

Transmissivity Estimated From Brief Aquifer Tests of Domestic Wells and Compared With Bedrock Lithofacies and Position on Hillsides in the Appalachian Plateau of New York

Scientific Investigations Report 2020–5087

U.S. Department of the Interior U.S. Geological Survey

Cover. Observed water-level recovery compared to PICKINGmodel type curves for four tests of domestic wells in the Appalachian Plateau of New York. Figure 3 of this report.

Transmissivity Estimated From Brief Aquifer Tests of Domestic Wells and Compared With Bedrock Lithofacies and Position on Hillsides in the Appalachian Plateau of New York

By Allan D. Randall and Andrew C. Mills

Scientific Investigations Report 2020–5087

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

DAVID BERNHARDT, Secretary

U.S. Geological Survey

James F. Reilly II, Director

U.S. Geological Survey, Reston, Virginia: 2020

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Randall, A.D., and Mills, A.C., 2020, Transmissivity estimated from brief aquifer tests of domestic wells and compared with bedrock lithofacies and position on hillsides in the Appalachian Plateau of New York: U.S. Geological Survey Scientific Investigations Report 2020–5087, 21 p., https://doi.org/10.3133/sir20205087.

Associated data for this publication:

Randall, A.D., 2020, Field data from brief aquifer tests of domestic wells penetrating bedrock in the Appalachian Plateau of New York and best fits to theoretical curves of aquifer properties: U.S. Geological Survey data release, https://doi.org/10.5066/P9KLZD9M.

ISSN 2328-0328 (online)

Contents

Abstract	1
Introduction	1
Lithofacies Distribution in the Devonian Bedrock of the Appalachian Plateau of New York	2
Selection of Wells for Testing	2
Selection of a Procedure for Analyzing Brief Aquifer Tests of Domestic Wells	3
Analysis of 51 Brief Aquifer Tests	6
Longer Aquifer Tests of Five Wells	10
Comparison of PICKINGmodel to PPC-Recovery	13
Test Results Compared With Bedrock Lithofacies	13
Test Results Compared With Position on Hillsides	18
Summary	19
References Cited	20

Figures

1.	Map of south-central New York showing distribution of three lithofacies within the Middle and Upper Devonian bedrock of the Appalachian Plateau, and locations of domestic wells that were tested during this investigation	4
2.	Graphs showing observed water-level recovery compared to PICKINGmodel type curves for tests 111 and 149 of two domestic wells in the Appalachian Plateau of New York	.10
3.	Graphs showing observed water-level recovery compared to PICKINGmodel type curves for tests 124, 128, 137, and 144 of domestic wells in the Appalachian Plateau of New York.	.11
4.	Graphs showing water-level recovery compared to PICKINGmodel type curves for brief tests 132 and 133 of wells CN 612 and CN 547, respectively, in the Appalachian Plateau of New York	.12
5.	Boxplot showing distribution of transmissivity values for wells penetrating bedrock in the Catskill-Cattaraugus and Chemung-Hamilton lithofacies in the Appalachian Plateau of New York	.18

Tables

1.	Well properties and pumping test data for 52 domestic wells penetrating bedrock in or adjacent to the Susquehanna River Basin in the Appalachian Plateau of New York	7
2.	Comparison of analyses of brief pumping tests by PICKINGmodel with analyses of longer tests by Theis recovery method for four domestic wells penetrating bedrock in the Appalachian Plateau of New York	11
3.	Comparison of recovery test results using two methods, for wells penetrating bedrock in the Appalachian Plateau of New York	14
4.	Effect of including data beyond early fit to type curve on estimation of aquifer properties by PPC-Recovery for wells penetrating bedrock in the AppalachianPlateau of New York	16
5.	Transmissivity as a function of data fit to PICKINGmodel type curves for wells in two bedrock lithofacies in the Appalachian Plateau of New York	19
6.	Variation in transmissivity of bedrock as a function of well position on hillsides in the Appalachian Plateau of New York	19

Conversion Factors

U.S. customary units to International System of U

Multiply	Ву	To obtain
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
square mile (mi ²)	2.590	square kilometer (km ²)
gallon per minute (gal/min)	0.06309	liter per second (L/s)
gallon per minute per foot (gal/min/ft)	12.42	liter per minute per meter (L/min/m)
foot squared per day (ft²/d)	0.09290	meter squared per day (m ² /d)
foot squared per second (ft ² /s)	0.09290	meter squared per second (m ² /s)

Datum

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83) except in figure 1, where the horizontal datum is the World Geodetic System 1984 datum.

Elevation, as used in this report, refers to distance above the vertical datum.

Supplemental Information

Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times foot of aquifer thickness [(ft^3/d)/ ft^2]ft. In this report, the mathematically reduced form, feet squared per day (ft^2/d), is used for convenience. The computer program used to calculate transmissivity generates results in feet squared per second, so this unit also appears in the report.

Abbreviation

USGS

U.S. Geological Survey

Transmissivity Estimated From Brief Aquifer Tests of Domestic Wells and Compared With Bedrock Lithofacies and Position on Hillsides in the Appalachian Plateau of New York

By Allan D. Randall¹ and Andrew C. Mills²

Abstract

Procedures for undertaking and analyzing recovery from aquifer tests of 13 to 132 seconds (described in reports cited herein) were applied to 51 domestic drilled wells that penetrated bedrock outside major valleys in the part of the Appalachian Plateau of New York drained by the Susquehanna River. Transmissivities calculated from these tests ranged over three orders of magnitude in both the Catskill-Cattaraugus lithofacies (shales, mudstones, siltstones, medium to coarse sandstones, pebbly sandstones) and the Chemung-Hamilton lithofacies (shales, mudstones, siltstones, fine to medium sandstones). Median transmissivity values were 0.000425 foot squared per second (36.7 feet squared per day) in the Catskill-Cattaraugus lithofacies and 0.00055 foot squared per second (47.5 feet squared per day) in the Chemung-Hamilton lithofacies. The distributions of transmissivity values within the two lithofacies were likewise similar. The range and median values of transmissivity were also nearly the same on lower and midlevel hillsides and were only slightly greater on a few upper hillsides. Transmissivities estimated from such easily arranged and analyzed tests may be appropriate for estimating groundwater flux under the small gradients that prevail under natural conditions, but not under larger drawdowns and steeper gradients near clusters of domestic wells. Four of the 51 wells tested were also pumped for 10 to 32 minutes; analysis by the Theis recovery method yielded transmissivities consistent with the brief tests for 2 wells, but 7 to 9 times smaller for 2 wells.

Transmissivity values estimated by the PICKINGmodel were not significantly different from values estimated by an automated application of the Picking method (PPC-Recovery) at a probability of 95 percent. Transmissivities calculated by either method from data for time intervals of 120 seconds or less may be of limited practical value because they apply only to a small volume of bedrock close to the pumped well.

²Independent consultant, Lower Gwynedd, Pennsylvania.

Introduction

South-central and southwestern New York is an extensive upland, termed the Appalachian Plateau, that is composed of clastic sedimentary bedrock mantled by glacial till and is deeply incised by many valleys. Most of the region drains generally southward to the Delaware, Susquehanna, or Allegheny Rivers; the major valleys were widened and deepened by continental ice sheets and now contain a few hundred feet of sediments deposited by or in meltwater as the ice sheets retreated. The northern fringe of the Appalachian Plateau drains northward to Lake Ontario or the Mohawk River; major valleys here were even more deeply incised by ice and are now filled largely with till and fine-grained lacustrine sediments. Hydrogeological studies that compiled and analyzed records of many wells and test borings concluded that highly productive aquifers composed of sand and gravel are commonly but discontinuously present in the south-draining major valleys but are less abundant in the north-draining valleys (Randall, 2001).

The water-yielding potential of bedrock in the uplands between the major valleys in the Appalachian Plateau of New York has not been systematically appraised. Wetterhall (1959) reported that wells penetrating bedrock throughout Chemung County averaged 100 feet in depth and 8 gallons per minute in yield. Hollyday (1969) analyzed the yield distribution of 55 wells less than 400 feet deep that penetrated bedrock in the Susquehanna River Basin of New York. Most of these wells were in major valleys where bedrock is typically overlain by 100 feet or more of glacial sediments, including basal gravel aquifers in many places (MacNish and Randall, 1982) that could help sustain the yield of wells tapping bedrock. Hollyday (1969) reported that 6 of the 55 wells yielded less than 10 gallons per minute, and that half of the remaining 49 wells yielded 60 gallons per minute or more. No studies that attempted to calculate the variation in water-transmitting capacity of bedrock in this region, or the flux through bedrock into gravel aquifers in major valleys, were identified in the literature.

¹U.S. Geological Survey.

2 Transmissivity Estimated From Brief Aquifer Tests of Domestic Wells in the Appalachian Plateau of New York

The objectives of the study that led to this report were to (1) delineate to the extent feasible from the geological literature the variation in lithology, particularly grain size, of the bedrock in the Appalachian Plateau within or bordering the Susquehanna River Basin; (2) select or devise a procedure suitable for undertaking and analyzing brief, minimally invasive aquifer tests of domestic wells that tap bedrock; (3) test a representative sample of domestic wells that tap bedrock in this region, and analyze the test results to estimate transmissivity of bedrock at each well site; and (4) ascertain whether transmissivity varies as a function of bedrock grain size or topographic setting. Objective 2 was fully addressed by Klusman (1999, 2004) and Randall and Klusman (2004) and is summarized in this report. Objectives 1, 3, and 4 are addressed as fully as feasible in this report, which first describes the three predominant lithofacies in the upper few hundred feet of bedrock in the Appalachian Plateau of New York and depicts their distribution, then explains the criteria used to select the wells that were tested during this investigation. The report goes on to describe the selection and refinement of the procedure that was used to analyze the data from these brief aquifer tests, and to compile and interpret test results. Finally, the distribution of transmissivity values is compared to bedrock lithofacies and to the position of wells on hillsides.

Lithofacies Distribution in the Devonian Bedrock of the Appalachian Plateau of New York

The Middle and Upper Devonian bedrock of the Appalachian Plateau comprises a huge clastic wedge, referred to as the "Catskill Delta." Sediment was transported northwestward across Pennsylvania and New York; both grain size and thickness of sediment decrease to the northwest (Sevon, 1985, p. 80–81). The principal lithofacies and corresponding depositional environments within the Middle and Upper Devonian bedrock of New York (Rickard, 1975) may be summarized as follows, from coarsest to finest:

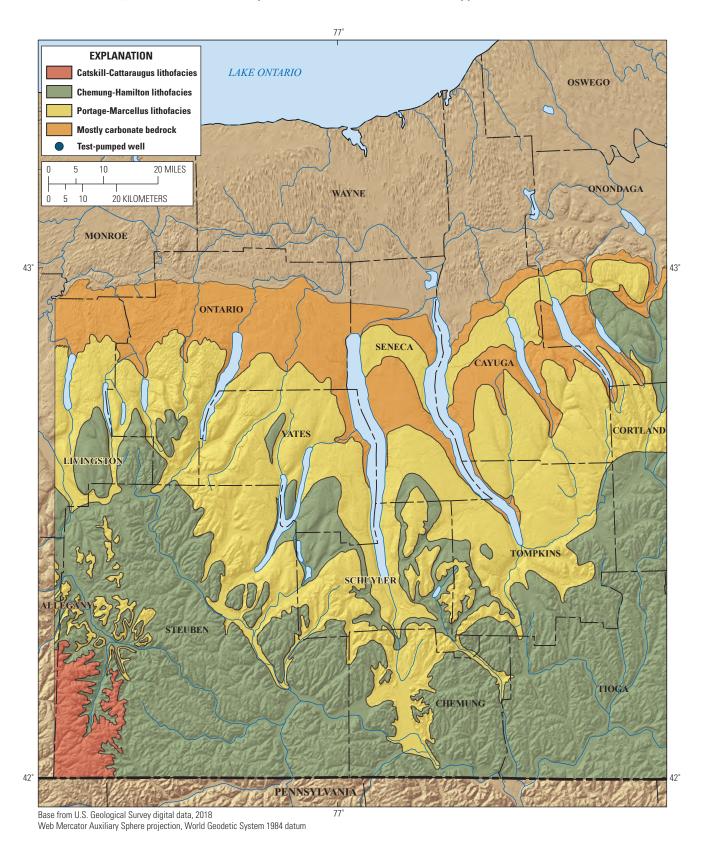
- 1. Catskill-Cattaraugus lithofacies: Shales, mudstones, siltstones, medium to coarse quartz sandstones and subgraywackes, pebbly sandstones; piedmont and alluvial floodplain and peritidal environment.
- 2. Chemung-Hamilton lithofacies: Shales, mudstones, siltstones, fine to medium sandstones, coquinites; laminated and crossbedded, abundant marine shelly fauna; diverse subtidal shelf and nearshore environments.
- 3. Portage-Marcellus lithofacies: Shales, mudstones, siltstones, rare fine sandstones and argillaceous limestones; open shelf and anaerobic basin environments.

These lithofacies are referred to hereafter in this report as the Catskill, Chemung, and Portage lithofacies. They grade into one another, and their areal distribution varied with time of deposition. No map that delineates in detail the distribution of these lithofacies in New York was available to this study. However, Rickard (1975, plate 3) graphed their distribution in time (formation by formation) and in space (topographic quadrangle by quadrangle). Comparison of Rickard's plate 3 with the bedrock geologic map of New York (Fisher and others, 1970; Rickard and Fisher, 1970) allowed lithofacies distribution to be approximately delineated (fig. 1). Also, several reports (Pepper and de Witt, 1950, 1951; Pepper and others, 1956; Colton and de Witt, 1958; Sutton, 1960; Dugolinsky, 1967) describe variations in lithology west of 76 or 77 degrees longitude within the Canadaway, West Falls, and Sonyea Groups, each of whose surficial extent is delineated on the Finger Lakes sheet (Rickard and Fisher, 1970) and Hudson-Mohawk sheet (Fisher and others 1970) of the "Geologic Map of New York." Other reports (Grossman, 1944; Williams, 1951; de Witt and Colton, 1959, 1978) similarly describe the Genesee Group west of 75 degrees longitude. These reports do not include maps of lithofacies distribution but do include multiple correlated stratigraphic columns that represent exposures, from which the predominant lithofacies in particular localities can be inferred. The information in these reports allowed some lithofacies boundaries within the Upper Devonian (fig. 1) to be placed somewhat more precisely than could be inferred from Rickard's correlation chart (1975, plate 3).

