.gov
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where
0, is the peak discharge for the annual
exceedance probability,
X  is the mean of the logarithms of the annual
peak discharge,
is a factor based on the weighted skew
coefficient and the exceedance probability,
P, which can be obtained from the
appendix in Bulletin 17C, and
S is the standard deviation of the logarithms
of the annual peak discharge, which is a
measure of the degree of variation in the
annual values about the mean value.
The USGS computer program PeakFQ version 7.1 (Flynn
and others, 2006) was used to derive the 50-, 20-, 10-, 4-,
2-, 1-, 0.5-, and 0.2-percent AEP for gage sites. The program
PeakFQ implements the Bulletin 17C procedures for flood-
frequency analysis of streamflow records. The output from
PeakFQ includes estimates of the parameters of the LP3
distribution, including the logarithmic mean, standard devia-
tion, skew, and mean squared error of the skew. The output
graph includes the fitted frequency curve, systematic peaks,
low outliers, censored peaks, interval peaks, historical peaks,
thresholds, and confidence limits.

Regional Skew Coefficient

A skew coefficient is used in defining the probability
distribution of the annual peak flows at a streamgage to better
reflect regional and long-term conditions. Bulletin 17C recom-
mends the skew coefficient used in defining the probability
distribution be a weighted average of the (at-site) station skew
and a regional skew estimated from long-term streamgages
and representative of regional peak-flow characteristics
(Griffis and Stedinger, 2009). The at-site skew coefficient
is sensitive to extreme peak flows and might not provide an
accurate measure of the true skew of peak flows that occur
at a site, particularly for streamgages with short periods of
record. Since the mid-1970s, the published generalized skew
map by the Interagency Advisory Committee on Water Data
(1981, plate 1) has been used for deriving flood discharge
estimates for gaged sites. In 2003, the skew map was super-
seded by a more accurate estimate of regional skew (0.34) for
Connecticut developed by Ahearn (2003).

In Bulletin 17C, the recommended procedure for esti-
mating regional skew is the Bayesian weighted-least squares/
Bayesian generalized least squares (B-WLS/B-GLS) method
(Veilleux and others, 2019). The B-WLS/B-GLS method has
shown the ability to reduce the uncertainty in generalized
skew estimates and allows the generalized skew estimate
to take into account basin characteristics where applicable
(Reis and others, 2005; Gruber and others, 2007; Gruber and
Stedinger, 2008; Veilleux, 2011). Veilleux and others (2019)
performed a regional skew analysis of streamgages in the New
England using B-WLS/B-GLS methodology. The results of the

regional skew analysis by Veilleux indicate a constant skew
of 0.37 with an average variance of prediction of 0.14. The
regional skew developed by Veilleux has the highest precision
of all previous skew studies of streamgages in Connecticut and
supersedes the regional skew coefficient by Ahearn (2003).
For stream sites with unregulated flow, the flood-
frequency estimates were computed using a weighted average
of the at-site station skew and a regional skew. For stream
sites with regulated flow, the flood-frequency estimates were
computed by fitting the annual peaks from the regulated flow
record to the LP3 distribution using the at-site station skew.

Expected Moments Algorithm Frequency
Analysis and Multiple Grubbs-Beck Test for
Detecting Low OQutliers

The new guidelines in Bulletin 17C include the EMA and
MGBT techniques for flood-frequency determinations. Both
EMA and MGBT have been shown to provide more efficient,
accurate estimates of the magnitude and frequency of flood
discharges at gaged sites than those generated using the previ-
ous Bulletin 17B (Interagency Advisory Committee on Water
Data, 1981) guidelines when a peak-flow record contains gaps,
historical flood measurements, censored data, or low outliers
(Cohn and others, 1997, 2013; Paretti and others, 2014a, b).

Generally, peak-flow records of streamgages contain two
types of data: (1) systematic, with a peak-flow value recorded
for each year; and (2) historical or isolated measurements
made outside the systematic period of record (typically during
extreme hydrologic conditions). In these two general types of
peak-flow data, some peaks can be identified as “censored,”
which means that the actual peak flow is uncertain and is
documented as greater than or less than some value. The EMA
methods allow better handling of these data types than was
previously possible using strict Bulletin 17B procedures.

The knowledge that a particular flow would have been
noticed and measured if it had occurred provides valu-
able information for the peak-flow frequency analysis. The
EMA method allows the use of perception thresholds and
flow intervals to describe conditions outside the systematic
record. Perception thresholds describe the minimum and
maximum peak flows that would have been measured if they
had occurred (Veilleux and others, 2014). Flow intervals
describe the uncertainty associated with a peak flow. Defining
the perception thresholds is based on historical documenta-
tion and anecdotal information. For this study, perception
thresholds generally were set to (0, infinity) for the systematic
record, (peak, infinity) for any historical peak measurements,
and (infinity, infinity) for any gaps in the systematic record
if no additional information was available (Ahearn, 2020).
Additional information on the generalized representation of
flood data that allows for interval and censored data types and
the EMA technique to accommodate interval data is provided
Bulletin 17C (England and others, 2018).



