Appendix 1. Model Archive Summary for Total Suspended Solids at U.S. Geological Survey Site 07144780, North Fork Ninnescah River above Cheney Reservoir, Kansas, during January 1, 1999, through October 16, 2009

This model archive summary summarizes the total suspended solids (TSS) model developed to compute hourly or daily TSS during January 1, 1999, through October 16, 2009. This model supersedes all prior models used during this period. The methods used follow U.S. Geological Survey (USGS) guidance as referenced in relevant Office of Surface Water/Office of Water Quality Technical Memoranda and USGS Techniques and Methods, book 3, chapter C4 (Rasmussen and others, 2009).

Site and Model Information

Site number: 07144780

Site name: North Fork Ninnescah River above Cheney Reservoir, Kansas

Location: Lat 37°51'45", long 98°00'49" referenced to North American Datum of 1927, in NE 1/4 SE 1/4 NE 1/4 sec.19, T.25 S., R.6 W., Reno County, Kans., Hydrologic Unit 11030014, on right bank at upstream side of county highway bridge, 10 miles south of Hutchinson, 18.1 miles upstream from Cheney Dam.

Equipment: A YSI 6600 Extended Deployment System water-quality monitor equipped with sensors for water temperature, specific conductance, pH, dissolved oxygen, and turbidity (a YSI Model 6026 turbidity sensor [November 9, 1998, to December 1, 2010] and a YSI Model 6136 turbidity sensor [October 17, 2009, to November 12, 2015; March 31, 2017, to June 7, 2017]) (YSI Incorporated, 2007, 2012). The YSI 6600 water-quality monitor was in operation during November 9, 1998, through November 12, 2015.

Date model was developed: April 26, 2019

Model calibration data period: January 26, 1999, to August 25, 2010

Model Data

All data were collected using USGS protocols (U.S. Geological Survey, 2006; Wagner and others, 2006; Sauer and Turnipseed, 2010; Turnipseed and Sauer, 2010) and are stored in the National Water Information System (NWIS) database (https://doi.org/10.5066/F7P55KJN; U.S. Geological Survey, 2020). Explanatory variables were evaluated individually and in combination. Potential explanatory variables included streamflow, water temperature, specific conductance, pH, dissolved oxygen, and turbidity. Seasonal components (sine and cosine variables) were also evaluated as explanatory variables.

The regression model is based on 77 concomitant values of discretely collected TSS and continuously measured turbidity during January 26, 1999, through August 25, 2010. Discrete samples were collected over a range of streamflows and turbidity conditions. No samples were less than laboratory detection limits. Summary statistics and the complete model-calibration data are provided below. Outliers were identified using studentized residuals (for values greater than 3 or less than –3). The sample collected on September 19, 2001, had large heterogeneity in the channel cross-sectional data during sample collection and was removed from the model calibration dataset. Outliers in previously published versions of this model (Christensen and others, 2006; Stone and others, 2013) were examined and retained in the dataset if there were no clear issues, explanations, or conditions that would cause a result to be invalid for model calibration.

Total Suspended Solids

Discrete samples were collected from the downstream side of the bridge or instream within 50 feet of the bridge using equal-width-increment, multiple vertical, single vertical or grab methods following U.S. Geological Survey (2006) and Rasmussen and others (2014). Discrete samples were collected on a semifixed to event-based schedule ranging from 2 to 17 samples per year with a Federal Interagency Sedimentation Project U.S. DH–95 or D–95 with a Teflon bottle, cap, and nozzle depth-integrating sampler; a DH–81 with a Teflon bottle, cap, and nozzle hand sampler; or a grab sample with a Teflon bottle depending on sample location. Samples were analyzed for TSS by

the Wichita Municipal Water and Wastewater Laboratory in Wichita, Kans., according to standard methods (American Public Health Association and others, 1995).

