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Estimating Flood Magnitude and Frequency on Gaged and

Ungaged Streams in Maine
By Pamela J. Lombard and Glenn A. Hodgkins

Abstract

Accurate estimates of flood frequency and magnitude
on rivers and streams in Maine are a key component of
effective flood risk management, flood mitigation, and flood
recovery programs for the State. Flood-frequency estimates
are published here for 148 streamgages in and adjacent to
Maine. Equations are provided for users to compute flood-
frequency estimates at any location on a stream that does not
have a streamgage. Estimates and equations are presented
for peak flows with annual exceedance probabilities (AEPs)
of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent. AEPs correspond
to flood recurrence intervals of 2, 5, 10, 25, 50, 100, 200,
and 500 years, respectively. New estimates use a regional
skew coefficient of 0.02 with a standard error of prediction of
0.30 developed specifically for Maine as a part of this work.

Equations are designed for use at ungaged sites without
substantial flow regulation or urbanization in Maine, with
drainage areas between 0.26 and 5,680 square miles. The
equations were developed from streamflows and basin char-
acteristics at 124 unregulated streamgages using generalized
least-squares regression techniques. Explanatory variables
used in the equations for computing peak flows are drainage
area, percentage of area in the basin that contains wetlands,
and basin mean 24-hour rainfall intensities. The average
standard error of prediction (ASEP) for these equations ranges
from —31.5 to 45.9 percent for the 50-percent AEP and from
—34.2 to 52.0 percent for the 0.2-percent AEP. Equations that
use only drainage area are provided for use in cases where
lower accuracy is acceptable. The ASEP for estimating peak
flows with these simpler equations ranges from —40 to 66 per-
cent for the 50-percent AEP and from —44 to 79 percent for the
0.2-percent AEP.

Final peak flows at unregulated streamgages are com-
puted as weighted averages between the at-station peak flows
and peak flows computed at those same sites using the regres-
sion equations. Peak flow estimates and equations presented
here are accessible in the U.S. Geological Survey StreamStats
application. StreamStats is a web application that computes
selected basin characteristics and estimates of peak flows and
other available streamflow statistics for user-selected streams
in Maine.

Introduction

Flood-frequency analysis is a statistical technique used to
predict the magnitude and frequency of peak flows in a stream.
The objective of frequency analysis is to relate the magnitude
of peak flows to their frequency of occurrence through a prob-
ability distribution. The probabilities computed correspond to
the annual exceedance probability (AEP), or the probability
in any year that a peak flow is exceeded. The flood-frequency
analyses in this report, prepared in cooperation with Maine
Department of Transportation, follow the methodology
described in the current version of the national guidelines for
flood-frequency analyses, hereafter referred to as “Bulletin
17C” (England and others, 2018).

A peak-flow frequency analysis is based on a statistical
evaluation of annual maximum instantaneous flows collected
at streamgages. Previous peak-flow studies in Maine and
elsewhere have commonly described peak-flow frequency
relative to recurrence intervals, which are the inverse of AEPs.
Describing peak-flow frequency in terms of recurrence inter-
vals has caused some confusion; for example, use of the term
“100-year flood,” where 100 years is the recurrence interval,
can give the false impression that a flow will occur only once
every 100 years. In fact, the flow has a 1-percent chance of
occurring in any given year. As a result, the U.S. Geological
Survey (USGS) and other agencies have encouraged the use
of AEP instead of recurrence interval (Holmes and Dinicola,
2010). Streamflows at AEPs of 50, 20, 10, 4, 2, 1, 0.5, and
0.2 percent correspond to recurrence intervals of 2, 5, 10, 25,
50, 100, 200, and 500 years, respectively. Rainfall intensities
are typically given in terms of recurrence intervals and thus
will be referenced by recurrence interval in this report.

The Bulletin 17C methodology (England and others,
2018) prescribes the use of the log-Pearson type 111 distribu-
tion of the peak-flow data as the basic distribution for defin-
ing the annual peak flow series, consistent with the previous
guidelines (Interagency Advisory Committee on Water Data,
1982). The log-Pearson type III distribution requires estimates
of three moments; the mean, the standard deviation, and the
skew coefficient of the population of logarithms of annual
instantaneous peak flows at each streamgage.
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The mean, the standard deviation, and the skew coeffi-
cient can be estimated from the available sample data (annual
peak flows); however, a skew coefficient calculated from a
small sample tends to be an unreliable estimator of the popula-
tion skew coefficient. Accordingly, the guidelines in Bulletin
17C indicate that the skew coefficient calculated from at-
station sample data (station skew) needs to be weighted with
a regional skew determined from an analysis of selected long-
term streamgages in the study region. A new regional skew
was computed for Maine as a part of this study.

The guidelines for flood-frequency analyses have under-
gone several updates since they were first published in 1967.
Recent updates (England and others, 2018) include the adop-
tion of a generalized representation of flood data that allows
for interval and censored data types; a new method, called
the expected moments algorithm (EMA), which extends the
method of moments so that it can accommodate interval data;
a generalized approach to the identification of low outliers
in flood data using the multiple Grubbs-Beck test (MGBT;
Grubbs and Beck, 1972; Cohn and others, 2013); and an
improved method for deriving regional skew coefficients and
computing confidence intervals.

Purpose and Scope

This report provides estimates of peak flows at AEPs of
50, 20, 10, 4,2, 1, 0.5, and 0.2 percent (recurrence intervals
of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for
streamgages in and adjacent to Maine and describes meth-
ods, including the use of equations developed from regres-
sion analyses, for estimating peak flows at selected AEPs
on ungaged Maine streams without substantial regulation or
urbanization. In addition, this report presents a method for
estimating the standard error of prediction for each estimate
made with the regression equations and describes methods for
transferring a flood-streamflow estimate for a selected AEP at
a streamgage to a site upstream or downstream based on the
change in drainage area.

Description of Study Area

The State of Maine (fig. 1), in the northeastern United
States, has a land area of 30,843 square miles (mi2); with a
population of 1.34 million people (U.S. Census Bureau, 2018).
Maine is largely rural and forested with rolling topography
of moderate to low relief throughout the State except for the
high relief of the Appalachian Mountain Range in west-central
Maine. Land elevation ranges from sea level at the Atlantic
coast (Gulf of Maine) to 5,267 feet (ft; 1,606 meters [m]) at
the peak of Mount Katahdin (U.S. Geological Survey, 2001).
The physiographic characteristics of west-central Maine
extend into northernmost New Hampshire. The study basins
are mostly forested, with deciduous or evergreen growth.

Open water covers as much as 19 percent of the basin areas
and wetlands of all types compose from 0 to 29 percent of the
study basin areas.

Maine has a temperate climate with mild summers
and cold winters. Climatological averages computed for the
30-year period from 1981 to 2010 indicate a mean annual
air temperature for Maine of 42.5 degrees Fahrenheit (°F;

5.8 degrees Celsius [°C]). Mean annual air temperature
ranged from 37.3 °F (2.9 °C) at Allagash to 47.8 °F (8.8 °C)
at Sanford (National Climatic Data Center, 2015). Maine
has a mean annual precipitation of 45.4 inches (in.) for the
30-year period from 1981 to 2010 (National Climatic Data
Center, 2015).

Annual peak flows in Maine typically occur during spring
and fall. Frontal systems, thunderstorms, tropical storms,
coastal storms, nor’easters (most frequent and strongest from
September through April), snowmelt, and wet antecedent soil
moisture conditions can all contribute to annual floods in the
Northeast. In spring, snowmelt, rain on snow, or saturated
or frozen soils are a primary cause of flooding in Maine.
Although fall floods in Maine can be caused by hurricane or
tropical-storm related precipitation, hurricane related flood-
ing is more prevalent in the southern New England States
(National Oceanic and Atmospheric Administration, 2013).
Severe flooding over a small area may occur at any time as
the result of an intense rainfall event (for example, a thunder-
storm) or an obstruction in the flow of a stream or river such
as woody debris or sediment blocking a culvert.

Major floods on Maine rivers occurred in April 1923,
March 1936, and May 1953 (all resulting from extreme pre-
cipitation on top of heavy snowpacks; Maloney and Bartlett,
1991); April 1987 (snowmelt, combined with rain from two
slow moving low pressure systems; Fontaine and Nielsen,
1994); October 1996 (rain from a coastal low pressure system
combined with moisture from Hurricane Lili; Hodgkins and
Stewart, 1997); May 2006 (15 in. of rain from a stalled low
pressure system in southern Maine; Stewart and Kempf,
2008); April 2007 (rain on snow in southern Maine; Lombard,
2009); and spring 2008 (rain on snow in northern Maine;
Lombard, 2010). A summary of historical flooding in major
drainage basins in Maine from 1970 to 2007 was documented
by ENSR Corporation (2007).

Previous Studies

Peak-flow equations were developed for Maine in 1975
(Morrill, 1975) and updated in 1999 (Hodgkins, 1999) using
regional regression techniques. The 1975 equations were
based on drainage area, main-channel slope, and the area of
lakes and ponds in the basin to estimate the 2- to 100-year
peak-flow recurrence intervals. Data for the equations were
based on peak-flow records at 60 streamgages throughout
Maine. Estimates of the error of the equations were not
reported (Morrill, 1975). The updated 1999 equations were
based on drainage area and the percentage of wetlands to
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predict 2- to 500-year peak-flow recurrence intervals. Data for
these equations were from 98 streamgages and estimates of
error were provided (Hodgkins, 1999). Equations for estimat-
ing peak flows at small basins (0.3 to 12 mi2) in Maine were
published in 2015 (Lombard and Hodgkins, 2015). A regional
skew of 0.029 with a mean square error (MSE) of prediction
of 0.088 was calculated for Maine in 1999 (Hodgkins, 1999)
using a weighted mean at each of the 44 streamgages ana-
lyzed, with the weight being the number of years of record at
the streamgage. Peak flow estimates, equations, and regional
skew values calculated for Maine in previous studies are
superseded by this report.

Data Compilation

Annual peak-flow data were compiled to compute the
magnitude and frequency of peak flows for 148 streamgages
in Maine (127), and within 20 miles of the Maine border in
New Hampshire (16) and New Brunswick, Canada (5; 4 of
which are operated by Environment and Climate Change
Canada, and 1 of which is operated by USGS; fig. 1).
Streamgages used in the analyses are currently operating
(2019) or were discontinued but have a minimum of 10 years
of record.

