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Optimization of the Idaho National Laboratory
Water-Quality Aquifer Monitoring Network,

Southeastern Idaho

By Jason C. Fisher, Roy C. Bartholomay, Gordon W. Rattray, and Neil V. Maimer

Abstract

Long-term monitoring of water-quality data collected
from wells at the Idaho National Laboratory (INL) has
provided essential information for delineating the movement
of radiochemical and chemical wastes in the eastern Snake
River Plain aquifer, southeastern Idaho. Since 1949, the U.S.
Geological Survey, in cooperation with the U.S. Department
of Energy, has maintained as many as 200 wells in the INL
water-quality monitoring network. A network design tool, dis-
tributed as an R package, was developed to evaluate and opti-
mize groundwater monitoring in the existing network based
on water-quality data collected at 153 sampling sites since
January 1, 1989. The objective of the optimization design
tool is to reduce well monitoring redundancy while retaining
sufficient data to reliably characterize water-quality conditions
in the aquifer. A spatial optimization was used to identify a
set of wells whose removal leads to the smallest increase in
the deviation between interpolated concentration maps using
the existing and reduced monitoring networks while preserv-
ing significant long-term trends and seasonal components in
the data. Additionally, a temporal optimization was used to
identify reductions in sampling frequencies by minimizing the
redundancy in sampling events.

Spatial optimization uses an islands genetic algorithm to
identify near-optimal network designs removing 10, 20, 30,
40, and 50 wells from the existing monitoring network. With
this method, choosing a greater number of wells to remove
results in greater cost savings and decreased accuracy of the
average relative difference between interpolated maps of the
reduced-dataset and the full-dataset. The genetic search algo-
rithm identified reduced networks that best capture the spatial
patterns of the average concentration plume while preserving
long-term temporal trends at individual wells. Concentration
data for 10 analyte types are integrated in a single optimization
so that all datasets may be evaluated simultaneously. A con-
stituent was selected for inclusion in the spatial optimization
problem when the observations were sufficient to (1) establish

a two-range variability model, (2) classify at least one con-
centration time series as a continuous record block, and (3)
make a prediction using the quantile-kriging interpolation
method. The selected constituents include sodium, chloride,
sulfate, nitrate, carbon tetrachloride, 1,1-dichloroethylene,
1,1,1-trichloroethane, trichloroethylene, tritium, strontium-90,
and plutonium-238.

In temporal optimization, an iterative-thinning method
was used to find an optimal sampling frequency for each
analyte-well pair. Optimal frequencies indicate that for many
of the wells, samples may be collected less frequently and
still be able to characterize the concentration over time. The
optimization results indicated that the sample-collection inter-
val may be increased by an of average of 273 days owing to
temporal redundancy.

Introduction

The Idaho National Laboratory (INL), operated by the
U.S. Department of Energy (DOE), encompasses about 890
square miles of the eastern Snake River Plain (ESRP) in
southeastern Idaho (fig.1; app. 1). The INL was established
in 1949 to develop atomic energy, nuclear safety, defense
programs, environmental research, and advanced energy con-
cepts. Wastewater disposal sites at the Test Area North (TAN),
the Naval Reactors Facility (NRF), the Advanced Test
Reactor Complex, and the Idaho Nuclear Technology and
Engineering Center (INTEC) (figs. 1-3) have contributed
radioactive- and chemical-waste contaminants to the ESRP
aquifer. These sites incorporated various wastewater disposal
methods, including lined evaporation ponds, unlined percola-
tion (infiltration) ponds and ditches, drain fields, and injection
wells. Waste materials buried in shallow pits and trenches
within the Subsurface Disposal Area at the Radioactive Waste
Management Complex (RWMC) also have contributed con-
taminants to groundwater.
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Since 1949, the U.S. Geological Survey (USGS) has

worked in cooperation with the DOE at the INL to define the
following:

1

. The quality and availability of water for human

consumption;

. The usability of the water for supporting construction

and cooling of facilities, and for diluting concentrated
waste streams;

. The location and movement of contaminants in the

ESRP aquifer and perched groundwater zones;

. The sources of recharge to the aquifer;

. An early detection network for contaminants moving

past the INL boundaries; and

. The processes controlling the origin and distribution of

contaminants and naturally occurring constituents in the
aquifer (Ackerman and others, 2010).

Since its inception, this water-quality monitoring
program at the INL has included a network that once num-
bered as many as 200 wells. The network of wells has been
sampled over the years for tritium, strontium-90, iodine-129,
cesium-137, plutonium-238, plutonium-239 and -240 (undi-
vided), americium-241, gross alpha- and gross beta-radioactiv-
ity, sodium, bromide, chloride, fluoride, sulfate, nitrate, chro-
mium and other trace elements, volatile organic compounds
(VOCs), and total organic carbon (TOC) (Bartholomay, 2013;
Davis and others 2013). Most of the wells in this network
were constructed as open boreholes, and many are open to the
aquifer throughout their entire depth below the water table.

The INL water-quality monitoring network has provided
vital information for waste management in the ESRP aquifer.
Data from this network have been used to identify contami-
nant concentrations and to define patterns of waste migration
in the aquifer and perched groundwater zones (Bartholomay
and others, 2017, p. 7). Improving the efficiency of the
monitoring network is desirable because of high network-
maintenance costs and funding constraints. The design of a



long-term monitoring (LTM) network is dependent on the
spatial and temporal distribution of constituents in the aquifer.
These distributions are extremely complicated in the ESRP
given its diverse geology, perched alluvial conditions that
overlie the regional aquifer, variable fluxes between ground-
water and surface water, rapid preferential flow in certain geo-
logic layers, and the long and uncertain history of wastewater
disposal at INL facilities.

A more efficient LTM network may be established by
evaluating the value of observations measured at each sam-
pling site and the degree to which observations are statisti-
cally redundant. Spatially redundant wells were identified for
removal from the network and the frequency of sampling was
reduced where temporal redundancy was identified in the sam-
pling record. In this report, a heuristic optimization procedure
was used to redesign the existing INL aquifer water-quality
monitoring network. Heuristic is a technique for efficiently
guiding the process of optimization; it does not guarantee that
the best solution will be determined. This study was conducted
by the USGS in cooperation with the DOE.

Purpose and Scope

This report presents an optimization analysis of water-
quality data collected from selected wells completed in the
ESRP aquifer at and near the INL to identify and remove
redundancy in the existing monitoring network, for the pur-
pose of reducing LTM costs while incurring a minimal loss
of statistical information. Redundancy is defined by Cameron
(2004) as the ability of a reduced-dataset to accurately recon-
struct features or characteristics that were estimated from
the full-dataset. The cost savings derived from the removal
of sampling sites (or locations) from the existing network,
or reduction in sampling frequency, is realized by not col-
lecting (and analyzing) the additional water samples. Spatial
and temporal redundancy were examined using two different
approaches; that is, the spatial and temporal components of the
optimization were performed separately.

Spatial optimization was performed by removing redun-
dant sampling sites from the existing monitoring network. The
redundancy of a removed site was evaluated by assessing the
ability of the reduced-dataset to accurately represent plume
maps interpolated for selected analytes using the full-dataset,
where a full-dataset map is assumed to provide a realistic
estimate of the concentration plume in the aquifer. Maps of
the spatial distribution of analyte concentrations in ground-
water were predicted by kriging, a geostatistical method
that interpolates concentration values for locations between
sampling sites. The quality of the network design also entails
consideration of other (sometimes competing) objectives
including (1) minimizing the interpolation error to ensure that
the best spatial coverage is retained in the reduced-monitoring
network; (2) safeguarding against the removal of sites with
significant long-term trends that may be useful for evaluat-
ing the effectiveness of remediation efforts at the INL; and
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(3) safeguarding against the removal of sites with repeated
sampling at regular intervals over multiple years, and showing
large variability in analyte concentrations, so as to preserve
the long-term history of the sampling program. The presence
and slope of long-term trends were estimated using survival
analysis, a regression method that accounts for censored
concentration data. A local regression analysis (also known

as scatterplot smoothing) was used to estimate the presence
and variability of sampling at a well. The final decision on the
number of sampling sites to remove from the existing monitor-
ing network was left as a management decision and entails a
trade-off between cost savings and information loss.

Temporal optimization was performed on a well-by-well
basis using an iterative-thinning method proposed by Cameron
(2003). This method examines whether the historical sam-
pling frequency for a given well location and constituent may
be reduced because of temporal redundancy in the sampling
events. Sampling events are removed from the sampling
record to characterize the level of redundancy in trends
(Cameron, 2004, p. 91). A local regression analysis was used
to estimate trend (that is, the long-term trend with seasonality)
over the sampled data range. The procedure used to evalu-
ate the ability of a reduced-dataset to accurately represent the
existing trend was as follows:

1. Estimate the uncertainty around the trend fitted to the
full-dataset,

2. Estimate the trend fitted to the reduced-dataset, and

3. Calculate the proportion of this trend that is within the
uncertainty interval of the existing trend.

Repeated random sampling was used to safeguard against
irregular trends that may arise from the selection of a single
set of sampling events to remove from the existing sampling
record. The number of sampling events that may be removed
was constrained by an upper limit placed on the proportion of
the trend that may lie outside the uncertainty interval of the
existing trend, thus ensuring an acceptable level of accuracy
in trend estimates. By maximizing the fraction of sampling
events to remove from the historical record, an instance of the
reduced-dataset was found and its average sampling interval
was estimated. An optimal sampling frequency was recom-
mended for each well-analyte combination.

Geohydrologic Setting

The INL is located on the west-central part of the ESRP.
The ESRP is a northeast-trending structural basin about 200
mi long and 50—70 mi wide (fig. 1). The basin, bounded by
faults on the northwest and by downwarping and faulting on
the southeast, has been filled with basaltic lava flows interbed-
ded with terrestrial sediments. The basaltic rocks and sedimen-
tary deposits combine to form the ESRP aquifer, which is the
primary source of groundwater for the ESRP.
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The ESRP aquifer is one of the most productive aquifers
in the United States (U.S. Geological Survey, 1985, p. 193).
Groundwater generally moves from northeast to southwest,
and eventually discharges to springs along the Snake River
downstream from Twin Falls, Idaho, about 100 mi southwest
of the INL (fig. 1). Groundwater moves horizontally through
basalt interflow zones and vertically through joints and inter-
fingering edges of basalt flows. Infiltration of surface water,
heavy pumpage, geohydrologic conditions, and seasonal
fluxes of recharge and discharge locally affect the move-
ment of groundwater (Garabedian, 1986). The ESRP aquifer
is recharged primarily from infiltration of applied irrigation
water, infiltration of streamflow, groundwater inflow from
adjoining mountain drainage basins, and infiltration of precipi-
tation (Ackerman and others, 2006).

At the INL, depth to water in wells completed in the
ESRP aquifer ranges from about 225 ft below land surface in
the northern part of the INL to more than 900 ft below land
surface in the southeastern part of the INL (Bartholomay and
others, 2017, p. 21). A significant proportion of the ground-
water moves through the upper 200-800 ft of basaltic rock
(Mann, 1986, p. 21). Ackerman (1991, p. 30) and Bartholomay
and others (1997, table 3) reported transmissivity values
for basalt in the upper part of the aquifer ranging from 1.1
to 760,000 ft*/d. The lateral hydraulic gradient at the INL
ranges from 2 to 10 ft/mi, with an average of 4 ft/mi (Davis
and others, 2013, fig. 9). Horizontal flow velocities of 2 to 26
ft/d have been calculated based on the movement of vari-
ous constituents in different areas of the aquifer at and near
the INL (Robertson and others, 1974; Mann and Beasley,
1994; Cecil and others, 2000; Plummer and others, 2000; and
Busenberg and others, 2001). These flow velocities equate to
a travel time of about 50—700 years for water beneath the INL
to travel to springs that discharge at the terminus of the ESRP
groundwater-flow system near Twin Falls, Idaho (fig. 1).
Localized tracer tests at the INL have shown that vertical- and
horizontal-solute transport rates are as high as 60—150 ft/d
(Nimmo and others, 2002; Duke and others, 2007).

Olmsted (1962), Robertson and others (1974), and
Busenberg and others (2001) classified groundwater at the INL
based on chemical types derived from dissolution of the rocks
and minerals within the recharge source areas. Olmsted’s Type
A water consisted of calcium and magnesium concentrations
that constituted at least 85 percent of the cations, and bicar-
bonate constituted at least 70 percent of the anions. Type A
water is present in the central and western part of the INL.
Type A water is attributed to seepage loss from the Big Lost
River and from groundwater underflow from the Big Lost
River, Little Lost River, and Birch Creek drainage basins to
the west and northwest of the INL (fig. 1) that contain allu-
vium derived from Paleozoic carbonate rocks from the sur-
rounding mountains.

Olmsted’s Type B water, which is characterized by higher
equivalent fractions of sodium, potassium, fluoride, and silica
than Type A water, underlies much of the eastern part of the
INL and is often referred to as regional water.

The groundwater originates from the area northeast of the INL
that is composed of a much higher fraction of rhyolitic and
andesitic volcanic rocks than mountains west and northwest
of the INL that contribute to Type A water. Busenberg and
others (2001) used age dating techniques of chlorofluorocar-
bons (CFCs), sulfur hexafluoride, and trititum/helium to further
classify the regional water at the INL into two types based

on the recharge type of the young fraction of groundwater.
Water in the southeastern part of the INL represented a binary
mixture of old (water greater than 40 and 55 years old that did
not contain tritium or CFCs, respectively) regional groundwa-
ter underflow with young water derived from rapid, focused
recharge, probably from precipitation infiltration. Water in the
northeastern part of the INL is (1) old, regional groundwater
underflow that is mixed with local rapid, focused recharge; (2)
slow, diffuse areal recharge through the unsaturated zone; and
(3) agricultural return flow from the Mud Lake area (fig. 1).

Previous Investigations

The USGS INL Project Office has examined the hydro-
logic conditions and distribution of selected wastewater con-
stituents in groundwater and perched groundwater at the INL
since operations began in 1949. Numerous previous investiga-
tions on the hydrology, water quality, and geology have been
conducted by INL contractors, State agencies, and the USGS.
The USGS provides a list of references to published reports
from its previous INL studies at the USGS INL Project Office
web page (U.S. Geological Survey, 2020).

In 2010, the USGS INL Project Office began studies to
optimize their LTM networks. Fisher (2013) performed an
optimization of the water-level monitoring network using
a kriging-based genetic algorithm method. He identified 40
wells that could be removed from the monitoring network
without significant loss of accuracy.

For the optimization of the aquifer water-quality moni-
toring network, three reports initially were planned, of which
this report was the third. Bartholomay and others (2012) used
statistical methods to determine trends for selected constitu-
ents for 67 wells and 7 surface-water sites sampled at the
INL that were considered unaffected by wastewater disposal.
They determined that chloride trends in wells influenced by
recharge from the Big Lost River either decreased or had vari-
able increases and decreases because of wet and dry cycles of
precipitation and runoff. Wells influenced by regional recharge
showed increasing trends for chloride, sodium, sulfate, and
nitrate, and increases were attributed to agricultural or other
anthropogenic influences upgradient from the INL. Some
wells near the NRF and Power Burst Facility showed increas-
ing trends, possibly owing to wastewater disposal at those
facilities.

Davis and others (2015) used statistical methods to deter-
mine trends for selected constituents from 64 aquifer wells and
35 perched groundwater wells at the INL that were believed
to be influenced by wastewater disposal. Trend test results for



tritium and strontium-90 concentrations in aquifer wells indi-
cated that nearly all wells had decreasing or no trends. Trend
test results for chloride, sodium, sulfate, nitrate, chromium,
trace elements, and TOC concentrations in aquifer wells

also indicated that most wells had decreasing or no trends.
Decreasing trends were attributed to discontinued disposal
practices and dilution and dispersion in the aquifer. Sodium
concentrations showed increasing trends in wells at Central
Facilities Area (CFA) and downgradient. Carbon tetrachloride
had increasing trends in a couple of wells near RWMC, but all
other wells showed decreasing or no trend.

Optimizing LTM networks with the aim of removing data
from the system because they add little to no beneficial infor-
mation has received increasing attention in the recent past. An
in-depth description of the optimization problem was provided
by Cameron (2004). Previous efforts to eliminate redundancy
in existing groundwater monitoring networks have separately
examined the temporal and spatial components of redundancy.
Johnson and others (1996) performed a temporal optimiza-
tion by reducing sampling frequency. Reed and others (2000)
performed a spatial optimization by reducing the number of
sampling locations. And Cameron and Hunter (2002) reduced
redundancy both spatially and temporally by performing
separate optimizations for each domain—an approach that was
also used in this report.

Use of prediction uncertainty is another promising
approach for network design. Fienen and others (2010) use a
PEST framework to evaluate the uncertainty of a model pre-
diction to determine observations that may be excluded from
an existing hydrologic monitoring network.

Computer Software

Using a software development methodology, we took a
highly reproducible approach for optimizing the USGS INL
water-quality aquifer monitoring network. Reproducibility
requires archiving and documenting all datasets and com-
puter source code used to optimize/analyze the monitoring
network—an undertaking made easier by the advances in open
source software, open file formats, and cloud computing. The
collection of source code and processing instructions used to
optimize the monitoring network was placed in a software
package referred to as ObsNetQW (Fisher, 2021). The col-
lection of datasets available for the USGS INL water-quality
and water-level monitoring networks was placed in a software
package named inldata (Fisher, 2020). These packages are
an extension of the R-programming language (R Core Team,
2019) and allow for easy, transparent, and cross-platform dis-
tribution of their content by enforcing a set of formal format
standards. A manual describing package datasets and process-
ing programs (also known as functions in R) is provided in
appendix 2.
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Sources and Descriptions of Data

Water-Quality Data Collection

The USGS monitoring of groundwater quality in the
ESRP aquifer beneath the INL and vicinity is an ongoing
long-term program that began in 1949. Water samples col-
lected from wells in the monitoring network were analyzed for
some combination of concentrations of tritium, strontium-90,
cesium-137, plutonium-238, plutonium-239 and -240 (undi-
vided), americium-241, gross alpha and beta-particle radio-
activity; chromium, sodium, chloride, and sulfate; nutrients
including nitrite plus nitrate (as nitrogen [N]), nitrite (as N),
orthophosphate (as phosphorus [P]), and ammonia (as N); and
VOC:s. This report presents an analysis that uses a subset of
this water-quality dataset that was collected during 1989-2018
(U.S. Geological Survey, 2019). Data collected prior to 1989
were omitted from analysis to eliminate bias introduced
through (1) samples being tainted by cable drilling, and (2)
changes in the analytical testing laboratory for chemical con-
stituents and organic compounds.

Starting in 1989, water samples were collected from 133
ESRP aquifer wells (figs. 1-3; app. 1), or 153 sampling sites
when accounting for multilevel monitoring (table 1). During
2005-12, 10 wells were equipped with multilevel monitoring
systems (MLMS) that allow water-quality measurements to
be acquired at isolated depths (figs. 1-2). Since 1989, water
samples have been analyzed for chemical constituents and
organic compounds at the USGS National Water Quality
Laboratory (NWQL) in Lakewood, Colorado. Prior to 1989,
water samples were analyzed by various laboratories for chlo-
ride, chromium, sodium, and nitrate (Wegner, 1989). Water
samples have been analyzed for radionuclides at the DOE
Radiological and Environmental Sciences Laboratory at the
INL since samples were first collected. Many of the samples
collected in the 1950s, 1960s, and 1970s were collected during
or immediately after cable drilling, and some of the samples
had a high probability of containing impurities introduced by
the drilling (Robertson and others, 1974, app. B).

Methods used to sample and analyze for selected constit-
uents generally follow the guidelines established by the USGS
(Goerlitz and Brown, 1972; Stevens and others, 1975; Wood,
1976; Thatcher and others, 1977; Claassen, 1982; Wershaw
and others, 1987; Fishman and Friedman, 1989; Faires, 1993;
Fishman, 1993; and U.S. Geological Survey, variously dated).
Water samples were collected according to a quality-assurance
plan for water-quality activities conducted by personnel at the
USGS INL Project Office. The plan was finalized in June 1989
and revised in March 1992, in 1996 (Mann, 1996), in 2003
(Bartholomay and others, 2003), in 2008 (Knobel and others,
2008), and in 2014 (Bartholomay and others, 2014). The plan
is available for inspection at the USGS INL Project Office.
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Table 1. Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho
National Laboratory, Idaho, 1989-2018.

