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Selected Flood Durations in the Columbia River Basin, 
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Abstract
Flood-frequency (hereinafter frequency) estimates 

provide information used to design, operate, and maintain 
hydraulic structures such as bridges and dams. Failures of 
these structures could cause catastrophic loss of property, life, 
or both. In addition to frequency estimates that use annual 
peak streamflow, frequency estimates of flood durations are 
required to safely and effectively operate the numerous dams 
in the Columbia River Basin of the northwestern United 
States, and British Columbia, Canada. Frequency studies 
rely on U.S. Geological Survey Guidelines for Determining 
Flood Flow Frequency (Bulletin 17C, published in 2018). A 
major consideration in estimating frequencies is the use of 
skew coefficients, which measure the asymmetry of flood flow 
distributions. Large uncertainties are associated with estimat-
ing the at-site skew coefficients directly from streamflow 
records, which are limited in length. Skew also is sensitive 
to extreme events for limited record lengths. Bulletin 17C 
recommends using regional skew coefficients to weight with 
the at-site skew estimate for more reliable frequency esti-
mates. In this study, streamflow records from 313 unregulated 
U.S. Geological Survey streamgage sites and 97 regulated 
sites with naturalized streamflow records provided by the 
U.S. Army Corps of Engineers were used to develop regional 
skew models for the Columbia River Basin. The naturalized 
streamflow records were synthesized by removing regulatory 
components such as withdrawals and reservoir storage. Skew 
models were developed for 1-, 3-, 7-, 10-, 15-, 30-, and 60-day 
flood durations and used to estimate regional skew coefficients 
for the Columbia River Basin.

This report used Bayesian statistical regression meth-
ods to develop and analyze regional skew models based on 
hydrologically important basin characteristics. After examin-
ing a suite of available basin characteristics, mean annual 
precipitation had the strongest correlation to skew across the 

flood durations. Regional skew regression models were fit 
using mean annual precipitation for selected subbasins in the 
Columbia River Basin.

Introduction
Flood-frequency (hereinafter frequency) estimates pro-

vide information used to design, maintain, and operate struc-
tures that convey or retain large volumes of streamflow. Local, 
State, and Federal authorities use this information to avoid 
potential destruction of property and loss of life. For struc-
tures such as bridges and culverts, the frequency estimates 
of most interest are based on annual peak streamflow records 
from unregulated streams. Annual peaks, the maximum 
instantaneous streamflow that occurs in a water year (which 
starts October 1 of the previous calendar year and extends to 
September 30 of the named water year), are commonly used 
in frequency studies to estimate annual exceedance probabili-
ties (AEPs). The 1-percent AEP flood event is identical to the 
100-year flood event.

Many public agencies and private companies operat-
ing and maintaining water-retention structures, such as dams 
and levees, need AEP estimates of flood durations rather than 
annual peaks because the duration of an event can be more 
damaging to structures than magnitude alone. Flood durations 
are running averages of daily streamflow over selected time 
periods, often described as “N-days,” where “N” refers to the 
number of days during which flooding occurs. N-day duration 
frequency estimates are required to effectively and safely oper-
ate dams and reservoirs, especially if their primary purpose is 
flood control.

Flood Control Acts of 1936 and 1944 (Public Laws 
78–534 and 74-738, respectively), initiated the construction 
and operation of dams for managing flood risks by the U.S. 
Army Corps of Engineers (USACE) (Zellmer, 2004; Klein 
and Zellmer, 2007). In 1948, Vanport, the second largest city 
in Oregon at the time, was destroyed by catastrophic flood-
ing along the Columbia River (Rantz and Riggs, 1949) and 
prompted the construction of multiple dams for flood control 
in the Columbia River Basin of the northwestern United States 
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and British Columbia, Canada (McKenzie, 2013). In 1964, 
the Columbia River Treaty was signed by the Canadian and 
United States governments, leading to the development of a 
multiple reservoir system on the Columbia River within both 
countries, intended to prevent major flooding in the Columbia 
River Basin (McKenzie, 2013).

The USACE owns, maintains, and operates numerous 
dams within the Columbia River Basin. Because many of 
these dams are aging, the USACE began a comprehensive 
dam-safety evaluation program for the region. Evaluating 
the effects of flooding on a dam and associated structures 
requires reliable and accurate estimates of flood magnitude 
and duration.

Federal agencies conducting frequency studies are recom-
mended to follow the guidelines described in Bulletin 17C 
(England and others, 2018). Bulletin 17C recommends fitting 
a log-Pearson type III (LP3) probability distribution to annual 
flood flow data. Fitting a LP3 distribution involves using three 
sample moments: mean, standard deviation, and skew. Skew is 
a measure of asymmetry in a distribution and can significantly 
affect the magnitudes of frequency estimates, especially for 
the largest flood events (Veilleux and others, 2019).

To improve frequency estimates, Bulletin 17C recom-
mends weighting the at-site skew coefficient with a regional 
skew coefficient. A regional skew coefficient can be estimated 
from a statistical regression of the skew coefficients of stream-
flow records in an area and their hydrologically significant 
basin characteristics. For this study, a set of skew regression 
models was developed to estimate regional N-day duration 
skew coefficients.

An important consideration in frequency studies 
is whether a site is affected by flow regulations such as 
those caused by dams, diversions, and (or) basin condition 
changes. For this study, “site” refers to an unregulated USGS 
streamgage or the location of a dam. Heavily regulated stream-
flow results in a departure from the natural flow regime. For 
example, a regulated stream may have truncated or attenuated 
streamflow peaks caused by water storage in an upstream 
reservoir during flood events, or conversely, during dry 
periods the streamflow may be augmented by dam releases. 
The use of streamflow records from regulated streams would 
violate two assumptions of frequency analysis: (1) that flood 
events are random, and (2) that basin conditions are relatively 
constant for the period of record used (England and others, 
2003). One way to handle this potential issue is to reconstruct 
the regulated streamflow record to one that more closely 
represents the natural streamflow record, or the streamflow 
record that would exist without regulations. The USACE, the 
Bureau of Reclamation (Reclamation), and the Bonneville 
Power Administration provided reconstructed, or naturalized, 
daily no-regulation no-irrigation (NRNI) streamflow records 
for sites in this study affected by regulation (Bonneville 
Power Administration, 2011; U.S. Army Corps of Engineers, 
2014; K. Duffy, U.S. Army Corps of Engineers, written com-
mun., 2017).

This study is the result of a joint effort between the 
USGS, USACE, and Tufts University. To the best of the 
authors’ knowledge, no recent frequency studies have been 
done for the entire Columbia River Basin. A study on the mag-
nitude and frequency of floods in the Columbia River Basin 
was completed by Rantz and Riggs (1949) and a similar study 
by Hulsing and Kallio (1964) focused on the lower Columbia 
River Basin. A regional skew study was completed for the 
Pacific Northwest, which included the states of Idaho, Oregon, 
and Washington along with part of western Montana (Wood 
and others, 2016). Frequency studies also have been com-
pleted for parts of the Columbia River Basin in Idaho (Wood 
and others, 2016), Washington (Mastin and others, 2016), 
and Oregon (Cooper, 2005, 2006). These recent frequency 
studies focused on annual peak flow records rather than flood 
durations.

Purpose and Scope

The primary goal of this study is to develop 1-, 3-, 
7-, 10-, 15-, 30-, and 60-day regional skew models for the 
Columbia River Basin. Currently (2020), no flood-duration 
regional skew models have been developed for the entire 
basin. The regional skew coefficients computed from these 
models can be used to estimate AEPs of selected flood 
durations in the Columbia River Basin. This report presents 
flood-duration frequency statistics for estimates corresponding 
to the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs at 
selected sites in the Columbia River Basin for 1-, 3-, 7-, 10-, 
15-, 30-, and 60-day durations. These estimated flood-duration 
frequencies will be used by the USACE; other Federal, State, 
and local agencies; and utilities to safely and effectively oper-
ate and maintain dams and reservoirs along the Columbia 
River system.

The objectives of this study include the following:
1.	Compile and review long-term naturalized daily 

streamflow records at regulated sites in the Columbia 
River Basin.

2.	Compile measured daily streamflow records at available 
unregulated sites in the Columbia River Basin.

3.	Create regional skew models for 1-, 3-, 7-, 10-, 15-, 30-, 
and 60-day flood durations at regulated and unregulated 
sites in the Columbia River Basin.

4.	Estimate 1-, 3-, 7-, 10-, 15-, 30-, and 60-day flood-
duration frequency statistics at regulated and unregulated 
sites in the Columbia River Basin using regional skew 
coefficients developed during this study.
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Study Area Description

The Columbia River Basin covers 259,000 square miles 
including part of the Canadian province of British Columbia 
and parts of seven U.S. states: Washington, Idaho, Montana, 
Oregon, Wyoming, Nevada, and Utah (fig. 1). The Columbia 
River Basin can be divided into 13 subbasins:

1.	Upper Columbia,

2.	Kootenai,

3.	Pend Oreille,

4.	Spokane,

5.	Middle Columbia,

6.	Yakima,

7.	Upper Snake,

8.	Middle Snake,

9.	Lower Snake,

10.	 Deschutes,

11.	 Lower Columbia,

12.	 Willamette, and

13.	 Main-stem Columbia.
The headwaters of the upper Columbia River Basin are 
situated between the Rocky Mountains to the east and the 
Columbia and Purcell Mountains to the west in British 
Columbia, Canada (fig. 2). The Columbia River flows for 
about 1,240 miles from its headwaters in Canada to its mouth 
at the Pacific Ocean between the border of Washington and 
Oregon.

The topography varies considerably throughout the 
Columbia River Basin because of numerous mountain ranges 
and plateaus (fig. 2). The most prominent mountain ranges are 
the Rocky Mountains, which border the Columbia River Basin 
to the east, and the Cascade Range to the west. Other notable 
mountains are the Columbia Mountains in Canada, which 
form the northern border; the Bitterroot Range between Idaho 
and Montana; and the Blue Mountains in eastern Oregon. The 
Columbia Plateau in eastern Washington, the Snake River 
Plain in Idaho, the Willamette Valley in western Oregon, and 
the Yakima Valley in central Washington are predominant flat 
terrain areas in the Columbia River Basin.

Precipitation and climate vary across the Columbia River 
Basin (fig. 3). The climate in the Columbia River Basin is the 
result of three types of air masses (Ferguson, 1999): (1) moist 
marine air coming off the Pacific Ocean, which helps to mod-
erate temperatures (2) dry continental air from the south and 
the east; and (3) dry artic air from the north. Marine air masses 
affect the basin west of the Cascade Range. Warm moist sub-
tropical air can flow into the Pacific Northwest bringing large 

amounts of rain that can last for multiple days and are termed 
atmospheric rivers (Dettinger and others, 2011; Rutz and 
Steenburgh, 2012). These types of events usually take place 
from October through April.

The Cascade Range blocks marine air masses coming 
from the west except when winds are strong enough to push 
these air masses over the mountains, which often happens dur-
ing the winter (Ferguson, 1999). The Cascade Range causes 
a rain shadow effect; the east side of the range is drier than 
the west side. The Columbia River Gorge provides a corridor 
allowing Pacific air masses to flow from the Cascade Range 
into the Snake River subbasin. These Pacific air masses can 
affect the climate in these valleys into the spring (Ferguson, 
1999). In winter, much of the precipitation in higher elevations 
on both sides of the Cascade Range falls as snow.

Continental air masses from the east and south dominate 
the middle to southern parts of the Columbia River Basin east 
of the Cascade Range. These air masses are cold and dry in 
the winter and hot and dry in the summer. Convective thun-
derstorms can produce intense rain events with short durations 
(usually <1 day), especially in the spring and summer (Cooper, 
2006). The northern part of the Columbia River Basin east of 
the Cascade Range is largely influenced by arctic air masses 
from the north. Arctic air masses tend to be dry and bring cold 
air from the north in winter and keep temperatures relatively 
moderate in the summer.

The largest floods along the Columbia River have been 
the result of snowmelt and large rain-on-snow events. The 
largest gaged flood ever recorded on the Columbia River, 
occurring in 1894, and the 1948 flood on the main-stem 
Columbia River, which destroyed the city of Vanport, Oregon 
(Rantz and Riggs, 1949), were both caused by rain on snow 
and snowmelt. Small subbasins may have floods resulting 
from convective thunderstorms in the summer, especially for 
subbasins east of the Cascade Range. East of the Cascade 
Range, most widespread flooding is caused by snowmelt. 
Large rainstorms are the most common cause of flooding 
west of the Cascade Range, which may be combined with 
snowmelt. Longer duration rainfall events (30 and 60 days) 
are likely caused by a combination of more than one hydro-
logic event.

Floods in the western United States can be classified as 
snowmelt-dominated, rain-dominated, or transient (meaning a 
combination of rain and snowmelt; Hamlet and Lettenmaier, 
2007). Basins that are transient have a mixed population of 
floods caused by rain, snowmelt, or rain-on-snow events (the 
combination of both). Whereas much of the Columbia River 
Basin has flooding from snowmelt, some areas are rain-
dominated or transient. An analysis was done to investigate 
areas in the Columbia River Basin that may have mixed popu-
lations of floods by cyclically plotting daily streamflow data 
over all 12 months (fig. 4). Most high streamflow occurs dur-
ing the months of May and June, indicating that snowmelt is 
likely the cause of these flows. Outside of these months, most 
basins have relatively low streamflow with the exceptions of 
the Spokane, Yakima and Willamette subbasins.
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Figure 1.  Columbia River Basin and 13 subbasins including major rivers, in the northwestern United States and 
British Columbia, Canada.
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Figure 4.  Normalized daily streamflow, using water years 1928–2008, for major rivers in the Columbia River Basin, northwestern United 
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The Spokane subbasin receives most of its annual pre-
cipitation from October through April as both rain and snow. 
High streamflow occurs from December through June, with 
the highest streamflow usually occurring in May. Significant 
snowmelt occurs from April through June and the streamflow 
exceeds the amount of precipitation received during those 
months (Fu and others, 2007). Marine air from the Pacific 
Ocean and continental air masses affect the Spokane subbasin 
climate (Northwest Power Planning Council, 2000).

Most of the annual precipitation for the Yakima subbasin 
occurs during the months of October through March (Bureau 
of Reclamation, 2002), and in the higher elevations much 
of the precipitation falls as snow. High streamflow occurs 
from April through June caused by snowmelt. The highest 
streamflows are caused by snowmelt and rain-on-snow events. 
Marine air passing over the Cascade Range can cause rain-
on-snow events in the Yakima subbasin (Rinella and oth-
ers, 1992).