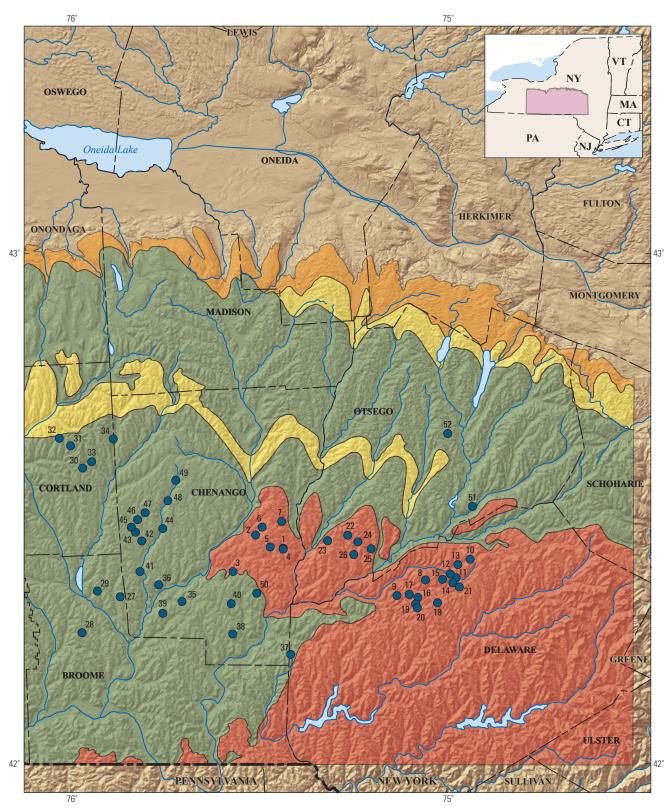
Selection of Wells for Testing

After the boundaries of the Catskill, Chemung, and Portage lithofacies were approximately delineated on the bedrock geologic map of New York, those boundaries were sketched onto topographic quadrangle maps encompassing the Susquehanna River Basin. Domestic wells suitable for testing were selected during field visits in the late 1990s according to the following criteria:

 Sites near lithofacies boundaries were avoided as these boundaries were approximately delineated. Sites less than 3 miles south of such a boundary were also avoided because bedrock dips southward at an average slope of 51 feet per mile in the central Susquehanna River Basin (Wright, 1973, plate 2), such that deep wells near the lithofacies boundary might penetrate into the underlying lithofacies. Substantial areas near Oneonta (north half of Oneonta and West Davenport 7.5-minute topographic quadrangles, east half of Otego quadrangle) were eliminated because the approximate lithofacies boundaries were closely spaced, with the Oneonta Formation (Catskill lithofacies) beneath hilltops and three formations apparently deemed Chemung lithofacies by Rickard (1975) on valley sides.


- 2. Sites on ridge crests or near the top of steep slopes were avoided. Water levels in these areas fluctuated below the bottom of the casing more commonly than elsewhere and resulted in unsteady rates of recovery after pumping as the water level rose past open fractures or irregularities in well diameter. (Static water levels were not measured until the date of the test because prior measurement would have required a second extended period of nonuse by the homeowner. Therefore, 18 wells with water levels below the casing are included in the dataset.)
- Sites were in uplands, where bedrock is mantled by till. Sites low on the sides of major valleys that contain outwash deposited by glacial meltwater were avoided because water-level recovery might be sustained by recharge from a nearby gravel aquifer atop bedrock. (The presence of postglacial alluvium beneath floodplains of nearby upland streams, which is typically only a few feet thick, was deemed acceptable.)
- 4. Clusters of wells were avoided. Each well selected was at least 500 feet from any nearby wells whose intermittent pumping might cause water-level fluctuations in the tested well (unless the nearby residence was normally unoccupied during the day).
- 5. A record from the well driller listing well depth, casing length, tested yield, and other pertinent well properties, prepared at the time of well drilling, was available. (For several wells, this information was obtained during a subsequent visit to the driller.)
- 6. The well head was accessible, and the homeowner was willing to ensure that the pump would operate only once, when called for during the test, over a period as long as 6 hours. (Scheduling the test when no one was at home was most convenient for the homeowner and for the test.)
- 7. Sites tested were widely separated to ensure sampling many different segments of each lithofacies.

In Chenango County, most of the wells considered for testing were selected from well records published in U.S. Geological Survey (USGS) Water-Resources Investigations Report 91–4138 (McPherson, 1993). This report compiled records of many wells drilled in the late 1980s from well-completion reports submitted by drillers to the New York Department of Environmental Conservation. Most well locations (McPherson, 1993, plate 1) were determined by searching for the names of well owners on tax-parcel maps. Each potential well was visited during the present study before selection for testing. Several wells were determined to be mislocated by a few hundred feet to a few miles; the latitude, longitude, and elevation of each was corrected and entered in the USGS National Water Information System database (U.S. Geological Survey, 2019; https://waterdata.usgs.gov/nwis). The original objectives of the present study included testing several wells that penetrated the Portage lithofacies in the northwestern part of the Susquehanna River Basin, but lack of time and resources prevented completion of this objective.


Selection of a Procedure for Analyzing Brief Aquifer Tests of Domestic Wells

Numerous reports have implemented the method of Theis (1935) in analyzing transient drawdown around a pumped well to calculate aquifer transmissivity and storage, assuming well radius is small enough that storage in the well bore could be neglected. Papadopulos and Cooper (1967) developed an alternative equation that represents drawdown in the pumped well while accounting for storage in the well bore and published a lookup table of values of a term needed to solve that equation. Picking (1994) presented a procedure for estimating aquifer transmissivity and storage by analyzing water-level recovery in a pumped well following a brief period of pumping at an unknown constant rate; the only data required are the well radius, the times when pumping started and stopped, a series of water-level measurements at known times thereafter, and a value selected from the lookup table of Papadopulos and Cooper (1967). All the data required by Picking's procedure can be readily obtained from measurements during and following a brief episode of pumping of a domestic drilled well that taps bedrock.

In conjunction with the present investigation, Klusman (1999) wrote a computer program in Fortran, termed PICKINGmodel, that replicates Picking's procedure, except that instead of interpolating between values in a lookup table, it directly calculates the values needed, thereby eliminating a significant source of error. Klusman (1999) applied that program to tests of 14 domestic wells that tap bedrock in the Susquehanna River Basin of New York. Klusman (2004) described the theoretical basis, application, and limitations of the program. Randall and Klusman (2004) explained the procedure used for data collection and the advantages of this minimally disruptive method of testing domestic wells. They also reported values of transmissivity and storage coefficient generated by analyzing 26 brief aquifer tests with PICKINGmodel and showed that similar values were obtained by the slug-test procedure of Cooper and others (1967) and the discrete-kernel procedure of Mishra and Chachadi (1985), after minor modifications to accommodate the data from the brief aquifer tests. As pointed out by Randall and Klusman (2004), permission from homeowners to undertake these minimally disruptive tests of domestic wells is relatively easy to obtain because no water is poured into the well (as commonly done in slug tests), and the stress on the well is no more than occurs many times each day due to normal operation of the homeowner's pump. Also, the period of data collection, during which the homeowner can use only water already stored in the pressure tank or in buckets, can be as short as 2 hours (1 hour

Figure 1. Distribution of three lithofacies within the Middle and Upper Devonian bedrock of the Appalachian Plateau, and locations of domestic wells that were tested during this investigation.

Base from U.S. Geological Survey digital data, 2018 Web Mercator Auxiliary Sphere projection, World Geodetic System 1984 datum

Figure 1. Distribution of three lithofacies within the Middle and Upper Devonian bedrock of the Appalachian Plateau, and locations of domestic wells that were tested during this investigation.—Continued

to document the pre-test water-level trend and 1 hour to pump briefly and measure recovery). The current report presents tabulated values of aquifer transmissivity and storage coefficient estimated by applying PICKINGmodel to tests of 51 wells penetrating bedrock in the uplands of the Appalachian Plateau of New York and provides evaluations of the correlation of test results with bedrock lithofacies and position on hillsides.

To apply PICKINGmodel, the user estimates a trial value of transmissivity and several trial values of alpha (storage coefficient), from which the program calculates an array of type curves (one for each alpha value). Each type curve represents theoretical values of residual drawdown at multiple times since pumping stopped, each divided by drawdown at the moment pumping stopped (Yg/Yp), that would be expected from an aquifer with the postulated value of transmissivity and one of the postulated values of storage coefficient. The user must also plot a data curve in which each measured residual drawdown during recovery (Yg) is divided by drawdown at the moment pumping stopped (Yp) and plotted at the time since pumping stopped (tg). The type curves and the data curve must be plotted on the same graph by using a suitable graphics package; the user can then estimate new trial values of transmissivity and alpha to generate new type curves until a satisfactory match to the data curve is obtained.

One objective of the selected protocol for brief aquifer tests is to generate values of transmissivity that could be applied (individually or averaged among multiple wells) to estimate groundwater flux under natural hydraulic gradients. Also, if a well is tested, then the test could easily be replicated in the future to ascertain whether nearby construction or excavation has affected the yield of that well. These test results should not be extrapolated to estimate maximum sustained well yield because prolonged or higher-rate pumping would likely result in dewatering of shallow fractures and (or) more turbulent flow in fractures, which would alter the ratio of drawdown to pumping rate.

Analysis of 51 Brief Aquifer Tests

A total of 51 domestic wells penetrating bedrock in the Appalachian Plateau, all within or immediately adjacent to the Susquehanna River Basin, were test-pumped between 1996 and 1999 for periods ranging from 13 to 132 seconds, following field procedures described by Randall and Klusman (2004). For each well tested, the observed record of waterlevel recovery after pump shutdown, expressed as residual drawdown divided by drawdown at the time of shutdown, was plotted against time in seconds since shutdown and compared with several type curves generated by PICKINGmodel (Klusman, 2004) that were based on trial values of transmissivity and storage coefficient. The trial values for the type curve that most closely matched the observed data are recorded in table 1. An additional well in table 1 (well CN 467, test 140) was test-pumped only for 10 minutes; that test was analyzed by methods described in Kruseman and deRidder (1990). Well dimensions are also summarized in table 1. Well locations are shown in figure 1. The input template for PICKINGmodel calls for pumping time (tp) and recovery time (tg) in seconds and trial transmissivity values in feet squared per second, which is appropriate for these brief tests. Table 1 reports best-fit transmissivity results in feet squared per second and in feet squared per day.

Drawdown and residual drawdown, based on measurements of water level every few seconds during most tests by a transducer and data logger and corrected for minor logger drift based on periodic taped measurements, are depicted in a companion USGS data release (Randall, 2020). Multiple spreadsheets and graphs that document which among several trial runs of PICKINGmodel best match the observed data are also included in the data release.

Table 1 indicates that in 23 of the 51 wells tested, the measured water-level recovery closely matched one of the trial type curves calculated by PICKINGmodel over the entire period of data collection, which was typically 3,500 to 10,000 seconds (58 to 167 minutes), as illustrated for two tests in figure 2. In another 23 wells, however, the measured values of residual drawdown matched a type curve for only the initial 15 to 1,000 seconds. Thereafter, the residual drawdown values decreased more gradually than the type curve and generally remained above the type curve to the end of the period of data collection, as illustrated for tests 124, 128, and 144 in figure 3. This behavior might be attributed to the cone of depression having expanded into a zone of lesser transmissivity due to decreased aperture or pinch-out of fractures at greater distances from the well. One well (OG 382, test 119) exhibited behavior like both groups, with drawdown matching the type curve for the first 110 seconds then flattening beyond 1,500 seconds. In four wells, by contrast, the late measured values of residual drawdown decreased more rapidly than the type curve fitted to the early values and generally reached zero residual drawdown 1,000 to 3,000 seconds after shutdown, as illustrated for test 137 in figure 3. This behavior could be attributed to the cone of depression having expanded into a zone of greater transmissivity at greater distances from the well. It should be possible to simulate, with an aquifer model or with image-well analysis, spatial and temporal variations in drawdown around a pumped well resulting from unknown variable extent and aperture of fractures, but water-level measurements at multiple sites would be needed for calibration. If some mathematical computation has been or could be developed to estimate change in effective transmissivity up to at least 10,000 seconds (167 minutes) from tests in which change in the rate of water-level recovery in the pumped well causes the data curve to flatten or steepen over time relative to PICKINGmodel type curves, that would enhance the applicability of test results.

As pointed out by Randall and Klusman (2004), these brief aquifer tests are easily arranged, undertaken, and analyzed by PICKINGmodel. If replicated at some later date, the tests could verify precisely whether any change in well Table 1. Well properties and pumping test data for 52 domestic wells penetrating bedrock in or adjacent to the Susquehanna River Basin in the Appalachian Plateau of New York.

[USGS, U.S. Geological Survey; no., number; ID, identifier; ft, foot; gal/min, gallon per minute; gal/min/ft, gallon per minute per foot; s, second; ft²/s, foot squared per second; ft²/d, foot squared per day]