Continuous Data

Turbidity was measured using a YSI model 6026 sensor installed during November 9, 1998, through December 1, 2010. Concomitant turbidity values were time interpolated. If continuous data were not available (2 or more hours of specific conductance values bracketing the sample collection time were missing) because of fouling, changes in equipment, or unsuitable site conditions, then the field monitor turbidity value measured during sampling was substituted. If no concomitant continuous data were available, the sample was not included in the dataset.

Model Development

Ordinary least squares regression analysis was done using R programming language (R Core Team, 2019) to relate discretely collected TSS to turbidity and other continuously measured data. The distribution of residuals was examined for normality and plots of residuals (the difference between the measured and model calculated values) compared to model calculated TSS were examined for homoscedasticity (departures from zero did not change substantially over the range of model calculated values). Previously published explanatory variables were also strongly considered for continuity; however, the best explanatory variable(s) was ultimately selected.

Turbidity and seasonality were selected as the best predictors of logarithm base 10 (log_{10}) (TSS) based on residual plots, relatively high coefficient of determination (R^2), and relatively low model standard percentage error (MSPE).

Model Summary

Summary of final TSS regression analysis at USGS site 07144780:

TSS-based model:

```
\log_{10}(TSS) = 0.806 \times \log_{10}(TBY6026) + 0.135 \times \sin(2\pi D) - 0.0463 \times \cos(2\pi D) + 0.408, where,
```

```
TSS = total suspended solids, in milligrams per liter; TBY6026 = turbidity, YSI model 6026, in formazin nephelometric units; and D = date, in decimal years.
```

The use of turbidity and seasonality as explanatory variables is appropriate physically and statistically. Turbidity makes sense physically because suspended sediment is composed of particles that scatter light in water. The relation between turbidity and suspended-sediment concentration (SSC) can vary given varying concentrations of organic suspended particles that increase turbidity but are not included in the SSC analysis. Seasonality as an explanatory variable is appropriate statistically because rainfall and runoff typically vary during different seasons.

The log-transformed model may be retransformed to original units so that TSS can be calculated directly. The retransformation introduces a bias in the calculated constituent. This bias may be corrected using Duan's bias correction factor (BCF; Duan, 1983). For this model, the calculated BCF is 1.06. The retransformed model, accounting for BCF, is as follows:

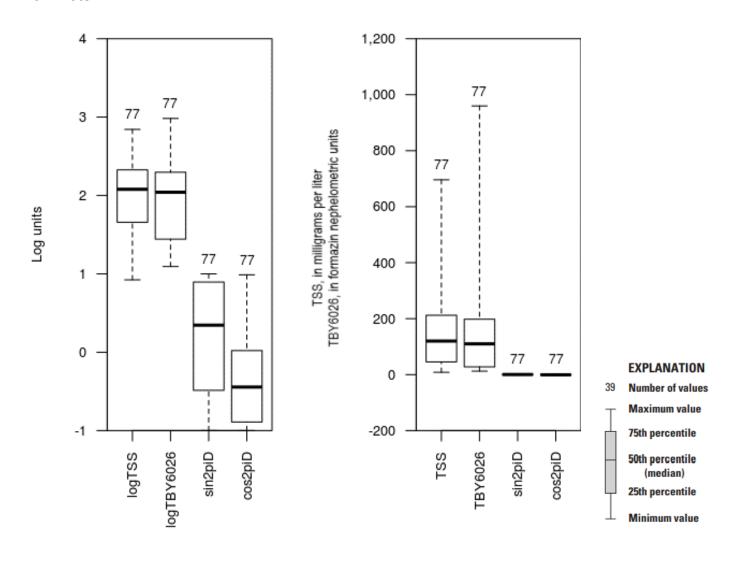
$$TSS = (TBY6026^{0.806} \times 10^{[0.135 \times \sin(2\pi D)]} \times 10^{[-0.0463 \times \cos(2\pi D)]} \times 10^{0.408}) \times 1.06$$