20 Estimating Flood Magnitude and Frequency on Streams and Rivers in Connecticut, Based on Data Through 2015

Several peak-flow records analyzed contained low outli-
ers or peaks that depart significantly from the data population.
Low outliers can have high leverage or influence in fitting
the frequency curve to the entire record of peak flows, which
results in a poor fit of the frequency curve at lower AEPs
(1-percent AEP discharge). The peak-flow statistics most
frequently used for flood protection and infrastructure design
are the discharges with low AEPs. Additionally, low outliers
often are considered to reflect physical processes that are not
necessarily related to the processes associated with large flood
events, and low outlier use in the frequency analysis should
be limited (Cohn and others, 2013). The MGBT technique,
described in Cohn and others (2013), objectively and system-
atically detects and removes potentially influential low-flow
(PILF) outliers below a PILF threshold and can be used in
concert with EMA methods in the USGS PeakFQ program.
For streamgages used in this study, removing the PILFs gener-
ally produced a better fit of the frequency curve for low AEP
flood discharges (large peak flows).

Flood-Frequency Estimates for Gaged Sites

Flood-frequency estimates for 141 streamgages in
Connecticut and 11 streamgages in adjacent States—New York
(3 streamgages), Massachusetts (3 streamgages), and Rhode
Island (5 streamgages)—were derived by fitting LP3 distribu-
tion to the records of annual peak flows and applying the EMA
and MGBT (Ahearn, 2020). The flood discharges from the
frequency analyses for the 152 streamgages have AEPs of 50-,
20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent (recurrence intervals
of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively).

Flood-frequency estimates for regulated sites are pre-
sented for the pre-regulation and post-regulation periods, if
15 or more years of pre-regulation or 15 or more years of post-
regulation record were available. No adjustments were applied
to the annual peak flows or made to the flood-frequency
estimates for available storage in the reservoirs before or dur-
ing floods, nor for changes in regulation procedures during the
period of regulation.

Development of Regional Regression
Equations for Estimating Flood
Discharges

Multiple-linear regression is used to develop the relation
between two or more basin characteristics (called explanatory
variables) and a streamflow statistic (called a response vari-
able) by fitting a linear equation to the data. With the develop-
ment of regression equations, measurements of basin char-
acteristics at an ungaged stream site can be used to estimate
flood discharges at that site. The general form of equations
developed from multiple linear-regression analyses is shown
in the following equation:

Yi=by+tbi Xy +hy Xo+...+b,X,te ()

where

X~

is the response variable (estimate of the
streamflow statistic computed from
observed streamflow) for site 7,
are the n explanatory variables (basin
characteristics) for site i,
by to b, are the n+1 regression model coefficient, and
e; is the residual error (difference between
the observed and predicted values of the
response variable) for site 7.

The basic assumptions of regression analyses are (1) the
model adequately describes the linear relation between the
response and explanatory variables, (2) the mean of ¢, is zero,
(3) the variance of ¢; is constant and independent of the values
of X, (4) the values of e; are distributed normally, and (5) the
values of ¢; are independent of each other. Because streamflow
data are naturally correlated spatially and temporally, the last
assumption is not completely satisfied with the use of ordi-
nary least squares (OLS) regression. As a result, generalized
least squares (GLS) regression was used to develop the final
equations for estimating AEP flood discharges. An overview of
the OLS and GLS multiple-linear regression techniques used
to develop the initial and final equations are presented in the
following two sections.

Streamgages were selected for the regression analysis
using the following criteria: (1) no substantial effects of flood-
control regulation are observed in the basins; (2) no substantial
effects of urbanization or other man-made influences, such
as channel improvements, are observed in the basins; (3) the
basin has less than 15 percent of the land cover designated as
commercial, industrial, or medium or high-density develop-
ment; (4) the station has a minimum of 15 years of record; and
(5) the station is spatially independent. Regression analysis
requires that data be as spatially independent as possible.
When the drainage basins of two streamgages are nested,
meaning that one is contained inside the other, and the sizes
of the two basins are similar, the gages are considered redun-
dant. Then, instead of providing two independent spatial
observations depicting how basin characteristics are related
to AEP flood discharges, these two basins will likely have the
same hydrologic response to a given storm and thus repre-
sent only one spatial observation. Of the 152 streamgages
with updated AEP flood discharges using data through 2015,
85 streamgages met the criteria and were used in the regional
regression analysis.

X] to )(n

Ordinary Least Squares Regression

OLS regression analyses were used to determine the best
combinations of basin characteristics to use as explanatory
variables in the multiple-linear regression equations for esti-
mating AEP discharges. Logarithmic transformations (base 10)
were performed for all response variables and for selected



Development of Regional Regression Equations for Estimating Flood Discharges 21

explanatory variables used in the regression analyses. Data
transformations were needed to obtain a more constant vari-
ance of the residuals about the regression line and to linearize
the relation between the response variable and the explanatory
variables. A constant of 1 was added to select explanatory
variables expressed in percent.

OLS regression analyses were performed using Spotfire
S+ statistical software (TIBCO Software Inc., 2008). The
automated statistical methods “all-possible subsets” was used
for selecting the explanatory variables. The selection method
determined the statistical contribution of the explanatory
variable, and variables were retained or deleted based on their
statistical importance. In “all-possible subsets,” all the equa-
tions created from all possible combinations of explanatory
variables were examined and the coefficient of determination
(R?2) was used to check for the best combination of variables.
With this method, each explanatory variable can be included
or excluded independently of the other explanatory variables.

