Appendix 7. Model Archive Summary for Nitrate Plus Nitrite at U.S. Geological Survey Site 07144780, North Fork Ninnescah River above Cheney Reservoir, Kansas, during January 1, 1999, through December 31, 2019

This model archive summary summarizes the nitrate plus nitrite (NO_3NO_2) model developed to compute hourly or daily nitrate plus nitrite concentrations during January 1, 1999, onward. This model supersedes all prior models used during this period. The methods used follow U.S. Geological Survey (USGS) guidance as referenced in relevant Office of Surface Water/Office of Water Quality Technical Memoranda and USGS Techniques and Methods, book 3, chapter C4 (Rasmussen and others, 2009).

Site and Model Information

Site number: 07144780

Site name: North Fork Ninnescah River above Cheney Reservoir, Kansas

Location: Lat 37°51'45", long 98°00'49" referenced to North American Datum of 1927, in NE 1/4 SE 1/4 NE 1/4 sec.19, T.25 S., R.6 W., Reno County, Kans., Hydrologic Unit 11030014, on right bank at upstream side of county highway bridge, 10 miles south of Hutchinson, 18.1 miles upstream from Cheney Dam.

Equipment: A YSI 6600 Extended Deployment System water-quality monitor equipped with sensors for water temperature, specific conductance, pH, dissolved oxygen, and turbidity (a YSI Model 6026 turbidity sensor [November 9, 1998, to December 1, 2010] and a YSI Model 6136 turbidity sensor [October 17, 2009, to November 12, 2015; March 31, 2017, to June 7, 2017]) (YSI Incorporated, 2007, 2012a). The YSI 6600 water-quality monitor was in operation during November 9, 1998, through November 12, 2015.

A Xylem YSI EXO2 water-quality monitor equipped with sensors for water temperature, specific conductance, dissolved oxygen, pH, and turbidity (YSI Incorporated, 2012b). The YSI EXO2 water-quality monitor began operation on November 13, 2015. Monitors were housed in a 4-inch diameter polyvinyl chloride (PVC) pipe and placed in a location representative of the stream cross section. Monitor readings were recorded and satellite transmitted hourly.

Date model was developed: April 26, 2019

Model calibration data period: January 26, 1999, to September 28, 2017

Model Data

All data were collected using USGS protocols (U.S. Geological Survey, 2006; Wagner and others, 2006; Sauer and Turnipseed, 2010; Turnipseed and Sauer, 2010) and are stored in the National Water Information System (NWIS) database (https://doi.org/10.5066/F7P55KJN; U.S. Geological Survey, 2020). Explanatory variables were evaluated individually and in combination. Potential explanatory variables included streamflow, water temperature, specific conductance, pH, dissolved oxygen, and turbidity. Seasonal components (sine and cosine variables) were also evaluated as explanatory variables.

The regression model is based on 123 concomitant values of discretely collected nitrate plus nitrite samples and continuously measured specific conductance during January 26, 1999, through September 28, 2017. Discrete samples were collected over a range of streamflows. Two samples were less than the minimum reporting level (less than [<] 0.02 and <0.01 milligram per liter); therefore, a Tobit regression model was developed to compute estimates of nitrate plus nitrite using the absolute maximum likelihood estimation approach (Hald, 1949; Cohen, 1950; Tobin, 1958; Helsel and others, 2020). Summary statistics and the complete model-calibration data are provided below. Potential outliers were identified using the methods described in Rasmussen and others (2009). Additionally, outlier test criteria, including leverage and Cook's distance (Cook's D), were used to estimate potential outlier effect on the final Tobit regression model (Cook, 1977). The sample collected on March 22, 2006, had a large specific conductance value likely from previous road salt application and was removed from the model calibration dataset.

Nitrate Plus Nitrite

Discrete samples were collected from the downstream side of the bridge or instream within 50 feet of the bridge using equal-width-increment, multiple vertical, single vertical, or grab methods following U.S. Geological Survey (2006) and Rasmussen and others (2014). Discrete samples were collected on a semifixed to event-based schedule ranging from 2 to 17 samples per year with a Federal Interagency Sedimentation Project U.S. DH–95 or D–95 with a Teflon bottle, cap, and nozzle depth-integrating sampler; a DH–81 with a Teflon bottle, cap, and nozzle hand sampler; or a grab sample with a Teflon bottle depending on sample location. Samples were analyzed for nitrate plus nitrite by the Wichita Municipal Water and Wastewater Laboratory in Wichita, Kans., according to standard methods (American Public Health Association and others, 1995).

