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Statistical Methods for Simulating Structural Stormwater 
Runoff Best Management Practices (BMPs) With the 
Stochastic Empirical Loading and Dilution Model (SELDM)

By Gregory E. Granato, Alana B. Spaetzel, and Laura Medalie

Abstract
This report documents statistics for simulating struc-

tural stormwater runoff best management practices (BMPs) 
with the Stochastic Empirical Loading and Dilution Model 
(SELDM). The U.S. Geological Survey developed SELDM 
and the statistics documented in this report in cooperation with 
the Federal Highway Administration to indicate the risk for 
stormwater flows, concentrations, and loads to exceed user-
selected water-quality goals and the potential effectiveness of 
mitigation measures to reduce such risks. In SELDM, three 
treatment variables—hydrograph extension, volume reduc-
tion, and water-quality treatment—are simulated by using 
the trapezoidal distribution and the rank correlation with the 
associated runoff variables. This report describes methods for 
calculating the trapezoidal distribution statistics and rank cor-
relation coefficients for these treatment variables and methods 
for estimating the minimum irreducible concentration (MIC), 
which is the lowest expected effluent concentration from a 
BMP site or a category of BMPs. These statistics are different 
from the statistics commonly used to characterize or compare 
BMPs; they are designed to provide a stochastic transfer func-
tion to approximate the quantity, duration, and quality of BMP 
effluent given the associated inflow values for a population of 
storm events.

Analyses for this study were done with data extracted 
from a modified copy of the December 2019 version of 
the International Stormwater Best Management Practices 
Database. Statistics for volume reduction, hydrograph exten-
sion, and water-quality treatment were developed with 
selected data. The medians of the best-fit statistics for selected 
constituents were used to construct generalized cumulative 
distribution functions for the three treatment variables. For 
volume reduction and hydrograph extension, selection of a 
Spearman’s rank correlation coefficient (rho) value that is the 
average of the median and maximum values for the BMP cate-
gory may help generate realistic simulation results in SELDM. 
The median rho value may be selected to help generate realis-
tic simulation results for water-quality treatment variables.

Water-quality treatment statistics, including trapezoidal 
ratios and MIC values, were developed for 51 runoff-quality 
constituents commonly measured in highway and urban runoff 
studies. Statistics were calculated for water-quality properties, 
sediment and solids, nutrients, major and trace inorganic ele-
ments, organic compounds, and biologic constituents.

Analysis of MIC values provides information to guide 
professional judgement for selecting values for simulating 
water quality at sites of interest. The MIC is a lower bound for 
BMP discharge concentrations and will therefore replace sim-
ulated BMP discharge concentrations below the selected value. 
A new method for estimating MIC values, the lognormal 
variate of inflow concentrations, was developed in this report 
and these statistics were calculated for individual constituents 
and constituent categories. Inflow quality is correlated to MIC 
values for some constituents, but regional soil concentrations 
were not strongly correlated to MIC values.

Introduction
The U.S. Geological Survey (USGS) developed the 

Stochastic Empirical Loading and Dilution Model (SELDM) 
in cooperation with the Federal Highway Administration 
(FHWA) to indicate the risk for stormwater flows, concen-
trations, and loads to be above user-selected water-quality 
goals and to evaluate the potential effectiveness of mitigation 
measures to reduce such risks (Granato, 2013, 2014). SELDM 
is a stochastic model because it uses Monte Carlo methods to 
produce the random populations needed to generate the values 
for each component variable. SELDM simulates the potential 
effect of mitigation measures by using statistics approximating 
the net effects of structural and nonstructural best management 
practices (BMPs). In this report, structural BMPs are defined 
as the components of the drainage pathway between the source 
of runoff and a stormwater discharge location that affect the 
timing, volume, or quality of runoff. Use of the term BMP in 
this report, and much of the literature on stormwater treatment, 
does not imply that these mitigation measures represent an 
optimal solution for any particular site. SELDM can be used 
to explicitly simulate the effects of structural BMPs on the 
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timing, volume, and quality of runoff by using professional 
judgment or by fitting the trapezoidal distribution to available 
data (Granato, 2013, 2014). SELDM can be used to implicitly 
simulate the potential effects of nonstructural BMPs, such as 
street sweeping, by modifying input statistics to reflect the 
effect of such measures on the quantity and quality of runoff 
from the site of interest (Granato, 2013, 2014).

Hydrograph extension is the practice of slowing the 
discharge of runoff flows and releasing these flows to the 
receiving water body over an extended period (Granato, 2014). 
SELDM simulates hydrograph extension times (in hours) from 
a BMP or series of BMPs as a stochastic variable (Granato, 
2013, 2014). In theory, hydrograph extension provides 
extended treatment time within the BMP. Although SELDM 
does not alter the water-quality treatment statistics with the 
hydrograph extension variable, extending the duration of the 
highway-runoff hydrograph can make a substantial difference 
in the amount of dilution in a receiving stream, especially 
in the rising limb of the upstream storm-event hydrograph 
(Granato, 2013; Granato and Jones, 2014, 2019; Risley and 
Granato, 2014; Stonewall and others, 2019; Weaver and oth-
ers, 2019; Jeznach and Granato, 2020). SELDM simulates the 
potential effects of structural BMPs on the timing of runoff by 
generating a population of BMP hydrograph extension dura-
tions and adding these durations to the runoff duration from 
the site of interest. SELDM preserves the structure of hydro-
graph extension monitoring data in simulation results by using 
the trapezoidal distribution and the rank correlation with the 
highway stormflow volume (Granato, 2013, 2014).

Volume reduction by BMPs is the practice of retain-
ing, detaining, or routing runoff flows to increase the amount 
of infiltration, evapotranspiration, or diversion between the 
pavement and the outfall (Granato, 2014). SELDM simula-
tions indicate that runoff volume reduction can substantially 
reduce downstream flows and constituent loads to receiving 
waters (Granato and Jones, 2014, 2017, 2019; Risley and 
Granato, 2014; Smith and others, 2018; Stonewall and others, 
2018, 2019; Weaver and others, 2019; Jeznach and Granato, 
2020). SELDM simulates the potential effects of BMPs on the 
volume of runoff by generating a stochastic population of the 
ratios of outflow to inflow volumes and applying these ratios 
to the stochastic population of inflow volumes from the site of 
interest (Granato, 2013, 2014). SELDM generates these ratios 
by using the trapezoidal distribution and the rank correlation 
with the highway stormflow volume. Rank correlation coef-
ficients (Spearman’s rho values) are used by SELDM to help 
generate the volume reduction ratios associated with input 
runoff volumes, which helps to preserve the structure of BMP 
monitoring data (Granato, 2013, 2014). Although this variable 
is described as volume reduction, the BMP may increase storm 
discharge volumes during some runoff events if there is car-
ryover from one storm to another or if groundwater discharges 
to the BMP during or between storm events (Granato, 2014). 
Groundwater discharge is more common for normally wet 
BMPs, but it can occur intermittently at many sites.

Water-quality treatment is the practice of using physical, 
chemical, and biological processes in an attempt to reduce the 
concentration of runoff constituents in stormflow (Granato, 
2014). Although the term “concentration reduction” is com-
monly used to describe these processes, concentrations in out-
flows can exceed inflows and therefore water quality-treatment 
ratios may be larger than 1. Outflow concentrations may 
exceed inflow concentrations if there is carryover in BMP stor-
age from one runoff event to the next; if physical, chemical, 
or biological processes mobilize constituents between storms; 
or if flow through the BMP mobilizes previously retained 
constituents during some events. SELDM simulates the 
potential effects of BMPs on the concentrations of constituents 
in runoff by generating a stochastic population of the ratios 
of outflow to inflow concentrations by using the trapezoidal 
distribution and rank correlation to inflow concentration and 
applying these ratios to the stochastic population of inflow 
concentrations from the site of interest (Granato, 2013, 2014). 
SELDM simulations indicate that water-quality treatment can 
substantially reduce constituent loads to receiving waters even 
if some concentration ratios are greater than 1 (Granato and 
Jones, 2014, 2017, 2019; Risley and Granato, 2014; Smith and 
others, 2018; Stonewall and others, 2018, 2019; Weaver and 
others, 2019; Jeznach and Granato, 2020).

Water-quality treatment by BMPs is limited because 
there will be some lower limit to the effluent concentra-
tions that can be achieved with normal BMP unit operations 
(Granato, 2014). The lowest concentration achievable for a 
well-designed example of each type of BMP is known as the 
minimum irreducible concentration (MIC). The MIC also has 
been defined as a background concentration, the lower bound 
of first-order decay processes, or the intercept of regression 
equations relating outflow to inflow concentrations (Granato, 
2014). In SELDM, the MIC estimate is used to replace 
concentrations calculated from stochastic influent and con-
centration-ratio values for simulated events that are lower than 
the MIC (Granato, 2013, 2014). As such, the MIC provides 
a lower bound to the simulated population of BMP discharge 
concentrations.

Granato (2014) used data from the 2012 version of 
the International Stormwater Best Management Practices 
Database (BMPDB; Leisenring and others, 2013) to calcu-
late BMP treatment statistics. Those treatment statistics have 
been used to estimate the risks for adverse effects of runoff on 
receiving waters and the potential for BMPs to reduce those 
risks (Granato and Jones, 2014, 2019; Risley and Granato, 
2014; Stonewall and others, 2019; Weaver and others, 2019; 
Jeznach and Granato, 2020). Those treatment statistics also 
have been used for runoff-loading analyses, which can be 
used to calculate total maximum daily loads (TMDLs) for 
watersheds of interest (Granato and Jones, 2017; Smith and 
others, 2018; Stonewall and others, 2018, 2019). Although 
the existing statistics have been widely used, Granato (2014) 
published water-quality treatment statistics for only 12 com-
monly measured highway and urban runoff constituents. State 
departments of transportation and municipalities are facing 
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TMDL requirements for many more constituents (Lantin and 
others, 2019), and the December 2019 version of the BMPDB 
(Wright Water Engineers, Inc. and Geosyntec Consultants, 
2019) has been improved and expanded during the period after 
the analyses in Granato (2014) were complete.

Purpose and scope.—This report documents BMP 
performance statistics calculated from publicly available data 
from the December 2019 version of the BMPDB (Wright 
Water Engineers, Inc. and Geosyntec Consultants, 2019) by 
using methods developed by Granato (2014). This report 
provides an updated and expanded set of BMP statistics but 
does not provide the detailed description of analytical and 
numerical methods provided by Granato (2014). This study 
was done by the USGS in cooperation with the FHWA to 
provide national statistics for stochastic modeling of the tim-
ing, volume, and quality of BMP effluent given a stochastic 
population of inflows from a user-defined site of interest. The 
purpose of the analyses in this report is to update and expand 
statistics developed by Granato (2014) by using the expanded 
and refined December 2019 version of the BMPDB (Wright 
Water Engineers, Inc. and Geosyntec Consultants, 2019). The 
data, information, and statistics developed in this analysis are 
intended to facilitate stochastic planning-level analysis of the 
potential effects of stormwater runoff on receiving waters at 
unmonitored sites (or sites with limited monitoring data). The 
methods and statistics described in this report were designed 
for use with SELDM but may be used with other methods 
or models. These methods and statistics are designed to help 
evaluate the risk for adverse effects of runoff on receiving 
waters, the potential need for mitigation measures, and the 
potential effectiveness of such management measures for 
reducing these risks.

The methods and statistics in this report are not intended 
to replace accepted methods for evaluating and comparing 
different types of BMPs. Such methods include the effluent 
probability method (Strecker and others, 2001; Geosyntec 
Consultants and Wright Water Engineers, Inc., 2009), regres-
sion analysis between influent and effluent concentrations 
(Taylor and others, 2014), and theoretical-analytical time-
series analyses (Clar and others, 2004; Huber and others, 
2006; National Cooperative Highway Research Program, 
2006). Existing methods for BMP comparison provide infor-
mation about BMP performance at previously studied sites, 
which may or may not represent the volume, timing, and qual-
ity of runoff from a site of interest. The methods described in 
this report, however, provide statistics for estimating expected 
BMP effluent characteristics and the reduction of risk for 
adverse effects of runoff in receiving waters given user-defined 
site properties, runoff quality, BMP performance statistics, and 
receiving-water characteristics.

Methods
Granato (2014) developed quantitative methods to 

estimate values of the trapezoidal distribution statistics, 
correlation coefficients, and the MIC from available data. 
The methods and analysis tools were designed to analyze 
data from the 2012 version of the BMPDB and to replicate 
the analysis with user-supplied data in the future. Granato 
(2014) developed a Microsoft Access database application 
named the Best Management Practices Statistical Estimator 
(BMPSE) to facilitate retrieval and analysis of data from the 
BMPDB and potentially other datasets. Granato (2014) also 
developed spreadsheets to fit BMP monitoring data retrieved 
from the BMPSE to the trapezoidal distribution. As part of 
the current study, the BMPSE was improved to facilitate the 
use and calculation of additional statistics (Granato, 2021). 
The spreadsheets also were updated and improved to work as 
macro-enabled Microsoft Excel spreadsheets (Granato and 
others, 2021).

Data Collection

The analyses documented in this report were done 
with data extracted from the December 2019 version of 
the BMPDB (Wright Water Engineers, Inc. and Geosyntec 
Consultants, 2019). The BMPDB was selected as the source 
of data for this analysis because it is extensive and is available 
to the public for research purposes. The 2019 version of the 
BMPDB has data for 526 test sites, 771 BMPs, 2,371 monitor-
ing stations, 19,547 runoff events, 30,682 flow measurements, 
and 374,643 water-quality measurements. The 2019 compila-
tion represents continuing efforts of the BMPDB project team 
to collect, format, check, and enter data over a 24-year period 
from 1996 through 2019. In many cases, the data have been 
vetted for use in various BMP performance summaries (for 
example, Leisenring and others, 2013, 2020; Clary and others, 
2017). Data for BMP sites, monitoring sites, runoff volumes, 
runoff durations, and constituent concentrations were retrieved 
from the BMP database using a series of queries that were 
designed to obtain paired input and output values. Although 
the outflow for one event may represent the effects of inflows 
from one or more prior events (Strecker and others, 2001), 
building a large dataset of paired values for each category 
should provide the statistics necessary to stochastically gener-
ate the wide variations in output values that may occur over a 
large number of storms.

Data from the December 2019 version of the BMPDB 
were screened for import into the BMPSE (Granato, 2021), in 
consultation with the project team that supports and maintains 
the BMPDB (Wright Water Engineers, Inc. and Geosyntec 
Consultants, 2019). Modifications included identifying water-
quality constituents, making measurement units consistent, 
identifying paired inflow and outflow values, and converting 
water-quality values that were set in the BMPDB as half the 
detection limit back to the detection limit. Total polycyclic 
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aromatic hydrocarbon (PAH) values were calculated from 
individual PAH measurements at sites with enough data to 
calculate totals. The screened data are available in the BMPSE 
database application (Granato, 2021).

The results of analyses presented in this report are orga-
nized by using the categories specified in the December 2019 
version of the BMPDB. This version of the database contains 
19 categories of structural BMPs. For this analysis, 12 cat-
egories of BMP were selected on the basis of available data 
and applicability for modeling the quality and quantity of 
stormwater runoff with SELDM (table 1). Analyses were not 
done for BMPs listed as “permeable friction course” because 
of insufficient paired data; BMP data classified as “Other” 
were not analyzed because statistics for this category would 
not be meaningful for a set of unrelated BMPs. The selected 
BMPs are designed to treat the quality and (or) quantity of 
runoff between the source area and the discharge area. The 
selected BMPs also are commonly used to treat highway and 
urban runoff. The December 2019 version of this database also 
contains 40 subcategories of structural BMPs, but the analysis 

documented in this report was done using the categories in 
table 1. Despite the large amount of data in the database, the 
availability of paired inflow and outflow data from BMP sites 
for some categories and many subcategories is not sufficient 
for quantitative characterization of BMP performance.

Fitting the Trapezoidal Distribution to Duration 
and Ratio Data

In SELDM, volume reduction ratios, hydrograph exten-
sion times, and water-quality treatment ratios are simulated 
by using the trapezoidal distribution and the rank correlation 
with the associated highway runoff variables (Granato, 2013, 
2014). The trapezoidal family of distributions was selected 
for modeling BMP performance measures because it can be 
parameterized by using expert judgment or by fitting the distri-
bution to data if good data are available (Johnson, 1997; Back 
and others, 2000; U.S. Environmental Protection Agency, 
2001; Scherer and others, 2003; Kacker and Lawrence, 2007; 

Table 1.  Explanation of selected structural best management practice categories used in the International Stormwater Best 
Management Practices Database.