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey
(https://waterdata.usgs.gov/nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-
sents a sampling-port depth. Period of record: For water samples collected during 1989-2018, in mm-dd-yy (month-day-year). Number of replicate samples:
Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-
mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

) Nm:fber Number
Well name Site No. v:’f:ttd;l:)h Pe(r:;_(:: dr_':;;()"d environ- repl(i,::ate
mental

samples samples
ANP 6 435152112443101 295 07-02-92 to 10-18-17 51 5
ANP9 434856112400001 322 04-13-94 to 10-18-11 55 7
ARBOR TEST 433509112384801 790 02-15-89 to 04-21-11 72 9
AREA?2 433223112470201 876 09-20-90 to 10-15-18 52 5
ATOMIC CITY WELL 1 432638112484101 639 04-05-89 to 04-09-18 82 9
BADGING FACILITY 433042112535101 644 04-28-89 to 04-11-18 66 6
CFA 1 433204112562001 639 01-25-89 to 04-11-18 134 8
CFA 2 433144112563501 681 01-25-89 to 10-10-17 122 8
CFA LF 2-10 433216112563301 716 10-20-93 to 04-23-18 73 7
CFALF 3-9 433216112571001 500 10-22-93 to 04-02-07 32 6
CPP 1 433433112560201 586 04-26-89 to 04-19-18 101 6
CPP 2 433432112560801 605 01-31-89 to 10-04-18 90 7
CPP 4 433440112554401 700 04-26-89 to 10-18-16 83 5
EBR 1 433051113002601 1,075 04-28-89 to 04-20-11 76 9
HIGHWAY 3 433256113002501 750 04-05-89 to 10-16-18 79 7
MIDDLE 2050A 433409112570515 539 09-30-05 to 06-12-18 21 2
MIDDLE 2051 433217113004901 1,177 09-29-05 to 06-28-17 16 0
MIDDLE 2051 433217113004903 1,128 09-28-05 to 06-13-18 21 2
MIDDLE 2051 433217113004906 876 09-28-05 to 06-28-17 19 2
MIDDLE 2051 433217113004909 771 09-27-05 to 06-13-18 23 5
MTR TEST 433520112572601 588 03-27-89 to 04-02-18 91 11
NO NAME 1 435038112453401 552 05-22-91 to 04-11-18 69 6
NPR TEST 433449112523101 600 06-20-91 to 10-11-18 67 7
PAND W 2 435419112453101 378 04-18-89 to 04-02-18 83 7
PSTF TEST 434941112454201 319 07-13-89 to 10-18-11 61 6
RIFLE RANGE 433243112591101 620 04-10-02 to 10-17-18 32 4
RWMC M11S 433058113010401 624 03-22-00 to 10-11-18 35 3
RWMC M12S 433118112593401 572 03-22-00 to 10-11-18 33 3
RWMC M13S 433037113002701 643 03-22-00 to 10-11-18 36 4
RWMC M14S 433052113025001 635 03-22-00 to 10-11-18 37 5
RWMC M3S 433008113021801 633 02-26-93 to 10-23-18 51 6
RWMC M7S 433023113014801 628 03-04-93 to 10-22-18 53 7
RWMC PROD 433002113021701 685 01-18-89 to 12-12-18 424 12
SITE 14 434334112463101 717 04-18-89 to 10-10-18 86 8
SITE 17 434027112575701 600 06-18-91 to 03-26-18 55 5
SITE 19 433522112582101 860 04-12-89 to 10-16-18 75 9
SITE 4 433617112542001 495 04-18-91 to 04-11-18 63 7


https://waterdata.usgs.gov/nwis
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Table 1. Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho
National Laboratory, Idaho, 1989-2018.—Continued

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey

(https://waterdata.usgs.gov/nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-
sents a sampling-port depth. Period of record: For water samples collected during 1989-2018, in mm-dd-yy (month-day-year). Number of replicate samples:

9

Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-

mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

Number

) of Number
Well name Site No. v:’leétd:g)h Pe(r:l::_(:: dr_t‘e,(;())rd environ- repI(i)::ate
mental

samples samples
SITE 9 433123112530101 1,057 04-05-89 to 03-27-18 75 7
SPERT 1 433252112520301 653 04-28-89 to 04-11-18 66 7
TRA 1 433521112573801 600 04-27-89 to 11-06-13 54 5
TRA3 433522112573501 602 04-27-89 to 10-16-18 62 9
TRA 4 433521112574201 965 11-13-89 to 04-04-17 67 11
TRA DISP 433506112572301 1,267 02-01-89 to 10-16-18 103 9
USGS 1 432700112470801 630 05-30-91 to 10-18-18 66 6
USGS 100 433503112400701 750 04-19-89 to 04-03-18 94 10
USGS 101 433255112381801 842 04-19-89 to 10-18-18 81 7
USGS 102 433853112551601 445 06-08-90 to 05-09-18 129 9
USGS 103 432714112560701 1,297 04-14-89 to 04-18-05 108 6
USGS 103 432714112560702 1,279 09-25-07 to 06-26-18 16 1
USGS 103 432714112560704 1,240 09-25-07 to 06-26-18 17 2
USGS 103 432714112560708 1,098 10-01-07 to 06-26-18 17 1
USGS 103 432714112560712 1,014 10-01-07 to 06-26-18 16 1
USGS 104 432856112560801 700 04-14-89 to 10-16-18 141 16
USGS 105 432703113001801 1,300 04-21-89 to 10-16-07 74 6
USGS 105 432703113001807 1102 09-17-09 to 06-27-18 15 2
USGS 105 432703113001811 982 09-17-09 to 06-27-18 13 1
USGS 105 432703113001815 862 09-18-09 to 06-27-18 14 1
USGS 106 432959112593101 760 04-14-89 to 10-17-18 99 11
USGS 107 432942112532801 690 04-11-89 to 03-27-18 87 9
USGS 108 432659112582601 1,196 04-21-89 to 04-29-08 75 6
USGS 108 432659112582602 1,194 09-20-10 to 06-25-18 11 1
USGS 108 432659112582606 1,060 09-22-10 to 06-26-13 7 2
USGS 108 432659112582610 904 09-20-10 to 06-26-13 7 2
USGS 109 432701113025601 800 04-21-89 to 04-23-18 87 8
USGS 11 432336113064201 704 05-01-89 to 04-09-18 94 10
USGS 110A 432717112501502 644 10-25-95 to 10-18-18 53 5
USGS 111 433331112560501 560 01-05-89 to 04-17-18 94 9
USGS 112 433314112563001 509 03-30-89 to 10-01-18 134 7
USGS 113 433314112561801 556 03-31-89 to 04-17-18 129 7
USGS 114 433318112555001 560 03-31-89 to 10-01-18 134 11
USGS 115 433320112554101 581 04-06-89 to 10-01-18 131 9
USGS 116 433331112553201 572 04-06-89 to 04-17-18 130 7
USGS 117 432955113025901 655 01-12-89 to 10-16-18 148 9
USGS 119 432945113023401 705 01-12-89 to 04-23-18 144 11
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Table 1. Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho
National Laboratory, Idaho, 1989-2018.—Continued

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey
(https://waterdata.usgs.gov/nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-
sents a sampling-port depth. Period of record: For water samples collected during 1989-2018, in mm-dd-yy (month-day-year). Number of replicate samples:
Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-
mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

Number

) of Number
Well name Site No. v:’leétd:g)h Pe(r:l::_(:: dr_t‘e,(;())rd environ- repI(i)::ate
mental

samples samples
USGS 12 434126112550701 563 06-15-90 to 03-26-18 128 9
USGS 120 432919113031501 705 01-12-89 to 10-09-18 174 8
USGS 121 433450112560301 475 03-25-91 to 04-04-18 81 8
USGS 123 433352112561401 515 03-25-91 to 10-02-18 74 7
USGS 124 432307112583101 800 04-21-94 to 04-09-18 71 7
USGS 125 432602113052801 774 04-27-95 to 10-09-18 65 7
USGS 126A 435529112471301 648 11-08-00 to 04-19-11 29 4
USGS 126B 435529112471401 472 11-08-00 to 10-10-18 36 4
USGS 127 433058112572201 596 09-27-00 to 04-03-18 42 4
USGS 128 433250112565601 615 10-31-01 to 10-16-18 28 4
USGS 131A 433036112581803 1,157 10-24-12 to 06-15-15 5 0
USGS 131A 433036112581806 1,058 10-29-12 to 06-15-15 5 0
USGS 131A 433036112581810 842 10-29-12 to 06-19-18 0
USGS 131A 433036112581815 632 10-29-12 to 06-19-18 10 2
USGS 132 432906113025018 787 09-05-06 to 06-20-18 17 0
USGS 133 433605112554312 480 09-24-07 to 06-12-18 19 3
USGS 134 433611112595815 652 09-28-06 to 06-29-11 12 2
USGS 134 433611112595819 590 09-27-06 to 06-11-18 16 1
USGS 135 432753113093609 861 09-15-09 to 06-14-18 14 1
USGS 137A 432701113025801 895 10-23-12 to 06-19-17 0
USGS 137A 432701113025803 862 10-23-12 to 06-19-17 0
USGS 137A 432701113025805 784 10-23-12 to 06-18-18 0
USGS 137A 432701113025807 718 10-24-12 to 06-18-18 8 0
USGS 14 MV-61 432019112563201 752 04-01-89 to 10-09-18 95 8
USGS 15 434234112551701 610 06-06-90 to 10-24-11 70 4
USGS 17 433937112515401 498 12-14-89 to 04-09-18 87 4
USGS 18 434540112440901 329 10-12-90 to 04-12-18 53 7
USGS 19 434426112575701 399 04-03-89 to 04-02-18 84 8
USGS 2 433320112432301 699 05-28-91 to 04-12-18 51 7
USGS 20 433253112545901 658 04-01-89 to 04-17-18 89 8
USGS 22 433422113031701 657 04-05-89 to 04-25-11 60 8
USGS 23 434055112595901 458 05-21-91 to 10-09-18 68 8
USGS 26 435212112394001 267 05-23-91 to 04-10-18 67 6
USGS 27 434851112321801 312 03-24-89 to 04-02-18 33 7
USGS 29 434407112285101 426 06-12-91 to 10-11-18 55 7
USGS 31 434625112342101 428 06-12-91 to 04-10-18 55 7
USGS 32 434444112322101 392 06-12-91 to 04-10-18 56 7
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Table 1.

Sources and Descriptions of Data

Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho
National Laboratory, Idaho, 1989-2018.—Continued

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey

(https://waterdata.usgs.gov/nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-
sents a sampling-port depth. Period of record: For water samples collected during 1989-2018, in mm-dd-yy (month-day-year). Number of replicate samples:
Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-

mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

1"

Number

) of Number
Well name Site No. v:’f‘;!td:g)h Pe(r:l::_(:: dr_t‘e,(;())rd environ- repI(i)::ate
mental

samples samples
USGS 34 433334112565501 700 03-31-89 to 04-16-18 85 8
USGS 35 433339112565801 579 03-31-89 to 10-03-18 87 8
USGS 36 433330112565201 567 03-31-89 to 04-16-18 123 9
USGS 37 433326112564801 572 03-31-89 to 10-03-18 95 11
USGS 38 433322112564301 724 03-31-89 to 04-16-18 90 9
USGS 39 433343112570001 492 03-31-89 to 10-21-13 119 9
USGS 4 434657112282201 553 06-04-91 to 10-19-11 60 5
USGS 41 433409112561301 666 04-07-89 to 10-04-18 84 7
USGS 42 433404112561301 678 04-07-89 to 04-19-18 85 7
USGS 43 433415112561501 564 04-20-89 to 10-02-18 84 7
USGS 44 433409112562101 650 04-07-89 to 04-18-18 104 10
USGS 45 433402112561801 651 04-07-89 to 10-02-18 95 8
USGS 46 433407112561501 651 04-07-89 to 04-18-18 98 9
USGS 47 433407112560301 651 01-31-89 to 10-04-18 102 9
USGS 48 433401112560301 750 04-06-89 to 04-19-18 92 9
USGS 5 433543112493801 494 09-26-90 to 04-12-18 67 6
USGS 51 433350112560601 647 04-17-89 to 04-18-18 84 9
USGS 52 433414112554201 602 04-07-89 to 10-03-18 86 7
USGS 57 433344112562601 582 01-05-89 to 10-02-18 127 7
USGS 58 433500112572502 503 04-13-89 to 04-02-18 90 14
USGS 59 433354112554701 590 04-17-89 to 04-18-18 90 11
USGS 6 434031112453701 620 09-26-90 to 10-20-11 45 6
USGS 65 433447112574501 498 02-17-89 to 04-04-18 138 9
USGS 67 433344112554101 694 04-11-89 to 10-01-18 74 9
USGS 7 434915112443901 903 05-20-91 to 04-11-18 66 7
USGS 76 433425112573201 718 04-07-89 to 04-05-18 99 11
USGS 77 433315112560301 586 03-31-89 to 10-01-18 87 8
USGS 79 433505112581901 702 04-01-89 to 04-05-18 38 8
USGS 8 433121113115801 812 05-01-89 to 04-10-18 82 7
USGS 82 433401112551001 693 04-14-89 to 04-17-18 125 9
USGS 83 433023112561501 752 04-13-89 to 04-25-11 79 10
USGS 84 433356112574201 505 04-01-89 to 10-18-18 85 8
USGS 85 433246112571201 614 04-01-89 to 04-16-18 88 9
USGS 86 432935113080001 691 04-21-89 to 06-06-18 81 6
USGS 87 433013113024201 673 01-04-89 to 04-10-18 141 9
USGS 88 432940113030201 663 01-04-89 to 10-22-18 196 9
USGS 89 433005113032801 714 01-04-89 to 05-09-18 140 9
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Table 1. Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho

National Laboratory, Idaho, 1989-2018.—Continued

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey
(https://waterdata.usgs.gov/nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-

sents a sampling-port depth. Period of record: For water samples collected during 1989-2018, in mm-dd-yy (month-day-year). Number of replicate samples:
Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-

mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

Number

of Number
Well name Site No. Well depth Period of record environ- (.’f
(feet bls) (mm-dd-yy) replicate
mental
samples
samples
USGS 9 432740113044501 654 04-21-89 to 10-17-18 86 5
USGS 97 433807112551501 510 04-19-89 to 03-26-18 153 9
USGS 98 433657112563601 508 04-19-89 to 10-15-18 149 7
USGS 99 433705112552101 440 04-19-89 to 10-11-18 152 7
WS INEL 1 433716112563601 490 04-19-89 to 04-05-18 102 5

Sample collection methods varied for several of the
wells during the history of sampling. Permanent pumps were
installed at various dates with most installations occurring
from 1985 to the early 1990s. Prior to installation of pumps,
wells were sampled using a portable thief sampler. Some of
the samples collected with thief samplers were collected at
different depths in the aquifer during the same sampling event.
When the depths at which thief samples were collected were
known, the data from the depth similar to the depth to which
the current pump was set were used in the analyses. After
pumps were installed, wells were purged for at least three well
volumes prior to sample collection until October 2003, when
procedures were changed to allow sample collection after one
well volume was purged. Studies by Bartholomay (1993) and
Knobel (2006) indicated that different purge rates used at the
INL did not affect the analytical results for the wells analyzed
in the respective studies.

Beginning in 1980, about 10 percent of water samples
were collected for quality assurance (QA) purposes. Quality
control (QC) water samples collected by the USGS INL
Project Office generally include equipment blanks, splits, and
blind replicates; however, other types of QC samples also
have been collected throughout the history of the program.
Comparative studies to determine agreement between analyti-
cal results for water-sample pairs by laboratories used by the
INL Project Office QA program were summarized by Wegner
(1989); Williams (1996, 1997); Rattray (2012); Davis and oth-
ers, (2013); and Rattray (2014). Wegner (1989) also statisti-
cally compared analytical results among different laboratories
used from 1980 to 1988. Analyses of water-sample pairs
were in statistical agreement for more than 95 percent of the
samples compared.

The period of record, sample collection frequency, and
list of analytes tested for, varied for all sites in the monitoring
network. Since 2003, all sites have been sampled annually,
but prior to that time frame, wells were sampled annually,

semi-annually, quarterly, or even more frequently depending
on the purpose of the sampling program. Some gaps in data
occurred when pumps were out for repair, samples were lost,
or program changes did not necessitate sampling of the analyte
in question.

Nondetect Data

Measurements whose values are known only to be below
a threshold (also known as a censoring level) are referred
to as nondetects (or “left-censored data” in the statistical
literature). Historically, the threshold used to censor analyti-
cal results was the minimum reporting level (MRL). The
MRL is defined by the NWQL as the smallest measured
concentration of a substance that can be measured reliably
by using a given analytical method (Timme, 1995). Methods
for choosing MRLs are subjective and no single procedure is
universally used. In 1996, the NWQL began censoring data
at the laboratory reporting level (LRL) for most inorganic
constituents. The LRL generally is twice the method detection
level (MDL), which is described as the minimum concentra-
tion of a substance that can be measured and reported with
99-percent confidence that the analyte concentration is greater
than zero (Childress and others, 1999). Analytical results that
are less than a long-term method detection level (LT-MDL)
are reported as less than the LRL. The LT-MDL differs from
the MDL in that it incorporates laboratory variability and is
calculated over an extended period of time. Analytical results
that are greater than the LT-MDL and less than the LRL are
reported as “estimated” values. For this report, the laboratory-
estimated values were assumed to be the actual values.
Among the 66 percent of samples that were nonde-
tects, a disproportionally large percentage were recorded for
organic compounds. The average percentage of nondetects
in each analyte group is as follows: 97 percent for organics,
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5.1 percent for inorganics, 0.3 percent for radionuclides, and
0.1 percent for nutrients. For analytes measured for in water
samples, the number of values that were recorded as nondetec-
tions are shown in table 2.

Interpreting Radionuclides on the Basis of
Analytical Results

The randomness of the measurement process for radio-
nuclides requires that the laboratory report the uncertainty
associated with a single measurement. This measurement
uncertainty is referred to as the combined standard uncertainty
(CSU) and may be viewed as the statistical standard devia-
tion of an individual radiological result (McCurdy and others,
2008, p. 3). Laboratories report the CSU at the 68 percent
or 1-sigma confidence level (16 CSU), which is obtained by
propagating sources of analytical uncertainty in measure-
ments. McCurdy and others (2008) provide details on inter-
preting radiological data used by the USGS. The guidelines for
interpreting analytical results are based on an extension of a
method proposed by Currie (1984).

The measured concentration and associated CSU are used
to calculate a confidence interval (CI) about the measured
concentration. The CI defines a range of concentration (the
upper and lower limits) within which the “true value” lies with
a certain degree of probability. For this report, a 95-percent
confidence level is used. Assuming that the uncertainty of a
radiological result is normally distributed, the 95-percent CI is
defined by the measured concentration (C) plus or minus 1.96
times the associated o CSU for that measurement; that is,

[C.C]| = C+1.96(15CSV), (1)

where
C,and C, are the lower and upper limits of the CI,

respectively.

The randomness of the measurement process for radionuclides
makes negative values possible. A negative measured value, or
negative lower limit on the CI, does not indicate that there is
negative radioactivity.

Analysis and Interpretation of Replicate Data

The process of collecting and analyzing water samples
from wells includes a number of steps that can affect how
accurately samples represent the environment from which
they were collected (Mueller and others, 2015, p. 1). Quality-
control data collected from replicate samples are used to
estimate the magnitude of errors in the reported analyte
concentrations and inform the selection of target analytes to be
included in the network optimization analysis.
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Replicate samples are defined as two or more environ-
mental samples collected sequentially in the same location.
Replicate samples are used to measure the variability (as
standard deviation) of constituent concentrations, which is
defined as the random error in independent measurements as
the result of repeated application of the measurement process
under identical conditions (Mueller and others, 2015, p. 31).
For many analytes, sampling variability is correlated with the
concentration of that analyte, where variability increases with
increasing concentration. A two-range model, as described
by Mueller and Titus (2005) and Mueller and others (2015,

p- 32-34), was used to evaluate the variability by estimating
the standard deviation as a function of analyte concentration.
The two-range model is formulated using the mean

concentration (C) and standard deviation (s) of replicate-
paired data. For each of the n-replicate samples collected and
analyzed for a constituent in the water-quality monitoring
network, the mean replicate concentration is defined as:

_ Ca,i N Cb,i .
C.=—5—— fori=1,...,n, 2)
i 2
where
Cai and Cbl. are the constituent concentrations measured

for in the two environmental samples that
compose replicate pair 7.

The computation of CT (eq. 2) is not possible if the con-
centration in either of the replicates is reported as a negative
(only applies to radionuclides) or censored value. In this case,
replicate pairs that include a negative or censored value were
excluded from the analysis. For example, of the 106 sample-
replicate pairs analyzed for carbon tetrachloride (table 2), only
21 were included in variability analysis (table 3). About 60
percent of carbon tetrachloride measurements were reported as
censored values (table 2). The mean replicate concentrations
are sorted from smallest to largest and expressed as CT[I. , where
the square brackets around the subscript indicate sorted values.
The standard deviation of the i" replicate pair is defined by:

5 \/(Ca, M- (7[1'])2 (G~ 6[1‘])2' G

Replicate data are split into two subsets, a low concentration
range and high concentration range. For concentrations in the
low range, variability is estimated as the mean standard devia-
tion of replicates within that range (s), and expressed as:

I
5=, @)
i=1
where
n, is the number of replicates in the low range.
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Table 2. Chemical constituents, organic compounds, and radionuclides measured for in water samples collected from wells in the U.S.
Geological Survey aquifer water-quality monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989-2018.