Previous Models

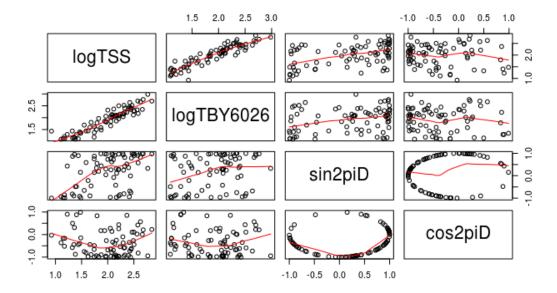
Version	Model Equation	Reference
1.0	$\log_{10}(TSS) = 0.893 \times \log_{10}(TBY6026) + 0.253$	Christensen and others (2006)
1.1	$\log_{10}(TSS) = 0.903 \times \log_{10}(TBY6026) + 0.252$	Stone and others (2013)

Model Statistics, Data, and Plots

Definitions for terms used in this output can be found at the end of this document.


Model

logTSS = +0.806 * logTBY6026 + 0.135 * sin2piD - 0.0463 * cos2piD + 0.408


Variable Summary Statistics

logTSS	TSS	logTBY6026	sin2piD	cos2piD	TBY6026
0.924	8.4	1.09	-1.000	-1.0000	12.4
1.660	45.6	1.44	-0.486	-0.8900	27.7
2.080	120.0	2.04	0.346	-0.4440	110.0
1.990	157.0	1.91	0.194	-0.3650	144.0
2.330	212.0	2.30	0.896	0.0215	198.0
2.840	696.0	2.98	1.000	0.9880	960.0
	0.924 1.660 2.080 1.990 2.330	0.924 8.4 1.660 45.6 2.080 120.0 1.990 157.0 2.330 212.0	0.924 8.4 1.09 1.660 45.6 1.44 2.080 120.0 2.04 1.990 157.0 1.91 2.330 212.0 2.30	0.924 8.4 1.09 -1.000 1.660 45.6 1.44 -0.486 2.080 120.0 2.04 0.346 1.990 157.0 1.91 0.194 2.330 212.0 2.30 0.896	1.660 45.6 1.44 -0.486 -0.8900 2.080 120.0 2.04 0.346 -0.4440 1.990 157.0 1.91 0.194 -0.3650 2.330 212.0 2.30 0.896 0.0215

Box Plots

Exploratory Plots

Red line shows the locally weighted scatterplot smoothing (LOWESS).

Basic Model Statistics

For a detailed definition and explanation of the terms used below, refer to Helsel and Hirsch (2002).

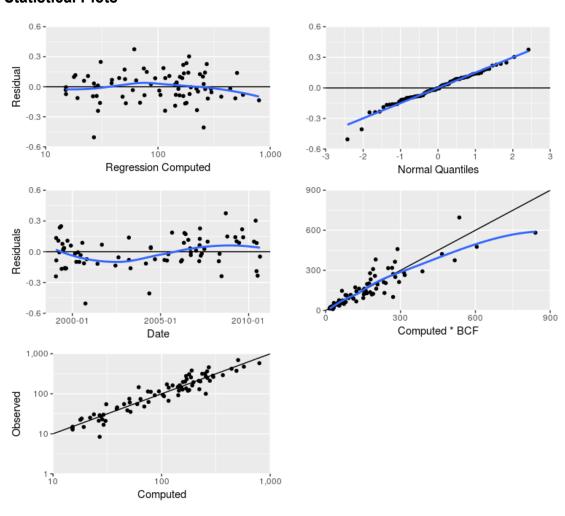
```
Number of Observations
                                                      77
Standard error (RMSE)
                                                   0.153
Average Model standard percentage error (MSPE)
                                                    35.9
Coefficient of determination (R2)
                                                   0.894
Adjusted Coefficient of Determination (Adj. R<sup>2</sup>)
                                                    0.89
Bias Correction Factor (BCF)
                                                    1.06
Variance Inflation Factors (VIF)
logTBY6026
               sin2piD
                          cos2piD
                              1.05
      1.11
                  1.13
```