Lithofa- Lithofa- beguin National Water System site IDa Pump- ing Catskill Nell no. System site IDa iest ing Deptit Catskill Catskill CN 139 422552075563601 125 132 Catskill CN 357 422751075500401 141 200 Catskill CN 511 422553075344201 117 149 Catskill CN 514 422553075340801 124 100 Catskill CN 577 42255075300401 120 143 Catskill D 357 422148075035301 124 100 Catskill D 357 422148075035301 124 100 Catskill D 357 422148075035301 102 143 Catskill D 355 422148075035301 102 143 Catskill D 356 422148075035301 102 143 Catskill D 356 422148075035301 102 143 Catskill D 356 422148075056401 101 155						From dr	driller's report	report		Test	Test data			Analysis t	Analysis by PICKINGmodel		Tono-
System site IDa No. (f) Catskill CN 139 422527075263601 125 132 Catskill CN 357 422703075310101 141 200 Catskill CN 511 42255075344201 117 149 Catskill CN 516 42255307534301 124 100 Catskill CN 516 42255307534301 124 100 Catskill CN 577 42255075340801 121 149 Catskill CN 577 42255075340801 121 143 Catskill D 349 422148075035301 102 143 Catskill D 355 42219507536901 113 255 Catskill D 355 42219507505401 101 165 Catskill D 355 422195075056401 105 213 Catskill D 355 422195075056401 106 115 Catskill D 355 4221950776156101 105 214 Catskill D 355 422195077616801	Map no. (fin		USGS Well no	National Water Information	Pump- ing tect		Casing Yield	Yield	Specific capacity ^b	Depth to water at	Depth to water at	Pumping	Trans-	Trans-	Data match to	Storage	graphic posi-
CatskillCN 139 422527075263601 125 132 CatskillCN 357 422703075310101 141 200 CatskillCN 511 42255075344201 117 149 CatskillCN 511 42255075263301 124 100 CatskillCN 516 42255075263301 120 148 CatskillCN 577 42255075263301 120 148 CatskillCN 577 42255007530401 120 148 CatskillD 349 422148075035301 102 173 CatskillD 354 422148075035301 102 173 CatskillD 355 4229507502304401 101 165 CatskillD 357 422230074585901 110 90 CatskillD 357 422230074585901 110 165 175 CatskillD 357 422230074585901 110 166 115 165 CatskillD 356 42215075016801 100 135 173 CatskillD 356 42215075016801 107 135 CatskillD 367 421945075056401 107 135 CatskillD 376 4219450750550501 110 198 CatskillD 376 4219450750550501 100 122 CatskillD 376 4219450750550501 100 125 CatskillD 376 4219450750550501 100 126 CatskillD 376 4219450750575015701 110 126 <th>1)</th> <th>2</th> <th></th> <th>System site ID^a</th> <th>NO.</th> <th></th> <th>(ft)</th> <th>(gal) min)</th> <th>(gal/min/ ft)</th> <th>Start^c</th> <th>Shut- down</th> <th>uurauon (s)</th> <th>(ft²/s)</th> <th>(ft²/d)</th> <th>type curve (s)^d</th> <th>coefficient</th> <th>tion on hillside</th>	1)	2		System site ID ^a	NO.		(ft)	(gal) min)	(gal/min/ ft)	Start ^c	Shut- down	uurauon (s)	(ft²/s)	(ft²/d)	type curve (s) ^d	coefficient	tion on hillside
CatskillCN 357 422703075310101 141200CatskillCN 511 422555075344201 117149CatskillCN 516 422553075263301 124100CatskillCN 516 422553075263301 129100CatskillCN 557 422553075330401 120148CatskillCN 577 4225530753301401 120148CatskillD 349 42214807533301 102170CatskillD 350 421956075340801 101165CatskillD 354 422148075035301 102173CatskillD 355 4221950775013801 101165CatskillD 355 422123074595401 101165CatskillD 355 422130074595401 101165CatskillD 355 422150775019801 103173CatskillD 356 422152077619801 106115CatskillD 356 422152075019801 106115CatskillD 356 42215207501801 100213CatskillD 356 42215207501801 107135CatskillD 356 42215207501801 106115CatskillD 366 42215207501801 107135CatskillD 376 4221830075052801 102165CatskillD 376 4221830075050401 107127CatskillD 376 42218207507501801 107127CatskillD 376 4221820075		Catskill	CN 139	422527075263601	125	132	16	18	1.65	52.8	56.7	45	0.00045	38.88	F 3–250	0.03	Middle
Catskill $CN 474$ 422255075344201 117 149 Catskill $CN 511$ 422555075263301 124 100 Catskill $CN 557$ 422559075283801 118 198 Catskill $CN 577$ 422550753630401 120 148 Catskill $CN 577$ 42255075340801 121 143 Catskill $D 349$ 422148075035301 102 170 Catskill $D 350$ 421956075082401 101 165 Catskill $D 355$ 422135074564301 1101 165 Catskill $D 355$ 422135074564301 1101 165 Catskill $D 355$ 422135074564301 1101 165 Catskill $D 355$ 422195075050401 103 173 Catskill $D 357$ 422152075010801 $107b$ 135 Catskill $D 356$ 422152075010801 $107b$ 135 Catskill $D 376$ 422195075050401 $107b$ 135 Catskill $D 376$ 422195075050401 $107b$ 127 Catskill $D 376$ 422195075050401 $107b$ 127 Catskill $D 376$ 422195075050401 $107b$ 127 Catskill $D 378$ 422050075050401 $107b$ 127	0	Catskill	CN 357	422703075310101	141	200	30	ł	0.078	e70.2	76	51	0.0002	17.28	P 1–200	0.0000001	Middle
CatskillCN 511422525075263301124100CatskillCN 5164225390753801118198CatskillCN 577422751075300401120148CatskillCN 577422850075340801121143CatskillD 349422148075035301102170CatskillD 3349422148075035301102170CatskillD 354422148075035901101165CatskillD 354422145074564301101165CatskillD 35542203074585901113255CatskillD 357422230074595401103173CatskillD 358422157074293101106115CatskillD 356422157074293101106115CatskillD 366422157074293101107b135CatskillD 366422157074293101107b135CatskillD 367421945075050001109b213CatskillD 37642194507505001107b135CatskillD 376421830075051001122225CatskillD 336421858075052801122225CatskillD 33764221858075052801122225CatskillD 3364221858075051901127127CatskillD 3364221858075051901128186CatskillD 3364221858075051901128187CatskillD 3394226307515191107127 <t< td=""><td>Э</td><td>Catskill</td><td>CN 474</td><td>422255075344201</td><td>117</td><td>149</td><td>21</td><td>7.5</td><td>0.0019</td><td>8.8</td><td>12.1</td><td>40</td><td>0.00036</td><td>31.104</td><td>C 5–8,000</td><td>0.001</td><td>ł</td></t<>	Э	Catskill	CN 474	422255075344201	117	149	21	7.5	0.0019	8.8	12.1	40	0.00036	31.104	C 5–8,000	0.001	ł
CatskillCN 516422539075283801118198CatskillCN 557422751075300401120148CatskillCN 577422850075340801121143CatskillD 349422148075035301102170CatskillD 350421956075082401101165CatskillD 355422130074595401101165CatskillD 357422230074595401103173CatskillD 357422230074595401105298CatskillD 357422150750108011076115CatskillD 3594221520750108011076115CatskillD 3564221520750108011076115CatskillD 3564221520750108011076115CatskillD 3564221520750108011076135CatskillD 375422152075015701111198CatskillD 376421945075055050101122225CatskillD 37642185807505501001122225CatskillD 376421858075051001122225CatskillD 388421858075051001128185CatskillD 3764221850075051001128185CatskillD 3764221850075051001128186CatskillD 3794221850075051501111198CatskillD 390422659074582601112127CatskillD 380422059074582001128175 <td>4</td> <td>Catskill</td> <td>CN 511</td> <td>422525075263301</td> <td>124</td> <td>100</td> <td>22</td> <td>4</td> <td>0.92</td> <td>44.2</td> <td>46.1</td> <td>25</td> <td>0.0012</td> <td>103.68</td> <td>F 20-150</td> <td>0.001</td> <td>Upper</td>	4	Catskill	CN 511	422525075263301	124	100	22	4	0.92	44.2	46.1	25	0.0012	103.68	F 20-150	0.001	Upper
CatskillCN 557422751075300401120148CatskillCN 577422850075340801121143CatskillD 349422148075035301102170CatskillD 350421956075082401101165CatskillD 354422415074564301110b90CatskillD 355422202074585901113255CatskillD 357422230074595401105173CatskillD 357422230074595401106115CatskillD 3594221570740910103173CatskillD 356422152075010801106115CatskillD 366422152075010801107b135CatskillD 367421945075056401110166CatskillD 37642195075050401109b213CatskillD 37642195075051001122225CatskillD 376421858075051001128186CatskillD 388421830075051001128186CatskillD 390422059074582601116175CatskillD 38042215200715161801116175CatskillD 388421830075051001128186CatskillD 390422617075143901302b175CatskillOG 379422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175<	5	Catskill	CN 516	422539075283801	118	198	23	9	0.2	56.9	61.2	53	0.00032	27.648	C 5–3,500	0.0001	Middle
CatskillCN 577422850075340801121143CatskillD 349422148075035301102170CatskillD 350421956075082401101165CatskillD 355422415074564301110b90CatskillD 355422230074595401103173CatskillD 3574222330074595401105298CatskillD 3574222336074595401106115CatskillD 359422157074293101106115CatskillD 356422157074293101106115CatskillD 357422157074293101106115CatskillD 357422157074293101106115CatskillD 366422157075010801107b135CatskillD 3764219050750562601111198CatskillD 376421905075051001122225CatskillD 376421830075051801111198CatskillD 388421830075051801112165CatskillD 388421830075051801112175CatskillD 380422059074582601108175CatskillD 388421830075015101128186CatskillD 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175 <t< td=""><td>9</td><td>Catskill</td><td>CN 557</td><td>422751075300401</td><td>120</td><td>148</td><td>31</td><td>12 +</td><td>0.8</td><td>21.2</td><td>25.2</td><td>41</td><td>0.00045</td><td>38.88</td><td>C 3–10,000</td><td>0.1</td><td>Lower</td></t<>	9	Catskill	CN 557	422751075300401	120	148	31	12 +	0.8	21.2	25.2	41	0.00045	38.88	C 3–10,000	0.1	Lower
CatskillD 349422148075035301102170CatskillD 350421956075082401101165CatskillD 354422415074564301110b90CatskillD 355422415074585901113255CatskillD 357422230074595401105298CatskillD 3584221370742931011061151CatskillD 3594221570742931011061151CatskillD 3574221570742931011061151CatskillD 357422157074293101107b135135CatskillD 367422152075010801107b135135CatskillD 367422152075010801107b1351651CatskillD 3764221830075055011121651CatskillD 3764219050750510011222251CatskillD 388421830075051001128186CatskillD 38742205007505161107b175CatskillD 380422050775151901116175CatskillD 380422617075143901302b175CatskillOG 370422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175 </td <td>٢</td> <td>Catskill</td> <td>CN 577</td> <td>422850075340801</td> <td>121</td> <td>143</td> <td>115</td> <td>٢</td> <td>0.097</td> <td>74</td> <td>83.2</td> <td>66</td> <td>0.00007</td> <td>6.048</td> <td>F 70$-1,500$</td> <td>0.1</td> <td>Middle</td>	٢	Catskill	CN 577	422850075340801	121	143	115	٢	0.097	74	83.2	66	0.00007	6.048	F 70 $-1,500$	0.1	Middle
CatskillD 350421956075082401101165CatskillD 354422415074564301110b90CatskillD 355422415074564301113255CatskillD 357422230074595401105298CatskillD 3584221570742931011061151CatskillD 356422152075010801107b135CatskillD 366422152075010801107b135CatskillD 367422195075050401109b2131CatskillD 3764221950750560401109b2131CatskillD 3764221950750515701111198CatskillD 3754220060750656011121651CatskillD 376421830075051001128185CatskillD 388421830075051001128186CatskillD 388421830075051001128186CatskillD 388421830075051001128186CatskillD 388421830075051001128186CatskillD 38842285075053011121651CatskillD 38842183007505101128186CatskillD 38842285075023071116175CatskillD 3884228507502301127127CatskillOG 379422653077193101127175CatskillOG 380422617075143901302b175CatskillOG 380422617075	8	Catskill	D 349	422148075035301	102	170	30	20	1	68.9	71.7	84	0.0008	69.12	F 6–20	0.1	Middle
CatskillD 354422415074564301110b90CatskillD 355422202074585901113255CatskillD 357422230074595401105298CatskillD 358422135074584301103173CatskillD 35842213507742931011061151CatskillD 366422152075010801107b1351CatskillD 366422152075010801107b1351CatskillD 3674219050750157011101981651CatskillD 3754219050750157011111981651CatskillD 376421905075015701111198180CatskillD 376421905075015701111198180CatskillD 3784218300750510011222251CatskillD 388421830075051001128180CatskillD 390422059074582601108180CatskillOG 379422623075193101127b127CatskillOG 379422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 38242244607515190111	6	Catskill	D 350	421956075082401	101	165	72	10	0.24	21.7	29.2	84	0.00029	25.056	C 6–10,000	0.001	Upper
CatskillD 355422202074585901113255CatskillD 357422230074595401105298CatskillD 3584221370745931011061151CatskillD 3594221570742931011061151CatskillD 356422152075010801107b1351CatskillD 367422195075050401109b2131CatskillD 37642219507505626011121651CatskillD 3754220060750626011121651CatskillD 3764218300750510011222251CatskillD 388421830075051001128185CatskillD 388421830075051001128185CatskillD 388421830075051001128186CatskillD 388421830075051001128185CatskillD 388421830075051001128186CatskillD 388421830075051001128186CatskillD 38842265307515301116175CatskillOG 37942265307519301127127CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901109175CatskillOG 380422617075143901302b175CatskillOG 382422446075151901119440Catskill<	10	Catskill	D 354	422415074564301	110b	90	60	10	1	30.9	33.2	36	0.0004	34.56	F 6–70	0.1	Middle
CatskillD 357422230074595401105298CatskillD 3584221350745931011061151CatskillD 359422152075010801107b135CatskillD 366422152075010801107b135CatskillD 367421945075050401107b135CatskillD 3754220060750626011121651CatskillD 375421905075015701111198CatskillD 375421905075015701111198CatskillD 3884218300750528011222251CatskillD 388421830075051001128185CatskillD 390422059074582601108180CatskillD 390422059074582601108180CatskillD 338421830075051001127175CatskillD 390422617075143901176175CatskillOG 379422623075193101127b127CatskillOG 379422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440CatskillOG 382422446075151901119440CatskillOG 38242244607515301145175CatskillOG 382422446075151901119440CatskillOG 38242244607515301	11	Catskill	D 355	422202074585901	113	255	15	3.5	0.3	06	92.3	110	0.0003	25.92	F $15-55$ fg	0.1	Lower
CatskillD 358422336074584301103173CatskillD 3594221270742931011061151CatskillD 366422152075010801107b135CatskillD 3674221945075056401107b135CatskillD 37642194507505626011121651CatskillD 376421905075015701111198CatskillD 3764219050750515701111198CatskillD 3884218580750528011222251CatskillD 388421830075051001128185CatskillD 388421830075051001128186CatskillD 388421830075051001128186CatskillD 388422059074582601108180CatskillD 390422059074582101127175CatskillOG 379422059075193101127175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440CatskillOG 382422446075151901119440CatskillOG 382422446075151901119440CatskillOG 382422446075151901119440CatskillOG 38242244607515301145175CatskillOG 38242244607515301 <td>12</td> <td>Catskill</td> <td>D 357</td> <td>422230074595401</td> <td>105</td> <td>298</td> <td>53</td> <td>8</td> <td>0.8</td> <td>41.3</td> <td>44.7</td> <td>99</td> <td>0.00184</td> <td>158.976</td> <td>C 6->2,000</td> <td>0.00001</td> <td>Lower</td>	12	Catskill	D 357	422230074595401	105	298	53	8	0.8	41.3	44.7	99	0.00184	158.976	C 6->2,000	0.00001	Lower
CatskillD 3594221270742931011061151CatskillD 366422152075010801107b135CatskillD 367421945075050401109b2131CatskillD 37542200607506266011121651CatskillD 375421905075015701111198CatskillD 3854218580750528011222251CatskillD 388421830075051001128185CatskillD 390422059074582601108180CatskillD 390422059074582601108180CatskillOG 379422059075193101127175CatskillOG 379422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901127127CatskillOG 380422617075143901116175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 382422617075143901302b175CatskillOG 382422617075143901302b175CatskillOG 382422617075143901302b175CatskillOG 382422617075143901119440CatskillOG 382422746075151901119440CatskillOG 382422446075151901119440ChennugBM2578	13	Catskill	D 358	422336074584301	103	173	50	180	3.1	12.9	13.9	99	0.005	432	F 5-40	0.1	Lower
CatskillD 366422152075010801107b135CatskillD 367421945075050401109b2131CatskillD 3754220060750626011121651CatskillD 376421905075015701111198CatskillD 3854218300750528011222251CatskillD 388421830075051001128185CatskillD 390422059074582601108186CatskillOG 379422059074582601108186CatskillOG 379422053075193101127127CatskillOG 379422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 381422528075123301119440CatskillOG 382422446075151901119440CatskillOG 382422446075151901119440CatskillOG 38242244607553501145100	14	Catskill	D 359	422127074293101	106	115	107	15	0.9	55.3	59.7	99	0.00172	148.608	F 6–200	0.0001	Middle
CatskillD 367421945075050401109b213CatskillD 375422006075062601112165CatskillD 376421905075015701111198CatskillD 385421858075052801122225CatskillD 388421830075051001128185CatskillD 390422059074582601108186CatskillD 390422059074582601108186CatskillOG 379422053075191801116175CatskillOG 379422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440CatskillOG 38242274253371115189CatskillOG 382422617075151901119440CatskillOG 382422446075151901119440ChemungBM2578421943075523501145100	15	Catskill	D 366	422152075010801	107b	135	85	ł	0.9	8.7	12.5	95	0.00167	144.288	C 5->2,400	0.0001	Lower
CatskillD 3754220060750626011121651CatskillD 376421905075015701111198CatskillD 3854218580750528011222251CatskillD 388421830075051001128185CatskillD 390422059074582601108180CatskillOG 378422059074582601108180CatskillOG 379422053075193101127b127CatskillOG 379422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901127b127CatskillOG 380422617075143901115189CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901119440CatskillOG 382422617075151901119440CatskillOG 382422446075151901119440ChennugBM2578421943075523501145100	16	Catskill	D 367	421945075050401	109b	213	106	ł	1.3	45.7	49.2	68	0.0007	60.48	F 4–60	0.2	Middle
CatskillD 376421905075015701111198CatskillD 3854218580750528011222251CatskillD 388421830075051001128185CatskillD 390422059074582601108180CatskillOG 378422702075161801116175CatskillOG 379422623075193101127b127CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440ChemungBM2578421943075523501145100	17	Catskill	D 375	422006075062601	112	165	125	10	0.32	43.6	51.2	132	0.00028	24.192	C 6–800,>3,000	0.01	Middle
CatskillD 385421858075052801122225CatskillD 388421830075051001128185CatskillD 390422059074582601108180CatskillOG 378422702075161801116175CatskillOG 379422623075193101127b127CatskillOG 379422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440CatskillOG 382422446075151901119440ChenungBM2578421943075523501145100	18	Catskill	D 376	421905075015701	111	198	20	ю	0.28	39.6	44.6	104	0.00008	6.912	C 1–10,000	0.0001	Middle
CatskillD 388421830075051001128185CatskillD 390422059074582601108180CatskillOG 378422702075161801116175CatskillOG 379422623075193101127b127CatskillOG 379422617075143901302b175CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440CatskillOG 382422446075151901119440ChenungBM2578421943075523501145100	19	Catskill	D 385	421858075052801	122	225	180	6	0.0004	11.8	18.7	74	0.00084	72.576	F 2–950	0.000003	Middle
CatskillD 390422059074582601108180CatskillOG 378422702075161801116175CatskillOG 379422623075193101127b127CatskillOG 380422617075143901302b175CatskillOG 38142258075123301115189CatskillOG 382422446075151901119440CatskillOG 382422446075151901119440ChemungBM2578421943075523501145100	20	Catskill	D 388	421830075051001	128	185	10	8	1.2	67.8	71	06	0.0038	328.32	F $7-150$	0.000001	Lower
CatskillOG 378422702075161801116175CatskillOG 379422623075193101127b127CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440CatskillOG 382422446075151901119440ChenungBM2578421943075523501145100	21	Catskill	D 390	422059074582601	108	180	10	8	0.32	75.9	80.9	54	0.00067	57.888	C 6->5,400	0.00001	Middle
CatskillOG 379422623075193101127b127CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440ChennugBM2578421943075523501145100	22	Catskill	OG 378	422702075161801	116	175	95	5	0.22	9.5	11.7	30	0.0002	17.28	C 6->7,800	0.001	Lower
CatskillOG 380422617075143901302b175CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440ChemungBM2578421943075523501145100	23	Catskill	OG 379	422623075193101	127b	127	87	ł	3.5	8.6	9.9	57	0.0025	216	C 5–3,500	$^{\mathrm{h}0.5}$	Middle
CatskillOG 381422528075123301115189CatskillOG 382422446075151901119440ChemungBM2578421943075523501145100	24	Catskill	OG 380	422617075143901	302b	175	20	ł	0.33	26.3	30.5	58	0.0002	17.28	F 1–150	0.15	Middle
Catskill OG 382 422446075151901 119 440 Chemung BM2578 421943075523501 145 100	25	Catskill	OG 381	422528075123301	115	189	61	9	0.4	49.8	51.8	72	0.000205	17.712	C 6->7,400	0.1	Lower
Chemung BM2578 421943075523501 145 100	26	Catskill	OG 382	422446075151901	119	440	25	1	0.032	51.4	55.3	ⁱ 64	0.00001 0.00001	0.864 0.864	F 1–110 C 1,500–8,000	0.1 0.01	Lower
	27	Chemung	BM2578	421943075523501	145	100	15	5	0.47	12.2	17.2	42	0.0007	60.48	C 1–5,573	0.0001	Lower