Explanatory variables in the OLS models were selected to
minimize the standard error of estimate (SEE), Mallows’ Cp,
and PRESS statistics and to maximize the adjusted coefficient
of determination (adjusted-R2; see glossary). The OLS models
were evaluated to determine their adequacy, including graphi-
cal relations and residual plots, variance inflation factor (VIF),
Cook’s D statistic (Cook, 1977; Helsel and Hirsch, 2002), and
high-leverage points. The selection of explanatory variables,
and the signs and magnitudes of their respective regression
coefficients, were each evaluated to ensure hydrologic validity
in the context of AEP flood discharges. Correlation between
explanatory variables and VIF was used to assess multicol-
linearity in the regression models. Multicollinearity problems
were identified with a regression-diagnostics tool imple-
mented in the USGS library version 4.0 (Lorenz and others,
2011) for Spotfire S+ statistical software (TIBCO Software
Inc., 2008) by checking each explanatory variable for a VIF
greater than 2.

Smaller regions were evaluated using OLS regression
analysis. The physiographic regions of Connecticut and
boundaries of the U.S. Environmental Protection Agency’s
Northeastern Coastal Zone and Northeastern Highland Level
IIT ecoregions were used to subdivide the streamgages and
investigate smaller flood regions (Omernik, 1995; U.S.
Environmental Protection Agency, 2010). Results from the
OLS analysis did not indicate that smaller regions improve
the accuracy of the model enough to warrant separate models.
Though the Northeastern Coastal Zone (ecoregion) shows a
slight improvement in predictive accuracy compared to the
statewide model, the Northeastern Highlands ecoregion has
much lower predictive accuracy than the statewide models.
The explanatory variables in the statewide model capture
regional variation. A tradeoff in a statewide model is likely
some loss of predictive power in the Northeastern Coastal
Zone. The Northeastern Highlands ecoregion is a difficult
region to model. It has the fewest gages, and the explanatory
variables do not predict precise estimates of flow. Collecting

more data in the Northeastern Highlands will improve the
ability to estimate the magnitude and frequency of peak flows,
particularly in that region of Connecticut.

From the OLS regression analysis, four potential
explanatory variables (drainage area (DRNAREA), in square
miles; maximum 24-hour precipitation that occurs on average
once in xx years (I24HxxY), in inches; percentage of area of
hydrologic Soil Type C or D from SSURGO (SOILCorD), in
decimal percent; and storage, in percent of basin classified as
open water or wetlands) were identified for further analysis
using the more robust GLS regression analysis.

Generalized Least Squares Regression

GLS multiple-linear regression was used to develop the
final set of regression equations for estimating AEP flood
discharges for Connecticut. GLS regression, as described by
Stedinger and Tasker (1985), Tasker and Stedinger (1989),
and Griffis and Stedinger (2007), is a method that weights
streamgages in the regression according to differences in
streamflow reliability (record lengths) and variability (record
variance) and according to spatial cross-correlations of con-
current streamflow among streamgages. The GLS regression
techniques give less weight to streamgages that have shorter
periods of record and more weight to streamgages with longer
periods of record. Less weight is also given to streamgages
where concurrent peak flows are correlated because of the
geographic proximity to other streamgages. Compared to
OLS regression, GLS regression provides improved estimates
of AEP discharges and improved estimates of the predic-
tive accuracy of the regression equations (Stedinger and
Tasker, 1985).

GLS regression analyses were performed using the USGS
weighted-multiple-linear regression program written in R pro-
gramming language, WREG version 2.02 (USGS, 2014b).
Output of WREG provides various measures of the reliability
of the regression equations including the following: the aver-
age variance of prediction (AVP, in log units), the standard
error of prediction (SEP, in percent), the standard error of
estimate (SEE, in percent), the pseudo coefficient of determi-
nation (pseudo-R 2), the mean squared error (in log units), the
root mean squared error (in percent), and leverage and influ-
ence of individual observations on the regression. Equations
for calculating these metrics are available in Eng and others
(2009) and Gotvald and others (2012).

Regression Equations for Estimating Flood
Discharges at Ungaged Stream Sites

The final set of regional regression equations were
selected based on the lowest model error, expressed as
SEP and SEE; amount of variability in the flood estimates
explained by explanatory variables, expressed as the pseudo-
R?2; random patterns in residuals plots; low number of data
points with high leverage or influence; and consistency in
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model form across all estimated statistics. Residual plots of the
simulated and observed values were used as a diagnostic tool
for checking the validity of the models. Overall, the model
appears to fit the data reasonably well. There was no evidence
that any of the model assumptions have been violated. The
plots show that the residuals are nearly equally distributed
around zero for each of the AEP flood discharges. The model
shows no curvature or changing variance. Furthermore, the
residuals show no spatial pattern, indicating no geographical
biases in the statewide models or need for additional explana-
tory variables (fig. 2).

Leverage and influence statistics for the GLS analysis
from the WREG program were used to identify possible prob-
lem streamgages used in the regression. Streamgages that had
leverage or influence metrics that exceeded the thresholds cal-
culated by WREG, especially those that had both high lever-
age and high influence, were evaluated for potential erroneous
data reporting or conditions that would make the streamgage
ineligible for regression. Several streamgages were identified
by the WREG program as having high influence or leverage
but were not excluded in the final regression. A reasonable
hydrologic justification for excluding the data could not be
identified.