[The International Stormwater Best Management Practices Database is documented by Leisenring and others (2020). BMP, best management practice]

Code Name Description

BI Grass strip (biofilter) Grass strips are vegetated areas designed to receive laterally distributed sheet flow from adjacent impervi-
ous areas; also called buffer strips or vegetated buffers.

BR Bioretention Bioretention BMPs are shallow, vegetated basins with a variety of planting/filtration media and often 
include underdrains. Also called rain gardens when underdrains are not present and biofiltration when 
underdrains are present.

BS Grass swale (bioswale) Grass swales are shallow, vegetated channels; also called bioswales or vegetated swales, which are de-
signed to convey overland flow.

CO Composite Composite BMPs include different BMP categories in a series that use a variety of treatment methods.
DB Detention basin Detention basins are normally dry ponds designed to empty after storm events by drainage over a weir 

and (or) through an orifice that controls the rate of release. This category also includes concrete-lined 
basins and underground concrete vaults.

IB Infiltration basin Infiltration basins are dry ponds that are not designed to include a surface-water drainage structure. 
Infiltration basins may have overflow drains for large storms. Some infiltration basins may have under-
drains that discharge to sewers or surface water bodies.

MD Manufactured device Manufactured devices are prefabricated stormwater treatment methods. This category includes catch 
basins, oil and grit separators, hydrodynamic devices, baffle boxes, filter inserts, and other devices.

MF Media filter Media filters are self-contained infiltration BMPs with overflow structures and underdrains. Media filters 
use sand, peat, perlite, zeolite, and (or) compost to treat infiltrating stormwater.

PP Porous pavement Porous pavement BMPs are full-depth, pervious concrete, porous asphalt, paving stones or bricks, rein-
forced turf rings, and other permeable surfaces designed to replace traditional pavement.

RP Retention pond Retention ponds, also known as wet ponds, are artificial lakes designed to maintain a permanent pool and 
a water-quality treatment volume. An orifice or weir commonly is used to drain the pool to the level of 
the permanent pool between storms.

WB Wetland basin Wetland basins are either surface wetlands with a semi-permanent pool or wetland meadows that fill dur-
ing storms and drain between storms. The groundwater level in wetland meadows commonly is within 
the root zone.

WC Wetland channel Wetland channels are normally wet swales designed to convey overland flow.
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Granato, 2013, 2014). The triangular distribution, which is 
a special case of the trapezoidal distribution, commonly is 
suggested when uncertainties in input data that may be used to 
define a parametric distribution are large (U.S. Environmental 
Protection Agency, 2001). The trapezoidal distribution is 
bounded by a selected minimum and maximum value. When 
data are uncertain or are limited in scope, use of a bounded 
distribution reduces the chance that unrealistic output values 
will be generated by extrapolating a distribution beyond the 
range of available data.

SELDM generates random numbers that follow trapezoi-
dal distributions by using the inverse cumulative distribution 
function (CDF) with an algorithm developed by Kacker and 
Lawrence (2007). The trapezoidal distribution is defined by 
four location variables (fig. 1): the lower bound (the minimum 
value), the lower bound of the most probable value (LBMPV), 
the upper bound of the most probable value (UBMPV), 
and the upper bound (the maximum value). The trapezoi-
dal distribution is very flexible and can assume a variety of 
shapes, including a positive-skewed triangular distribution, a 
negative-skewed triangular distribution, a symmetric (isos-
celes) triangular distribution, and a rectangular (uniform) 
distribution. SELDM will produce stochastic data that fit the 
triangular distribution if the LBMPV and UBMPV are speci-
fied as being equal. SELDM will produce stochastic data that 
fit the rectangular distribution if the LBMPV is set equal to 
the minimum and the UBMPV is set equal to the maximum. 
The triangular distribution is commonly used in environ-
mental risk analysis, but the rectangular distribution is not 
(U.S. Environmental Protection Agency, 2001). In the absence 
of reliable data, it is easier to estimate the parameters of the 
trapezoidal distribution by using professional judgment than it 
is to estimate the parameters of other commonly used distribu-
tions. Furthermore, it is easier to avoid generation of extreme 
outliers when large stochastic datasets are generated because 
the trapezoidal distributions are bounded.

Least-squares optimization was used to fit the BMP mon-
itoring data to the parameters of the trapezoidal distribution 
(Granato, 2014). The optimal fit to the trapezoidal distribution 
was calculated by minimizing the least-squares difference 
between the cumulative distributions of the volume reduction 
ratios, the hydrograph extension times, and the water-quality 
treatment ratios. In each case, the data were sorted, ranked, 
and assigned plotting positions by using the Cunnane (1978) 
plotting-position formula. The value for each data point was 
compared with the value of the same plotting position for the 
theoretical trapezoidal distribution with the input minimum, 
LBMPV, UBMPV, and maximum values, and the difference 
and squared difference were calculated. The sum of squared 
differences was used as the measure of fit.

The Microsoft Excel solver tool available in the analy-
sis tool pack was used to find the optimal fit of the cumula-
tive distribution of a trapezoidal distribution to each dataset 
(Granato, 2014; Granato and others, 2021). The Microsoft 
Excel solver tool should be installed with Microsoft Excel, 
but this tool must be activated using the Microsoft Excel 

“Add-Ins” menu. The solver was set up with the generalized 
reduced gradient nonlinear solving package to minimize the 
sum of squared errors between the data and the fitted distribu-
tion by varying the input statistics. The solver optimized the 
minimum, LBMPV, UBMPV, and the maximum values. The 
constraints on the solver were that the values must be greater 
than or equal to 0, the LBMPV must be greater than or equal 
to the minimum, the UBMPV must be greater than or equal to 
the LBMPV, and the maximum must be greater than or equal 
to the UBMPV (Granato, 2014). By definition, the maximum 
must be greater than the minimum; this criterion is not avail-
able in the solver, but it represents a trivial solution that was 
not encountered in this study.

To prepare for optimization, the BMPSE tool was used 
to sort and rank the data, calculate plotting positions, calculate 
initial estimates, and calculate potential correlations (Granato, 
2014, 2021). For the hydrograph extension and volume reduc-
tion variables, initial estimates were calculated by using the 
approximation equations for the triangular distribution devel-
oped by Johnson (1997). These values were adjusted to ensure 
the minimum was greater than or equal to 0, the most probable 
value was greater than or equal to the minimum, the maxi-
mum was greater than or equal to the most probable value, 
and the maximum was greater than the minimum. For the 
water-quality treatment ratios, initial estimates were calculated 
from the median ratio because the prior analyses indicated 
that the estimates based on the Johnson (1997) equations did 
not facilitate rapid convergence to a final solution (Granato, 
2014, 2021).

When fitting the distribution in Microsoft Excel, the 
solver was restarted with different input values several times 
for each analysis to find the most optimal solution. In some 
cases, there are multiple combinations of input variables that 
may produce what appears to be an optimal fit to the general-
ized reduced gradient nonlinear solving package. The situa-
tion is analogous to the problem of finding the highest peak 
of a mountain range in the fog by following an uphill gradient 
(Granato, 2014). Starting in different locations may result in 
discovery of different peaks; selecting different starting loca-
tions should help find the tallest peak. In an effort to find the 
most optimal fit, the values calculated from the first solution 
were modified and the solver was rerun. This was done several 
times and the most optimum solution (having the smallest sum 
of square errors) was selected. In many cases, there seemed to 
be only one optimal solution.

For the volume reduction and hydrograph extension ratio 
solver runs, which were done manually, at least two additional 
conditions were tested. In one solver run, the minimum was 
set equal to 0, the LBMPV minimum was set equal to 50 per-
cent of the average, the UBMPV minimum was set equal to 
twice the average, and the maximum was set equal to four 
times the average. In another solver run, the values for the 
solution with the lowest sum of square errors were adjusted. 
The minimum was set equal to 0; the LBMPV minimum 
was reduced by 10 to 20 percent of the prior estimate the 
UBMPV minimum was increased by 10 to 20 percent of the 
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Figure 1.  Schematic diagram showing five possible probability density functions of the trapezoidal distribution for simulating 
structural stormwater runoff best management practices with the stochastic empirical loading and dilution model as defined by the 
location variables (from Granato, 2014). A, symmetrical trapezoid; B, positive-skew triangular; C, negative-skew triangular; D, isosceles 
triangular; and E, rectangular (uniform). The height of each trapezoid is calculated to normalize the area under the probability-density 
function to equal one (Granato, 2013, 2014).
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prior estimate, and the maximum was increased by 20 percent 
of the prior estimate. For these variables, the stability of the 
least-squares solution was evaluated, and the best solution was 
picked if the results were stable or the starting points were 
modified if the solution seemed unstable. The solution with the 
lowest value of the sum of square errors was selected as the 
final result. The Microsoft Excel spreadsheet used to do these 
analyses (FitTrapezoidToBMP01v1.0.3.xlsx) is provided in 
the data release by Granato and others (2021).

In this study, water-quality measurements from 
2,017 datasets were optimized to determine trapezoidal fit 
statistics for concentration ratios for each site within the 
10 BMP categories that had sufficient data for analysis for one 
or more of the 51 highway- and urban-runoff constituents. 
The trapezoidal-fit spreadsheet for concentration ratios was 
automated by Granato (2014) to analyze concentration ratios 
because of the large number of water-quality datasets. The 
BMPSE generates the input files and the list of filenames for 
each constituent within the graphical user interface (Granato, 
2014, 2021).

For the initial optimization run for the water-quality 
treatment ratios, the minimum was set equal to one third of 
the median, the LBMPV minimum was set equal to 65 percent 
of the median, the UBMPV minimum was set equal to the 
median, and the maximum was set equal to three times the 
median. If a solution was reached, then the minimum was set 
equal to 50 percent of the initial estimate; the LBMPV was 
reduced to 75 percent of the initial estimate, the UBMPV was 
increased to 1.1 times the initial estimate, and the maximum 
was increased to 2 times the initial estimate, and the solver 
was rerun. If a solution was reached with the second run, then 
the minimum was set equal to 50 percent of the first-solution 
minimum, the LBMPV was reduced to 75 percent of the first-
solution LBMPV, the UBMPV was increased to 1.1 times the 
first-solution UBMPV, and the maximum was increased to 
2 times the first-solution maximum, and the solver was run 
for a third time. In the final trial, the values of the minimum, 
LBMPV, UBMPV, and maximum were changed to 0, 0.75, 
0.75 and 1.5, respectively. If one of the trial solutions failed 
to converge, the minimum was set equal to 0, the LBMPV 
was set equal to 10 percent of the measured maximum, 
the UBMPV was set equal to 25 percent of the measured 
maximum, and the maximum was increased to 1.5 times 
the measured maximum ratio, and the solver was rerun. The 
concentration-ratio solver program then sorted results to iden-
tify the solution with the smallest sum of squared errors, and 
this solution was identified as the final result for that monitor-
ing site. The Microsoft Excel spreadsheet used to do these 
analyses (FitConcentrationRatiov1.1.0.xlsm) is provided in the 
data release by Granato and others (2021).

Calculating Rank Correlation Coefficients for 
Duration and Ratio Data

SELDM uses rank correlation to preserve the structure of 
inflow and outflow data (Granato, 2013, 2014). The BMPSE 
(Granato, 2021) calculates the Spearman’s rho and Kendall’s 
tau correlation coefficients with their respective 95-percent 
confidence limits and the probability that each correlation 
coefficient value is not significantly different from 0 by using 
standard methods (Fisher, 1924; Haan, 1977; Press and others, 
1992; Caruso and Cliff, 1997; Helsel and Hirsch, 2002). If 
the 95-percent confidence limit values are of the same sign, 
then the correlation coefficient is statistically different from 
0. The range of the 95-percent confidence limit values, which 
depends on the strength of correlation and the number of data 
points, indicates the potential precision of the correlation 
value. For hydrograph extension, the BMPSE calculates rho 
and tau between the inflow volume and the hydrograph exten-
sion values (Granato, 2014, 2021). For volume reduction, the 
BMPSE calculates rho and tau between the inflow volume and 
the ratio of outflow to inflow volumes (Granato, 2014, 2021). 
For water-quality treatment, the BMPSE calculates rho and tau 
between the inflow concentrations and the ratio of outflow to 
inflow concentrations (Granato, 2014, 2021). The BMPSE also 
calculates rho between the inflow and the outflow concentra-
tions when a water-quality treatment analysis is done.

The rank correlation between the paired inflow volume 
and the ratio of outflow to inflow volume or the paired inflow 
concentration and the ratio of outflow to inflow concentration 
should not be used for statistical inference (Granato, 2014). 
Because the inflow concentration and runoff are included 
in the ratios, the correlations are spurious (Haan, 1977). 
However, these rank correlations can be used in a Monte 
Carlo analysis to help preserve the structure of the input 
data (Granato, 2013, 2014). Figure 2 shows the results of an 
example Monte Carlo analysis to demonstrate the pattern of 
uniform random numbers generated by using four positive 
correlation values. These patterns show that as the correlation-
coefficient increases, the likelihood that the paired numbers 
will be similar also increases (fig. 2; Granato, 2013). With 
positive correlations, higher input values will tend to produce 
higher ratios. If correlations are negative, then the patterns 
will be mirrored diagonally from the top left to bottom right 
of each graph panel. With negative correlations, higher input 
values will tend to produce lower ratios. Thus, if the rank 
correlations between inflow volumes and ratios are positive, 
then large inflows would be associated with large ratios, and 
small inflows would be associated with small ratios when the 
performance data are generated. Conversely, if the rank cor-
relations are negative, large inflows would be associated with 
small ratios, and small inflows would be associated with large 
ratios when the performance data are generated. The absolute 
value of the correlation determines the magnitude of the scat-
ter of the points.



8    Statistical Methods for Simulating Structural Stormwater Runoff BMPs With SELDM

Uniform random numbers for first variable

Co
rr

el
at

ed
 u

ni
fo

rm
 ra

nd
om

 n
um

be
rs

 fo
r s

ec
on

d 
va

ria
bl

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.3

0.4

0.5

0.7

0.8

0.9

1.0

0.1

0.6

0.0

0.2

0.3

0.4

0.5

0.7

0.8

0.9

1.0

0.1

0.6

Rho = 0.25
1:1 line

EXPLANATION

Rho = 0.45
1:1 line

EXPLANATION

Rho = 0.65
1:1 line

EXPLANATION

Rho = 0.85
1:1 line

EXPLANATION

Figure 2.  Scatter plots of results of a Monte Carlo analysis to demonstrate scatter of paired uniform random-number samples around 
a one-to-one relation for four different values of the rank correlation coefficient (Spearman’s rho). Each sample consists of 500 paired 
uniform random numbers in the range between 0 and 1. Modified from Granato (2013).

Estimating the MIC Values

Granato (2014) used four statistical estimators to calcu-
late MICs from available BMP effluent-concentration sample 
data and then used these estimators to select representative 
MIC values. These estimators are the measured minimum, 
the log-triangular lower-bound estimator, Stedinger’s quantile 
lower-bound estimator, and a modified quantile lower-bound 
estimator. The four lower-bound estimators selected for esti-
mating the MIC in this study are based on the theory that the 

Sample sizes of seven or more storms per BMP monitor-
ing site were selected for calculating correlation coefficients 
for the volume reduction ratios, hydrograph extension dura-
tions, and concentration ratios (Granato, 2014). This sample-
size criterion was applied for selection of datasets to estimate 
correlation coefficients because Abdel-Megeed (1984) deter-
mined that at least five data pairs were necessary to begin to 
quantify the correlation. A minimum sample size of seven was 
selected to improve on the minimum estimate of five storms 
while retaining two or more datasets for each BMP category.
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effluent concentrations are approximately lognormal but are 
not constrained to this assumption. These four different esti-
mators were selected for use because each estimator has sev-
eral potential advantages and disadvantages. Granato (2014) 
ranked the estimated MIC values that were greater than 0 and 
used various percentiles from all sites with sufficient data 
to provide several MIC values for the constituents of inter-
est that stormwater practitioners could use to simulate BMP 
discharges to estimate potential effects of runoff on receiving 
waters or to calculate TMDLs.