Analysis of 51 Brief Aquifer Tests 7

Table 1. Well properties and pumping test data for 52 domestic wells penetrating bedrock in or adjacent to the Susquehanna River Basin in the Appalachian Plateau of New York.—Continued [USGS, U.S. Geological Survey; no., number; ID, identifier; ft, foot; gal/min, gallon per minute; gal/min/ft, gallon per minute per foot; s, second; ff²/s, foot squared per second; ff²/d, foot squared per day]

						From di	From driller's report	report		Test data	data			Analysis t	Analysis by PICKINGmodel		Topo-
Chemung System stie Ua m. (t) min Gath Sum wid	Map no. (fin		USGS Well no	National Water Information	Pump- ing test	Depth	Casing	Yield	Specific capacity ^b	-	h to r at	Pumping	Trans-	Trans-	Data match to	Storage	graphic posi-
	1)	2		System site ID ^a	no.		(ft)		(gal/min/ ft)	Start ^c	Shut- down	uurauon (s)	(ft²/s)	(ft²/d)	type curve (s) ^d	coefficient	tion on hillside
ChemungBMJ258042202307556050114112540 $$ 212.114.2240.00217.28ChemungC 4664234507558410114719719550.26535.4399600.000434.56ChemungC 504442382076528011491622060.001325.9230.24ChemungC 5444238707557160115122060.07317.222.5990.0003330.24ChemungC 55414238707557160115123206697.34110.000434.56ChemungC 53142311075542401131239010.649374.11070.0003330.24ChemungC N33421100755452011291833060.101434.5630.24ChemungC N3342110075525401129183241070.0003531.24ChemungC N3342120075507011391372234347600.00054.29ChemungC N3342130755374011262450.134441070.0003531.64ChemungC N334212307535470113924172474128600.000354.29ChemungC N3442124111431172450.1124476470ChemungC N34422242	28	Chemung	BM2579	421529075584101	146	93	29	20	6.7	7.8	10.5	55	0.002		F 1–25	0.1	Middle
ChemungC 446 42345507584101 147 197 19 55 0.265 354 399 60 0.0004 3456 ChemungC 384 42372107603301 150 104 47 6 0.73 172 225 99 0.00035 $3.523ChemungC 5344235707557160112124855300.6494697.3410.000434.56ChemungC 313421387075571601121248550.6494697.3410.0001311.232ChemungC N1334211910754544011231202031232010733533613024ChemungC N13342115075452011291888329116633000353.024ChemungC N133421150754520112912320330243024ChemungC N33142115075454011231232033123024ChemungC N33142115075454011232132033233024ChemungC N332421130734541011431212033233024ChemungC N332421130734541011331212032033032ChemungC N 332421130734541011331212122333024ChemungC N 3564223407349501131$	29	Chemung	BM2580	422023075560501	144	125	40	ł	2	12.1	14.2	24	0.002		F 2-43	0.05	Middle
ChemungC 484 4.237107600301 1501044760.7317.222.5990.000335.92ChemungC 504 4.2382076022801 1491622060.4620.223.1330.0003330.24ChemungC 536 4.2333705571601 15124855300.6494.697.34110.000434.56ChemungC 131 4.2381075540801 181128128570.1134.882.2620.0001311.233ChemungC N133 4.2381075546201 1331382371411070.0003530.24ChemungC N331 4.2125075544501 137138350.1134.842.11070.000353.024ChemungC N333 4.2152075343401 13722343103.344.1600.000353.024ChemungC N333 4.2152075343401 13722343142.38.42.18.64ChemungC N346 4.2152075343401 1312.234314.219.7600.000353.024ChemungC N346 4.2152075343401 1331202.33432.12.3432.1432.3ChemungC N 346 4.2152075347401 1331502.3432.40.000353.184ChemungC N 566 4.22240754976101 133<	30	Chemung	C 466	423455075584101	147	197	19	5.5	0.265	35.4	39.9	60	0.0004	-	C 1–2,000	0.0001	Middle
Chemung $C 504$ 423822076022801 149 162 20 646 20.2 23.1 $33.$ 0.00035 30.24 Chemung $C 536$ 4233775571601 151 248 55 30 0.64 94.6 97.3 41 0.00043 34.56 Chemung $C 811$ 423817075571601 151 248 55 30 0.64 94.6 97.3 41 0.00013 34.56 Chemung $C N158$ 421191075424401 123 198 85 $$ 1.16 69.3 74.1 105 0.0013 31.52 Chemung $C N331$ 42115907552201 129 192 12 64 34.2 64.2 30.0035 3.024 Chemung $C N331$ 42115307552101 129 137 223 43 10 3.45 60.0013 3.552 Chemung $C N331$ 42115307552101 129 137 241 31 3.5 0.11 34.8 42.1 107 0.00035 3.124 Chemung $C N331$ 42115307552101 137 127 223 43 41.2 57 1422 123 137 223 137 223 137 223 142 126 0.00035 3.024 Chemung $C N331$ 421153075545101 133 137 243 241 126 0.00035 216.8 3.024 Chemung $C N541$ 422240755920101 133 132 </td <td>31</td> <td>Chemung</td> <td>C 484</td> <td>423721076003901</td> <td>150</td> <td>104</td> <td>47</td> <td>9</td> <td>0.73</td> <td>17.2</td> <td>22.5</td> <td>66</td> <td>0.0003</td> <td></td> <td>F $1-70$</td> <td>0.15</td> <td>Middle</td>	31	Chemung	C 484	423721076003901	150	104	47	9	0.73	17.2	22.5	66	0.0003		F $1-70$	0.15	Middle
Chemung 536 4235707571601 151 248 55 30 0.64 94.6 97.3 41 0.0004 34.56 ChemungCN158 42191075540801 148 180 20 7 0.47 62.8 68.2 62 0.0013 11.232 ChemungCN158 42191075424001 123 198 85 $$ 1.16 69.3 74.1 105 0.00035 3.024 ChemungCN331 42125907552101 129 192 126 0.11 34.8 42.1 107 0.00035 3.024 ChemungCN331 42125907552101 129 137 223 43 10 3.34 42.1 107 0.00035 3.024 ChemungCN331 42125075532101 129 137 223 43 102 142 192 117 60 0.00055 4.32 ChemungCN 355 42113075454101 133 117 24 50 0.15 57 40 60.0055 21.6 ChemungCN 556 42173075454501 126 207 134 173 62.8 63.2 70.96 ChemungCN 556 4227407554501 134 173 425 67.8 2001 36.7 64.8 ChemungCN 556 4227407554501 134 173 125 612 70.6 70.00052 2124 ChemungCN 556 4227407554501 134 123 </td <td>32</td> <td>Chemung</td> <td>C 504</td> <td>423822076022801</td> <td>149</td> <td>162</td> <td>20</td> <td>9</td> <td>0.46</td> <td>20.2</td> <td>23.1</td> <td>33</td> <td>0.00035</td> <td></td> <td>C 2–8,000</td> <td>0.01</td> <td>Middle</td>	32	Chemung	C 504	423822076022801	149	162	20	9	0.46	20.2	23.1	33	0.00035		C 2–8,000	0.01	Middle
Chemug $C 541$ 423817075540801 148 180 20 7 047 6.28 68.2 6.2 0.0013 11.232 Chemug $CN 158$ 421911075424401 123 198 85 $$ 1.16 69.3 74.1 105 0.0013 155.52 Chemug $CN 331$ 42125907532101 129 185 93 5 0.11 34.8 42.1 107 0.00035 3.024 Chemug $CN 331$ 42152075343001 137 223 43 10 0.33 0 57.7 48 0.00055 21.6 Chemug $CN 337$ 4215207534301 137 223 43 10 0.33 0 57.7 48 0.00055 21.6 Chemug $CN 357$ 4215207534301 137 223 43 10 0.33 0 57.7 48 0.00055 21.6 Chemug $CN 357$ 4215207534301 126 247 31 3.5 0.23 44.7 128 0.00075 44.8 Chemug $CN 557$ 42250075491501 131 177 24 5 0.12 171 297 298 Chemug $CN 557$ 42250075491501 133 150 62 20.12 650 0.00052 21.6 Chemug $CN 557$ 4225207549161 133 175 24 5 0.12 160 0.00052 12.9 Chemug $CN 556$ 4225207549561	33	Chemung	C 536	423537075571601	151	248	55	30	0.64	94.6	97.3	41	0.0004		F 20–350	0.03	Lower
	34	Chemung	C 541	423817075540801	148	180	20	7		62.8	68.2	62	0.00013		C 1–10,000	0.25	Middle
	35	Chemung	CN 158	421911075424401	123	198	85	ł	1.16	69.3	74.1	105	0.0018		F 5–140	0.001	Upper
	36	Chemung	CN 23	422109075462901	153	190	12	9	0.11	34.8	42.1	107	0.000035		C 1–5,000	0.05	Lower
Chemung ChemungCN 337 421522075343801 137 223 43 10 0.33 0 5.7 48 0.005 43.2 Chemung ChemungCN 352 421713075454101 143117 24 5 0.13 14.219.2118 0.0001 8.64 Chemung ChemungCN 359 42191075323401 126 247 31 3.5 0.23 43 47.8 58 0.00075 4.29 Chemung ChemungCN 556 42242075492601 140188 59 10 0.045 17.1 22.9 125 0.00052 4.29 Chemung ChemungCN 556 42224075492601 134173 49 5 0.15 46.9 53.9 80 0.00062 7.0848 Chemung ChemungCN 556 42224075497545701 139198 127 175 0.6 71 22.9 100052 7.0848 Chemung ChemungCN 556 422749075454501 136 175 92 175 92 177 292 100062 7.0848 Chemung ChemungCN 560 4229749075454501 136 175 92 217 3956 429 0.00065 7.0848 Chemung ChemungCN 560 4229407545701 132 176 29 171 229 10005 776 Chemung ChemungCN 560 4229407545701 132 176 29 117 12 126 129 100	37	Chemung	CN 331	421259075252101	129	185	93	5	0.4	83.2	91.1	60	0.00025		C 160–1,800f	0.01	Middle
ChemungCN 352 421713075454101 1431172450.1314.219.21180.00018.64ChemungCN 399 421910075323401 126 247 313.50.23 43 47.8 580.00075 64.8 ChemungCN 467 422242075492601 14018859100.04517.1 22.9 1250.000057.0848ChemungCN 557 422220075491501 1341734950.15 46.9 53.9800.0000827.0848ChemungCN 556 422749075591701 133150 67 201250.12121212894.4ChemungCN 556 422749075545101 133150 67 201250.151.6590.000527.0848ChemungCN 566 422749075545101 1341750.679.183.2740.000651.84ChemungCN 578 422759075545201 1361760.483.2740.000651.84ChemungCN 566 42274907545501 1361760.483.2740.000651.84ChemungCN 566 42234307549501 136176152.5911.7590.00127109.728ChemungCN 566 42234307549501 1321267284.30.00127109.728ChemungCN 612 42343075514701 132 </td <td>38</td> <td>Chemung</td> <td>CN 337</td> <td>421522075343801</td> <td>137</td> <td>223</td> <td>43</td> <td>10</td> <td>0.33</td> <td>0</td> <td>5.7</td> <td>48</td> <td>0.0005</td> <td></td> <td>P 1–600</td> <td>0.0001</td> <td>Lower</td>	38	Chemung	CN 337	421522075343801	137	223	43	10	0.33	0	5.7	48	0.0005		P 1–600	0.0001	Lower