The Willamette subbasin receives most precipitation from 
October through April. In the western part of the subbasin, 
the climate is influenced by marine air from the Pacific Ocean 
and winter rain events that produce the highest streamflow 
(Cooper, 2005). In the eastern part of the subbasin, the highest 
sustained flows are the result of spring snowmelt from the 
western Cascades and the largest peak flows occur in the win-
ter as a result of rain-on-snow events. Atmospheric rivers are 
the dominant cause of floods west of the Cascade Range.

After this initial analysis, we thought that it may be 
beneficial to fit regional skew models to individual subbasins. 
During subsequent analyses, we decided that there were not 
enough sites in the subbasins to do adequate regression analy-
ses (see section, “Initial Screening with only USGS sites”).

Data Methods

Streamflow

The reconstructed NRNI daily streamflow records were 
reviewed and rated based on the quality of each record. 
The NRNI streamflow records are a modification of the 
2010 level modified streamflow records (Bonneville Power 
Administration, 2011). Both datasets and their accompanying 
reports are available at . NRNI streamflow records account for 
reservoir regulation and irrigation withdrawals. Regulatory 
effects, such as diversions or reservoir storage, were removed 
during the reconstruction process to produce streamflow 
records that are more representative of unaltered streamflow 
conditions. Calculations made to datasets during the pro-
cess of naturalizing the records were verified for accuracy 
using the equations provided by the USACE (Bonneville 
Power Administration, 2011; U.S. Army Corps of Engineers, 
2014). The 2010 evaporation and water-use data from out-
side sources, such as the National Oceanic and Atmospheric 
Administration and the Oregon Water Resources Department, 
were used to compare with NRNI components for evaporation 
and depletion. If the source of data was a USGS streamgage, 
its accuracy was checked by comparing data downloaded 
from the National Water Information System (U.S. Geological 
Survey, 2017) for the streamgage corresponding to the NRNI 
streamflow data. Changes in reservoir levels and storage 
capacity tables were compared with values used to synthesize 
the streamflow records. As a check for consistency, NRNI 
datasets were plotted along with the measured datasets of 
regulated streamflow and visually inspected for consistency. 
After a record was reviewed, a determination was made as 
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to whether it was usable or not, based on the quality of the 
reconstructed streamflow data. All NRNI streamflow records 
included in this study were deemed usable following review.

The remainder of sites used in this study were unregu-
lated USGS streamgages. These streamgages are from 
the USGS Geospatial Attributes of Gages for Evaluating 
Streamflow, version II report database (GAGES II; Falcone, 
2011). The GAGES II study analyzed and classified 
streamgages operated by the USGS while providing a geo-
spatial database of basin characteristics. Streamgages were 
analyzed and classified based on the amount of regulation 
occurring upstream from the streamgage and the extent of 
anthropogenically altered hydrology in their basins. Only 
streamgages that were considered unregulated with minimally 
altered hydrology were used for this study.

Four hundred ten sites within the Columbia River 
Basin were considered for this study; 97 NRNI sites and 
313 unregulated USGS streamgages. Three pairs of NRNI 
sites—(1) Detroit Dam (DET) and Big Cliff Dam (BCL), (2) 
Dexter Lake (DEX) and Lookout Point Dam (LOP), and (3) 
Heise, Idaho (HEI), and Lorenzo, Idaho (LOR)—had similar 
drainage areas and streamflow records. One out of each pair 
of these highly correlated sites was retained; BCL, LOP, and 
HEI were retained, whereas the other three sites were dropped 
from the analysis. Four of the unregulated USGS sites also 
were dropped: (1) USGS streamgage 12350250, Bitterroot 
River at Bell Crossing near Victor, Montana; (2) USGS 
streamgage 12387450, Valley Creek near Arlee, Montana; 
(3) USGS streamgage 12433542, Blue Creek above Midnite 
Mine Drainage near Wellpinit, Washington; and (4) USGS 
streamgage 12512500, Providence Coulee at Cunningham, 
Washington. These sites were dropped because their records 
contained gaps during potentially high streamflow periods 
and, therefore, some floods were potentially absent from their 
records. For the 403 sites selected for further analysis, 309 
sites were unregulated USGS sites and the other 94 sites were 
NRNI sites. For this study, NRNI headwater sites have no dam 
or reservoir upstream from them, whereas NRNI sites with 
at least one dam upstream were defined as local sites. Of the 
94 NRNI sites, 33 were headwater and 61 were local (fig. 5). 
Record reconstructions of local sites were more complicated, 
with at least one more point of regulation than headwater 
sites to account for. Information about the records at the 403 
sites selected for analysis is presented in table 1. Almost 

all of the NRNI streamflow records were 80 years in length 
(1928–2008), whereas the USGS streamflow records ranged 
from 16 to 110 years in length..

Flood-Duration Computation

Selected flood durations were computed from the daily 
streamflow records using three methods. GW Toolbox is a 
USGS-developed software package that allows users the 
option to compute selected N-day flood durations after input-
ting a daily mean streamflow record (Barlow and others, 
2014). The program will output the maximum selected N-day 
flood duration for each complete water year from the daily 
streamflow record. With previously reviewed and approved 
NRNI daily streamflow records furnished by the USACE and 
the Reclamation, along with the USGS unregulated streamflow 
records, GW Toolbox was used to compute the N-day flood 
durations. A Microsoft Excel template and a script written in 
the R programming language (R Core Team, 2017) also were 
created to compute N-day flood durations as checks against 
the GW Toolbox output files. The three methods produced 
identical results, and no further data manipulation was deemed 
necessary.

Basin and Climatic Characteristics

Some of the basin characteristics thought to have a strong 
relation with skew were precipitation, elevation, temperature, 
percentage of precipitation falling as snow, aspect, basin 
compactness, and drainage areas. Mean annual precipitation 
and mean monthly precipitation for all 12 months were used 
in this study. Mean annual temperature and mean monthly 
temperature for all 12 months also were used. Maximum, 
minimum, and mean basin elevations were included in the 
analyses as well.

Most of the basin characteristics used in this study were 
from the GAGES II database (Falcone, 2011). These datasets 
came from various sources including the Parameter Elevation 
Regression on Independent Slopes Model (PRISM; PRISM 
Climate Group, 2017) statistical mapping system, the USGS 
digital elevation model (U.S. Geological Survey, 2018), and 
the National Hydrography Dataset (NHD; Horizon Systems 
Corporation, 2017). The basin characteristics used in this 
study and their explanations and sources are listed in table 2.
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Figure 5.  The 403 sites selected for analysis in this study in the Columbia River Basin, northwestern United 
States and British Columbia, Canada.

Table 1. Streamflow record information for 403 sites selected for analysis in this study, Columbia River Basin, northwestern United  
States, and British Columbia, Canada.

Table 1 is a .csv file available for download at https://doi.org/10.3133/sir20205073​ ​ .

https://doi.org/10.3133/sir20205073
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Table 2.  Characteristics of Columbia River Basin used in exploratory analysis for this study, northwestern United States and British 
Columbia, Canada.

[Source: NAWQA, National Water-Quality Assessment; NWIS, National Water Information System; NHDPlus, National Hydrography Dataset Plus; PRISM, 
Parameter Elevation Regression on Independent Slopes Model USGS, 30m in DEM, 30 meters in digital elevation models. Abbreviations: GAGES II, USGS 
Geospatial Attributes of Gages for Evaluating Streamflow, version II report database; NRNI, no-regulation no-irrigation; USGS, U.S. Geological Survey]

Name Description Source

Only for USGS sites from GAGES II database

Aspect North Aspect “northness,” ranging from -1 to 1. A value of 1 means that the basin faces 
north

USGS

Aspect East Aspect “eastness,” ranging from -1 to 1. A value of 1 means that the basin faces east USGS
El. Median Median watershed elevation (meters) from 100-meter National Elevation Dataset USGS
El. Std. Dev. Standard deviation of elevation (meters) across the watershed USGS
El. Site Elevation at gage location (meters) from 100-meter National Elevation Dataset USGS
RR Mean Dimensionless elevation - relief ratio, (mean elevation - minimum elevation)/ Relief USGS
RR Median Dimensionless elevation - relief ratio, (Median elevation-minimum elevation/ Relief USGS
Ppt1 Mean monthly precipitation (centimeters) received in the basin for each month 

(Ppt1 is for Jan., Ppt 12 is for Dec.)
PRISM (1971–2000)

Temp1 Mean monthly temperature (degrees Celsius) of the basin for each month (Temp1 is 
for Jan. Temp2 is for Dec.)

PRISM (1971–2000)

For USGS sites and most NRNI sites

Aspect Mean basin aspect, degrees (degrees of the compass, 0–360) USGS
Slope Percent Mean basin slope, percent, from 100-meter National Elevation Dataset USGS
BFI Base Flow Index; the ratio of base flow to total streamflow USGS
Stream Density Kilometers of streams per basin square kilometer NHDPlus
Impervious Percentage of total basin area that is considered impervious USGS NLCD06

For all sites (USGS and NRNI)

Basin Area Delineated basin area upstream from the site (square kilometers) From 30 m DEM
Lat Latitude of the site location in decimal degrees USGS
Long Longitude of the site location in decimal degrees USGS
Lat. Cen. Latitude of basin centroid location From 30 m DEM
Long. Cen. Longitude of basin centroid location From 30 m DEM
El. Mean Mean elevation of the basin (meters), NAD 83 USGS
El. Max Maximum elevation of the basin (meters) NAD 83 USGS
El. Min Minimum elevation of the basin (meters) NAD 83 USGS
Relief Maximum elevation minus the minimum elevation (meters) USGS
Basin Compact. Basin compactness ratio, = basin area/basin perimeter^2 * 100; higher number = 

more compact shape
USGS NWIS and NAWQA

Annual Ppt. Mean annual precipitation (centimeters) for the basin PRISM (1971–2000)
Annual Temp. Mean annual temperature (degrees Celsius) for the basin PRISM (1971–2000)
Percent Snow Percentage of total mean annual precipitation that falls in the form of snow PRISM (1971–2000)
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Several sites were missing some of the basin characteris-
tics and their basins had to be delineated before computing the 
missing characteristics. One method used to delineate basins 
in the United States involved the USGS web-based software 
application, StreamStats (Ries and others, 2017). StreamStats 
has a delineation tool that automatically delineates basins in 
States for which StreamStats has been fully implemented. 
Sites with basins in Montana required a different delineation 
method because StreamStats is not fully implemented for that 
State. For basins in Montana, NHD flow lines were used along 
with the BasinDelineator Tool (Horizon Systems Corporation, 
2017). The BasinDelineator Tool returns a shapefile of the 
delineated basin for a user-specified outlet point in the NHD 
network. For Canadian basins, a geodatabase of flowlines 
delineated by basins was provided by a geographic informa-
tion system (GIS) specialist from Environment Canada. After 
delineating these basins, their missing characteristics were 
computed from downloaded digital elevation models (DEM) 
and PRISM climate datasets using ArcMap™ GIS tools such 
as Conversion, Data Management, and Spatial Analyst Tools 
(Esri, 2016). In appendix 1, table 1.1 presents basin charac-
teristics available for USGS sites, table 1.2 presents basin 
characteristics available for USGS and some NRNI sites, and 
table 1.3 presents basin characteristics for all the NRNI sites.

Cross-Correlation Model of Concurrent 
Flood Durations

An important consideration in flood-frequency studies is 
whether cross-correlations between streamflow records exist. 
If streamflow records from multiple sites are highly correlated, 
they likely share the same hydrologic events and are influ-
enced by similar factors of those events. In this case, these 
sites do not represent truly independent samples and should 
not be treated as such. A suitable model of cross-correlation of 
annual maximum N-day flood-duration flows at different sites 
is needed for regional skew studies. Such a cross-correlation 
model can be used to estimate the cross-correlation between 
the skew coefficients at individual sites. An accurate model 
of regional cross-correlation is needed to determine model 
uncertainty, which is a function of record length. Increasing 
amounts of regional cross-correlation reduces the effec-
tive record length for a region and results in greater model 
uncertainty, as the individual flood-duration samples are less 
independent. The effective record length is the at-site record 
length needed to calculate a skew coefficient with the same 
variance as the variance of prediction for the regional skew 
model (Lamontagne and others, 2012) and is a measure of 
the reduced reliability of an estimator due to serial correlation 
(Tasker, 1983). Bulletin 17C recommends that effective record 
length concepts be used to correct uncertainty estimates when 
serial correlation exists.

Basins that are spatially close, nested within other water-
sheds, and (or) within similar meteorological storm patterns 
typically have the same storm systems. This results in similar 
hydrologic conditions and, consequently, a relatively high 
degree of cross-correlation among concurrent N-day flood 
durations. Conversely, basins that are geographically farther 
apart are more likely to have different meteorological events 
and less cross-correlation among concurrent N-day flood 
durations. Previous studies have modeled cross-correlation 
between annual peaks or flood durations as a function of 
distance between basin centroids (Gruber and Stedinger, 2008; 
Parrett and others, 2011; Lamontagne and others, 2012).

In this study, an assumption was made that cross-
correlation would be greater between sites for long-duration 
floods than for short-duration floods. Shorter-duration floods 
(1 or 3 days, for example) are likely to vary more in intensity, 
cover smaller geographic areas, and occur at more sporadic 
intervals than longer duration floods. Conversely, longer-
duration floods (such as 30 or 60 days) are likely to vary 
less in intensity, cover greater geographic areas, and occur at 
more regular intervals than shorter-duration floods. Even if 
long- and short-duration floods occur in the same basin for a 
given water year from the same event, averaging runoff over 
a longer duration often should result in a dampening of spatial 
and temporal variability (Lamontagne and others, 2012).

A cross-correlation model was developed for each N-day 
duration flood using the methodology outlined in Lamontagne 
and others (2012). Only 257 sites with 50 or more years of 
concurrent record were used for the analysis. The sampled 
cross-correlations of annual N-day flood durations between 
site pairs (i,j), denoted as rij, were transformed from the [−1, 
+1] to the (–∞, +∞) range with a logit model using the Fisher 
Z Transform (Rodgers and Nicewander, 1988; fig. 6):

	​​ ​Z​ ij​​ ​ =  0.5 ln​[​1 + ​r​ ij​​ _ 1 − ​r​ ij​​​]​​​.� (1)

The symbols used in this report for reference are shown 
in appendix 2, table 2.1. The transformed variable was 
described by a model with one explanatory variable—the 
distance between watershed centroids, denoted as dij:

	​​ ​Z​ ij​​ ​ =  a + exp​(b − ​c × ​d​ ij​​ _ 100 ​)​ ​​,� (2a)

where
	 dij	 is the distance between centroids of the 

watersheds i and j; and a (no units), b (no 
units), and c (inverse to the units of d) are 
model coefficients used for best fit.