Calculating Statistical Estimators
The measured minimum value is the simplest method for 

estimating the MIC and is commonly used for this purpose in 
the literature (Granato, 2014). The measured minimum value 
is commonly used because it is simple to calculate, it is gener-
ally accepted, and it is completely nonparametric. Limitations 
to the measured minimum value as an estimator for the MIC 
are that the probability that the measured minimum is repre-
sentative of the MIC may be low especially if sample sizes 
are small, and it may not be possible to quantify the measured 
minimum value because there may be one or more censored 
values below one or more detection limits. The probability that 
the measured minimum value is representative of the MIC is 
low because most BMP monitoring studies collect relatively 
few samples (Granato, 2014). For example, among sites in the 
BMPSE from the 2019 dataset with 5 or more samples, about 
35 percent of datasets for total suspended solids, total zinc, 
total copper and total phosphorus have fewer than 10 sam-
ples, and about 77 percent of these datasets have fewer than 
20 samples (Granato, 2021). In the BMPDB and in many stud-
ies, a value of half the detection limit may be substituted if the 
measured minimum is censored (Granato, 2014). In this study, 
however, the robust regression on order statistics method 
was used to estimate values below detection limits for all the 
MIC estimates. When necessary, the measured minimum value 
was estimated from the minimum percentile calculated by 
using the selected plotting-position formula. There is substan-
tial uncertainty in the exact minimum value if estimates are 
made using regression on order statistics or other methods 
(Granato, 2014).

The log-triangular lower-bound estimator also is a simple 
and robust method to estimate a MIC value (Granato, 2014). 
Although the lognormal distribution is commonly used, the 
lack of a lower bound in log space may produce estimates 
that are infinitely close to 0. Using the log-triangular lower-
bound estimator puts a finite lower limit to the estimated MIC. 
Scherer and others (2003) found that the best fit lower limit 
could be calculated by subtracting a value of the standard 
deviation multiplied by the square root of 6 from the mean 
value. The log-triangular lower-bound estimator is advanta-
geous because it is simple to calculate, it will always produce 
a value that is greater than 0, it can be calculated by using 
accepted standard methods for censored data, and it provides 
a good fit to the standard normal distribution (Granato, 2014). 

For data such as pH, which cannot be simulated using a log-
normal distribution, the triangular lower bound estimator can 
be calculated by using the average and standard deviation of 
the untransformed data. However, the triangular lower-bound 
estimator may not be the best estimator if the logarithms of the 
BMP effluent data are substantially asymmetrical above and 
below the geometric mean.

Granato (2014) also used Stedinger’s quantile lower-
bound estimator of the three-parameter lognormal distribu-
tion to estimate the MIC. The three-parameter lognormal 
distribution commonly is used to model environmental data 
that are well approximated by a lognormal distribution, but 
do not have a lower-bound value of 0. Stedinger’s quantile 
lower-bound estimator is simple to calculate and will fit data 
that are not symmetrical above and below the geometric mean 
(Granato, 2014). However, this estimate of the MIC is not 
robust because it can produce a lower-bound value that is 
less than 0, it is very sensitive to the presence of data below 
one or more detection limits because it is calculated using the 
minimum measured (or censored) value, and the lower-bound 
estimated using the three-parameter lognormal distribution 
cannot be adapted to data that cannot be simulated using a 
lognormal distribution (such as pH, for example).

Because of the limitations of Stedinger’s lower-bound 
estimator, Granato (2014) also used a modified quantile 
lower-bound estimator (MQLBE) to estimate the MIC. The 
MQLBE also is simple to calculate and will fit data that 
are not symmetrical above and below the geometric mean. 
To avoid MQLBE values that were less than or equal to 0, 
Granato (2014) developed an iterative method that would 
adjust the parameters of the equation until the MIC estimate 
was greater than 0. In some cases, however, this method could 
produce MIC estimates that exceeded the median measured 
value. Because it uses the average of the smallest measured or 
censored values, the MQLBE is more robust to the presence 
of censored values than Stedinger’s lower bound estimator 
but may be affected by a high proportion of censored values. 
Because it is iterative, the MQLBE is not as easy to calcu-
late as some of the other estimators used by Granato (2014) 
for MIC values The MQLBE will not produce valid MIC 
estimates for constituents that cannot be approximated by a 
lognormal distribution.

Selecting Representative MIC values
Four statistics (denoted as MIC0 through MIC3) were 

chosen for selecting representative MIC values from among 
the four statistical lower-bound estimators (minimum, log-
triangular, Stedinger, and MQLBE) for each BMP category. 
Another statistic, denoted as MIC4, was chosen for selecting 
a representative MIC for an individual monitoring site from 
among the four methods for calculating a statistical lower-
bound estimate. Only the BMP monitoring sites with five or 
more samples above the detection limits were used to calcu-
late the four MIC statistics. The first category-level method 
(MIC0) uses the minimum of the minimum values of the 
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positive MIC estimates. The second category-level method 
(MIC1) uses the 25th percentile of the minimum values of 
the positive MIC estimates. The third category-level method 
(MIC2) uses the median of the minimum values of the positive 
MIC estimates. The fourth category-level method (MIC3) uses 
the median of the median values of the positive MIC esti-
mates. The median of the positive statistical lower-bound esti-
mators for an individual monitoring site (MIC4) was chosen 
for selecting a representative MIC for that site because many 
of the datasets include one or more values below detection 
limits, which means that an individual minimum MIC estimate 
may be uncertain for any one site. However, the MIC1 and 
MIC2 estimates from all available sites were chosen as the pri-
mary methods for estimating the MIC for a category or group 
of BMP sites because the MIC3 estimates may be biased high 
and the MIC0 may be biased low if the objective is to select a 
representative MIC for a category of BMPs.

The more conservative MIC estimates based on relatively 
small sample sizes may not be representative of long-term 
performance in BMP simulations. SELDM generates sto-
chastic populations with about 800 to 2,300 storms. All BMP 
effluent concentrations calculated as being below the MIC 
will be set equal to the MIC. In large long-term simulations, 
a substantial proportion of effluent concentrations may equal 
the MIC estimate generated from small short-term studies, 
which will result in a seemingly unrealistic distribution of 
effluent concentrations. SELDM was designed with the MIC 
as a constant variable, whereas further research indicates that 
it may be a stochastic variable that varies at a site and between 
sites. Selection of the MIC1 estimate or a lower percentile 
value should allow for more variation in low-end concentra-
tions. Selection of a lower MIC estimate should reduce the 
proportion of constant-value low-end concentrations but is 
not expected to substantially change the proportion of water-
quality excursions or total annual loads in most cases because 
absolute differences in MIC values are small in comparison to 
the range of BMP effluent concentrations.

Estimating MIC Values From 
Inflow-Concentration Statistics

Inflow concentration statistics were used to help inform 
MIC estimates because inflow concentrations can have a sub-
stantial effect on the outflow concentrations (Leisenring and 
others, 2013; Granato, 2014). The geometric means of inflow 
concentrations were used to calculate the rank and Pearson’s 
r correlation coefficients for the MIC values (Granato, 2014). 
The rank and Pearson’s r correlation coefficients on the arith-
metic and logarithmic values of the geometric mean inflow 
concentration and the estimated MIC value were calculated 
to help inform the choice of MIC values and to explore the 
feasibility of predictive equations for these variables. The 
geometric means and standard deviations of inflow concentra-
tions also were used to refine MIC estimates based on inflow 
concentration statistics.

To evaluate the potential for developing quantitative rela-
tions between the geometric mean inflow concentration and 
the MIC values, Granato (2014) defined correlation strengths 
based on the value of the correlation coefficient. Granato 
(2014) defined weak correlations as having correlation coeffi-
cient values less than 0.5, moderate correlations having values 
greater than or equal to 0.5 and less than 0.75, semistrong 
correlations having values greater than or equal to 0.75 and 
less than 0.85, and strong correlations having values greater 
than or equal to 0.85. Granato (2014) found that few constitu-
ents had correlations strong enough to provide quantitative 
relations between geometric mean inflow concentrations and 
representative MIC values.

Comparisons of the three correlation coefficients can 
inform the true relations between variables (Granato, 2014). 
Spearman’s rho is a robust estimator of a monotonic rela-
tion between two variables that is resistant to outliers (Helsel 
and Hirsch, 2002). If a rho value is equivalent to one or more 
of the associated r values, then it may be assumed that the 
representative linear relation also is robust. If the rho value is 
greater than one or more of the associated r values, a different 
transformation of either the geometric mean or MIC estimates 
(or both) may be assumed to produce a linear relation that 
corresponds to the rho estimate. However, if one or more r 
value is substantially greater than the associated rho value, 
one or more far outliers may be assumed to be responsible for 
artificially inflating the r values. Using the logarithms of the 
values tends to decrease the leverage of high outliers, but this 
increases the leverage of small outliers.

The lognormal variate (K) for the MIC values also were 
calculated from BMP inflow-concentration statistics to help 
estimate a site-specific MIC value. The lognormal variate is 
calculated as follows:

	​ K ​ = ​  log​(MIC)​ − log​(GeometricMean)​  ____________________  log​(GeometricStandardDeviation)​​​.� (1)

Once K is estimated from input datasets, it can be used to 
estimate a MIC value from simulated inflow concentrations at 
a site of interest with the equation:

	 MIC=10(log(GeometricMean)+K×log(GeometricStandardDeviation)).� (2)

The resulting MIC estimate will be an estimate of a constitu-
ent concentration or parameter value that is a fraction of the 
geometric mean of inflow concentrations.

Limitations of the BMP Performance Analysis

Properly modeling the performance of structural BMPs is 
a complex endeavor, and there are many explanatory variables 
that are difficult to quantify, especially with limited monitor-
ing data. For example, Leisenring and others (2013) analyzed 
the effects of structural BMP design parameters on achievable 
effluent concentrations by using data from 530 monitoring 
sites in the BMPDB and found that BMP design variables 
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had weak correlation to performance. Leisenring and others 
(2013) found the strongest correlations were between inflow 
and outflow concentrations. Few studies provide reliable 
predictions of treatment performance even with large datasets 
and complex models (Strecker and others, 2001; Granato, 
2014). Uncertainties in volume reduction, hydrograph exten-
sion, water-quality treatment, and the MICs arise because of 
the many categories of BMPs, wide variations in design and 
construction of BMPs within each category, and wide varia-
tions in the operation and maintenance of BMPs once they are 
installed (Granato, 2014).

Uncertainties in results also are compounded by available 
sample sizes (Driscoll and others, 1979; Burton and Pitt, 2002; 
California Department of Transportation, 2009; Granato, 2014; 
Leutnant and others, 2018). Driscoll and others (1979) recom-
mend the collection of 20 to 40 event mean concentration 
(EMC) samples to characterize runoff on the basis of the vari-
ability of commonly measured runoff constituents. Similarly, 
Burton and Pitt (2002) indicate that, at a minimum, 25 to 
50 EMC samples may be needed. The California Department 
of Transportation (2009) provides examples in their BMP 
monitoring handbook that indicate that 50 to 113 paired EMC 
samples may be needed just to detect differences in mean 
concentrations. Leutnant and others (2018) determined that 
40 EMC samples would need to be collected to characterize 
total suspended solids (TSS) concentrations. By comparison, 
the paired data table of the 2019 version of the BMPDB has 
an average of about 16 samples per BMP for TSS and total 
phosphorus (TP); the most commonly measured constituents. 
Only about 6 percent of these BMPs have 40 or more samples 
for these constituents.

BMP statistics presented in this report are category 
medians from sites with 7 or more monitoring events: 248 
of 446 BMP sites have 7 or more TSS samples, and 319 of 
424 BMP sites have 7 or more TP samples. Although this is 
a seemingly large number of sites, the number of sites per 
category with sufficient data for analysis can be small for 
some BMP categories and some BMP performance vari-
ables. The category median is selected on the principal of the 
wisdom of the crowd; the median is selected rather than the 
mean to reduce the potential effect of far outliers (Granato, 
2014; Wallis, 2014). However, the (approximate) 95-percent 
confidence limit of the median can encompass a large portion 
of a dataset (table 2).

Professional judgement may be needed to apply analy-
sis of data from short-term studies to long-term simulations. 
Although the methods described in this report will repro-
duce the data used for analysis when used to simulate BMP 
performance, the results of analyses are only as good as the 
underlying data. The BMPDB includes many small datasets, 
and many studies do not include the effects of year-round 
weather conditions. The number of runoff-generating events 

per year among the 15 U.S. Environmental Protection Agency 
rain zones defined by the ranges from 17 in arid areas to 62 in 
areas with wet climates; the average among the rain zones is 
40 events per year (Granato, 2010). By comparison, about 
36, 10, and 4 percent of studies with paired flow data for 7 or 
more storms have 20, 40, or 60 events, respectively. Similarly, 
the variation in precipitation volume for most sites approxi-
mates typical annual variations but not long-term variations in 
precipitation volumes. Many datasets have outflow to inflow 
ratios that greatly exceed 1; these values may represent site-
specific conditions or problems in the measurements. Because 
of the form of the equations for the cumulative distribution 
function of the trapezoidal distribution (Kacker and Lawrence, 
2007), the maximum value has the largest effect on the propor-
tion of ratios that are greater than 1. As the maximum value 
increases from 1 to 2, the percentage of generated values that 
are greater than 1 increases from 0 to about 40 percent. As the 
maximum value increases from 2 to 4, the percentage of gen-
erated values that are greater than 1 increases from about 40 to 
60 percent. Although the median of at-site statistics should 
not reflect extreme values from individual sites, the selected 
medians may be biased upward by the presence of multiple 
sites with high outliers. These limitations may be overcome by 
selecting trapezoidal statistics from among selected sites and 
correlation coefficients that reduce the risk for large ratios with 
large flows or concentrations.

Planning-level estimates are defined as the results of anal-
yses used to evaluate alternative management measures and 
are recognized to include substantial uncertainties (Barnwell 
and Krenkel, 1982; Marsalek and Ng, 1989; Marsalek, 1991; 
Granato, 2014). The stochastic approach used in SELDM is 
warranted because there are large uncertainties in available 
information and the level of effort required to develop detailed 
simulation models may be beyond the scope of an initial 
planning-level estimate (Granato, 2013, 2014). Even if data in 
the BMPDB were more comprehensive, there is always sub-
stantial uncertainty when using hydrologic data at one location 
to estimate conditions at another location. However, if the 
initial analysis done with SELDM indicates the potential need 
for mitigation, then detailed simulation or statistical models 
may be used to develop more refined performance statistics for 
use with SELDM (Granato, 2014). Furthermore, if the initial 
analysis without BMP treatment indicates the potential need 
for mitigation, then SELDM can easily be used to develop 
the BMP-performance statistics needed to reduce storm loads 
or the frequencies of water-quality excursions in receiving 
waters to an acceptable level (Granato, 2014). This analysis 
can be done by varying BMP treatment statistics to meet 
water-quality objectives. Such an analysis may indicate that it 
is impossible in practice to meet water-quality objectives by 
using the treatment capabilities of feasible BMP designs.
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Table 2.  Minimum and maximum ranks of a dataset of a given size that encompass the approximate 95-percent confidence interval for 
the median based on the binomial distribution.

[Equation for the binomial distribution is from Bland (2015)]

Sample size
Median value

Lower-bound rank Upper-bound rank
3 1 3
4 1 4
5 1 5
6 1 6
7 1 7
8 2 7
9 2 8

10 2 9
11 3 9
12 3 10
13 3 11
14 4 11
15 4 12
16 5 12
17 5 13
18 5 14
19 6 14
20 6 15
21 7 15
22 7 16
23 7 17
24 8 17
25 8 18
26 9 18
27 9 19
28 9 20
29 10 20
30 10 21
31 11 21
32 11 22
33 11 23
34 12 23
35 12 24
36 13 24
37 13 25
38 13 26
39 14 26
40 14 27
41 15 27
42 15 28
43 16 28
44 16 29
45 16 30
46 17 30
47 17 31

Sample size
Median value

Lower-bound rank Upper-bound rank

48 18 31
49 18 32
50 19 32
51 19 33
52 19 34
53 20 34
54 20 35
55 21 35
56 21 36
57 22 36
58 22 37
59 22 38
60 23 38
61 23 39
62 24 39
63 24 40
64 25 40
65 25 41
66 26 41
67 26 42
68 26 43
69 27 43
70 27 44
71 28 44
72 28 45
73 29 45
74 29 46
75 30 46
76 30 47
77 30 48
78 31 48
79 31 49
80 32 49
85 34 52
90 36 55

100 41 60
125 52 74
150 63 88
175 75 101
200 87 114
250 110 141
300 134 167
400 181 220
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Results of Analyses
This study produced statistics for hydrograph extension, 

volume reduction, and water-quality treatment. The minimum, 
LBMPV, UBMPV, and maximum of the trapezoidal distri-
bution were calculated for every site in the 2019 version of 
the BMPDB with seven or more paired events. Correlations 
between inflow and outflow values also were calculated for 
these three variables. This report documents the medians of 
individual statistics because Granato (2014) determined that 
the median of best-fit statistics would be the most robust 
approach for selecting BMP-performance statistics after ana-
lyzing data from many monitoring sites. Individual at-site sta-
tistics for all the sites are listed in Granato and others (2021).