Continuous Data

Specific conductance was measured with a YSI 6600 sensor during November 9, 1998, through November 12, 2015, and a YSI EXO2 sensor during November 13, 2015, through December 31, 2019. Concomitant specific conductance values were time interpolated. If continuous data was not available (2 or more hours of specific conductance values bracketing the sample collection time were missing) because of fouling, changes in equipment, or unsuitable site conditions, then the field monitor specific conductance value measured sampling was substituted. If no concomitant continuous data were available, the sample was not included in the dataset.

Model Development

Stepwise regression analysis was done using R programming language (R Core Team, 2019) to relate discretely collected nitrate plus nitrite to specific conductance and other continuously measured data. The distribution of residuals was examined for normality and plots of residuals (the difference between the measured and model calculated values) compared to model calculated nitrate plus nitrite were examined for homoscedasticity (departures from zero did not change substantially over the range of model calculated values).

A total of 1.6 percent of the model-calibration dataset consisted of censored results (less than minimum reporting level). Tobit regression models were developed using absolute maximum likelihood estimation methods using the *smwrQW* (v.0.7.9) package in R programming language (R Core Team, 2019).

Specific conductance and seasonality were selected as the best predictors of nitrate plus nitrite based on residual plots, a higher pseudocoefficient of determination (pseudo- R^2), and relatively low estimated standard residual error (RSE). Seasonality was included as an explanatory variable because nitrate plus nitrite seems to have a cyclical pattern potentially affected by groundwater during low seasonal flow.

Model Summary

Summary of final nitrate plus nitrite regression analysis at USGS site 07144780:

Nitrate plus nitrite-based model:

 $NO3NO2 = 0.000399 \times SPC + 0.0224 \times \sin(2\pi D) + 0.563 \times \cos(2\pi D) + 0.533$,

where,

NO3NO2 = nitrate plus nitrite, filtered, in milligrams per liter as nitrogen; SPC = specific conductance in microsiemens per centimeter at 25 degrees Celsius; and D = date in decimal years.

Model Statistics, Plots and Data

Definitions for terms used in this output can be found at the end of this document.

Model

 $NO3NO2 = 0.000399 \times SPC + 0.0224 \times \sin(2\pi D) + 0.563 \times \cos(2\pi D) + 0.533$

Computation method: Absolute Maximum Likelihood Estimation (AMLE)

Explanatory Variables

Basic Model Statistics

```
Estimated residual standard error (Unbiased) = 0.3099

Number of observations = 123, number censored = 2 (1.6 percent)

Log-likelihood (model) = -30.5

Log-likelihood (intercept only) = -86.01

Chi-square = 111

degrees of freedom = 3

p-value = <0.0001

Computation method: AMLE

Pseudo-R-squared: 0.5962

Akaike Information Criterion: 71

Bayesian Information Criterion: 85.06

Variance inflation factors

SPC 1.06

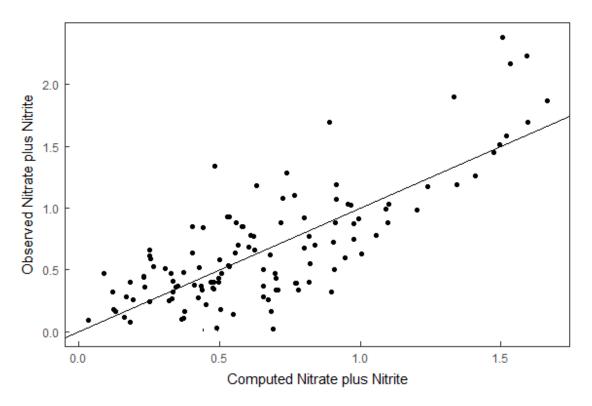
sin2piD 1.01

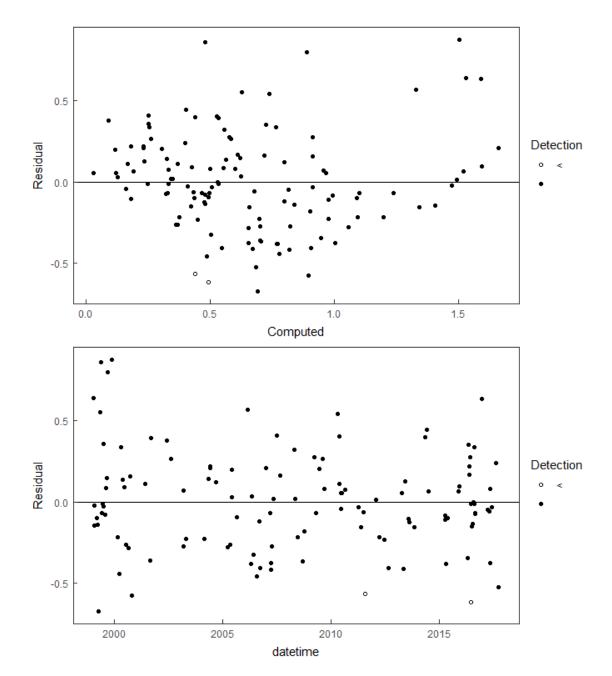
cos2piD 1.06
```