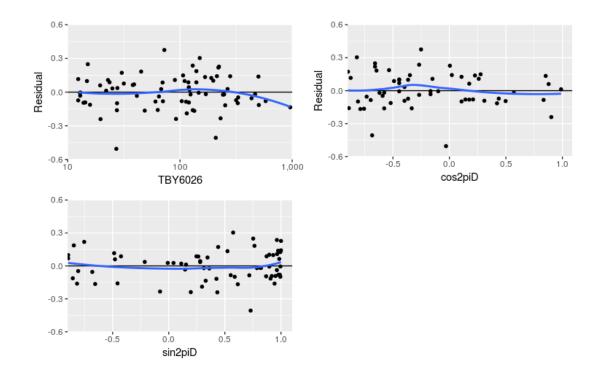
Explanatory Variables

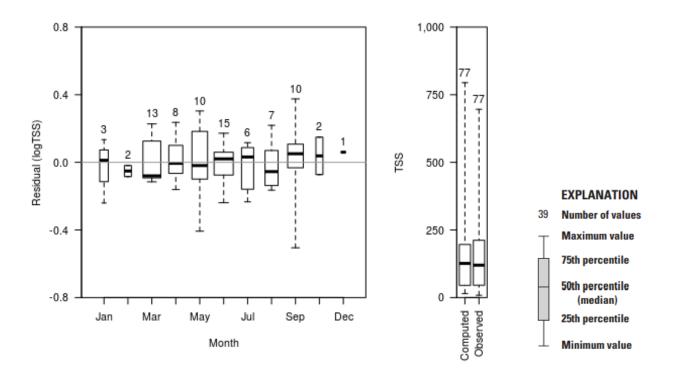
	Coefficients	Standard Error	t value	Pr(> t)
(Intercept)	0.4080	0.0724	5.63	3.17e-07
logTBY6026	0.8060	0.0376	21.40	3.10e-33
sin2piD	0.1350	0.0256	5.26	1.39e-06
cos2piD	-0.0463	0.0322	-1.44	1.55e-01

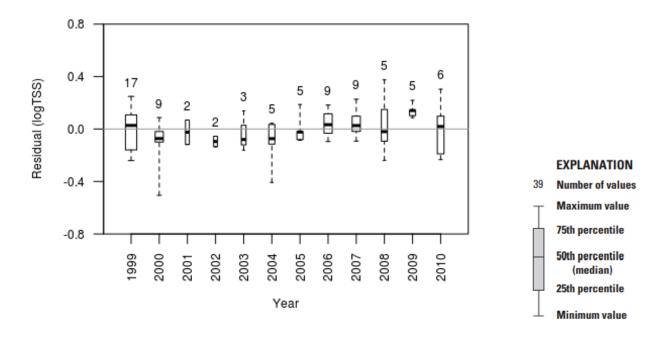
Correlation Matrix

	Intercept	logTBY6026	sin2piD	cos2piD
Intercept	1.0000	-0.953	0.201	0.0499
logTBY6026	-0.9530	1.000	-0.303	0.1270
sin2piD	0.2010	-0.303	1.000	-0.1960
cos2piD	0.0499	0.127	-0.196	1.0000