Multicollinearity problems were investigated using VIF.
Multicollinearity problems can increase the variance of the
coefficient estimates and make the estimates sensitive to minor
changes in the model. VIF values greater than 5 to 10 indi-
cate that an explanatory variable is highly correlated to other
explanatory variables and inferences based on the model can
be misleading or erroneous. None of the explanatory variables
had a VIF value greater than 1, indicating no multicollinearity
problems were found. DRNAREA, 124HxxY, and percentage
of basin with SOILCorD were found to be the best explanatory
variables for estimating peak-flow frequency for ungaged sites
in Connecticut. The explanatory variables in the final regres-
sion equations were statistically significant at the 95-percent
confidence level (p<0.05). The same explanatory variables
were used to develop all seven regression equations to mini-
mize the possibility of predictive inconsistencies between esti-
mates of different probabilities. The final regional regression
equations and select performance metrics for the 50- through
0.2-percent AEP flood discharges are listed in table 7.

The most significant explanatory variable (strongest
predictor of flow), DRNAREA, is related positively to AEP
flood discharges; ungaged basins with larger drainage areas
will produce larger estimates of AEP flood discharges than
ungaged basins with smaller drainage areas. The second most
significant explanatory variable, [24HxxY, is also related
positively to AEP flood discharges (fig. 3). Intuitively, the
larger estimates of precipitation will produce larger estimates
of AEP flood discharges. The third explanatory variable,
SOILCorD, is related positively to AEP flood discharges
(fig. 4). Hydrologic soil types C and D have higher runoff

potential than hydrologic soil groups A and B due to low
infiltration rates when wet. Basins with larger percentages

of SOILCorD will produce larger estimates of AEP flood
discharges than basins with smaller percentages of SOILCorD.
The basin boundaries used to compute the drainage areas were
obtained from existing basin boundary datasets or delineated
from the 10-meter-resolution National Elevation Dataset
(USGS, 2017a). The 24-hour, 2-, 5-, 10-, 25-, 50-, 100-,

200-, and 500-year maximum precipitation (in inches) was
obtained from the NOAA NWS Precipitation Frequency Data
Server database (NOAA, 2015; https://hdsc.nws.noaa.gov/
hdsc/pfds/pfds_series.html). The explanatory variable—
SOILCorD—was determined as the percentage of the basin
area with hydrologic soil groups C, C/D, or D from the Soil
Survey Geographic (SSURGO) database (Soil Survey Staff,
Natural Resources Conservation Service, U.S. Department of
Agriculture, 2017; https://sdmdataaccess.sc.egov.usda.gov).

Accuracy and Limitations of the
Regression Equations

Several performance metrics from the WREG program
further the understanding of the accuracy of the equations.
Performance metrics of the final regional regression equations
include variance of prediction, average variance of prediction,
standard error of prediction, and pseudo-R 2. A measure of the
uncertainty in a regression equation estimate for a site () is the
variance of prediction (V),;). The V), ; is the sum of the model
error variance and sampling error variance (Eng and others,
2009) and is computed using the following equation:

Vp,i = yZ + MSEs,i (3)
where
y2  is the model error variance, and
MSE,;  is the sampling mean squared error for site i.

Model error measures the ability of a set of explanatory
variables to estimate the values of peak flows calculated from
the streamgage records that were used to develop the equa-
tion. Sampling error measures the ability of a finite number
of streamgages with a finite number of recorded annual
peak flows to describe the true peak flows for a streamgage.
Assuming the explanatory variables for the streamgages in
a regression analysis are representative of all streamgages in
the region, the average accuracy of prediction for a regression
equation is determined by computing the AVP for » number of
streamgages using the following equation:

AVP =72+ MSE,; / (n) (4)


https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_series.html
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_series.html
https://sdmdataaccess.sc.egov.usda.gov
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A more traditional measure of the accuracy is the standard
error of prediction (SEP), which is simply the square root of
the variance of prediction. Approximately two-thirds of the
estimates obtained from a regression equation for ungaged
sites have errors less than the SEP (Helsel and Hirsch, 2002).
The SEP for a regression equation can be computed in percent
using AVP (in log units) and the following transformation:

SEP = 100 x [102:3026(AVP) — 1]0.5 (%)

where
SEP is the standard error of prediction, in percent.

The SEP is a measure of the spread or dispersion of the
predicted value from the observed value; hence, the lower the
values, the less the expected spread of predictions around the
true (unknown) value. The coefficient of determination (R?2)
measures the proportion of the variation in the dependent vari-
able explained by the independent variable that is predictable
from the independent variable in OLS regressions. For GLS
regressions, a more appropriate performance metric than R2 is
pseudo-R2. Unlike the R2 metric, pseudo-R 2 is based on the
variability in the dependent variable explained by the regres-
sion after removing the effect of the time-sampling error.

Performance metrics for the final set of regional regres-
sion equations are given in table 7. The pseudo-R 2 for
the regression equations ranged from 95.7 percent for the
20-percent AEP to 88.9 percent for the 0.2-percent AEP. The
SEE and SEP values for the regression equations ranged from
24.7 and 26.3 percent for the 20-percent AEP to 41.1 and
45.0 percent for the 0.2-percent AEP, respectively. The SEP
values were slightly improved in the current study compared
to the 2004 study (from about 6-percent improvement at
50-percent AEP [2-year flood] to less than 1-percent improve-
ment at the 1-percent AEP [100-year flood]).