Basin characteristics listed in appendix table 1.1 were
compiled at 124 of the 148 streamgages because they drain
rural, unregulated basins (basins without substantial storage
from dams), and thus were used to derive regional regression
equations for estimating peak-flow statistics at ungaged sites
(fig. 1). Streamgages used to compute the regression equations
include 103 streamgages in Maine, 16 in New Hampshire, and
5 in New Brunswick, Canada.

The remaining 24 Maine streamgages drain regulated
basins. If a streamgage basin had more than 4.5 million cubic
feet of usable storage per square mile of drainage area, it
was considered regulated (Benson, 1962). Data from these
regulated streamgages were used to estimate the magnitude
and frequency of flood flows for these AEPs. These AEPs can
be used to estimate peak flows at nearby ungaged sites on the
same river as the regulated streamgage, but they were not used
in the development of the regional regression equations for
estimating AEPs at natural ungaged sites.

Peak-Flow Data

Annual instantaneous peak-flow data were down-
loaded from the USGS National Water Information System
database (fig. 1; U.S. Geological Survey, 2019a) and from
the Environment and Climate Change Canada database
(Environment and Climate Change Canada, 2018). Data
include peak flows from current and discontinued, continuous-
record streamgages and from current and discontinued
crest-stage gages (streamgages that record only the peak-flow
information). Data through water year 2018 were used at all

streamgages where available. Analyses included data through
water year 2019 at a small number of streamgages (Kiah and
others, 2019). The water year is designated by the calendar
year in which it ends. It begins October 1 of the previous
calendar year and ends September 30. Peaks were not used if
they were known to be affected by dam breaks or were daily
mean peaks rather than instantaneous peaks.

Physical and Climatic Basin Characteristics

For the streamgages included in this investigation,
more than 80 basin characteristics were selected and tested
as potential explanatory variables in the regression analyses
based on their potential relations to peak flows and the ability
to measure the basin characteristics using digital datasets and
a geographic information system (GIS; appendix table 1.1)
Data generated during this study are available as a USGS data
release (Lombard, 2020). The ability to measure the basin
characteristics using GIS is important to facilitate automation
of the process for measuring the basin characteristics and solv-
ing the regression equations in StreamStats (U.S. Geological
Survey, 2020). The name, units of measure, method of mea-
surement, and source data for each basin characteristic are
listed in appendix table 1.1. These variables can be broadly
grouped into topography, climate, hydrology, geology, soils,
and land-use type categories. The study basins used in the
development of the regression equations range in size from
0.26 to 5,680 mi2 (table 1), with mean basin elevations ranging
from 73 ft (22 m) at the coast in southern Maine to 3,350 ft
(1,020 m) in mountainous northern New Hampshire. The
range of values for the explanatory variables used in the final
regression equations can be found in table 1.

Trend Analyses of Peak Flows

Current methods for completing flood-frequency analyses
in Bulletin 17C (England and others, 2018) assume stationar-
ity (the assumption that the statistical distribution of data from
past observations will continue unchanged in the future). This
assumption allows researchers to estimate the flood magnitude
and frequency from past records and apply them to the future
without adjustments. Because of the effects of climate change
and changing land use on peak flows, the assumption of
peak-flow stationarity has recently been questioned (Milly and
others, 2008; Hirsch, 2011). Bulletin 17C, however, specifi-
cally states that the flood-frequency methods presented as a
part of that work do not apply to watersheds where flood flows
are appreciably altered by reservoir regulation, basin changes,
hydrologic nonstationarities, climate variability, or climate
change (England and others, 2018).

Trends in peak flows in New England documented in the
literature are complex. Hodgkins and Dudley (2005) docu-
mented increases in annual peak flows at 22 out of 27 sites
in New England that had an average of 71 years of record
through 2002, with 8 of those increases being statistically



Table 1. Range of explanatory variables used in the development
of the regression equations for estimating peak flows at selected
annual exceedance probabilities for ungaged, unregulated
streams in Maine.

[All streamgages are shown in figure 1. RI, recurrence interval]

Explanatory variable Minimum Maximum  Mean
Drainage area, in square miles 0.26 5,680 249
Percentage of basin covered by 0 29.4 10.6
wetlands

24-hour rainfall with 2-year 1.92 4.17 2.89
RI (inches)

24-hour rainfall with 5-year 2.48 5.38 3.62
RI (inches)

24-hour rainfall with 10-year R ~ 2.84 6.38 4.22
(inches)

24-hour rainfall with 25-year Rl 3.30 7.75 5.04
(inches)

24-hour rainfall with 50-year Rl ~ 3.65 8.79 5.66
(inches)

24-hour rainfall with 100-year 3.99 9.88 6.31
RI (inches)

24-hour rainfall with 200-year 5.26 11.1 7.09
RI (inches)

24-hour rainfall with 500-year 5.95 13.1 8.21
RI (inches)

significant (probability less than p<0.1). Collins (2009) deter-
mined that 25 out of 28 streamgages in New England with an
average of 75 years of record through 2006 had increasing
peak flows, 10 of which were statistically significant (p<0.1).
Collins also determined a step-change increase around 1970.
Hodgkins (2010) determined that annual peak flows
have increased at 22 out of 28 streamgages in Maine during
the last century. The median change in annual peak flows for
the 20 unregulated streamgages in the study was an increase
of 18.4 percent based on a linear change and an increase of
15.0 percent based on a step change in 1970. Hodgkins also
compared 30-year subperiods with the full period of record
(50 years or more) at 28 long-term streamgages in Maine and
determined that increases in the 5- and 100-year flows based
on recent years of record are modest when compared to peak
flows based on complete periods of record and are well within
the variability of the estimates. Furthermore, increases dur-
ing the 1967-96 subperiod were greater than the most recent
subperiod of 1977-2006. Hodgkins (2010) concluded that
flood-frequency analyses are sensitive to very high peak flows
that may occur once every century or less, and thus, it can be
problematic to use only more recent periods of record such as
the last 30 years of data, especially when that period does not
include the peak of record. The peak of record occurred more
than 30 years ago in more than one-half of the sites in Maine.
Analyzing only the most recent period of record at these sites

Data Compilation 5

to account for any observed trends that may be due to climate
change would mean that the peak of record is not included

in the analyses of these sites, biasing the long-term estimates
low. In a more recent study, peak flows at minimally altered
basins in Maine increased by an average of 29 percent from
1941 to 2015 and 19 percent from 1966 to 2015 (Dudley and
others, 2018; Hodgkins and others, 2019).

In another study, potential future peak flows with 50- and
I-percent AEPs were modeled using the Precipitation-Runoff
Modeling System (Hodgkins and Dudley, 2013). For likely
changes projected for the northeastern United States for the
middle of the 21st century (temperature increase of 3.6 °F and
precipitation increases of 0 to 15 percent), peak-flow changes
at the four coastal Maine basins in this study are modeled to
be evenly distributed between increases and decreases of less
than 25 percent. Decreases in winter snowpack modeled to
occur with increasing air temperatures offset increased flows
because of increased precipitation (Hodgkins and Dudley,
2013). Demaria and others (2016) project decreased 3-day
I-percent AEP peak flows in Maine by the middle of the cur-
rent century.

Hodgkins and others (2017) analyzed the occurrence
of major floods (25- to 100-year recurrence interval floods)
at 645 stations across North America. This analysis required
that streamgage data be grouped within large regions. There
were no significant long-term trends in major-flood occurrence
across North America from 1951 to 2010 but there were some
significant relations between major floods and the Atlantic
Multidecadal Oscillation.

Stationarity is still a primary assumption in Bulletin 17C
(England and others, 2018). The guidelines recommend incor-
porating the effect of climate variability or change in flood
risk if sufficient scientific evidence supports the attribution
and quantification of any increased flood risk (Hirsch, 2011;
England and others, 2018).

Methods for Trend Analyses

Unregulated streamgages in Maine with at least
30 years of record, which are typically considered long-term
streamgages, were examined for the existence of trends. Four
periods were analyzed for trends in peak flows at streamgages:
30, 50, 70, and 90 years, using data through 2016. All 10-year
blocks for each period were required to be at least 80-percent
complete so that no part of the time series of annual instanta-
neous peak flows would have substantial missing data. These
length and completeness criteria resulted in 23 streamgages
for the 30-year period, 20 for the 50-year period, 16 for the
70-year period, and 5 for the 90-year period.

The magnitudes of trends for annual instantaneous peak
flows were computed with the Sen’s slope (also known as the
Kendall-Theil robust line), which is the median of all pos-
sible pairwise slopes in each time series (Helsel and Hirsch,
2002). The significance of trends over time is very sensi-
tive to assumptions of whether underlying hydroclimatic
data are independent, have short-term persistence (STP) or
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have long-term persistence (LTP) (Cohn and Lins, 2005;
Koutsoyiannis and Montanari, 2007; Hamed, 2008; Khaliq and
others, 2009; Kumar and others, 2009; Hodgkins and Dudley,
2011). Persistence refers to serial correlation or year-to-year
dependence in time-series data. In STP, the correlation over
time decays exponentially or faster as more years are included.
For LTP, however, the decay is slower (Koutsoyiannis and
Montanari, 2007). The existence of persistence results in a
violation of the assumption of independent data and an over-
estimation of the significance of trends (Cohn and Lins, 2005).
Although the presence of LTP in hydroclimatic data series is
difficult to prove without very long records (generally greater
than 100 years) (Vogel and others, 1998; Khaliq and others,
2009) the significance of trends was computed using methods
that consider the possibility of STP and LTP.

Because the long-term time-series structure of peak-flow
data is not well understood, we report temporal trend signifi-
cance with three null hypotheses of the serial structure of the
data: independence, STP, and LTP (Hamed and Rao, 1998;
Hamed, 2008). Trends were considered statistically significant
at the p-value of less than or equal to 0.05.

Trend Results

Peak-flow trend results depend on the period of record
considered and assumptions about the serial correlation
structure of the annual peak flows. For the 30-year period
(1987-2016), 19.0 percent of streamgages (15/79) have sig-
nificant positive trends if independence of annual peak flows
is assumed. If STP is assumed, 10.1 percent of streamgages
(8/79) have significant positive trends, and if LTP is assumed,
no streamgages have significant trends. There are no signifi-
cant negative trends for any assumption of the serial correla-
tion structure.

For the 50-year period (1967-2016), there are many
fewer significant trends than for 30-year trends; 6.2 percent of
streamgages (4/64) have significant positive trends if inde-
pendence of annual peak flows is assumed. If STP is assumed,
1.6 percent (1/64) of streamgages have significant positive
trends, and none have significant trends if LTP is assumed. As
with 30-year trends, there were no significant negative trends.