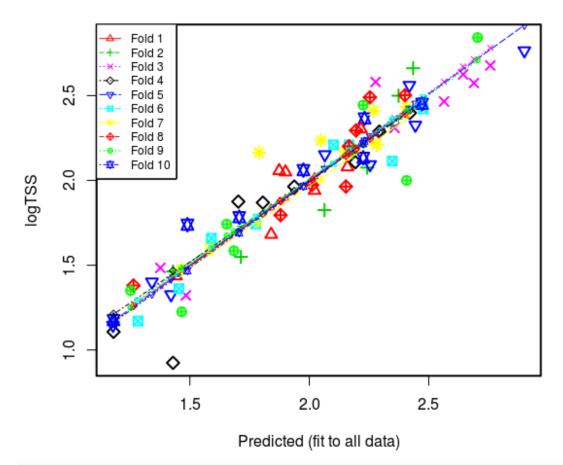

Outlier Test Criteria


```
Leverage Cook's D DFFITS
0.156 0.319 0.456
```

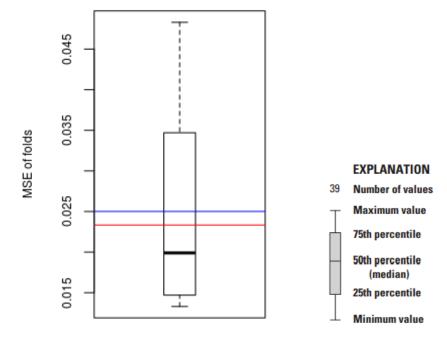

Flagged Observations


		logTSS	Estimate	Residual	Standard	Residual	Studentized	Residual	Leverage	Cook's D	DFFITS	
1/26/1999	11:50	1.230	1.47	-0.241		-1.66		-1.68	0.0986	0.0752	-0.555	
5/13/1999	10:25	1.740	1.49	0.249		1.69		1.71	0.0738	0.0570	0.484	
9/28/2000	10:30	0.924	1.43	-0.505		-3.41		-3.70	0.0611	0.1900	-0.944	
5/14/2004	10:35	2.000	2.41	-0.407		-2.71		-2.83	0.0307	0.0580	-0.504	
9/15/2008	10:55	2.160	1.79	0.375		2.52		2.62	0.0519	0.0871	0.614	

Statistical Plots



Cross Validation


Fold - equal partition of the data (10 percent of the data)

Large symbols - observed value of a data point removed in a fold

```
{\bf Small\ symbols\ -\ recomputed\ value\ of\ a\ data\ point\ removed\ in\ a\ fold}
```

Recomputed regression lines - adjusted regression line with one fold removed

Minimum MSE of folds: 0.0133 Mean MSE of folds: 0.0250 Median MSE of folds: 0.0199 Maximum MSE of folds: 0.0483 (Mean MSE of folds) / (Model MSE): 1.0700

Red line - Model MSE

Blue line - Mean MSE of folds

Model-Calibration Data Set

	D-+-	1TCC	1TDV6026		2 D	TCC	TDV6026	C	C	D = = 2 d = 1	N 1	C
_		T08122	logTBY6026	S1n2p1D	cos2piD	155	1840070	Computed	•	Residual		Censored
6)							logTSS	TSS		Quantiles	Values
1	1999-01-26	1.23	1.29	0.433	0.902	16.8	19.6	1.47	30.9	-0.241	-1.83	
2	1999-01-31	2.37	2.22	0.523	0.852	232	167	2.23	180	0.134	0.93	
3	1999-02-03	1.8	1.78	0.552	0.834	62.4	60.4	1.88	80.2	-0.0843	-0.583	
4	1999-03-17	2.21	1.95	0.966	0.26	162	90.1	2.1	134	0.108	0.789	
5	1999-04-06	2.29	2.17	0.995	-0.0988	194	147	2.29	208	-0.00525	0	
6	1999-04-16	2.49	2.11	0.963	-0.268	309	130	2.25	190	0.236	1.68	
7	1999-05-13	1.74	1.18	0.753	-0.658	54.8	15.1	1.49	32.7	0.249	1.83	
8	1999-05-24	2.08	2.13	0.615	-0.788	119	134	2.24	185	-0.167	-1.37	
9	1999-06-10	1.78	1.5	0.346	-0.938	60.7	31.6	1.71	53.9	0.0765	0.435	
16	1999-06-25	2.17	2.09	0.112	-0.994	148	122	2.15	149	0.0205	0.0976	
11	1999-07-02	2.43	2.42	-0.00861	-1	272	266	2.41	270	0.0273	0.163	
12	1999-07-14	1.62	1.44	-0.214	-0.977	42	27.7	1.59	40.9	0.0362	0.263	
13	1999-07-29	1.68	1.8	-0.456	-0.89	48	63.4	1.84	73.3	-0.159	-1.09	
14	1999-08-12	1.55	1.69	-0.655	-0.755	35.4	48.5	1.71	54.7	-0.165	-1.29	
15	1999-08-26	1.32	1.44	-0.817	-0.577	21	27.4	1.48	32.2	-0.161	-1.22	
16	1999-09-22	1.48	1.36	-0.989	-0.15	30.5	22.8	1.38	25.2	0.108	0.746	
17	1999-12-02	1.4	1.29	-0.479	0.878	25.2	19.4	1.34	23.2	0.06	0.331	