The regression equations developed in this study apply
to stream sites in Connecticut where peak discharges are not
affected significantly by regulation, diversion, or backwater.
The applicability and accuracy of the equations depend on
whether the basin characteristics measured for an ungaged
stream site are within the range of the characteristic values
used to develop the regression equations (table 8). The equa-
tions also should be used with caution for ungaged stream
sites with basin-characteristic values approaching the mini-
mum or maximum limits, because the predictive errors of the
equations increase with distance from the mean or median
values of the explanatory variables and inconsistencies in the
estimates may result. In addition, basin-characteristic mea-
surements at ungaged sites should be computed using the same
GIS datasets and measurement methods used in this study; the
USGS StreamStats web-based GIS tool includes the same GIS
data layers and measurement methods as used to develop the
regression equations in this study.

Prediction Intervals of Regression Equations Estimates 27

Table 8. Ranges of explanatory variables used in the regional
regression equations for estimating flood discharges in
Connecticut.

Hydrologic characteristic (units) Maximum Minimum
Drainage area (square miles) 325 0.69
2-year, 24-hour rainfall (inches) 3.32 2.77
S-year, 24-hour rainfall (inches) 4.7 4
10-year, 24-hour rainfall (inches) 5.79 4.86
25-year, 24-hour rainfall (inches) 7.22 5.99
50-year, 24-hour rainfall (inches) 8.3 6.81
100-year, 24-hour rainfall (inches) 9.38 7.62
200-year, 24-hour rainfall (inches) 11.22 8.7
500-year, 24-hour rainfall (inches) 13.64 10.1
Hydrologic soil group C, C/D, or D 0.945 0.118

(decimal percent)

Prediction Intervals of Regression
Equations Estimates

Prediction intervals are useful indicators of the uncer-
tainty inherent in the regression equations. Users of the regres-
sion equations may be interested in a measure of uncertainty
for a flood discharge estimate at a particular site as opposed to
the average uncertainty based on all streamgage data used to
generate the regression equations. One such measure of uncer-
tainty is the confidence interval of a prediction, or prediction
interval. A prediction interval is given as the range in values
of an estimated response variable over which the true value of
the response variable occurs with some stated probability. The
minimum and maximum values given in a 90-percent predic-
tion interval for the 100-year peak flow for an ungaged site
should be interpreted to mean that there is a 90-percent con-
fidence that the true value of the 100-year peak flow is within
the prediction interval. Tasker and Driver (1988) have shown
that a 100 (1—a) prediction interval for a streamflow statistic
estimated at an ungaged site from a regression equation can be
computed as follows:

[0/C] <0 <[0C] (6)

where
O  is the flood magnitude for the ungaged site, in
cubic feet per second; and
C  is the confidence interval computed using the
following equation:

C=10N(T*SEP, ) 7
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where
T 1isthe Student’s t-distribution value from

a standard statistics table for a given
confidence level and degree of freedom
(for a 90-percent level o = 0.10 and
>100 degrees of freedom), and

is the standard error of prediction for site
i; the value of S, ; is computed using the
following equation:

SEP,,

SEP,; = [y*+ x; Ux; 1% ®)

2 is the model error variance, in log units
(computed using WREG and presented in
table 9);

X; is a row vector of the explanatory variables
[DRNAREA, 124HxxY, and SOILCorD]
for site 7, augmented by a 1 as the
first element;

U  is the covariance matrix for the regression
coefficients (table 9); and

x;' is the transpose of x; from Ludwig and Tasker
(1993; see table 9 of this report).

The model error variance (y2) and the covariance matrix
(U) were determined from the WREG GLS analysis and are
reported in table 9. An example calculation of the 90-percent
prediction interval is given for the Quinnipiac River for USGS
streamgage 01196500 with the following characteristics:
DRNAREA of 110 mi2, I24H100Y of 8.53 in., and SOILCorD
0f 0.4207 decimal percent. The computed 1-percent AEP flood
discharge from the regression equation is 13,300 ft3/s. The
procedure for computing the 90-percent prediction interval is
as follows:

» Compute the standard error of prediction using matrix
algebra to solve equation 8, where the model error y2 is
retrieved from table 9, the x; vector is in the form at x;
= {1, log;oDRNAREA, 124HxxY, SOILCorD} and the
covariance matrix (U) is retrieved from table 9,

e (12=0.021, x= {1, log,(110), 124H100Y (8.53),
SOILCorD (0.4207+1)},S,,, = (0.021 + (0.00286))0-5
=0.15446;

* Compute C from equation 7, (C = 10 (1.66%0.15446) =
1.80718);

» Compute the 90-percent prediction interval from
equation 6, (Q/C) <Q1, <QC, or 7,360 {t3/s < O,
< 24,000 ft3/s, meaning that one can be 90 percent
confident that the true value of the estimate for the site
lies between 7,360 and 24,000 ft3/s.

An application worksheet provided as a Microsoft Excel
file is available for calculating flood discharges for a given
AEP and user-selected prediction intervals (Ahearn and
Veilleux, 2020). Appendix 2 includes a general description
and screenshot of the worksheet. The worksheet is patterned
after similar worksheets by Zarriello (2017) and Curran and
others (2016).

Drainage-Area Only Regression
Equations

Regression equations with one explanatory variable—
drainage area—can provide quick estimates of flood dis-
charges that are easier to calculate, although less accurate,
than those computed by the regression equations with multiple
explanatory variables shown in table 7. The drainage-area-
only regression equations and their performance metrics are
presented in table 10. The SEPs for the drainage-area-only
equations are 8.5 to 3 percent higher than for the three-
variable regression equations. The SEPs for the 10- and
0.1-percent AEP flood discharges are 36.3 and 42.4 percent
for the drainage-area-only regression equations and 28.4 and
37.1 percent for the regression equations with multiple
explanatory variables, respectively.