Outlier Test Criteria

leverage cooksD 0.07317 0.84393

Flagged Observations


```
Observations exceeding at least one test criterion nitratenitrite yeen yhat resids leverage cooksD


26 0.32 FALSE 0.8964 -0.5764 0.08009 0.08185
```

95% Confidence Intervals

```
2.5 % 97.5 %
(Intercept) 0.3655296675 0.7012190277
SPC 0.0002390112 0.0005581986
sin2piD -0.0556490377 0.1004050003
cos2piD 0.4590997621 0.6661202456
```

Plots

Variable Summary Statistics

Independent Variable (xvar) - SPC

Min. 1st Qu. Median Mean 3rd Qu. Max. 156.5 579.0 974.3 889.4 1175.6 1461.7

Standard Deviation

[1] 359.6959

Dependent Variable (yvar) - Nitrate plus Nitrite

Min. 1st Qu. Median Mean 3rd Qu. Max. <0.01 0.34 0.52296 0.659 0.88 2.38

Standard Deviation

[1] 0.4829

Model Calibration Dataset

14	noder Cambration Dataset				
				Computed_NO3NO2	
1					0.637435
2					
3					-0.024494
4					-0.101224
5					-0.140103
6					-0.671474
7					0.549982
8					0.857691
9					-0.068573
	0 1999-06-25 11:15:00				-0.014031
	1 1999-07-02 10:15:00				0.358491
	2 1999-07-14 11:20:00				-0.029454
	3 1999-07-29 09:55:00				-0.079501
	4 1999-08-12 10:35:00				0.085780
	5 1999-08-26 10:50:00				0.148796
	6 1999-09-22 11:20:00				0.799463
	7 1999-12-02 10:35:00				0.874368
	8 2000-02-25 10:40:00				-0.214367
1	9 2000-03-24 13:50:00				-0.440935
2	0 2000-04-27 10:45:00	1.1	1165	0.7678	0.334216
2	1 2000-05-25 10:20:00	0.7	1188	0.5649	0.135091
2	2 2000-06-21 12:00:00	0.52	1117	0.4272	0.092844
2	3 2000-07-26 11:50:00	0.11	896	0.3717	-0.261676
2	4 2000-08-29 11:00:00	0.37	1087	0.6551	-0.285127
2	5 2000-09-28 10:30:00	1.07	1054	0.9142	0.155810
2	6 2000-10-26 10:50:00	0.32	345	0.8964	-0.576425
2	7 2001-06-06 11:35:00	0.28	342	0.1698	0.110229
2	8 2001-09-04 11:05:00	0.34	1100	0.7018	-0.361781
2	9 2001-09-19 10:25:00	0.93	343	0.5351	0.394849
3	0 2002-06-12 11:10:00	0.47	204	0.0908	0.379215
3	1 2002-08-14 11:35:00				0.265291
3	2 2003-03-18 12:00:00		667	0.9576	0.072418
	3 2003-03-19 12:20:00				-0.272298
3	4 2003-04-21 11:30:00	0.47	832	0.6987	-0.228697
3	5 2004-03-05 12:10:00	0.75	448	0.9777	-0.227679
3	6 2004-05-14 10:35:00	0.47	408	0.3277	0.142249
3	7 2004-06-14 09:45:00	0.44	582	0.2316	0.208434
3	8 2004-06-14 09:50:00	0.45	584	0.2324	0.217637
3	9 2004-09-08 10:25:00	0.92		0.8011	0.118942
4	0 2005-03-24 10:15:00	0.78	1060	1.0577	-0.277680
4	1 2005-05-16 11:40:00	0.1	520	0.3651	-0.265054
4	2 2005-06-10 10:55:00	0.32	258	0.1198	0.200157
4	3 2005-06-13 09:25:00	0.16	310	0.1296	0.030405
4	4 2005-08-29 09:35:00	0.4	707	0.4956	-0.095630
4	5 2006-03-02 09:50:00	1.9	1250	1.3309	0.569052
4	6 2006-05-01 11:15:00	0.39	1242	0.7724	-0.382453
4	7 2006-05-12 10:30:00	0.66	1100	0.6258	0.034145
4	8 2006-06-05 10:15:00	0.18	1171	0.5050	-0.325019
4	9 2006-07-31 10:30:00	0.03	1150	0.4893	-0.459276
5	0 2006-09-07 10:50:00	0.68	1280	0.7994	-0.119393
5	1 2006-09-21 10:00:00	0.5	1230	0.9076	-0.407610
5	2 2006-09-21 10:05:00	0.5	1230	0.9076	-0.407610
5	3 2007-01-09 10:30:00	1.87	1430	1.6627	0.207296