Hydrograph Extension

In this study, hydrograph extension statistics were devel-
oped for 8 BMP categories using data from 44 BMP monitor-
ing sites with 7 or more storm events (table 3). The median 
values of the minimum, LBMPV, and UBMPV of the trap-
ezoidal distributions were equal to 0 for four BMP categories 
(grass strip, detention basin, manufactured device, and wetland 
channel) with sufficient data to do the analysis. Therefore, 
these distributions are the positive-skew triangular distribu-
tions shown in figure 1B. The grass swale BMP category has 
values that also produce a positively skewed triangular dis-
tribution, and the rest of the BMP categories have values that 
produce trapezoidal distributions with a vertical lower bound. 
Hydrograph extension statistics for individual BMP monitor-
ing sites are provided in a runoff hydrograph extension file 
(USGS-SIR-2020-5136-HydrographExtension-SiteResults.
txt) published by Granato and others (2021). The statistics 
in table 3 also are published in SELDM input file format 
(SELDM-tblBMPHydraulicsTable.csv) by Granato and others 
(2021). In comparison to the values developed by Granato 
(2014), hydrograph extension values increased substantially 
for detention basins and media filters and decreased substan-
tially for grassy swales. In the 2012 BMPDB, however, which 
is the version of the BMPDB that was used for the analysis 
in Granato (2014), grass strips and swales were combined in 
one category. SELDM users should apply hydrograph exten-
sion results carefully, especially for categories with data from 
only a few monitoring sites. As Granato (2014) indicated, 
hydraulic design information may help establish the critical 
upper bound limits for the trapezoidal distribution to be used 
in SELDM modeling studies, especially since so few studies 
in the BMPDB have reliably documented hydrograph exten-
sion values.

Examination of results for individual BMP sites indicates 
that there may be large variations in performance within all 
the categories (fig. 3). Some of these variations may represent 
limitations in monitoring data, site-specific conditions such as 
groundwater discharge, or specific design features. For exam-
ple, the median of the maximum extension values for the grass 

strip and manufactured device (8.63 and 8.58 hours, respec-
tively; table 3) are greater than what professional judgement 
might suggest, but these categories have the largest number 
of monitoring sites (fig. 3). When results for individual sites 
are examined, it is apparent that hydrograph extension for the 
multichambered treatment trains in the manufactured device 
category are much longer than for the much smaller hydrody-
namic devices (Granato and others, 2021). Thus, the medians 
may straddle different designs within the same BMP category. 
Although category-median values, which provide robust 
planning level estimates, are documented in table 3, some 
professional judgement may be needed to select statistics from 
among the individual sites based on design information for the 
individual sites. The BMPDB, however, does not contain a full 
set of design values for every BMP, and Leisenring and others 
(2013) did not find strong correlations between design and 
performance variables.

In SELDM, the rank correlation between inflow vol-
ume and hydrograph extension can be used to condition 
the stochastic generation of extension values based on the 
exceedance percentile of flow volume (Granato, 2013; 2014). 
However, only 7 of the 44 BMP monitoring sites included in 
the hydrograph extension analyses documented in this report 
had statistically significant (95th percentile) rank correlations 
between hydrograph extension and inflow volumes. Among 
the 44 BMPs with sufficient data, 29 had positive, 14 had neg-
ative, and 1 had a 0-rho value. These rho values ranged from 
about −0.93 to about 0.71 (table 3). This indicates that ante-
cedent conditions rather than within-event runoff volumes may 
account for a substantial amount of the variability in measured 
hydrograph extension values (Granato, 2014). Only the deten-
tion basin and retention pond, which are designed primarily 
as storage volumes with specified drain times (Granato, 2014) 
had consistent correlations between hydrograph extension and 
inflow volumes. Because hydrograph extension is simulated 
as a duration in hours rather than being a ratio to an inflow 
variable, correlation to the inflow value is unlikely to produce 
anomalous values; therefore, the correlation coefficient is not 
crucial for simulating reasonable BMP discharge durations.

Runoff Volume Reduction

In this study, volume reduction statistics were devel-
oped for 12 BMP categories using data from 135 BMP 
monitoring sites with 7 or more storm events (table 4). 
BMP monitoring sites with equivalent ratios of outflow to 
inflow volumes across all events were excluded. Volume 
reduction statistics for individual BMP monitoring sites 
are provided in a runoff-volume reduction file (USGS-SIR-
2020-5136-VolumeReduction-SiteResults.txt) published 
by Granato and others (2021). In comparison to the values 
developed by Granato (2014), the percent of events with 
ratios exceeding 1 (outflow volume exceeds inflow volume) 
increased for grass strips, bioretention, detention basins, and 
wetland basins; the percent exceedance was about the same 
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Percentage of storm events with hydrograph-extension durations that are less than or equal to a given value
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Figure 3.  Line graphs showing fitted cumulative trapezoidal distribution functions of the hydrograph extension statistics for A, 14 grass 
strip (biofilter) monitoring sites, B, 6 bioretention monitoring sites, C, 7 manufactured device monitoring sites, and D, 7 media filter 
monitoring sites. The graphs also show cumulative distribution functions that are fitted to the median of the hydrograph extension 
statistics for each category.
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Percentage of storm events with hydrograph-extension durations that are less than or equal to a given value
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Figure 3.  —Continued
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Table 4.  Medians of stormflow volume reduction statistics for the trapezoidal distribution and Spearman’s rho correlation coefficient 
statistics for structural stormwater runoff best management practices by category.

[The International Stormflow Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. 
and Geosyntec Consultants, 2019). BMPDB category codes and names are listed in table 1. The percentage of outflow ratios greater than 1 are calculated by 
using the volume reduction statistics in this table. The volume reduction statistics are for the trapezoidal distribution of the ratio of outflow to inflow volume. 
Spearman’s rank correlation coefficients (rho) are calculated by using the ranks of the inflow volumes and the associated ratios of outflow to inflow volumes. 
N, number of sites with at least seven storms used to calculate the median ratio statistics and Spearman's rho statistics; min, minimum; LBMPV, lower bound of 
the most probable value; UBMPV, upper bound of the most probable value; max, maximum; Pct GT 1, the theoretical percentage of storms in which outflows 
exceed inflows and thus, the ratio is greater than 1; med, median; —, insufficient data]

BMPDB category
N

Volume reduction statistics, ratio
Spearman’s rho  

correlation coefficients

Code Name Min LBMPV UBMPV Max Pct GT 1 Min Med Max

BI Grass strip 31 0 0.0137 0.0324 1.9511 23.9 −0.72 −0.10 0.90
BR Bioretention 22 0.0043 0.0720 0.2051 1.1318 1.49 −0.70 0.27 0.78
BS Grass swale 12 0.0671 0.1969 0.6720 0.9732 0.0 −0.60 0.24 0.84
CO Composite 4 0 0.7815 1.0377 1.5961 34.2 −0.72 −0.40 0.70
DB Detention basin 15 0.0658 0.1411 0.6570 1.8986 27.7 −0.76 −0.26 0.48
IB Infiltration basin 1 0.2277 1.0584 1.0605 1.0605 14.0 0.84 0.84 0.84
MD Manufactured device 8 0.3745 0.8024 0.9502 1.3533 27.5 −0.71 −0.15 0.10
MF Media filter 6 0.2551 0.2648 0.2746 1.3979 12.2 −0.15 0.00 0.57
PP Porous pavement 2 0 0 0 0.4008 0.0 0.28 0.53 0.77
RP Retention pond 25 0.1462 0.6207 0.8907 1.6295 30.6 −0.72 −0.01 0.79
WB Wetland basin 4 0.2843 0.9028 0.9028 2.0932 55.5 −0.57 −0.18 0.61
WC Wetland channel 5 0.4378 0.4378 0.9530 1.5623 31.6 −0.60 0.04 0.70

Parameter values 135 0.1067 0.3513 0.7814 1.4801 18.3 −0.65 −0.01 0.74

as in Granato (2014) for media filters and wetland channels, 
and smaller for swales and retention ponds. The values for 
grassy strips and swales may be different because these two 
categories were separated in the 2019 version of the BMPDB 
(Wright Water Engineers, Inc. and Geosyntec Consultants, 
2019). SELDM users should apply runoff-volume reduction 
statistics carefully, especially for categories with data from 
only a few monitoring sites.

The median volume reduction statistics in table 4 indicate 
that outflows range from about 0.4 percent of inflows (for 
bioretention) to about 209 percent of outflows (for wetland 
basins). Only the median for the grass swale and porous pave-
ment category result in BMPs that do not have some outflows 
that exceed inflows for some storm events. Among the other 
BMP categories in table 4, the percentage of storms in which 
outflows exceed inflows ranges from 1.5 percent for bioreten-
tion to 56 percent for wetland basins. Outflows may exceed 
inflows if flows retained during one event are released during 
a subsequent event, if precipitation on the BMP is a substantial 
component of flow, if groundwater discharge occurs, if moni-
toring instruments are miscalibrated, or if flow is otherwise 
erroneously measured. Groundwater discharge may occur as 
saturation overland flow, throughflow, or near-channel ground-
water ridging (Granato, 2010); these types of flow may be 
especially prevalent for normally wet BMPs, such as detention 
ponds or wetland BMPs.

Examples of the CDFs for the trapezoidal distribution of 
volume reduction ratios for 31 grass strip (biofilter), 22 bio-
retention, 8 manufactured device, and 6 media-filter sites are 
shown with the CDFs constructed using the medians of the 
best fit statistics in figure 4. The graphs indicate the large 
range in performance of each type of BMP among the different 
studies. The BMP categories for the other 68 sites not included 
in figure 4 also have similar patterns with wide variations in 
the CDFs within each category and representative CDFs con-
structed from the median values. The CDF constructed with 
the medians of statistics have outflows that exceed inflows 
for about 24 percent of runoff events for the grass strip CDF, 
about 1 percent of runoff events for the bioretention CDF, 
about 28 percent for the manufactured device CDF, and about 
12 percent of runoff events for the media filter CDF (fig. 4).

The CDFs in figure 4 indicate that the median values pro-
vided in table 4 may produce robust estimates for some BMPs 
but professional judgement may be necessary for selecting 
statistics for other categories. Although there are 31 grass-strip 
monitoring sites, many of the CDFs for grass strips indicate 
the presence of groundwater discharge (Granato, 2010) or 
other sources of stormflow because outflows greatly exceed 
inflows for a large proportion of runoff events. If the median 
of grass-strip values that do not exceed 2 is selected, then the 
maximum trapezoidal statistic would equal 1.36, and only 
about 7 percent of events would exceed a ratio of 1. Granato 



18    Statistical Methods for Simulating Structural Stormwater Runoff BMPs With SELDM

Percentage of storm events with volume-reduction ratios that are less than or equal to a given value
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Figure 4.  Line graphs showing fitted cumulative trapezoidal distribution functions of the volume reduction ratio statistics for 
A, 31 grass strip (biofilter), B, 22 bioretention, C, 8 manufactured device, and D, 6 media filter monitoring sites. The graphs also show 
cumulative distribution functions that are fitted to the median and selected-median statistics.
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Percentage of storm events with volume-reduction ratios that are less than or equal to a given value
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(2014) did not analyze manufactured devices because volume 
reduction is not a design feature for many of these devices. 
The CDFs for manufactured device and media filter sites 
(fig. 4C and D) indicate the potential for volume changes 
caused by both infiltration into and leakage from manufac-
tured devices and media filters. Infiltration is evidenced by 
the CDFs with a substantial percentage of events with ratios 
that substantially exceed 1. Leakage is evidenced by the 
CDFs with a substantial percentage of events with ratios that 
are substantially less than 1. Although some evaporation or 
leakage may be expected from such devices from storm to 
storm, thereby reducing the outflow from the next event, it 
may be prudent not to simulate volume reduction for BMPs 
that are not designed for this purpose. This is because volume 
reductions observed in the data for some BMPs that are not 
commonly designed for volume reduction may be the result of 
sampling artifacts.

To address the potential for simulated mass balance prob-
lems for BMPs without unmonitored inflows, median statis-
tics were recalculated by using only the sites with maximum 
volume reduction ratios that are less than 2 (table 5). Although 
this resulted in a substantial reduction in the number of sites 
used in the calculations for several BMPs, it also substantially 
reduced the risk for exceeding a volume reduction ratio of one 
and reduced the magnitude for most BMP categories (tables 4 
and 5). Results for closed-volume BMPs such as manufactured 

devices and media filters remain higher than may be expected, 
but the normally wet BMPs (including retention ponds, 
wetland basins, and wetland channels) that commonly are 
in contact with groundwater may reflect the effect of rising 
groundwater levels during storm events. Using only selected 
BMPs also reduced the magnitude of excess flows for all 
BMP categories in these tables. The selected median CDFs 
in figure 4 can be used to demonstrate the potential effects of 
the selection criteria on simulated long-term volume reduc-
tion populations. The statistics in table 5 also are published in 
SELDM input-file format (SELDM-tblBMPHydraulicsTable.
csv) by Granato and others (2021).

In SELDM, the rank correlation between inflow volumes 
and the volume reduction ratios can be used to condition the 
stochastic generation of the ratios based on the exceedance 
percentile of flow volume (Granato, 2013, 2014). Because 
volume reduction is simulated as a ratio of the inflow volume, 
the correlation coefficient can be used to reduce the probability 
that a small ratio would be applied to a very large runoff vol-
ume. A strong positive correlation between inflow volume and 
the volume reduction ratio would tend to result in low ratios 
(larger proportional reductions) for small runoff volumes and 
high ratios (smaller proportional reductions) for large runoff 
volumes. This is consistent with what would be expected, but 
strong positive correlations could create large excess flows 
if the maximum volume reduction value greatly exceeds 1. 

Table 5.  Medians of selected stormflow volume reduction statistics for the trapezoidal distribution and Spearman’s rho correlation 
coefficient statistics for structural stormwater runoff best management practices, by category.

[The International Stormflow Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. and 
Geosyntec Consultants, 2019). BMPDB category codes and names are listed in table 1. The medians were calculated by using statistics from sites with maxi-
mum ratios that are less than two. The percentage of outflow ratios greater than 1 are calculated by using the volume reduction statistics in this table. The volume 
reduction statistics are for the trapezoidal distribution of the ratio of outflow to inflow volume. Spearman’s rank correlation coefficients (rho) are calculated by 
using the ranks of the inflow volumes and the associated ratios of outflow to inflow volumes. N, number of sites with at least seven storms used to calculate the 
median ratio statistics and Spearman's rho statistics; min, minimum; LBMPV, lower bound of the most probable value; UBMPV, upper bound of the most prob-
able value; max, maximum; pct GT 1, the theoretical percentage of storms in which outflows exceed inflows; med, median; est, estimate for simulation, which is 
the average of the median and maximum rho values]

BMPDB category
N

Volume reduction statistics, ratio Spearman’s rho correlation coefficients

Code Name Min LBMPV UBMPV Max Pct GT 1 Min Med Max Est

BI Grass strip 16 0 0.0202 0.0317 1.2428 3.9 −0.61 −0.06 0.90 0.42
BR Bioretention 16 0 0 0.0492 1.0067 0.0 −0.70 0.43 0.78 0.61
BS Grass swale 8 0.0671 0.0671 0.4966 0.8882 0.0 −0.14 0.51 0.84 0.68
CO Composite 3 0 0.5561 1.0161 1.3593 20.6 −0.72 −0.72 0.70 −0.01
DB Detention basin 8 0.2486 0.3649 0.6229 0.9973 0.0 −0.76 −0.04 0.48 0.22
IB Infiltration basin 1 0.2277 1.0584 1.0605 1.0605 14.0 0.84 0.84 0.84 0.84
MD Manufactured device 5 0.6993 0.9320 1.0158 1.1350 29.0 −0.29 −0.06 0.10 0.02
MF Media filter 5 0.4836 0.4836 0.5033 1.3773 17.8 −0.15 −0.02 0.57 0.28
PP Porous pavement 2 0 0 0 0.4008 0.0 0.28 0.53 0.77 0.65
RP Retention pond 17 0.4150 0.8726 0.9878 1.3992 35.2 −0.72 0.07 0.79 0.43
WB Wetland basin 2 0.2843 0.9028 0.9028 1.5797 38.3 −0.20 0.20 0.61 0.41
WC Wetland channel 3 0.4777 0.9530 1.1223 1.3803 46.9 0.04 0.50 0.70 0.60

Parameter values 86 0.2382 0.5199 0.7629 1.1889 7.0 −0.25 0.14 0.74 0.44
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Unless there is reason to believe that groundwater discharges 
are occurring at a site of interest, use of a semistrong-to-strong 
positive correlation (greater than 0.75) with a maximum vol-
ume reduction ratio that is much greater than 1 may result in 
unrealistic mass-balance values for some large events. Use of 
a negative correlation, however, could lead to excess flows for 
small runoff volumes and large reductions (small ratios) for 
large runoff volumes.