18 2000-02-25	2.63	2.67	0.821	0.57	422	467	2.64	466	-0.0186	-0.0976	
19 2000-03-24	2.47	2.51	0.994	0.107	292	327	2.56	388	-0.0987	-0.789	
20 2000-04-27	1.44	1.11	0.896	-0.444		12.8	1.44		-0.00598	-0.0325	
21 2000-05-25	1.59	1.44	0.588	-0.809		27.5	1.68	51.2	-0.0992	-0.834	
22 2000-06-21	1.74	1.62	0.146	-0.989	55.3	41.3	1.78	63.2	-0.0331	-0.263	
23 2000-07-26	2.15	2.07	-0.425	-0.905	142	119	2.07	123	0.0871	0.508	
24 2000-08-29	1.17	1.2	-0.854	-0.52	14.8	15.8	1.28	20.3	-0.113	-0.881	
25 2000-09-28	0.924	1.43		-0.0301	8.4	27.1	1.43	28.5	-0.505	-2.42	
26 2000-10-26	2.21	2.5	-0.9	0.437		316	2.28	203	-0.0725	-0.4	
27 2001-06-06	2.33	2.4	0.425	-0.905	212	253	2.44	294	-0.118	-0.981	
28 2001-09-04	1.66	1.59	-0.896	-0.444	45.6	39	1.59	41.2	0.0687	0.4	
29 2002-06-12	2.76	2.98	0.329	-0.944	582	960	2.9	841	-0.135	-1.04	
30 2002-08-14	2.42	2.64	-0.681	-0.732	264	434	2.48	317	-0.0548	-0.365	
31 2003-03-18	2.84	2.7	0.974	0.226	696	500	2.7	536	0.138	0.981	
32 2003-03-19	2.68	2.76	0.978	0.209	476	580	2.76	605	-0.0799	-0.471	
33 2003-04-21	2.09	2.11	0.943	-0.333	124	130	2.25	190	-0.161	-1.15	
34 2004-03-05	2.57	2.7	0.907	0.421	375	504	2.69	517	-0.115	-0.93	
35 2004-05-14	2	2.32	0.73	-0.684	100	208	2.41	270	-0.407	-2.04	
36 2004-06-14	2.21	2.08	0.28	-0.96	162	120	2.17	155	0.0434	0.297	
37 2004-06-14	2.2	2.08	0.28	-0.96	159	120	2.17	155	0.0353	0.229	
									-0.0734		
38 2004-09-08	1.11	1.09	-0.931	-0.366		12.4	1.18	16		-0.435	
39 2005-03-24	2.08	2.02	0.99	0.142	120	104	2.16	153	-0.0805	-0.508	
40 2005-05-16	2.11	2.05	0.718	-0.696	128	113	2.19	165	-0.0856	-0.622	
41 2005-06-10	2.4	2.38	0.362	-0.932	250	242	2.42	279	-0.023	-0.196	
42 2005-06-13	2.16	2.09	0.313	-0.95	145	124	2.18	161	-0.0206	-0.163	
43 2005-08-29	2.24	2.15	-0.845	-0.534	172	140	2.05	118	0.187	1.37	
44 2006-03-02	1.33	1.14	0.867	0.498		13.8	1.42	27.9	-0.0948	-0.746	
45 2006-03-22	1.94	1.85	0.984	0.176		70.5	2.02	111	-0.0816	-0.545	
46 2006-05-01	1.74	1.37	0.872	-0.49	55.2	23.6	1.65	47.8	0.0874	0.583	
47 2006-05-12	2.06	1.65	0.764	-0.645	114	45.1	1.87	79.2	0.183	1.29	