[Analyte name: U.S. Environmental Protection Agency Substance Registry Services (SRS) systematic name. Code: Unique identifier assigned by the U.S.
Geological Survey. Period of record: For water samples collected during 1989-2018, in mm-dd-yy (month-day-year). Number of sampling sites: Number
of locations where groundwater samples were collected and analyzed for the constituent. Number of observations: Number of laboratory measurements of a
constituent concentration. Number of nondetects: Number of observations with left-censored values, where the real concentration is known to be less than a
detection threshold. Number of replicate pairs: Number of sample-replicate pairs analyzed for a constituent]

Number Number
Analyte name Code Period of record of_ Number_ of Number of (_)f
(mm-dd-yy) sampling observations nondetects replicate
sites pairs
Analyte group—Inorganics, Major, Metals
Sodium 00930 01-25-89 to 10-22-18 152 4,440 1 395
Analyte group—Inorganics, Major, Non-metals
Chloride 00940 01-04-89 to 10-23-18 153 6,372 0 548
Sulfate 00945 02-15-89 to 10-22-18 147 2,973 1 237
Fluoride 00950 02-15-89 to 10-01-18 136 609 45 36
Analyte group—Inorganics, Minor, Metals
Chromium 01030 01-25-89 to 10-18-18 139 2,866 485 256
Analyte group—Nutrient
Nitrate 00618 02-15-89 to 10-23-18 153 4,172 6 353
Analyte group—0rganics, other

Dibromomethane 30217 02-19-92 to 12-12-18 70 1,352 1,351 90
Dichlorobromomethane 32101 01-04-89 to 12-12-18 119 1,663 1,646 99
Carbon tetrachloride 32102 01-04-89 to 12-12-18 119 1,723 1,029 106
Tribromomethane 32104 01-04-89 to 12-12-18 119 1,663 1,635 99
Chlorodibromomethane 32105 01-04-89 to 12-12-18 119 1,663 1,648 99
Chloroform 32106 01-04-89 to 12-12-18 119 1,663 1,096 99
Toluene 34010 01-04-89 to 12-12-18 119 1,723 1,672 106
Benzene 34030 01-04-89 to 12-12-18 119 1,723 1,722 106
Chlorobenzene 34301 01-04-89 to 12-12-18 119 1,699 1,699 103
Chloroethane 34311 01-04-89 to 12-12-18 109 1,608 1,608 96
Ethylbenzene 34371 01-04-89 to 12-12-18 119 1,723 1,720 106
Chloromethane 34418 01-04-89 to 12-12-18 119 1,642 1,642 99
Methylene chloride 34423 01-04-89 to 12-12-18 119 1,723 1,721 106
Tetrachloroethylene 34475 01-04-89 to 12-12-18 119 1,723 1,375 106
CFC-11 34488 01-04-89 to 12-12-18 109 1,689 1,689 103
1,1-Dichloroethane 34496 01-04-89 to 12-12-18 119 1,723 1,721 106
1,1-Dichloroethylene 34501 01-04-89 to 12-12-18 119 1,723 1,669 106
1,1,1-Trichloroethane 34506 01-04-89 to 12-12-18 119 1,723 981 106
1,1,2-Trichloroethane 34511 01-04-89 to 12-12-18 119 1,678 1,678 103
1,1,2,2-Tetrachloroethane 34516 01-04-89 to 12-12-18 109 1,668 1,668 103
o-Dichlorobenzene 34536 01-04-89 to 12-12-18 119 1,703 1,703 99
trans-1,2-Dichloroethylene 34546 01-04-89 to 12-12-18 119 1,723 1,723 106
1,2,4-Trichlorobenzene 34551 03-23-89 to 12-12-18 111 1,496 1,495 93
m-Dichlorobenzene 34566 01-04-89 to 12-12-18 109 1,669 1,669 96
CFC-12 34668 01-04-89 to 12-12-18 109 1,629 1,529 96

Naphthalene 34696 03-23-89 to 12-12-18 111 1,558 1,554 100
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Table 2. Chemical constituents, organic compounds, and radionuclides measured for in water samples collected from wells in the U.S.
Geological Survey aquifer water-quality monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989-2018.—Continued

[Analyte name: U.S. Environmental Protection Agency Substance Registry Services (SRS) systematic name. Code: Unique identifier assigned by the U.S.
Geological Survey. Period of record: For water samples collected during 1989-2018, in mm-dd-yy (month-day-year). Number of sampling sites: Number
of locations where groundwater samples were collected and analyzed for the constituent. Number of observations: Number of laboratory measurements of a
constituent concentration. Number of nondetects: Number of observations with left-censored values, where the real concentration is known to be less than a
detection threshold. Number of replicate pairs: Number of sample-replicate pairs analyzed for a constituent]

Number Number
Analyte name Code Period of record of Number of Number of of
(mm-dd-yy) sampling observations nondetects replicate
sites pairs
Analyte group—Organics, other—Continued
Vinyl chloride 39175 01-04-89 to 12-12-18 119 1,723 1,723 106
Trichloroethylene 39180 01-04-89 to 12-12-18 119 1,723 1,082 106
Hexachlorobutadiene 39702 03-23-89 to 12-12-18 95 1,462 1,461 90
cis-1,2-Dichloroethylene 77093 02-19-92 to 12-12-18 90 1,467 1,467 100
Styrene 77128 01-04-89 to 12-12-18 119 1,663 1,657 99
1,1-Dichloropropene 77168 02-19-92 to 12-12-18 69 1,352 1,352 90
2,2-Dichloropropane 77170 02-19-92 to 12-12-18 69 1,352 1,352 90
1,2,4-Trimethylbenzene 77222 04-09-92 to 12-12-18 89 1,384 1,381 93
Cumene 77223 04-09-92 to 12-12-18 69 1,350 1,349 90
n-Propylbenzene 77224 04-09-92 to 12-12-18 89 1,384 1,384 93
1,3,5-Trimethylbenzene 77226 04-09-92 to 12-12-18 69 1,350 1,350 90
o-Chlorotoluene 77275 02-19-92 to 12-12-18 69 1,352 1,352 90
p-Chlorotoluene 77277 02-19-92 to 12-12-18 69 1,352 1,352 90
Halon 1011 77297 05-19-93 to 12-12-18 87 1,332 1,332 92
n-Butylbenzene 77342 04-09-92 to 12-12-18 69 1,350 1,350 90
sec-Butylbenzene 77350 04-09-92 to 12-12-18 89 1,384 1,384 93
tert-Butylbenzene 77353 04-09-92 to 12-12-18 69 1,350 1,350 90
p-Cymene 77356 04-09-92 to 12-12-18 69 1,350 1,350 90
1,1,1,2-Tetrachloroethane 77562 02-19-92 to 12-12-18 90 1,387 1,387 93
1,2,3-Trichlorobenzene 77613 04-09-92 to 12-12-18 69 1,350 1,349 90
CFC-113 77652 05-19-93 to 12-12-18 64 1,306 1,306 87
Methyl tert-butyl ether 78032 05-19-93 to 12-12-18 87 1,352 1,352 92
Xylene 81551 01-04-89 to 12-12-18 109 1,687 1,679 102
Bromobenzene 81555 02-19-92 to 12-12-18 69 1,352 1,352 90
TTHM4 90867 01-04-89 to 12-12-18 119 1,663 1,649 99
Analyte group—Organics, pesticide

1,2-Dichloroethane 32103 01-04-89 to 12-12-18 119 1,723 1,723 106
Acrylonitrile 34215 02-19-92 to 12-12-18 67 1,072 1,072 70
Methyl bromide 34413 01-04-89 to 12-12-18 119 1,642 1,642 99
1,2-Dichloropropane 34541 01-04-89 to 12-12-18 109 1,629 1,629 96
p-Dichlorobenzene 34571 01-04-89 to 12-12-18 119 1,703 1,702 99
trans-1,3-Dichloropropene 34699 01-04-89 to 12-12-18 119 1,642 1,642 99
cis-1,3-Dichloropropene 34704 01-04-89 to 12-12-18 119 1,642 1,642 99
1,3-Dichloropropane 77173 02-19-92 to 12-12-18 69 1,352 1,352 90
1,2,3-Trichloropropane 77443 02-19-92 to 12-12-18 70 1,353 1,353 90

Ethylene dibromide 77651 01-04-89 to 12-12-18 109 1,608 1,608 96
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Table 2. Chemical constituents, organic compounds, and radionuclides measured for in water samples collected from wells in the U.S.
Geological Survey aquifer water-quality monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989-2018.—Continued

[Analyte name: U.S. Environmental Protection Agency Substance Registry Services (SRS) systematic name. Code: Unique identifier assigned by the U.S.
Geological Survey. Period of record: For water samples collected during 1989-2018, in mm-dd-yy (month-day-year). Number of sampling sites: Number
of locations where groundwater samples were collected and analyzed for the constituent. Number of observations: Number of laboratory measurements of a
constituent concentration. Number of nondetects: Number of observations with left-censored values, where the real concentration is known to be less than a
detection threshold. Number of replicate pairs: Number of sample-replicate pairs analyzed for a constituent]

Number Number
Analyte name Code Period of record of Number of Number of of
(mm-dd-yy) sampling observations nondetects replicate
sites pairs
Analyte group—0Organics, pesticide—Continued
1,2-Dibromo-3-chloropropane 82625 02-19-92 to 12-12-18 70 1,353 1,353 90
Analyte group—Radiochemical
Tritium 07000 01-04-89 to 10-23-18 153 6,384 43 541
Strontium-90 13501 01-04-89 to 10-23-18 138 3,647 22 303
Plutonium-238 22012 01-04-89 to 10-22-18 118 962 0 70
Cesium-137 28401 01-04-89 to 10-22-18 137 2,762 14 241
Alpha particle 63018 04-07-08 to 10-18-18 77 749 0 53

Beta particle 80049 04-07-08 to 10-18-18 77 749 0 53
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Table 3. Variability models for selected analytes estimated from replicate-paired sample data, U.S. Geological Survey aquifer

water-quality monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989-2018.
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[Period of record: For water samples collected during 1989-2018, in mm-dd-yy (month-day-year). Number of sampling sites: Number of sites where one or
more replicate samples were collected. Number of replicate pairs: Number of sample-replicate pairs analyzed for the constituent. For replicate pairs in which
one or both values of the pair were censored, the pair was excluded from the variability analysis. Mean SD: Mean standard deviation of replicates. Mean RSD:
Percent mean relative standard deviation of replicates. Abbreviations and symbols: mg/L, milligrams per liter; pg/L, micrograms per liter; pCi/L, picocuries
per liter; N, Nitrogen; <, less than; >, greater than or equal to; oo, infinity]

Period of Number Number
Analyte and units record Of. Concentration 9' Mean SD Mean RSD
sampling range replicate (percent)
(mm-dd-yy) . .
sites pairs

Sodium, mg/L 07-23-90 to 140 <60 366 0.204 1.5
10-11-18 >60 6 1.010 1.5

Chloride, mg/L 01-02-90 to 144 <42 420 0.222 1.5
10-11-18 >42 87 1.650 2.0

Sulfate, mg/L 10-01-90 to 99 <47 227 0.149 0.5
10-11-18 >47 6 1.640 1.3

Fluoride, mg/L 10-01-90 to 21 -00 t0 00 31 0.008 4.1
10-03-17

Chromium, pg/L 10-01-90 to 90 <24 188 0.443 6.3
10-11-18 >24 6 3.090 22

Nitrate, mg/L as N 09-24-90 to 132 <49 328 0.016 1.3
10-11-18 >4.9 6 1.960 16.4

Carbon tetrachloride, pg/L 10-30-90 to 6 -00 t0 © 21 0.043 1.7
10-12-16

Chloroform, pg/L 07-16-91 to 5 <0.7 9 0.003 0.9
10-12-16 >0.7 6 0.012 1.0

Toluene, pg/L 01-13-99 to 4 -00 t0 o0 0.040 13.7
04-17-13

Tetrachloroethylene, pg/L 01-13-99 to 6 -00 t0 o0 10 0.021 6.5
06-28-17

1,1-Dichloroethylene, pg/L 10-17-96 to 4 -00 t0 © 5 0.001 2.1
10-03-17

1,1,1-Trichloroethane, ng/L 10-26-90 to 14 -00 t0 00 31 0.007 3.6
10-12-16

CFC-12, pg/L 04-28-98 to 4 -00 t0 o0 6 0.008 5.5
04-17-13

Trichloroethylene, pg/L 10-30-90 to 7 <2.2 14 0.004 1.1
10-12-16 >2.2 7 0.038 1.4

Tritium, pCi/L 01-02-90 to 117 <10,200 273 83.300 22.6
10-04-18 >10,200 42 392.000 24

Strontium-90, pCi/L 01-02-90 to 74 <38 164 0.792 36.8
04-17-18 >38 6 9.890 18.7

Plutonium-238, pCi/L 10-30-90 to 16 <0.01 12 0.002 48.1
10-08-15 >0.01 8 0.008 65.4

Cesium-137, pCi/L 01-05-90 to 70 <25 83 7.840 58.7
04-11-18 >25 34 17.400 55.1

Alpha particle, pCi/L 04-07-08 to 39 <43 32 1.220 65.5
04-11-18 >4.3 7 2.980 55.4

Beta particle, pCi/L 04-07-08 to 48 <6.5 45 0.711 29.1
04-11-18 >6.5 6 1.730 18.4
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In the high concentration range, the two-range model
assumes that the standard deviation linearly increases with
concentration; the line of estimated standard deviation is
described by a slope equal to the mean relative standard
deviation (s) and intercept equal to zero. The s _is calculated
from replicated data in the high concentration range and
expressed as:

5, = 2 o )
where
n is the total number of replicates.

The two-range model describing the standard deviation as
a function of constituent concentration is defined by:

s, forC< 6[ .
s(C)=3 _ _ (6)
5C, forCz C[k]
where
(o is the mean concentration of replicate pair &

[£]
and represents the boundary between the

low-range and high-range concentrations.

Separating replicate data into low and high ranges of con-
centration was approached by identifying an abrupt structural
change (breakpoint) in the variance (sz, the square of the stan-
dard deviation defined by eq. 3) of replicates sorted by their
average concentration; the individual variances within each
concentration range should be about equal. An optimal break-
point was calculated using the algorithm described by Bai and
Perron (2003). Given n data points, the algorithm generates
a piecewise constant sequence of line segments for each data
subset. End points of the replicate-data subsets are defined in
terms of their index position within the sorted mean replicate
concentrations, and are expressed as {kg, k,, k,}={1, k, n}.
Each line segment covers a concentration range and represents
those data points by a constant value of variance. Consider the
following two-segment piece wise constant function:

2 _ o .
s; = aj+ei fori = kj—l""’kj andj = 1,2, (7)
where
o, is the constant value of variance within
‘ concentration range j, and
e, is the error at replicate pair 7.

The constant values of variance and breakpoint k, are
estimated by minimizing the total fit error, which is stated in
the following optimization formulation:

= argmmzz: :ﬁk: ( . ) ,

e , ®
sub]ect tork,  —k,2n_
where
Z is the set integers,
o,,0,€R indicates that variance values are in the set of

real numbers, and
n . is the minimum number of replicate pairs in a
concentration range.

For this study, a concentration range was required to have at
least five replicate pairs. Once a breakpoint k, has been deter-
mined, it is used to identify the boundary between low-range
and high-range concentrations; that is, C, 41 10 equation 6. For
some constituents, no breakpoint could be determined because
the number of replicate pairs was too small to separate into
low and high ranges of concentration, so C;,, was set equal to
zero; that is, variability was estimated as the measured concen-
tration scaled by the mean relative standard deviation.

Two examples of the development of the two-range
model using tritium and chromium concentrations are shown
in figure 4. Replicate data were plotted as points and the stan-
dard deviations for all ranges of concentrations were plotted
as lines. For tritium (fig. 44), the variability of concentrations
was estimated using 315 replicates collected from 117 wells. A
boundary concentration of 10,200 pCi/L separates the con-
centration ranges, with replicate variances about equal within
each range of concentration. The mean standard deviation in
the low range of concentrations (83 pCi/L) is smaller than in
the high range of concentrations (392 pCi/L). Standard devia-
tion is defined with more accuracy in the low range of con-
centrations because of the numerous replicates in this range
(n=273). In comparison, the number of replicates in the high
range of concentrations is relatively small (n=42). Variability
of tritium was estimated at 83 pCi/L in the low range of con-
centrations, and 2.4 percent of the measured concentration in
the high range (table 3).

Variability of chromium concentrations (fig. 4B) was
estimated using 194 replicates collected from 85 wells. A
boundary concentration of 24 pg/L separates the concentra-
tion ranges. The mean standard deviation in the low range of
concentrations (0.443 pg/L) is smaller than in the high range
of concentrations (3.090 ug/L) (table 3). Standard deviation
is defined with more accuracy in the low range of concentra-
tions because of the large number of replicates in this range
(n=188). In comparison, the number of replicates in the high
range of concentrations is sparse (n=6) and indicates a poorly
defined model in this range. Variability of chromium was esti-
mated at 0.443 pg/L in the low range of concentrations, and
2.2 percent of the measured concentration in the high range
(table 3).
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Figure 4. Two-range model fitted to measurements of (A) tritium and (B) chromium in replicate-paired water samples collected
from wells in the Idaho National Laboratory water-quality aquifer monitoring network, 1989-2018. n, number of replicates.

Two-range models for each of the selected constituents
measured for in replicate samples collected from wells in
the INL water-quality network, 19892018, are described in
table 3 and shown in appendix 3. For sodium, chloride, sul-
fate, chromium, nitrate, chloroform, trichloroethylene, tritium,
strontium-90, plutonium-238, cesium-137, alpha particle, and
beta particle, the two-range model is defined by a piece wise
constant function with two segments. These two-range models
produce the smallest estimates of standard deviation within
the low range of concentrations and the largest estimates
within the high range of concentrations. For fluoride, carbon
tetrachloride, toluene, tetrachloroethylene, 1,1-dichloroethyl-
ene, and 1,1,1-trichloroethane, the number of replicate pairs
typically was too small to separate into low and high ranges of
concentration. The variability of these pairs was modeled as a
linear function. For all other analytes, insufficient uncensored-
replicate data (less than five replicate pairs) were available to
establish a variability model. In this report, the absence of a
variability model was the criterion used to exclude an analyte

from further analysis. That is, analytes were excluded from
analysis when there were insufficient quality-control data to
evaluate the variability in analyte concentration.

Background Levels, Summary Statistics, and
Maximum Contaminant Levels

Understanding the statistical behavior of pooled measure-
ments of concentration in groundwater is necessary for evalu-
ating the monitoring network. Summary statistics computed
from the sample data were used to characterize the behavior
of constituent measurements pooled together over space and
time. Fixed regularity standards are given for each constituent
to provide a point of reference for evaluating the value of an
observation. For example, water-quality constituents detected
well above background levels are among the most important
to monitor because they may indicate groundwater contamina-
tion. Sampling sites that exceeded a drinking water maximum
contaminant level for a constituent require long-term monitor-
ing to inform the public of potential health risks.
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Background concentrations are defined as groundwa-
ter influenced by western tributary recharge in the western
INL and by eastern regional recharge in the eastern INL.
Background concentrations are either naturally occurring or
anthropogenic (substances present in the environment as a
result of human activities) and are not influenced by waste and
wastewater disposal at the INL. Background concentrations in
groundwater at or near the INL were compiled from multiple
USGS studies going back to 1989 and shown in table 4 for
selected analytes.

Summary statistics of selected analytes during
1989-2018 are shown in table 4, with radionuclides repre-
sented as a range of potential concentrations defined by the
95-percent confidence interval of the measurement (eq. 1). The
product limit method (Kaplan-Meier estimator) from survival
analysis (Kaplan and Meier, 1958; She, 1997) was applied
to the censored and uncensored concentrations to estimate
the 25th percentile (lower quartile), median, mean, and 75th
percentile (upper quartile). The uncertainty in the mean value
was quantified using the standard error of the mean statistic
(SEM) and expressed in table 4 as the measured concentration
plus and minus the SEM. The minimum and maximum values
were considered as the minimum and maximum concentration,
with radionuclide concentrations expressed in table 4 as the
measured value plus or minus the 16 CSU.

The summary statistics for most analytes describe a con-
centration distribution that is positively skewed with the lower
bound near zero and a span of two or more orders of magni-
tude. Great variation in concentrations and high skewness is
typical of locally extreme values surrounded by much smaller
values, such as in a groundwater contaminant plume. Waste-
disposal practices at the INL have created contaminant plumes
of radiochemical and chemical constituents in the ESRP aqui-
fer. Agriculture and other anthropogenic influences upgradient
from the INL also have created contaminant plumes in the
aquifer (Bartholomay and others, 2017).

The maximum contaminant levels (MCLs), standards
set by the U.S. Environmental Protection Agency for drink-
ing water quality, are shown for selected analytes in table 4. A
missing MCL value indicates that there is no enforceable stan-
dard established for the analyte. The MCL was exceeded one
or more times during 1989-2018 for the following analytes:
chromium, nitrate, carbon tetrachloride, tritium, strontium-90,
and alpha particle. Upper quartile concentrations however,
never exceeded the MCL.

Table 5 shows the number of sampling sites, and per-
centage of the total number of sites, where an analyte was
measured one or more times at a concentration greater than the
laboratory reporting level (LRL), the upper limit of estimated
background concentrations, and the MCL. Exceedance of
the LRL indicates that one or more of the measured values
were detected. Recall that nondetects (left-censored values)
are reported as below the LRL, and the LRL may vary from
sample to sample for the same analyte and the same analytical
method. Carbon tetrachloride, chloroform, toluene, tetrachlo-
roethylene, and trichloroethylene were recorded at detectable
concentrations in less than 10 percent of the 153 sampling
sites, thus indicating limited informative data on the vari-
ability of these analytes in most of the sites in the monitoring
network. The large number of nondetections for these analytes
(table 2) and sparsity of sampling sites with detectable concen-
trations (table 5) can hinder their analysis.

The number of sampling sites where analytes were
detected one or more times at concentrations above the upper
limit of background ranged from as few as 5 of the 153 sam-
pling sites for 1,1-Dichloroethylene, to as many as 131 sites
for tritium (table 5), whereby the number of sites implicitly
indicates the historical extent of analyte contamination in the
aquifer resulting from waste and wastewater disposal at the
INL. For chloride, sulfate, chromium, tritium, strontium-90,
and cesium-137, the groundwater affected by contamination
is widespread, with concentrations exceeding background
at more than 100 sampling sites (or more than two-thirds of
the total number of sites in the network). Analytes with very
few instances of background exceedance (such as fluo-
ride, carbon tetrachloride, chloroform, tetrachloroethylene,
1,1-Dichloroethylene, trichloroethylene, and beta particle,
with less than 20 occurrences each) can bias interpolation
estimates because contaminant concentration fields are highly
heterogeneous, with locally extreme values near the waste-
disposal sites surrounded by much smaller background values.

Measured concentrations for most analytes did not exceed
their MCL for drinking water quality (tables 4 and 5).The
number of sampling sites where analytes were detected at
concentrations greater than the regulatory limit was relatively
small for chromium (1 site), alpha particle (1 site), nitrate (2
sites), and carbon tetrachloride (4 sites); in comparison, tritium
(19 sites) and strontium-90 (21 sites) each exceeded the MCL
in more than 10 percent of the total sampling sites. Sites with
unsafe levels of contaminants at any point in time are impor-
tant because they may be used to trace a pollutant to its source
and evaluate the effectiveness of cleanup efforts at the INL.
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Table 5. Number of sampling sites where an analyte was measured one or more times at a concentration greater than the detection
threshold, upper limit of background concentrations, and maximum contaminant level, U.S. Geological Survey aquifer water-quality
monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989-2018.