ChemungCN 399 421910073323401 126 247 31 3.5 0.23 43 47.8 58 0.00075 6 ChemungCN 467 422242075492601 140 188 59 10 0.045 17.1 22.9 125 0.00005 ChemungCN 555 422242075491501 134 173 49 5 0.15 46.9 53.9 80 0.000082 ChemungCN 556 422749075561701 133 150 67 20 12 50.1 51.6 59 0.00082 ChemungCN 556 422749075567401 133 150 67 20 12 50.1 51.6 59 0.00065 5 ChemungCN 556 422749075565401 136 175 93 20 41.3 81.2 74 0.0006 57 ChemungCN 556 422759075565401 136 175 93 20 41.3 32.2 74 0.0006 57 ChemungCN 556 422759075565401 136 175 93 20 41.4 41.9 81.2 20 0.0006 ChemungCN 556 422759075545401 135 120 176 39.6 43 0.0006 57 ChemungCN 606 4227590755454701 132 127 12 21.6 41.4 41.9 81.7 80 0.0028 ChemungCN 606 4223108075445701 132 124 <	39	Chemung	CN 352	421713075454101	143	117	24	5	0.13	14.2	19.2	118	0.0001		C 3–10,000	0.01	Upper
Chemung $CN 467$ 422242075492601 140 188 59 10 0.045 17.1 22.9 125 0.00005 Chemung $CN 525$ 422620075491501 134 173 49 5 0.15 46.9 53.9 80 0.00082 Chemung $CN 556$ 422720075501701 133 150 67 20 122 50.1 51.6 59 0.00082 Chemung $CN 556$ 422779075507701 133 150 67 20 122 50.1 83.2 74 0.0006 5 Chemung $CN 556$ 422759075505401 136 175 93 20 41.9 83.2 74 0.0006 5 Chemung $CN 578$ 422759075505401 136 175 93 20 41.9 81.2 74 0.0006 5 Chemung $CN 578$ 422759075505401 136 176 93 20 4.16 77 59 0.0006 57 Chemung $CN 560$ 42236075495001 136 176 42.3 37.7 39.6 43.9 69 Chemung $CN 616$ 4223043075514701 132 126 125 22.5 911.77 59 0.0028 69 Chemung $CN 616$ 423108075445701 132 124 32 8 4.77 16.8 $1_17.8$ 80 0.0028 Chemung $CN 614$ 423328075433301 130 197 65 <td>40</td> <td>Chemung</td> <td>CN 399</td> <td>421910075323401</td> <td>126</td> <td>247</td> <td>31</td> <td>3.5</td> <td>0.23</td> <td>43</td> <td>47.8</td> <td>58</td> <td>0.00075</td> <td></td> <td>F 3–1,000</td> <td>0.000001</td> <td>Upper</td>	40	Chemung	CN 399	421910075323401	126	247	31	3.5	0.23	43	47.8	58	0.00075		F 3–1,000	0.000001	Upper
Chemung $CN 525$ 422620075491501 134 173 49 5 0.15 46.9 53.9 80 0.00082 Chemung $CN 547$ 422720075501701 133 150 67 20 12 50.1 51.6 59 0.0335 289 Chemung $CN 556$ 422749075454501 139 198 123 17.5 0.6 79.1 83.2 74 0.0006 5 Chemung $CN 556$ 422749075505401 136 175 93 20 4.8 37.7 39.6 43 0.0006 5 Chemung $CN 560$ 422759075505401 136 175 93 20 4.13 30.6 43 0.0006 5 Chemung $CN 560$ 422759075505401 136 175 93 24 41.9 81.7 39.6 43 0.0006 77 Chemung $CN 560$ 4227590755055401 132 126 43.3 10 0.45 41.4 41.9 81.7 30.6 43 0.0006 57 Chemung $CN 616$ 423043075514701 132 124 32 8 4.7 16.8 11.7 59 0.0036 69 Chemung $CN 611$ 423108075445701 132 124 32 8 4.7 16.8 11.7 59 0.0038 69 Chemung $CN 611$ 42332807543301 130 197 65 20 2.1 41.1	41	Chemung	CN 467	422242075492601	140	188	59	10	0.045	17.1	22.9	125	0.00005	4.29 j		0.2	Middle
ChemungCN 547 422720075501701 13315067201250.151.6590.0335289ChemungCN 556 422749075454501 13919812317.50.679.183.2740.00065ChemungCN 560 422759075565401 13617593204.837.739.6430.00977ChemungCN 578 422759075495001 135200170152.5911.7590.00869ChemungCN 606 422343075544701 142116 44.3 100.4541.441.9 k_{13} 0.0012710ChemungCN 612 423108075445701 132124328 4.7 16.8 1_{177} 590.003869ChemungCN 612 423108075445701 132124328 4.7 16.8 1_{177} 590.00869ChemungCN 641 423328075445701 132124328 4.7 16.8 1_{177} 800.00869ChemungCN 641 423328075445701 132124328 4.7 16.8 1_{177} 910.0012710ChemungCN 641 423328075445701 13019765202.141910.003869ChemungCN 649 422011075304701 1311606810+0.737.2 42.3 <	42	Chemung	CN 525	422620075491501	134	173	49	5	0.15	46.9	53.9	80	0.000082	7.0848]	F 1–900	0.01	Upper
ChemungCN 556 422749075454501 13919812317.50.6679.183.2740.00065ChemungCN 560 422759075505401 13617593204.837.739.6430.00977ChemungCN 578 422850075495001 13617593204.837.739.6430.00977ChemungCN 578 422850075495001 135200170152.5911.7590.00869ChemungCN 606 422043075514701 142116 44.3 10 0.45 41.4 41.9 k_{13} 0.00127 10ChemungCN 612 423043075514701 132124328 4.7 16.8 1_{17} 59 0.0038 69ChemungCN 61 423043075445701 132124328 4.7 16.8 1_{17} 80 0.0038 69ChemungCN 641 42332807543301 1301976520 2.1 41 91 0.0038 69ChemungCN 69 422011075304701 13116068 $10+$ 0.7 37.2 42.3 71 0.0038 $69ChemungCN 694220110753047011311606810+0.737.242.3710.003869ChemungOG 37642302907456220110011210-10.2$	43	Chemung	CN 547	422720075501701	133	150	67	20	12	50.1	51.6	59	0.0335		F 3–15	0.00001	Middle
ChemungCN 560 422759075505401 13617593204.837.739.6430.00977ChemungCN 578 422850075495001 135200170152.5911.7590.00869ChemungCN 606 4230430755445701 135200170152.5911.7590.0012710ChemungCN 612 423108075445701 132124328 4.7 16.8 $1_17.8$ 800.003869ChemungCN 611 423108075445701 132124328 4.7 16.8 $1_17.8$ 800.00869ChemungCN 641 423108075445701 132124328 4.7 16.8 $1_17.8$ 800.003429ChemungCN 641 423328075445701 13019765202.1 41 41.1 91 0.003429ChemungCN 64 422011075304701 1311606810+ 0.7 37.2 42.3 71 0.0038 66ChemungOG 376 423029074562201 20011210 -1 0.28 0.2 2.8 70 0.00098 GuenungOG 377 42390375002201 100 112 10 -1 0.49 0 3.7 52 0.00043 3 ChemungOG 377 42390375002201 100 112 10 -1 0.49	44	Chemung	CN 556	422749075454501	139	198	123	17.5	0.6	79.1	83.2	74	0.0006		F 1–200	0.01	Middle
ChemungCN 578422850075495001135200170152.5911.7590.00869ChemungCN 60642304307551470114211644.310 0.45 41.441.9 k_{13} 0.0012710ChemungCN 612423108075445701132124328 4.7 16.8 $1_{17.8}$ 800.00869ChemungCN 61142332807543330113019765202.14141.191 0.0034 29ChemungCN 694220110753047011311606810+ 0.7 37.2 42.3 71 0.0008 66ChemungOG 37642302907456220120016913 -1 0.28 0.2 2.8 70 0.00098 ChemungOG 37742390307500220110011210 -1 0.49 0 3.7 52 0.00043 3	45	Chemung	CN 560	422759075505401	136	175	93	20	4.8	37.7	39.6	43	0.009		F 1–56	0.001	Upper
ChemungCN 606 423043075514701 142116 44.3 10 0.45 41.4 41.9 k_{13} 0.00127 10ChemungCN 612 423108075445701 132124328 4.7 16.8 $1_{17.8}$ 80 0.008 69ChemungCN 641 423328075445701 132124328 4.7 16.8 $1_{17.8}$ 80 0.0034 29ChemungCN 641 42332807543301 1301976520 2.1 41 91 0.0034 29ChemungCN 69 422011075304701 13116068 $10+$ 0.7 37.2 42.3 71 0.0008 6ChemungOG 376 423029074562201 20016913 $$ 0.28 0.2 2.8 70 0.00098 ChemungOG 377 423903075002201 10011210 $$ 0.49 0 3.7 52 0.00043 3	46	Chemung	CN 578	422850075495001	135	200	170	15	2.5	6	11.7	59	0.008		C 2–3,300	0.000001	Middle
Chemung CN 612 423108075445701 132 124 32 8 4.7 16.8 1 _{17.8} 80 0.008 69 Chemung CN 641 423328075433301 130 197 65 20 2.1 41 44.1 91 0.0034 29 Chemung CN 69 422011075304701 131 160 68 10+ 0.7 37.2 42.3 71 0.0008 6 Chemung OG 376 423029074562201 200 169 13 0.28 0.2 2.8 70 0.00098 6 Chemung OG 377 423903075002201 100 112 10 0.49 0 3.7 52 0.00043 3	47	Chemung	CN 606	423043075514701	142	116	44.3	10	0.45	41.4	41.9	^k 13	0.00127		C 3–1,000	0.002	Middle
Chemung CN 641 423328075433301 130 197 65 20 2.1 41 41.1 91 0.0034 29 Chemung CN 69 422011075304701 131 160 68 10+ 0.7 37.2 42.3 71 0.0008 6 Chemung OG 376 423029074562201 200 169 13 0.28 0.2 2.8 70 0.000098 6 Chemung OG 377 423903075002201 100 112 10 0.49 0 3.7 52 0.00043 3	48	Chemung	CN 612	423108075445701	132	124	32	8	4.7	16.8	¹ 17.8	80	0.008		C 1–600	0.1	Lower
Chemung CN 69 422011075304701 131 160 68 10+ 0.7 37.2 42.3 71 0.0008 6 Chemung OG 376 423029074562201 200 169 13 0.28 0.2 2.8 70 0.000098 Chemung OG 377 423903075002201 100 112 10 0.49 0 3.7 52 0.00043 3	49	Chemung	CN 641	423328075433301	130	197	65	20	2.1	41	44.1	91	0.0034		C 3–3,500	0.01	Upper
Chemung OG 376 423029074562201 200 169 13 0.28 0.2 2.8 70 0.000098 Chemung OG 377 423903075002201 100 112 10 0.49 0 3.7 52 0.00043 3	50	Chemung	CN 69	422011075304701	131	160	68	10 +	0.7	37.2	42.3	71	0.0008		F 2.5–85	0.01	Middle
Chemung OG 377 423903075002201 100 112 10 0.49 0 3.7 52 0.00043	51	Chemung	OG 376	423029074562201	200	169	13	ł	0.28	0.2	2.8	70	0.000098	8.4672]	P 10–1,500	0.1	Middle
	52	Chemung	OG 377	423903075002201	100	112	10	ł	0.49	0	3.7	52	0.00043	37.152	P 5-400	0.01	Middle

Table 1.	. Well properties and pumping test data for 52 domestic wells penetrating bedrock in or adjacent to the Susquehanna River Basin in the Appalachian Plateau of
New York.	rk.—Continued

[USGS, U.S. Geological Survey; no., number; ID, identifier; ft, foot; gal/min, gallon per minute; gal/min/ft, gallon per minute per foot; s, second; ft²/s, foot squared per second; ft²/s, ft²

Topo-	graphic posi-	tion on hillside
	Storage	coefficient
Analysis by PICKINGmodel	Data match to	(s) ^d
Analysis t	Trans-	(ft²/d)
	Trans-	(ft²/s)
	Pumping	s) (s)
Test data	Depth to water at	Start ^c Shut- down
	Specific capacity ^b	(gal/min/ ft)
From driller's report	Depth Casing Yield	(ft) lengun (gav (ft) min)
	rump- ing teet	ио.
	National Water Information	System site ID ^a
	USGS Well no	
	Lithofa- cies	2
	Map no. (fig	1)

^a Site ID consists of degrees, minutes, and seconds of latitude (6 digits) followed by degrees, minutes, and seconds of longitude (7 digits) followed by a serial number to distinguish multiple wells at he same location (01 for each well in this table).