There was a high percentage of significant positive trends
for the 70-year period (1947-2016) with the assumption of
independence; 47.7 percent of streamgages were significant
(21/44). If STP is assumed, this percentage decreased to
36.4 percent (16/44), and if LTP is assumed, this percentage
decreased to 9.1 percent (4/44). For the few streamgages with
adequate data over 90 years (1927-2016), 33.3 percent (3/9)
had significant increases if independence or STP is assumed
and 11.1 percent (1/9) had significant increases if LTP is
assumed. No streamgages had significant decreases for the
70- or 90-year period.

In summary, these analyses show some evidence of
increasing peak flows over time and no evidence for decreas-
ing annual peak flows. The difference in the percentage of sig-
nificant positive trends based on the period analyzed indicates

that multidecadal oscillations may be present and influencing
trends in the magnitude of peak flows. For example, many of
the streamgages with significant increasing peak-flow trends
for the 70-year period (1946-2015) had many low-magnitude
peaks before 1965 or 1970; there are many fewer significant
trends for the 50-year period (1966-2015).

Stationarity in flood-frequency analyses should be the
default assumption, unless one can justify the nonstationarity
assumption (Matalas, 2012; Serinaldi and Kilsby, 2015; Salas
and others, 2018; Ryberg and others, 2020). This includes
understanding the physical processes causing trends. This
trend analysis indicates that peak-flow trends can depend on
the period analyzed and can vary substantially from site to
site, making it difficult to attribute Maine regional trends to
a known cause that is expected to continue into the future.
Observed significant historical trends may be affected by
multidecadal oscillations, making it uncertain if trends will
continue. Because of the lack of strong and consistent statisti-
cal evidence of significant long-term regional peak-flow trends
throughout Maine, the traditional assumption of stationarity is
used here with no adjustment for trends.

Flood Magnitude and Frequency at
Streamgages

Flood-frequency estimates for streamgages are computed
by fitting the series of annual peak flows to a known statistical
distribution. Flood-frequency estimates for the current study
were computed by fitting base 10 logarithms (log;,) of the
annual peak flows to a log-Pearson type III frequency distribu-
tion (England and others, 2018). Fitting the distribution to a
series of annual peak flows requires calculating three statistical
moments; the mean, standard deviation, and skew coefficient
of the logarithms of the annual peak flows.

The USGS computer program PeakFQ version 7.3 (Flynn
and others, 2006) was used to fit the distribution and derive the
50, 20, 10, 4,2, 1, 0.5, and 0.2-percent AEP flows (recurrence
intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respec-
tively) for gaged sites. PeakFQ implements Bulletin 17C
procedures for flood-frequency analysis of streamflow records
including the EMA and MGBT techniques for flood-frequency
determinations (Flynn and others, 2006; England and oth-
ers, 2018). The output from PeakFQ includes estimates of the
parameters of the log-Pearson type III distribution, including
the logarithmic mean, standard deviation, skew, and MSE of
the skew. The output graph includes the fitted frequency curve,
systematic peaks, low outliers, censored peaks, interval peaks,
historical peaks, thresholds, and confidence intervals.

Peak-flow records of streamgages contain two types of
data: (1) systematic, with a peak-flow value recorded for each
year, and (2) historical, or isolated measurements made out-
side the systematic period of record (typically during extreme
hydrologic conditions). Systematic and historical peaks are
occasionally identified as “censored,” which means that the



actual peak flow is uncertain, and the peak is documented as
greater than or less than a given value. The EMA can make
better use of censored peaks than did previous methods. In
addition, the knowledge that a flow would have been noticed
and measured if it had occurred (the perception threshold)
provides valuable information for the peak-flow frequency
analysis. The EMA method allows the use of flow intervals
and perception thresholds to describe conditions outside the
systematic record. Flow intervals describe the uncertainty
associated with a peak flow by defining the peak flow as
somewhere within a range of flows rather than as a known
value. The definition of the perception thresholds is based on
historical documentation and anecdotal information. General
perception threshold and flow interval settings for the EMA
analysis follow England and others (2018) and are described
in table 2. Perception thresholds and periods of record for
annual peak-flow records used in this analysis are provided in
appendix table 1.2 and in Lombard (2020).

PeakFQ uses the MGBT for fitting frequency curves and
identifying potentially influential low floods, also referred
to as low outliers. Low outliers can have high leverage or
influence in fitting the frequency curve to the record of peak
flows, which results in a poor fit of the frequency curve at
lower AEPs (larger floods). The peak-flow statistics most
frequently used for flood protection and infrastructure design
are the streamflows with low AEPs (1, 0.5, and 0.2 percent).
Additionally, low outliers often are considered to reflect physi-
cal processes that are not necessarily related to the processes
associated with large flood events, and their use in the fre-
quency analysis should be limited (Cohn and others, 2013).

Several peak-flow records analyzed contained outli-
ers less than a potentially influential low-flood threshold.
Although the low-outlier threshold is typically determined by
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PeakFQ, it can also be set manually based on visual inspec-
tion of the peak-flow distribution. For this study, all fitted
frequency curves were visually examined in addition to
automated screening; this resulted in some deviation from the
automated thresholds as determined by PeakFQ. Specifically,
the low-outlier threshold values set by PeakFQ resulted in
exclusion of 12 and 45 of the observations as low outliers at
USGS sites 01017000 (Arostook River at Washburn, Maine)
and 01055000 (Swift River near Roxbury, Maine), respec-
tively. Thus, the low-outlier threshold values were manually
lowered to 10,000 and 2,500 cubic feet per second, respec-
tively, for these sites to include additional observations and
better reflect the distribution of the peaks. For all other sites,
the low-outlier thresholds determined by PeakFQ and MGBT
were deemed appropriate.

Regional Skew

The skew coefficient is one of the three moments of the
log-Pearson type III distribution and measures the asymmetry
of the distribution of annual peak flows. The skew coefficient
is zero when the mean of the annual series equals the median
(the 50th percentile value in a sample) and the mode (the most
common value in a sample); the skew coefficient is positive
when the mode and median are less than the mean and nega-
tive when the median and mode exceed the mean. The skew
coefficient is strongly affected by the presence of outliers.
Large positive skews typically are the result of high outli-
ers, and large negative skews typically are the result of low
outliers.

The station skew coefficient, calculated using the annual
peak-flow record for a streamgage, is sensitive to extreme
events that may occur infrequently; therefore, Bulletin 17C

Table 2. General perception threshold and flow interval settings applied to various scenarios in the expected moments algorithm
analysis to estimate peak-flow statistics at streamgages in and near Maine.

Perception thresholds

Flow intervals

Annual scenario or peak-flow type

Minimum Maximum Minimum Maximum
Systematic record peak, known with confidence 0 Infinity Peak Peak
Systematic record peak, peak greater than 0 Peak Peak Infinity
stated value
Historical peak! Historical peak Infinity Historical peak  Historical peak
Crest-stage gage peak within measurable range  Lowest flow measurable by gage Infinity Peak Peak
Crest-stage gage peak less than measurable Lowest flow measurable by gage Infinity 0 Crest-stage gage base
range, peak less than stated value
Gaps in systematic record, no other available Infinity Infinity 0 Infinity
information
Gaps in systematic record, additional informa-  Historical peak Infinity 0 Historical peak

tion available from historical peak(s)?

IFor streamgages with multiple historical peaks, the lowest historical peak generally was used to define the perception thresholds.

2The selection and application of perception thresholds and flow intervals for gaps in systematic record were subjective and site dependent. See appendix

table 1.2 for site-specific information.
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(England and others, 2018) recommends weighting the station
skew with a regional skew coefficient to better represent long-
term conditions at each station. The regional skew coefficient
is calculated using station skew coefficients for stations with
longer annual peak-flow record within the region (stations
with at least 30 years of record). The weighted skew coef-
ficient for a given station is then computed as the weighted
average of the regional skew coefficient and the station skew
coefficient; weights are assigned according to the MSE of

the regional skew coefficient and the MSE of each station
skew value. Flood-frequency estimates for all stations with
unregulated flow records were computed using this weighted
skew method.

The national method for computing regional skew was
updated in 2018 (Bulletin 17C, England and others, 2018).
The Bulletin 17C guidelines recommend using a Bayesian
weighted least-squares/Bayesian generalized least-squares
(B-WLS/B-GLS) regression to compute a regional skew
(Veilleux, 2011; Veilleux and others, 2011; England and oth-
ers, 2018). The B-WLS/B-GLS method accounts for the pre-
cision of the skewness estimator for each station depending on
record length, accounts for the spatial cross correlation among
stations, and provides a reasonable description of the model-
error variance (the error resulting from an imperfect model)
when it is small compared to the sampling-error variance
(the error that results from only using a sample of the entire
population). This technique is particularly appropriate for
flood-flow frequency studies computed using EMA (England
and others, 2018).

The B-WLS/B-GLS methods recommended by
Bulletin 17C (England and others, 2018) are used here for
calculating effective (pseudo) record length (Pgy ), unbiasing
at-station skew and MSE estimates, and developing cross-
correlation models. First, an ordinary least-squares (OLS)
regression is used to develop an initial regional skewness
model that is used to generate an initial stable regional skew-
ness coefficient estimate for each site. That stable regional
estimate is the basis for computing the variance of each at-
station skewness coefficient estimator used in the Weighted
Least-Squares (WLS) regression. Next, a B-WLS regres-
sion is used to generate estimators of the regional skewness
coefficient model parameters. Finally, B-GLS is used to
estimate the precision of those B-WLS parameter estima-
tors, to estimate the model-error variance and the precision
of that variance estimator, and to compute various diagnostic
statistics (England and others, 2018). Multiple regional skew
studies documenting this methodology have been published
for areas throughout the United States; for example, in the
southeastern United States (Feaster and others, 2009; Gotvald
and others, 2009; Weaver and others, 2009), California (Parrett
and others, 2011; Gotvald and others, 2012), lowa (Eash and
others, 2013), Arizona (Paretti and others, 2014), Missouri
(Southard and Veilleux, 2014), Vermont (Olson, 2014), and
New England (Veilleux and others, 2019). These studies can
be accessed at U.S. Geological Survey (2019b).