[Percentage of the total number of sampling sites in the monitoring network is italicized in parentheses. Abbreviations and symbol: LRL, laboratory reporting
level; MCL, maximum contaminant level; —, MCL has not been established for the analyte]

Analyte name Exceeded LRL Exceeded background Exceeded MCL

Sodium 151 (99) 64 (42) -
Chloride 153 (100) 120 (78) -
Sulfate 146 (95) 130 (89) -
Fluoride 99 (65) 11(7) 0(0)
Chromium 74 (48) 127 (83) 1(1)
Nitrate 148 (97) 94 (61) 2(1)
Carbon tetrachloride 10 (7) 11 (7) 4(3)
Chloroform 4(3) 15 (10) 0(0)
Toluene 2 (1) 21 (14) 0(0)
Tetrachloroethylene 50) 10 (7) 0(0)
1,1-Dichloroethylene 9 (6) 503 0(0)
1,1,1-Trichloroethane 24 (16) 30 (20) 0(0)
CFC-12 1(D) 6(4) -
Trichloroethylene 10 (7) 9(6) 0(0)
Tritium 127 (83) 131 (86) 19 (12)
Strontium-90 131 (86) 123 (80) 21 (14)
Plutonium-238 118 (77) 71 (46) -
Cesium-137 133 (87) 127 (83) -
Alpha particle 77 (50) 67 (44) 1(1)
Beta particle 77 (50) 17 (11) 0(0)

Classification of Time-Series Data

The time-series analysis described in this report (such as
temporal regression and iterative thinning) was constrained
by the scarcity of time-series data on analyte concentrations.
A sufficient amount of continuous reliable measurements is
needed to capture both the natural and human-induced changes
in water quality over time. To this end, strict inclusion-
exclusion criteria were defined to identify relevant data for
time-series analysis. Water-quality data were classified by
whether an observation was part of a continuous record block
(Type-1 data), or not (Type-2 data). A continuous record block
is assumed to be suitable for analysis and is defined as the
longest period in the time series with (1) at least 15 observa-
tions, (2) a 5-year maximum time span between consecutive
observations, and (3) a record period that is as least 15 years
in duration. Three examples showing the classification of

time-series data are presented in figure 5. For tritium in well
USGS 20 (fig. 54) and chromium in well USGS 38 (fig. 5B),
all data reside in a continuous record block and, therefore, are
classified as Type-1 data. By contrast, fluoride data in well
USGS 15 (fig. 5C) are classified as Type-2 data because obser-
vations there span a 6-year period (1990-1995), well below
the 15-year minimum duration for a continuous record block.

Time-series graphs with Type-1 and Type-2 data classi-
fication for selected constituents are shown in appendix 4. Of
the 19 selected constituents analyzed for in water samples col-
lected from as many as 153 different sites during 1989-2018,
there were a total of 2,413 time series, with 940 (39 percent)
composed entirely of Type-1 data, 1,450 (60 percent) com-
posed entirely of Type-2 data, and 23 (1 percent) composed
of both Type-1 and Type-2 data. Recall that Type-2 data were
excluded from time-series analysis.
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A. Tritium in well USGS 20 (n=51)
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Figure 5. Concentrations of (A) tritium in well USGS 20, (B) chromium in well USGS 38, and (C) fluoride in well USGS 15,
Idaho National Laboratory, [daho, 1989-2018. n, number of observations.
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Temporal Regression

Inherent in the collection of water-quality data over time
is some form of random variation. There are many sources
of variation that can affect changes in concentration, such
as seasonal variability of groundwater chemistry resulting
from infiltrating water reaching the water table, or variabil-
ity introduced during sampling, preservation, and handling.
Regression analysis is used to exclude (or reduce) this random
variation and show any underlying trend in the data. For this
report, two types of regression techniques were used to model
concentration as a function of time for each constituent-well
pair: (1) nonparametric local regression, and (2) parametric
survival regression. Nonparametric regression differs from
parametric regression in that it does not make any underlying
assumptions about the distribution of the data.

The two regression techniques complement each other
because they each have their own distinctive strengths and
weaknesses, whereby the weakness of one technique typically
is offset by the strength of the other. Strengths of nonpara-
metric local regression include (1) fitting procedures that are
very flexible and well suited for modeling complex structures
within the data, and (2) a relative insensitivity to discrepant
observations. Weaknesses include (1) results in a fitted model
that cannot be expressed as a simple equation, (2) an inability
to account for censored values (such as nondetection values),
and (3) the use of a partially arbitrary hyperparameter to
specify the desired degree of smoothness. A hyperparameter is
a configuration variable that is external to the model and can-
not be directly estimated from the data (Brownlee, 2017).

Strengths of the survival regression technique include
(1) results in a fitted model that describes the structure of the
underlying data in an easily understood equation (long-term
trends may be calculated from this equation), and (2) the
ability to account for censored data. Weaknesses include (1)
the required specification of a baseline distribution for the
response variable (such as a log-normal distribution for con-
stituent concentrations); and (2) relative sensitivity to outli-
ers, discrepant observations, and patterns that may only exist
within a limited subset of the data (Jacoby, 2000, p. 609—608).
Survival regression also is not flexible enough to account for
non-monotonic representation of change. Long-term water-
quality trends typically occur in two ways: (1) as a gradual
change in concentration over time that is consistently in one
direction (monotonic), or (2) as an abrupt change in concentra-
tion at a specific point in time (non-monotonic).

Local Regression Analysis

Local regression is an exploratory data-analysis tech-
nique that is useful for discovering various characteristics of
a time series, such as long-term trend and seasonal compo-
nents. The general shape of a time series is made apparent by
reducing the background variability or “noise,” such as the
variability introduced to sample measurements because of

field procedures and laboratory analysis. The local regression
method LOESS was used to smooth the concentration time-
series data of a constituent measured for in water samples col-
lected from a monitoring well. In the context of the network
optimization problem, LOESS also was used to formulate the
objective functions for the spatial and temporal components of
optimization.

LOESS, originally proposed by Cleveland (1979) and
further developed by Cleveland and Devlin (1988), Cleveland
and Grosse (1991), and Cleveland and others (1992a), is a
nonparametric regression method (that is, it does not make any
underlying assumptions about the distribution of the data) and
implements a robust locally weighted regression procedure
for fitting smooth functions to empirical data points. Low-
degree polynomial curves are fitted to localized subsets of the
empirical data to develop a smooth function (also known as a
“loess curve”) that describes the deterministic part (no random
elements) of the variation in the observed data, point by point
(Freeman and others, 2008, p. 50). A loess curve is formulated
here to describe the relation between time and constituent
concentration in single well.

Assume that for the i™ observation in an unevenly spaced
time series, the measured constituent concentration (C,) and
corresponding sample time (7)) are related by

C, = glt)+e, ©)

where
g is a deterministic smooth function, and
e, is the random error of observation i.

Letting C‘i be an estimate of g at sample time 7, equation
9 is expressed for all observations as:

C=C+e, (10)

fori=1,...,n,

where
C s the set of data points that describes the
loess curve, and
n is the number of observations in the
time series.

The first step in the LOESS procedure is to define m
equally spaced times across the period of record. Denote
these times as 7, where the subscript j ranges from 1 to m. The
loess curve wiﬂ/ be predicted at each 7; therefore, the temporal
resolution of the loess curve is dependent on m. In this study,
prediction points were equally spaced at monthly time inter-
vals over the period of record (1989-2018).

For each fj, LOESS performs a robust locally weighted
linear regression analysis. These regressions are “local” in the
sense that each one only uses the subset of observations that
fall closest to the prediction point (these are observations in
the neighborhood of fj) (Jacoby, 2000, p. 583). The proximity
of observations to a predication point; is quantified using their
time difference, defined as:



A= (11)

t.*f.’ fori = 1,...,n,
it

where
Ai(f].) is the absolute time difference between
' observation i and prediction point j;
is the sampling time for observation i; and

is the time corresponding to prediction point ;.

~THAS

These time differences are then sorted from smallest to largest
and expressed as A, (), where the square brackets around the
subscript indicate sorted values.

The proportion of observations to use in each local
regression (p, also known as the smoothing parameter) con-
trols the degree of smoothing in the loess curve, with larger
values of p tending to increase the smoothness of the loess
curve. If p is too large, the curve is over-smoothed and the
regression in unable to capture the underlying pattern of the
data. If p is too small, an insufficient number of observations
will occur near £, resulting in a regression that captures the
noise and the outliers in the data along with the underlying
pattern. A version of the Akaike information criterion (AIC)
that has a correction for small sample sizes (AIC ) (Hurvich
and others, 1998) was used to choose the smoothing parameter
p that best fit the time-series data. The AIC _is defined as

1 A 2[ tr(H)+1]
AIC, —ln[;(q—q) }+1+n_tr(H)_2 .12
where
H s the hat matrix (also known as the projection
matrix) that describes the influence each C,
value has on each fitted value C and
tr(H) is the trace of the hat matrix.

The best fitting value of p was determined by minimiz-
ing the value of AIC  with values of p restricted to lie within
the range of values from 0.2 to 0.9. Values of p less than 0.2
tended to overfit the data in each subset and produce numeri-
cally unstable estimates. The minimization was solved using a
combination of golden section search and successive parabolic
interpolation (Brent, 1973).

The number of observations in a local regression (g) is
defined as g=| pn |, where g is the rounded-down number to the
nearest integer. This ¢ value is used to identify the maximum
time difference for observations in the local regression—the
value located in the g position of the sorted time differences,
A (f). Thus, only observations whose time difference is less
than or equal to this value, A (t )<A[ ](t) are included in the

neighborhood around the focal t The LOESS method imple-
ments this neighborhood inclusion criterion by expressing the
time difference as a proportion of the maximum time differ-
ence (d) and is expressed as

(13)
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Then, di<1 is included in the local regression, and dlZl is not.

Observations are inversely weighted according to their
time difference. Weights are assigned to an observation based
on the d, value (eq. 13); this ensures that observations closer
to the focal t}have greater influence over parameter estimates
in the local regression model. Weights are defined using the
tricube weight function, and defined as:

3
. 1-d>|", ford <1
w( )= [1-¢7]" ford, andi = 1,...,n, (14)
t 0, ford > 1
where
wi(fj) is the weight for observation i in the

neighborhood of t;

The weights are set to zero for observations located outside
the local neighborhood.

Within a neighborhood of observations, a simple linear
model is used to describe the statistical relationship between
time (f) and constituent concentration (C). The linear regres-
sion model has the form:

C(n=q, +ﬁjt fors, —A (1) <t<t,+A, (), (15)
where
C(1) is the estimated value of constituent
concentration at time ¢; and
@ and ﬂj are the intercept and slope of a line,

respectively.

The fitted values of @, and ,[)’ are determined using
weighted least squares regressmn which is stated in the fol-
lowing optimization formulation:

(16)

(aj +ﬁj ti)T’

o, ﬁ —argmanw(t )[

a;BieR g

where
R s the set of real numbers.

Once the regression coefficients have been determined,
they are used to calculate the vertical offsets (also known as
“local residuals” and denoted as e) between the observation
points and fitted line. The local residual is obtained by comb-
ing equations 10 and 15:

¢=C-C=C—(0o,+B,) fori=1.. .n

) 7
To reduce the impact of outlier data (points having large

local residual values) on the regression equation (eq. 15), the
residual of observation i is scaled by 6 times the median of the
absolute value of the local residuals:

e.

; ; (18)

76 median{|e1‘, sle))
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and used to calculate a robustness weight J, for each observa-
tion 7 as follows:

[l—ziz]z, for 7| < 1

fori = 1,...,n.
i O,

(19)

for A > 1

The robustness weights are set to zero for observations
with a residual that is six times the median value (or about 4
standard deviations). Local regression (eq. 16) is then repeated
but with new weights equal to dw (7).

The calculation of new weights (egs. 16—19) is repeated
four times to ensure that outlier data are excluded from the
local regression. Once the final regression coefficients have
been determined, they are substituted back into equation 15 to
obtain a single predicted value on the loess curve evaluated at
time 7. The steps for local regression (eqs. 12—19) are per-

J . .
formed for each of the m prediction points:

C(tj)zaj+/3jlj, for j=1,....,m, (20)
and the difference between the highest and lowest predicated
concentration AC is defined by:

A

AC’=max(é’l,...,Cm)-min(él,...,ém). (21)

Once the prediction points are calculated (eq. 20), the
90-percent confidence intervals around the loess curve are
determined. At each predicted point j, confidence limits are
defined as:

[Ce,.f’cu,j] =C@)+ t<*1—a/2>,v Sgs (22)

C ,C,.  are the upper and lower confidence limits for
prediction point j, respectively;
o is the specified significance level (0
through 1);
is the 100(1 — a/2) percentage point of the
Student’s t distribution with v degrees of
freedom; and
S £ is the estimated standard error for
prediction point ;.

3k
4 (1-a/2),v

The significance level for a 90-percent confidence inter-
val is 10 percent, or a=0.1. The procedures for calculating
v and SE,j values in equation 22 are beyond the scope of this
investigation; however, a description of these procedures is
available in Cleveland and others (1992b, p. 45-46).

Because LOESS relies on the local data structure when
performing local fitting (eq. 15), a high density of observations
is required to adequately smooth the data since large data gaps
in an unevenly spaced time series can lead to highly mislead-
ing predictions and inferences. Distorting effects to the loess
curve caused by infrequent sampling and a variable sampling

rate were mitigated by omitting sample data lying outside a
continuous record block (that is, the regression analysis was
performed on Type 1 data, as described in section, “Sources
and Descriptions of Data”). Because LOESS does not account
for censored values, a substitution of one-half the reporting
limit was made for nondetection values. This substitution

can create an artificial trend, especially for those time-series
datasets containing many censored values. For example,
toluene concentrations in well EBR 1 prior to January 2004
are reported as less than (<) 0.2 ug/L, and after as <0.1 pg/L.
This change indicates enhanced detection of low concentra-
tions of toluene and results in an artificial decreasing trend as
shown in appendix 5, fig. 5.13, p. 37. Water-quality data from
groundwater samples collected on the same day were aver-
aged to better facilitate iterative thinning described in section,
“Iterative Thinning.”

Two examples of the application of LOESS to smooth
unevenly spaced time-series data are shown in figure 6. These
include smoothing of tritium in well USGS 20 (fig. 64) and
chromium in well USGS 38 (fig. 6B). For concentration
measurements of tritium in well USGS 20 (fig 54) (n=51),
replicate-paired data were collected on five unique sampling
dates. After averaging measurements collected on the same
day, 46 observations remained for local regression analysis
(n=46). The observation points, calculated loess curve, and
90-percent confidence intervals for tritium in well USGS 20
are shown in figure 64. The loess curve and its confidence
intervals are represented as continuous functions—Iine seg-
ments are used to connect adjacent prediction points. The
confidence band is defined as the area between the upper and
lower confidence intervals. An analysis of the loess curve indi-
cates a long-term downtrend of trititum concentrations in the
well. The narrow confidence band indicates low uncertainty in
the local regression model.

For the 34 measurements of chromium concentration in
well USGS 38 (fig. 5B) (n=37), replicate-paired data collected
on three unique sampling dates were separately averaged,
leaving 34 observations for local regression analysis (n=34).
The observations, loess curve, and 90-percent confidence
band for chromium in well USGS 38 are shown in figure 6B.
The loess curve indicates a step increase in chromium con-
centration starting in about 2002 and ending in 2008, with
concentrations remaining about constant before and after this
step increase. The start of the step increase may be artificially
delayed because of the substitution of one-half the report-
ing limit for the five censored values measured from 1999
through 2003.

Time series graphs showing local temporal trends for
selected constituents measured for in water samples from
wells in the INL water-quality network, 1989-2018, are pre-
sented in appendix 5. The absence of a local-regression model
for a constituent at a given well site may indicate that (1) the
constituent was not measured for in water samples collected
from this well, (2) a local-regression model could not be fit to
the measured data, or (3) none of the concentration measure-
ments satisfy the conditions for a continuous record block
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A. Tritium in well USGS 20 (n =46, p = 0.44, AC = 10,422 pCi/L)
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Figure 6.

Local-regression model graphs fitted to observations of (A) tritium in well USGS 20 and (B) chromium in well

USGS 38, Idaho National Laboratory, Idaho, 1989-2018. Water-quality data from groundwater samples collected on the same
day were averaged. n, number of observations; p, smoothing parameter; AC, difference between the highest and lowest
predicted concentrations; pCi/L, picocuries per liter; pg/L, micrograms per liter.

(that is, the time series is composed entirely of Type 2 data).
For example, there is no loess curve for fluoride concentra-
tions in well USGS 15 because all measurements were identi-
fied as Type 2 data (fig. 5C).

Survival Regression Analysis

The survival regression model referred to as accelerated
failure time (AFT) was used to perform a regression analysis
on temporal observations of constituent concentrations in a
well. In the context of the network optimization problem, AFT
was used to formulate the objective function of the spatial
optimization. Unlike ordinary linear regression models, sur-
vival methods correctly represent information from censored
and uncensored observations in estimating regression param-
eters. With the presence of censored data, the AFT model
(also known as the log-linear model) takes the form of a linear
regression model with log-transformation of the response
variable (constituent concentration) (Kalbfleisch and Prentice,

2002, chapter 6). As a parametric method, AFT requires that
concentration data approximately follow an assumed distri-
bution. A log-normal distribution was chosen for data in this
report because most constituent concentrations have positive
skewness, a lower bound of zero, and span two or more orders
of magnitude. The AFT model is formulated here to describe
the relation between time and constituent concentration in
single well.

Assuming that for the i™ observation in an unevenly
spaced time series, the measured constituent concentration (C,)
and corresponding sample time (z,) are related by

In(C) = In[f1)] +oe, (23)

where
At) is the regression function evaluated at
sample time 7
o is aregression coefficient called the scale

parameter;
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e, is the random error in the log-transformed
concentration of observation 7; and
t  is the sample time given as the number
of days since January 1, 1970 (the
Unix epoch).

A log-linear model is used to represent the regression
function, expressed as:

S = exp(a + p1), (24)
where
exp is the exponential function; and
aand f  are regression coefficients, respectively.
Combining equations 23 and 24, the AFT model may be
specified as:
In(C) = Inlexp(a+ft)| +oe.
(€) = Wl )] vo

=atpfttoe

By rearranging equation 25, the random error is expressed for
n observations as:

ln(Cl.) —a—pt
e = ——F—

. & fori = 1,...,n.

(26)
For the i censored observation, the random error (e, in

eq. 23) may be expressed in terms of the measurement’s confi-

dence limits. The upper limit of random error is defined as:

ln(Cul,) —a—pt
0 = — @7)
and lower limit as:
1n(Cfl,) —a—pt
e = ,f, foro. =1 (28)
Ci ! :
—o0 , for 6, = 0

where
(5[ is the event indicator for the i™ observation
with 5[=1 if the observation is interval
censored, and 5[=0 if the observation is left
censored.

For the infinite lower bound of left-censored observations,
logarithms of concentration map into a lower bound of zero
for the retransformed, original concentration units (Helsel,
2005, p. 202).

The likelihood function (L) defines the likelihood of
matching the observed distribution of censored data, and is
expressed for n observations as:

. 16, _ ]

L g{cp[ew_]} {Ple,] ~ Ples}™ (29)

where
D(e) is the standard normal cumulative distribution

function of the random error.

A larger value of L indicates an improved fit between the
estimated distribution and the observed data. The best fit is
determined by choosing values a, £, and ¢ that maximize L,
which is stated in the following optimization formulation:

a.BoeR i O

q)[ln(CW_)—(x—ﬁti ]_q)lln(c&,.)—a_ﬁﬂ :

1-0;
“#wmﬁﬂ%ﬁiﬁ1
(30)

o o

The optimization (eq. 30) is solved by setting the partial
derivative of the logarithm of L (eq. 29) with respect to
each of the regression coefficients equal to zero and using a
Newton-Raphson method to iteratively approximate a solu-
tion. Once the regression coefficients have been determined,
they are substituted back into equation 24 to describe a best-fit
smooth curve for the data and a long-term monotonic trend (A)
estimated for the smooth curve as:
A = 100[exp(B) — 1]365.24, 3D
where
A isexpressed as a percent change per year, with
negative values indicating a monotonic
decrease in concentration over time.

The predictive strength of the survival regression model
was assessed using the McKelvey and Zavoina (1975) pseudo-
coefficient of determination (R2) statistic, which attempts to
describe the proportion of variance explained by the model
fit and tries to capture the square of the correlation between
the fitted and actual values. Pseudo-R* ranges from O to 1,
with higher values indicating better model fit. Unlike the R
generated for ordinary least squares regression, the pseudo-

R statistic cannot be interpreted independently or compared
among time-series datasets. The statistic’s usefulness is limited
to comparing competing models for the same data.

The p-value for each regression coefficient (a, £, and ¢ in
eq. 25) was used to evaluate the strength of evidence against
the null hypothesis, which states that there is no correlation
between the coefficient and response variable (Moore and
McCabe, 2003), C. If the p-value is less than or equal to a
p-value tolerance (called a significance level), the null hypoth-
esis is rejected; that is, the coefficient likely is significant in
the model because changes in the coefficient likely are related
to changes in the response variable. Conversely, when the



p-value is greater than the significance level, the changes in
the coefficient likely are unrelated to changes in the response
variable. A significance level of 0.05 was selected for this
report because of its traditional usage (Nuzzo, 2014), and a
regression model with a coefficient p-value greater than 0.05
was omitted. The p-value for the overall significance of the
survival regression model was used to determine whether the
entire model being tested was an improvement over no model
at all (Helsel, 2005, p. 203).

Infrequent sampling and a variable sampling rate may
result in biased regression coefficients. To mitigate this bias,
sample data lying outside a continuous record block were
omitted from the regression analysis (that is, the regression
analysis was performed on Type 1 data, as described in sec-
tion, “Sources and Descriptions of Data”).

Because concentrations may be censored in survival anal-
ysis, a nondetect concentration is represented as left-censored
data, and a 95-percent confidence interval about a measured
radiological concentration is represented as interval-censored
data. For example, consider a measured concentration of 50
pCi/L for trittum. The combined standard uncertainty associ-
ated with this measurement was reported by the laboratory as
100 pCi/L. The 95-percent confidence interval is then calcu-
lated from equation | as:

[C,.C,| = 50 pCi/L+ 1.96(100 pCi/L)

. : (32)
=[-146 pCi/L, 246 pCi/L]

Thus, the concentration measurement of tritium is repre-

sented as interval-censored data, with the true concentration

estimated with 95-percent confidence to be in the range of

-146-246 pCi/L.