The regional exponent in each of the drainage-area only
regression equations is the slope of the average linear loga-
rithmic relation between drainage area and flood discharge
for a selected AEP. The regional exponent can be used in an
alternate method for adjusting flood-frequency data from a
streamgage to locations upstream and downstream. This use
of the method is to be limited to sites within 50 to 150 percent
of the streamgage drainage area (Wandle, 1983). The regional
exponents for selected AEP flood discharges ranging from
50 to 0.2 percent are in table 9.

Weighting of Streamgage Statistics
and Regression Estimates

An estimate of AEP discharge at a streamgage can be
improved by combining the regression equation estimate
with the frequency curve computed from the streamgage
record. A procedure recommended in Bulletin 17C (England
and others, 2018) is to compute the AEP discharges from the
regression equations and from the LP3 frequency analysis
of the streamgage record and weight them by the inverse of
their variances (eq. 9). The weighting procedure was only
applied to streamgages that are unregulated and have limited
urbanization. Discharges from regulated stations should not be
weighted with regression equation estimates as these equations
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Table 9. Model error variance and covariance values associated with selected annual exceedance probabilities used to determine
prediction intervals for the Connecticut regional regression equations.

[Model error variance and covariance values were determined from the U.S. Geological Survey weighted-multiple-linear regression (WREG) program, version
2.02. Variance and covariance are in log units.; y2, regression model error variance (as used in eq. 8); GLSNet, Generalized Least Squares Network; U, covari-
ance matrix (as used in eq. 8; the matrix horizontal and vertical variables are defined by the constant and the independent variables in the regression equations in
the order they are given)]

Percent annual Model error U
exceed:ill?ce (Yz'. from GL_SNet, (covariance matrix from WREG)
probability in log units)

50 0.012 0.150121456 —0.002881962 —0.014221043 —0.040368584
—0.002881962 0.000594468 0.000298268 0.000517440

—0.014221043 0.000298268 0.007274701 0.001057482

—0.040368584 0.000517440 0.001057482 0.012321012

20 0.011 0.163813213 —0.002327223 —0.009032922 —0.034135235
—0.002327223 0.000620062 0.000284794 0.000238519

—0.009032922 0.000284794 0.007557628 —0.000543410

—0.034135235 0.000238519 —0.000543410 0.008053048

10 0.013 0.177897628 —0.002426533 —0.009020613 —0.030816351
—0.002426533 0.000744840 0.000359061 0.000161718

—0.009020613 0.000359061 0.009230998 —0.000942228

—0.030816351 0.000161718 —0.000942228 0.006142851

4 0.015 0.198520082 —0.002723581 —0.010275122 —0.027858473
—0.002723581 0.000942556 0.000488384 0.000105127

—0.010275122 0.000488384 0.011862813 —0.001202555

—0.027858473 0.000105127 —0.001202555 0.004602554

2 0.018 0.219367699 —0.003067342 —0.012146441 —0.026767030
—0.003067342 0.001127917 0.000608049 0.000079952

—0.012146441 0.000608049 0.014321880 —0.001314005

—0.026767030 0.000079952 —0.001314005 0.003908510

1 0.021 0.242310954 —0.003489404 —0.014440553 —0.026085650
—0.003489404 0.001325347 0.000734776 0.000066694

—0.014440553 0.000734776 0.016920388 —0.001375739

—0.026085653 0.000066694 —0.001375739 0.003407436

0.5 0.024 0.208771318 —0.003554708 —0.017638995 —0.018389300
—0.003554708 0.001569869 0.000924911 —0.000000373

—0.017638995 0.000924911 0.020431633 —0.001417735

—0.018389297 —0.000000373 —0.001417735 0.002141616

0.2 0.030 0.192440519 —0.003987762 —0.023226852 —0.013259300
—0.003987762 0.001907400 0.001180929 —0.000036203

—0.023226852 0.001180929 0.025123295 —0.001343871

—0.013259301 —0.000036203 —0.001343871 0.001349216
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do not apply to them. The weighted discharges can be found
in the USGS data release associated with this study (Ahearn,
2020) and were computed with the following equation:

log 100s(Vpred)+1og 100r(g) (Vs)
Vpred + Vs (9)

log 100w =

where

0O,  1isthe weighted flood discharge, in cubic feet

per second;

O, s the flood discharge for the selected AEP
computed from the streamgage record, in
cubic feet per second;

is the flood discharge for the selected AEP
from the regression equation at the
streamgage, in cubic feet per second;
is variance of prediction of the regression
equation result (Q,(4) in logarithmic
units; and
Vi is the variance of estimate of the AEP
discharge in logarithmic units computed
from the streamgage record (Q;) in PeakFQ
LP3 output.

Oie)

pred

Summary

Flood-frequency estimates are needed to support water-
resource management decisions for flood protection, infra-
structure design, and riparian and aquatic habitat protection.
The flood-frequency estimates for streamgages and regional
regression equations are periodically updated to account for
new peak-flow information, improved explanatory datasets,
and improved statistical techniques. This report presents the
results of a cooperative study by the U.S. Geological Survey
(USGS) and the Connecticut Department of Transportation
to estimate the magnitude and frequency of peak flows at
streamgages and develop regression equations for estimating
peak flows at ungaged sites.