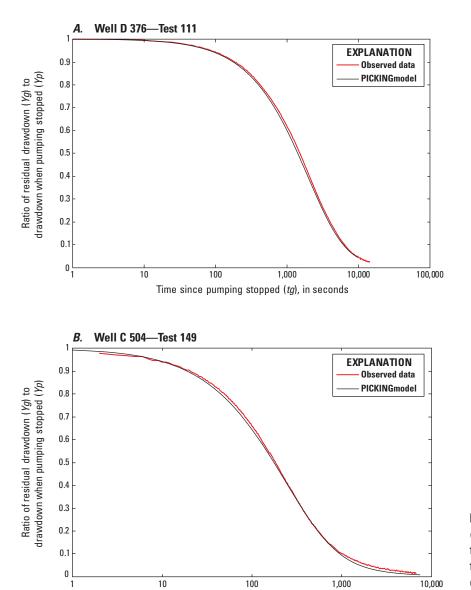
^bWater-level recovery between first 2 or 3 measurements after shutdown, extrapolated to rate in 1 minute, times 1.5 gallons per foot (in 6-inch casing), divided by distance from prepumping water evel to midpoint of recovery interval

^cIn most tests, water level at start of pumping was rising slowly in response to earlier pumping in that well or wells nearby. Water levels are reported to the nearest 0.1 ft below land surface.

^dData match to type curve: C, complete match throughout measured range of recovery data; F, data curve flattens (slopes more gently than type curve) beyond range listed; P, data curve plunges (slopes much more steeply than type curve) beyond range listed.

^c Depth to water measured July 31, 1998, immediately before test. On May 14, 1998, depth to water was 64.0 feet, and a small amount of water entered at about 53 feet

^fNo data logger; water level measured manually with electric tape.


^gPoor match to PICKINGmodel type curve.

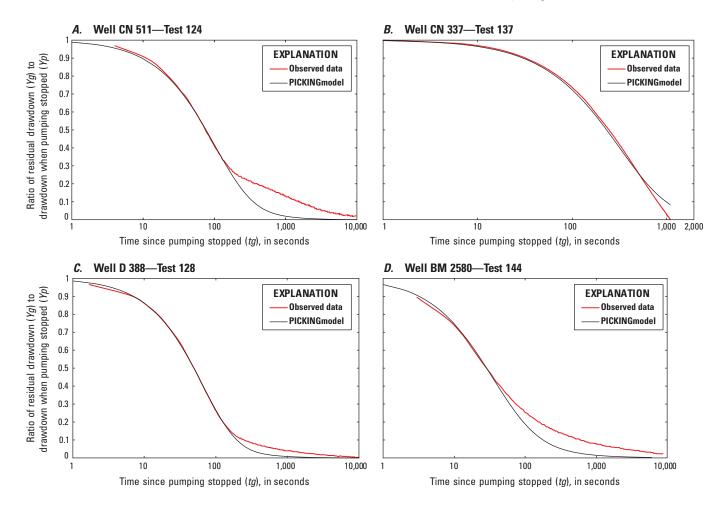
^hA storage coefficient of 0.5 is implausible for fractured bedrock, but other analytical methods also indicate large storage. Perhaps a sand lens atop bedrock sustains well yield?

¹Drawdown and recovery were briefly slowed by draining and refilling of a cavity between 53.8 and 54.1 depth. Pumping time was reduced by 20 seconds and segments of the recovery hydrograph before and after the cavity were merged to allow PICKINGmodel analysis.

^jPICKINGmodel not used. Transmissivity and storage coefficient are from analysis of subsequent 10-minute test. Sediment 4 to 6 feet thick on bottom of well may have restricted yield from a near-basal fracture. k Actual duration of pumping was 56 seconds. However, an apparent cavity at or slightly below the end of the casing slowed drawdown and recovery in this depth interval. Therefore, analysis was limited to the first 13 seconds of drawdown merged with the (much later) recovery within the casing.

¹Depth to water was stable for 20 seconds immediately before shutdown due to smaller pumping rate as pressure tank filled.

Time since pumping stopped (tg), in seconds


Figure 2. Observed water-level recovery compared to PICKINGmodel type curves for tests 111 and 149 of two domestic wells in the Appalachian Plateau of New York. Test data fit type curves over the entire range of data collection.

performance has occurred. Transmissivity values computed from these tests may be suitable for estimating flow under natural gradients, including flow through bedrock to valley-fill aquifers. They would not be suitable for estimating maximum sustainable yield to individual wells or well clusters because about half the tests in this study documented reductions in recovery rate and transmissivity within a few minutes of the start of stress, presumably due to constrictions in water-yielding fractures several feet or more from the pumped well. Prolonged pumping stress from individual wells or overlapping stresses within well clusters could be expected to intersect more flow boundaries and to dewater some shallow fractures.

Longer Aquifer Tests of Five Wells

Four of the 51 wells that were pumped briefly for analysis by PICKINGmodel and one additional well (CH 467, test 140) were pumped for longer periods of 10 to 32 minutes, shortly before or after a brief test analyzed by PICKINGmodel. These longer tests were analyzed by the Theis recovery method (Kruseman and deRidder, 1990, p. 194–195). Transmissivities calculated from the longer tests, as well as the data timespans from which the transmissivities were calculated, are compared with results from PICKINGmodel in table 2.

Transmissivities calculated from the brief test and the longer test of well 143 are nearly identical, and for wells 132 and 133 the brief tests and the longer tests seem reasonably consistent (albeit for different reasons). The measured water-level recovery from brief test 132 fits a PICKING-model type curve closely throughout the timespan of measured recovery, as shown in figure 4. (During brief test 132, the logger was set to record water levels only at 5-second intervals, but manual graphing of the data allowed estimation of the shutdown time to the nearest second, also values of tg and Yg/Yp at four times during the first 10 seconds of

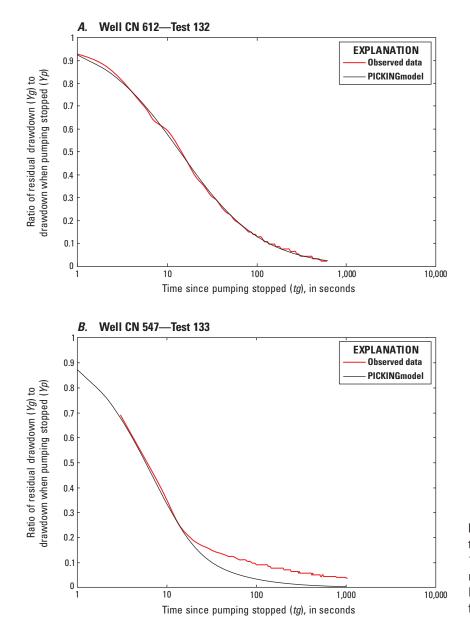

Figure 3. Observed water-level recovery compared to PICKINGmodel type curves for tests 124, 128, 137, and 144 of domestic wells in the Appalachian Plateau of New York. Early test data fit type curves, but later test data slope more gently (tests 124, 128, and 144) or more steeply (test 137) than the type curve matched to the early data.

Table 2. Comparison of analyses of brief pumping tests by PICKINGmodel with analyses of longer tests by Theis recovery method for four domestic wells penetrating bedrock in the Appalachian Plateau of New York.

[ft²/s, foot squared per second; α , alpha; t/t', time since start of pumping divided by time since start of recovery]

Parameters measured	Test 132	Test 133	Test 135	Test 143
	PIC	KINGmodel		
Duration of pumping (seconds)	80	59	59	125
Duration of measured recovery (seconds)	2,480	3,780	3,800	10,000
Transmissivity (ft²/s)	0.008	0.0335	0.008	0.0001
Storage coefficient (a)	0.1	0.00001	0.000001	0.01
Duration of data fit to type curve (seconds)	1-600 and more	3–18 (above curve 18 to 1,000 and beyond)	2 to 3,300	3 to 10,000
	Theis re	ecovery method		
Duration of pumping (seconds)	780	615	638	1,920
Duration of measured recovery (seconds)	7,970	18,285	3,760	12,045
Transmissivity (ft ² /s)	0.0061	0.0115	0.00093	0.00014
Timespan of straight-line portion of graph of residual drawdown versus t/t' whose slope defines transmissivity (seconds)	30–7,970	20–165 (steeper curved line 165–1,125)	22–72	1,486–6,048

12 Transmissivity Estimated From Brief Aquifer Tests of Domestic Wells in the Appalachian Plateau of New York

Figure 4. Water-level recovery compared to PICKINGmodel type curves for brief tests 132 and 133 of wells CN 612 and CN 547, respectively, in the Appalachian Plateau of New York. These wells were later test-pumped for 10 to 13 minutes.

recovery.) Transmissivity estimated by PICKINGmodel from brief test 132 differs by only a factor of 1.3 from transmissivity calculated from recovery measurements over the entire timespan of data collection during the longer test (table 2). PICKINGmodel accounts for storage of water in the well bore (Klusman, 2004), which may allow a more accurate interpretation of water-level rise measured in the pumped well during the first several seconds of recovery than allowed by the Theis recovery method, which assumes the diameter of the well to be infinitely small (Kruseman and deRidder, 1990, p. 56).

The measured recovery from brief test 133 matched a PICKINGmodel type curve for only the first 18 seconds of recovery, then gradually departed from that type curve and remained above it throughout the remainder of the period of data collection (fig. 4). This behavior might be attributed to a transition to smaller transmissivity values a short distance outward from the well, caused by narrowing or pinch-out of one or more water-yielding fractures—and, indeed, the transmissivity estimated from data for 20 to 165 seconds of recovery in the longer test is about one-third of the transmissivity estimated by PICKINGmodel from data for 3–17 seconds of recovery.

Transmissivity estimated by PICKINGmodel from brief test 135 is 8.6 times the transmissivity estimated from a 10.6-minute test of the same well by the Theis recovery method (table 2). Brief tests of other wells were not supplemented by 10 to 30-minute tests, chiefly because nearly all the wells tested were used for domestic water supply; minimizing the interruption of service was often helpful in obtaining permission from the homeowner to test.

Comparison of PICKINGmodel to PPC-Recovery

Mills (2010, 2019) devised a computer program, termed PPC-Recovery, which is also based on the procedure of Picking (1994) and can be used to analyze brief recovery tests. PPC-Recovery also requires the user to estimate several transmissivity and alpha values and to supply an array of tg and Yg/Yp data values; then the program automatically compares the type curve defined by each pair of transmissivity and alpha values with the array of data values and calculates the sum of the residuals squared for each such match. This method eliminates the subjective judgement inherent in visual curvematching and evaluates multiple alternative transmissivity and alpha options in less time than a single set of type curves can be calculated by PICKINGmodel, graphed, and evaluated. As part of this study, however, half of the brief aquifer tests conducted had already been evaluated (Randall and Klusman, 2004) using PICKINGmodel. Also, visual displacement of the latter part of some type curves from PICKINGmodel data curves, discussed in the report section "Analysis of 51 Brief Aquifer Tests," provided some insight into the potential factors influencing the drawdown curve that would not be obvious from the test results (sum of residuals squared) provided by PPC-Recovery. Accordingly, PICKINGmodel was used to analyze all aquifer tests in this report.

Subsequently, as a verification check, field measurements for most tests were analyzed with the PPC-Recovery program; transmissivities calculated by PICKINGmodel and PPC-Recovery for the tests in table 3 differed by 0 to 58 percent, with a median percentage difference of 8 percent and a mean of 14 percent. The pairs of transmissivities differed by less than 20 percent for 36 of the 50 tests. Application of the sign test (Gilbert, 1987) to all of these tests indicated that the transmissivity estimates by PICKINGmodel were not significantly different from estimates by PPC-Recovery at a probability of 95 percent.

As explained in the section "Analysis of 51 Brief Aquifer Tests," for 23 of the wells test-pumped for this study, PICKINGmodel generated type curves that fit the entire range of water-level recovery measurements, over as many as 10,000 seconds. These tests are identified by the letter C in the column "Range of data, in seconds, that fit a type curve" in table 3. Transmissivities calculated by PICKINGmodel and PPC-Recovery differed by less than 20 percent for 16 of these 23 tests. PICKINGmodel estimates were higher than PPC-Recovery estimates for 9 tests, lower for 12 tests, and equal for 2 tests. For another 23 tests, identified by the letter "F" in table 3, only the first 18 to 1,500 seconds of data fit a PICKINGmodel type curve; thereafter, the data curve sloped more gently than the type curve. For these 23 tests, PICKINGmodel estimates of transmissivity were higher than PPC-Recovery estimates for 10 tests, lower for 12 tests, and equal for 1 test; estimates differed by less than 20 percent for 20 of these 23 tests. Application of the sign test (Gilbert, 1987) individually to the "C" and "F" subsets indicated that transmissivity estimates by PICKINGmodel were not significantly different from estimates by PPC-Recovery, at a probability of 95 percent. For each of the tests in table 3, PPC-Recovery was constrained to analyze data from the same time interval that was analyzed by PICKINGmodel. The closely comparable results demonstrate that the two methods are mathematically consistent. However, transmissivities calculated by either method from data for time intervals of 120 seconds or less may be of limited practical value because they apply only to a small volume of bedrock close to the pumped well.

The data for 10 of the 23 "F" type tests, in which only the first 18 to 204 seconds fit a PICKINGmodel type curve, were further analyzed by applying the PPC-Recovery method to 5 or 6 alternative time intervals during recovery. For each well tested, at least 10 data points were analyzed, and the data in table 4 are listed in order of increasing length of time analyzed. For each of these wells, as the analyzed time interval lengthened, the calculated transmissivity decreased somewhat, while the sum of residuals squared per data point increased, which indicates a progressively slightly poorer fit of the longer arrays of data to the best-fit PPC-Recovery type curves. These results are interpreted to indicate that (1) the cone of depression had expanded into a zone of lower transmissivity, in agreement with the interpretation of PICKINGmodel results in the text, and (2) as longer timespans encompassed a greater proportion of low-transmissivity bedrock, type curves computed from single transmissivity values became less able to fit both early and late recovery data, so the sums of squared residuals per data point increased.

Results demonstrate that when PPC-Recovery is applied to the same data interval as PICKINGmodel, the resulting estimates of transmissivity and storage are generally quite similar. This similarity indicates that the two procedures are computationally consistent and provides independent verification that PICKINGmodel is a mathematically sound adaptation of the procedure devised by Picking (1994).

Test Results Compared With Bedrock Lithofacies

Of the 52 wells tested, 26 penetrated bedrock assigned to the Catskill lithofacies, while 26 penetrated the Chemung lithofacies. The distributions of transmissivity values calculated for wells in these two lithofacies are shown in figure 5. Both distributions are similar, although 15 percent of the transmissivity values in the Chemung lithofacies exceeded 0.005 foot squared per second, which was the largest value in the Catskill lithofacies. The median value among all wells tested was 0.000425 foot squared per second in the Catskill lithofacies and 0.00055 foot squared per second in the Chemung lithofacies. Application of the Wilcoxon rank sum test (U.S. Environmental Protection Agency, 2006) indicated that at a probability of 95 percent these two median values

14 Transmissivity Estimated From Brief Aquifer Tests of Domestic Wells in the Appalachian Plateau of New York

Table 3.Comparison of recovery test results using two methods, for wells penetrating bedrock in the Appalachian Plateau of
New York.