The log-transformation of the response variable in the
AFT model [In(C) in eq. 23] requires concentration values
to be greater than zero. This is because logarithms are not
defined for zero and negative numbers. To ensure that all
values are greater than zero, the radiological data were cen-
sored using the detection limit (DL); that is, values reported
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as negative values were changed to less than the DL. The DL
is based on instrument sensitivity, sample volumes, analytical
procedures, and counting times used in the laboratory. DLs are
available from the analyzing laboratory and were reported for
selected types of radionuclides by Bodnar and Percival (1982),
Bartholomay and others (2003, table 9), and Bartholomay and
others (2014, table D1). The DLs shown in table 6 represent
typical values—on rare occasions, special arrangements were
made to achieve smaller detection limits. Censoring the nega-
tive values may obscure some of the underlying trends in the
observed data.

For cases where the upper limit of the 95-percent CI was
less than the DL for a particular radionuclide, the concentra-
tion range was censored to be less than the DL. When the DL
was between the upper and lower limits of the 95-percent CI,
the concentration range was censored to be less than the upper
limit. For example, given a 200 pCi/L DL for tritium (table 6),
the 95-percent CI as calculated from equation 32, [-146 pCi/L,
246 pCi/L], is censored to be less than 246 pCi/L. The con-
centration range remains unchanged for cases where the lower
limit was greater than or equal to the DL, or the radiological
concentration is reported as a nondetection. The censoring cri-
teria for radionuclides is mathematically expressed as follows:

<DL, for C+1.96 CSU < DL
<C+1.96 CSU, forC-1.96 CSU <DL < C+1.96 CSU
c= (33)
C £1.96 CSU, for C—1.96 CSU > DL
<C, for nondetection

For most constituents in this report, concentrations in the
survival-regression analysis are represented as an interval of
uncertainty in the reported measurement. The effect of includ-
ing this uncertainty in the trend analysis was a reduction in the
trend-detection rate, thereby, helping to avoid invalid conclu-
sions on the presence or absence of trends.

Two examples of the application of survival regres-
sion analysis to smooth unevenly spaced time-series data
are shown in figure 7. These include a regression analysis

Table 6. Analytical method detection limits of selected radionuclides.

[Effective period: Period during which the detection limit was in effect (1989-2018), in mm-dd-yy (month-day-year). Detection limit: Based on instrument
sensitivity, sample volumes, analytical procedures, and counting times used in the laboratory. pCi/L, picocuries per liter]

Analyte name Effective period

Detection limit

Reference

(mm-dd-yy) (pCi/L)

Tritium 01-01-89 to 03-31-03 500 Bartholomay and others (2003, table 9)

04-01-03 to 12-31-18 200 Bartholomay and others (2014, table D1)
Strontium-90 01-01-89 to 07-30-98 5 Bodnar and Percival (1982)

07-31-98 to 12-31-18 2 Bartholomay and others (2014, table D1)
Plutonium-238 01-01-89 to 12-31-18 0.2 Bartholomay and others (2014, table D1)
Cesium-137 01-01-89 to 12-31-18 60 Bartholomay and others (2014, table D1)
Alpha particle 01-01-89 to 12-31-18 3 Bartholomay and others (2014, table D1)
Beta particle 01-01-89 to 12-31-18 2 Bartholomay and others (2014, table D1)
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of tritium in well USGS 20 (fig. 74) and chromium in well
USGS 38 (fig. 7B). The 51 observations (n=51) of measured
concentrations represented with their 95-percent uncertainty
as interval-censored data are shown in figure 74. The survival
regression model is shown as a smooth curve (fig. 74) and

is based on estimated regression coefficients of a=10.49 and
p=-1.61x 107, Substituting these coefficient estimates into the
survival regression function (eq. 24) gives:

fin = exp(10.49 — 1.61 x 107*7). (34)
Thus, on January 1, 2000 (a calendar date represented by

the number of days since January 1, 1970, or =10,957), the
predicted tritium concentration based on regression analysis
was 6,160 pCi/L. Substituting -1.61x 10™ for f in equation 31
gives the long-term monotonic trend (A) for tritium in well
USGS 20 as:

A = 100[exp(-1.61 x 10%) — 1|365.24 = =59,  (35)
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which indicates a 5.9 percent reduction in trittum concentra-
tion per year.

For the 37 measurements of chromium concentration in
well USGS 38 (fig. 7B), 32 observations were reported with-
out uncertainty and were represented as exact detections, and
5 observations were reported as nondetections and were rep-
resented as left-censored data. The censored and uncensored
observations of chromium in well USGS 38 are shown in fig-
ure 7B, along with the fitted survival regression model and the
95-percent prediction band for the fitted survival regression
model. The smooth curve indicates an increase in chromium
concentration over time, with a long-term monotonic trend of
5.0 percent change per year.

Fitted survival regression models for selected constituents
measured for in water samples collected from wells in the INL
water-quality network, 1989-2018, are described in
appendix 6 and shown in appendix 7. The absence of a sur-
vival regression model for a constituent at a given well site
may indicate that (1) the constituent was not measured for
in water samples collected from this well, or (2) a survival

A. Tritium in well USGS 20 (n =51, A = -5.9 percent change per year)
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Figure 7. Survival regression function model with measurements of (A) tritium in well USGS 20 and (B) chromium in well

USGS 38, Idaho National Laboratory, Idaho, 1989-2018. n, number of observations; A, long-term monotonic trend in percent

changes in concentration per year.



regression model could not be fit to the measured data or was
omitted because of a large p-value, or (3) none of the con-
centration measurements satisfy the conditions for a con-
tinuous record block (that is, the time series is composed of
Type 2 data).

A visual inspection of regression models indicates an
adequate model fit to their observed data values for most
constituent-well pairs. The few exceptions of poor model fit
occurred when there was an abrupt change in concentration at
a specific point in time (non-monotonic characteristics). For
example, a relatively late arrival time for groundwater con-
tamination in well USGS 120—in comparison to other wells
in the monitoring network—resulted in peak concentrations
occurring during the 1999 calendar year for most constituents
measured for in water samples collected from that well. This
abrupt change in concentration is not represented by the model
and indicates the inability of the regression model to account
for non-monotonic representations of change. The sensitivity
of the spatial optimization results to these rare occurrences
of poor survival-regression model fit was not explored in
this report.

Spatial Interpolation

The geostatistical technique known as kriging is used
to interpolate the concentration for a particular constituent at
unmeasured locations in the ESRP aquifer beneath the INL
and vicinity. Snyder (2008, p. 19) describes kriging as a type
of spatial moving average, where the value at an unmeasured
location is estimated as a weighted average of the measured
values. The weights assigned to the measured values depend
on spatial trends and possible correlations in the data (Bossong
and others, 1999, p. 4). Correlation between measurements
at two sampling sites is assumed to depend on the separa-
tion distance between the two sites. Any depth dependencies
among measurements acquired at isolated depths in the same
MLMS-equipped well are ignored. For this report, concentra-
tions were depth-averaged to provide the data necessary for
two-dimensional kriging. Any bias introduced by depth aver-
aging was assumed negligible because of the small number of
wells (about 7 percent) equipped with a MLMS in the existing
monitoring network.

Sampling sites that are close together typically have a
smaller difference in measured values than those farther apart.
The degree of spatial correlation is quantified with the sample
variogram, which measures correlation between measurements
as a function of distance between the sampling points. Kriging
computes an estimate best representing the spatial distribution
of the observed values based on a theoretical variogram model
that is fitted to the sample variogram and a minimization of
the estimation variance (a measure of uncertainty) at measured
locations.

Spatial Interpolation 3

Kriging was used to estimate the areal distribution of
the time-averaged concentrations for selected constituents.
Predicted concentrations were calculated on a regular grid of
0.31-by-0.31 mi (or 0.5-by-0.5 km) resolution across the land
surface area defined by a generalization of the convex hull of
the monitoring wells. The average separation distance between
pairs of monitoring wells was 1.7 km, with only 86 of the
8,778 possible combinations of well pairs separated by less
than 0.5 km. Temporal variability was eliminated by averag-
ing the measured concentrations of a constituent in a well
during 1989-2018. That is, for the i" monitoring well in the
network, the time-averaged concentration for a constituent (C)
is defined as:

3

C - miijlc@i,g) fori = 1,...,n, (36)
where
s, isapair of Cartesian coordinates describing
the geographic location (point) of well #;
L is the sampling time for observation j;
C(s,t) is the measured concentration at point s, and

sample time ¢
m. is the number of/ observations in well i; and
n is the number of wells in the
monitoring network.

A boldface algebraic symbol (such as s in eq. 36) is used to
denote a vector quantity.

The method of time averaging was selected solely for
addressing the problem of estimating the spatial distribu-
tion of constituent concentrations at a single snapshot in time
with observations that are (1) limited in number and sparsely
distributed, both spatially and temporally in the monitoring
domain; and (2) often reported as a nondetection or back-
ground concentration value. Kriging models developed for
predicting spatially smoothed and temporally averaged con-
stituent concentration likely will not be successful in predict-
ing observations that are spatially localized and time-varying.
However, these models can capture the aggregate plume
behavior and can be useful for estimating the occurrence
and spatial extent of a constituent in the ESRP aquifer at and
near the INL.

For many of the constituents, the areal distribution of
time-averaged concentrations can be characterized by locally
extreme values near the waste-disposal sites, surrounded by
much smaller background or nondetection values. Because
kriging estimators are sensitive to a small number of large data
values, the highly asymmetric empirical distribution of data
may significantly bias kriging estimates.

Quantile kriging (QK) is a transformation-based kriging
approach that preserves the relative ranks and spatial structure
of data while addressing estimation inaccuracies caused by a
skewed distribution (Juang and others, 2001). The approach
originally was proposed by Journel and Deutsch (1997) for
integrating diverse data types, and Reed and others (2004)



32 Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

reported that it was well-suited for plume interpolation. QK is
formulated here to describe the estimated concentration distri-
bution of a constituent in the study area, and the uncertainty
(or error) associated with these kriging predictions.

Because the kriging method does not account for cen-
sored values, a substitution of zero was made for nondetection
concentration values. This substitution can result in a distorted
model of spatial distribution, especially for analytes contain-
ing many censored values (such as carbon tetrachloride,
1,1-dichlorothylene, 1,1,1-trichloroethane, and trichloroeth-
ylene). However, in such cases, censored values typically are
representative of background concentrations, so the substitu-
tion of zero has little effect on the predicted concentration
distribution of a contaminant plume.

Transformation

The averaged concentrations (C in eq. 36) were trans-
formed into standardized ranks (or quantiles) (z) to produce
data that are uniformly distributed on the interval from 0 to 1.
That is, the non-linear data transformation changes the shape
of the original data distribution into a uniform distribution.
The transformation was performed using the empirical distri-
bution function (EDF) associated with the averaged concentra-
tion sorted from smallest to largest and was denoted as C. -
where square brackets around the subscript indicated sorted
values. The EDF is mathematically expressed as:

n (1, for C . < C.
z, = ;112{ v . fori = 1,...,n, (37)

where
n is the number of time-averaged
concentrations.

Spatial interpolation is then performed on the standard-
ized ranks using ordinary kriging (OK) and the predicted
values at unmeasured locations are back-transformed into
concentration space.

Variograms

Kriging predictors require estimates of the degree of
spatial correlation between values of standardized rank (z)
separated by different distances (/). The separation distance
(or Euclidian distance) between any two points (s, and s],) is
defined as: ‘

e — el = _ .2 N

By = sl =N e 69
where

xandy  are the easting and northing coordinates,

respectively.

The variogram may be used to estimate the degree of spa-
tial correlation present in the data. Because the true variogram
can never be known, a nonparametric estimate of the vario-
gram is made using the sample variogram y and computed by
averaging variance values (/) that are in a given /% interval
(or lag bin). That is, the squared difference in transformed
concentrations (z values calculated in eq. 37) is averaged for
well pairs separated by a distance that is contained with the
same lag bin. Assuming the variance is isotropic with respect
to different directions in the areal plain, the sample variogram
is defined as:

- 1

e T 2’N(h~ki5) (i,/)elg(:ﬁkié)(Zi_Zj)

let N(i,+6) = {(s[,sj)‘ftk—é < hy < ko

},(39)

fori,j = 1,...,nandi # j

and i, = d(knib()j)’ fork =1,....n,
where
izk is the lag distance coinciding with the
midpoint of lag bin £,
0 s half of the lag bin width,
|N(7zki5)| is the number of data pairs in lag bin £,
d  1is the separation distance to which point pairs

are included in the variance estimates, and

n, is the total number bins.

As a rule of thumb, separation distance (d in eq. 39) typi-
cally is limited to no more than one-half the maximum separa-
tion distance between any two points (Rossi and others, 1992)
and each lag bin has at least 30 data pairs (Cressie, 1993). In
this report, d was specified at one-half the separation distance
between any two monitoring wells, or about 10 mi, a distance
subdivided into 20 equal-width bins. Each lag bin is 0.5 mi
wide with the number of data pairs within each bin ranging
from 107 to 338.

The sample variogram is modeled with a covariance
function that represents a theoretical variogram y(%) and
provides variance values at any given lag distance. The
mathematical function used in this study to describe spatial
variability is the Matérn model (Matérn, 1960; Stein 1999),
which provides more flexibility in modeling the smoothness of
the covariance function, as compared with the other possibili-
ties for the function (such as the spherical model), and it can
model many local spatial processes (Minasny and McBratney,
2005). The Matérn variogram model is defined as:

0, forh=0

e Zf2) 2] e

v(r)=




where
g, s,p,andv  represent the nugget effect, sill, range,
and shape of the variogram model,

respectively.

The nugget effect g is the jump in the variance at the
origin (the variance is always zero at #=0), which may be
attributed to measurement errors and (or) sources of varia-
tion at a scale smaller than the separation distance between
wells (Clark, 2010). The sill s is the variance when the model
either reaches or becomes asymptotic to a constant value as
lag distance increases. The range p controls the rate of increase
with distance, and the shape parameter v controls the smooth-
ness (or continuity) of the random field that models the spatial
variability of the observed data. A v value of 0.5 results in the
exponential variogram, whereas a value of infinity is exactly
the Gaussian variogram.

Functions I'(v) and K (% / p) in equation 40 are known
as the gamma function and modified Bessel function,
respectively. The gamma function is defined for v greater
than zero as:

ey = /waexp(*x) dx. (41)
0

The modified Bessel function is of the third kind, of order v,
and exponentially scaled is expressed as:

- [IV(X) — 1

K@ =5 ] exp(x), (42)

sin(mx)

where
x ish/p.

The function / (x) in equation 42 is the modified Bessel func-
tion of the first kind; that is, defined by:

Vv 0

2k
1w = 6) Xrmien ()

(43)

Fitted parameter values of g, s, and p in equation 40 were
noted for a number of realizations of the shape parameter v,
specifically v={0.1, 0.2, ..., 9.9, 10}, to explore a wide range
of possible variograms. For each realization of v, parameters
g, s, and p were calculated by minimizing the weighted sum of
squared errors (SSE) between the sample variogram y(/) and
theoretical variogram y(h) evaluated at lag distances /; that is:

n,

g,8,p= argminZwk [7(;’!}()—7(@7 g,S,P,V)T’ (44)

gs.peR

subjectto: 0< g <s;5>0;, p>0
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where

w, is the weight of the K" point in the sample
variogram expressed as the number of data
pairs in the bin divided by the square of its
lag distance, or:

(45)

The optimization (eq. 44) is solved by iteratively
reweighted least squares (Cressie, 1985). Once the fitted
parameters have been determined for each realization of v,
they are substituted back into equation 40 to describe a set
of fitted variogram models. A leave-one-out cross validation
(LOOCYV) method was used to choose the best-fitted vario-
gram model from the set of candidate models. The LOOCV
method ascertains the predictive performance of the variogram
models using the minimum root-mean-square error (RMSE;
described in section, “Kriging”).

Because the physical meaning of the range parameter
p is difficult to interpret in the Matérn model, an estimate is
made of the separation distance after which pairs of points are
no longer spatially correlated. The estimate is made using the
effective range (7), the distance at which the variance value
achieves 95 percent of the sill. The Matérn model only asymp-
totically reaches the sill. The effective range was determined
by minimizing the absolute difference between the variogram
model evaluated at a distance 7 and 95 percent of the sill s, and
is expressed as:

r= argmin|y<r) - 0.95s‘
reR . (46)
subject to: 0 <r <50p+1

The optimization (eq. 44) was solved using a combination of
golden section search and successive parabolic interpolation
(Brent, 1973).

The SSE statistic calculated in equation 44 cannot be
interpreted independently or compared among constituent
datasets; that is, its usefulness is limited to comparing compet-
ing models for the same data. Therefore, to compare among
constituents how well the sample variogram is replicated by
the theoretical variogram, R* was calculated for each con-
stituent. The R” statistic for a model fitted by weighted least
squares regression (szls) may be expressed as:

SSE
R =1- (4]
S 7 Ziwr(h)
/Elwk y(hk) - ziw,

The szls normally ranges from 0 to 1, where a value
of 1 indicates that the regression predictions perfectly fit the
sample variogram. Models were rejected when their szls
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value was less than 0.05, which implies that 95 percent of
the variability of the semivariance in the sample variogram is
unaccounted for by the model.

The sample variogram and fitted variogram model for
trittum based on the time- and depth-averaged measurements
in 133 monitoring wells are shown in figure 8. Of the 8,778
combinations of well pairs, 5,036 (57 percent) are separated
by a distance of less than 10 mi and are included in the vario-
gram analysis (fig. 84). Estimates of variance between values
of transformed tritium separated by different lag distances
are allocated into 20 lag bins and averaged within each bin.
The averaged values are plotted as point symbols at each
of the midpoint lag-bin distances and collectively describe

Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

the sample variogram (fig. 88). Numbers next to the point
symbols refer to the number of sampled data pairs in a lag bin.
The variogram model fitted to the sample variogram is drawn
as a smooth curve and shows variance initially increasing with
lag but later leveling off for larger lags (fig. 8B3). The Matérn
model [y(%) in eq. 40] is fitted with the following parameter
coefficients: (1) nugget effect g (or the variance at the origin)
of 0.015, in squared units of standardized rank; (2) sill s (or
upper bound of the model) of 0.143, in squared units of stan-
dardized rank; (3) range p of 2.0 mi; (4) effective range  (or
lag distance at which the model reaches 95 percent of the sill)
of 5.8 mi; and (5) shape parameter v of 0.5, a unitless value
(table 7).

A. Variogram cloud (n = 5,036)
05 —

Variance of tritium, in squared standardized rank

Separation distance, in miles

B. Sample variogram and theoretical variogram (n = 20, RZ = 0.93)

Effective range

Nugget
effect

Lag distance, in miles

Figure 8. Variogram analysis of tritium measured for in water samples from wells in the Idaho National Laboratory
water-quality aquifer monitoring network, averaged during 1989-2018, and transformed into standardized rank space. n,
number of points; Rz, coefficient of determination.