The cross-correlation between annual N-day flood dura-
tions at any two sites, denoted as ρij, can then be calculated 
using the reverse transform:

	​​ ​ρ​ ij​​ = ​
exp​(2 ​Z​ ij​​)​ − 1

 _ exp​(2 ​Z​ ij​​)​ + 1​ ​​.� (2b)
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This model for cross-correlation is used in section, 
“Regional Duration—Skew Analysis,” to develop models for 
skew coefficients over a region, as a function of basin char-
acteristics. It is similar to those used in previous California 
and southeastern U.S. annual peak and flood-duration stud-
ies (Gotvald and others, 2009; Parrett and others, 2011; 
Lamontagne and others, 2012). The cross-correlation model 
for each duration was fit using ordinary non-linear least 
squares regression. The parameters for the 1-, 3-, 7-, 15-, 30- 
and 60-day flood-duration models are presented in table 3. The 
fitted Fisher Z transformed cross-correlation model and the 

distance between basin centroids for the 458 site pairs from 
a total of 257 streamflow sites for the 10-day flood-duration 
flows are shown in figure 6. Fischer transformation values 
decrease quickly with distance between zero and 200 km, then 
level out at greater distances.

For each of the N-day duration floods, cross-correlation 
tends to decrease with distance (fig. 7). Additionally, longer 
N-day duration floods had more cross-correlation than shorter 
N-day duration floods. Both results were similar to those 
reported in Lamontagne and others (2012).

Table 3.  Ordinary least squares regression model coefficients (a, b and c) in equation 2a of cross-correlation of concurrent annual 
flood durations.

[Coefficients a and b are unitless. Coefficient c has the unit km-1 or 1 ÷ kilometers]

Duration 
(days)

Coefficients

a b c (km-1)

1 0.264383 0.079488 0.56175
3 0.318009 0.145113 0.627384
7 0.38618 0.258339 0.833429

10 0.421767 0.309753 0.957896
15 0.448968 0.380756 1.08721
30 0.466667 0.45446 1.11916
60 0.52461 0.407531 1.02586
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14    Development of Regional Skew Coefficients for Selected Flood Durations, Columbia River Basin, United States and Canada

Flood-Frequency Analysis
A standard flood-frequency analysis is performed in part 

by fitting a continuous probability distribution to a series of 
discharges, typically annual maxima, allowing estimates of 
flood quantiles to be computed. Flood-frequency quantiles 
typically are reported as a T-year streamflow, where 1/T is the 
probability of a given magnitude of streamflow being equaled 
or exceeded for any 1 year. For example, a 100-year flood 
magnitude has a 1/100 (0.01 or 1.0 percent) chance of being 
equaled or exceeded for any given year. This value also is 
known as an annual exceedance probability (AEP). The rec-
ommended USGS approach for conducting a flood-frequency 
analysis is described in Bulletin 17C (England and others, 
2018). Frequency analysis in this study was performed using 
the LP3, as recommended in the guidelines for Bulletin 17C.

Flood Frequency Based on Log-Pearson Type III 
Distribution

Based on guidance provided by Bulletin 17C, maximum 
N-day flood durations were fitted to the LP3 distribution using 
the method-of-moments estimators of the mean, standard 
deviation, and skew coefficient of the logarithms of the flood 
durations. Using these three parameters, various flood quan-
tiles can be calculated:

	​​ log ​Q​ T​​ = ​   X ​ + ​K​ T​​ S​​,� (3)

where
	 QT	 is the flood quantile, in cubic feet per second, 

with a recurrence interval T in years;
	​​    X ​​	 is the estimated mean of the logarithms of the 

annual N-day flood durations;
	 KT	 is a frequency factor (based on the skew 

coefficient and recurrence interval, T) that 
can be estimated from available algorithms 
(England and others, 2018); and

	 S	 is the estimated standard deviation of the 
logarithms of the annual N-day flood 
durations.

The skew coefficient was calculated using the station data 
(no regional weights were applied).

Expected Moments Algorithm

This study followed the Bulletin 17C recommendation 
of using the expected moments algorithm (EMA) for fit-
ting the LP3 distribution (Cohn and others, 1997; Cohn and 
others, 2001; England and others, 2003; Griffis and others, 
2004; Parrett and others, 2011). The EMA is a generalized 
method of moments procedure for fitting the LP3 curve. For 
flood records that include historical, paleoflood, or censored 
flows, the EMA method allows for a more robust and efficient 

method of calculating LP3 moment estimators—when stream-
flow records contain gaps or low outliers and censored flows 
(Cohn and others, 1997) —compared to the methods described 
in the previous standard guidance for flood frequency analysis, 
Guidelines for Determining Flood Flow Frequency (Bulletin 
17B; Interagency Advisory Committee on Water Data, 1982). 
Another advantage of using the EMA method to fit the LP3 
curve is its ability to estimate the mean-square error of the at-
site skew coefficient. The mean-square errors of the at-site and 
regional skew coefficients are used when weighting both types 
of skew coefficients as recommended by Bulletin 17C.

Potentially Influential Small Floods

Bulletin 17C recommends the use of the Multiple 
Grubbs-Beck Test (MGBT; Grubbs and Beck, 1972; Cohn 
and others, 2013) for the detection of smaller events, that is, 
potentially influential low floods (PILF). A PILF is a flood of 
relatively low magnitude that can have a relatively large influ-
ence when fitting the flood frequency distribution and, in turn, 
can adversely affect the estimation of greater magnitude floods 
(low AEP). Put another way, a PILF can have a relatively large 
degree of leverage by resulting in a more negative skew coef-
ficient, thus affecting the overall fit of the frequency distribu-
tion more than other flood magnitudes. Flood magnitudes at 
the low end of the distribution are undesirable (the smaller 
the magnitude, the greater the AEP values) because they can 
underestimate the rare and large flood flows (low AEP).

The flood-frequency curves for the annual maxi-
mum 3-day streamflow for USGS streamgage 14190500, 
Luckiamute at Suver, Oregon, are an example of a streamflow 
record in which one low observation can affect the calculation 
of low AEP values. In this instance, the 0.01 AEP estimate 
is about 35,000 ft3/s with the low outlier removed (fig. 8). If 
the low outlier were to be included in the frequency analysis, 
it would result in a lower skew coefficient (-0.082 instead of 
0.043), and an 0.01 AEP value of about 33,800 ft3/s (fig. 9).

Censoring primarily was accomplished by using the 
MGBT without modification; in other words, without manu-
ally entering a different threshold to change the censoring. 
However, in some instances, better fits to the upper end of 
the distribution were developed by additional censoring or 
by decreasing the amount of censoring. An account of cen-
soring at each site, including all censoring done outside the 
default Bulletin 17C format, is detailed in appendix 2, tables 
2.2 and 2.3.

Because large floods are the primary focus of this study, 
adequate censoring of smaller floods was necessary to allow 
for the correct fitting of larger floods. The number of censored 
floods varied according to the duration of floods considered 
(table 4). Generally, the longer the flood duration being ana-
lyzed, the more censoring occurred.

About one-half of the 403 study sites (46–57 percent, 
depending on the duration of interest) included no PILFs 
identified using MGBT. The remaining sites (43–54 percent, 
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Figure 8.  Flood-frequency curve for maximum 3-day duration flows with censored data for the Luckiamute at Suver, Oregon 
streamgage (U.S. Geological Survey streamgage 14190500).

depending on duration of interest) included in this study had 
one or more outliers less than the PILF criterion and were 
censored.

Two examples of censoring are shown in figures 10 and 
11. No censoring occurred at USGS streamgage 14091500, 
the Metolius River near Grandview, Oregon, for the 1-day 
duration flood frequency analysis, as no low outliers were 
identified by the MGBT. Conversely, at USGS streamgage 
13247500, Payette River near Horseshoe Bend, Idaho, 40 
of the 107 years of record were less than the PILF thresh-
old according to the MGBT. Censoring increases the mean 
square error (MSE) of the at-site skew-coefficient estimate. 
Additionally, because the weight given to the estimated skew 
coefficient at each site is weighted using the inverse of its 
MSE, extensive censoring such as that which was observed at 
station 13247500 may critically affect the weight placed on 
the station skew coefficient in a regional skew analysis.

In rare cases, additional censoring beyond what was 
prescribed by the MGBT was incorporated. This typically 
occurred with short streamflow records and (or) with records 
that appeared to contain some degree of multimodality. 
Multimodality can occur when there are mixed populations of 
flood distributions resulting from more than one cause of the 
flood events. An example of multimodality would be a basin 

that has flooding from rainfall and snowmelt. Any additional 
censoring that took place in this study is presented in appendix 
2, table 2.2.

Censored floods were not always consistent across the 
various N-day durations. Consideration was given to adding 
consistency by removing an annual maximum streamflow that 
was identified as a PILF for any given N-day duration from 
all analyses (each of the other N-day durations). However, 
an assumption was made that the identification of a particu-
lar PILF for a 1-day flood-duration time series should not 
automatically be censored from time series with much longer 
durations (30 or 60 days), as the flood events often are caused 
by much different processes depending on the duration. The 
opposite also is true, as removing PILFs from a 60-day flood-
duration time series should not influence censoring for short-
duration time series. Additionally, censoring was relatively 
consistent through incremental changes in duration, which 
suggests that there would not be large changes in the sites used 
between their durations of similar length. Using these censor-
ing methods, no crossovers of the frequency curves for the 
various durations occurred; in other words, longer-duration 
frequency curves did not exceed shorter-duration frequency 
curves for any of the sites used in this study.
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Figure 9.  Flood-frequency curve for maximum 3-day duration flows with no censored data for the Luckiamute at Suver, Oregon 
streamgage (U.S. Geological Survey streamgage 14190500).

Table 4.  Number and percentage of sites with censored floods for multiple ranges from 403 sites selected for analysis in this study, 
Columbia River Basin, northwestern United States and British Columbia, Canada.

[Flood duration is a running average of daily streamflow over a selected time period (N-1 is a 1-day time period, N-3 is a 3-day time period, etc.) N-day dura-
tion: Ranges start at 0 percent, meaning no floods were censored; 0–10% (percent) means that from 0 to 10 percent of floods were censored; and > (greater than) 
50 percent means that at least one-half of the floods were censored]

N-day duration N-1 N-3 N-7 N-10 N-15 N-30 N-60

Number of sites and percentage of sites (in parentheses) for ranges of censored floods

0% 234 (57) 235 (57) 208 (51) 199 (49) 199 (49) 189 (46) 190 (46)
0–10% 96 (23) 98 (24) 108 (26) 108 (26) 96 (24) 111 (27) 96 (23)
10–25% 36 (9) 34 (8) 41 (10) 44 (11) 48 (12) 52 (13) 48 (12)
25–50% 42 (10) 41 (10) 51 (12) 55 (13) 64 (16) 56 (14) 73 (18)
>50% 1 (0.2) 1 (0.2) 1 (0.2) 2 (0.5) 1 (0.2) 1 (0.2) 2 (0.5)



Flood-Frequency Analysis    17

1,000

10,000

100,000
An

nu
al

 p
ea

k 
di

sc
ha

rg
e,

 in
 c

ub
ic

 fe
et

 p
er

 s
ec

on
d

Fitted frequency curve
Potentially influential low flow (PILF) (LO) threshold
Gaged peak discharge
Confidence limits: 5-percent lower, 95-percent upper

EXPLANATION
Peakfq v 7.2 run 9/18/2018 11:33:26 AM
Expected moments algorithm using station 

skew option
0.764 = Skew (G)
0.103 = Mean square error (MSE sub G)
Multiple Grubbs-Beck test
   0 zeroes not displayed
   0 censored flows below PILF (LO) threshold 
   0 gaged peaks below PILF (LO) threshold 

0.21520406075909899.5
Annual exceedance probability, in percent

                                                                                

Figure 10.  Flood-frequency curve for maximum 1-day duration flows for the Metolius River near Grandview, Oregon, 
streamgage (U.S. Geological Survey streamgage 14091500).

Correlations Between Skew Coefficients and 
Basin Characteristics

Once the at-site skew coefficients were computed using 
Bulletin 17C methodology, basin characteristics could be 
investigated for use in regional skew regression models. The 
magnitude of correlations between calculated N-day skew 
coefficients and select basin characteristics was evaluated. For 
example, the relation between drainage area and the at-site 
skew coefficient for the 1-day duration flow for 403 sites in 
the Columbia River Basin is shown in figure 12. Although the 
stations with the highest drainage areas tend to have smaller 
absolute values of skew coefficients than stations with smaller 
drainage areas, no strong relation is apparent between the 
two variables. The coefficient of determination (R2) for this 
relation is 0.0174 (table 5). The low magnitude of correlation 
between calculated N-day skew coefficients and drainage area 
also is evident for other flood durations (fig. 13).

Other basin characteristics also were evaluated for cor-
relation with skew coefficients using the same techniques 
previously described. Most basin characteristics, such as mean 
basin elevation and the percentage of precipitation that falls 
as snow (fig. 14), showed little or no relation with skew. Skew 
generally increased with mean annual precipitation values 
(fig. 14). Consequently, mean annual precipitation was chosen 
for further analysis (see section, “Exploratory Data Analysis”).

The skew coefficients also were evaluated for consistency 
over the durations of interest. There was a general tendency 
for the median of skew coefficients to decrease as duration 
increased (fig. 15). The median skew coefficient ranged from 
-0.136 (1-day duration) to -0.336 (60-day duration). The 
skew coefficients with the greatest variability tended to occur 
at shorter-duration floods. These results were expected, as 
shorter-duration floods are more likely to deviate further from 
the average because of the varying landscape and storm event 
conditions, whereas longer-duration floods tend to dampen 
the spatial and temporal effects and show less variance 
(Lamontagne and others, 2012).
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Figure 11.  Flood-frequency curve for maximum 1-day duration flows for the Payette River near Horseshoe Bend, Idaho, 
streamgage (U.S. Geological Survey streamgage 13247500).
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Figure 12.  Skew coefficients and drainage areas for the 1-day 
flood durations in the Columbia River Basin, northwestern United 
States and British Columbia, Canada.
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Table 5.  Coefficients of determination for the relation between 
drainage area and skew coefficients for selected flood durations 
in the Columbia River Basin, northwestern United States and 
British Columbia, Canada.