Bulletin 17C advises the use of large multistate regional
skew studies to determine regional skew values to be weighted
with at-station skew values (England and others, 2018). Initial
investigation of at-station skews throughout New England,
however, determined that peak-flow distributions, and thus
unbiased station skew values in Maine, deviate from the
pattern of at-station skew values for the wider New England
region (Veilleux and others, 2019). This is likely due to differ-
ing hydrologic drivers; storms in Maine are less likely to be
caused by hurricanes than they are elsewhere in New England.
Further, the greater snowpack in Maine, especially in northern
and mountainous areas of the State, likely contributes to the
distribution of peaks in Maine differing from the rest of New
England. To accurately capture these hydrologic patterns spe-
cific to Maine, a regional skew was calculated for Maine that
includes streamgages in or within 20 miles of Maine.

Calculation of Maine Regional Skew Coefficient

Site Selection

A total of 51 unregulated USGS streamgages in Maine
or adjacent States were selected for the calculation of the
Maine regional skew after removing sites with insufficient
record length or redundancy. Sites were removed if they did
not have at least 20 years of record through water year 2017.
Of the sites, 20 percent have record lengths between 20 and
30 years, with the remainder having record lengths greater
than 30 years. If sites were nested (the drainage area of one
streamgage is contained within the drainage area of another
streamgage), and the ratio of the drainage area of the larger
basin divided by the drainage area of the smaller basin was
less than or equal to 5, the sites were considered potentially
redundant, and the site with the shorter period of record was
removed (Eash and others, 2013). The 51 sites used in this
analysis includes 38 sites in Maine, § sites in New Hampshire,
and 5 sites in Canada (appendix table 1.3; Lombard, 2020).

Calculation of Pseudorecord Lengths and At-Station
Skews

Historical periods (periods during which data about
occurrence or nonoccurrence of large floods were collected
before establishing systematic protocols) at many of the sites
provide valuable information about peak-flow distributions
that can be incorporated using the EMA; however, it is less
information than would be provided by an equivalent number
of systematic peaks. Pr; values were calculated for each site
in this study to take systematic record and historical peri-
ods into account and weight them appropriately (appendix
table 1.3; Lombard, 2020). The Py is used for unbiasing the
station skew and is used in the cross-correlation model. If a
site does not have any historical period, the Py is equivalent
to the systematic record. Calculations used to compute the Py
are described in Eash and others (2013).



At-station skews and their MSEs were initially deter-
mined for each site in the skew analysis by use of PeakFQ
(appendix table 1.3; Veilleux and others, 2014; Lombard,
2020), the USGS program for implementing flood-frequency
analyses as outlined in Bulletin 17C. In contrast to peak-flow
estimation methods wherein the upper end of the distribution
is of primary importance, the flow distribution is important for
skew estimation; low-outlier thresholds that result in fre-
quency curves that best fit the flow distributions are desirable.

Bias was removed from the initial skewness values
using Py; values and correction factors developed by Tasker
and Stedinger (1986) and used in Reis and others (2005).
Unbiased at-station skew values and their MSEs are presented
in appendix table 1.3 (Lombard, 2020) for each streamgage in
this analysis.

Cross-Correlation Model

A cross-correlation model for the annual peaks in Maine
was developed using annual peak flows from 13 sites with at
least 80 years of concurrent peaks, resulting in 72 streamgage
pairs of concurrent peaks. A logit model, termed the Fisher Z
transformation (Z), provided a convenient transformation of
the sample correlations, r;; from the (-1, +1) range to the (o,
+00) range:

Z = log(1=). (1)

Various models relating the cross correlation for
streamgages i and j, p;;, to various basin characteristics
were considered. The model that was adopted uses only one
explanatory variable for estimating p;; and is based on the dis-
tance between the basin centroids, D;;, as the only explanatory
variable (Veilleux and others, 2019):

ij>

exp(2Z;)— 1
W 2

Pij =
where
Z;  isequal to exp (0.2021-0.0067*Dy)).
The cross-correlation model was used to estimate streamgage-
to-streamgage cross correlations for concurrent annual peak
flows at all streamgage pairs used in this study.

Maine Regional Skew Results

Many basin characteristics including drainage area, basin
perimeter, mean basin elevation, mean basin slope, channel
length, stream density, mean annual precipitation, and percent-
age of basin wetlands were tested as potential explanatory
variables in the regional skew equation. None of these basin
characteristics were significant in explaining site-to-site vari-
ability in skewness, and thus, a constant model that does not
vary with site characteristics was selected to predict regional
skew for Maine.
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A constant regional skew coefficient of 0.020 was cal-
culated for Maine and replaces the previous skew value of
0.029 published in Hodgkins (1999). This new regional skew
coefficient has a model-error variance of 0.08, an average vari-
ance of prediction at a new site (4VP,,,,,) of 0.09. The AVP,,,,
is equivalent to the MSE used in Bulletin 17B (Interagency
Advisory Committee on Water Data, 1982) to describe the
precision of the regional skewness. The standard error of pre-
diction (square root of the AVP,,,,) for the new regional skew
is 0.30. The estimated fraction of the variability in the true
skewness from site to site explained by the model is typically
described by the Pseudo R(2/6), in percent, (Gruber and oth-
ers, 2007; Parrett and others, 2011). A constant model does not
explain any variability, so the Pseudo R(2/0) equals 0.

Bayesian Regression Diagnostics for the Maine Regional
Skew

The error variance ratio (EVR) is a modeling diagnostic
used to evaluate whether a simple OLS regression is sufficient
or a more sophisticated Weighted Least-Squares (WLS) or
Generalized Least-Squares (GLS) regression is appropri-
ate. EVR is the ratio of the average sampling-error variance
to the model-error variance. Generally, an EVR greater than
0.20 indicates that the sampling-error variance is not negli-
gible when compared to the model-error variance, indicating
the need for a WLS or GLS regression analysis. The EVR had
a value of 2.3 for the constant model, indicating that the sam-
pling error was large compared to the model error. An OLS
model that neglects sampling error in the streamgage skew-
ness estimators may not provide a statistically reliable analysis
of the data. Given the variation of record lengths from site to
site, it was important to use a WLS or GLS analysis to evalu-
ate the final precision of the model rather than using a simpler
OLS analysis.

The misrepresentation of the beta variance (MBV*)
statistic was used to determine whether a WLS regression was
sufficient or if a GLS regression would be more appropriate
to determine the precision of the estimated regression param-
eters (Griffis, 2006; Veilleux, 2011). For the Maine regional
skew study, the MBV* was equal to 4.3 for the constant model.
This is a large value, indicating the cross correlation among
the skewness estimators influenced the precision with which
the regional average skew coefficient could be estimated, and
thus, a WLS analysis would misrepresent the variance of the
constant in the model. Moreover, a WLS model would result
in underestimation of the variance of prediction, given that
the sampling error in the constant term in both models was
sufficiently large to make an appreciable contribution to the
average variance of prediction. These metrics confirm that the
more robust B-WLS/B—GLS regression approach as outlined
in Bulletin 17C is the best method to use for this study.
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Leverage and Influence

Leverage indicates observations that have a large effect
on the fit of the regression. Influence indicates observations
with large residuals. Influential observations that also have
high leverage have the greatest impact on the resultant model.
High influence is defined as Cook’s D values that are greater
than the threshold of 0.078 computed as 4p/n, where p is 1
for the constant model, and # is the sample size of 51. High
leverage is defined as leverage values that are greater than the
threshold of 0.039 computed as 2p/n. No sites in the regres-
sion analysis had high leverage; the range of leverage values
reflect the variation in record length among sites. The most
influential streamgage was USGS site 01055000 (Swift River
near Roxbury, Maine), with a Cook’s D of 1.63, but it did
not have high leverage or a high residual (at-station residual
rank of 50). Environment and Climate Change Canada site
01AF009, Iroquois River at Moulin Morneault, Canada, had
the largest skew, the largest MSE, and the largest residual
(at-station residual rank of 1) and was 1 of the 16 sites with
high influence, but it did not have high leverage. Indicators
such as leverage and influence are useful for flagging outlier
sites such as 01055000 that behave differently than other sites.
A site being an outlier, however, is not sufficient justification
for removing it from analyses or model development if there
is not a physical reason (such as regulation) to remove it. The
inclusion of outlier sites in the model results in a more realistic
estimate of error for sites not used in the development of
the model.

Estimates of Flood Magnitude and Frequency at
Streamgages

The magnitude of peak flows for selected AEPs for
streamgages used in this study are listed in appendix table 1.4
(Lombard, 2020). At-station EMA estimates are given in
appendix table 1.4 for regulated and unregulated streamgages;
however, regression and weighted estimates are only pro-
vided for the unregulated stations. The streamflows reported
in appendix table 1.4 supersede streamflows reported in
Hodgkins (1999) because of 20 additional years of data and
updated techniques.

Unregulated Streamgages

Three estimates of peak flows are given at unregulated
streamgages (appendix table 1.4). They include the at-station
estimate (EMA), the regression-equation estimate (regression),
and a weighted average of the other two estimates (weighted).

The weighted average is the most accurate estimate, where
available, because the average of the two independent esti-
mates is expected to be more accurate than either of the
independent estimates. It weights the regression equations
more heavily at streamgages that have shorter records and less
heavily at streamgages that have longer records.

Regulated Streamgages

Reservoir storage and operations have the potential to
substantially affect streamflow characteristics. The sample of
annual peak flows for a streamgage is assumed to be rep-
resentative of future peak flows; therefore, use of all peak
flows from a streamgage is not always appropriate. There are
several regulated streamgages in Maine where substantial
regulation was added (sometimes in addition to substantial
regulation already in place) during the period for which annual
peak flows are available. The older, less regulated annual
peak flows were not used in the flow-frequency analyses if
the drainage-basin regulation at the time of the older peaks
differed from the regulation at the time of the newer peaks. In
addition, older peaks were not used if the annual peak-flow
data at a streamgage indicated that the regulation of peak flows
had changed substantially over time.

At-station estimates at regulated stations are computed
using at-station skew values only. Regional skew values do
not necessarily apply to regulated stations and are not incor-
porated into the flow-frequency analyses at these streamgages.
Regression equations are not applicable to regulated
streamgages, and no regression or weighted estimates are
given in appendix table 1.4.