=020 ',
s I
3z I
I
= 3 4520 |
L e — ““““““““—I—'“““““: _______________________ —
< 1 mr I
7 e 2% ! w3 wo
S agt 2607 o} 27 + 185
= 269 244 + I
g ! + 229
2010 = "
@ 282 [
= 278 ' =
£ 301 EXPLANATION ! b
:g 0.05 339 -+ Sample variogram : Model parameters
S 246  Number of sampled data pairs | | Nugget effect: 0.015
2 173 l in a lag-distance interval : Sill: 0.143
E ————————————————————— Theoretical variogram R e Effective range: 5.8 miles |- — — —
S \ : \ R
4 6 8 10



35

Spatial Interpolation

- - - - - - - - - - oronued ejog
- - - - - — - - - - oronued eydyy
- - - - - - - - - - LET-WNISA)
- - - - - - - - - - ggg-untuom|q
Se0 €0°S 86°0 ¢ OIxST'1 L0 01 €0 611°0 1000 0Tl 06-wnnuons
¥S0 €8°GEIE €60 ¢ 01x88"S S0 8¢ 0C (3 4N0) S10°0 €€l wnnry,
80°0 0¥°0 90 ¢ 0Ix0LC €0 cee 'St 01ro 00 IT1 QUOTATO0IOYILIL
- - - - - - - - - - cI-040
0€0 600 L60 ¢ OIXLY'T S A (4] Scro 40\ IT1 QUBYIROIOIYOLLL-1°T°]
8%°0 200 £8°0 ¢ 0IxTS'S 81 90 1’0 801°0 0000 IT1 SUAAYIR0IOTYIIJ-T ]
- - - - - — - - — - QUIIAYI0IO[ ORI,
— — — - - - - - - - auanjoy,
- - - - - - - - - - ULI0JOIOTYD)
0€0 ¥9°0 8%°0 ¢ 0Ix0T'¢ S0 8°62¢0°1 Svie 991°C 1100 IT1 SpLIO[YoRN9) UOgIe)
LT0 88°0 18°0 ¢ OTXTL'L (40 0'9¢ 08T 8ST°0 0000 €€el AeNIN
- - - - - - - - - - WNIWoIy))
- - - - - - - - - - apuony|
L00 °6'Cl 96°0 ¢ OTXTT'T 70 6'C I'T ¥80°0 S00°0 LTI deJIns
960 LS0T £6°0 ¢ 0IxTY'E ¥0 9'¢ €1l 101°0 0000 €el OpLIO[YD
620 19°L 9L°0 ¢ 0IxS89 70 I'1 70 $60°0 S00°0 43! wnipos
"y ISy "y 13s A adeyg  obues d afiuey s s e suoneAIasqo
annoay3 1abibny 10 saquiny aweu ajhjeuy
Buibiry weiboriep

[o1qe1o1UN JO S[qEWTSAUT oIk SHUSIOYFO0D SIT ASNEIAQ PINPIWO SEM [OPOU ‘—
sJoquiAg (] A[[eap1) UOIIBPI[BA SSOID WOLJ UONBUIULIIAP JO JUIIYJ0D Y} [ pue ooeds uonenuaduod ur (Jjews A[[eapr) o112 arenbs-uedw-joo1 Ay “FSIAY :2PN[OUl SILIIW JULULIOLId “dduruLIoftad [apow
9JBN[BAJ 0} UOIIBPI[BA SSOIO JNO-UO-IARI] SUISN SIN[BA PIAIISQO 0} [POw FUITLIY Y} JO 11 JO SSAUPOOT A} SAqLIISA(] :SUISLIY “(] A[[eapr) sanjea weidorea ojdures ay) 0] payy [opoul WeISoLeA a1 10§ sarenbs

1SBO] POIYSIOM WOIJ UOTBUITLINNP JO JUSIIYJO0)) ",..ENN (0 A1eapI) [9pouwt weI3oLeA papy oy pue sjutod wersonrea ojdwes oY) Uoam1dq s10110 parenbs Jo wns pAy3op 1SS BIBP PIAIISQO Y] JO AN[IqRLIBA
[eneds 2y sjopout Jey) p[oy WOPULI ) JO SSAUYI00WS ) S[onuo)) :adeyg "paje[o1100 12JU0] OU Ik BIBP dU) YOIYM PU0Aq JIUII] 20UL)SIP ) Sjuasaidor oFuer oA1dIH [[Is Y Jo Juadiad Gg Je surewar [ppout
) YOIYM I2)JB ‘SO[IW UT ‘D0URISIP SeT 98Ukl JANIIPJH "9OULISIP 1M dSBAIOUI JO )1 ) S[ONU0)) :dFUBY "SISBAIOUI JURISIP Fe] SB AN[BA JUBISUOD B 0] O110)dWASE S9W093q 10 SAYIRAI IYIID [9POU A} UAYM
“Juel PAZIpIEpue)s paIenbs Ul ‘OOUBLIBA A} ST :[[IS "S[[OM U0IM]I] dOURISIP UONRIedds 9U) UBY) IO[[BLWS J[BIS B JB UONEBLIBA JO SIOINOS (10) PUB SIOLIS JUSWIDINSEIUI 0] PAINLIIE 9q ABW 10010 1033nu oy [, "YUBI Pzl
-paepue)s paienbs ur ‘urdLio ay) Je doueLieA ay) ul dung :399)J9 3983n N ‘WeLISOLIBA [BO1)I0Y) U} 10 PIsN ST [dPOW SSB[O WIJRIN Y I PUB SIUAII1J209 1ojowered syt AQ [opowl WeISoLIBA [BI1)9103) ) SAQLIISI(
{WRISOLIBA "UOIIBAIISQO J[SUIS B JUasaIdal pue ouil) IOA0 PIFRIIAL 9IOM 9)IS [[oM B UI SUOBIUIOUOD dIYM ‘UONR[NI[ED WRISOLIBA ) Ul Pasn sjulod UONBAIISQO JO JqUINN :SUONBAIISO JO JaquinN]|

A2

"salAjeue payoa|as Joj sauewiopad Buibiy) pue sjapow weibolLeA [eanaI0ay) panl{ ‘£ 3jqel



36 Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

Fitted theoretical variogram models for selected constitu-
ents measured for in water samples collected from wells in the
INL water-quality network, and temporally averaged during
1989-2018, are described in table 7 and shown in appendix 8.
The absence of a variogram model for a constituent may either
indicate (1) a failure to converge on a unique set of parameter
values—that is, an infinite number of possible combinations of
sill and range exist that may be used to fit the model; or (2) a
poor correlation between the theoretical and sample variogram
points as indicated by an R’ statistic of less than zero.

A visual inspection of the variograms indicates
good model fits to their respective sample variogram for
1,1,1-trichloroethane, chloride, tritium, strontium-90, sodium,
nitrate, and sulfate, and adequate model fits for carbon tetra-
chloride and trichloroethylene (table 7; app. 8). The sample
variogram for strontium-90 shows the least amount of local
variability in variance values. Cyclic or periodic patterns in
the other sample variograms may be attributed to the presence
of multiple overlapping plumes and (or) plumes that become
discontinuous and move as separate fingers—a common
characteristic of groundwater flow through a fractured bedrock
aquifer. The variogram model used to approximate the sample
variogram does not account for large local variability; rather,
it monotonically increases with distance, indicating that the
farther two sample sites are apart the more their standardized-
rank values tend to differ, on average, from one another
(Bossong and others, 1999, p. 13).

Kriging

For each of the selected constituents, an OK method
was used to estimate values of standardized rank (z in eq. 37)
at unmeasured locations. The OK model represents z(s) as
wavering about a constant value (m), and information about
the scale and intensity of fluctuations about this constant is
provided by the theoretical variogram model (Kitanidis, 1997,
p. 120). In mathematical terms, the model is expressed as:

z2(5) = m + e(s), (48)

where
e(s) is the stochastic part of z at point s in
standardized-rank space, and with a

mean of zero.

The deterministic part of z is defined as the expected value (E)
of the standardized ranks, denoted by:
E[z(s)] = m. (49)
To obtain an estimate of z at a point s/ (an estimation
point) from transformed measurements of concentration z(s,),
z(s,), ..., z(s,) requires the following:
(1) The estimate is a linear function of the observed
values, that is:

n
Z, = Z}Ai z, (50)
-
where
Z, is the estimate of z at point s,;
z, is the transformed concentration measurement
at point s
A is the weighting coefficient corresponding to

well site i; and
n is the total number of wells where the
constituent was sampled for.

(2) The estimate at sampling points is unbiased, that is:

E[2,~z,] = 0. 1)

0

(3) The estimated variance [03], or mean square estima-
tion error, at point s; should be as small as possible, where the
variance is defined as:

2 s 2
a, = E[(2,~ )] (52)
The unbiased condition (eq. 51), combined with the esti-
mate in equation 50 and the expected value in equation
49, becomes:
n
E[le z, —ZO] =0
i=1
24 Ez] Bz = 0
o, (53)
2Am=—m =0
i=1
m<2,{i - 1) =0
i=1
For this condition (eq. 53) to hold for any value of m
requires that:
Y =1 (54)

The estimated variance (eq. 52) in terms of the theoretical
variogram model [y(%) in eq. 40] may be computed using the
condition in equation 53, and may be expressed as:

n

% = ~554,0() + 28, (hy)-

i=1j=1 i=

(35)

Coefficients 4 " /12, e /ln are determined by minimizing the
estimated variance (eq. 55) subject to the linear constraint of

equation 54, or:



Ao, —argmm Zz}.}ty( )+22/1)/( )
WheR o p

.(56)
subject to: 2},‘. =1

i=1

The minimization is performed algebraically. Once the A
coefficients have been determined, they are substituted back
into equation 50 to estimate standardized ranks at a single
unmeasured location, and equation 55 to estimate the kriging
variance of the predicted value, in standardized rank space.
The kriging process is repeated for every active node in the
interpolation grid.

Back Transformation

The back transformation from standardized ranks
estimated from OK to concentration space is based on the
transformation model of equation 37. Recall that the model
describes the relation between concentrations (C; see eq. 36)
and standardized ranks (z) using the EDF, a step function that
is monotonously increasing. An estimated value of Z (eq. 50)
typically will fall between two consecutive standardized ranks
z,and z, , that correspond to C . and C ;7 In concentration
space lee in Juang and others 82001 p- 857) a midpoint
method is used to interpolate within a standardized-rank inter-
val. The back-transformation model is given by:

Cm, forz, <z
. Cc. . —-C.
C =< 1" frjeNz<z <z -, (67)
0 2 i 0 i+1
C[n], forz, >z,
where
C is the estimated concentration at an

0
unmeasured location S and

n is the total number of point observations.

The square root of the kriging variance (also known as the
standard error [SE]) may then be back-transformed into
concentration-space by using the same mapping that was dis-
cussed for concentration estimates (eq. 55).

The predictive strength of the kriging model was assessed
using the LOOCYV method (Pebesma, 2004). In this method,
the fitted theoretical variogram model is used in a kriging
analysis in which an individual observation C is omitted and
a kriging prediction is made at the location of the suppressed
observation using the remaining subset of n—1 observations.
This process is repeated n times for each observation. The
LOOCYV procedure is evaluated using the cross-validated
RMSE and R”. The cross-validated RMSE is defined by:
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(58)

where

is time-averaged concentration in well 7, and

is predicted value obtained when the
kriging model is estimated with the i"
observation omitted.

c
C

Ideally zero, the RMSE statistic was used to choose the best-
fitted theoretical variogram model (provided in eq. 40) from

the set of candidate models, and the model with the smallest

cross-validated RMSE was selected.

The RMSE statistic calculated in equation 58 cannot be
interpreted independently or compared among constituent
datasets; that is, its usefulness is limited to comparing compet-
ing models for the same data. Therefore, to compare among
constituents how well the observed data are replicated by the
kriging model, the cross-validated coefficient of determina-
tion (chv) statistic was calculated for each constituent, and
defined by:

GI
Q)

R, =1-—— (59)

3(e-
i(’

QI
QII

where

is the arithmetic mean of the time- and
depth-averaged concentrations.

The R* normally ranges from 0 to 1, where a value of 1
indicates that the kriging predictions perfectly fit the observed
data. Models were rejected when their R2CV value was less
than zero.

An example of the application of QK to spatially inter-
polate tritium observations is shown in figure 9. The kriging
analysis is performed using tritium concentrations mea-
sured in water samples collected from 133 wells. In each
well, recorded tritium concentrations were averaged during
1989-2018, and depth averaged in wells instrumented with
multilevel monitoring systems (averaged measurements are
shown in app. 9, fig. 9.3C). Kriging estimates were made at
8,507 evenly spaced nodes, separated by a distance of 0.31
mi (or 500 m) in the active part of the interpolation grid. The
kriging analysis results in two values for each active node
location: the predicted concentration (fig. 94; eq. 57) and the
kriging SE (fig. 9B).



38 Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

113°12' 113° 112°48' 112°36'
- . T
) ] i
. S
| —
L
43° [ ]
48' LI
|
l
I
|
|
|
43° L
36 "
T
(
I
|\Idaho National
Laboratory
boundary
%i — 0 5MILES —
)
0 5 KILOMETERS

112°36'

113°12' 113° 112°48'
N T

B

43
48

43°
36'

i |\Idaho National
Laboratory
boundary

e 0 5MILES —
| —
0 5KILOMETERS

Base derived from U.S. Geological Survey National Elevation Dataset 1/3 arc-second digital elevation model. Albers
Equal-Area Conic projection: central meridian = 113°W, standard parallels = 42°50'N and 44°10'N, false easting =

200,000 meters, latitude orign = 41°30". North American Datum of 1983

EXPLANATION

Tritium, in picocuries per liter

-2,000 0 2,000 4,000

6,000 8000 10,000 12,000 14,000

Standard error, in picocuries per liter

0 100 200 300 400 500

Figure 9. Kriging estimates of the (A) prediction surface and (B) standard error surface of tritium measured for in water samples
collected from wells in the Idaho National Laboratory water-quality aquifer monitoring network and averaged during 1989-2018. Tritium
is predicted at points on a regular grid with a spacing of 500 meters and an interpolation domain that is defined by the generalized

convex hull of the monitoring sites.

The spatial distribution of predicted tritium concentra-
tions indicates the presence of locally extreme values (greater
than 2,000 pCi/L) in groundwater beneath and near the INTEC
and Central Facilities Area (CFA) (figs. 1-2; app. 1) with
much smaller background concentrations (less than 2,000
pCi/L) in the surrounding area (fig 94). The predicated values
agree well with the empirical data, with larger averaged mea-
sured concentrations within the boundaries of the predicted
contaminant plume. The underestimation of large concentra-
tions by the kriging model is the result of prediction locations
not coinciding with measurement locations. For example, the
maximum average tritium concentration was 21,642 pCi/L in
well USGS 65, whereas the maximum predicted tritium con-
centration was much smaller at 13,176 pCi/L (app. 9, fig. 9.3).

Every kriging prediction is accompanied by a corre-
sponding measure of the uncertainty associated with the pre-
diction. Figure 9B shows the spatial distribution of kriging SE
for tritium in units of concentration. Values of SE are basically
a scaled version of the distance to the nearest measurement
location; that is, SE is small near a sampling site and increases
as the density of the monitoring network decreases.

Maps of the back-transformed kriging estimates of
concentration and SE are shown in appendix 9 for selected
constituents. An examination of the prediction maps indicates
the presence of isolated contaminant plumes at and near one
or more INL site facilities. Recall that the site facilities are the
primary sources of radiochemical and chemical constituents in
the ESRP aquifer at the INL (Bartholomay and others, 2000).
Elevated concentrations (greater than background levels) of
nitrate and sulfate additionally were predicted in the north-
eastern part of the study area and attributed to the application
of fertilizer through irrigation systems in the Mud Lake area
northeast of the INL (fig. 1; app. 1). For all constituents, the
general spatial characteristics of kriging SE are the same, with
small values of SE near the sampling sites and increases in SE
as the density of the monitoring network decreases. The rate
of increase and maximum estimated SE is based on the spatial
correlation of the measured concentrations as depicted by the
shape of the underlying theoretical variogram.



Spatial Optimization

Planning Objective

The planning objective for the water-quality monitoring
network is to reduce total monitoring costs by removing sam-
pling sites from the existing network because they add little
or no information characterizing the concentration plume for
selected analytes in the aquifer. In this study, equal monitoring
costs are assumed for each sampling site. Although the valid-
ity of this assumption is untrue (for example, travel time can
account for large variability in monitoring costs), it permits
wells to be evaluated exclusively through a geostatistical
analysis of the water-quality concentration measurements. An
estimate of the true cost savings for a spatially optimized mon-
itoring network is beyond the scope of this study; however,
decreases in the total number of sampling sites in a monitoring
network will result in a reduction of total monitoring costs.

Design Criteria

To accomplish the established objective of the monitor-
ing network, constituent concentrations should be measured at
sampling sites selected to satisfy the following design criteria:
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* The total number of sites in the optimized monitoring

network is fixed and based on a user-defined number
of sampling sites to remove from the existing network
(k). Selecting an appropriate value for £ is a manage-
ment decision and typically requires a cost-benefit
analysis. To assist decision makers, optimal monitoring
networks corresponding to the removal of 10, 20, 30,
40, and 50 sampling sites are included in this report
(table 8).

Plume maps interpolated for selected analytes using the
full-dataset (data from sampling sites in the existing
monitoring network) can be adequately reconstructed
using the reduced-dataset (data from sampling sites
in the reduced monitoring network). The interpolated
plume map (prediction surface) estimated from the
full-dataset is assumed to provide a realistic estimate
of the concentration plume in the aquifer. For a given
analyte, spatial accuracy is evaluated using the differ-
ence between prediction surfaces estimated using the
reduced-dataset and full-dataset. For example, some
sites are spatially redundant because their exclusion
from the existing monitoring network would have
little-to-no effect on predicting the spatial features of
the plume.

Table 8. Hyperparameter values that control the optimization of the water-quality monitoring network, eastern Snake River Plain,

Idaho.

Hyperparameter

Value

Multi-objective problem

Number of sampling sites to remove from the existing monitoring network

Weighting coefficients on individual objective functions

10, 20, 30, 40, 50

Weight on preserving the accuracy of the interpolated plume map (f,) 10.0
Weight on preserving network coverage (f,) 1.0
Weight on preserving long-term monotonic trends (f,) 1.0
Weight on preserving temporal variance (f,) 0.1
Islands parallel genetic algorithm
Population size that is distributed evenly among islands 2,000
Number of islands 7
Migration operators
Proportion of individuals that migrate between islands 10 percent
Number of generations at which exchange of individuals takes place, an epoch event 10
Genetic operators
Probability of sexual recombination (crossover) between pairs of chromosomes 80 percent
Probability of mutation in a parent chromosome 10 percent
Number of chromosomes to survive to next generation (elitism) 7
Terminating conditions
Maximum number of consecutive generations without any improvement in the best fitness value 25
Maximum number of generations 500
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* Interpolation error (or uncertainty) from the application
of kriging should be as small as possible. For example,
removal of a sampling site from an area of the moni-
toring network where few wells exist typically would
result in a large increase in the interpolation error
(assessed using the normalized sum of kriging variance
for all points in the interpolation grid); therefore, this
well would not likely be removed.

* The long-term monotonic trend of analyte concentra-
tions at a sampling site should be preserved across
time. These trends are important for evaluating the
effectiveness of remediation efforts at the INL. That
is, retaining sampling sites with significant long-term
trends (assessed using the percent change per year
estimated from survival regression analysis) is neces-
sary for effectively controlling water pollution in the
aquifer. There is also an intrinsic value in preserving
data that supports the construction of a survival regres-
sion (or trend) model.

 The variability of water-quality measurements should
be preserved across time. Sampling sites with con-
centration time-series showing prominent seasonal
fluctuation and long-term trends are important for
understanding seasonal water-quality trends and con-
trolling water pollution. Variability is assessed using
the concentration range of predicted time-series data
estimated from local regression analysis. The removal
of sampling sites with small variability preserves the
historical variability within the reduced-dataset. There
also is an intrinsic value in preserving data that support
the construction of a local regression model.

Each of these criteria (with the exception of first design
criterion, the number of sites to remove) was converted to
a mathematical metric, and the metrics were combined into
a single multi-objective function that was used to identify a
water-quality monitoring network satisfying the design criteria
as a much as possible.

Multi-Objective Problem

The multi-objective problem is formulated as a single-
objective optimization where a weighted combination of the
design criteria is minimized. In mathematical terms, this is
expressed as:

x =

arg min F (x) , (60)

X[ Xy X, €L 1Sx<, and xgx,

where
k  is the number of sampling sites to remove
from the existing monitoring network,
X is the subset of k-sampling sites selected for
removal from the existing monitoring
network (a sequential whole number was

assigned to each sampling site in the
existing monitoring network and used to
identify each site),

b is the subset of sampling sites that were not
considered for removal,

n, is the number of sampling sites in the existing
monitoring network, and

F s the “fitness” function.

The minimum fitness value corresponds to the optimal
monitoring network. The fitness function is dependent on the
decision variables, a vector of integer values used to identify
sampling sites in the existing monitoring network that will
not be included in the reduced network (x in eq. 60). The
purpose of the optimization solver is to find values of x that
minimize the fitness value. The optimization problem was
formulated such that a subset of sampling sites (x,, in eq. 60)
were not considered for removal from the existing monitoring
network. These are sampling sites that are located either in a
multilevel completion well or in an open-hole completion well
prior to being completed as a multilevel well. The scarcity and
intrinsic value of depth-dependent water-quality data makes
untenable an argument for the removal of these sites. Of the
153 sampling sites (or 133 monitoring wells) in the existing
network, 31 sites (or 11 wells) were excluded from being con-
sidered for removal (table 1).

The fitness function is used to evaluate the desirability
of a monitoring network design by representing a weighted
combination of the chosen design-criteria metrics for multiple
constituents. For valid combinations of decision variables, the
fitness value is calculated using the function F, given by:

F o e Wlfl,i(x)—’_wzfz,i(x) 61
x) =X 0w 0 [ (61)

=1

where
n, is the number of selected constituents;
w is the weighting coefficient; and
fis the objective function, a unitless value.

All the design criteria except for the management deci-
sion of how many sites to remove from the existing monitor-
ing network (k) are quantified by each of the objective func-
tions: fl, fz’ f3, and f4. The relative influence of each criterion
may be established by varying the associated weights: w, w.
Wi, and w "

Functions f| and f, are based on kriging estimates using
the existing and reduced monitoring networks, where krig-
ing predictions—and the uncertainty associated with these
predictions—are made at nodes within the interpolation grid
(app. 9). The function f| is a metric selected to minimize the
root-mean-square deviation (RMSD) between the predicted
concentrations (C’O in eq. 57) from kriging of observations in
the existing and reduced monitoring networks. The RMSD is
normalized by dividing it by the predicated range of con-
centrations based on kriging of observations in the existing

2



monitoring network. This normalized value will be close to 1.
Individual objective functions were normalized to facilitate the
comparison of different objective functions. That is, a transfor-
mation is used to ensure that objective functions have similar
orders of magnitude.

The function /| is mathematically expressed as:

where
n is the number of active nodes in the

interpolation grid,

is the predicted concentration at node 7 in
the interpolation grid based on kriging
of observations at all sites in the existing
monitoring network, and

is the predicted concentration at node
i based on kriging of observations
at sites constituting the reduced
monitoring network.

1,0

Removal of sites with small differences between measured and
estimated values decreases the normalized RMSD more than
removing sites with large differences.

The function £, is the metric selected to minimize the
uncertainty of predicted concentrations at nodes in the interpo-
lation grid (cso2 in eq. 55), and is defined as the ratio between
the sum of kriging variance based on kriging of observations
at sites constituting the reduced monitoring network (azr) and
the existing monitoring network (aze), given by:

nn
2
;Uri

S0 =" —. (63)

Because kriging variance at each node i depends on the prox-
imity of nearby sampling sites, removal of sites from regions
that have sparser data increases kriging variance more than at
nodes that are close to other supporting data.

The function £ is the metric selected to preserve the long-
term monotonic trends estimated using survival regression
analysis, and is defined as

S0 = max([{ A}

), (64)

where
A, is the fractional change per year of constituent
concentration (A in eq. 31) at site i of the
subset of sites selected for removal from
the existing monitoring network.
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Removing sites where a trend could not be established, or the
slope was small, preserves the significant long-term trends in
the reduced monitoring network.

The function £, is the metric selected to preserve the
temporal variability of predicted concentrations using local
regression analysis, and is defined as

fi(x)= max(léiex) ) (65)
where
A~Ci is the difference between the highest and
lowest predicated concentrations (AC in
eq. 21) at site i divided by the maximum
AC for all sites; that is:

A

- A AC,
AC. = L

1
fmax ACie{l,. . .,ne}

(66)

Removing sites where a loess curve could not be established,
or the temporal variability was small, preserves the temporal
variability more than removing sites with large variability.

For multi-objective problems, identifying a single solu-
tion that simultaneously minimizes each objective function
(egs. 62—-65) is almost impossible. That is, any single objective
value can often only be improved by making at least one of the
other objective values worse. Combining the individual objec-
tive functions into a single weighted-objective function is sub-
jective, requiring that a decision maker provide the weights.
The weighted multi-objective function also is ill-suited for
determining tradeoffs among objective functions. Because
the objective functions are simply weighted and added to
produce a single fitness value, the function with the largest
range dominates the solution to the optimization problem.