[Abbreviation: R2, coefficient of determination]

Duration 
(days)

R2

1 0.0174
3 0.0358
7 0.0308
10 0.0195
15 0.0154
30 0.0147
60 0.0323

Selected study site
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Figure 13.  Skew coefficients and drainage areas for the selected flood durations in the Columbia River Basin, northwestern 
United States and British Columbia, Canada. N-3 is the 3-day flood duration, N-7 is the 7-day flood duration, etc.
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Figure 15.  Skew coefficient distributions for select flood 
durations in the Columbia River Basin, northwestern United States 
and British Columbia, Canada. Interquartile range (IQR) is the 
range from the 25th to the 75th percentiles. The solid vertical lines 
and whiskers extend 1.5 times the IQR from the top or bottom of 
the box.

Regional Duration—Skew Analysis
The skew coefficient is a measure of asymmetry in a 

dataset and plays an important role in determining extreme 
flood quantiles. The skew coefficient is difficult to estimate 
directly from flood records of limited duration (Griffis and 
Stedinger, 2009), so Bulletins 17B and 17C recommend 
the use of a generalized (that is, regional) skew coefficient. 
Bulletin 17B included several recommendations for estimat-
ing generalized skew coefficients in addition to a national map 
that reported regional skew coefficients as a function of basin 
location. One of the recommendations included using regional 
skew coefficient prediction equations based on basin charac-
teristics. To this end, Tasker and Stedinger (1986) proposed an 
operational method-of-moments weighted least squares (WLS) 
model to predict the skew coefficients as a linear function of 
basin characteristics. The WLS analysis is a marked improve-
ment over ordinary least squares (OLS), as it recognizes that 
skew coefficients at individual basins (“sample” skews) are 
estimated with error and places more weight on sites with less 
sampling error (that is, longer record lengths). Additionally, 

Tasker and Stedinger’s approach decomposed errors into two 
sources: sampling error due to limited data and model error 
due to the use of an imperfect model.

Stedinger and Tasker (1985) and Tasker and Stedinger 
(1989) proposed operational generalized least squares (GLS) 
regression models for flood quantile estimation. GLS regres-
sion is an improvement over WLS in that it explicitly accounts 
for cross-correlation between flood quantile estimates. Such 
cross-correlation arises because nearby and similar sites have 
similar climatological forcings each year; for example, the 
peak flood in adjacent basins in a given year may be due to the 
same rainstorm. This correlation in annual maxima leads to a 
correlation between the log-space skew coefficients (Martins 
and Stedinger, 2002). Failure to account for this cross-
correlation can affect fitted models and substantially misrepre-
sent model precision.

Reis and others (2005) introduced a Bayesian generalized 
least squares (B-GLS) procedure for fitting linear skew mod-
els. The primary advantage of the Bayesian approach over the 
earlier method-of-moments procedure described in Stedinger 
and Tasker (1985) is that it provides the full posterior dis-
tribution of the model error variance. If sampling errors are 

https://doi.org/10.3133/sir20145109
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sufficiently large, the approach in Stedinger and Tasker (1985) 
can estimate a model error variance of zero, implying a perfect 
model that clearly is unreasonable. The Bayesian approach 
incorporates new information about the model parameters 
so that they do not have to be estimated. Since 2009, B-GLS 
and its derivatives have served as the primary tool used by 
the USGS in regional skew studies across the United States 
(Feaster and others, 2009; Gotvald and others, 2009; Weaver 
and others, 2009; Parrett and others, 2011; Lamontagne and 
others, 2012). A summary of the Bayesian approach used for 
a regional regression skew analysis for annual peak floods in 
the Pacific Northwest is available in Mastin and others (2016, 
appendix A).

Standard Bayesian Generalized Least Squares

The B-GLS model proposed by Reis and others (2005) 
assumes that log-space skew coefficients can be predicted as a 
linear function of K available basin and (or) climatic charac-
teristics (possible explanatory variables) with additive error 
(sampling and model error). The model is fitted to a dataset 
including N non-redundant sites. Non-redundant sites were 
screened to ensure that their basins were not nested or highly 
correlated spatially. In matrix notation, the standard model is:

	​​    γ ​ ​ =  Xβ + ε​,� (4)

where
	​​    γ ​​	 is an (N×1) vector of unbiased at-site skew 

coefficient for each site;
	 X	 is an [N×K] matrix of basin characteristics for 

each site;
	 β	 is a (K×1) vector of GLS regression 

coefficients; and
	 ε	 is an (N×1) vector of total errors representing 

the sum of the regional regression model 
error, δ, and the sampling error in the 
at-site sample skew coefficient estimate for 
each site.

The ith element of ​​   γ ​​ is the unbiased at-site skew coef-
ficient for site i calculated using the Tasker and Stedinger 
(1986) bias correction factor:

	​​​    γ ​​ i​​ ​ = ​ [1 + ​  6 _ ​P​ RL,i​​​]​ ​G​ i​​​,� (5)

where
	 Gi	 is the traditional biased at-site skew 

coefficient,
	 PRL,i	 is the pseudo-record length for site i as 

calculated using equation 11, and
	​​​    γ ​​ i​​​	 is the unbiased at-site skew coefficient 

for site i.

For the GLS model, E[ε]=0, and the covariance matrix of 
ε is Λ=E[εεT]. The error covariance matrix Λ is given by the 
equation:

	​ Λ ​ = ​ σ​ δ​ 2​ I + Σ​(​   γ ​)​​,� (6)

where
	​​ σ​ δ​ 2​​	 is the model error variance;
	 I	 is an [N×N] identity matrix; and
	​ Σ​(​   γ ​)​​	 is the [N×N] covariance matrix of sampling 

errors, composed of the at-site skew 
coefficient sampling variance on the 
diagonal (eq. 9), and sampling co-variance 
on the off-diagonal (computed with eqs. 
7 and 9).

WLS analysis arises as a special case of GLS, where cross-
correlation between the at-site skewness estimators is 
neglected so that the off-diagonal elements of ​Σ​(​   γ ​)​​ are zero. 
Through extensive Monte Carlo simulation, Martins and 
Stedinger (2002) developed the following relation between the 
cross-correlation of annual maximums at two sites, i and j, and 
the cross-correlation between at-site skew coefficient estima-
tors. That relation is used to estimate the cross-correlation 
between at-site skew estimators for the various durations used 
in this study:

	​​    ρ ​​(​​   γ ​​ i​​, ​​   γ ​​ j​​)​ ​ =  sin​(​ρ​ ij​​)​c ​f​ ij​​ ​​|​ρ​ ij​​|​​​ κ​​,� (7)

where
	​​    ρ ​​(​​   γ ​​ i​​, ​​   γ ​​ j​​)​​	 is the estimated cross-correlation between the 

at-site skew coefficient at sites i and j;
	​​ ρ​ ij​​​	 is the cross-correlation between concurrent 

annual maximum at sites i and j;
	​ κ​	 is a constant between 2.8 and 3.3; and
	​ c ​f​ ij​​​	 accounts for the difference in record length 

at the two sites relative to the concurrent 
record between at the two sites, and is 
defined as follows:

	​ c ​f​ ij​​ ​ = ​   ​N​ ij​​ ___________  ​√ 
_______________

  ​(​N​ ij​​ + ​N​ i​​)​​(​N​ ij​​ + ​N​ j​​)​ ​​​,� (8)

where
	 Ni and Nj	 are the non-concurrent observations 

corresponding to sites i and j, and
	​​ N​ ij​​​	 is the number of years of concurrent 

systematic record between sites i and j.

Here, ρij is drawn from the cross-correlation models for 
each duration detailed in section, “Cross-Correlation Model of 
Concurrent Flood Durations.”

The variance of the unbiased at-site skew coefficient 
estimators (the diagonal elements of ​Σ​(​   γ ​)​​) is calculated using a 
modification of Tasker and Stedinger (1986) correction factor:
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	​ Var​[​​   γ ​​ i​​]​ ​ = ​​ [1 + ​  6 _ ​P​ RL,i​​​]​​​ 
2
​ Var​[​G​ i​​]​​,� (9)

where
	​ Var​[​G​ i​​]​​	 is the variance of the biased at-site skew 

coefficient computed using Griffis and 
Stedinger (2009):

​Var​[​G​ i​​]​ ​ = ​ [​  6 _ ​P​ RL,i​​​ + a​(​P​ RL,i​​)​]​ ×

 ​[1 + ​(​9 _ 6​ + b​(​P​ RL,i​​)​)​ ​G​ i​ 2​ + ​(​15 _ 48​ + c(​P​ RL,i​​)​]​​,� (10)

where 

	     and

The EMA adopted in Bulletin 17C and described in 
section, ”Expected Moments Algorithm,” explicitly consid-
ers censored data. In this study, 43–54 percent of records 
(depending on duration) contained PILFs that were cen-
sored. Censored observations provide valuable information 
in frequency analysis, but they provide less information than 
systematic peaks (that is, non-censored observed flows) (Cohn 
and others, 1997). As such, an adjustment must be applied 
to the record length when computing the skew coefficient 
variance (eq. 7). The pseudo-record length equation used by 
Mastin and others (2016) was adopted:

	​​ P​ RL,i​​ ​ = ​ P​ s,i​​ × ​ MSE​(​G​ s,i​​)​ _ MSE​(​G​ c,i​​)​​​,� (11)

where
	 Ps,i	 is the number of non-censored systematic 

peaks in the record for site i;
	 MSE(Gs,i)	 is the estimated mean square error (MSE) of 

the at-site skew coefficient for site i when 
only the non-censored systematic peaks are 
analyzed; and

	 MSE(Gc,i)	 is the estimated MSE of the at-site skew 
coefficient for site i when all data, 
including censored observations, are 
analyzed.

Here, PRL,i is defined in terms of the number of years 
of systematic non-censored observations needed to yield the 
MSE computed using all data (including censored peaks), 
MSE(Gc,i). The pseudo-record length, PRL,i, is constrained to 
be less than or equal to Ni, the number of observations for 
site i, as censored observations contain less information than 
non-censored systematic ones for continuous records of equal 
length (Mastin and others, 2016). PRL,i also is constrained to 

be greater than or equal to Ps,i, as censored observations in a 
continuous record contain more information than no observa-
tions would in an intermittent record over the same period.

Once ​Σ​(​   γ ​)​​ is estimated using equations 7–11, the B-GLS 
methodology described in Veilleux and others (2011) and 
Veilleux (2011) is used to compute the model parameters and 
diagnostic statistics.

Hybrid Bayesian Weighted Least Squares/
Generalized Least Squares Procedure

The B-GLS procedure developed by Reis and others 
(2005) generally is not used for regional skew regression in 
the United States, as Lamontagne and others (2012) reported 
that high cross-correlation between annual maximum flows 
caused problems with B-GLS parameter estimation. B-GLS 
does not recognize that there is error in the estimation of the 
cross-correlation (off-diagonal elements of ​Σ​(​   γ ​)​​) and seeks to 
exploit those cross-correlations through unjustifiably complex 
regression weights. To avoid this issue, Lamontagne and oth-
ers (2012) and Veilleux and others (2011) developed a hybrid 
Bayesian weighted least squares/generalized least squares 
(B-WLS/B-GLS) procedure that ignores cross-correlations 
when computing the regression parameters, then evaluates 
the precision of those parameters by considering the cross-
correlation of the sampling error. This study uses a slightly 
refined B-WLS/GLS approach, as described by Veilleux and 
others (2012), which has been implemented in USGS regional 
skew analyses since that report was published. An overview 
and explanation of steps used for these analyses is described in 
the following sections.

Step 1—Ordinary Least Squares Analysis
The high variability of skew coefficients, Gi, is a concern 

in using them directly to estimate their sampling variance in 
equation 5, which is the justification for using a regional skew 
coefficient in the first place. To limit the influence of sampling 
error on the estimate of sampling error variance, the hybrid 
B-WLS/B-GLS approach starts by performing an ordinary 
least squares (OLS) regression for the unbiased regional skew 
coefficient. OLS regression differs from GLS regression 
because cross-correlation is ignored and each site is given the 
same regression weight (regardless of PRL,i). OLS regression 
returns stable and unbiased estimates of regional skew coef-
ficients for all sites:

	​​​    y ​​ OLS​​ ​ =  X ​​   β ​​ OLS​​​,� (12)

where
	​​​    y ​​ OLS​​​	 is an (N×1) vector of regional skew estimates 

from an OLS analysis,
	 X	 is an [N×K] matrix of basin characteristics for 

each site, and
	​​​    β ​​ OLS​​​	 is a (K×1) vector of OLS model coefficients.
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The OLS regional skew estimates contained in ​​​   y ​​ OLS​​​ are 
used to estimate the at-site skew variances by replacing the 
biased at-site skew coefficients, ​​G​ i​​​ in equation 5. The at-
site skew coefficients are difficult to estimate from limited 
record lengths, which could make the Bayesian weighted 
least squares (B-WLS) and B-GLS regression weights in the 
subsequent steps unstable. A benefit the employment of ​​​   y ​​ OLS​​​ 
provides is it ensures that the subsequent regression weights 
are relatively independent of at-site estimates of the skew 
coefficients by using the OLS regional skew variances instead 
of the at-site skew variances.

Step 2—Bayesian Weighted Least Squares
In step 2, a B-WLS analysis is conducted to compute 

regression coefficients for each regional skew model, ​​​   β ​​ WLS​​​. 
The B-WLS model, a specialized version of the B-GLS model, 
also is given by equation 4, where ​Σ​(​   γ ​)​​ in equation 6 is a 
diagonal matrix with the variances of the at-site skew coef-
ficients estimated in section, “Step 1—Ordinary Least Squares 
Analysis.” Here, the cross-correlations are ignored to avoid 
the parameter estimation problems noted by Veilleux and oth-
ers (2011) and Lamontagne and others (2012). The B-WLS 
analysis accounts for record lengths while ignoring cross-
correlations that can be problematic in B-GLS analyses used 
to estimate precisions of the fitted model and regional regres-
sion coefficients from the B-WLS model.