Maximum Recorded Floods

The maximum recorded annual peak flows (appen-
dix table 1.5) plotted in relation to drainage area for each
streamgage in this study are shown in figure 2. Annual peak
flows affected by dam failure, ice jam breach, or a similar
event are not included. A New England regional envelope
curve developed by Crippen and Bue (1977) is also shown in
figure 2 along with a line developed using a regional least-
squares regression analysis indicating the relation between
drainage area and the peak flow with a 1-percent AEP. As
shown in figure 2, the maximum recorded annual peak flows
at streamgages used in this investigation are all below the
regional envelope curve. This figure can be used to evaluate
the reasonableness of flood estimates made by using tech-
niques described in this report.
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Figure 2. Maximum recorded annual peak flows at streamgages in and near Maine in relation to drainage area, and a regional
envelope line and a regression line relating the 100-year peak flow to drainage area.

Flood Magnitude and Frequency at
Ungaged Sites

Regression equations are developed here to estimate peak
flow at ungaged locations (the response variable) using mea-
sured basin characteristics (explanatory variables) calculated
by a GIS at these same stations. This regionalization of the
peak-flow statistics using multiple linear regression follows
standard USGS methods outlined in Farmer and others (2019).
Explanatory variables should make hydrologic sense, explain
a substantial amount of the variability of the response variable,
have a linear relation with the response variable, and be easy
for the user to calculate.

The general form of the regression equations developed
from multiple-linear regression analysis is provided in the fol-
lowing equation:

Yp=bytb | X|+bXo+.. b, X, te, 3)
where
Y, is the magnitude of the peak flow having an
AEP of P percent,
by to b, are the coefficients developed from the
regression analysis,
X to X, are the n explanatory variables (basin

characteristics), and

e; 1isthe residual error (difference between
the observed and predicted values of the
response variable) for site .

When logarithmic transformations are needed to obtain a
linear relation between the explanatory and response variable,
equation 3 takes the form

Yp=1000X,01 Xo52 ... Xpite;. )

A subset of streamgages (124 of the 148) was used to
derive regional regression equations for estimating peak-flow
statistics at ungaged sites because they drain unregulated
rural basins (fig. 1). Streamgages used to compute the regres-
sion equations include 103 streamgages in Maine, 16 in
New Hampshire, and 5 in New Brunswick, Canada.

Exploratory Data Analysis

OLS regression analyses were used for exploratory data
analyses. All-subsets regression in the smwrStats package
(Helsel and Hirsch, 2002) of statistical software R (R Core
Team, 2015) was used to determine the best combinations
of basin characteristics to use as explanatory variables in
the multiple-linear regression equations for estimating AEP
streamflows. The best OLS fit for models with one, two, and
three explanatory variables was evaluated. Linearity, homosce-
dasticity (constant variance in the response variable over
the range of the explanatory variables), and normality in the
relation between explanatory variables and response variables
are important assumptions for OLS and were examined with
component-plus-residual plots (Cook and Weisberg, 1982).
Matrices of scatter plots between estimated peak flows and
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basin and climatic characteristics were created to evaluate
which characteristics had the best visual linear relation for
each statistic and if transformations of variables would be
appropriate to develop relations that were more linear. Various
transformations were evaluated, including log,, natural
logarithm, addition of a constant, square root, and recipro-
cal square root. The log;, transformation resulted in the best
linear relations and most constant variance about the regres-
sion line for all statistical streamflows used as the response
variable, and for many of the explanatory variables including
drainage area.

The final basin characteristics were selected using OLS
and its associated statistical metrics. Explanatory variables in
the OLS models were selected to minimize the standard model
error and to maximize the adjusted coefficient of determina-
tion (adj-R2). Individual points with high leverage or high
influence as identified with Cook’s D statistic were examined
for accuracy and appropriateness (Cook, 1977; Helsel and
Hirsch, 2002). Multicollinearity (where two or more variables
are linearly dependent and thus correlated) was tested for
using variance inflation factors (VIFs). VIFs greater than 3
can indicate possible multicollinearity, and VIFs greater than
10 indicate serious problems (Helsel and Hirsch, 2002). VIFs
were less than 2 for all explanatory variables selected for the
final models, and thus, multicollinearity was unlikely. Serial
correlation was evaluated using the Durbin-Watson test statis-
tic. The nonsignificance of the Durbin-Watson test statistic for
all models indicated that model residuals were independent.

Regional Regression Equations

GLS regression techniques (Stedinger and Tasker, 1985;
Tasker and Stedinger, 1989; Griffis and Stedinger, 2007)
were used to compute the final coefficients and measures

of accuracy for the regression equations. GLS regression
provides improved estimates of statistical streamflows and
improved estimates of the predictive accuracy of the regres-
sion equations when streamgages have different lengths of
record and when concurrent flows at different streamgages
are correlated (Stedinger and Tasker, 1985). Streamflows are
often correlated across multiple streamgages as a result of
regional or statewide storms. GLS regression gives less weight
to streamgages that have shorter periods of record or whose
concurrent peak flows are correlated with other streamgages.
WREG version 2.02, the USGS weighted-multiple-linear
regression program written in the R programming language
(https://github.com/USGS-R/WREG), was used to compute
the GLS equations.

The final set of regression equations for estimating
peak flows at ungaged locations in Maine is listed in table 3.
The basin characteristics used as explanatory variables that
produced the best fit and lowest errors in the equations include
the following: 4, drainage area, in square miles; I, the per-
centage of wetlands in the basin based on the U.S. Fish and
Wildlife Service National Wetland Inventory GIS wetlands
coverage; and /24HxY, the basinwide mean of the 24-hour
rainfall intensity that occurs on average once every X years, in
inches (table 3 and appendix table 1.6). The AEP or recurrence
interval of the rainfall intensity variable (124HxY) will be dif-
ferent for each equation and should correspond to the inverse
of the AEP of the statistic being calculated. For example, to
calculate the Q50 (the peak flow with a 50-percent chance of
occurring in any given year), the /24H2Y rainfall intensity
variable should be used (the 24-hour duration rainfall intensity
that occurs on average once every 2 years). For the Q1, the
124H100Y should be used.

All explanatory variables included in the final regres-
sion equations were statistically significant at the 95-percent
confidence level (p-value < 0.05) and were not correlated with

Table 3. Regional flood-frequency equations and performance metrics for estimating statistical peak flows for ungaged streams in

Maine.

[R2, coefficient of determination; log, logarithmic; Q, statistical discharge; 4, drainage area, in square miles; W, percentage of wetlands in the basin; /24HxY,
24-hour rainfall intensity with 2- to 500-year recurrence intervals, basinwide mean in inches]

Annual Recur- Average standard error
Root mean square error .
exceedance rence . . . Pseudo of prediction
. . Regional regression equation
probability interval R2 i .
(percent) (years) Log unit Percent Log unit Percent
50 2 050=24.946 40860 1() ~0.0223*W 1()0.174*124H2Y 0.966 0.172 —-32.7t048.6 0.164 —31.5t0459
20 5 020=42.560 A0.335 10-0.0236*I 1(0.137*124H5Y 0.966 0.171 -32.6t0484 0.160 —30.8t044.4
10 10 010=56.494 A0.823 10~0.0242*W 1()0.116*124H10Y 0.964 0.175 -33.1t049.5 0.163 —31.41t045.7
4 25 Q4=T75.336 A0.809 1(-0.0248*I ]()0.0968* 1241125 0.961 0.181 -34.1t0o51.6 0.167 —-31.9t046.8
2 50 (02=89.125 A0.801 1(~0.0252*I 1 ()0.0873*124H50Y 0.961 0.186 —349t053.6 0.166 —31.7t046.4
1 100 Q1=105.196 A0.793 10~0.0255* 1()0.0782*124H100Y 0.959 0.192 -357t055.6 0.170 —32.31t047.8
0.5 200 00.5=126.765 A0.782 1(0~0.0252* ](00.0673*1241200Y  (),953 0200 -369t058.6 0.178 —33.7t050.8
0.2 500 00.2=167.880 40.772 1(0~0.0255* 1(00.0530*/24H500Y  ().95] 0210 -384t0623 0.182 —342t051.9



https://github.com/USGS-R/WREG

other explanatory variables used in the same equation. The
same explanatory variables were used to develop all seven
streamflow equations to minimize the possibility of predictive
inconsistencies between estimates of different probabilities
and to ensure that estimates increase with decreasing prob-
abilities. Ranges of the basin characteristics used to develop
the equations (and thus, the ranges for which they should be
used) are presented in table 1.

The most significant explanatory variable (strongest
predictor of flow), 4, is related positively to peak flows;
sites with larger drainage areas will produce larger estimates
of peak flows for a given AEP. The second most significant
explanatory variable, W, is related negatively to peak flows;
drainage basins with higher percentages of wetlands will
produce smaller estimates of peak flow because of the ability
of the basin to store larger amounts of water. /24HxY is related
positively to AEP peak flows; the basins with higher 24-hour
rainfall intensities for a given recurrence interval result in
higher peak flows.

Residual diagnostic plots were inspected to ensure the
appropriateness of the models. The plots indicated that the
residuals are equally distributed around zero for each of the
models; furthermore, the residuals indicate no spatial pattern,
indicating no geographical biases in the single state-wide mod-
els or need for additional explanatory variables to account for
geographic biases. As discussed in the skew analysis, lever-
age and influence statistics for the GLS analysis are regres-
sion diagnostics for an individual streamgage. If streamgages
have high leverage and high influence, they are evaluated for
potential erroneous data reporting or conditions that would
make the streamgage inappropriate for regression. If no errors
could be determined, high leverage or influence metrics alone
were insufficient justification for removing the streamgages
from the regression analysis, and these streamgages were
kept in the analysis. The threshold for substantial leverage
computed by GLS regression was 0.645 for all AEPs, and the
threshold for substantial influence was computed as 0.0323.

Flood Magnitude and Frequency at Ungaged Sites 13

Three USGS streamgages were flagged as having high lever-
age and high influence; 01017550 (Williams Brook at Phair,
Maine), 01049550 (Togus Stream at Togus, Maine), and
01073785 (Winnicut River at Greenland, near Portsmouth,
New Hampshire) at all AEPs. All three were examined for
anomalies in the data. Although all three have relatively small
drainage areas and relatively high percentages of the basin
with wetlands, justification for removing them was not found
and they were left in the analysis.

Accuracy and Limitations

Several overall measures of the accuracy of the regres-
sion equations are presented in tables 3 and 4, such as the
pseudocoefficient of determination (pseudo R?2), the root mean
square error (RMSE), and the average standard error of predic-
tion (ASEP). The pseudo R 2 indicates the variability observed
in the response variable that is accounted for by the regres-
sion model after removing the effect of the sampling error.
The closer the pseudo R2 is to 1, the better the regression
explains the variation in the response variables. The RMSE is
a measure of how much the regression results deviate from the
observed data. The ASEP is a measure of the expected accu-
racy of a regression model when it is applied at an ungaged
location (fig. 3, table 1). The glossary gives additional expla-
nation of these metrics, and equations for calculating these
metrics are available in Eng and others (2009) and Gotvald
and others (2012).