48 2006-06-05	1.88	1.48	0.441	-0.898	75	30.3	1.7	53.4	0.172	1.22	
49 2006-07-31	1.38	1.09	-0.486	-0.874	24	12.4	1.26	19.4	0.116	0.834	
50 2006-09-07	1.46	1.4	-0.918	-0.398	29	25	1.43	28.4	0.033	0.196	
51 2006-09-21	1.18	1.11	-0.986	-0.167	15	13	1.18		-0.00446	0.0325	
52 2006-09-21	1.15	1.11	-0.986	-0.167	14	12.9	1.18	16	-0.0322	-0.229	
53 2007-01-09	1.48	1.34	0.154	0.988	30	22	1.46	30.9	0.0123	0.065	
54 2007-03-14	1.36	1.16	0.951	0.309	23	14.3	1.45	30.1	-0.0919	-0.662	
55 2007-03-22	1.87	1.58	0.984	0.176	74	38	1.81	67.6	0.0636	0.365	
56 2007-03-26	2.5	2.28	0.994	0.107	316	190	2.37	250	0.126	0.881	
57 2007-03-31	2.66	2.35	1	0.0043	459	222	2.43	288	0.227	1.56	
58 2007-04-16	1.97	1.81	0.963	-0.268	94	65	2.01	109	-0.0382	-0.297	
59 2007-05-07	2.32	2.23	0.817	-0.577	211	170	2.34	233	-0.0183	-0.065	
60 2007-06-29	1.96	1.83	0.043	-0.999	92	68	1.94	91.5	0.0267	0.13	
61 2007-09-04	1.35	1.17	-0.896	-0.444		14.8	1.25	18.9	0.0985	0.622	
62 2008-04-24	2.13	2.08	0.918	-0.398		120	2.23	178	-0.0923	-0.703	
63 2008-05-09	2.45	2.39	0.786	-0.619		247	2.47	314	-0.02	-0.13	
64 2008-06-19	1.82	1.96	0.197	-0.98	66.8	92.3	2.06	123	-0.239	-1.68	
65 2008-09-15	2.16	1.86	-0.968	-0.251	146	72.6	1.79	65.1	0.375	2.42	
66 2008-10-16	2.05	2.03	-0.961	0.276	112	107	1.9	84.1	0.149	1.15	
67 2009-03-31	2.56	2.33	1	0.0215	364	213	2.42	278	0.142	1.09	
68 2009-04-27	2.5	2.3	0.896	-0.444	318	198	2.4	266	0.102	0.703	
69 2009-06-17	2.3	2.15	0.247	-0.969	201	140	2.22	174	0.0872	0.545	
70 2009-08-20	2.44	2.34	-0.753	-0.658	278	220	2.23	178	0.219	1.46	
71 2009-09-10	2.41	2.45	-0.937	-0.35	258	280	2.27	197	0.141	1.04	
72 2010-04-23	2.29	2.04	0.931	-0.366	197	110	2.2	166	0.0988	0.662	
73 2010-05-27	2.58	2.18	0.574	-0.819	381	150	2.28	200	0.304	2.04	
74 2010-06-14	1.96	2.06	0.297	-0.955	92	115	2.15	151	-0.189	-1.46	
75 2010-06-16	2.06	1.85	0.264	-0.965	115	70	1.98	100	0.0854	0.471	
76 2010-07-06	2.11	2.36	-0.0774	-0.997	130	230	2.35	235	-0.233	-1.56	
77 2010-08-25	2.31	2.52	-0.806	-0.591	204	330	2.36	241	-0.0472	-0.331	