54	2007-03-14 10:20:00	1.17 1283	1.2400 -0.070056	
55	2007-03-22 10:00:00	1.03 1120	1.1006 -0.070598	
56	2007-03-26 10:40:00	0.63 974	1.0044 -0.374411	
57	2007-03-31 12:30:00	0.4 629	0.8186 -0.418575	
58	2007-04-16 12:15:00	0.43 722	0.7013 -0.271306	
59	2007-05-07 10:30:00	0.37 311	0.3508 0.019177	
60	2007-06-29 10:25:00	0.66 704	0.2527 0.407333	
61	2007-09-04 11:25:00	0.88 1140	0.7177 0.162275	
62	2008-04-24 11:40:00	0.88 574	0.5589 0.321087	
63	2008-05-09 11:35:00	0.36 353	0.3436 0.016441	
64	2008-06-19 09:45:00	0.16 979	0.3763 -0.216288	
65	2008-09-15 10:55:00	0.34 842	0.7062 -0.366216	
66	2008-10-16 10:10:00	0.72 591	0.9026 -0.182644	
67	2009-03-31 11:20:00	1.19 871	0.9149 0.275096	
68	2009-04-27 12:15:00	0.43 466	0.4979 -0.067941	
69	2009-06-17 10:40:00	0.51 787	0.3073 0.202703	
		0.85 1098	0.5839 0.266091	
70	2009-08-20 10:50:00			
71	2009-09-10 11:30:00	0.58 464	0.5006 0.079354	
72	2010-04-23 10:00:00	1.28 980	0.7391 0.540924	
73	2010-05-17 16:40:00	0.93 945	0.5270 0.402968	
74	2010-05-27 10:00:00	0.48 716	0.3708 0.109171	
75	2010-06-14 11:30:00	0.18 304	0.1237 0.056283	
76	2010-06-16 10:15:00	0.12 417	0.1629 -0.042891	
77	2010-07-06 10:30:00	0.09 156	0.0331 0.056899	
78	2010-08-25 11:00:00	0.41 378	0.3333 0.076650	
79	2011-04-13 10:00:00	0.88 1180	0.9126 -0.032627	
80	2011-05-23 10:20:00	0.5 1373	0.6574 -0.157378	
81	2011-06-28 10:00:00	0.37 1160	0.4355 -0.065514	
82	2011-07-27 11:20:00	<0.02 1070	0.4411 -0.563860	
83	2012-02-06 09:45:00	1.51 1242	1.4942 0.015752	
84	2012-03-23 10:15:00	0.88 1158	1.0965 -0.216544	
85	2012-06-20 09:15:00	0.22 1170	0.4503 -0.230320	
86	2012-08-27 09:30:00	0.14 860	0.5487 -0.408684	
87	2013-04-11 10:10:00	1.02 1270	0.9677 0.052319	
88	2013-05-10 10:00:00	0.26 1180	0.6732 -0.413239	
89	2013-05-31 10:00:00	0.36 431	0.2348 0.125183	
90	2013-08-05 10:05:00	0.08 322	0.1827 -0.102729	
91	2013-08-16 08:30:00	0.35 897	0.4764 -0.126453	
92	2013-10-31 10:00:00	1.19 1380	1.3439 -0.153943	
93	2014-05-13 10:00:00	0.84 659	0.4425 0.397525	
94	2014-06-10 10:30:00	0.85 972	0.4042 0.445802	
95	2014-07-02 09:10:00	0.26 559	0.1934 0.066587	
96	2015-04-08 09:45:00	0.91 1260	0.9926 -0.082618	
97	2015-04-14 09:55:00	0.87 1369	0.9785 -0.108479	
98	2015-04-21 10:15:00	0.39 1010	0.7694 -0.379449	
99	2015-05-26 10:45:00	0.34 868	0.4374 -0.097356	
	2015-11-25 11:00:00	1.59 1360	1.5205 0.065530	
	2015-12-01 12:10:00	1.69 1462	1.5942 0.096458	
	2016-04-19 10:25:00	0.6 1432	0.9471 -0.347143	
	2016-05-11 12:10:00	1.08 1350	0.7255 0.352604	
	2016-05-24 09:30:00	0.779 1290	0.6116 0.167464	
105	2016-05-25 10:10:00	0.4 225	0.1812 0.218788	
106	2016-06-06 11:20:00	0.853 1380	0.5793 0.273862	
107	2016-06-15 09:00:00	0.523 1350	0.5347 -0.011730	
108	2016-06-22 10:00:00	<0.01 1290	0.4942 -0.617342	