If the regression equations presented in table 3 are
applied only to unregulated rural streams in Maine with
variables inside the two-dimensional ranges of explanatory
variables shown in figure 3, the probability that the true value
of the peak flow at a given frequency will be between the posi-
tive and negative percentage of standard errors of prediction is
about 68 percent. If the equations are applied outside the range
of explanatory variables, on a stream that was regulated, or
outside of Maine, the accuracy of the estimated flows would

Table 4. Drainage-area-only equations and measures of their accuracy for select recurrence intervals.

[R2, coefficient of determination; log, logarithmic; Q, statistical discharge; 4, drainage area, in square miles]

Annual exceed-
Recurrence

Average standard error of

ance probability - (years) Equation Pseudo R Root.mean square error . prediction

(percent) Log unit Percent Log unit Percent

50 2 050=54.075 A0-818 0.938 0.228 —40.8 t0 69.0 0.221 —39.9 to 66.3

20 5 020=88.716 A0.791 0.930 0.234 —41.7t071.4 0.227 —40.7 to 68.5

10 10 010=114.815 40.777 0.925 0.240 —42.5t073.8 0.231 —41.3t070.3

4 25 04=151.008 A0.763 0.920 0.248 —43.5t077.1 0.235 —41.8t071.9

2 50 02=180.717 A0.753 0.917 0.255 —44.4t079.8 0.237 —42.0t0 72.5

1 100 01=212.324 40.745 0.912 0.261 —45.21t0 82.5 0.242 —42.7 to 74.6

0.5 200 00.5=246.037 40.737 0.909 0.268 —46.0to 85.3 0.244 —429t075.3

0.2 500 00.2=295.121 40.727 0.904 0.277 —47.1to 89.1 0.248 —43.6to 77.2
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Figure 3. Two-dimensional ranges of explanatory variables used to develop the regression equations
for estimating peak flows at selected recurrence intervals for streams in and near Maine. A, for
drainage area and percentage of wetlands; B, for drainage area and 24-hour rainfall intensities with
from 2- to 500-year recurrence intervals (RIs); C, for percentage of wetlands in the basin and 24-hour
rainfall intensities with from 2- to 500-year Rls.



be unknown. Furthermore, determining the basin character-
istics for use in the regression equations with data sources
other than those listed in appendix table 1.1 or using different
computational methods than those outlined in this report will
produce estimates with unknown accuracy.

Accuracy of Individual Estimates Computed
Using the Regression Equations

The pseudo R2, the root mean square error, and the
average standard error of prediction (table 3) are average
estimates of the overall accuracy of the regression equations.
For example, the ASEP is the square root of the average vari-
ance of prediction at a group of sites that have the same basin
characteristics as the streamgages used in development of the
regression equations. The ASEP has a model error component
(the error resulting from an imperfect model), and a sampling
error component (the error that results from only using a
sample of the entire population). Although the actual standard
error of prediction varies from site to site depending on the
values of the explanatory variables, the error associated with
the different values of the explanatory variables is a small
part of the total standard error of prediction. For this reason,
the ASEP can reasonably be used as an approximate standard
error of prediction for individual sites. If a standard error of
prediction for an individual site is desired, it can be calculated
as explained below.

The variance of prediction of a peak-flow estimate at a
particular site is computed according to Hodge and Tasker
(1995) as follows:

Vpred = y2 +xl-(Xf"A*1X)*1xltr, (5)
where
Vorea 18 the standard error of prediction;
2 is the model-error variance (see appendix
table 1.7);
X; is a row vector containing 1, log;o4, W,
and 124HxY;
tr is the matrix algebra symbol for transposing
a matrix;
(XrA-1X)71 is the (pxp) matrix with

X  being a (nxp) matrix that has rows of
logarithmically transformed basin
characteristics augmented by a 1 and

A being the (nxn) covariance matrix used
for weighting sample data in the GLS
regression;

n is the number of streamgages used in the
regression analysis; and

p  is the number of basin characteristics plus 1
(appendix table 1.7).

The standard error of prediction of an estimate can be con-
verted to positive and negative percentages of errors with the
following formulas:
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SEpred= ( V;ared)o'sa (6)
where
SE,..q  is the standard error of prediction in
logarithmic units, and
Vorea  1s the variance of prediction in logarithmic
units; and
Sp0s=100(105Epred—1) and (7)
Syeg=100(10-5Epred—1), ®)
where
Spos is the positive percentage of error of
prediction,
Sheg is the negative percentage of error of
prediction.

The probability that the true value of the peak flow at a
given frequency is between the positive and negative percent-
age of standard errors of prediction is about 68 percent. For
example, if S, is =27.1 percent and S,,,, is 37.1 percent, there
is a 68-percent chance that the true streamflow at a site ranges
from —27.1 to 37.1 percent of the estimated streamflow.

Prediction Intervals

Prediction intervals define the range that likely contains
the value of the estimated statistic for a new site. They indicate
the uncertainty in the equations and are analogous to confi-
dence intervals but apply to individual estimates for ungaged
sites that were not used in the development of the equations
and thus are typically larger than confidence intervals, which
are computed for a sample parameter such as the mean. For
example, one can be 90-percent certain that the true value
of a peak-flow estimate lies within the 90-percent prediction
interval. Prediction intervals for the selected percentages can
be computed as follows:

PI = Qe 10(t5Epma) and 9)

Opred

P Ilower = T 5B (10)
where
Plpper  1s the upper prediction interval, in cubic feet
per second;
Pl,..- 1s the lower prediction interval, in cubic feet

per second;
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is the computed peak flow at a selected
frequency from the regression equation, in
cubic feet per second;

is the critical value from a Student’s
t-distribution at alpha level a (0=0.10 for a
90-percent prediction interval; a=0.05 for
a 95-percent prediction interval) with n—p
degrees of freedom; n=124, the number
of streamgages used in the regression
analysis; and p=3, the number of basin
characteristics in the regression equation,
plus 1; and

is the standard error of prediction of a peak
flow frequency estimate.

Qpred

ta

NP

SE ‘pred

Drainage-Area-Only Regression Equations

Regression equations with only one explanatory
variable—drainage area—can provide quick estimates of peak
flows that are easier to calculate, although less accurate, than
those computed by the regression equations with multiple
explanatory variables. These simplified equations can also be
used if the percentage of wetlands in the basin is outside the
range of percentage of wetlands for which the full equation
was designed. It is unknown whether the drainage-area-only
equations or the full equations would be more accurate in
this case; however, the drainage-area-only equations would
have a known accuracy. The simplified peak-flow regression
equations for AEPs of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 per-
cent (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and
500 years, respectively) are presented in table 4 as are their
root mean square error, and average standard error of predic-
tion. The same 124 streamgages used to develop the full equa-
tion were used to develop the simplified drainage-area-only
equations, and thus, the equations are still applicable to any
ungaged site in Maine with a drainage area between 0.22 and
5,680 miZ2.

Application and Methods

Weighted Estimates at Streamgages

An estimate of peak flow for a selected AEP for a rural,
unregulated streamgage can be improved by combining the
regression-equation estimate with the at-station estimate
computed from the streamgage record. The procedure recom-
mended by Cohn and others (2013) is to weight these two
estimates by the inverse of their variances. The variance of the
at-station estimate is related to the years of record at a site.

The procedure recommended by Cohn and others
(2013) was applied to rural, unregulated streamgages used
in this study, and the weighted peak-flow results are pro-
vided in appendix table 1.4. If regression-equation estimates
or weighted estimates are not given in table 1.4, it is an

indication that the streamgage is regulated and only the at-
station estimates computed using the EMA should be used.
The weighted peak flows were computed with the following
equation:

(10210 09)(Vprea) + (10210 Orgy) (V)
log;o O, = 00 (Viﬁ( VS)IO n)

(11)

where
0O, is the weighted peak flow, in cubic feet
per second;
0O, is the at-station (EMA) estimate of peak flow
for the selected AEP, in cubic feet per
second (appendix table 1.4);

Virea is the variance of prediction of the
regression-equation result (Q,()), in
logarithmic units (appendix table 1.8,
model-error variance);

is the peak flow for the selected AEP from
the regression equation applied at the
streamgage, in cubic feet per second
(appendix table 1.4); and
Vs is the variance of estimate of the AEP
at-station peak flow in logarithmic units
(Qy; appendix table 1.7).

Confidence intervals for the weighted peak flow, QO,,,
can be computed with equations 9 and 10; however, the
standard error of prediction for the weighted peak flow, SE,,,
is substituted for the standard error of prediction for the
regression estimate, SE,,.4. The standard error of prediction
for the weighted peak flow can be computed with the follow-
ing formula:

Oie)

ViVirea 03
SE, = <Vs+de) .

(12)

Estimates at Ungaged Sites Near Gaged
Locations

Estimates of the magnitude of peak flows at selected
AEPs for ungaged sites that are relatively near a streamgage
(see specifics below) and are on the same unregulated
stream can be improved by combining the estimate from
the regression equations with the estimate from the nearby
streamgage. A method for adjusting the weighted discharge
at a streamgage, Q,,, to a site of interest upstream or down-
stream from the streamgage is provided based on an equation
provided in Sauer (1974) and applied in Feaster and others
(2009). The method provided in equation 13 below calculates
the weighted average peak flow at the ungaged site 0, by
increasing the weight of the regression-equation peak-flow
estimate over the weight of the at-station peak-flow estimate
the farther upstream or downstream the site of interest is from
the streamgage:



Owan = [(ZA% ) + (1 - 2A%A;) (g_:f,)ﬂ Orwy (13)

where
Owiw) is the weighted average peak flow at the
ungaged site;

AA is the absolute value of the difference between
the drainage areas of the gaged station and
the ungaged station, in square miles;

Aq is the drainage-basin area of the streamgage
(appendix table 1.6);

Oue) is the weighted average peak flow at the
streamgage (appendix table 1.4);

Ore) is the peak flow at the streamgage computed
using the regression equation (appendix
table 1.4); and

O,y s the peak flow for the ungaged site on a

gaged unregulated stream computed using
the regression equation.