Rank correlations calculated from available data in the 
BMPDB were not definitive indicators of quantitative relations 
between inflow volumes and volume reduction ratios. Only 35 
of the 135 BMP monitoring sites with 7 or more storm events 
included in the volume reduction analyses documented in this 
report had statistically significant (95th percentile) rank corre-
lations between volume reduction and inflow volumes. Among 
the 35 BMPs with statistically significant rho values, 21 had 
positive and 14 had negative rho values. Among the 135 BMP 
monitoring sites with data for 7 or more storm events, 68 had 
positive, 66 had negative, and 1 had a 0 rho value. These rho 
values ranged from about −0.76 to about 0.90. These cor-
relation coefficients indicate that a combination of different 
antecedent conditions, rather than within-event runoff vol-
umes, may account for a substantial amount of the variability 
in measured volume reduction values (Granato, 2014).

Water-Quality Treatment

In this study, water-quality treatment statistics were 
developed for 10 BMP categories by using data from 
206 BMP monitoring sites with paired inflow and outflow 
concentrations from 7 or more storm events (table 6). Water-
quality treatment statistics were developed for 51 selected 
runoff-quality constituents of interest to State departments of 
transportation. Constituents were selected for inclusion in this 
report on the basis of available data, potential transferability, 
and the perceived quality of data in the database. Water-
quality treatment statistics from individual BMP monitoring 
sites for all the water-quality properties and constituents in 
table 6 are provided in a water-quality treatment file (USGS-
SIR-2020-5136-WaterQuality-SiteResults.txt) published by 
Granato and others (2021). Median water-quality treatment 
statistics, by BMP category, for eight constituent groups are 
provided in table 7. Median water-quality treatment statistics, 
by BMP category, for 48 individual water-quality constituents 
are provided in appendix table 1.1 of this report; these statis-
tics also are published in SELDM input-file format (SELDM-
tadBMPTreatmentTable.csv) by Granato and others (2021). 
The constituent-group statistics in table 7 are estimated as 
the median of statistics from related constituents in table 1.1. 
There are variations among constituents and groups, but the 
water-quality treatment statistics in this report are by-and-
large similar to the values developed by Granato (2014). The 
updated statistics are more robust because the 2012 dataset 
contained about 80 percent of the sites available in the updated 
2019 dataset and the BMPDB team improved the quality of 

data between 2012 and 2019. The analysis in this report also 
includes data for many more runoff-quality constituents than 
Granato (2014).

For many constituent groups (table 7) and constituents 
(table 1.1), the theoretical percentage of events with water-
quality treatment ratios that are greater than 1 is substantial. 
In some cases, the percentage of events in which the outflow 
concentrations exceed the inflow concentrations exceed 
50 percent. There are many physicochemical processes that 
may cause increases in concentrations during some events, 
especially for dissolved constituents that can partition from 
stormwater solids. Because of the form of the equations for the 
cumulative distribution function of the trapezoidal distribution 
(Kacker and Lawrence, 2007), the maximum value has the 
largest effect on the proportion of ratios that are greater than 1. 
As the maximum value increases from 1 to 2, the percentage 
of generated values that are greater than 1 increases from 0 to 
about 40 percent. As the maximum value increases from 2 to 
4, the percentage of generated values that are greater than 1 
increases from about 40 to 60 percent. Although the ratios may 
exceed 1, indicating higher concentrations in the outflows than 
in the inflows, the negative correlations prevalent for most 
constituents indicate that small inflow concentrations may tend 
to increase within the BMPs, whereas large concentrations 
decrease. Because concentrations of highway and urban runoff 
commonly vary logarithmically over one or more orders of 
magnitude, an equivalent percentage change for a low concen-
tration is usually much smaller than for a large concentration 
(Granato and Jones, 2014, 2019; Risley and Granato, 2014; 
Smith and others, 2018; Stonewall and others, 2019; Weaver 
and others, 2019; Jeznach and Granato, 2020).

Tables 7 and 1.1 contain statistics for individual 
BMP types and for “parameter values.” These “parameter 
values” statistics are estimated from multiple BMP catego-
ries for each property, constituent, or constituent group. The 
trapezoidal statistics are the median of values in the tables for 
the BMP categories. The cumulative distribution functions for 
the parameter value statistics in table 7 are shown in figure 5. 
The percentages of values exceeding a ratio of 1 for these 
estimates are the theoretical percent of events calculated by 
using the trapezoidal parameter value statistics. The rho values 
for the parameter value estimates were selected as the smallest 
rho values from among the category values; these minimum 
of median rho values were selected to minimize simulations in 
which large concentrations would be paired with large ratios 
(Granato, 2013, 2014). The probability that this would occur 
increases as the absolute value correlation coefficient increases 
(Granato, 2013).

The parameter value statistics may be used as planning-
level estimates of treatment statistics for constituents with 
insufficient data to produce robust estimates for a given 
BMP category or for a given constituent. These statistics also 
may be used to provide planning-level treatment estimates 
for TMDL analyses in receiving-water basins where multiple 
BMPs may be in use or for analyses at actual or hypotheti-
cal sites without a particular BMP (Granato and Jones, 2017; 
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Table 6.  Runoff-quality constituents analyzed with counts of the number of sites, number of International Stormwater Best 
Management Practice Database categories, and number of paired samples used to analyze structural stormwater runoff best 
management practices.

[The International Stormflow Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. 
and Geosyntec Consultants, 2019). Pcode is the water-quality parameter code is denoted by the letter p and the five-digit identification number from the 
U.S. Geological Survey (2020) National Water Information System (NWIS); abbreviation is the short name used in tables and figures in this report; name is 
the constituent name in NWIS; fraction is the sampled fraction (filtered water or unfiltered (whole) water); and number of sites are the sites with seven or more 
uncensored paired samples]

Pcode
Abbrev- 
iation

Name Fraction
Number 
of sites

Number of 
BMPDB 
catego-

ries

Total 
number 

of paired 
samples

Water-quality properties

p00076 TUR Turbidity, water, unfiltered, nephelometric turbidity units Whole 31 9 501
p00094 SpC Specific conductance, water, unfiltered, field, microsiemens per  

centimeter at 25 degrees Celsius
Whole 35 6 487

p00400 pH pH, water, unfiltered, field, standard units Whole 70 8 1,038
Sediment and related constituents

p00530 TSS Solids, suspended, water, milligrams per liter Whole 206 12 3,587
p80154 SSC Suspended sediment concentration, milligrams per liter Whole 23 6 516
p99409 SSCest Suspended sediment concentration, milligrams per liter (estimated  

from TSS)
Whole 206 12 3,587

Nutrient constituents, filtered

p00602 FN Total nitrogen, water, filtered, milligrams per liter Filtered 4 3 555
p00618 FNO3 Nitrate, water, filtered, milligrams per liter as nitrogen Filtered 1 1 11
p00666 FP Phosphorus, water, filtered, milligrams per liter Filtered 56 8 1,454
p00671 FPO4 Orthophosphate, water, filtered, milligrams per liter as phosphorus Filtered 22 5 410

Nutrient constituents, unfiltered

p00600 TN Total nitrogen, water, unfiltered, milligrams per liter Whole 59 9 1,490
p00615 TNO2 Nitrite, water, unfiltered, milligrams per liter as nitrogen Whole 5 2 65
p00620 TNO3 Nitrate, water, unfiltered, milligrams per liter as nitrogen Whole 46 9 643
p00625 TKN Ammonia plus organic nitrogen, water, unfiltered, milligrams per liter 

as nitrogen
Whole 93 8 1,393

p00630 TNO23 Nitrite plus nitrate, water, unfiltered, milligrams per liter as nitrogen Whole 51 10 862
p00665 TP Phosphorus, water, unfiltered, milligrams per liter Whole 167 12 3,152
p70507 TPO4 Orthophosphate, water, unfiltered, milligrams per liter as phosphorus Whole 12 4 108

Minor and trace inorganics, filtered

p01030 FCr Chromium, water, filtered, micrograms per liter Filtered 16 5 198
p01040 FCu Copper, water, filtered, micrograms per liter Filtered 71 9 1,033
p01046 FFe Iron, water, filtered, micrograms per liter Filtered 4 4 72
p01049 FPb Lead, water, filtered, micrograms per liter Filtered 35 8 411
p01065 FNi Nickel, water, filtered, micrograms per liter Filtered 19 5 246
p01090 FZn Zinc, water, filtered, micrograms per liter Filtered 71 9 1,040
p01106 FAl Aluminum, water, filtered, micrograms per liter Filtered 1 1 24

Minor and trace inorganics, unfiltered

p01002 TAs Arsenic, water, unfiltered, micrograms per liter Whole 17 5 193
p01027 TCd Cadmium, water, unfiltered, micrograms per liter Whole 37 8 546
p01034 TCr Chromium, water, unfiltered, recoverable, micrograms per liter Whole 22 6 330
p01042 TCu Copper, water, unfiltered, recoverable, micrograms per liter Whole 112 10 1,818
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Table 6.  Runoff-quality constituents analyzed with counts of the number of sites, number of International Stormwater Best 
Management Practice Database categories, and number of paired samples used to analyze structural stormwater runoff best 
management practices.—Continued

[The International Stormflow Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. 
and Geosyntec Consultants, 2019). Pcode is the water-quality parameter code is denoted by the letter p and the five-digit identification number from the 
U.S. Geological Survey (2020) National Water Information System (NWIS); abbreviation is the short name used in tables and figures in this report; name is 
the constituent name in NWIS; fraction is the sampled fraction (filtered water or unfiltered (whole) water); and number of sites are the sites with seven or more 
uncensored paired samples]

Pcode
Abbrev- 
iation

Name Fraction
Number 
of sites

Number of 
BMPDB 
catego-

ries

Total 
number 

of paired 
samples

Minor and trace inorganics, unfiltered—Continued

p01045 TFe Iron, water, unfiltered, recoverable, micrograms per liter Whole 20 6 329
p01051 TPb Lead, water, unfiltered, recoverable, micrograms per liter Whole 75 10 1,119
p01067 TNi Nickel, water, unfiltered, recoverable, micrograms per liter Whole 29 7 406
p01092 TZn Zinc, water, unfiltered, recoverable, micrograms per liter Whole 137 12 2,169
p01104 TAl Aluminum, water, unfiltered, recoverable, micrograms per liter Whole 4 3 42
p50286 THg Mercury, water, unfiltered, nanograms per liter Whole 1 1 8

Organic constituents

p00310 TBOD Biochemical oxygen demand, water, unfiltered, 5 days at 20 degrees 
Celsius, milligrams per liter

Whole 2 2 36

p00340 TCOD Chemical oxygen demand, high level, water, unfiltered, milligrams 
per liter

Whole 11 4 187

p00550 TOG Oil and grease, water, unfiltered, recoverable, milligrams per liter Whole 5 1 72
p00680 TOC Organic carbon, water, unfiltered, milligrams per liter Whole 43 6 604
p04585 TDRH Diesel range hydrocarbons, water, unfiltered, recoverable, micrograms 

per liter
Whole 10 3 95

p75984 TPCB PCBs, water, unfiltered, recoverable, nanograms per liter (sum of 
congeners)

Whole 1 1 8

pXXX05 TPAH PAHs EPA 8310, water, unfiltered, micrograms per liter, (sum of 
16 PAHs not censored)

Whole 3 1 42

Biological constituents

p50468 Ecoli Escherichia coli, colilert quantitray method, water, most probable num-
ber per 100 milliliters

Whole 10 5 176

p31616 Fcoli Fecal coliform, M–FC MF (0.45-micrometer) method, water, colonies 
per 100 milliliters

Whole 20 4 236

p31507 Tcoli Total coliform, completed test, water, most probable number per 
100 milliliters

Whole 7 2 79

Major ionic constituents and properties

p00500 TS Residue on total evaporation at 105 degrees Celsius, water, unfiltered, 
milligrams per liter

Whole 11 6 194

p00515 TDS Residue, water, filtered, dried at 105 degrees Celsius, milligrams 
per liter

Filtered 46 10 675

p00900 Hard Hardness, water, unfiltered, milligrams per liter as calcium carbonate Whole 8 4 127
p00915 FCa Calcium, water, filtered, milligrams per liter Filtered 7 2 104
p00923 TNa Sodium, water, unfiltered, recoverable, milligrams per liter Whole 5 4 100
p00925 FMg Magnesium, water, filtered, milligrams per liter Filtered 7 2 104
p00940 FCl Chloride, water, filtered, milligrams per liter Filtered 63 12 917
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Table 7.  Medians of selected water-quality treatment statistics for selected parameter groups including the trapezoidal distribution 
and Spearman's rank correlation coefficient statistics for structural stormwater runoff best management practices, by category.

[The International Stormflow Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. 
and Geosyntec Consultants, 2019). BMPDB category codes and names are listed in table 1. The constituents included in the parameter categories are listed in 
table 6. The percentage of outflow ratios greater than 1 are calculated by using the treatment statistics in this table. The concentration-reduction statistics are for 
the trapezoidal distribution of the ratio of outflow to inflow concentration. Spearman’s rank correlation coefficients (rho) are calculated by using the ranks of the 
inflow concentrations and the associated ratios of outflow to inflow concentrations. The selected rho value is closest to minus one among at-site rho values. The 
water-quality parameter groups are listed and defined in table 6. N, number of sites with paired inflow and outflow concentrations for at least seven storms used 
to calculate the median ratio statistics; min, minimum; LBMPV, lower bound of the most probable value; UBMPV, upper bound of the most probable value; 
max, maximum; Pct GT 1, theoretical percentage of storms in which outflows exceed inflows and thus, the ratio is greater than 1; —, insufficient data]

BMPDB category
N

Trapezoidal distribution statistics

Code Name Min LBMPV UBMPV Max Pct GT 1 rho

Suspended sediment and solids
BI Grass strip 12 0 0.003 0.021 1.031 0.09 −0.82
BR Bioretention 29 0 0 0 1.418 8.7 −0.96
BS Grass swale 12 0.017 0.044 0.092 1.373 7.7 −0.99
DB Detention basin 27 0 0 0 1.682 16.4 −0.96
IB Infiltration basin 1 0 0 0 0.671 0 −0.89
MD Manufactured device 79 0.001 0.015 0.072 1.129 1.33 −0.88
MF Media filter 21 0 0 0 0.801 0 −0.87
RP Retention pond 27 0 0 0 1.064 0.36 −0.97
WB Wetland basin 14 0 0 0 2.191 29.5 −0.89
WC Wetland channel 2 0.016 0.016 0.123 2.72 40.5 −0.49

Parameter values 224 0 0 0 1.251 4 −0.99
Nutrients, nitrogen constituents, filtered

BI Grass strip — — — — — — —
BR Bioretention — — — — — — —
BS Grass swale — — — — — — —
DB Detention basin — — — — — — —
IB Infiltration basin — — — — — — —
MD Manufactured device 2 0.28 0.317 0.543 1.581 21.3 −0.79
MF Media filter — — — — — — —
RP Retention pond 1 0.275 0.818 0.818 1.57 33.4 −0.43
WB Wetland basin 2 0.591 1.007 1.007 1.648 62 −0.31
WC Wetland channel — — — — — — —

Parameter values 5 0.28 0.818 0.818 1.581 34 −0.43
Nutrients, nitrogen constituents, unfiltered