109 201	6-07-08	10:35:00	0.277	1136	0.4253	-0.148234	
110 201	6-07-22	13:30:00	0.347	1205	0.4811	-0.134554	
111 201	.6-08-03	11:20:00	0.532	1208	0.5311	0.000767	
112 201	.6-08-07	12:30:00	0.59	464	0.2555	0.334537	
113 201	6-08-13	11:30:00	0.24	361	0.2499	-0.009928	
114 201	.6-08-27	09:20:00	0.25	292	0.3223	-0.072276	
115 201	6-08-31	10:45:00	0.264	232	0.3308	-0.066898	
116 201	6-12-13	12:00:00	2.23	1323	1.5930	0.634226	
117 201	7-03-29	10:45:00	0.77	576	0.8168	-0.046773	
118 201	7-04-20	12:00:00	0.62	762	0.6799	-0.059879	
119 201	7-05-02	09:50:00	0.28	972	0.6558	-0.375838	
120 201	7-05-13	14:30:00	0.681	1060	0.6023	0.079065	
121 201	7-06-07	11:30:00	0.472	1200	0.5074	-0.035060	
122 201	7-08-11	11:00:00	0.64	789	0.4021	0.237848	
123 201	7-09-28	10:30:00	0.16	502	0.6846	-0.524638	

Definitions

NO3NO2: nitrate plus nitrite, filtered, in milligrams per liter as nitrogen (00631) SPC: specific conductance in microsiemens per centimeter at 25 degrees Celsius (00095) D: date, in decimal years

Leverage: an outlier's measure in the x-direction (Helsel and others, 2020).

p-value: the probability that the independent variable has no effect on the dependent variable (Helsel and others, 2020).

Pseudo-R-squared: pseudocoefficient of determination. An estimation of the proportion of variance in the response variable explained by the model (McKelvey and Zavoina, 1975).

z-score: the estimated coefficient divided by its associated standard error (Helsel and others, 2020).

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References Cited

American Public Health Association, American Water Works Association, and Water Environment Federation, 1995, Standard methods for the examination of water and wastewater (19th ed.): Washington, D.C., American Public Health Association, 905 p.

Christensen, V.G., Graham, J.L., Milligan, C.R., Pope, L.M., and Ziegler, A.C., 2006, Water quality and relation to taste-and-odor compounds in the North Fork Ninnescah River and Cheney Reservoir, south-central Kansas, 1997–2003: U.S. Geological Survey Scientific Investigations Report 2006–5095, 43 p. [Also available at https://doi.org/10.3133/sir20065095.]

Cohen, A.C., Jr., 1950, Estimating the mean and variance of normal populations from singly truncated and doubly truncated samples: Annals of Mathematical Statistics, v. 21, no. 4, p. 557–569, accessed October 2019 at https://doi.org/10.1214/aoms/1177729751.