Flood-frequency estimates were calculated for
152 streamgages by fitting the record of annual peak flows to
a log-Pearson type III distribution in the USGS PeakFQ pro-
gram using the expected moments algorithm. The algorithm
allows the use of perception thresholds and flow intervals
to provide more information on systematic and historical
peaks as well as periods of missing data than was possible
in previous studies. Additionally, the generalized multiple
Grubbs-Beck test was used to detect and screen out potentially
influential low outliers in the peak-flow frequency distribution.
Flood-frequency estimates for streamgages with unregulated
flows were computed by weighting the skew estimated from
the streamgage annual peak-flow record, called at-site skew,
with a regional skew of 0.37.

Summary 31

A trend analysis of the annual peak flows for 79 long-
term streamgages in Connecticut and in surrounding States
extending 50 miles from the Connecticut border was per-
formed. Trend results show some evidence of increasing peak
flows over time and no evidence of decreasing trends. The
number of statistically significant (»p<0.05) trends detected var-
ies based on the assumptions of the serial correlation structure
of the annual peak flows (independence, short-term persis-
tence, or long-term persistence) and the time periods analyzed
(30, 50, 70, or 90 years). The percentage of streamgages
showing statistically significant trends in the four time periods
analyzed ranged as follows: none to 11.1 percent, assuming
long-term persistence; 1.6 to 33.3 percent, assuming short-
term persistence; and 6.2 to 47.7 percent, assuming indepen-
dence. Fewer increasing trends were detected with short-term
and long-term persistence than with independence persistence
indicating that multidecadal climate cycles may be present and
influencing the magnitude of the trends. Clear evidence that
the trends in peak flows in or near Connecticut are a normal
oscillation or a true trend will require long-term monitoring
and further analysis. No adjustments for trends were applied to
the annual peak flows in the flood-frequency analysis.

Regional regression equations were developed using
generalized least squares to estimate flood discharges with
50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceed-
ance probabilities (AEPs; 2-, 5-, 10-, 25-, 50-, 100-, 200-,
and 500-year recurrence intervals, respectively). The three
basin characteristics (drainage area in square miles; maximum
24-hour, x-year precipitation in inches; and percentage of area
classified as hydrologic soil group C, C/D, or D in decimal
percent) were found to be the best predictors of flood dis-
charges. The final regional regression equations were selected
based on the lowest model error; amount of variability
explained by explanatory variables; random patterns in residu-
als plots; low number of data points with high leverage or
influence; and consistency in model form across all estimated
statistics. The standard error of prediction and standard error
of estimate values ranged from 26.53 to 44.97 and 25.21 to
41.12, for the 50- to 0.2-percent AEPs, respectively. The
pseudo coefficient of determination indicates that the explana-
tory variables explain 95.5 to 88.9 percent of the variance in
the flood magnitude for 50- to 0.2-percent AEPs. The standard
error of prediction values were slightly improved in the cur-
rent study compared to previous values in 2004.

Final regression equations and their 90-percent prediction
intervals will be made available in the USGS StreamStats pro-
gram, a web-based tool that allows a user to select a point of
interest on a stream, delineate a drainage basin, estimate basin
and climate characteristics, and estimate peak-flow statistics.
The StreamStats program will produce estimates of stream-
flow statistics, such as AEP flood discharges, with quantifiable
certainty only when used at locations with basin and climatic
characteristics in the range of input variables in the regional
regression equations.
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Glossary

100-year flood An annual peak flow having
an average recurrence interval of 100 years,
corresponding to an annual exceedance
probability of 1 percent.

adjusted coefficient of determination A
modified version of coefficient of
determination that has been adjusted for the
number of predictors in the model.

annual exceedance probability The
expected annual probability of a flood,
previously referred to in terms of return period
of a flood. It is the probability, often expressed
as a decimal fraction less than 1.0, that an
annual peak-flow discharge will be exceeded
in a 1-year period. The reciprocal of the
exceedance probability is referred to as the
recurrence interval or return period in years.

average variance of prediction The average
spread or dispersion of the predicted value
from the observed mean.

covariance matrix A matrix whose element
in the J, j position is the covariance between
the ith and jth elements of a random vector.
Covariance is a measure of how much two
random variables change together. Positive
values indicate that variables tend to show
similar behavior, whereas negative values
indicate that the greater value of one variable
corresponds to the smaller value of the other
variable. In multiple-variable regression,
covariance is expressed in the form of a
matrix sized according to the number of
variables in the regression.

expected moments algorithm Method for
fitting a probability distribution to annual
peak-flow data using a generalized method of
moments, similar to the standard log-Pearson
type Ill method described in Interagency
Advisory Committee on Water Data (1981),
except the expected moments algorithm can
also use interval data, whereas log-Pearson
type Il is restricted to point data. Interval data
provide additional information that cannot

be represented by point data, such as the
potential range of annual peak flows outside
of the systematic and historical record and
the uncertainties around recorded peak flows
used in the analysis.

Glossary

generalized least squares A regression
method that accounts for differences in

the variances and cross correlations of the
errors associated with different recorded
discharges. Differences in variances can
result from differences in the length of record
for each site, whereas cross correlations
among concurrent annual peaks resultin
cross correlation between estimated flood
discharges.

leverage A metric used to identify

those observations that are far away from
corresponding average predictor values and
may or may not have a large effect on the
outcome of an analysis.