Step 3—Bayesian Generalized Least Squares
The precision of the fitted model and ​​​   β ​​ WLS​​​ regres-

sion coefficients are evaluated using a B-GLS analysis that 
explicitly considers the covariance of the at-site skew coeffi-
cients (Veilleux and others, 2011). Diagnostic metrics include 
the standard error of ​​​   β ​​ WLS​​​, ​SE​(​​   β ​​ WLS​​)​​, the model error-
variance ​​σ​ δ,GLS​ 2 ​​ , the pseudo coefficient of variation, ​pseudo- ​
R​ δ​ 2​​, and the average variance of prediction for a site not used 
to develop the regional model, AVPnew. Veilleux and others 
(2011) provided a derivation of these metrics. Importantly, 
the model derived using B-WLS is evaluated using the error 
covariance matrix (eq. 7) from a B-GLS analysis, which can 
be used to estimate the precisions of the B-WLS model.

Data Analysis of Duration-Skews for the 
Columbia River Basin

In this study, regional skew models were generated for 
seven flood durations (1-, 3-, 7-, 10-, 15-, 30-, and 60-day) for 
the Columbia River Basin (fig. 2).

Previous work generated a regional skew model with a 
similar spatial extent for the instantaneous annual maximum 
flows (Mastin and others, 2016), although that work did not 
consider the 97 NRNI sites addressed in this study. One-day 

duration skew coefficients are expected to be similar to instan-
taneous annual maxima but longer-duration skew coefficients 
might differ because the hydrologic mechanisms driving 30- 
or 60-day floods likely differ greatly from the instantaneous 
maxima (Lamontagne and others, 2012).

For this study, we computed annual maximum N-day 
flood duration at 410 sites in the Columbia River Basin as 
described in section, “Streamflow.” After screening out 4 
USGS sites for intermittent records and 3 NRNI sites that had 
nearly identical streamflow records and basin characteristics 
(see section, “Streamflow”), we considered a total of 403 sites 
in the analysis. The average record length for USGS sites is 
50 years, whereas almost all the NRNI sites have 80 years of 
reconstructed record. The pseudo record length, PRL,i, var-
ies for each site by flood duration. Forty-nine physical and 
hydrometeorological basin characteristics were available for 
the USGS sites, of which 18 sites also were available for the 
NRNI sites. These basin characteristics are reported in table 2.

Redundancy Screening
Before the regional skew regression analysis could 

proceed, identification and removal of redundant sites was 
necessary because they do not represent independent samples. 
In this context, redundancy occurs when one basin is nested 
within another and the two basins have similar drainage areas. 
For example, the Columbia River at McNary Dam subbasin is 
nested within the Columbia River at Bonneville Dam subba-
sin, and they have similar drainage areas (214,000 and 240,00 
mi2, respectively). This is an issue in regional skew regression 
because the sites do not provide two spatially independent 
observations of how drainage characteristics relate to skew 
coefficients because the two basins overlap. This can cause an 
incorrect analysis of the data (Gruber and Stedinger, 2008). If 
redundant sites are retained in the analysis, then model errors 
could show correlation, which could undermine the GLS diag-
nostic statistics that are important for subsequent frequency 
analyses. In particular, failing to remove redundant basins 
can cause model error, δ, to be correlated, violating the error 
partition assumptions underpinning the Stedinger and Tasker 
(1985) regional skew regression approach (that is, eq. 5) that 
all subsequent USGS regional skew analyses have used.

Previous USGS studies used screening metrics to identify 
potentially redundant basins. For two basins to be redundant 
(1) one basin is nested within another, and (2) their drain-
age areas are similar. Past USGS GLS analyses have iden-
tified two redundancy screening metrics (Veilleux, 2009; 
Lamontagne, 2014):

	​ S ​D​ i,j​​ ​ = ​   Dis ​t​ i,j​​ _ ​√ 
_

 0.5 × ​A​ i​​ × ​A​ j​​ ​​​� (13)

	​ DA ​R​ i,j​​ ​ =  exp​(​|ln​(​​A​ i​​ _ ​A​ j​​ ​)​|​)​​,� (14)
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where
	 SDi,j	 the standardized distance between 

sites i and j;
	 Disti,j	 is the distance between the centroids of 

sites i and j
	 Ai and Aj	 are the drainage areas for sites i and j, 

respectively; and
	 DARi,j	 is the drainage area ratio for sites i and j.

Those studies have set thresholds of SDi,j≤0.5 and 
DARi,j≤5.0. If both computed metric values are less than these 
thresholds, then sites i and j potentially are redundant and 
a closer examination is warranted to determine whether the 
sites are nested and of similar size. If the sites are nested and 
of similar size, they are declared redundant and at least one 
should be removed to avoid errors in the subsequent regres-
sion analyses.

When these screening criteria were applied to the 
Columbia River Basin, 293 potential redundant pairs were 
identified. Most of these pairings include at least one of the 
USACE NRNI sites, which are mostly sites along the main 
stem of the Columbia, Snake, and Willamette Rivers or their 
major tributaries. Upon closer examination, we determined 
that the application of the standard screening thresholds to the 
Columbia River Basin resulted in many false negatives, where 
actual redundancies existed but were not identified by the stan-
dard metric values. As the threshold for standardized distance 
is increased, the number of potentially redundant pairings also 
increases, as reported in table 6.

Based on a manual analysis of obviously redundant sites 
in the Columbia River Basin, the SDi,j threshold of 0.7 was 
selected, as it substantially decreased the number of false neg-
atives while not substantially increasing the number of false 
positives as the DARi,j threshold was held at 5. With this more 
stringent criterion, 442 potential redundant pairings were iden-
tified. These 442 potentially redundant pairs then were manu-
ally evaluated, and 39 pairs were identified as not redundant. 
This amounts to a false positive rate of 39÷442=9 percent.

Once redundant pairs have been identified, the ana-
lyst must next remove one of the redundant sites. In past 
studies, for a single paring, the site with the longer record 
(that is, the smaller variance and higher regression weight) 
would be selected. If two basins were nested within a larger 
basin but were not redundant with each other, then the two 

smaller basins generally would be retained. The complicated 
streamgage network in this study was more challenging, as the 
drainage areas of the various sites ranged over several orders 
of magnitude. Thus, NRNI sites with large drainage areas 
had as many as 10 redundant sites, each of which had its own 
nested and redundant sites that were not necessarily redundant 
with the original large NRNI site. These tertiary sites also had 
their own redundancy issues. This was further complicated by 
the fact that the smaller basins generally had shorter records, 
and thus larger variances and smaller regression weights.

The choice to remove or retain one site could have effects 
that propagate across dozens of other redundant pairings, 
presenting a difficult combinatorial problem. To tackle this 
problem, the station selection process was posed as a mixed 
integer linear programming (MILP) problem, and the MAT-
LAB (The MathWorks, Inc., 2016) built-in MILP solver was 
used to determine the “optimal” redundancy screening.

Our objective function is:

min−wTx,

such that

Ax≤1

0≤x≤1​

x  ∈ ℤ​ ,
where
	 x	 is a [403×1] vector of indicator decision 

variables that can take either a value of 1 
if that site is retained or 0 if the site is not 
retained,

	 w	 is a [403×1] vector where the ith element 
is equal to the inverse of the ith site’s 
variance (approximately proportional to 
the inverse record length),

	 T	 is the transpose operator, and
	 A	 is a [442×403] constraint matrix where 

the jth row corresponds to the jth 
redundant pairing.

If sites 1 and 2 are redundant, then the corresponding 
constraint would be:

x1+x2≤1,

indicating that at most only one of the two sites can be 
included in the final dataset. The A matrix simply states this in 
terms of linear algebra for all 442 site pairings.

The MILP could be conducted independently for every 
duration under consideration, as the w vector also is a func-
tion of the skew coefficient, which will change across the 
durations. However, we determined that similar or identi-
cal answers were obtained for different durations, probably 
because the variance of the skew coefficient is so closely 
linked to the record length, which is not changing across 
duration. It was deemed more advantageous to have the same 

Table 6.  Relation between standardized distance threshold and 
the number of identified redundant pairs for the Columbia River 
Basin, northwestern United States and British Columbia, Canada.

Standardized distance threshold Redundant pairings

0.5 293
0.6 375
0.7 442
0.8 512
0.9 603
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dataset for all durations, so the redundancy screening results 
for the median (10-day) duration were selected as representa-
tive for all durations. The results of the optimization-driven 
screening are summarized in table 7.

Initially, a no-preference criteria for either NRNI sites 
or unregulated USGS sites was used in the optimization. This 
no-preference criteria resulted in the retention of 274÷403 
sites, or about 68 percent of study sites, including 35÷95 (or 
about 37 percent) of the NRNI sites. The mean drainage area 
decreased for the smaller screened sample compared to the 
unscreened sample. This decrease in mean drainage area is 
because many NRNI sites, particularly in the lower Columbia 
Basin, have drainage areas several orders of magnitude greater 
than the rest of the sites in the study and were removed. 
However, our subsequent data analysis indicated that drainage 
area is not a significant explanatory variable for skew coef-
ficients. The actual objective value, the sum of the inverse 
of the at-site skew variances, is not an intuitive metric, so 
cumulative retained period of record (a close analogue) is 
reported instead. Optimization theory dictates that imposing 
binding constraints on the optimization will degrade the qual-
ity of the solution. By imposing the redundancy constraints, 
15,218 years of the total 22,987 cumulative years of record are 
retained.

Too few NRNI sites were retained in the initial screening. 
Their large size (on average) and successive location along 
the main stem of the Columbia River and its tributaries meant 
that they were likely to be redundant (that is, they contained 
very little unique information). To retain more NRNI sites, a 
two-step optimization scheme was devised: the NRNI favor-
ing screening. In this case, an initial MILP was used that 
included only NRNI sites. In this initial step, no NRNI site 
would be removed from the analysis in favor of a USGS site; 
it would only be dropped if it was redundant with another 
NRNI site. The result of this initial MILP was converted to a 

set of equality constraints to force a larger, second MILP to 
include or exclude non-redundant or redundant NRNI sites. As 
expected, the result was the inclusion of additional NRNI sites 
(eight sites) in the analysis, bringing the total to 45 percent of 
the NRNI sites. By enforcing these additional constraints, the 
optimization quality degraded slightly, now including only 
262 sites, and having a cumulative period of record of 14,449 
of the possible 22,987 years. The reduced cumulative period 
of record from the initial screening (no NRNI favoring) was 
the result of fewer sites being retained overall. In consultation 
with the USACE, this result was preferred, as the degradation 
in performance was minimal, but the number of NRNI sites 
increased. Counterintuitively, the mean drainage area was 
reduced slightly under the NRNI favoring screening approach. 
This reduction in mean drainage area occurred because several 
smaller NRNI sites in the headwaters were preferred to larger 
unregulated USGS sites.

During the subsequent regression exploratory analysis, 
three additional sites were removed. Two USGS sites (USGS 
streamgage 12323250, Silver Bow Creek below Blacktail 
Creek at Butte, Montana; and USGS streamgage 14211500, 
Johnson Creek at Sycamore, Oregon) were removed because 
their impervious cover exceeded 5 percent, the threshold for 
inclusion in the instantaneous annual maximum study (Mastin 
and others, 2016). Another USGS site (USGS streamgage 
14219800, Speelyai Creek near Cougar, Washington) was 
removed because its annual precipitation (in excess of 150 in. 
per year) and its at-site skew coefficients were atypical of the 
other sites in the study, indicating that it was not representative 
of the Columbia River Basin sites of interest.

Exploratory Data Analysis
Mastin and others (2016) performed a regional skew 

analysis for the instantaneous annual maximum flows in the 
Columbia River Basin (excluding the Canadian part). They 
reported that no basin characteristic was able to describe an 
appreciable amount of true variability in the skew coefficient, 
so they selected a parsimonious constant model for the entire 
basin. The increase in model complexity could not be justified 
by a sufficient increase in model precision. Furthermore, a 
constant model has been the preferred model in most stud-
ies over the last decade (Paretti and others, 2014; Southard 
and Veilleux, 2014; Kennedy and others, 2015; Curran and 
others, 2016; Wood and others, 2016). A similar result was 
expected for duration-floods, particularly for shorter durations. 
An additional concern in this study was consistency across 
durations (Lamontagne and others, 2012). If the skew mod-
els are substantially different for two durations, the resulting 
flood-duration frequency curves could cross (for example, the 
1-percent AEP 7-day flood could exceed the 1-percent AEP 
3-day flood).

Table 7.  Results of the mixed integer linear programming 
redundancy screening.

[Number and percentage (in parentheses) of sites is given: (1) prior to screen-
ing (all sites), (2) after the initial screening with no preference, and (3) after 
the final NRNI-favoring screening with a preference for retaining more NRNI 
sites. Abbreviations: NRNI, no-regulation no-irrigation; POR, period of 
record; DA, drainage area; km2, square kilometers]

All sites Initial screening
NRNI favoring 

screening

Total sites 403 274 262
(100) (68) (65)

NRNI 95 35 43
(100) (37) (45)

POR 22,987 15.218 14,449
(100) (37) (45)

Mean DA 
(km2)

15,692 5,129 5,000
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Two primary concerns arise when assessing potential 
models: the quality of fit for a specific duration (consider-
ing ​​σ​ δ,GLS​ 2 ​​  and AVPnew) and consistency across durations. A 
convenient statistic to evaluate the fraction of the true vari-
ability in the skew coefficient described by the model is the 
pseudo-​​R​ δ​ 2​​ (Gruber and others, 2007):

	​​ R​ δ​ 2​ ​ =  1 − ​E​[​σ​ δ​ 2​​(k)​]​ _ E​[​σ​ δ​ 2​​(0)​]​ ​​,� (15)

where
	​​ σ​ δ​ 2​​(k)​​	 is the model error variance obtained with a 

model using k explanatory variables,
	​​ σ​ δ​ 2​​(0)​​	 is the model error variance for the constant 

model, and
	 E	 is the expected value or expectation operator.

When ​​R​ δ​ 2​  >  0,​ some of the true variability in the skew 
coefficient is being explained by the model. Even if ​​R​ δ​ 2​  >  0,​ it 
is important to determine whether the k model coefficients are 
statistically different than zero. Furthermore, it is no guarantee 
that a model with statistically significant parameters has much 
true explanatory power, so ​​R​ δ​ 2​​ might be closer to zero. Slightly 
negative values of ​​R​ δ​ 2​​ can occur when ​E​[​σ​ δ​ 2​​(k)​]​  >  E​[​σ​ δ​ 2​​(0)​]​​, 
because both ​E​[​σ​ δ​ 2​​(0)​]​​ and ​E​[​σ​ δ​ 2​​(k)​]​​ are statistics computed 
from data with error.