A poor value for the objective function with the larger range
makes the overall fitness much worse than a poor value for the
function with the smaller range (Bentley and Wakefield, 1997,
Fisher 2013).

Objective functions (eqs. 62—65) are formulated such
that their function value is close to 1 and dimensionless, thus
making it easier to set the weighting coefficients such that they
are significant relative to each other and relative to the objec-
tive function values (Marler and Arora, 2010, p. 857). For this
study, preserving the accuracy of the interpolated plume map
(f, in eq. 62) by setting w, equal to 10 was emphasized, and
preserving temporal variability (7, as defined in eq. 65) by
setting w, equal to 0.1 was de-emphasized. Weights associated
with preserving network coverage (f, in eq. 63) and long-term
monotonic trends (f; in eq. 64) were set equal to 1 (w,=w,=1)
(table 8). No other weighting schema were considered to quan-
tify the importance of the weighting choice.
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Island Parallel Genetic Algorithm

A genetic algorithm (GA) (Holland, 1975) is used to find
the best fitness value (that is, the minimum F value in eq. 60).
GAs are adaptive heuristic search algorithms that mimic the
mechanics of natural selection and survival of the fittest and
are well suited for solving combinatorial optimization prob-
lems in which there is a large set of candidate solutions. Koza
(1992, p. 18) provides the following definition of a GA:

“The genetic algorithm is a highly parallel math-
ematical algorithm that transforms a set (population)
of individual mathematical objects (typically fixed-
length character strings patterned after chromosome
strings), each with an associated fitness value, into

a new population (i.e., the next generation) using
operations patterned after the Darwinian principle

of reproduction and survival of the fittest and after
naturally occurring genetic operations (notably sexual
recombination).”

In GA terminology, the array of decision variables in the
optimization problem is called a “chromosome,” which for
the current problem defines the set of sampling sites being
considered for removal from the existing monitoring network
(x in eq. 60). A chromosome represents a single solution in the
solution space, the collection of all possible solutions to the
optimization problem. In this study, a chromosome describes
a single design solution for the reduced water-quality monitor-
ing network (that is, sampling sites to exclude from the exist-
ing monitoring network). Each design solution (referred to as
a “individual”) is assigned a fitness value (F in eq. 60), which
summarizes how well the particular set of sites meets the over-
all design objective (described in section, “Design Criteria”).
The GA operates on a collection of individuals referred to as a
“population.”

The GA problem is well suited for parallel computing
because it requires a large number of independent calculations
with negligible cost of data communication and synchroni-
zation among computer processors. To make use of parallel
computing, the type of GA implemented in this report is a
coarse-grained parallel GA or island parallel GA (ISLPGA) as
described by Scrucca (2017). In an ISLPGA, a population of
individuals (that is, candidate solutions) are partitioned into
several subpopulations, with each subpopulation assigned a
unique and separate “island.” A subpopulation is allowed to
evolve independently with the occasional exchange of the fit-
test individuals among islands (referred to as a “migration”).
The periods of isolated evolution are called “epochs,” with
migration occurring at the end of each epoch (except the last)
(Martin and others, 1997, p. C6.3:4). The exchange of indi-
viduals is used to introduce diversity in a subpopulation, thus
avoiding convergence on a local optimum, a solution that is
optimal within a neighboring set of candidate solutions rather
than the best solution among all possible values. Independent
GAs are run on the subpopulation of each island, and are
assigned to a separate computer processor.

An ISLPGA sensitivity analysis was performed dur-
ing the preliminary phase of this scientific investigation to
determine the best values for parameters that control the
spatial optimization of the water-quality monitoring network
(table 8); the value of the hyperparameters can have a signifi-
cant effect on the performance of the search. Recall that the
hyperparameters are configuration variables that are external
to the model and cannot be directly estimated from the data.
The process of finding the best hyperparameter values (also
known as hyperparameter tuning) for the ISLPGA was based
on a trial-and-error approach in which cross validation of the
kriging model was used as the primary performance metric to
guide hyperparameter tuning, as well as the tradeoff between
computational costs and predictive skill.

For this study, a population of 2,000 individuals was
distributed evenly between seven separate islands. The length
of the epochs (or migration interval) was set equal to 10 gen-
erations; that is, migration occurs in 10-generation intervals.
The number of individuals that migrate between neighboring
subpopulations was set equal to 10 percent of the population.
Genetic operators were specified as follows: (1) an 80-percent
probability of sexual recombination (crossover) between pairs
of chromosomes; (2) a 10-percent probability of mutation in
a parent chromosome; and (3) the number of chromosomes
to survive to the next generation (elitism) set equal to 25. A
general description of these genetic operators is provided by
Fisher (2013). The termination of a GA search occurs after 25
generations of no improvement of the best individual within
the subpopulation, or for cases when there is no-convergence,
after 500 generations.

Optimal Sampling Sites

The water-quality monitoring network was spatially
optimized five times, removing 10, 20, 30, 40, and 50 sam-
pling sites, respectively, from the existing network. The
number of sites removed from the network (k) has a significant
effect on the best fitness value because of the dependence of
individual objective functions (f,, /5, f;, f,) on k. Increasing k
results in increased values of the objective function, which, in
turn, linearly increases the best fitness value (weighted sum
of objectives, eq. 61; table 9). The best fitness value at each
epoch of the ISLPGA search (removing 10, 20, 30, 40, and 50
wells, respectively) is shown in figure 10. Recall that an epoch
is the number of generations at which exchange of individuals
between islands takes place and is equal to 10 generations in
this report.

All the convergence curves may be characterized by fit-
ness values that decrease rapidly, and then level off to become
asymptotic towards the near-optimal solution (fig. 10). The
number of epochs needed to satisfy the convergence (termi-
nation) condition increased as the number of removed wells
increased (table 9; fig. 10). This should be expected given
that the number of possible combinations increases as k is
increased. For example, there are 1.4x 10" possible network
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Plain, Idaho.
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Island parallel genetic algorithm searches summarized for optimal water-quality monitoring networks, eastern Snake River

[Number removed: Number of wells removed from the existing monitoring network. Best fitness value: Smallest fitness value determined by the island parallel
genetic algorithm (ISLPGA), a unitless value. Number of epochs: Number of periods of isolated evolution. An epoch is composed of 10 consecutive genera-
tions. Computational time: Time required to run the ISLPGA. Range of objectives: Range of weighted objective-function values over the ISLPGA search for

each design criteria f, /5, /3, and f,]

Computational

Range of objectives

Number Best fitness Number of .
removed value epochs time f f f f
(days) 1 2 3 4
10 9.46 11 2.6 0.160 0.050 0.100 0.010
20 9.89 28 5.7 0.270 0.080 0.050 0.120
30 10.26 32 59 0.540 0.110 0.140 0.120
40 10.67 44 6.6 0.820 0.150 0.110 0.100
50 11.09 50 7.6 0.640 0.220 0.130 0.220
125
12.0 L— T
Tl
o115 R S—
E 110 s ) i A — it e ———
A R e R N EXPLANATION
$ b m Number of wells removed
10.0 B et e —= 50
h 40
T 30
——- 20
9.0 — 10
0 10 20 30 40 50
Epoch
Figure 10. Bestfitness value at each epoch of the island parallel genetic algorithm (removing 10, 20, 30, 40, and 50 wells,

respectively) from the existing monitoring network, eastern Snake River Plain, Idaho.

configurations when k equals 10 and 5.3 10* configurations
when £ equals 50. Computational time also increased with
increased values of k£ and was strongly correlated (R2=O.97)
with the number of epochs needed for convergence (table 9).
The computational times ranged from 2.6 days (removing 10
sites) to 7.6 days (removing 50 sites) (table 9). The optimiza-
tion analysis was run in parallel using 7 of the 8 threads avail-
able on a 4-core Intel” Xeon" central processing unit E5-1620
v3 running at 3.5 gigahertz and with 32 gigabytes of random-
access memory.

The range of weighted objective-function values in solu-
tion space indicates the relative influence of each design crite-
rion in determining the optimal solution. For a given ISLPGA
run and design criterion, a weighted objective-function value
is calculated at each epoch (app. 10); the range of these values
is defined as the difference between the largest and smallest
value. The range of each weighted objective-function value is

given in table 9 for ISLPGA runs based on changing the num-
ber of wells to remove from the existing network. As indicated
by their ranges, the relative influence of each design criterion
on the solution can vary depending on the number of wells
to remove.

As intended, the accuracy of the interpolated plume
map (f,) has the greatest control over the evolutionary search.
Design criteria fz, f3, and f4 have less control over evolution
and only after f, has been minimized to its fullest possible
extent. The relative influence of criteria fz, f3, and f4 on the
solution varies in order of importance. For example, the influ-
ence of criterion f; (range equal to 0.100) on the solution is
greater than the influence of criterion f, (range equal to 0.010)
when £ equals 10. However, when k equals 20, the influence of
criterion f; (range equal to 0.050) on the solution is less than
the influence of criterion £, (range equal to 0.120; table 9).
For this study, design criteria were divided into primary and
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secondary criteria by varying their associated weights. The
primary design criterion is f}, and the secondary criteria are f,,
f3, and f4. The order of importance for criteria fz’ f3, and f4 was
assumed irrelevant to the design of an optimal network.

Sampling sites (where each site represents an individual
well) identified for removal from the existing monitoring
network are given in table 10. Here, the number of times the
site was identified for removal in the five ISLPGA runs (each
run corresponding to an optimized monitoring network) is
enclosed in parentheses and italicized. For example, 7 of
the 10 wells selected for removal were identified in all five
ISLPGA runs (wells CPP 2, CPP 4, TRA 4, USGS 109, USGS
121, USGS 125, and USGS 45), 1 of the 10 wells was identi-
fied in three of the ISLPGA runs (well USGS 126B), 1 of the
10 wells was identified in two of the ISLPGA runs (well PSTF
TEST), and 1 of the 10 wells was identified only once (well
TRA 1). Each ISLPGA run provides a unique solution that is
entirely dependent on the number of wells to remove from the
existing network. That is, the solutions are non-sequential;
wells identified for removal in the ISLPGA run removing 10
wells are not required to be part of the solution for the GA
run removing 20 wells. The relatively large value of times
identified, however, indicates that a consistent group of wells
provides little-to-no beneficial added information.

The location of optimal sampling sites that were identi-
fied for removal is shown in figure 11; appendix 1, fig. 1.3;
and appendix 11. Maps showing the difference between the
kriged prediction surface using the existing and reduced
monitoring networks are provided in appendix 11. An example
of the spatial distribution of the trititum concentration differ-
ences predicted from network configurations removing 0 and
50 wells is shown in figure 12 and appendix 11, fig. 11.9. As
expected, the largest differences in concentration are located
in the solute plume, an area that is difficult to accurately
interpolate because of its steep concentration gradients. For
all analytes, concentration differences typically are small,
thus indicating the effectiveness of the ISLPGA at removing
spatially redundant wells.

Throughout the study area, network coverage was
adequately preserved in the reduced networks. For cases
where two wells are separated by a small distance (less than
200 ft), the ISLPGA frequently identified one of these wells
for removal, helping to confirm the ability of the algorithms
to identify spatial redundancy. For example, well USGS 109
was selected for removal in all five ISLPGA searches and is
located 187 ft from well USGS 137A, and well USGS 126B
was selected for removal in three of the searches and is located
61 ft from well USGS 126A.

The efficiency of an optimal network design was quan-
tified for each analyte using the following performance
measures:

1. RMSD between the kriged concentrations estimated
using the existing and reduced monitoring networks (ide-
ally small).

2. The number of sites that have sufficient data for detect-
ing a long-term monotonic trend using a survival regres-
sion analysis (ideally large).

3. The average long-term monotonic trend in percent
change per year (ideally large).

4. The number of sites that have sufficient data for local
regression analysis (ideally large).

5. The average concentration range of predicted values
based on local regression analysis (ideally large).

A quantitative comparison among the existing (0 wells
removed) and optimal network designs (removing 10, 20, 30,
40, and 50 wells) using these metrics is shown in table 11. As
expected, and for each of the selected analytes, the magnitude
of the RMSD increases with increasing numbers of wells
removed, with the exception of sodium, where the RMSD for
40 wells removed (0.3175 mg/L) was less than the RMSD for
30 wells removed (0.4492 mg/L), and may indicate that the
global optima were not determined for this ISLPGA run.

The number of sites with long-term monotonic trends
in the reduced network decreases (or does not change) with
increasing numbers of wells removed. For carbon tetrachlo-
ride, 1,1-dichloroethylene, 1,1,1-trichloroethane, and trichloro-
ethylene, the trend was estimable in a relatively small number
of wells in comparison to the other analytes—a set of wells
that were always included in the optimized networks. For
sodium, chloride, sulfate, nitrate, tritium, and strontium-90,
the average trend (in percent change per year) typically
increases with increasing numbers of wells removed. Recall
that the maximum trend value for sites removed from the
existing monitoring network is minimized in the optimization
problem (eq. 64). Therefore, the evolutionary search always
will be inclined to remove sites with small trend values.

The number of sites with sufficient data for determining
a local regression model decreases with increasing numbers
of wells removed, whereas for most analytes, the average con-
centration range of predicted values increases with increasing
numbers of wells removed. Recall that the maximum of the
normalized concentration range of predicted values for sites
removed from the existing monitoring network is minimized
in the optimization problem (eq. 65). Therefore, the evolu-
tionary search always will be inclined to remove sites with a
smaller predicted concentration range.

As indicated by the optimization results, no single net-
work exists that simultaneously optimizes each of the objec-
tives for all the selected constituent types. That is, any single
objective value often can be improved only by degrading at
least one of the objective values. Because analyte components
of an individual objective function simply are added to pro-
duce a single objective value, improvements associated with
one analyte component may come at the cost of one or more of
the other analyte components. Analyte components are equally
weighted within each objective function (eqs. 62—65) to avoid
preferencing one or more analytes above the others.
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Table 10. Wells identified for removal based on island parallel genetic algorithm searches, eastern Snake River Plain, Idaho.
[Number removed: Number of wells removed from the existing monitoring network. Well name: Local well name. The number of times the well site was
identified for removal in each of the networks five genetic algorithm searches is enclosed in parentheses and italicized]
rt:::::(ri Well name
10 CPP 2 (5) CPP 4 (%) PSTF TEST (2) TRA 1 (1)
TRA 4 (5) USGS 109 (5) USGS 121 (5) USGS 125 (5)
USGS 126B (3) 'USGS 45 )
20 ATOMIC CITY WELL 1 (3) BADGING FACILITY (4) CPP 2 (%) CPP 4 (5)
SITE 19 (4) TRA3 (4) TRA 4 (5) TRA DISP (4)
USGS 104 (4) USGS 107 (4) USGS 109 (5) USGS 121 (5)
USGS 125 (5) USGS 126B (3) USGS 26 (4) USGS 39 (4)
'USGS 42 (4) 'USGS 45 (5) USGS 79 (4) USGS 97 (4)
30 ATOMIC CITY WELL 1 (3) BADGING FACILITY (4) CPP 2 (%) CPP 4 (9)
RWMC M12S (3) SITE 19 (4) SITE 4 (3) SITE 9 (3)
TRA3 (4) TRA 4 (5) TRA DISP (4) USGS 100 (3)
USGS 104 (4) USGS 107 (4) USGS 109 (3) USGS 116 (3)
USGS 121 (3) USGS 125 (5) USGS 126A (3) USGS 26 (4)
USGS 35 (2) USGS 39 (4) 'USGS 41 3 'USGS 42 4
'USGS 45 ) USGS 58 (3) USGS 7 (2) USGS 76 (2)
USGS 79 (4) USGS 97 (4)
40 ANP 9 (2) ATOMIC CITY WELL 1 (3) BADGING FACILITY (4) CFA2(2)
CPP 2 (5) CPP 4 (%) HIGHWAY 3 (2) RIFLE RANGE (2)
RWMC M12S (3) SITE 19 (4) SITE 4 (3) SITE 9 (3)
SPERT 1 (2) TRA 3 (4) TRA 4 (5) TRA DISP (4)
USGS 100 (3) USGS 104 (4) USGS 106 (2) USGS 107 (4)
USGS 109 (5) USGS 116 (3) USGS 121 (%) USGS 125 (5)
USGS 126A (3) USGS 126B (3) USGS 127 (2) USGS 15 (1)
USGS 26 (4) 'USGS 36 2 USGS 39 (4) 'USGS 41 3)
'USGS 42 (4) 'USGS 45 (5) 'USGS 46 (2) USGS 58 (3)
'USGS 59 2 USGS 7 (2) USGS 79 (4) USGS 97 (4)
50 ANP 9 (2) BADGING FACILITY (4) CFA2 (2) CPP 2 (9)
CPP 4 (5) HIGHWAY 3 (2) PSTF TEST (2) RIFLE RANGE (2)
RWMC M12S (3) SITE 14 (1) SITE 19 (4) SITE 4 (3)
SITE 9 (3) SPERT 1 (2) TRA 3 (4) TRA 4 ()
TRA DISP (4) USGS 1 (1) USGS 100 (3) USGS 104 (4)

USGS 106 (2)
USGS 111 (1) '
USGS 121 (5)
USGS 19 (1)
'USGS 36 (2)
'USGS 45 (5)
'USGS 59 (2)
'USGS 85 (1)

USGS 107 (4)
'USGS 114 (1)
USGS 125 (5)
USGS 23 (1)
USGS 39 (4)
'USGS 46 (2)
USGS 76 (2)
USGS 97 (4)

USGS 109 (5)
USGS 116 (3)
USGS 126A (3)
USGS 26 (4)
'USGS 41 (3)
'USGS 47 (1)
USGS 79 (4)

USGS 110A (1)
USGS 12 (1)
USGS 127 (2)
USGS 35 (2)
'USGS 42 (4)
USGS 58 (3)
USGS 82 (1)

'Maximum contaminant level exceeded for at least one of the selected analytes.
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A. 10 wells removed
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Figure 11.
and (E) 50 optimally selected wells, Idaho National Laboratory and vicinity, [daho.

INTEC—Idaho Nuclear Technology and Engineering

U.S. Geological Survey aquifer water-quality monitoring network after removing (A) 10, (B) 20, (C) 30, (D) 40,
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B. 20 wells removed
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C. 30 wells removed
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D. 40 wells removed
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E. 50 wells removed
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Table 11. Comparison among optimized water-quality monitoring networks for selected constituents, Idaho National Laboratory and
vicinity, Idaho.

[Number removed: Number of wells removed from the existing monitoring network. Kriging RMSD: Quantifies the performance of the quantile kriging
analysis using the root-mean-square deviation (ideally small), a measure of the deviation between the kriged concentrations estimated using the existing and
reduced monitoring networks. Survival regression: Long-term monotonic trend of predicted concentrations in an individual well based on survival-regression
analysis. The trend (percent change per year) was estimable in » wells and summarized using the mean value. Local regression: Range of predicted concentra-
tions in an individual well based on local-regression analysis. The range, in concentration space, was estimable in # wells and summarized using the mean value.
Abbreviations: mg/L, milligrams per liter; pg/L micrograms per liter; N, nitrogen; pCi/L, picocuries per liter]

Analyte name Number Kriging RMSD Survival regression Local regression
removed n mean n mean
Sodium, mg/L 0 0.0000 72 1.545 118 6.156
10 0.2561 66 1.631 108 6.652
20 0.2696 60 1.739 98 7.128
30 0.4492 56 1.823 89 7.609
40 0.3175 49 1.687 79 7.357
50 0.4573 42 1.746 69 7.655
Chloride, mg/L 0 0.0000 87 2.072 123 18.880
10 0.3573 78 2.195 113 20.251
20 0.4845 72 2.322 103 21.822
30 0.6982 68 2.346 94 22.945
40 1.1059 61 2.304 34 23.114
50 1.2945 52 2.418 74 24.224
Sulfate, mg/L 0 0.0000 54 1.051 73 8.853
10 0.1373 50 1.094 69 9.230
20 0.2770 45 1.101 62 9.431
30 0.3376 39 1.104 54 9.810
40 0.4146 37 1.128 50 9.995
50 0.5014 31 1.121 43 10.241
Nitrate, mg/L as N 0 0.0000 59 1.759 105 0.629
10 0.0203 55 1.800 97 0.667
20 0.0269 51 1.885 90 0.687
30 0.0424 49 1.894 84 0.701
40 0.0469 42 1.778 76 0.697
50 0.0550 34 1.925 65 0.664
Carbon tetrachloride, pg/L 0 0.0000 3 5.294 28 0.577
10 0.0044 3 5.294 27 0.599
20 0.0051 3 5.294 25 0.646
30 0.0063 3 5.294 24 0.673
40 0.0067 3 5.294 22 0.734
50 0.0088 3 5.294 21 0.769
1,1-Dichloroethylene, pg/L 0 0.0000 1 3.011 22 0.082
10 0.0002 1 3.011 21 0.083
20 0.0004 1 3.011 20 0.084
30 0.0005 1 3.011 19 0.086
40 0.0004 1 3.011 17 0.093
50 0.0005 1 3.011 16 0.095
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Table 11. Comparison among optimized water-quality monitoring networks for selected constituents, Idaho National Laboratory and
vicinity, Idaho.—Continued

[Number removed: Number of wells removed from the existing monitoring network. Kriging RMSD: Quantifies the performance of the quantile kriging
analysis using the root-mean-square deviation (ideally small), a measure of the deviation between the kriged concentrations estimated using the existing and
reduced monitoring networks. Survival regression: Long-term monotonic trend of predicted concentrations in an individual well based on survival-regression
analysis. The trend (percent change per year) was estimable in » wells and summarized using the mean value. Local regression: Range of predicted concentra-
tions in an individual well based on local-regression analysis. The range, in concentration space, was estimable in » wells and summarized using the mean value.
Abbreviations: mg/L, milligrams per liter; pg/L micrograms per liter; N, nitrogen; pCi/L, picocuries per liter]

Number . Survival regression Local regression
Analyte name Kriging RMSD
Y removed ging n mean n mean

1,1,1-Trichloroethane, ng/L 0 0.0000 8 6.055 27 0.165
10 0.0009 8 6.055 26 0.170

20 0.0018 8 6.055 25 0.174

30 0.0032 8 6.055 24 0.179

40 0.0024 8 6.055 22 0.190

50 0.0044 8 6.055 21 0.197

Trichloroethylene, ng/L 0 0.0000 5 4314 23 0.351
10 0.0001 5 4314 22 0.365

20 0.0001 5 4314 21 0.379

30 0.0002 5 4314 20 0.396

40 0.0015 5 4314 18 0.437

50 0.0023 5 4314 17 0.459

Tritium, pCi/L 0 0.0000 45 8.599 123 5,195.859
10 37.8545 45 8.599 113 5,638.498

20 86.2070 41 8.890 103 6,014.921

30 144.4921 35 9.185 94 6,247.292

40 147.9324 31 9.091 84 6,627.733

50 164.3451 24 8.894 74 6,130.093

Strontium-90, pCi/L 0 0.0000 18 5.268 74 5.227
10 0.0190 18 5.268 69 5.488

20 0.0756 17 5.465 64 5.675

30 0.0767 16 5.548 57 5.937

40 0.1687 13 5.656 51 5.929

50 0.1748 12 5.785 45 5.626

Temporal 0ptimization Iterative thinning is formulated here to identify an optimal

sampling interval for constituent analysis of future water
samples collected from a well. The sampling interval (Af) is
defined as the median number of days between consecutive
and unique sampling dates, or:

Iterative Thinning

Temporal optimization was performed using iterative
thinning. Originally proposed by Cameron (2004), iterative ~ )
thinning examines whether the historical sampling frequency At = medlan{
for a given well location and constituent may be reduced
because of temporal redundancy in the sampling events. The
temporal redundancy is assessed using a non-parametric statis-  where
tical technique of iteratively removing (thinning) observations ¢, is the sampling time for observation i, and n is
from time-series data until the temporal patterns in the original the total number of observations.