BI Grass strip 12 0.121 0.228 0.494 2.313 38.6 −0.39
BR Bioretention 31 0.022 0.177 0.269 2.962 47.1 −0.53
BS Grass swale 9 0.311 0.591 0.601 2.211 47.7 −0.53
DB Detention basin 50 0.154 0.555 0.729 1.981 38.4 −0.38
IB Infiltration basin — — — — — — —
MD Manufactured device 43 0.153 0.446 0.752 1.79 30.9 −0.63
MF Media filter 37 0.123 0.421 0.448 2.851 51.7 −0.63
RP Retention pond 50 0.088 0.176 0.328 1.794 23.1 −0.51
WB Wetland basin 14 0.114 0.114 0.175 2.687 43 −0.64
WC Wetland channel 1 0 1.175 1.175 1.269 32.9 −0.29

Parameter values 247 0.121 0.421 0.494 2.211 39.5 −0.53
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Table 7.  Medians of selected water-quality treatment statistics for selected parameter groups including the trapezoidal distribution 
and Spearman's rank correlation coefficient statistics for structural stormwater runoff best management practices, by category. 
—Continued

[The International Stormflow Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. 
and Geosyntec Consultants, 2019). BMPDB category codes and names are listed in table 1. The constituents included in the parameter categories are listed in 
table 6. The percentage of outflow ratios greater than 1 are calculated by using the treatment statistics in this table. The concentration-reduction statistics are for 
the trapezoidal distribution of the ratio of outflow to inflow concentration. Spearman’s rank correlation coefficients (rho) are calculated by using the ranks of the 
inflow concentrations and the associated ratios of outflow to inflow concentrations. The selected rho value is closest to minus one among at-site rho values. The 
water-quality parameter groups are listed and defined in table 6. N, number of sites with paired inflow and outflow concentrations for at least seven storms used 
to calculate the median ratio statistics; min, minimum; LBMPV, lower bound of the most probable value; UBMPV, upper bound of the most probable value; 
max, maximum; Pct GT 1, theoretical percentage of storms in which outflows exceed inflows and thus, the ratio is greater than 1; —, insufficient data]

BMPDB category
N

Trapezoidal distribution statistics

Code Name Min LBMPV UBMPV Max Pct GT 1 rho

Nutrients, phosphorus constituents, filtered
BI Grass strip 5 0.273 0.692 0.731 3.769 71.4 −0.52
BR Bioretention 2 0.016 0.383 0.383 1.216 4.7 0.04
BS Grass swale 4 0.256 0.382 0.418 4.899 72.5 −0.62
DB Detention basin 9 0.189 0.189 0.21 2.037 31.5 −0.34
IB Infiltration basin — — — — — — —
MD Manufactured device 25 0.092 0.379 0.666 1.801 28.3 −0.44
MF Media filter 6 0 0.672 0.676 1.588 23.8 −0.6
RP Retention pond 19 0 0 0 2.161 28.9 −0.57
WB Wetland basin 8 0.184 0.248 0.302 3.817 61.2 −0.3
WC Wetland channel — — — — — — —

Parameter values 78 0.13775 0.38025 0.4005 2.09875 35.9 −0.48
Nutrients, phosphorus constituents, unfiltered

BI Grass strip 7 0.015 0.075 0.129 2.598 39.2 −0.59
BR Bioretention 22 0 0.01 0.077 4.433 60.1 −0.64
BS Grass swale 10 0.052 0.565 0.784 3.4 61.7 −0.63
DB Detention basin 33 0.062 0.18 0.456 2.744 44.9 −0.54
IB Infiltration basin 41 0.207 0.521 0.569 1.568 22.9 −0.34
MD Manufactured device 21 0.266 0.338 0.356 2.085 37 −0.57
MF Media filter 2 0.007 0.007 0.007 1.849 21.2 −0.92
RP Retention pond 27 0.155 0.209 0.765 2.35 41.8 −0.55
WB Wetland basin 12 0.09 0.157 0.212 2.489 39.7 −0.47
WC Wetland channel 2 0.29 0.556 0.835 2.08 45.3 0.13

Parameter values 177 0.076 0.194 0.406 2.419 39.1 −0.56
Minor and trace inorganics, filtered

BI Grass strip 24 0.057 0.1785 0.2665 1.3555 8.4 −0.89
BR Bioretention 6 0.005 0.153 0.182 1.191 3 −0.35
BS Grass swale 11 0.15 0.169 0.659 1.837 27.3 −0.49
DB Detention basin 30 0.2345 0.609 0.6885 1.886 37.9 −0.73
IB Infiltration basin 2 0.563 0.563 0.584 2.933 66.5 −0.62
MD Manufactured device 79 0.225 0.765 0.8925 1.815 41.9 −0.79
MF Media filter 39 0.183 0.544 0.89 1.44 22 −0.79
RP Retention pond 17 0.09 0.116 0.396 2.114 31.4 −0.94
WB Wetland basin 4 0.198 0.371 0.371 2.289 41.4 −0.86
WC Wetland channel — — — — — — —

Parameter values 212 0.183 0.371 0.584 1.837 29.9 −0.79
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Table 7.  Medians of selected water-quality treatment statistics for selected parameter groups including the trapezoidal distribution 
and Spearman's rank correlation coefficient statistics for structural stormwater runoff best management practices, by category. 
—Continued

[The International Stormflow Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. 
and Geosyntec Consultants, 2019). BMPDB category codes and names are listed in table 1. The constituents included in the parameter categories are listed in 
table 6. The percentage of outflow ratios greater than 1 are calculated by using the treatment statistics in this table. The concentration-reduction statistics are for 
the trapezoidal distribution of the ratio of outflow to inflow concentration. Spearman’s rank correlation coefficients (rho) are calculated by using the ranks of the 
inflow concentrations and the associated ratios of outflow to inflow concentrations. The selected rho value is closest to minus one among at-site rho values. The 
water-quality parameter groups are listed and defined in table 6. N, number of sites with paired inflow and outflow concentrations for at least seven storms used 
to calculate the median ratio statistics; min, minimum; LBMPV, lower bound of the most probable value; UBMPV, upper bound of the most probable value; 
max, maximum; Pct GT 1, theoretical percentage of storms in which outflows exceed inflows and thus, the ratio is greater than 1; —, insufficient data]

BMPDB category
N

Trapezoidal distribution statistics

Code Name Min LBMPV UBMPV Max Pct GT 1 rho

Minor and trace inorganics, unfiltered
BI Grass strip 33 0.0055 0.0475 0.0785 1.4215 9.1 −0.85
BR Bioretention 35 0 0 0 1.529 12 −0.89
BS Grass swale 14 0 0.1275 0.2365 1.364 8 −0.79
DB Detention basin 54 0.1005 0.3555 0.411 1.367 10.7 −0.66
IB Infiltration basin 5 0 0 0 1.036 0.1 −0.88
MD Manufactured device 136 0.1905 0.482 0.639 1.3815 14.5 −0.67
MF Media filter 66 0.029 0.074 0.263 1.471 11.3 −0.9
RP Retention pond 83 0.024 0.0765 0.1315 1.4315 9.8 −0.77
WB Wetland basin 11 0.019 0.07 0.07 1.895 23.4 −0.89
WC Wetland channel 5 0.102 0.4605 0.822 1.687 28 −0.73

Parameter values 442 0.0215 0.07525 0.184 1.4265 9.7 −0.82
Organic constituents, unfiltered

BI Grass strip 6 0.146 0.388 0.414 1.671 23.1 −0.58
BR Bioretention 4 0 0 0 1.559 12.9 −1
BS Grass swale — — — — — — —
DB Detention basin 9 0.442 0.74 0.912 1.918 50.8 −0.54
IB Infiltration basin — — — — — — —
MD Manufactured device 33 0.18 0.438 0.605 1.475 17.7 −0.65
MF Media filter 12 0.209 0.503 0.513 1.327 11.6 −0.52
RP Retention pond 9 0.232 0.376 0.675 1.426 16.2 −0.69
WB Wetland basin — — — — — — —
WC Wetland channel — — — — — — —

Parameter values 73 0.194 0.413 0.559 1.517 19 −0.62
Biological constituents, unfiltered

BI Grass strip — — — — — — —
BR Bioretention 1 0 0 0 0.206 0 −0.1
BS Grass swale — — — — — — —
DB Detention basin 8 0 0 0 2.746 40.4 −0.69
IB Infiltration basin — — — — — — —
MD Manufactured device 10 0 0 0 2.948 43.7 −0.38
MF Media filter 6 0 0 0 3.378 49.6 −0.55
RP Retention pond 8 0 0 0 3.14 46.4 −0.51
WB Wetland basin 1 0 0 0 0.711 0 0.14
WC Wetland channel — — — — — — —

Parameter values 34 0 0 0 2.847 42.1 −0.45
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EXPLANATION
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Figure 5.  Line graphs showing fitted cumulative trapezoidal distribution functions for the parameter value estimates for sediment, 
solids, nutrients, minor and trace inorganic, organic, and biological constituents.

Smith and others, 2018; Stonewall and others, 2018, 2019; 
Jeznach and Granato, 2020). For many constituent groups 
(table 7) and constituents (table 1.1), these parameter value 
statistics may be used instead of category-specific statistics 
for constituents without sufficient data to calculate treat-
ment statistics for one or more BMP categories. Only 4 of 
41 constituents analyzed (table 1.1) have sufficient data for all 
10 BMP categories. Because of the wide range in BMP perfor-
mance statistics from site to site that are observed for constitu-
ents with plentiful data (such as total suspended solids, total 
phosphorus, or total zinc), use of the parameter value statistics 
may be more robust than use of category-specific statistics 
based on data collected at a small number of monitoring sites.

Granato (2014) estimated water-quality statistics for 
suspended sediment concentrations (SSCs) from TSS data 
in the BMPDB because many studies have shown that TSS 
is an unreliable measure of sediment if sand-sized particles 
are present. Granato (2014) had used the relation between 
TSS and SSC developed by Granato and Cazenas (2009) to 
estimate inflow concentrations of SSC and used TSS effluent 

concentrations as estimates for concentrations of SSC in 
BMP outflows based on the assumption that most BMPs could 
remove the coarse sediment fractions that cannot be effectively 
measured by using TSS measurement methods. This analysis 
was repeated with the 2019 data from the BMPDB to refine 
the SSC treatment statistics with additional data; these results 
are shown as “SSCest (p99409) from adjusted TSS (p00530)” 
in table 1.1. These results, when compared to the TSS statis-
tics, demonstrate how use of the TSS analysis method may be 
underrepresenting the true effectiveness of many BMPs for 
sediment removal (fig. 5). For example, the parameter values 
calculated from TSS data indicate that about 14 percent of 
outflow concentrations may exceed inflow concentrations, but 
only 0.1 percent of outflow concentrations for the SSC val-
ues estimated from TSS may exceed inflow concentrations 
(table 1.1). This is because the estimated SSC concentra-
tions include the sand-size fraction of SSC in the inflows that 
are not captured by the TSS method (Granato and Cazenas, 
2009). It is difficult to compare the estimated SSC treatment 
statistics with the measured SSC treatment statistics directly 
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because relatively few sites include sufficient SSC data for a 
definitive comparison. However, only 1.3 percent of measured 
SSC concentrations exceed inflow concentrations for the 
only BMP category (manufactured devices) with data from 
more than one monitoring site. The categorical “Suspended 
Sediment and Solids” statistics in table 7 are the medians of 
the TSS, SSC and SSCest statistics.

Summary water-quality treatment statistics for total 
solids, total dissolved solids, total sodium and filtered chlo-
ride are not provided in table 1.1 because these statistics may 
be misinterpreted when effects of sodium chloride deicing 
salt are simulated. Statistics for filtered calcium and filtered 
magnesium, which also are deicing-chemical constituents that 
are not readily reduced by structural BMPs, are provided to 
evaluate potential changes in total hardness that may occur as 
a byproduct of flow through a structural BMP. Total hardness 
is of special concern because it can affect the partitioning and 
toxicity of trace elements in the BMP discharge and receiv-
ing stream. These treatment statistics should not be used for 
simulating treatment of deicing chemicals. Treatment statis-
tics from individual BMP monitoring sites for TNa (p00923) 
and FCl (p00940) are provided in the water-quality treatment 
file (USGS-SIR-2020-5136-WaterQuality-SiteResults.txt) 
published by Granato and others (2021) but should not be used 
to simulate the effects of structural BMP in deicing-chemical 
analyses. Analyses for unfiltered selenium (p01147), silver 
(p01077), dieldrin (p39380), and methylmercury (p50284), 
which are constituents of concern in TMDLs for the California 
Department of Transportation, were examined, but not enough 
uncensored data were available to calculate statistics for a 
single site. Unless additional data are collected and stored in 
the BMPDB (Wright Water Engineers, Inc. and Geosyntec 
Consultants, 2019) and the BMPSE (Granato, 2021), it may 
be necessary to use statistics for unfiltered minor and trace 
inorganics to develop planning-level estimates for unfiltered 
selenium and silver and statistics for unfiltered organic con-
stituents to develop planning-level estimates for dieldrin and 
methylmercury.

Minimum Irreducible Concentrations

Granato (2014) calculated MIC values on the assumption 
that the MIC is a property of the type of BMP, the design and 
implementation of each type for the local hydrologic condi-
tions, and potentially, the quality of water entering the BMP. 
The analysis in this report is based on the same assumptions 
and includes an analysis of background soil chemistry to 
assess potential effects of this variable on MIC values. In this 
study, MIC statistics were developed for 51 runoff-quality 
constituents commonly measured in highway and urban 
runoff studies (tables 6 and 1.2) by using data from 10 BMP 
categories and 265 monitoring sites (Granato and others, 
2021). Correlations between the geometric mean of inflow 
concentrations and MIC values were calculated by using 
data from 164 sites with inflow and outflow concentrations 

for 7 or more storm events. MIC statistics from individual 
BMP monitoring sites for all the water-quality properties and 
constituents in table 6 are provided in a MIC file (USGS-SIR-
2020-5136-MICs-SiteResults.txt) published by Granato and 
others (2021). Selected MIC0 values also are published in 
SELDM input-file format (SELDM-tadBMPTreatmentTable.
csv) by Granato and others (2021). However, MIC values for 
chloride and sodium are not included in this report because 
these constituents are not changed by commonly used 
BMP treatment processes, and MIC values for SSCest are not 
provided because the outflow concentrations were equal to 
TSS outflow concentrations for the SSCest analyses.

Category-level MIC statistics for individual water-
quality constituents are published in appendix 1 of this report. 
Table 1.2 in appendix 1 lists the category-level MIC0, MIC1, 
MIC2, and MIC3 estimates; table 1.3 lists the category-level 
lognormal-variate (K) estimates (eq. 1) for the four MIC 
estimates (KMIC0, KMIC1, KMIC2, and KMIC3); and 
table 1.4 lists the correlation coefficients between the geo-
metric mean of inflows and the MIC0 and MIC2 estimates 
for each constituent. MIC estimates for each type of BMP 
and parameter estimates, which are the median of the BMP 
type estimates in the table are provided for each constituent. 
Only 5 of the 48 runoff-quality constituents have sufficient 
data (concentrations from 7 or more storm events from 1 or 
more sites) to calculate MIC values for all 10 BMP categories. 
The parameter estimates were developed, therefore, to guide 
professional judgement in the selection of MICs for BMP 
categories that do not have MIC estimates for a given constitu-
ent. There are variations among MIC estimates for different 
constituents and categories, but the water-quality treatment 
statistics in this report are by-and-large similar to the values 
developed by Granato (2014). The updated MIC estimates in 
this report are more robust because the 2012 dataset contained 
about 80 percent of the sites available in the newer 2019 
dataset and the BMPDB team improved the quality of data in 
the intervening time. The analysis in this report also includes 
MIC estimates for many more runoff-quality constituents than 
Granato (2014).

The lognormal variates (eq. 1; table 1.3) provide infor-
mation to guide professional judgement for selecting MIC 
values based on simulated BMP inflow statistics. Use of the 
lognormal variates is based on the idea that inflow concentra-
tions will reflect the background conditions at a site of interest 
that may affect the MIC at a given site. A MIC value can be 
estimated from a lognormal variate by using equation 2 in this 
report. When used in simulations, this method could reduce 
the probability that a high proportion of outflow concentra-
tions would be replaced by a single MIC value.