[ft, foot; ft²/s, foot squared per second]

			Ana	lysis by PICKI	NGmodel	Ana	lysis by PPC-Rec	overy ^b	
U.S. Geological Survey well number	Pumping test number	Well depth (ft)	Transmis- sivity (ft²/s)	Storage coefficient	Range of data, in seconds, that fit a type curve ^a	Transmis- sivity (ft²/s)	Storage coefficient	Sum of residuals squared per data point	Percent difference in transmissivity between two methods
OG 377	TEST 100	112	0.000430	0.01	P 5-400	0.00044	0.01	0.000030	2.3
D 350	TEST 101	165	0.000290	0.001	C 6–9,700	0.00027	0.002	0.000051	6.9
D 349	TEST 102	170	0.0008	0.1	F 6–24	0.00079	0.1	0.000080	1.3
D 358	TEST 103	173	0.005	0.1	F 6–42	0.0050	0.008	0.00015	0.0
D 357	TEST 105	298	0.00184	0.00001	C 6–>2,000 ^c	0.0029	0.00000001	0.0000017	58
D 359	TEST 106	115	0.00172	0.0001	F 6–200	0.0016	0.0002	0.0000076	7.0
D 366	TEST 107b	135	0.00167	0.0001	C 5–>2,400 ^c	0.0019	0.00002	0.000012	14
D 390	TEST 108	180	0.00067	0.00001	C 6->5,400	0.00064	0.00002	0.0000024	4.5
D 367	TEST 109b	213	0.0007	0.2	F 4–64	0.00081	0.1	0.000047	16
D 354	TEST 110b	90	0.0004	0.1	F 6–70	0.00041	0.1	0.000058	2.5
D 376	TEST 111	198	0.00008	0.0001	C 1–10,000	0.000075	0.0001	0.000011	6.3
D 375	TEST 112	165	0.00028	0.01	C 6-800	0.00028	0.01	0.000013	0.0
OG 381	TEST 115	189	0.000205	0.1	C 6–>7,400 ^c	0.000208	0.01	0.000015	1.5
OG 378	TEST 116	175	0.0002	0.001	C 6–>7,800 ^c	0.00016	0.004	0.000013	20
CN 474	TEST 117	149	0.00036	0.001	C 5–8,000	0.00036	0.001	0.000007	0.0
CN 516	TEST 118	198	0.00032	0.0001	C 5–3,500	0.00036	0.00002	0.000011	13
OG 382	TEST 119	440	0.00001	0.1	F 4–110	0.000012	0.08	0.000023	20
CN 557	TEST 120	148	0.00045	0.1	С 3–9,400	0.00047	0.1	0.000047	4.4
CN 577	TEST 121	143	0.00007	0.1	F 70–1,500	0.000069	0.1	0.000045	1.4
D 385	TEST 122	225	0.00084	0.000003	F 2–950	0.0011	0.00000006	0.000046	31.0
CN 158	TEST 123	198	0.0018	0.001	F 5–140	0.0015	0.01	0.000073	17
CN 511	TEST 124	100	0.0012	0.001	F 20–150	0.0013	0.0008	0.000037	8.3
CN 139	TEST 125	132	0.00045	0.03	F 3–250	0.00041	0.06	0.000023	8.9
CN 399	TEST 126	247	0.00075	0.0000001	F 4–1,000	0.0010	0.0000000004	0.000079	33
OG 379	TEST 127b	127	0.0025	0.2	C 5–3,500	0.0027	0.1	0.00011	8.0
D 388	TEST 128	185	0.0038	0.000001	F 7–150	0.0041	0.0000004	0.000015	7.9
CN 331	TEST 129	185	0.00025	0.01	C 160–1,800	0.00027	0.008	0.0000080	8.0
CN 641	TEST 130	197	0.0034	0.01	C 3–3,500	0.0032	0.02	0.0000034	5.9
CN 69	TEST 131	160	0.0008	0.01	F 2.5–86	0.00069	0.02	0.0000034	14
CN 612	TEST 132	124	0.008	0.1	C 1–600	0.0082	0.1	0.000036	2.5
CN 547	TEST 133	150	0.0335	0.00001	F 3–18	0.032	0.00001	0.000040	4.5
CN 525	TEST 134	173	0.000082	0.01	F 3–900	0.000087	0.008	0.000021	6.1
CN 578	TEST 135	200	0.008	0.000001	C 2–3,300	0.010	0.00000001	0.000083	25
CN 560	TEST 136	175	0.009	0.001	F 1–70	0.0091	0.002	0.00029	1.1
CN 337	TEST 137	223	0.0005	0.0001	P 1–600	0.00076	0.0000002	0.000022	52
CN 556	TEST 139	198	0.0006	0.01	F 3–200	0.00053	0.02	0.0000088	12

Table 3. Comparison of recovery test results using two methods, for wells penetrating bedrock in the Appalachian Plateau of New York.—Continued

[ft, foot; ft²/s, foot squared per second]

U. S.			Ana	lysis by PICKI	NGmodel	Ana	lysis by PPC-Rec	overy ^b	Percent
0. S. Geological Survey well number	Pumping test number	Well depth (ft)	Transmis- sivity (ft²/s)	Storage coefficient	Range of data, in seconds, that fit a type curve ^a	Transmis- sivity (ft²/s)	Storage coefficient	Sum of residuals squared per data point	difference in transmissivity between two methods
CN 357	TEST 141	200	0.0002	0.0000001	P 4–200 ^d	0.00028	0.0000000001	0.0000035	40
CN 606	TEST 142	116	0.00127	0.002	C 3–1,000	0.0012	0.004	0.000078	5.5
CN 352	TEST 143	117	0.0001	0.01	C 3–9,800	0.000095	0.01	0.000013	5.0
BM2580	TEST 144	125	0.002	0.05	F 3–43	0.0017	0.1	0.000042	15
BM2578	TEST 145	100	0.0007	0.0001	C 1–5,600	0.00086	0.000008	0.000011	23
BM2579	TEST 146	93	0.002	0.1	F 1–25	0.0030	0.08	0.000046	50
C 466	TEST 147	197	0.0004	0.0001	C 1–2,000	0.00048	0.00002	0.000027	20
C 541	TEST 148	180	0.00013	0.25	C 1–10,000	0.00017	0.1	0.00034	31
C 504	TEST 149	162	0.00035	0.01	C 2–7,600	0.00034	0.01	0.000063	2.9
C 484	TEST 150	104	0.0003	0.15	F 1–70	0.00034	0.1	0.000020	13
C 536	TEST 151	248	0.0004	0.03	F 20–370	0.00037	0.06	0.000084	7.5
CN 23	TEST 153	190	0.000035	0.05	C 1–5,000	0.000027	0.1	0.000012	23
OG 376	TEST 200	169	0.000098	0.1	P 10–1,500	0.000093	0.1	0.000053	5.1
OG 380	TEST 302b	175	0.0002	0.15	F 3–150	0.00024	0.08	0.000032	20
								Median:	8.0
								Mean:	14

^aC = Data curve fits type curve over entire data range. F = Data curve flattened (sloped more gently than type curve) beyond listed range.

P = Data curve plunged (sloped more steeply than type curve) beyond listed range.

^bPPC-Recovery was applied to the same data range as was reported for the analysis by PICKINGmodel.

^cRecovery nearly complete at end of range.

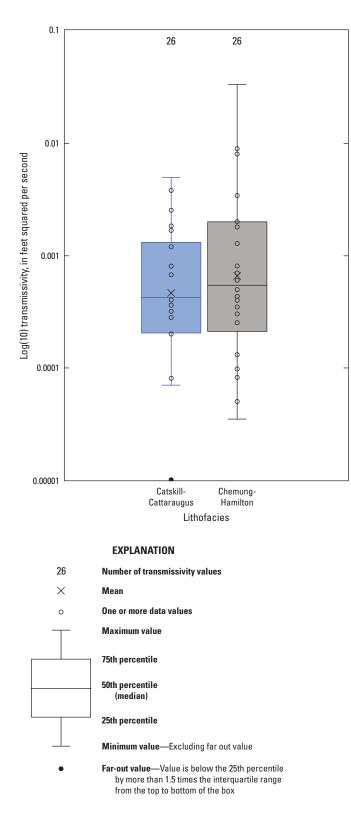
^dData curve plunged during time period 220–2,000 seconds, then flattened during the time period 2,000–10,000 seconds.

16 Transmissivity Estimated From Brief Aquifer Tests of Domestic Wells in the Appalachian Plateau of New York

Table 4. Effect of including data beyond early fit to type curve on estimation of aquifer properties by PPC-Recovery for wells penetrating bedrock in the Appalachian Plateau of New York.

Pumping	Analysis by PICKINGmodel		Analysis by PPC-Recovery					
test number and analysis number	Transmissivity (ft²/s)	Storage coefficient	Transmissivity (ft²/s)	Storage coefficient	Time range, in seconds	Number of points	Sum of residuals squared	Sum of residuals squared per data point
TEST 102-1	0.0008	0.1	0.00079	0.1	6–24	4	0.000320	0.0000800
TEST 102-2			0.00045	0.08	6–216	36	0.041350	0.0011486
TEST 102-5			0.00045	0.1	6–228	38	0.045400	0.0011900
TEST 102-6			0.00037	0.1	6-669ª	77	0.167900	0.0022000
TEST 102-3			0.00036	0.1	6-1,014	90	0.230750	0.0025639
TEST 102-4			0.00034	0.1	6-6,204	179	0.439150	0.0024534
TEST 103-1	0.005	0.1	0.0050	0.008	6-42	7	0.001020	0.0001457
TEST 103-5			0.0044	0.04	6–60	10	0.002000	0.0002000
TEST 103-6			0.0041	0.08	6-84ª	14	0.003300	0.0002300
TEST 103-2			0.0041	0.1	6-102	17	0.005230	0.0003076
TEST 103-3			0.0035	0.1	6-624	49	0.073400	0.0014980
TEST 103-4			0.0033	0.1	6-1,674	66	0.100800	0.0015273
TEST 106-5			0.0021	0.00001	6–96	16	0.000032	0.0000020
TEST 106-6			0.0016	0.0002	6–198ª	33	0.000240	0.0000100
TEST 106-1	0.00172	0.0001	0.0016	0.0002	6–204	34	0.000260	0.0000076
TEST 106-2			0.0012	0.0040	6-702	89	0.007180	0.0000807
TEST 106-3			0.0011	0.0100	6-1,812	141	0.016730	0.0001187
TEST 106-4			0.0011	0.0100	6-6,552	202	0.024210	0.0001199
TEST 109b-1	0.0007	0.2	0.00081	0.1	4-64	11	0.000520	0.0000473
TEST 109b-5			0.00063	0.1	4-202	34	0.039700	0.0011700
TEST 109b-2			0.00057	0.1	4-310	47	0.091630	0.0019496
TEST 109b-6			0.00050	0.1	4-610 ^a	67	0.241800	0.0036090
TEST 109b-3			0.00044	0.1	4-1,030	95	0.471320	0.0049613
TEST 109b-4			0.00039	0.1	4-8,170	216	1.067270	0.0049411
TEST 110b-1	0.0004	0.1	0.00041	0.1	6-72	12	0.000690	0.0000575
TEST 110b-5			0.00034	0.1	6-222	37	0.016100	0.0004300
TEST 110b-2			0.00031	0.1	6–384	51	0.040670	0.0007975
TEST 110b-6			0.00028	0.1	6-729ª	74	0.126400	0.0017000
TEST 110b-3			0.00027	0.1	6-1,014	92	0.203630	0.0022134
TEST 110b-4			0.00026	0.1	6-1,514	175	0.469730	0.0026842
TEST 123-5			0.00180	0.002	5-110	22	0.001200	0.0000530
TEST 123-1	0.0018	0.001	0.0015	0.01	5-140	26	0.002040	0.0000785
TEST 123-6			0.0013	0.04	5-220ª	44	0.006500	0.0001500
TEST 123-2			0.0011	0.1	5-895	125	0.098450	0.0007876
TEST 123-3			0.0010	0.1	5-2,940	241	0.294580	0.0012223
TEST 123-4			0.0010	0.1	5-16,695	456	0.462730	0.0010148
					,			

[ft²/s, foot squared per second, -- fit of data to PICKINGmodel type curves not optimal over this time range]


Table 4. Effect of including data beyond early fit to type curve on estimation of aquifer properties by PPC-Recovery for wells penetrating bedrock in the Appalachian Plateau of New York.—Continued

Pumping test number and analysis number	Analysis by PICKINGmodel		Analysis by PPC-Recovery					
	Transmissivity (ft²/s)	Storage coefficient	Transmissivity (ft²/s)	Storage coefficient	Time range, in seconds	Number of points	Sum of residuals squared	Sum of residuals squared per data point
TEST 133-1	0.0335	0.00001	0.033	0.00001	3–18	4	0.000160	0.0000400
TEST 133-5			0.026	0.002	3–48 ^b	10	0.003700	0.0003700
TEST 133-2			0.026	0.02	3-103	21	0.013865	0.0006602
TEST 133-3			0.032	0.1	3-303	57	0.051956	0.0009115
TEST 133-4			0.032	0.1	3-1,003	111	0.101334	0.0009129
TEST 136-5			0.012	0.00006	1-46 ^b	10	0.001700	0.0001700
TEST 136-1	0.009	0.001	0.0099	0.0006	1-61	13	0.002720	0.0002092
TEST 136-2			0.0094	0.04	1-506	76	0.053450	0.0007033
TEST 136-3			0.0070	0.1	1–1,416	136	0.079950	0.0005879
TEST 136-4			0.0075	0.1	1–7,726	307	0.111164	0.0003621
TEST 146-1	0.002	0.1	0.0030	0.08	1–25	25	0.001140	0.0000456
TEST 146-5			0.0027	0.1	1-28	28	0.001600	0.0000570
TEST 146-2			0.0025	0.1	1-101	49	0.020680	0.0004220
TEST 146-6			0.0025	0.1	1-131 ^a	55	0.032000	0.0005800
TEST 146-3			0.0022	0.1	1-981	150	0.150846	0.0010056
TEST 146-4			0.0022	0.1	1-6,581	314	0.207292	0.0006602
TEST 150-1	0.0003	0.15	0.00033	0.1	1-70	70	0.001380	0.0000197
TEST 150-2			0.00027	0.1	1-200	187	0.060505	0.0003236
TEST 150-5			0.00027	0.1	1-226	208	0.084900	0.0004100
TEST 150-3			0.00023	0.1	1-804	381	0.415778	0.0010913
TEST 150-6			0.00022	0.1	1–984 ^a	415	0.509400	0.0012000
TEST 150-4			0.00021	0.1	1–2,549	529	0.822220	0.0015543

[ft²/s, foot squared per second, -- fit of data to PICKINGmodel type curves not optimal over this time range]

^aTime in seconds to achieve 80-percent recovery.

^bUtilizing at least 10 points; exceeds 80-percent recovery.

are statistically the same. In each lithofacies, the median transmissivity calculated for wells where only early recovery data match a PICKINGmodel type curve exceeds the median transmissivity calculated for wells where the entire data array matches a type curve (table 5).