Initial Screening with Only U.S. Geological 
Survey Sites

A challenge in this analysis was that the full suite of 49 
basin characteristics were available for the USGS sites, while 
only 18 basin characteristics were available for the NRNI 
sites. To determine whether any of the additional 24 hydrome-
teorological basin characteristics should be computed for the 
NRNI sites, an extensive screening exercise was conducted 
exploring all basin characteristics using just the USGS sites. 
The MILP redundancy screening was repeated to include only 
USGS sites, resulting in a total of 271 sites included in the 
analysis. Every possible univariate model (including a con-
stant) was fit to the 271 retained USGS sites.

When using the USGS sites to fit models, no basin char-
acteristic described more than 7 percent of the true variability 
in the skew coefficient for any duration (that is, ​​R​ δ​ 2​  ≤  7 per-
cent​). Significant basin characteristics were the basin compact-
ness (area divided by squared perimeter distance) (1-, 3-, 7-, 
10-, 15-, and 60-day durations; ​​R​ δ​ 2​  ≤  4 percent​ in all cases) 
and drainage area (3-, 7-, and 10-day durations; ​​R​ δ​ 2​  ≤  7 per-
cent​ in all cases). This result confirmed, at least at a basin-
scale, that none of the 30 hydrometeorological variables were 
significant descriptors of skew coefficients. Furthermore, 
it seems that no basin characteristic is consistently able to 
explain more than 7 percent of true variability in the skews, so 
it is unclear that a non-constant model is justified.

There is substantial hydrologic variability across 
the Columbia River Basin (see section, “Study Area 
Description”). The Columbia River Basin contains semi-arid 
basins (in the Snake River subbasin), as well as wet basins (in 
the Willamette River subbasin) (see fig. 3). The most distinct 
partition point in the basin is the Cascade Range because 
basins east of the Cascades tend to receive significantly 
less annual precipitation than those to the west. A second 
exploratory analysis was conducted where univariate models 
(including a constant intercept) were fit separately for each of 
the 49 explanatory variables for all durations to USGS sites to 
the east and west of the Cascade Range. East of the Cascade 
Range, the Snake River subbasin was deemed unique com-
pared to the other subbasins of the mid- and upper-Columbia 
River Basin, so the eastern sites again were subdivided into 
two groups: the Snake River subbasins and non-Snake eastern 
subbasins (see fig. 1). Re-running of the MILP screening algo-
rithm was unnecessary for each sub-region because there were 
few incidents of cross-regional redundancy; most main-stem 
sites on the Columbia River that would cause cross-region 
redundancies were NRNI sites rather than USGS sites.

West of the Cascade Range, some inconsistency was 
present between durations. For short-term durations (1-, 
3-, and 7-, and 10-day), the average annual temperature 
was promising, with ​​R​ δ​ 2​​ ranging from 12 to 35 percent. For 
mid-term durations (7- and 10-day), elevation-related terms 
(mean, minimum, and maximum) were significant at the 
5-percent level with ​​R​ δ​ 2​​ ranging from 20 to 25 percent. For 
longer term durations (15-, 30-, and 60-day), no statistically 
significant explanatory variables were able to explain any of 
the true variability in the skew coefficients (that is, ​​R​ δ​ 2​  ≤  0​). 
This result was somewhat surprising, as most subbasins west 
of the Cascade Range are in the Willamette River subbasin, 
which has some hydrologic similarities to the Central Valley 
of California (Dettinger and others, 2011), where Lamontagne 
and others (2012) noted that elevation was a significant 
explanatory variable of skew coefficients. Importantly, this 
result confirms that none of the 24 hydrometeorological 
statistics were significant across all the durations west of the 
Cascade Range.

For the 1-day duration floods in non-Snake River eastern 
subbasins, October precipitation is statistically significant, 
although it explains less than 4 percent of the true variability 
in the skew coefficients (that is, ​​R​ δ​ 2​  ≤  4 percent​). At the 3-day 
duration, October–-March precipitation is significant, although 
it has low ​​R​ δ​ 2​​, ranging from 5 to 7 percent. At all other dura-
tions, no explanatory variable is significant with an ​​R​ δ​ 2​  >  0​.

For Snake River eastern subbasins, basin compactness 
(area divided by squared perimeter distance, table 2) is sig-
nificant at the 5-percent level for all durations but 1-day and 
60-day, with ​​R​ δ​ 2​​ ranging from 14 and 33 percent. However, 
AVPnew values were exceptionally high for the model because 
(1) there are not many sites located in the Snake River sub-
basin; and (2) they tend to be highly correlated, so the effec-
tive number of independent sites is low. The AVPnew statistic 
(1) describes the average variance of prediction for a site not 
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included in developing the regional skew model and is used 
in Bulletin 17C to weigh against the station skew coefficient, 
and (2) is derived for the hybrid B-WLS/B-GLS analysis used 
here and in appendix 3. The AVPnew values for the best fitted 
models ranged from 32 to 104 percent larger for the Snake 
River eastern subbasins than for the best fitted models for the 
entire Columbia River Basin (fitted to the USGS sites). Thus, 
insufficient sites were deemed to be located within the Snake 
River subbasin to justify a Snake River subbasin-specific 
model; more precise and useful models could be derived by 
either considering a basin-wide model or grouping the Snake 
River sites with the rest of the Eastern USGS sites.

Screening with All Non-Redundant Basins
All the previously detailed analyses confirmed that the 24 

monthly hydrometeorological variables that were available for 
the USGS sites but not for the NRNI sites were unlikely to be 
predictive of regional skew coefficients when applied to the 
full USGS/NRNI dataset. A screening analysis tested univari-
ate models (with a constant intercept term) fit to all non-
redundant sites (NRNI and USGS) for each of the 20 basin 
characteristics available at all sites. Initially, that screening 
analysis considered separately sites east (Snake and non-Snake 
subbasins) and west of the Cascade Range.

West of the Cascade Range, no basin characteristic was 
statistically significant at the 5-percent level for any duration, 
except the minimum basin elevation at the 10-day duration, 
which had a value of ​​R​ δ​ 2​​=17 percent. A goal of this analysis 
was to ensure consistency across durations. It was deemed 
unreasonable for the 10-day duration to have a regional skew 
model completely different from any other duration, espe-
cially if that model explained such a small fraction of the true 
variability in the skew coefficient. East of the Cascade Range, 
many basin characteristics—including longitude, drainage 
area, elevation-related metrics, basin compactness, precipita-
tion, and air temperature—were significant at the 5-percent 
level for the 1-day duration, although most of these charac-
teristics explained less than 3 percent of the true variability 
in the skew coefficients. The exceptions were basin compact-
ness and drainage area, which explained 9 and 5 percent of 
the true variability, respectively. Basin compactness also was 
significant at all other durations (13 percent≤​​R​ δ​ 2​​≤9 percent), 
and drainage area was significant at all other durations except 
60 days (4 percent≤​​R​ δ​ 2​​≤9 percent). These explanatory vari-
ables were not deemed to improve the precision of the models 
sufficiently to justify the added complexity. For example, 
at the 15-day duration, the AVPnew for the constant model is 
0.13, whereas the AVPnew for the model with drainage area 
as an explanatory variable is 0.12, despite the fact that ​​R​ δ​ 2​​=9 
percent. The model error-variance upon which AVPnew and ​​R​ δ​ 2​​ 
are based, ​​σ​ δ,GLS​ 2 ​​ , is itself estimated with error. In the case of 
the 15-day duration drainage area model for the sites east of 
the Cascade Range, the standard error of ​​σ​ δ,LS​ 2 ​​  is 0.019, so it is 
unclear that ​​σ​ δ,GLS​ 2 ​​  for the drainage area model is truly smaller 
than that of the constant model.

The conclusion of this analysis is that no explanatory 
variable is significant across all the N-day durations, nor can 
it explain a sufficient amount of the true variation in the skew 
coefficients, either east or west of the Cascade Range, to 
justify the inclusion of explanatory variables. However, there 
was a difference between the average skew coefficients on the 
east and west sides of the Cascade Range. This would lead to 
a simple discontinuous model, wherein one constant is applied 
east of the Cascade Range and another constant is applied west 
of the Cascade Range. The hydrologic reasoning for having 
a discontinuous model with two constants is that eastern sites 
generally are more arid than the western sites. However, this 
type of discontinuous model likely is too broad a screening for 
the Columbia River Basin, as many high-elevation sites east 
of the Cascade Range receive significantly more precipitation 
than other eastern sites (fig. 3). Screening by elevation was 
not viable, as there are many high-elevation arid basins in the 
Snake River Plateau. So, four additional avenues of explor-
atory analysis were pursued.

Models were fit to individual subbasins (Willamette, 
Yakima, Upper Snake, Kootenai, etc.) as shown in figure 1. 
The major issue that arose during the fitting of these models 
is a lack of sites in individual subbasins. By narrowing the 
geographic focus, very few sites were located in each subbasin 
and those sites were highly correlated, making the effective 
number of independent observations too small to conduct 
credible regression analyses. A second screening analysis was 
performed wherein a Columbia River Basin wide model was 
fit where 4-digit hydrologic unit code (HUC4) regions (Seaber 
and others, 1987) were grouped, roughly mirroring the quan-
tile regression regions by Mastin and others (2016), and each 
group was assigned its own indicator variable. This analysis 
again was compromised by narrowing the geographic scope, 
making it difficult to estimate important group constant mod-
els with the exception of the Willamette subbasin. Clustering 
analysis also was performed using k-means clustering to group 
sites with similar elevation, drainage area, centroid longitude, 
mean annual precipitation, and snow percent. However, we 
determined that the improvement in model precision did not 
sufficiently justify the increased complexity of the analysis, 
particularly for the analyst to determine group membership. 
The final exploratory analysis evaluated different non-linear 
functions of precipitation to model skew, as described in the 
next section.

Precipitation Models of Regional Skew Coefficients
Skew was determined to generally increase with mean 

annual precipitation (see section, “Correlations Between 
Skew Coefficients and Basin Characteristics”), which was 
selected for further analysis based on the strong correlation to 
skew. Average skew coefficients in the Columbia River Basin 
generally become less negative as mean annual precipitation 
increases, and that the variability of the skew coefficients 
tends to decrease with increasing mean annual precipitation. 
The first precipitation-based model tested was a discontinu-
ous model:
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	​​​    y ​​ i,d​​ ​ = ​​    β ​​ 0,d​​ + ​​   β ​​ 1,d​​ ​I​ i​​​(​c​ 1​​)​ ​,� (16)

where
	​​​    y ​​ i,d​​​	 is the regional skew coefficient for site ​i​ and 

duration ​d​,

	​​​   β ​​ 0,d​​​ and ​​​   β ​​ 1,d​​​	 are fitted model parameters for duration ​d​, and
	 Ii(c1)	 is a binary indicator variable that takes a value 

of 0 if the precipitation for site i is less 
than c1 inches and 1 if the precipitation is 
greater than c1 inches.

Values of c1 from 25 to 55 were tested in increments of 
5. The model for c1=40 in. performed well most consistently 
across durations. However, this discontinuous model version 
was disregarded because it could lead to inconsistent flood 
frequency analyses where two nearby sites on the same river 
could have very different regional skew coefficients if they 
happened to straddle the discontinuity point at around 40 in. 
of mean annual precipitation. To address this concern, two 
continuous non-linear functions were tested (see fig. 16). The 
first non-linear model has functional form:

	​ N ​L​ 1,i​​ ​ =  max​(0, 1 − exp​(​− 1×​(​P​ i​​ − ​c​ 1​​)​ _ ​c​ 2​​ ​ )​)​​,� (17)

where
	 Pi	 is the mean annual precipitation at site i,
	 c1 and c2	 are parameters of the non-linear model, and
	 NL1	 is fixed to zero below the threshold, c1, and 

converges to 1 for large values of Pi.

Parameter c2 controls the rate of transition from 0 to 1. The 
resulting regional skew model is:

	​​​    y ​​ i,d​​ ​ = ​​    β ​​ 0,d​​ + ​​   β ​​ 1,d​​ N ​L​ 1,i​​  ​.� (18)

Models were fit for each flood duration for every combi-
nation of ​​c​ 1​​  ∈ ​ {35, 40, 45}​​ and ​​c​ 2​​  ∈ ​ {1, 2, 4, 8}​​. Additional 
tests also evaluated c1 values of 50 and 55 in. We determined 
that c1=40 and c1=2 performed well most consistently across 
durations.

A second non-linear function of precipitation, inspired by 
the California duration skew analysis (Lamontagne and oth-
ers, 2012), also was tested. Whereas the California non-linear 
model used basin elevation as a predictor, the model in this 
study uses precipitation:

	​ N ​L​ 2,i​​ ​ =  1 − exp​(− ​​(​ ​P​ i​​ _ ​c​ 3​​​)​​​ 
​c​ 4​​

​)​​,� (19)

where
	 c3 and c4	 are model parameters;
	 NL2,i	 varies from 0 for low values of Pi to 1 for 

high values of Pi; and
	 c3	 controls the center of the transition 

from 0 to 1.

The resulting regional skew model is:

	​​​    y ​​ i,d​​ ​ = ​​    β ​​ 0,d​​ + ​​   β ​​ 1,d​​ N ​L​ 2,i​​​.� (20)

The two nonlinear functions under consideration are plot-
ted in figure 16. A range of c3 and c4 values were tested. The 
NL1,i model generally outperformed NL2,i, based on the met-
rics used to evaluate previous models described above, so ​N ​
L​ 2,i​​​ was disregarded in favor of the ​N ​L​ 1,i​​​ model with ​​c​ 1​​  =  40​ 
and ​​c​ 2​​  =  2​.