The potential accuracy of the lognormal-variate-based 
estimates can be inferred from the correlation coefficients 
in table 1.4. The table includes Pearson’s R and Spearman’s 
rho correlations between the selected MIC estimates and the 
geometric mean of inflow concentrations and Pearson’s R 
correlations between the logarithms of selected MIC estimates 
and the geometric mean of inflow concentrations. Correlation 



Results of Analyses    29

coefficients are calculated when data are available from five or 
more sites (Abdel-Megeed, 1984). About 11 percent of MIC0 
and 14 percent of MIC2 rho values in table 1.4 indicate strong 
correlations (an absolute value greater than or equal to 0.85). 
About 41 percent of MIC0 and 32 percent of MIC2 rho values 
in table 1.4 indicate weak correlations (an absolute value less 
than 0.5). In most cases, therefore, the lognormal-variate-
based estimates of the MIC derived from table 1.3 should be 
viewed as a qualitative rather than a quantitative method for 
estimating a MIC value for a site of interest.

Lognormal variates also were estimated for nine con-
stituent categories because data were lacking for individual 
constituents of concern (table 8). These variates were calcu-
lated by taking the median of available statistics for each BMP 
category with one or more constituent values in table 1.2. The 
categories include sediment, filtered and unfiltered nutrients, 
filtered and unfiltered minor and trace inorganic constituents, 
and unfiltered organic and biological constituents. Table 8 also 
includes a parameter estimate for each constituent category, 
which is the median of values for each constituent group in 
table 8. The lognormal variates (table 8) can be used with 
BMP inflow statistics to guide professional judgement on the 
selection of MIC values using equation 2. If the BMPs inflow 
concentrations are lognormally distributed, then it may be 
assumed that variate (K) values of −1, −2, −3, and −4 would 
produce MIC estimates that are less than about 84.1, 97.7, 
99.987, and 99.997 percent of simulated inflow concentra-
tions, respectively. The percentages of unmodified outflow 
concentrations that are converted to the MIC value, however, 
also depend on the water-quality treatment ratios and the 
rank correlation between inflow concentrations and outflow 
ratio values.

Potential correlations between the median of MIC esti-
mates of selected constituents and the concentrations of the 
associated elements in the top 5 centimeters of soil (Smith and 
others, 2014) were calculated to see if this national-scale soil-
chemistry dataset could be used with the BMP database data to 
refine MIC estimates at sites of interest (table 9). This analysis 
was done because few of the correlations between the MIC 
values and inflow concentrations were strong and because the 
MIC has been described as a background concentration in the 
literature such as Kadlec and Knight (1996), Wong and Geiger 
(1997), Huber and others (2006), and Granato (2014). The 
MIC2 values at individual monitoring sites were correlated 
with the soil concentration calculated as weighted average of 
concentration values for all data points within 75 kilometers of 
the center of each 444-square-kilometer grid cell as calculated 
by Smith and others (2014). No strong correlations emerged 
from the analysis (table 9), which may be because the coarse 
resolution of the national-scale soil-chemistry dataset does 
not capture small-scale variations in concentrations that could 
affect BMP discharge quality. The soil-chemistry dataset col-
lection effort was designed to characterize natural soils, and 
thus efforts were made to minimize the local anthropogenic 
influences on soil chemistry (Smith and others, 2014). These 
local anthropogenic influences may help define the MIC in 
BMP discharge at a given site. In the absence of a national- 
or international-scale dataset of paired BMP discharge and 
site-specific soil-chemistry data, the BMP inflow concentra-
tions may have to suffice to guide professional judgement for 
adjusting local MIC estimates.
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Table 8.  Lognormal variate (K) values for the minimum irreducible concentration estimates of selected parameter categories.

[The International Stormwater Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. 
and Geosyntec Consultants, 2019); BMPDB category codes and names are listed in table 1. The constituents included in the parameter categories are listed in 
table 6. The lognormal variates (K) are calculated by subtracting the geometric mean from each minimum irreducible concentration (MIC) estimate and divid-
ing by the geometric standard deviation in logarithmic space (eq. 1). To use the lognormal variate (KMIC) values, add the geometric mean of simulated inflow 
concentrations to the product of the geometric standard deviation of simulated inflow concentrations in logarithmic space and then retransform the resultant MIC 
estimate to arithmetic space (eq. 2). KMIC0, the lognormal variate for the minimum of the minimum values of the positive MIC estimates; KMIC1, the lognor-
mal variate for the 25th percentile of the minimum values of the positive MIC estimates; KMIC2, the lognormal variate for the median of the minimum values of 
the positive MIC estimates; KMIC3, the lognormal variate for the median of the median values of the positive MIC estimates; —, no data]

BMPDB category Number of 
sites

Number of 
samples

Lognormal variate (K)

Code Name KMIC0 KMIC1 KMIC2 KMIC3

Suspended sediment and solids

BI Grass strip 15 302 −11.4 −7.44 −6.2 −4.46
BR Bioretention 34 715 −6.91 −3.54 −2.78 −1.85
BS Grass swale 19 282 −8.84 −5.02 −3.35 −2.53
DB Detention basin 33 524 −7.31 −3.79 −3.48 −2.7
IB Infiltration basin 1 10 −2.28 −2.28 −2.28 −2.13
MD Manufactured device 91 1,713 −12.39 −5.43 −4.3 −3.27
MF Media filter 25 448 −10.64 −7.06 −5.62 −4.57
RP Retention pond 45 1,053 −58.52 −4.87 −3.72 −3.16
WB Wetland basin 23 610 −5.6 −4.01 −2.77 −1.89
WC Wetland channel 2 55 −6.38 −5.61 −4.84 −3.79

Parameter values 288 5,712 −8.07 −4.95 −3.6 −2.93
Nutrients, nitrogen constituents, filtered

BI Grass strip 0 0 — — — —
BR Bioretention 0 0 — — — —
BS Grass swale 0 0 — — — —
DB Detention basin 0 0 — — — —
IB Infiltration basin 0 0 — — — —
MD Manufactured device 2 59 −2.51 −2.51 −2.51 −2.17
MF Media filter 0 0 — — — —
RP Retention pond 1 8 −2.62 −2.62 −2.62 −1.75
WB Wetland basin 2 560 −7.12 −6.53 −5.95 −3.24
WC Wetland channel 0 0 — — — —

Parameter values 5 627 −2.62 −2.62 −2.62 −2.17
Nutrients, nitrogen constituents, unfiltered

BI Grass strip 18 315 −5.11 −4.01 −2.99 −2.23
BR Bioretention 35 697 −5.4 −4.33 −3.45 −2.98
BS Grass swale 22 266 −3.61 −3.02 −3.01 −1.97
DB Detention basin 57 849 −5.58 −4 −3.17 −2.15
IB Infiltration basin 0 0 — — — —
MD Manufactured device 61 984 −6.63 −4.22 −3.29 −2.21
MF Media filter 47 828 −6.89 −5.58 −3.62 −1.65
RP Retention pond 70 1,582 −12.05 −5.88 −3.69 −2.8
WB Wetland basin 18 1,023 −9.01 −7.91 −3.96 −2.64
WC Wetland channel 1 7 −4.67 −4.67 −4.67 −3.42

Parameter values 329 6,551 −5.58 −4.33 −3.45 −2.23
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Table 8.  Lognormal variate (K) values for the minimum irreducible concentration estimates of selected parameter categories. 
—Continued

[The International Stormwater Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. 
and Geosyntec Consultants, 2019); BMPDB category codes and names are listed in table 1. The constituents included in the parameter categories are listed in 
table 6. The lognormal variates (K) are calculated by subtracting the geometric mean from each minimum irreducible concentration (MIC) estimate and divid-
ing by the geometric standard deviation in logarithmic space (eq. 1). To use the lognormal variate (KMIC) values, add the geometric mean of simulated inflow 
concentrations to the product of the geometric standard deviation of simulated inflow concentrations in logarithmic space and then retransform the resultant MIC 
estimate to arithmetic space (eq. 2). KMIC0, the lognormal variate for the minimum of the minimum values of the positive MIC estimates; KMIC1, the lognor-
mal variate for the 25th percentile of the minimum values of the positive MIC estimates; KMIC2, the lognormal variate for the median of the minimum values of 
the positive MIC estimates; KMIC3, the lognormal variate for the median of the median values of the positive MIC estimates; —, no data]

BMPDB category Number of 
sites

Number of 
samples

Lognormal variate (K)

Code Name KMIC0 KMIC1 KMIC2 KMIC3

Nutrients, phosphorus constituents, filtered

BI Grass strip 8 173 −4.09 −2.34 −2.19 −1.13
BR Bioretention 6 154 −15.9 −12.81 −9.72 −4.94
BS Grass swale 9 147 −2.33 −1.47 −0.99 0.25
DB Detention basin 12 169 −7.66 −5.04 −2.97 −2.06
IB Infiltration basin 0 0 — — — —
MD Manufactured device 25 414 −6.15 −3.48 −2.73 −2.15
MF Media filter 13 237 −6.74 −4.23 −3.5 −2.23
RP Retention pond 25 627 −8.72 −7.72 −6.77 −4.37
WB Wetland basin 10 807 −10.25 −7.47 −5.3 −2.96
WC Wetland channel 0 0 — — — —

Parameter values 108 2,728 −7.2 −4.63 −3.23 −2.19
Nutrients, phosphorus constituents, unfiltered

BI Grass strip 10 215 −3.78 −2.76 −2.16 −1.55
BR Bioretention 29 624 −9.29 −3.38 −2.28 −1.04
BS Grass swale 17 253 −5.54 −3.44 −1.54 −0.55
DB Detention basin 39 561 −4.85 −3.78 −3.01 −2.03
IB Infiltration basin 0 0 — — — —
MD Manufactured device 63 963 −31.21 −6.21 −5.22 −3.33
MF Media filter 26 464 −7.31 −5.8 −4.45 −2.95
RP Retention pond 47 1,070 −8.66 −4.76 −3.19 −2.35
WB Wetland basin 15 885 −9.89 −6.18 −3.44 −2.41
WC Wetland channel 2 56 −3.85 −3.52 −3.18 −1.82

Parameter values 248 5,091 −7.31 −3.78 −3.18 −2.03
Minor and trace inorganics, filtered

BI Grass strip 38 857 −8 −5.75 −3.66 −2.5
BR Bioretention 20 773 −9.12 −7.67 −6.2 −2.84
BS Grass swale 32 287 −5.82 −3.52 −3.29 −1.86
DB Detention basin 33 589 −4.43 −3.33 −2.86 −1.84
IB Infiltration basin 3 30 −2.45 −2.45 −2.45 −1.52
MD Manufactured device 118 1,631 −8.3 −3.96 −2.63 −1.97
MF Media filter 47 793 −8.49 −2.97 −2.32 −1.14
RP Retention pond 44 1,026 −3.32 −3.32 −2.95 −1.65
WB Wetland basin 11 146 −6.65 −6.49 −5.67 −4.27
WC Wetland channel 0 0 — — — —

Parameter values 346 6,132 −6.65 −3.52 −2.95 −1.86
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Table 8.  Lognormal variate (K) values for the minimum irreducible concentration estimates of selected parameter categories. 
—Continued

[The International Stormwater Best Management Practices Database (BMPDB) data are from the 2019 version of the database (Wright Water Engineers, Inc. 
and Geosyntec Consultants, 2019); BMPDB category codes and names are listed in table 1. The constituents included in the parameter categories are listed in 
table 6. The lognormal variates (K) are calculated by subtracting the geometric mean from each minimum irreducible concentration (MIC) estimate and divid-
ing by the geometric standard deviation in logarithmic space (eq. 1). To use the lognormal variate (KMIC) values, add the geometric mean of simulated inflow 
concentrations to the product of the geometric standard deviation of simulated inflow concentrations in logarithmic space and then retransform the resultant MIC 
estimate to arithmetic space (eq. 2). KMIC0, the lognormal variate for the minimum of the minimum values of the positive MIC estimates; KMIC1, the lognor-
mal variate for the 25th percentile of the minimum values of the positive MIC estimates; KMIC2, the lognormal variate for the median of the minimum values of 
the positive MIC estimates; KMIC3, the lognormal variate for the median of the median values of the positive MIC estimates; —, no data]

BMPDB category Number of 
sites

Number of 
samples

Lognormal variate (K)

Code Name KMIC0 KMIC1 KMIC2 KMIC3

Minor and trace inorganics, unfiltered

BI Grass strip 54 1,270 −8.69 −6.21 −5.5 −4
BR Bioretention 63 1,516 −5.09 −3.87 −3.06 −2.15
BS Grass swale 43 399 −5.12 −4.09 −3.28 −2.33
DB Detention basin 67 948 −6.55 −4.97 −3.25 −2.43
IB Infiltration basin 5 50 −2.77 −2.77 −2.77 −2.49
MD Manufactured device 194 2,672 −11.93 −4.96 −3.5 −2.48
MF Media filter 89 1,548 −4.38 −4.01 −2.82 −1.68
RP Retention pond 127 3,228 −10.36 −4.93 −3.93 −2.67
WB Wetland basin 22 352 −6.42 −5.65 −3.96 −3.13
WC Wetland channel 8 266 −5.33 −4.94 −4.55 −2.96

Parameter values 672 12,249 −5.88 −4.94 −4.94 −2.49
Organic constituents, unfiltered

BI Grass strip 7 178 −5.77 −4.63 −2.66 −1.88
BR Bioretention 8 136 −3.82 −4.18 −3.79 −2.71
BS Grass swale 4 74 −1.62 −1.58 −1.53 −0.9
DB Detention basin 15 177 −3.81 −3.07 −3.03 −2.18
IB Infiltration basin 0 0 — — — —
MD Manufactured device 44 558 −6.45 −5.02 −3.52 −2.56
MF Media filter 22 387 −4.4 −4.14 −3.94 −2.63
RP Retention pond 16 419 −10.24 −4.87 −3.68 −2.29
WB Wetland basin 1 16 — — — —
WC Wetland channel 0 0 — — — —

Parameter values 117 1,945 −4.4 −4.18 −3.52 −2.29
Biological constituents, unfiltered

BI Grass strip 2 16 −2.82 −2.82 −2.82 −1.48
BR Bioretention 3 91 −8.84 −7.85 −6.85 −3.58
BS Grass swale 1 5 −2.59 −2.59 −2.59 −0.84
DB Detention basin 11 158 −5.5 −4.81 −4.38 −3.24
IB Infiltration basin 0 0 — — — —
MD Manufactured device 14 209 −3.41 −3.03 −2.86 −1.97
MF Media filter 12 135 −6.67 −3.41 −2.9 −2.01
RP Retention pond 13 204 −3.88 −3.87 −3.86 −3.42
WB Wetland basin 4 47 −7.37 −7.37 −7.37 −5.65
WC Wetland channel 0 0 — — — —

Parameter values 60 865 −4.69 −3.64 −3.38 −2.63
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Table 9.  Correlation between the median of minimum irreducible concentration estimates of selected constituents at individual 
monitoring sites and the concentration of the associated elements in the top 5 centimeters of soil.