Using equation 13, full weight is given to the regression
estimates when the drainage area for the ungaged site is equal
to 0.5 or 1.5 times the drainage area for the gaged station
and increasing weight to the gaged station estimates as the
drainage-area ratio approaches 1. The weighting procedure
should not be applied when the drainage-area ratio for the
ungaged site and gaged station is less than 0.5 or greater than
1.5 or for regulated streams. Techniques for estimating peak
flows for regulated streams are beyond the scope of this report.
Equation 13 and simple drainage area ratio methods have been
shown to be unreliable for some regulated streams in Maine
(Hodgkins, 1999).

Maine StreamStats

The basin and climatic characteristics (appen-
dix table 1.6), and regional peak-flow regression equations
(table 3), are integrated in the USGS StreamStats program
(https://streamstats.usgs.gov) to allow estimation of peak-flow
statistics at ungaged locations on Maine streams. StreamStats
is a web-based GIS application that provides users an assort-
ment of analytical tools useful for water resources planning
and engineering design. StreamStats makes the process of
calculating flow statistics for ungaged sites faster and more
consistent than using manual calculation methods. Stream-
Stats users choose locations of interest from an interactive
map and easily obtain flow statistics, basin characteristics,
and descriptive information. If a user selects the location of a
USGS streamgage, they can obtain available, published flow
statistics for the streamgage. If a user selects an ungaged loca-
tion, StreamStats will delineate the drainage-basin boundary,
measure basin characteristics, and estimate flow statistics
for the site based on available, published regional regression
equations. If the ungaged location has basin and climatic char-
acteristics within the range of characteristics used to develop
the regional regression equations, StreamStats also will
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output prediction intervals and the standard error of predic-
tion (described in the “Uncertainty and Limitations” section).
Ries and others (2008) provide a detailed description of the
StreamStats application.

Summary

This report, prepared by the U.S. Geological Survey in
cooperation with the Maine Department of Transportation,
documents the development of regression equations for esti-
mating peak-flow magnitudes for rural, unregulated streams
in Maine at annual exceedance probabilities (AEPs) of 50, 20,
10, 4, 2, 1, 0.5, and 0.2 percent (recurrence intervals of 2, 5,
10, 25, 50, 100, 200, and 500 years, respectively). Regression
techniques were used to determine relations between the peak-
flow magnitudes for selected AEPs and selected basin charac-
teristics at 124 unregulated streamgages in and near Maine.

The peak-flow magnitudes at selected AEPs for
148 streamgages in Maine, and within 20 miles of the Maine
border in New Hampshire and New Brunswick, Canada, were
determined by following guidelines in Bulletin 17C. Peak
flows at selected AEPs were computed using the expected
moments algorithm and using a new regional skew coefficient
of 0.020 with a standard error of prediction of 0.30 that was
developed specifically for Maine as a part of this work.

Although some streamgages demonstrated positive trends
in peak flows over 30-, 50-, 70, and 90-year periods, trends
were inconsistent across streamgages and periods; they may be
influenced by multidecadal oscillations. Furthermore, analyz-
ing only the most recent periods of record (such as the most
recent 30 years) means that the peak of record would not be
included in analyses for at least one-half of the streamgages
analyzed, and thus, estimates of peak flows could end up
lower than they would be using the entire period of record.
Stationarity was assumed for these analyses.

More than 80 basin characteristics at each streamgage
were calculated using a geographic information system and
were tested for use in the regression equations. An ordinary
least-squares linear regression testing all possible subsets of
the explanatory variables was used to narrow down the basin
characteristics to the three variables that best explained the
variability among the magnitude of peak flows at gaged sites.
These variables are drainage area, the percentage of the basin
covered by wetlands, and the 24-hour intensity of the precipi-
tation. The final regression equations and estimates of error
were developed using Generalized Least-Squares regression
techniques. The average standard error of prediction for esti-
mating peak flows with these equations ranged from —31.5 to
45.9 percent for the 50-percent AEP and from —34.2 to
52.0 percent for the 0.2-percent AEP.

The developed regression equations can be used as
a method for estimating peak flows at selected AEPs for
ungaged, unregulated, rural streams in Maine. For unregu-
lated gaged locations, weighted estimates for peak flows are


https://streamstats.usgs.gov
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presented; they were computed by weighting flood-frequency
estimates at gaged locations with results from the regression
equations to produce more accurate estimates. In addition, a
technique is presented for estimating peak flows at selected
AEPs for ungaged sites upstream or downstream from a
streamgage using a drainage-area adjustment and within 50 to
150 percent of the drainage area at a gage.

Streamflow estimates presented here improve upon
previous peak-flow regression equations developed for Maine
because they incorporate 20 additional years of peak-flow
data and include data from streamgages with drainage areas
down to 0.26 square mile. Gaged data from many very small
basins were unavailable previously. In addition, estimates and
equations developed here benefit from improved statistical
techniques including the expected moments algorithm and the
multiple Grubbs-Beck test, which allow for improved fit of the
flood-frequency distribution and better use of historical data
and provide more realistic estimates of error.
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Appendix 1. Supplemental Tables Relating to the Regional Regression Analysis

This appendix contains supplemental tables for the computed but which are not used in the regional regression
124 streamgages used to develop the regional regres- analyses because of regulation (tables 1.1-1.8). The data are
sion equations and limited information for the additional replicated from the U.S. Geological Survey data release pub-

24 streamgages for which flood-frequency estimates are lished in Lombard (2020).
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Table 1.4. Peak flows for selected annual exceedance probabilities for selected streamgages in and near Maine.

[The table is available for download at https://doi.org/10.3133/5ir20205092.]
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Appendix 1
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Table 1.8. Covariance matrices for generalized least-squares regression equations.

Appendix 1 51

[Covariance matrices are (X7A~LX)~!. Numbers in matrices are in scientific notation. AEP, annual exceedance probability; %, percent]

Model-error (Xtr L1 X)-' matrix
Peak-flow . . -
AEP model variance Explanatory variable Intercent Drainage area €@ of wetlands  24-hour rainfall
(2 P 9 (percent) intensity
50-percent AEP  0.0256 Intercept 1.6717E-02 —8.0997E-04 —3.0913E-05 —5.0493E-03
Drainage area —8.0997E-04 2.7523E-04 —6.3820E-06 1.2586E-04
Percentage of wetland —3.0913E-05 —6.3820E-06 5.8250E-06 —8.3046E-06
24-hour rainfall with 50% AEP —5.0493E-03 1.2586E-04 —8.3046E-06 1.7239E-03
20-percent AEP  0.0242 Intercept 1.5418E-02 —8.0583E-04 —3.4479E-05 —3.6546E-03
Drainage area —8.0583E-04 2.7683E-04 —6.0262E-06 9.2708E-05
Percentage of wetland —3.4479E-05 —6.0262E-06 5.7319E-06 —5.5161E-06
24-hour rainfall with 20% AEP —3.6546E-03 9.2708E-05 —5.5161E-06 9.9722E-04
10-percent AEP  0.0252 Intercept 1.5640E-02 —8.8191E-04 —3.7409E-05 —3.1331E-03
Drainage area —8.8191E-04 3.0272E-04 —6.3872E-06 8.3890E-05
Percentage of wetland —3.7409E-05 —6.3872E-06 6.2046E-06 —5.1625E-06
24-hour rainfall with 10% AEP —3.1331E-03 8.3890E-05 —5.1625E-06 7.3420E-04
4-percent AEP 0.0261 Intercept 1.6103E-02 —9.8702E-04 —4.0224E-05 —2.6519E-03
Drainage area —9.8702E-04 3.3608E-04 —6.7735E-06 7.5318E-05
Percentage of wetland —4.0224E-05 —6.7735E-06 6.7791E-06 —4.9447E-06
24-hour rainfall with 4% AEP —2.6519E-03 7.5318E-05 —4.9447E-06 5.2106E-04
2-percent AEP 0.0273 Intercept 1.6955E-02 —1.0840E-03 —4.3406E-05 —2.4619E-03
Drainage area —1.0840E-03 3.6619E-04 —7.1718E-06 7.2218E-05
Percentage of wetland —4.3406E-05 —7.1718E-06 7.3162E-06 —4.8057E-06
24-hour rainfall with 1% AEP —2.4619E-03 7.2218E-05 —4.8057E-06 4.3106E-04
1-percent AEP 0.0268 Intercept 1.7025E-02 —1.1472E-03 —4.4331E-05 —2.1890E-03
Drainage area —1.1472E-03 3.8292E-04 —7.1737E-06 6.6723E-05
Percentage of wetland —4.4331E-05 =7.1737E-06 7.5205E-06 —4.5633E-06
24-hour rainfall with 2% AEP —2.1890E-03 6.6723E-05 —4.5633E-06 3.4438E-04
0.5-percent AEP  0.0296 Intercept 1.9785E-02 —1.2356E-03 —6.8631E-05 —2.2667E-03
Drainage area —1.2356E-03 4.2461E-04 —7.4276E-06 5.9116E-05
Percentage of wetland —6.8631E-05 —7.4276E-06 8.3615E-06 —1.8434E-06
24-hour rainfall with 0.5% AEP ~ —2.2667E-03 5.9116E-05 —1.8434E-06 3.1522E-04
0.2-percent AEP  0.0306 Intercept 1.8946E-02 —1.3252E-03 —7.4913E-05 —1.8120E-03
Drainage area —1.3252E-03 4.6126E-04 —7.7923E-06 5.1231E-05
Percentage of wetland —7.4913E-05 —7.7923E-06 8.9722E-06 —1.5996E-06
24-hour rainfall with 0.2% AEP ~ —1.8120E-03 5.1231E-05 —1.5996E-06 2.1757E-04
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Glossary

adjusted R-squared (or adjusted coefficient
of determination) The adjusted coefficient
of determination, a measure of the
percentage of the variation explained by the
explanatory variables of the equation adjusted
for the number of parameters in the equation.

annual exceedance probability (AEP) The
probability that a given flood will be exceeded
during a given year. The reciprocal of the
exceedance probability is referred to as the
recurrence interval or return period and is
expressed in years.

annual peak flow The maximum
instantaneous discharge in each water
year. This is the highest value observed in
the record of 15-minute or 60-minute values,
depending on the recording interval of

the device.

average standard error of prediction

(ASEP) A measure of how well the equation
estimates peak flows for sites not used to
develop the equations. The square root of the
average variance of prediction that can be
expressed in log units or in percent.

average variance of prediction (AVP) The
average spread or dispersion of the predicted
value from the observed value at a new site
not used in the development of the equations.
A measure of how well the equation estimates
peak flows for new ungaged sites not used to
develop the equations.