Final Duration-Skew Models
After the extensive exploratory analysis, the most consis-

tently well-performing model across durations was determined 
to be the non-linear function of precipitation in equation 17, 
with ​​c​ 1​​  =  40​ and ​​c​ 2​​  =  2​:

	​​​    y ​​ i,d​​ ​ = ​​    β ​​ 0,d​​ + ​​   β ​​ 1,d​​ max​(0, 1 − exp​(​− 1 * ​(​P​ i​​ − 40)​ _ 2 ​ )​)​​.� (21)

For sites with less than 40 in. of mean annual basin 
precipitation, the final model in equation 21 returns a regional 
skew coefficient of ​​​   β ​​ 0,d​​​ for duration ​d​. For sites with mean 
annual basin precipitation more than about 51 in. per year, 
the final model in equation 21 returns a regional skew coef-
ficient of about ​​​   β ​​ 0,d​​ + ​​   β ​​ 1,d​​​ for duration ​d​. For basins with mean 
annual precipitation from 40 to 51 in., the regional skew coef-
ficient will be ​​​   β ​​ 0,d​​  ≤ ​​    y ​​ i,d​​  ≤ ​​    β ​​ 0,d​​ + ​​   β ​​ 1,d​​​.

The final fitted models and several diagnostic statistics 
used to evaluate model performance are reported in table 8. 
No ​​R​ δ​ 2​​ is reported because the magnitude is less than 6 percent 
for all durations. The ​​R​ δ​ 2​​ values are low because the fitted 
models are essentially constant models (with a step). The 
average sampling error variance (ASEV) describes the con-
tribution of the sampling error in the model parameters to ​AV ​

NL_1 fitted non-linear 
model 1

NL_2 fitted non-linear 
model 2
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Figure 16.  Continuous non-linear functions of mean annual 
precipitation for two non-linear models used in the study.
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P​ new​​​. For the 3-day model, the estimated ​AV ​P​ new​​​ actually was 
slightly higher for the nonlinear precipitation model than for 
the constant model, as the increase in the ASEV from fitting 
an additional model parameter was not entirely offset by a 
decrease in the model error variance ​​σ​ δ,B−GLS​ 2 ​​  (see appendix 3, 
eq. 3-1). However, ​​σ​ δ,B−GLS​ 2 ​​  is estimated for both the constant 
and nonlinear precipitation models with some error, so very 
small increases in ​​σ​ δ,B−GLS​ 2 ​​  or ​AV ​P​ new​​​ are not necessarily points 
of concern if the models make hydrologic sense. The ​AV ​P​ new​​​ 
for the fitted nonlinear precipitation models ranged from 0.07 
to 0.11 depending on duration, compared to 0.18 in Mastin 
and others (2016) and 0.303 for the Bulletin 17B national 
skew map.

The results of the pseudo analysis of variance (ANOVA) 
for the final nonlinear precipitation model for the seven study 
durations are reported in table 9. The analysis divides the vari-
ability in the data into three sources: (1) variability described 
by the model, (2) variability in the true skew coefficient that 
the model cannot describe (model error), and (3) variability 
due to sampling errors. The model describes little variability 
in the true skew coefficient (the magnitude is less than 1 in all 
cases), as the final models at all durations are essentially con-
stant models with a rapid step function. The negative values 
for model variability indicate a small increase in the model 
error variance for the nonlinear precipitation over the constant 
model. Both model error variances must be estimated and 
based on their standard errors; the difference is insignificant. 
The model error describes the precision with which the model 
parameters can be estimated. For all durations, the model error 
is less than one-half of the sampling error, indicating that the 
sampling error was the major source of variability.

The error variance ratio (EVR, appendix 3, eq. 3-8) is 
the ratio of the sampling error variance and the model error 
variance. This statistic is used to determine whether an OLS 
analysis is sufficient or if a more complicated WLS or GLS 
analysis should be used. A large EVR (exceeding 0.2) indi-
cates that sampling errors are significant and that a WLS or 
GLS analysis should be used. The EVR in table 9 ranges 
from 2.3 to 3.6 depending on duration, indicating that a WLS 
or GLS analysis is necessary. The misrepresentation of beta 
variance (MBV, appendix 3, eq. 3-9) is the ratio of variance 
ascribed to the WLS regression constant by a GLS analysis 
and a WLS analysis. If MBV exceeds 1, this indicates that a 
GLS error analysis is needed. MBV ranges from 12.4 to 21.7 
depending on duration, indicating that a GLS analysis of errors 
is needed.

The at-site sample skew coefficients (unbiased using 
eq. 5) against mean annual basin precipitation are shown in 
figures 17 and 18, as well as the fitted final regional skew 
models for the 1-, 3-, 7-, 10-, 15-, 30-, and 60-day duration 
floods. Significant scatter is present in the plotted points, 
largely due to sampling error. The sampling errors of the 
at-site skew coefficients are strongly correlated (see section, 
“Cross-Correlation Model of Concurrent Flood Durations”), 
and the sampling errors varied widely across sites due to 
differences in pseudo-record length (​​P​ RL​​​). Thus, not every 
point in figures 17 and 18 carries the same information in 
the analysis, and some points carry little information; for 
example, most of the non-Snake River subbasin sites east of 
the Cascade Range that have very negative skew coefficients 
around mean annual precipitation of 60 in. have short ​​P​ RL​​​ and 
small influence on the regression. The main bodies of points in 
figures 17 and 18 show an increase in at-site skew coefficients 

Table 8.  Final fitted models for the seven study durations and several diagnostic statistics used to evaluate model performance.

[Model parameters in bold are statistically significant at the 5-percent level. ​​​   β ​​ 0,d​​ :​ Fitted model parameter. ​​​   β ​​ 1,d​​​: Fitted model parameter. ​​σ​ δ,GLS​ 2 ​  :​ Model error 
variance. ASEV: Average sampling error variance. AVPnew: Variance of prediction for a site not used to fit the model]

Duration Model type ​​​   β ​​ 0,d​​​ ​​​   β ​​ 1,d​​​ ​​σ​ δ,GLS​ 2 ​ ​  ASEV AVPnew

1 day Constant -0.10 0.08 0.01 0.09
Nonlinear precipitation -0.28 0.38 0.07 0.01 0.09

3 days Constant -0.13 0.05 0.01 0.06
Nonlinear precipitation -0.32 0.39 0.05 0.02 0.07

7 days Constant -0.24 0.07 0.01 0.09
Nonlinear precipitation -0.40 0.33 0.07 0.02 0.09

10 day Constant -0.31 0.07 0.02 0.09
Nonlinear precipitation -0.47 0.34 0.07 0.02 0.09

15 days Constant -0.32 0.07 0.02 0.09
Nonlinear precipitation -0.48 0.32 0.07 0.02 0.09

30 days Constant -0.34 0.06 0.02 0.08
Nonlinear precipitation -0.48 0.28 0.06 0.02 0.08

60 days Constant -0.37 0.09 0.02 0.11
Nonlinear precipitation -0.47 0.20 0.09 0.03 0.11
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Table 9.  Pseudo analysis of variance (ANOVA) for the final nonlinear regional skew model for all N-day flood durations for the 
Columbia River Basin, northwestern United States and British Columbia, Canada.

[Source: EVR, error variance ratio; MBV, misrepresentation of beta variance statistic. Abbreviation: N-day flood, flood whose duration is the running average 
of daily streamflow over a selected time period]

Source
Duration

1 day 3 days 7 days 10 days 15 days 30 days 60 days

Model 1 1 0 0 -1 -1 0
Model error 19 13 19 18 18 16 22
Sampling error 45 45 47 48 49 49 51
Total 65 59 66 66 66 64 73
EVR 2.4 3.6 2.5 2.6 2.7 3.1 2.3
MBV 12.4 16.0 15.6 16.7 17.6 19.7 21.7
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Figure 17.  Fitted regional skew models for the (A) 1-day, (B) 3-day, (C) 7-day, and (D) 10-day duration floods, Columbia River Basin, 
northwestern United States and British Columbia, Canada. Line in each scatterplot is the fitted regional skew model.
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Figure 18.  Fitted regional skew models for the (A) 15-day, (B) 30-day, and (C) 60-day duration floods, Columbia River Basin, 
northwestern United States and British Columbia, Canada. Line in each scatterplot is the fitted regional skew model.

at about 40 in. of precipitation per year, including all sites west 
of the Cascade Range as well as some sites east of the Cascade 
Range. The at-site log-space skew coefficients for the Snake 
River subbasin show significant variability.

The fitted regional skew models for all seven durations 
are shown in figure 19. Overall, the regional skew coefficients 
range from -0.48 for 15- and 30-day duration floods at sites 
with less than 40 in. of mean annual precipitation, to 0.09 for 
1-day duration floods at sites with more than 51 in. of mean 
annual precipitation (see table 10). Regional skew coefficients 
generally decrease with increasing duration, particularly at 
higher levels of mean annual precipitation. The difference 
between regional skew coefficients for high and low precipita-
tion sites also tends to decrease with increasing duration. The 
statistical significance (based on p-values) of ​​​   β ​​ 1,d​​​ decreased 
with increasing duration. The trend in high compared to low 
precipitation differences could indicate that flood charac-
teristics are more homogenous across the study basins for 
longer durations than shorter ones. The dampening effect of 

averaging flood flows over longer periods of time likely plays 
some role in the increasing uniformity (Lamontagne and oth-
ers, 2012).

Use of Regional Skew Models

In Bulletin 17C, the at-site skew coefficient is combined 
with a regional skew coefficient in a weighted average where 
the weights depend on the relative precision of the at-site and 
regional skew coefficients (England and others, 2018). The 
skew coefficient is difficult to estimate, even with relatively 
long records, and might be affected by very large or small 
floods (potentially influential low flows; see Lamontagne and 
others [2012]). To estimate the regional skew coefficient at a 
site, the mean annual precipitation must be known. Figure 19 
or equation 21 and table 8 can then be used to compute the 
regional skew coefficient for a given duration. For sites used 
in this analysis, the regional skew coefficients are reported 
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Figure 19.  Nonlinear final fitted models of regional skew for 
all durations in the Columbia River Basin, Columbia River Basin, 
northwestern United States and British Columbia, Canada.

in table 2.3 of appendix 2. Alternatively, table 10 reports 
the regional skew coefficients directly (in 1-in. precipitation 
increments).

The variances of prediction (VPs) reported in this study 
are equivalent to the MSE from the National Skew Map in 
Bulletin 17B and should be used to weigh the at-site and 
regional skew coefficients. Because the nonlinear model in 
equation 21 is a function of precipitation, the variance of pre-
diction also changes with precipitation. Furthermore, the VP 
for sites included in the study, ​V ​P​ old​​​, is less than a site with the 
same precipitation that was not used in the study, ​V ​P​ new​​​ (see 
appendix 3). For a new site not used to compute the regional 
skew coefficients in this study, table 10 reports the appropriate 
variance of prediction as a function of flood duration and mean 
annual basin precipitation. Table 2.4 in appendix 2 reports the 
appropriate variance of prediction for sites used in the study.

To use the regional model developed in this report, the 
analyst should follow these steps:

1.	Compute the regional skew coefficient for a site for the 
desired duration using (A) equation 21 and table 8, or 
(B) figure 18, or (C) table 10 (to the nearest inch).

2.	Determine whether the site was used to derive the 
regional models, by checking table 2.4 in appendix 2.

3.	 If the site was used to develop the regional skew model, 
select the site ​V ​P​ old​​​ statistic for the appropriate duration; 
otherwise use table 10 to obtain VPnew.

4.	Use the regional skew coefficient from step (1) and the 
appropriate variance of prediction from step (3) in the 
EMA procedure as implemented in PeakFQ, a USGS 
software application used to compute AEPs (Flynn and 
others, 2006; Veilleux and others, 2014).

As an example, consider a 7-day regional skew estima-
tion for the Columbia River at the NRNI site The Dalles 
(TDA). The mean annual basin precipitation for TDA is about 
26 in. Using equation 21, figure 18, or table 10, the 7-day 
regional skew coefficient is -0.40. An examination of table 2.4 
in appendix 2 indicates that TDA was not used to derive the 
regional skew models, so the 7-day ​V ​P​ new​​​ from table 10 
should be used: 0.09. PeakFQ could then be used with this 
regional skew coefficient and VP to estimate the desired 7-day 
AEP flood.

As another example, consider 7-day regional skew 
estimation for Charlton Creek above Crane Prairie Reservoir 
near La Pine, Oregon (USGS streamgage 14053000). The 
mean annual basin precipitation for 14053000 is about 61.9 in. 
Using equation 21, figure 19, or table 10, the 7-day regional 
skew coefficient is -0.08. An examination of table 2.4 in 
appendix 2 indicates that 14054500 was used to derive the 
regional skew models, so the 7-day ​V ​P​ old​​​ from table 2.4 in 
appendix 2 should be used: 0.10. PeakFQ could then be used 
with this regional skew coefficient and VP to estimate the 
desired 7-day AEP flood. Appendix 2, table 2.5 presents skew 
coefficients and ​V ​P​ new​​​ values for NRNI sites not used to fit the 
regional skew models.
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Summary
Flood-frequency estimates are essential to effectively 

design, operate, and maintain hydraulic structures such as 
bridges and dams, especially considering that many of them 
have aged beyond their designed life spans. Failures of these 
structures could cause catastrophic loss of property, life, 
or both. People responsible for designing and maintaining 
bridges rely on frequency estimates of flood peaks, which are 
instantaneous values. For operators of dams, additional flood-
frequency estimates of interest are flood durations, which are 
running averages, instead of instantaneous values, usually 
described by multiple days. This report provides regional 
skew estimates for 1-, 3-, 7-, 10-, 15-, 30-, and 60-day flood 
durations.

U.S. Geological Survey Guidelines for Determining 
Flood Flow Frequency (Bulletin 17C) provided guidance to 
government agencies involved with flood-frequency studies 
since its publication in 2018 (U.S. Geological Survey, 2018). 
The skew coefficient used in flood-frequency estimates is 
influential in predicting large floods, and methods used to 
estimate skew coefficients, as recommended by Bulletin 17C, 
have progressed for flood-frequency studies. In this study, over 
300 unregulated U.S. Geological Survey (USGS) streamgage 
records and almost 100 naturalized streamflow records from 
regulated sites (with a dam and or reservoir upstream) were 
used in a regional skew study for the Columbia River Basin 
of the northwestern United States and British Columbia, 
Canada. The naturalized streamflow records, provided by the 
U.S. Army Corps of Engineers, Bureau of Reclamation, and 
Bonneville Power Administration, were reviewed for consis-
tency and reasonableness by USGS hydrologists.