The values of transmissivity calculated from these tests are not based on measurements of dimensions or flow rates in water-yielding fractures; instead, these values describe a uniform granular porous aquifer that would transmit the same amount of water that is able to flow to the pumped wells through scattered bedrock fractures. Also, the static water level in a well that penetrates more than one water-yielding fracture will be a dynamic function of the heads and dimensions of these fractures and may differ from the water table prior to well construction.

Test Results Compared With Position on Hillsides

The Appalachian Plateau of New York is a region of substantial relief, where ridge crests are commonly about 1,000 feet above the floors of major valleys. To evaluate the possibility that topographic position may correlate with well yield, the 52 tests analyzed during this investigation were classified into three categories by examination of topographic maps.

- 1. Upper hillsides, where elevation of the well site is much closer to the elevation of nearby ridge crests or hilltops than to the elevation of the nearest reach of the upland stream that drains several square miles including the site. (The selection of wells for testing excluded sites on ridge crests or at the top of steep valley walls, so that water-level fluctuations during the test would generally be within the casing, hence rates of recovery would not be subject to irregularities due to variations in borehole diameter or fractures in the bedrock within the interval of fluctuation.)
- Lower hillsides, where the well site is much closer in elevation to the channel of a nearby tributary stream that drains several square miles than to nearby ridge crests. The deeper parts of these wells are generally below stream grade. Some nearby tributaries have alluvial floodplains 100 to 300 feet wide, but none of the wells tested bordered major valleys that contain outwash gravels deposited by glacial meltwater.
- 3. Middle hillsides, where elevation of the well site is intermediate between categories 1 and 2. Many of these middle hillsides are slightly incised by tiny headwater streams that lack alluvial floodplains recognizable on topographic or soils maps.

 Table 5.
 Transmissivity as a function of data fit to PICKINGmodel type curves for wells in two bedrock lithofacies in the Appalachian

 Plateau of New York.
 Plateau of New York.

[ft²/s, foot squared per second; ft²/d, foot squared per day]

Lithofacies	Category of data fit to PICKINGmodel type curve	Number of wells	Median transmissivity value for type curves fitted to datasets	
			ft²/s	ft²/d
Catskill-	A. All wells tested	26	0.000425	36.17
Cattaraugus	B. Wells where all residual drawdown data values match a type curve (fig. 2)	12	0.00034	29.4
	C. Wells where only early residual drawdown values match a type curve, while later values decrease more slowly with time	13	0.0007	60.5
	D. Wells where later data values decrease more rapidly than type curve	1	0.0002	17.3
Chemung-	A. All wells tested	26	0.00055	47.5
Hamilton	B. Wells where all residual drawdown data values match a type curve (fig. 2)	11	0.0004	34.6
	C. Wells where only early residual drawdown values match a type curve, while later values decrease more slowly with time	11	0.008	691.2
	D. Wells where later data values decrease more rapidly than type curve	3	0.00043	37.2

The median transmissivity for each of these categories is presented in table 6, which indicates that water-transmitting fractures in bedrock are slightly more abundant, or more open, on the upper hillsides than on the middle and lower hillsides. However, results of individual well tests range far above and below the median values in each hillside category, and only eight test sites were classified as "upper hillsides." A Kruskal-Wallis statistical test (U.S. Environmental Protection Agency, 2009) concluded that median transmissivity values for the three hillside categories are statistically indistinguishable at a probability of 95 percent. The median transmissivity value in each of the three topographic categories was compared with medians of the other two categories by a Wilcoxon rank sum test; the three medians were statistically equal at a probability of 95 percent. These tests demonstrate that hillside position does not have a strong influence on water-transmitting properties of the uppermost few hundred feet of bedrock in this region.

Table 6. Variation in transmissivity of bedrock as a function of well position on hillsides in the Appalachian Plateau of New York.

[ft ² /s, foot squared	per second; ft2/d,	foot squared	per day]
-----------------------------------	--------------------	--------------	----------

D	Number	Transmissivity				
Position on hillside	of tests	Range (ft²/s)	Median (ft²/s)	Range (ft²/d)	Median (ft²/d)	
Upper hillside	8	0.00008 to 0.009	0.001	6.91 to 777	86.4	
Middle hillside	29	0.00005 to 0.0335	0.00055	4.32 to 2,894	47.5	
Lower hillside	14	0.000035 to 0.008	0.0006	3.02 to 691	51.8	

Summary

Water-level recoveries from brief (13–132 seconds) episodes of pumping 51 domestic drilled wells that penetrate till-mantled bedrock in the Appalachian Plateau of southcentral New York were analyzed by applying a computer program termed PICKINGmodel. In each well tested, water levels were recorded frequently from the moment of pump shutdown until the water level approached the extrapolated pre-test trend. A data curve of time since shutdown in relation to residual drawdown (expressed as a ratio to drawdown at shutdown) was plotted and compared to a series of type curves, each calculated by PICKINGmodel from trial values of transmissivity and storage. For 23 of the tests, a type curve was selected that matched the observed data exactly or nearly so throughout the range of data collection. For 23 other tests, however, the selected type curve matched only the early data (as little as 15 to as much as 1,000 seconds), after which the observed residual drawdown decreased more slowly than the type curve, which indicates that the cone of depression may have expanded into a region of lesser transmissivity. In four tests, the late residual drawdown data values decreased more quickly than the type curve that matched the early data, which indicates that the cone of depression may have expanded into a region of greater transmissivity. Analysis of longer aquifer tests (10 to 32 minutes) of four of these wells by the Theis recovery method yielded transmissivity estimates 0.12 to 1.4 times the transmissivity estimates from PICKINGmodel analysis of these wells.

Transmissivity estimated by PICKINGmodel from these tests ranged over three orders of magnitude in both the Catskill-Cattaraugus lithofacies (shales, mudstones, siltstones, medium to coarse sandstones, pebbly sandstones) and the

20 Transmissivity Estimated From Brief Aquifer Tests of Domestic Wells in the Appalachian Plateau of New York

Chemung-Hamilton lithofacies (shales, mudstones, siltstones, fine to medium sandstones). Median transmissivities were similar (0.000425 foot squared per second in the Catskill lithofacies and 0.00055 foot squared per second in the Chemung lithofacies), as were the distributions of transmissivity values in each lithofacies. Hillside position (upper, middle, and lower hillsides) likewise had little influence on water-transmitting properties in this region. Results of these easily arranged and analyzed test procedures may be appropriate for calculating groundwater flux under the low gradients that prevail under natural conditions, but not under the larger drawdowns and steeper gradients that prevail near clusters of domestic wells. Transmissivities calculated by PICKINGmodel from data for time intervals of 120 seconds or less may be of limited practical value because they apply only to a small volume of bedrock close to the pumped well. If a computation could be developed to estimate an effective transmissivity from late recovery data that depart from PICKINGmodel type curves that fit the earlier data, brief aquifer tests such as described in this report might be more widely applicable.

References Cited

- Colton, G.W., and de Witt, W., Jr., 1958, Stratigraphy of the Sonyea Formation of Late Devonian Age in western and west-central New York: U.S. Geological Survey Oil and Gas Investigations Chart OC54, 1 pl.
- Cooper, H.H., Jr., Bredehoeft, J.D., and Papadopulos, I.S., 1967, Response of a finite-diameter well to an instantaneous charge of water: Water Resources Research, v. 3, no. 1, p. 263–269.
- de Witt, W., Jr., and Colton, G.W., 1959, Revised correlations of Lower Upper Devonian rocks in western and central New York: The American Association of Petroleum Geologists Bulletin, v. 43, no. 12, p. 2810–2828.
- de Witt, W.E, Jr., and Colton, G.W., 1978, Physical stratigraphy of the Genesee Formation (Devonian) in western and central New York: U.S. Geological Survey Professional Paper 1032A, 22 p., 6 pls.

Dugolinsky, B.K., 1967, Sedimentation of the Upper Devonian Sonyea Group of south-central New York: Syracuse, N.Y., Syracuse University, M.S. thesis, Syracuse University, 36 p.

Fisher, D.W., Isachsen, Y.W., and Rickard, L.V., 1970, Geologic map of New York, Hudson-Mohawk sheet: New York Museum and Science Service Map and Chart Series 15, 1 sheet, scale 1:250,000.

Gilbert, R.O., 1987, Statistical methods for environmental pollution monitoring: Hoboken, N.J., Wiley, 320 p.

- Grossman, W.L., 1944, Stratigraphy of the Genesee Group of New York: Geological Society of America Bulletin, v. 55, no. 1, p. 41–76. [Also available at https://doi.org/10.1130/ GSAB-55-41.]
- Hollyday, E.F., 1969, An appraisal of the ground-water resources of the Susquehanna River basin in New York:
 U.S. Geological Survey Open-File Report 69–128, 52 p., 1 pl. [Also available at https://doi.org/10.3133/off69128.]
- Klusman, K., 1999, Determination of transmissivities of bedrock in the Appalachian Plateau as determined from low-stress pumping tests: Troy, N.Y., Rensselaer Polytechnic Institute, M.S. thesis, 77 p.
- Klusman, K., 2004, A procedure for automated analysis of pumping tests of domestic wells: Ground Water, v. 42, no. 6, p. 945–948. [Also available at https://doi.org/10.1111/j.1745-6584.2004.t01-13-.x.]
- Kruseman, G.P., and deRidder, N.A., 1990, Analysis and evaluation of pumping test data (2d ed.): Wageningen, The Netherlands, International Institute for Land Reclamation and Improvement, 377 p.
- MacNish, R.D., and Randall, A.D., 1982, Stratified-drift aquifers in the Susquehanna River basin, New York: New York Department of Environmental Conservation Bulletin 75, 68 p.
- McPherson, W.S., 1993, Hydrogeology of unconsolidated deposits in Chenango County, New York: U.S. Geological Survey Water-Resources Investigations Report 91–4138, 43 p., 3 pls.
- Mills, A.C., 2010, Applying parameter-estimation methods to recovery-test and slug-test analyses: Groundwater, v. 48, no. 4, p. 604–608. [Also available at https://doi.org/10.1111/ j.1745-6584.2009.00650.x.]
- Mills, A., 2019, Comparison of two computational methods for estimating transmissivity based on the Picking equation: Groundwater, Early View article posted December 10, 2019, accessed December 10, 2019, at https://doi.org/10.1111/ gwat.12972.
- Mishra, G.C., and Chachadi, A.G., 1985, Analysis of flow to a large-diameter well during the recovery period: Ground Water, v. 23, no. 5, p. 646–651. [Also available at https://doi.org/10.1111/j.1745-6584.1985.tb01513.x.]
- Papadopulos, I.S., and Cooper, H.H., Jr., 1967, Drawdown in a well of large diameter: Water Resources Research, v. 3, no. 1, p. 241–244. [Also available at https://doi.org/10.1029/ WR003i001p00241.]

Pepper, J.F., and de Witt, W., Jr., 1950, Stratigraphy of the Upper Devonian Wiscoy sandstone and the equivalent Hanover shale in western and central New York: U.S. Geological Survey Oil and Gas Investigations Chart 37, 2 sheets.

Pepper, J.F., and de Witt, W., Jr., 1951, The stratigraphy of the Perrysburg Formation of Late Devonian age in western and west-central New York: U.S. Geological Survey Oil and Gas Investigations Chart OC 45, 1 sheet.

Pepper, J.F., de Witt, W., Jr., and Colton, G.W., 1956, Stratigraphy of the West Falls Formation of Late Devonian age in western and west-central New York: U.S. Geological Survey Oil and Gas Investigations Chart OC 55, 1 sheet.

Picking, L.W., 1994, Analyzing the recovery of a finite-diameter well after pumping at an unknown rate—A substitute for slug testing: Ground Water, v. 32, no. 1, p. 91–95. [Also available at https://doi.org/10.1111/j.1745-6584.1994.tb00615.x.]

Randall, A.D., 2001, Hydrogeologic framework of stratifieddrift aquifers in the glaciated northeastern United States: U.S. Geological Survey Professional Paper 1415B, 179 p.

Randall, A.D., 2020, Field data from brief aquifer tests of domestic wells penetrating bedrock in the Appalachian Plateau of New York and best fits to theoretical curves of aquifer properties: U.S. Geological Survey data release, https://doi.org/10.5066/P9KLZD9M.

Randall, A.D., and Klusman, K., 2004, Analysis of minimally disruptive brief pumping tests of domestic wells completed in bedrock in the Appalachian Plateau of New York: U.S. Geological Survey Open-File Report 2004–1276, 8 p. [Also available at https://doi.org/10.3133/ofr20041276.]

Rickard, L.V., 1975, Correlation of the Silurian and Devonian rocks in New York State: New York Museum and Science Service Map and Chart Series 24, 16 p., 4 pls.

Rickard, L.V., and Fisher, D.W., 1970, Geologic map of New York, Finger Lakes: New York Museum and Science Service Map and Chart Series 15, 1 sheet, scale 1:250,000. Sevon, W.D., 1985, Nonmarine facies of the Middle and Late Devonian Catskill coastal alluvial plain, *in* Woodrow, D.L., and Sevon, W.D., The Catskill delta: Geological Society of America Special Publication 201, 246 p.

Sutton, R.G., 1960, Stratigraphy of the Naples Group (Late Devonian) in western New York: New York Museum and Science Service Bulletin 380, 56 p.

Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Transactions, American Geophysical Union, v. 16, no. 2, p. 519–524. [Also available at https://doi.org/10.1029/TR016i002p00519.]

U.S. Environmental Protection Agency, 2006, Data quality assessment—Statistical methods for practitioners: U.S. Environmental Protection Agency Office of Environmental Information QA/G–9S, 198 p.

U.S. Environmental Protection Agency, 2009, Statistical analysis of groundwater monitoring data at RCRA facilities—Unified guidance: U.S. Environmental Protection Agency Office of Resource Conservation and Recovery 530/R–09–007, 884 p.

U.S. Geological Survey, 2019, USGS water data for the Nation: U.S. Geological Survey National Water Information System database, accessed May 8, 2019, at https://doi.org/10.5066/F7P55KJN.

Wetterhall, W.S., 1959, The ground-water resources of Chemung County: New York Water Power and Control Commission Bulletin GW–40, 58 p.

Williams, G.Q., 1951, The stratigraphy of the type Ithaca Formation: Ithaca, N.Y., Cornell University, Ph.D. dissertation, 112 p.

Wright, N.A., 1973, Subsurface Tully Limestone, New York and northern Pennsylvania: New York Museum and Science Service Map and Chart Series 14, 15 p., 3 pls.

For more information about this report, contact: Director, New York Water Science Center U.S. Geological Survey 425 Jordan Road Troy, NY 12180–8349

dc_ny@usgs.gov (518) 285–5602 or visit our website at https://www.usgs.gov/centers/ny-water

Publishing support provided by the Pembroke Publishing Service Center

WUSGS