Bayesian model A statistical model that
uses probability to represent all uncertainty
within the model, both the uncertainty
regarding the output and the input. The
Bayesian approach provides a more
reasonable description of model errors than
generalized least squares when the errors
are small compared to the sampling errors.

Bayesian weighted least-squares/Bayesian
generalized least-squares (B—WLS/B—GLS)
regression A method to compute a regional
skew for flood frequency analyses that
accounts for the precision of the skewness
estimator for each station depending on
record length. It also accounts for the

spatial cross correlation among stations and

Glossary

provides a reasonable description of the
model error when it is small compared to the
sampling error.

censored data Unknown values within a
dataset above or below specified thresholds.

confidence interval A range of values
calculated from a sample of the data that
likely contains a population parameter (for
example a 95-percent confidence interval
means we are 95-percent confident that a
population parameter such as the mean falls
within this range).

Cook’s D A statistic for estimating the
influence of a data point when performing a
least-squares regression analysis.

covariance A measure of how much two
random variables change together. Positive
values indicate variables tend to show similar
behavior, whereas negative values indicate
the greater value of one variable correspond
to the smaller value of the other variable.

crest-stage gage (CSG) A simple,
economical, reliable, and easily installed
device for obtaining the elevation of the flood
peak of a stream between visits to the gage.
These gages are nonrecording and thus
multiple peaks and their dates and times are
not determined.

cross correlation A measure of the
similarity between two time series of
observations in space.

Durbin-Watson test statistic A statistic that
tests model residuals for serial correlation.

error variance ratio (EVR) The ratio of the
average sampling error to the model-error
used to evaluate whether a simple ordinary
least-squares regression is sufficient or a
more sophisticated weighted least-squares
or generalized least-squares regression is
appropriate.

expected moments algorithm

(EMA) Method for fitting a probability
distribution to annual peak-flow data using

a generalized method of moments, similar

to the standard log-Pearson type Il (LP-III)
method. The EMA, however, can also account
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for multiple potentially influential low floods;
and use interval data, whereas the LP-lll is
restricted to point data. Interval data provide
additional information, such as the potential
range of annual peak flows outside of the
systematic and historic record and the
uncertainties around recorded peak flows
used in the analysis.

flow interval Floods whose magnitude are
not known exactly but are known to fall within
arange or interval.

gaging record Streamflow data collected
at streamgaging stations. A gaging record
can consist of systematic data and historical
flood data.

generalized least-squares (GLS)

regression A regression model that
explains the spatial variability of a flood
statistics for selected recurrence intervals,
by relating it to basin variables as does
ordinary least-squares regression. However,
it accounts for differences in record lengths
at gages used in the regression, and for
correlation among estimators of the flood
statistics at different gages and thus can
provide more appropriate estimates of errors.

historical peaks A flood measured, or
estimated, outside the systematic period
of record. Typically, these are floods
whose peak is determined by indirect
measurement methods.

historical period The period of record
prior to systematic data collection in which

all floods above a selected flood stage are
expected to be recorded. The record generally
consists of diaries, news accounts, and
documented flood marks on buildings.

influence Anindication of whether an
observation in a regression model is likely
to be an outlier and thus have a large effect
on the fit of a regression model. Influential
observations that also have high leverage
have the greatestimpact on a model.

level of significance A standard way of
expressing the strength of evidence of a
hypothesis. It is the probability of rejecting
a hypothesis when itis in fact true. At

a 10-percent level of significance, the
probability is 1/10, and the p-value is 0.1.

leverage A measure of how far away an
observation of an explanatory variable is
from other observations of that variable.
An observation with high leverage has the

Estimating Flood Magnitude and Frequency on Gaged and Ungaged Streams in Maine

potential to have a large effect on the fit of a
regression model if it also has high influence.

log-Pearson type IIl (LP-IIl) A distribution
for defining annual flood series determined
from estimates of three moments; the
mean, the standard deviation, and the skew
coefficient of the population of logarithms
of annual instantaneous peak flows at each
streamgage.

long-term persistence (LTP) Persistence
refers to year-to-year dependence in
time-series data. In LTP, the decay in the
correlation over time is slow as compared
to short-term persistence (STP), however
without STP, there is not LTP. If there is
STP or LTP, the assumption of time-series
independence in a time series is violated.

Mallow's C, A statistic for estimating the
overall quality of a regression model. It is
designed to achieve a good compromise
between including all relevant variables to
explain as much variance in flood statistics as
possible to minimize model bias, and reducing
the number of model variables to minimize the
variance of the resulting estimates.

mean square error (MSE) The average

of the squares of the differences between
the estimated values and the measured
values. This metric represents how closely,
on average, an estimated value matches a
measured value.

method of moments A standard statistical
method of estimating the parameters of a
distribution from the moments of the sample
data. The log-Pearson type Ill distribution
requires estimates of three moments; the
mean, the standard deviation, and the skew
using the logarithms of annual instantaneous
peak flows at each streamgage.

misrepresentation of the beta variance

(MBV) A statistic used to determine whether
a weighted least-squares regression is
sufficient or if a generalized least-squares
regression would be more appropriate

to determine the precision of estimated
regression parameters.

model error The portion of error that can be
attributed to having an imperfect model.

multiple Grubbs-Beck test A statistical test
used to identify multiple potentially influential
low flood observations in an annual maximum
flood time series.



multicollinearity A statistical phenomenon
in which two or more explanatory variables

in a multiple regression model are highly
correlated. If this occurs, the regression
coefficients may change erratically in
response to small changes in the model or the
predictor variable. Multicollinearity violates
the regression assumption that explanatory
variables be independent.

ordinary least-squares (OLS)

regression A linear regression method
that minimizes the sum of square differences
between the observed and predicted

values. It explains spatial variability of the
response variable by relating it to one or
more explanatory variables. For the current
study, OLS regression is used to explain the
variability flood statistics by use of basin
variables such as drainage area.

outlier Outliers are observations that are
exceedingly low or high compared to the vast
majority of the data.

PeakFQ A USGS application that
implements expected moments algorithm
(EMA) procedures for flood frequency
analyses of annual peak streamflows. It
includes estimates of the parameters of the
log-Pearson type Ill distribution, the fitted
frequency curve, systematic peaks, low
outliers, censored peaks, interval peaks,
historical peaks, thresholds, and confidence
intervals.

perception threshold The stage or flow
above which it is estimated an information
source would provide information on the
flood peak in any given year. Perception
thresholds reflect the range of flows that
would have been measured or recorded had
they occurred. Perception thresholds are
used for historical data, when the information
provided is based on observation during
periods with no systematic streamflow data
collection. They are also used at crest stage
gages (CSGs) to indicate the elevation above
which a measurement would be recorded.
Peak flows for a given year may be too small
to be measured by the lowest point on a crest
stage gage.

potentially influential low flood

(PILF) A small-magnitude flood in an annual
maximum flood series, that does not represent
the physical processes that cause the largest
flood observations. PILFs can exert high
leverage and influence on the flood frequency
distribution.

Glossary

prediction interval The range that likely
contains the value of the response variable
for a new observation not used in the
development of the equations. Typically
larger than the confidence interval because
it predicts in what range a future individual
observation of a response variable will

fall, while a confidence interval shows the
likely range of values associated with some
statistical parameter of the data, such as the
population mean.

pseudocoefficient of determination (pseudo
R2) The estimated fraction of the variability
from site to site explained by a regression
model, after removing the effect of the
sampling error. The closer the pseudo R2is
to 1, the better the regression explains the
variation in the response variables.

pseudorecord length (Pg) The number

of years of record at a streamgage, taking
systematic and historical record into account
and weighting them appropriately.

recurrence interval The long-term average
time between events such as floods, also
known as a return period. The reciprocal

of the recurrence interval is the annual
exceedance probability.

regional skew coefficient A skew
coefficient derived by a procedure that
integrates values obtained at many locations.
The station skew computed at an individual
site may be an unreliable estimate of the

true skew, especially for sites with short
record lengths. Thus station skew should be
weighted with a regional, or generalized, skew
that is based on data from many long-term
streamgages.

root mean square error (RMSE) This metric
represents the magnitude of the differences
between the estimated and measured values
and estimates how well the model predicted
peak flows at the streamgages used to
develop the regression equations.

sampling error The component of the total
error that can be attributed to only using a
portion of the total population.

serial correlation The correlation between
the values in a time series and the values in
that same time series lagged by one or more
time steps. The presence of serial correlation
indicates that the data in the time series are
not independent of each other.

short-term persistence (STP) Persistence
refers to year-to-year dependence in

55



56

time-series data. In STP, the correlation

over time decays exponentially or faster as
more years are included. If there is STP, the
assumption of time-series independence in a
time series is violated.

skew One of the three momentsin a
flood-frequency distribution which is a
numerical measure of the lack of symmetry
in the distribution. The skew generally is
computed from the logarithms of annual peak
flows at the streamgage.

standard deviation A measure of the
dispersion or precision of a series of values
such as precipitation or streamflow.

standard error of prediction

(SEprea) A measure of how well the
regression equation will estimate the peak
flow when it is applied to an individual site not
used in the development of the equation. The
SE,eq varies from site to site depending on the
values of the explanatory variables at that site.
Average standard error of prediction is often
used as an approximation of SE,,4because
the error associated with different values

of the explanatory variable is a relatively

small portion of the total standard error of
prediction.

StreamStats A USGS online application

for computing streamflow statistics at any
location on a stream in the United States,

based on regional regression equations.

Estimating Flood Magnitude and Frequency on Gaged and Ungaged Streams in Maine

systematic record The period or periods
of continuous annual peak-flow record at a
streamgage. All flows during the systematic
period are measured.

variance A measure of the amount of spread
or dispersion of a set of values around their
average value.

variance inflation factor (VIF) A statistic
for measuring multicollinearity in regression
models. A VIF greater than 5to 10 generally
indicates multicollinearity, a serious problem
in the regression models.

variance of prediction See average
variance of prediction.

water year The 12-month period
from October 1 of a given year through
September 30 of the following year
and designated by the calendar year in
which it ends.

weighted least-squares (WLS)

regression A regression model that
explains the spatial variability of a flood
statistics for selected recurrence intervals,
by relating it to basin variables. Differs from
ordinary least-squares regression in that it
accounts for differences in record lengths
at streamgages used in the regression and
differs from generalized least-squares
regression by not accounting for correlation
among estimators of flood statistics at
different gages.
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