Mallows’ Cp  An estimate of the
standardized mean squared error of
prediction; this is a compromise between
maximizing the explained variance by
including all relevant variables and minimizing
the standard error by keeping the number of
variables as small as possible.

mean squared error The average of the
squares of the differences between the
estimated values and the measured values.
This metric represents how closely, on
average, an estimated value matches a
measured value.

multicollinearity A statistical phenomenon
in which two or more predictor variables

in a multiple regression model are highly
correlated, in which case the regression
coefficients may change erratically in
response to small changes in the model or
the data.

ordinary least squares Linear regression
method that is the standard approach

to the least squares solution of fitting

an independent variable to one or more
dependent variables.

outlier A data point that departs from the
trend of the rest of a dataset as described by a
distribution or other mathematical relation.

Pearson type lll A frequency distribution
determined from the statistical moments of the
annual peak-flow mean, standard deviation,
and skew.

pseudo coefficient of determination A
statistic generated by the generalized least
squares regression, the pseudo coefficient of
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determination (or pseudo-R2) is similar to the
adjusted coefficient of determination in that it
is a measure of the predictive strength of the
regression model except that it removes the
time sampling error.

root mean squared error The square root

of the sum of the squares of the differences
between estimated and the measured values
divided by the number of observations

minus 1. This metric represents the magnitude
of the differences between the estimated and
measured values.

skew A statistical measure of the data
symmetry or lack thereof used to compute
the flood-frequency distribution. The skew
generally is computed from the logarithms
of annual peak flows at the streamgage.
Because the skew is sensitive to outliers,

it may be an unreliable estimate of the

true skew, especially for small samples;

the guidelines in Interagency Advisory
Committee on Water Data (1981) recommend
that the skew is weighted with a regional, or
generalized, skew that is based on data from
many long-term streamgages to produce
at-site flood-frequency estimates.

standard error of estimate Also referred
to as the root mean squared error of the

Estimating Flood Magnitude and Frequency on Streams and Rivers in Connecticut, Based on Data Through 2015

residuals, it is the standard deviation of
observed values about the regression line.

It is computed by dividing the unexplained
variation or the error sum of squares by its
degrees of freedom. In this study, the standard
error is based on one standard deviation.

standard error of prediction The square root
of the average spread or dispersion of the
predicted value from the observed mean.

systematic record A period or periods of
continuous annual peak-flow record.

variance A measure of the spread or
dispersion of a set of values around their
mean calculated by the mean of the squares
of the deviation of the value from the mean,
which is equal to the square of the standard
deviation.

variance inflation factor Expresses the ratio
of the actual variance of the coefficient of the
explanatory variable to its variance if it were
independent of the explanatory variables. A
variance inflation factor greater than 5to 10
generally indicates multicollinearity, a serious
problem in the regression models.

variance of prediction A measure of the
likely difference between the prediction
provided by a regression model and the actual
value of the variable.



Appendix 1. Historical Hurricane Tracks

Figure 1.1 is a screenshot from the National Oceanic
Atmospheric Administration (NOAA) summary search of hur-
ricane and hurricane-related storm tracks from 1851 to 2016
in and near Connecticut (NOAA, 2019). NOAA's Historical
Hurricane Tracks is a free online tool that allows users to track
the paths of historical hurricanes. The site, developed by the
NOAA Office for Coastal Management in partnership with
NOAA's National Hurricane Center and National Centers for
Environmental Information, offers data and information on
coastal county hurricane strikes through 2016.

Reference Cited

National Oceanic and Atmospheric Administration
[NOAA], 2019, Historical hurricane and hurricane-
related storm tracks from 1851 to 2016 in and near
Connecticut: National Oceanic and Atmospheric
Administration Historical Hurricane Tracks map-
ping interface, accessed September 9, 2019, at
https://oceanservice.noaa.gov/news/historical-hurricanes/.
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EXPLANATION
Category

Tropical storm Hurricane category 1

Tropical depression Hurricane category 2
Extratropical Hurricane category 3

N/A Not applicable

Figure 1.1. Screenshot showing hurricane and hurricane-related storm tracks from 1851 to 2016 in and near Connecticut (National
Oceanic and Atmospheric Administration, 2019).
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Appendix2. Worksheet for Computing Annual Exceedance Probability Flood
Discharges and Percent Prediction Intervals at Ungaged Sites

An application worksheet provided as a Microsoft Excel
file is available for computing annual exceedance probability
flood discharges and x-percent prediction intervals at stream
sites (Ahearn and Veilleux, 2020; figure 2.1). The worksheet
solves the peak-flow regression equations from user-specified
explanatory values for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and
0.2-percent annual exceedance probabilities for an unregulated
stream site in Connecticut. The worksheet also calculates the
upper and lower discharge values for the 70-, 80-, 90-, 95- and
99-percent prediction intervals, the minus and plus standard
error of prediction intervals, and the average standard error of
prediction.

Reference Cited

Ahearn, E.A., and Veilleux, A.G., 2020, Worksheet for
computing annual exceedance probability flood dis-
charges and prediction intervals at stream sites in
Connecticut: U.S. Geological Survey data release,
https://doi.org/10.5066/POEWHAY W.
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Figure 2.1. Screenshot showing worksheet for computing annual exceedance probability flood discharges and prediction intervals for
ungaged stream sites in Connecticut.
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