Definitions

TSS: total suspended solids in milligrams per liter (00530)
TBY6026: turbidity, YST model 6026, in formazin penhelometric

TBY6026: turbidity, YSI model 6026, in formazin nephelometric units (63680)

D: date, in decimal years

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References Cited

American Public Health Association, American Water Works Association, and Water Environment Federation, 1995, Standard methods for the examination of water and wastewater (19th ed.): Washington, D.C., American Public Health Association, 905 p.

Christensen, V.G., Graham, J.L., Milligan, C.R., Pope, L.M., and Ziegler, A.C., 2006, Water quality and relation to taste-and-odor compounds in the North Fork Ninnescah River and Cheney Reservoir, south-central Kansas, 1997–2003: U.S. Geological Survey Scientific Investigations Report 2006–5095, 43 p. [Also available at https://doi.org/10.3133/sir20065095.]

Duan, N., 1983, Smearing estimate—A nonparametric retransformation method: Journal of the American Statistical Association, v. 78, no. 383, p. 605–610. [Also available at https://doi.org/10.1080/01621459.1983.10478017.]

Helsel, D.R., and Hirsch, R.M., 2002, Statistical methods in water resources: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. A3, 522 p. [Also available at https://doi.org/10.3133/tm4A3.]

R Core Team, 2019, R—A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing, accessed August 2019 at https://www.R-project.org/.

Rasmussen, T.J., Bennett, T.J., Stone, M.L., Foster, G.M., Graham, J.L., and Putnam, J.E., 2014, Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014: U.S. Geological Survey Open-File Report 2014–1233, 41 p., accessed April 2020 at https://doi.org/10.3133/ofr20141233.

Rasmussen, P.P., Gray, J.R., Glysson, G.D., and Ziegler, A.C., 2009, Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data: U.S. Geological Survey Techniques and Methods, book 3, chap. C4, 52 p. [Also available at https://doi.org/10.3133/tm3C4.]

- Sauer, V.B., and Turnipseed, D.P., 2010, Stage measurement at gaging stations: U.S. Geological Survey Techniques and Methods, book 3, chap. A7, 45 p., accessed April 2020 at https://doi.org/10.3133/tm3A7.
- Stone, M.L., Graham, J.L., and Gatotho, J.W., 2013, Continuous real-time water-quality monitoring and regression analysis to compute constituent concentrations and loads in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999–2012: U.S. Geological Survey Scientific Investigations Report 2013–5071, 44 p., accessed July 2020 at https://doi.org/10.3133/sir20135071.
- Turnipseed, D.P., and Sauer, V.B., 2010, Discharge measurements at gaging stations: U.S. Geological Survey Techniques and Methods, book 3, chap. A8, 87 p., accessed April 2020 at https://doi.org/10.3133/tm3A8.
- U.S. Geological Survey, 2006, Collection of water samples (ver. 2.0, September 2006): U.S. Geological Survey Techniques of Water Resources Investigations, book 9, chap. A4 [variously paged]. [Also available at https://doi.org/10.3133/twri09A4.]
- U.S. Geological Survey, 2020, USGS water data for the Nation: U.S. Geological Survey National Water Information System database, accessed April 20, 2020, at https://doi.org/10.5066/F7P55KJN.
- Wagner, R.J., Boulger, R.W., Jr., Oblinger, C.J., and Smith, B.A., 2006, Guidelines and standard procedures for continuous water-quality monitors—Station operation, record computation, and data reporting: U.S. Geological Survey Techniques and Methods, book 1, chap D3, 51 p. plus 8 attachments. [Also available at https://doi.org/10.3133/tm1D3.]
- YSI Incorporated, 2007, YSI 6136 turbidity sensor: YSI Incorporated, 2 p., accessed November 2019 at https://www.ysi.com/File%20Library/Documents/Specification%20Sheets/E56-6136-Turbidity-Sensor.pdf.
- YSI Incorporated, 2012, 6-series multiparameter water quality sondes—User manual, revision J: YSI Incorporated, 379 p., accessed November 2019 at

https://www.ysi.com/File%20 Library/Documents/Manuals/069300-YSI-6-Series-Manual-RevJ.pdf.