[The International Stormwater Best Management Practices (BMP) Database (BMPDB) is from (Wright Water Engineers, Inc. and Geosyntec Consultants, 2019). 
The concentrations of elements in the top 5 centimeters of soil are reported by Smith and others (2014) and are a weighted average of concentration values for all 
data points within 75 kilometers of the center of a 444-square-kilometer grid cell. The number in parentheses after each constituent is the water-quality parameter 
code from the National Water Information System and is denoted by “p” followed by a five-digit identification number; parameters are listed in table 6. N, num-
ber of sites with sufficient data to calculate the median of the minimum values of the positive minimum irreducible concentration estimate (MIC2) values; R, 
Pearson correlation coefficient; R(log), Pearson correlation coefficient for the common logarithms of data; Rho, Spearman’s correlation coefficient; —, no data]

BMPDB category Correlation to soil chemistry

Code Name N R R(log) Rho

Phosphorus, water, unfiltered (TP, p00665)

BI Grass strip 10 0.44 0.41 0.66
BR Bioretention 29 0.06 −0.02 0.1
BS Grass swale 17 0.08 0.23 0.2
DB Detention basin 32 −0.13 −0.28 −0.32
IB Infiltration basin 58 −0.3 −0.34 −0.36
MD Manufactured device 23 0.02 −0.09 −0.04
MF Media filter 1 — — —
RP Retention pond 44 0.08 0.12 0.11
WB Wetland basin 15 0.47 0.4 0.3
WC Wetland channel 2 — — —

Cadmium, water, unfiltered (TCd, p01027)

BI Grass strip 6 0.59 0.65 0.46
BR Bioretention 3 — — —
BS Grass swale 4 — — —
DB Detention basin 6 0.18 0.11 −0.03
IB Infiltration basin 1 — — —
MD Manufactured device 19 0.04 0.12 −0.01
MF Media filter 7 — — —
RP Retention pond 10 −0.25 −0.57 −0.46
WB Wetland basin 1 — — —
WC Wetland channel 1 — — —

Copper, water, unfiltered (TCu, p01042)

BI Grass strip 9 0.05 0.18 0
BR Bioretention 19 0.18 0.02 −0.06
BS Grass swale 11 −0.09 −0.05 0.03
DB Detention basin 14 0.17 0.24 0.14
IB Infiltration basin 1 — — —
MD Manufactured device 52 −0.22 −0.24 −0.3
MF Media filter 18 0.27 0.31 0.46
RP Retention pond 26 0.1 0.16 0.14
WB Wetland basin 5 0.62 0.66 0.6
WC Wetland channel 2 — — —
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Table 9.  Correlation between the median of minimum irreducible concentration estimates of selected constituents at individual 
monitoring sites and the concentration of the associated elements in the top 5 centimeters of soil.—Continued

[The International Stormwater Best Management Practices (BMP) Database (BMPDB) is from (Wright Water Engineers, Inc. and Geosyntec Consultants, 2019). 
The concentrations of elements in the top 5 centimeters of soil are reported by Smith and others (2014) and are a weighted average of concentration values for all 
data points within 75 kilometers of the center of a 444-square-kilometer grid cell. The number in parentheses after each constituent is the water-quality parameter 
code from the National Water Information System and is denoted by “p” followed by a five-digit identification number; parameters are listed in table 6. N, num-
ber of sites with sufficient data to calculate the median of the minimum values of the positive minimum irreducible concentration estimate (MIC2) values; R, 
Pearson correlation coefficient; R(log), Pearson correlation coefficient for the common logarithms of data; Rho, Spearman’s correlation coefficient; —, no data]

BMPDB category Correlation to soil chemistry

Code Name N R R(log) Rho

Lead, water, unfiltered (TPb, p01051)

BI Grass strip 9 −0.12 −0.04 0.16
BR Bioretention 8 −0.67 −0.43 −0.65
BS Grass swale 8 0.18 0.08 −0.18
DB Detention basin 10 0.42 0.33 0.45
IB Infiltration basin 1 — — —
MD Manufactured device 30 −0.12 −0.13 0.02
MF Media filter 14 −0.36 −0.48 0.11
RP Retention pond 24 0.35 0.47 0.53
WB Wetland basin 3 — — —
WC Wetland channel 2 — — —

Zinc, water, unfiltered (TZn, p01092)

BI Grass strip 9 0.61 0.52 0.49
BR Bioretention 18 0.29 0.56 0.57
BS Grass swale 11 −0.11 0.19 −0.27
DB Detention basin 18 0.25 0.34 0.25
IB Infiltration basin 62 0.15 0.2 0.22
MD Manufactured device 21 0.19 0.17 0.38
MF Media filter 1 — — —
RP Retention pond 34 0.14 0.22 0.1
WB Wetland basin 9 −0.06 0.11 0.08
WC Wetland channel 2 — — —

Phosphorus, water, filtered (FP, p00666)

BI Grass strip 3 — — —
BR Bioretention 5 −0.29 −0.35 −0.56
BS Grass swale 8 −0.33 −0.46 −0.39
DB Detention basin 9 0.69 0.66 0.54
IB Infiltration basin 25 −0.13 −0.06 −0.05
MD Manufactured device 9 −0.35 −0.26 −0.4
MF Media filter 0 — — —
RP Retention pond 10 0.28 0.68 0.15
WB Wetland basin 7 0.7 0.63 0.81
WC Wetland channel — — — —
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Table 9.  Correlation between the median of minimum irreducible concentration estimates of selected constituents at individual 
monitoring sites and the concentration of the associated elements in the top 5 centimeters of soil.—Continued

[The International Stormwater Best Management Practices (BMP) Database (BMPDB) is from (Wright Water Engineers, Inc. and Geosyntec Consultants, 2019). 
The concentrations of elements in the top 5 centimeters of soil are reported by Smith and others (2014) and are a weighted average of concentration values for all 
data points within 75 kilometers of the center of a 444-square-kilometer grid cell. The number in parentheses after each constituent is the water-quality parameter 
code from the National Water Information System and is denoted by “p” followed by a five-digit identification number; parameters are listed in table 6. N, num-
ber of sites with sufficient data to calculate the median of the minimum values of the positive minimum irreducible concentration estimate (MIC2) values; R, 
Pearson correlation coefficient; R(log), Pearson correlation coefficient for the common logarithms of data; Rho, Spearman’s correlation coefficient; —, no data]

BMPDB category Correlation to soil chemistry

Code Name N R R(log) Rho

Copper, water, filtered (FCu, p01040)

BI Grass strip 11 0.04 0.08 −0.17
BR Bioretention 9 0.27 0.24 0.05
BS Grass swale 11 0.08 0.06 0.21
DB Detention basin 9 0.01 0.07 0.02
IB Infiltration basin 1 — — —
MD Manufactured device 41 −0.08 −0.2 −0.2
MF Media filter 11 0.08 0.08 0.14
RP Retention pond 15 −0.2 −0.31 −0.21
WB Wetland basin 3 — — —
WC Wetland channel — — — —

Lead, water, filtered (FPb, p01049)

BI Grass strip 6 0.5 0.27 0.29
BR Bioretention 3 — — —
BS Grass swale 8 0.46 0.6 0.78
DB Detention basin 5 0.58 0.52 0.9
IB Infiltration basin 1 — — —
MD Manufactured device 19 0.06 0.17 0.19
MF Media filter 8 −0.19 −0.19 −0.45
RP Retention pond 6 0.61 0.41 0.49
WB Wetland basin 2 — — —
WC Wetland channel — — — —

Zinc, water, filtered (FZn, p01090)

BI Grass strip 9 0.19 0.3 −0.03
BR Bioretention 5 −0.54 −0.49 −0.36
BS Grass swale 9 −0.19 −0.26 −0.16
DB Detention basin 10 0.43 0.56 0.57
IB Infiltration basin 40 0.07 0.15 0.05
MD Manufactured device 11 −0.01 −0.44 0.05
MF Media filter — — — —
RP Retention pond 15 0.37 0.54 0.12
WB Wetland basin 5 0.54 0.41 0.1
WC Wetland channel — — — —
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Summary
Decisionmakers need information to help evaluate the 

risk for adverse effects of runoff on receiving waters, the 
potential need for mitigation measures, and the potential 
effectiveness of such management measures for reducing these 
risks. Structural stormwater control measures, commonly 
known as best management practices (BMPs), are used as the 
primary mitigation measures for reducing adverse effects of 
runoff on receiving waters. Decisionmakers also need informa-
tion about the flows and concentrations of runoff and stormwa-
ter discharges from BMPs to calculate Total Maximum Daily 
Loads (TMDLs) for impaired receiving-water basins. In this 
report, structural BMPs are defined as the components of the 
drainage pathway between the source of runoff and a stormwa-
ter discharge location that affect the timing, volume, or quality 
of runoff.

The U.S. Geological Survey, in cooperation with the 
Federal Highway Administration, developed the Stochastic 
Empirical Loading and Dilution Model (SELDM) to indicate 
the risk for stormwater flows, concentrations, and loads to be 
above user-selected water-quality goals and the potential effec-
tiveness of mitigation measures to reduce such risks. SELDM 
uses a simple stochastic statistical model of BMP performance 
to develop planning-level estimates of runoff-event charac-
teristics rather than a complex theoretical or physical model. 
In SELDM, three treatment variables, hydrograph extension, 
volume reduction, and water-quality treatment are simulated 
by using the trapezoidal distribution and the rank correlation 
with the associated highway-runoff variables.

This report documents statistics for simulating struc-
tural stormwater runoff best management practices. The 
trapezoidal-distribution statistics and rank correlation coef-
ficients documented in this report provide a stochastic transfer 
function to approximate the quantity, quality, and duration 
of BMP effluents given a population of inflow values. This 
statistical approach can be used to represent a single BMP or 
an assemblage of BMPs. If hydrograph extension is speci-
fied for a simulated BMP, then the concurrent upstream and 
downstream flows and loads will be different than those for 
the untreated runoff because the discharge period will be 
extended to include more of the upstream flow and loads. If 
volume reductions are specified but concentration changes are 
not, then the stormwater-runoff and BMP discharge concentra-
tions will be the same, but the BMP discharge loads and the 
concurrent downstream loads and concentrations will be dif-
ferent. If BMP water-quality treatment statistics are specified, 
then BMP discharge concentrations and loads will be affected 
as well as downstream concentrations and loads. The water-
quality treatment statistics also include estimates for the mini-
mum irreducible concentrations (MIC), which represents the 
lower bound of outflow concentrations that can be achieved 
with commonly used BMP designs.

In this study, data extracted from a modified copy of the 
December 2019 version of International Stormwater Best 
Management Practices Database were used for the analyses. 

Sufficient data were available to estimate statistics for 8 to 
12 BMP categories by using data from 44 to more than 
265 monitoring sites. The medians of the best-fit statistics 
were used to construct generalized cumulative distribution 
functions for the three treatment variables. In cases where data 
are not available for a category of interest or a stream basin 
with multiple BMPs is being simulated, then the parameter 
values, which are the medians of categorical medians, may 
guide professional judgement in these cases.

A parameter value estimate, which represents a generic 
BMP for watershed-wide simulations, was also calculated 
for each BMP treatment variable. For hydrograph extension, 
data were available from 44 monitoring sites with 7 or more 
storm events; statistics for 8 BMP categories were calculated. 
For volume reduction, data were available from 87 monitor-
ing sites with 7 or more storm events; statistics for 12 BMP 
categories were calculated. For water-quality treatment ratios, 
data were available from 206 monitoring sites with paired 
inflow and outflow concentrations from 7 or more storm 
events. Water-quality treatment ratio statistics were calculated 
for 51 runoff-quality constituents commonly measured in 
highway and urban runoff studies. Statistics were calculated 
for water-quality properties, sediment and solids, nutrients, 
major and trace inorganic elements, organic compounds, and 
biologic constituents. However, the amount of available data 
was substantially different for various constituents. Statistics 
from 1 to 10 BMP categories and parameter-level estimates 
were calculated for the different constituents and constituent 
categories analyzed in this report. For the MIC values, data 
were available from 265 monitoring sites with outflow con-
centrations from 7 or more storm events. The amount of data 
available to calculate MIC values also was substantially differ-
ent for various constituents. Analysis of MIC values indicates 
that the inflow concentration statistics may be used to guide 
selection of representative MIC values, but regional soil chem-
istry is not a strong predictor for this variable. Water-quality 
statistics for constituent categories are provided in tables 
within this report; constituent-specific statistics are provided in 
tables within appendix 1.

SELDM uses rank correlation to the inflow variable to 
condition the treatment variables to better represent the struc-
ture of actual BMP data. For volume reduction and hydro-
graph extension, interpretation of available data indicates that 
selection of a Spearman’s rho value that is the average of the 
median and maximum values for the BMP category may help 
generate realistic simulation results in SELDM. Interpretation 
of available data also indicates that the median rho value may 
be selected to help generate realistic simulation results for 
water-quality treatment ratios and the MIC values.

The planning-level estimates for BMP categories are 
recognized to include substantial uncertainties when applied to 
any particular site. Therefore, statistics for individual moni-
toring sites are available in the U.S. Geological Survey data 
release by Granato and others (2021) so that analysts may use 
their own professional judgement to select statistics that are 
most representative of a particular site of interest. However, 
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practitioners may need to combine statistics from multiple 
sites to represent a site of interest because sample sizes are 
small, monitoring artifacts are present in many BMP datasets, 
and previous studies have not demonstrated predictive correla-
tions between BMP design characteristics and BMP perfor-
mance statistics.

Although site-specific estimates for all 51 constituents 
are available in the U.S. Geological Survey data release 
(Granato and others, 2021), summary statistics for constituents 
in deicing salts (including sodium, chloride, and total solids) 
were not included in the analyses in this report. Calcium and 
magnesium, however, were included because statistics for 
these constituents may be used to estimate the hardness of 
BMP discharges, which may be used to estimate potential 
effects of trace elements on receiving-water quality. Statistics 
for constituents in deicing salts should not be used for analysis 
of the effects of deicing chemicals on water quality, however, 
because most datasets do not include deicing-salt data and 
these constituents are not substantially affected by commonly 
used BMP treatment methods at concentrations found in win-
ter runoff.
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Appendix 1.  Water-Quality Treatment Statistics for Individual Constituents

Table 1.1.  Median of selected treatment statistics for individual 
constituents including the trapezoidal distribution parameters 
and Spearman's rank correlation coefficients for structural 
stormwater best management practices, by category.

[The table is available for download as a tab-separated value file at 
https://doi.org/​10.3133/​sir20205136. The concentration-reduction statistics 
are for the trapezoidal distribution of the ratio of outflow to inflow concentra-
tion. The Spearman’s rank correlation coefficients (rho values) are calculated 
by using the ranks of the inflow concentrations and the associated ratios of 
outflow to inflow concentrations; selected value is closest to −1 among at-site 
rho values. The water-quality parameter code in parentheses is denoted by the 
letter p and the five-digit identification number, the full name of each param-
eter is listed in table 6; properties and constituents are listed in parameter-code 
order. N, number of sites with paired inflow and outflow concentrations for 
at least seven storms used to calculate the median ratio statistics; *, statistic 
based on values from selected sites; **, statistics based on selected data from 
the available site(s); LBMPV, lower bound of the most probable value; max, 
maximum; min, minimum; parameter values are the medians of values in this 
table; UBMPV, upper bound of the most probable value; Pct GT 1, theoretical 
percentage of event ratios that may equal or exceed a value of 1; —, insuf-
ficient data]

Table 1.2.  Estimates of the minimum irreducible concentration 
for each selected structural stormwater best management 
practice category for constituents of concern.

[The table is available for download as a tab-separated value file at 
https://doi.org/​10.3133/​sir20205136. Each MIC0 estimate is the category 
minimum of the minimum of positive minimum irreducible concentra-
tion (MIC) estimates from available sites. Each MIC1 estimate is the 25th 
percentile of the minimum of positive MIC estimates from available sites. 
Each MIC2 estimate is the category median of the minimum of positive MIC 
estimates from available sites. Each MIC3 estimate is the category median 
of the median of positive MIC estimates from available sites. International 
Stormwater Best Management Practices Database (BMPDB) category codes 
and names are described in table 1; the constituents included in the parameter 
categories are listed in table 6]

Table 1.3.  Estimates of the lognormal variate (K) values of 
selected minimum irreducible concentrations (MICs) for each 
selected structural stormwater best management practice 
category for constituents of concern.

[The table is available for download as a tab-separated value file at 
https://doi.org/​10.3133/​sir20205136. The KMIC values are the lognormal 
variate (K) for the associated minimum irreducible concentration (MIC) 
values, which are calculated by subtracting the geometric mean from the MIC 
estimate and dividing by the geometric standard deviation in logarithmic 
space (eq. 1). To use the KMIC values add the geometric mean of simulated 
inflow concentrations to the product of the geometric standard deviation of 
simulated inflow concentrations in logarithmic space and then retransform the 
resultant MIC estimate to arithmetic space (eq. 2). International Stormwater 
Best Management Practices Database (BMPDB) category codes and names 
are described in table 1; the constituents included in the parameter categories 
are listed in table 6; the MIC values are listed in table 1.2]

Table 1.4.  Estimates of correlations between the geometric 
mean concentration of inflows and selected minimum 
irreducible concentration (MIC) estimates for each selected best 
management practices category for constituents of concern.

[The table is available for download as a tab-separated value file at 
https://doi.org/​10.3133/​sir20205136. Spearman’s rank correlation coefficients 
(rho) were calculated using the MIC0 and MIC2 estimates and the geometric 
mean of influents. The MIC estimates for total suspended solids (p00530) 
are applicable for estimating the MIC of suspended sediment concentra-
tion (p80154) because differences in the results of these analytical methods 
are small once the large grain-size fractions are removed. International 
Stormwater Best Management Practices Database (BMPDB) category codes 
and names are described in table 1; the constituents included in the param-
eter categories are listed in table 6; the MIC values are listed in table 1.2. R, 
Pearson’s correlation coefficient; R(log), Pearson’s correlation coefficient for 
the common logarithms of data, MIC0, the minimum of the minimum values 
of the positive MIC estimates; MIC2, the median of the minimum values of 
the positive MIC estimates]

https://doi.org/10.3133/sir20205136
https://doi.org/10.3133/sir20205136
https://doi.org/10.3133/sir20205136
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