This report used Bayesian statistical regression methods, 
which have been used for numerous flood-frequency studies, 
to develop and analyze regional skew models based on hydro-
logically significant basin characteristics. Various exercises 
applying regression analyses and modern statistical tools were 
conducted while exploring potentially important variables. As 
expected, basin characteristics such as elevation and climate 
proved to explain some variability in skew coefficients for 
the Columbia River Basin sites. After examining the suite 
of available basin characteristics, precipitation seemed to 
show the most significance across all flood durations. Using 
incremental steps of mean annual precipitation while develop-
ing skew models, 40 in. of annual precipitation seemed to be 
a natural breakpoint for the relations between basins and their 
skew coefficients. As such, a nonlinear regression model was 
fitted for all N-day durations to precipitation with a sigmoidal 
function used to smoothly transition the boundary of 40 in. of 
precipitation a year. The skew coefficient is constant when the 
mean annual precipitation is below 40 in. and above 51 in. The 
skew coefficient varies for the transition between constants, 
from 40 to 51 in. of mean annual precipitation.

As flood-frequency studies progress, additional basin 
characteristics, and (or) their combinations, may lead to 
improved regional skew models for the Columbia River Basin. 
This report is intended to facilitate future studies by providing 
a summary of trials and results while investigating skew mod-
els based on basin characteristics using modern techniques. 
Reliable flood-frequency estimates can be challenging, espe-
cially for a river basin as large and diverse as the Columbia 
River. The findings of this study provide a foundation for 
future studies to build upon.
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Appendix 1.  Columbia River Basin Characteristics
Appendix 1 provides tables presenting climatological and physiographical basin characteristics for the subbasins used in 

this study. Table 1.1 presents basin characteristics available for USGS sites, table 1.2 presents basin characteristics available for 
USGS and some NRNI sites, and table 1.3 presents basin characteristics available for all the NRNI sites.

Table 1.1.  Monthly climate and basin characteristics for U.S. Geological Survey sites from Geospatial Attributes of Gages for 
Evaluating Streamflow, version II report database (GAGES II; Falcone, 2011), Columbia River Basin, northwestern United States and 
British Columbia, Canada.

Table 1.1 is a .csv file showing U.S. Geological Survey (USGS) monthly climate and basin characteristics that is available for 
download at https://doi.org/​10.3133/​sir20205073.

Table 1.2.  Characteristics for U.S. Geological Survey (USGS) and no-regulation no-irrigation (NRNI) sites in the Columbia River Basin, 
northwestern United States and British Columbia, Canada.

Table 1.2 is a .csv Microsoft Excel file showing basin characteristics for USGS and most no-regulation no-irrigation (NRNI) 
sites that is available for download at https://doi.org/​10.3133/​sir20205073.

Table 1.3.  Characteristics for no-regulation no-irrigation (NRNI) sites in the Columbia River Basin, northwestern United States and 
British Columbia, Canada.

Table 1.3 is a .csv file showing basin characteristics for all NRNI sites that is available for download at https://doi.org/​10.3133/​
sir20205073.

https://doi.org/10.3133/sir20205073
https://doi.org/10.3133/sir20205073
https://doi.org/10.3133/sir20205073
https://doi.org/10.3133/sir20205073
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Appendix 2.  Ancillary Tables for Regional Skew Study in the Columbia 
River Basin

Appendix 2 provides tables presenting supplemental information. Table 2.1 presents the symbols used in the equations and 
their explanations. Table 2.2 presents potentially influential low floods that were censored for all sites. Table 2.3 presents manual 
overrides of the Multiple Grubbs-Beck censoring. Table 2.4 presents the skew and variance of prediction values for all the sites 
used to fit the regional skew models. Table 2.5 presents the skew and variance of prediction values for NRNI sites that were not 
used to fit the regional skew models.
Table 2.1.  Table of symbols used for equations in this report.

Table 2.1 is a .csv file showing symbols used for the equations in this report that is available for download at  
https://doi.org/10.3133/sir20205073.

Table 2.2.  Total number of potentially influential low floods (PILFs) censored for all sites, Columbia River Basin, northwestern United 
States and British Columbia, Canada.

Table 2.2 is a .csv file showing total number of potentially influential low floods (PILFs) censored for all sites. This file is avail-
able for download at https://doi.org/​10.3133/​sir20205073.

Table 2.3.  Manual override of Multiple Grubbs-Beck Test 
censoring.

[Site ID: Site identifier. Number censored MBBT: Number censored 
Multiple Grubbs-Beck Test]

Site ID
Duration 

(days)

Number
censored 

MGBT

Number
censored
manually

14171000 1 17 19
12325500 3 31 32
12332000 3 26 27
12340500 3 14 15
14044000 3 8 9
BLU 3 0 2
12325500 7 28 0
14167000 7 6 8
14181500 7 3 4
14162200 10 3 4
10406500 15 13 16
12457000 15 14 15
13344500 15 0 27
MER 60 9 4

https://doi.org/10.3133/sir20205073
https://doi.org/10.3133/sir20205073
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Table 2.4.  Skew and variance of prediction (VPold) values for sites used in regional skew, northwestern United States and British 
Columbia, Canada.

Table 2.4 is a .csv file showing skew and variance of prediction (VPold) values for sites used to fit the regional skew models. This 
file is available for download at https://doi.org./​10.3133/​sir20205073.
Table 2.5.  Skew and variance of prediction (VPnew) values for no-regulation no-irrigation sites not used in regional skew, 
northwestern United States and British Columbia, Canada.

Table 2.5 is a .csv file showing skew and variance of prediction (VPnew) values for sites not used to fit the regional skew models. 
This file is available for download at https://doi.org./​10.3133/​sir20205073.

https://doi.org/10.3133/sir20205073
https://doi.org/10.3133/sir20205073
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Appendix 3.  Diagnostic Statistics
This section describes the diagnostic statistics used to evaluate the goodness of fit and precision of the regional skew 

regression models developed in section, “Regional Duration—Skew Analysis.” These statistics include the variance of pre-
diction, which is used to weight the regional skew with the at-site skew in the Bulletin 17C analysis (England and others, 
2018), and leverage and influence, which measure the potential of an observation and actual effect on a regression analysis, 
respectively.

Variance of Prediction
The variance of prediction is a common measure when selecting among several models; lower values of variance of 

prediction indicate more precise estimates of the dependent variable. The variance of prediction depends on whether or not a site 
​i​ was used to develop the regional skew model. For a new site, not included in developing the model, the variance of pre-
diction is:

	​ V ​P​ new​​​(i)​ ​ =  E​[​σ​ δ,B−GLS​ 2 ​ ]​ + ​x​ i​​ Var​[​​   β ​​ WLS​​]​ ​x​ i​ T​​,							       (3-1)

where
	​​ σ​ δ,B−GLS​ 2 ​​	  is the estimated model error variance from the Bayesian generalized least squares (B-GLS) analysis 

described in section, “Step 3—Bayesian Generalized Least Squares”;
	​​​    β ​​ WLS​​​	 is a ​​[K × 1]​​ vector of fitted model parameters from the Bayesian weighted least squares (B-WLS) analysis 

described in section, “Step 2—Bayesian Weighted Least Squares”; and
	​​ x​ i​​​	 is a ​​[1 × K]​​ vector of basin characteristics for site ​i​, which was not used to fit the model.

Here, ​​σ​ δ,B−GLS​ 2 ​​  indicates the underlying model error arising from using an imperfect model, and ​​x​ i​​ Var​[​​   β ​​ WLS​​]​ ​x​ i​ T​​ indicates the 
precision of the fitted model parameters and the expected error when predicting the skew for a site with basin characteristics xi. 
However, if site ​i​ was used to fit the regional model, the variance of prediction will be lower:

	​ V ​P​ old​​​(i)​ ​ =  V ​P​ new​​ − 2E​[​σ​ δ,B−GLS​ 2 ​ ]​ ​x​ i​​ W ​e​ i​​​,							       (3-2)

where
	 ei	 is a [N×1] vector with 1 in the ith row and zero otherwise; and
	 W	 is a [K×N] matrix of regression weights from the analysis described in section, “Step 2—Bayesian Weighted 

Least Squares,” which is computed as:

	​ W ​ = ​​ [​X​​ T​ ​Λ​ WLS​​ ​​​​ −1​ X]​​​ −1​ ​X​​ T​ ​Λ​ WLS​ −1 ​​ ,							       (3-3)

where
	 ΛWLS	 is the covariance matrix from the B-WLS analysis described in section, “Step 2—Bayesian Weighted Least 

Squares.”

Average variance of prediction for a new site, AVPnew, commonly is reported in regression diagnostics (Mastin and others, 
2016). AVPnew is computed taking the average of the computed VPnew(i) for each site used to generate the regional model:

	​ AV ​P​ new​​ ​ = ​ 1 _ n​ ​ ∑​ 
i=1

​ 
n
 ​ V ​P​ new​​​(i)​​.							       (3-4)

Leverage and Influence
Leverage identifies sites whose observation and explanatory variables are unusual and thus have the potential to exert 

significant influence on the fitted regression model (Hoaglin and Welsch, 1978). Sites are said to have high leverage if the value 
exceeds 2k/n (Stedinger and Tasker, 1985), which is 0.016 in this study. Leverage values do not vary substantially between 
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durations because the matrix of basin characteristics and sample sizes are roughly the same for all durations. Leverage for the 
hybrid Bayesian weighted least squares/generalized least squares (B-WLS/B-GLS) analysis used in this study is derived from 
Veilleux and others (2011) and Lamontagne and others (2012), and is computed as:

	​​ H​ WLS​ * ​ ​  =  XW​.							       (3-5)

Influence tries to identify sites that actually exert significant influence on the fitted regression model (Cook and Weisberg, 1982; 
Tasker and Stedinger, 1989). Sites with influence exceeding 4/n, where n is the total number of sites, are considered to have high 
influence; the value is 0.016 in this study. Because influence metrics depend partly on the residual from the fitted model, influ-
ence can vary significantly between durations. Influence for site i for the hybrid B-WLS/B-GLS analysis used in this study is 
derived from Veilleux and others (2011) and Lamontagne and others (2012), and is computed as:

	​​ D​ i​ WG​ ​ = ​ (​1 _ k ​)​​(​  ​h​ WLS,ii​ * ​  _ 1 − ​h​ WLS,ii​ * ​ ​)​​(​  ​ε​ i​ 2​ ___________ Var​[​   ε ​​|​​GLS model]​​)​,​							       (3-6)

where
	​​ h​ WLS,ii​ * ​​	  is the ith diagonal element of ​​H​ WLS​ * ​​ , and

	​​
Var​[​   ε ​​|​​GLS model]​ =

​  ​Λ​ GLS​​ − ​(​H​ WLS​ * ​ )​ ​Λ​ GLS​​ − ​Λ​ GLS​​ ​​(​H​ WLS​ * ​ )​​​ T​​   
+ ​(​H​ WLS​ * ​ )​ ​Λ​ GLS​​ ​​(​H​ WLS​ * ​ )​​​ T​

 ​​							        (3-7)

where
	 ΛGLS	 is the covariance matrix used in the B-GLS analysis used in section, “Step 3—Bayesian Generalized Least 

Squares.”

Error Variance Ratio and Misrepresentation of Beta Variance
The error variance ratio (EVR) is a regression diagnostic designed to determine whether a weighted least squares (WLS) 

or generalized least squares (GLS) analysis is needed or whether a simpler ordinary least squares (OLS) regression is sufficient. 
The statistic measures the relative magnitudes of the sampling error and model error. If model error is much larger than sampling 
error and OLS analysis is sufficient, but if sampling errors are large, a WLS or GLS analysis is warranted. EVR is computed as

	​ EVR ​ = ​ ​∑​ i=1​ n  ​ Var​(​​   γ ​​ i​​)​ _ n ​σ​ δ,GLS​ 2 ​​ (k)​ ​​  ,							       (3-8)

where
	​ Var​(​​   γ ​​ i​​)​​	 is the variance of the unbiased skew coefficient estimator for site i (eq. 9),
	​​ σ​ δ,GLS​ 2 ​​ (k)​​	 is the model error variance from the hybrid B-WLS/B-GLS analysis (eq. 6), and
	 n	 is the number of sites used in the regression.

Values of ​EVR  >  0.2​ usually are considered indicative of the need for a more complex analysis.
The misrepresentation of beta variance (MBV) is a statistic used to determine if a GLS analysis is needed or if a WLS 

analysis is sufficient (Griffis, 2006; Veilleux, 2011). Stedinger and Tasker (1985) noted that correlation between at-site station 
skews has the largest effect on the estimated precision of the constant term in a regression. Specifically, if correlations between 
station skews are large, the estimated variance of the regression constant from a WLS will be smaller than from a GLS analysis. 
If the cross-correlations between station skews are insignificant, the variance of the regression constant from a WLS analysis 
should be similar to that from a GLS analysis. Veilleux and others (2011) recast the misrepresentation of beta variance statistic 
for the hybrid B-WLS/B-GLS analysis as follows:

	​ MBV ​ = ​  Var​[​b​ 0​ WLS​​|​​GLS analysis]​  ______________  Var​[​b​ 0​ WLS​​|​​WLS analysis]​​ ​ = ​  ​w​​ T​ Λw _ ​∑​ i=1​ n  ​ ​w​ i​​​​ 
,							       (3-9)

where ​​w​ i​​  = ​   1 _ ​√ 
_

 ​Λ​ ii​​ ​​​.Values of ​MBV​ greater than 1 indicate that GLS analysis should be used.
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Leverage and Influence for the Columbia River Basin
The number of sites exerting unusual influence on the fitted regression varied depending on the duration. The leverage and 

influence for the 20 sites with the highest influence in each duration is shown in figure 3.1. On each graph, the threshold for 
“high influence” is indicated by a dark black line (set at 0.016). Each site in each duration having high influence was examined 
for potential issues in the underlying frequency or some other irregularity. The most notable site is 14091500 (Metolius River 
near Grandview, Oregon), which had the highest influence for the 1-, 3-, 7-, 10-, and 15-Day duration, and second highest influ-
ence for the 30-Day duration. This site has high leverage because it had an unusually positive skew (mean annual precipitation 
of 50.4) and a very long record length (​​P​ RL​​  =  95​ for all durations). To evaluate the potential effects of site 14091500 on the 
analysis, the final model was fit for all durations without that site. Dropping site 14091500 had limited effects on the fitted model 
and would not have changed the model selection determination.
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Figure 3.1.  Leverage and influence for the 20 sites with the highest influence for each of seven flood durations, Columbia River Basin, 
northwestern United States and British Columbia, Canada. n, number of study sites.
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