- Cook, D.R., 1977, Detection of influential observations in linear regression: Technometrics, v. 19, no. 1, p. 15–18. [Also available at https://www.jstor.org/stable/1268249.]
- Hald, A., 1949, Maximum likelihood estimation of the parameters of a normal distribution which is truncated at a known point: Scandinavian Actuarial Journal, v. 1949, no. 1, p. 119–134. [Also available at https://doi.org/10.1080/03461238.1949.10419767.]
- Helsel, D.R., Hirsch, R.M., Ryberg, K.R., Archfield, S.A., and Gilroy, E.J., 2020, Statistical methods in water resources—Supporting materials: U.S. Geological Survey data release, accessed August 2020 at https://doi.org/10.5066/P9JWL6XR.
- McKelvey, R.D., and Zavoina, W., 1975, A statistical model for the analysis of ordinal level dependent variables: The Journal of Mathematical Sociology, v.4, no. 1, p. 103–120. [Also available at https://doi.org/10.1080/0022250X.1975.9989847.]
- R Core Team, 2019, R—A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing, accessed August 2019 at https://www.R-project.org/.
- Rasmussen, T.J., Bennett, T.J., Stone, M.L., Foster, G.M., Graham, J.L., and Putnam, J.E., 2014, Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014: U.S. Geological Survey Open-File Report 2014–1233, 41 p., accessed April 2020 at https://doi.org/10.3133/ofr20141233.
- Rasmussen, P.P., Gray, J.R., Glysson, G.D., and Ziegler, A.C., 2009, Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data: U.S. Geological Survey Techniques and Methods, book 3, chap. C4, 52 p. [Also available at https://doi.org/10.3133/tm3C4.]
- Sauer, V.B., and Turnipseed, D.P., 2010, Stage measurement at gaging stations: U.S. Geological Survey Techniques and Methods, book 3, chap. A7, 45 p., accessed April 2020 at https://doi.org/10.3133/tm3A7.
- Stone, M.L., Graham, J.L., and Gatotho, J.W., 2013, Continuous real-time water-quality monitoring and regression analysis to compute constituent concentrations and loads in the North Fork Ninnescah River

- upstream from Cheney Reservoir, south-central Kansas, 1999–2012: U.S. Geological Survey Scientific Investigations Report 2013–5071, 44 p., accessed July 2020 at https://doi.org/10.3133/sir20135071.
- Tobin, J., 1958, Estimation of relationships for limited dependent variables: Econometrica, v. 26, no. 1, p. 24–36. [Also available at https://doi.org/10.2307/1907382.]
- Turnipseed, D.P., and Sauer, V.B., 2010, Discharge measurements at gaging stations: U.S. Geological Survey Techniques and Methods, book 3, chap. A8, 87 p., accessed April 2020 at https://doi.org/10.3133/tm3A8.
- U.S. Geological Survey, 2006, Collection of water samples (ver. 2.0, September 2006): U.S. Geological Survey Techniques of Water Resources Investigations, book 9, chap. A4 [variously paged]. [Also available at https://doi.org/10.3133/twri09A4.]
- U.S. Geological Survey, 2020, USGS water data for the Nation: U.S. Geological Survey National Water Information System database, accessed April 20, 2020, at https://doi.org/10.5066/F7P55KJN.
- Wagner, R.J., Boulger, R.W., Jr., Oblinger, C.J., and Smith, B.A., 2006, Guidelines and standard procedures for continuous water-quality monitors—Station operation, record computation, and data reporting: U.S. Geological Survey Techniques and Methods, book 1, chap D3, 51 p. plus 8 attachments. [Also available at https://doi.org/10.3133/tm1D3.]
- YSI Incorporated, 2007, YSI 6136 turbidity sensor: YSI Incorporated, 2 p., accessed November 2019 at https://www.ysi.com/File%20Library/Documents/Specification%20Sheets/E56-6136-Turbidity-Sensor.pdf.
- YSI Incorporated, 2012a, 6-series multiparameter water quality sondes—User manual, revision J: YSI Incorporated, 379 p., accessed November 2019 at https://www.ysi.com/File%20Library/Documents/Manuals/069300-YSI-6-Series-Manual-RevJ.pdf.
- YSI Incorporated, 2012b, EXO water quality field sensors—Features, specifications, and comparability to YSI 6-series sensors, revision B: YSI Incorporated, 14 p., accessed November 2019 at https://www.exowater.com/media/pdfs/EXO-6Series-Sensor-Comparison.pdf.