(or full) dataset no longer can be identified with confidence.

ti+1 - ti‘} , (67)
forie{ieZ‘lSi<n}
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Given an unevenly spaced time series of constituent con-
centrations at a well, a subset of observations is selected for
removal from the full-dataset in such a way that each obser-
vation has an equal probability of being chosen. The number
of observations in the subset is expressed as a fraction s of
the total number of observations n, and equal to | sn |. A loess
curve is fitted to the reduced-dataset (described in section,
“Local Regression Analysis”). Let ¢, denote the loess-curve
value evaluated at prediction point j (eq. 20). The ability of the
reduced-dataset to capture the temporal patterns of trends in
the full-dataset is evaluated by calculating the proportion of ¢,
values that fall inside the 90-percent confidence band (confi-
dence intervals are defined in eq. 22) of the loess curve fitted
to the full-dataset. A 90-percent confidence level was chosen,
rather than the most commonly used 95-percent confidence
level, to ensure that the width of the confidence band did not
get so wide as to allow large changes in the loess curve as
observations are iteratively removed. This is of particular con-
cern in wells with small sample sizes (Cameron and Hunter,
2002, p. 644—645). The proportion p is defined as:

\e l m | 1, for Cﬂ,j < ¢ < Cu’j (68)
miz | 0, for ¢, < (Afm. orc, > C’u!/
where

m is the total number of prediction points.

The iterative-thinning algorithm finds the largest frac-
tion of observations that may be removed from the full-
dataset while still resulting in a p value that is greater than
0.8. That is, at least 80 percent of the predicted points on the
loess curve fitted to the reduced-dataset must fall within the
90-percent confidence band around the loess curve fitted to the
full-dataset. A numerical threshold of 80 percent was chosen
to ensure that the characteristics of the original trend were
adequately preserved.

To minimize the influence of artifacts that may result
from the preferential selection of certain parts of the sampling
record, p values (eq. 68) are calculated for many different
realizations of the reduced-dataset. For each realization, obser-
vations are selected using simple random sampling from the
full-dataset. The average of these p values provides a better
indication as to how well a reduced sampling interval would
be able to preserve the temporal patterns of trends in the full-
dataset (Cameron, 2004, p. 95). In mathematical terms, the
estimation of s is expressed as:

" (69)

1 N
szargmaxﬁzWZpk, ,
k=1

subjectto: p>p

min

where
P is the mean p value calculated from loess
curves fitted to different realizations of the
reduced-dataset, removing | s» | randomly
selected observations;
N is the total number of realizations of the
reduced-dataset; and
Poin is the minimum permitted p value.
In this study, the fraction s (eq. 69) is estimated using an
80-percent confidence band (p = 0.8), and 500 realization
(N=500). Five hundred was chosen as the number of realiza-
tions to provide sufficient information to determine the mean
of exceeding the 80-percent threshold value. The optimal
sampling interval Az “is calculated by dividing the historical
sampling interval (At in eq. 67) by the fraction of observations
remaining in the optimally reduced-dataset:

(70)

Two examples of the application of iterative thinning
to unevenly spaced time-series data are shown in figure 13.
These examples include an iterative thinning of tritium in well
USGS 20 (fig 134) and chromium in well USGS 38 (fig. 13B).
Each of these figures shows the loess curves fitted to each of
the 500 realizations of the reduced-dataset when the fraction
of removed observations is at optimality. In both examples,
the bulk of loess curves fitted to realizations of the reduced-
dataset are able to preserve the temporal patterns of trends in
the full-dataset.

Optimal Sampling Intervals

Iterative thinning was performed on each well-analyte
combination with sufficient data for local regression analysis.
Recall that the 90-percent confidence band around the loess
curve fitted to the full-dataset is shown in appendix 5. For each
well-analyte combination, an optimal sampling interval was
determined and shown in appendix 12. The sampling reduc-
tion is represented as a percent change between median and
optimized sampling intervals (A%) and was defined as:

A% = At - At
At

X 100. (71)

Sampling reduction values (app. 12) ranged from a
minimum of 0 percent to a maximum of 3,100 percent, with a
mean of 113 percent and a standard deviation of 131 percent.
Given that multiple constituents are measured for in a water
sample collected from a well, the best sampling frequency for
a well is a management decision. A conservative approach to
selecting the best sampling frequency for a well is to use the
minimum of the optimal sampling interval values associated
with the well. For example, the most conservative sampling
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Figure 13. Loess curves computed in the final iteration of the iterative-thinning algorithm, with curves fitted to (A) tritium
in well USGS 20 and (B) chromium in well USGS 38, Idaho National Laboratory, Idaho, 1989-2018. Water-quality data from
groundwater samples collected on the same day were averaged. n, number of observations.

frequency for well ANP 6 is 1.4 years based on chloride hav-
ing the smallest optimal sampling interval (1.4 years) relative
to the other constituents (1.7-2.4 years).

Summary and Conclusions

Budgetary constraints and the high cost of long-term
water-quality monitoring in the eastern Snake River Plain
aquifer beneath the Idaho National Laboratory (INL) and
vicinity, in southeastern Idaho, have necessitated a reduc-
tion in the number of wells (sampling sites) in the existing
network. Since 1949, the U.S. Geological Survey, in coopera-
tion with the U.S. Department of Energy, has maintained as
many as 200 wells in the INL water-quality aquifer monitoring
network. Long-term monitoring of water-quality data collected
from these wells has provided essential information for delin-
eating the movement of radiochemical and chemical wastes
in the aquifer. The planning objective for the network is to
reduce well monitoring redundancy by removing wells and

decreasing sampling frequency at locations that add little or no
information characterizing the water quality in the aquifer. To
accomplish this objective, an evaluation and optimization of
groundwater monitoring in the existing network was per-
formed based on water-quality data collected at 153 sampling
sites since January 1, 1989. Several options for optimally
reduced networks were identified that minimize redundancy
while retaining sufficient data to reliably characterize water-
quality conditions in the aquifer. Spatial and temporal redun-
dancy were examined using two different approaches; that is,
the spatial and temporal components of the optimization were
performed separately.

In the spatial optimization, the quality of a water-quality
monitoring network design was evaluated using a single
weighted-objective function that combines the following
individual objective functions: (1) minimizing the interpola-
tion error to ensure that the best spatial coverage is retained in
the reduced-monitoring network; (2) safeguarding against the
removal of sites with significant long-term trends that may be
useful for evaluating the effectiveness of remediation efforts at
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the INL; and (3) safeguarding against the removal of sites with
repeated sampling at regular intervals over multiple years, and
showing large variability in analyte concentrations, so as to
preserve the long-term history of the sampling program.

As indicated by the optimization results, no single net-
work exists that simultaneously optimizes each of the individ-
ual objective functions for all the selected constituent types.
That is, the optimized network represents a tradeoff among
sometimes conflicting objectives. Any single objective value
may be improved only by degrading at least one of the other
objective values. Because analyte components of an individual
objective function simply are added to produce a single objec-
tive value, improvements associated with one analyte com-
ponent generally came at the cost of one or more of the other
analyte components.

A constituent was selected for inclusion in the spatial
optimization problem when the observations were sufficient to
(1) establish a two-range variability model, (2) classify at least
one concentration time series as a continuous record block,
and (3) make a prediction using the quantile-kriging inter-
polation method. The selected constituents include sodium,
chloride, sulfate, nitrate, carbon tetrachloride, 1,1-dichloroeth-
ylene, 1,1,1-trichloroethane, trichloroethylene, tritium,
strontium-90, and plutonium-238.

Spatial optimization was performed using an island
parallel genetic algorithm and statistical analysis to identify
near-optimal network designs removing 10, 20, 30, 40, and 50
wells from the existing network. With this method, choosing
a greater number of wells to remove results in greater cost
savings and decreased accuracy of the average relative differ-
ence between interpolated maps of the reduced-dataset and the
full-dataset. The reduced-networks were able to reproduce the
spatial patterns of the average concentration plumes for the 10
selected constituents while preserving their long-term tempo-
ral trends at monitoring sites. The number of sites with suf-
ficient data for determining a local regression model decreases
with increasing numbers of wells removed, whereas for most
analytes, the average concentration range of predicted values
increases with increasing numbers of wells removed. The
evolutionary search is inclined to remove sites with a smaller
predicted concentration range.

Temporal optimization was used to identify reductions
in sampling frequencies by minimizing the redundancy in
sampling events. An iterative-thinning method was used to
find an optimal sampling frequency for each constituent-well
pair. Optimal frequencies indicate that for many of the wells,
samples may be collected less frequently and still be able to
characterize the concentration over time. The optimization
results indicated that the sample-collection interval may be
increased by an of average of 273 days owing to temporal
redundancy.

Acknowledgments

The authors gratefully acknowledge efforts by the U.S.
Geological Survey Idaho National Laboratory hydrologic tech-
nicians for sample collection.

References Cited

Ackerman, D.J., 1991, Transmissivity of the Snake River
Plain aquifer at the Idaho National Engineering Laboratory,
Idaho: U.S. Geological Survey Water-Resources
Investigations Report 91-4058 (DOE/ID-22097), 35 p.,
https://doi.org/10.3133/wri914058.

Ackerman, D.J., Rattray, G.W., Rousseau, J.P., Davis, L.C.,
and Orr, B.R., 2006, A conceptual model of ground-water
flow in the eastern Snake River Plan aquifer at the Idaho
National Laboratory and vicinity with implications for
contaminant transport: U.S. Geological Survey Scientific
Investigations Report 2006-5122, 62 p., https://pubs
.usgs.gov/sir/2006/5122/.

Ackerman, D.J., Rousseau, J.P., Rattray, G.W., and Fisher,
J.C., 2010, Steady-state and transient models of groundwa-
ter flow and advective transport, eastern Snake River Plain
aquifer, Idaho National Laboratory and vicinity, Idaho:
U.S. Geological Survey Scientific Investigations Report
2010-5123 (DOE/ID-22209), 220 p., accessed March 28,
2019, at https://pubs.usgs.gov/sir/2010/5123/.

Bai, J., and Perron, P., 2003, Computation and analysis of
multiple structural change models: Journal of Applied
Econometrics, v. 18, no. 1, p. 1-22. https://doi.org/
10.1002/jae.659.

Bartholomay, R.C., 1993, Concentrations of tritium and
strontium-90 in water from selected wells at the Idaho
National Engineering Laboratory after purging one, two,
and three borehole volumes: U.S. Geological Survey Water-
Resources Investigations Report 93—4201 (DOE/ID-22111),
21 p., https://doi.org/10.3133/wri934201.

Bartholomay, R.C., 2013, Iodine-129 in the Snake River Plain
aquifer at and near the Idaho National Laboratory, Idaho,
2010-12: U.S. Geological Survey Scientific Investigations
Report 2013-5195, 22 p., https://doi.org/10.3133/
sir20135195.

Bartholomay, R.C., Davis, L.C., Fisher, J.C., Tucker, B.J., and
Raben, F.A., 2012, Water-quality characteristics and trends
for selected sites at and near the Idaho National Laboratory,
Idaho, 1949-2009: U.S. Geological Survey Scientific
Investigations Report 2012-5169 (DOE/ID 22219), 68 p.
plus appendixes, https://doi.org/10.3133/sir20125169.


https://doi.org/10.3133/wri914058
https://doi.org/10.3133/wri914058
https://pubs.usgs.gov/sir/2006/5122/
https://pubs.usgs.gov/sir/2006/5122/
https://pubs.usgs.gov/sir/2010/5123/
https://doi.org/10.1002/jae.659
https://doi.org/10.1002/jae.659
https://doi.org/10.3133/wri934201
https://doi.org/10.3133/wri934201
https://doi.org/10.3133/sir20135195
https://doi.org/10.3133/sir20135195
https://doi.org/10.3133/sir20125169
https://doi.org/10.3133/sir20125169

Bartholomay, R.C., and Hall, L.F., 2016, Evaluation of back-
ground concentrations of selected chemical and radiochemi-
cal constituents in water from the eastern Snake River Plain
aquifer at and near the Idaho National Laboratory, Idaho:
U.S. Geological Survey Scientific Investigations Report
2016-5056 (DOE/ID-22237), 19 p., https://doi.org/10.3133/
sir20165056.

Bartholomay, R.C., Knobel, L.L., and Rousseau, J.P., 2003,
Field methods and quality-assurance plan for quality-of-
water activities, U.S. Geological Survey, Idaho National
Engineering and Engineering Laboratory, Idaho: U.S.
Geological Survey Open-File Report 2003—42 (DOE/
ID-22182), 45 p., https://doi.org/10.3133/0fr0342.

Bartholomay, R.C., Maimer, N.V., Rattray, G.W., and Fisher,
J.C., 2017, An update of hydrologic conditions and dis-
tribution of selected constituents in water, eastern Snake
River Plain aquifer and perched groundwater zones,

Idaho National Laboratory, Idaho, emphasis 2012—15:

U.S. Geological Survey Scientific Investigations Report
2017-5021 (DOE/ID-22242), 87 p., https://doi.org/10.3133/
sir20175021.

Bartholomay, R.C., Maimer, N.V., and Wehnke, A.J., 2014,
Field methods and quality-assurance plan for water-quality
activities and water level measurements, U.S. Geological
Survey, Idaho National Laboratory, Idaho: U.S. Geological
Survey Open-File Report 2014-1146 (DOE/ID-22230), 66
p., https://doi.org/10.3133/0fr20141146.

Bartholomay, R.C., Tucker, B.J., Ackerman, D.J., and
Liszewski, M.J., 1997, Hydrologic conditions and distri-
bution of selected radiochemical and chemical constitu-
ents in water, Snake River Plain aquifer, Idaho National
Engineering Laboratory, Idaho, 1992 through 1995: U.S.
Geological Survey Water-Resources Investigations Report
97-4086 (DOE/ID-22137), 57 p., https://doi.org/10.3133/
wri974086.

Bartholomay, R.C., Tucker, B.J., Davis, L.C., and Greene,

M.R., 2000, Hydrologic conditions and distribution of
selected constituents in water, Snake River Plain aquifer,
Idaho National Engineering and Environmental Laboratory,
Idaho, 1996 through 1998: U.S. Geological Survey Water-
Resources Investigations Report 20004192 (DOE/
ID-22167), 52 p., https://doi.org/10.3133/wri004192.

Bentley, P.J., and Wakefield, J.P., 1997, Finding acceptable

solutions in the Pareto-optimal range using multiobjective
genetic algorithms, in Chawdhry, P.K., and others, eds.,
Soft computing in engineering design and manufacturing:
London, Springer-Verlag London Limited, p. 231-240.

Bodnar, L.Z., and Percival, D.R., eds., 1982, Analytical

Chemistry Branch procedures manual-—Radiological and
Environmental Sciences Laboratory: U.S. Department of
Energy Report IDO-12096, [variously paged].

References Cited 57

Bossong, C.R., Karlinger, M.R., Troutman, B.M., and
Vecchia, A.V., 1999, Overview and technical and practi-
cal aspects for use of geostatistics in hazardous-, toxic-,
and radioactive-waste-site investigations: U.S. Geological
Survey Water-Resources Investigations Report 984145,
70 p., https://doi.org/10.3133/wri984145.

Brent, R.P., 1973, Algorithms for minimization without
derivates: Englewood Cliffs, New Jersey, Prentice-Hall,
Inc., 195 p.

Brownlee, J., 2017, What is the difference between a param-
eter and a hyperparameter? in Machine learning process:
Machine Learning Mastery web page, accessed April 7,
2020, at https://machinelearningmastery.com/difference-
between-a-parameter-and-a-hyperparameter/.

Busenberg, E., Plummer, L.N., and Bartholomay, R.C., 2001,
Estimated age and source of the young fraction of ground
water at the Idaho National Engineering and Environmental
Laboratory: U.S. Geological Survey Water-Resources
Investigations Report 2001-4265 (DOE/ID-22177), 144 p.,
https://doi.org/10.3133/wri014265.

Cameron, K., 2003, Optimization at AFP06 using improved
GTS: Paper presented at 2003 AFCEE Technology Transfer
Workshop, San Antonio, Texas, February 24, 1980.

Cameron, K., 2004, Better optimization of long-term moni-
toring networks: Bioremediation Journal, v. 8, nos. 34,
p- 89-107.

Cameron, K., and Hunter, P., 2002, Using spatial models and
kriging techniques to optimize long-term ground-water
monitoring networks—A case study: Environmetrics, v. 13,
nos. 5-6, p. 629-656, https://doi.org/10.1002/env.582.

Cecil, L.D., Welhan, J.A., Green, J.R., Frape, S.K., and
Sudicky, E.R., 2000, Use of chlorine-36 to determine
regional-scale aquifer dispersivity, eastern Snake River
Plain aquifer, Idaho/USA, in Nuclear instruments and meth-
ods in physics research section B—Beam interactions with
materials and atoms: Elsevier, v. 172, nos. 1-4, p. 679—687,
https://doi.org/10.1016/S0168-583X(00)00216-0.

Childress, C.J.O., Foreman, W.T., Connor, B.F., and Maloney,
T.J., 1999, New reporting procedures based on long-term
method detection levels and some considerations for
interpretations of water-quality data provided by the U.S.
Geological Survey National Water Quality Laboratory:
U.S. Geological Survey Open-File Report 99-193, 19 p.,
https://doi.org/10.3133/0fr99193.

Claassen, H.C., 1982, Guidelines and techniques for obtaining
water samples that accurately represent the water chemistry
of an aquifer: U.S. Geological Survey Open-File Report
82-1024, 49 p., https://doi.org/10.3133/0fr821024.


https://doi.org/10.3133/sir20165056
10.3133/sir20165056
10.3133/sir20165056
https://doi.org/10.3133/ofr0342
10.3133/ofr0342
https://doi.org/10.3133/sir20175021
https://doi.org/10.3133/sir20175021
https://doi.org/10.3133/sir20175021
https://dx.doi.org/
https://doi.org/10.3133/ofr20141146
https://doi.org/10.3133/wri974086
https://doi.org/10.3133/wri974086
https://doi.org/10.3133/wri974086
https://doi.org/10.3133/wri004192
https://doi.org/10.3133/wri004192
https://doi.org/10.3133/wri984145
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://doi.org/10.3133/wri014265
https://doi.org/10.3133/wri014265
https://doi.org/10.1002/env.582
https://doi.org/
https://doi.org/10.1016/S0168-583X(00)00216-0
https://doi.org/10.3133/ofr99193
https://doi.org/10.3133/ofr821024

58 Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

Clark, I., 2010, Statistics or geostatistics? Sampling error or
nugget effect?: Journal of the Southern African Institute of
Mining and Metallurgy, v. 110, p. 307-312.

Cleveland, W.S., 1979, Robust locally weighted regression and
smoothing scatterplots: Journal of the American Statistical
Association, v. 74, no. 368, p. 829-836.

Cleveland, W.S., and Devlin, S.J., 1988, Locally-weighted
regression—An approach to regression analysis by local fit-
ting: Journal of the American Statistical Association, v. 83,
no. 403, p. 596-610, https://doi.org/10.1080/01621459.198
8.10478639.

Cleveland, W.S., and Grosse, E., 1991, Computational meth-
ods for local regression: Statistics and Computing, v. 1,
no. 1, p. 47-62.

Cleveland, W.S., Grosse, E., and Shyu, M.-J., 1992b, A
package of C and Fortran routines for fitting local regres-
sion models: Unpublished manuscript, 54 p., accessed
February 21, 2018, at https://www.netlib.org/a/.

Cleveland, W.S., Grosse, E., and Shyu, WM., 1992a, Local
regression models, chap. 8 of Chambers, J.M., and Hastie,
T.J., eds., Statistical models in S: Pacific Grove, California,
Wadsworth and Brooks/Cole Advanced Books and
Software, p. 309-376.

Cressie, N.A.C., 1985, Fitting variogram models by weighted
least squares: Journal of the International Association
for Mathematical Geology, v. 17, no. 5, p. 563-586,
https://doi.org/10.1007/BF01032109.

Cressie, N.A.C., 1993, Statistics for spatial data (revised ed.):
New York, Wiley, 802 p.

Currie, L.A., 1984, Lower limit of detection—Definition and
elaboration of a proposed position for radiological effluent
and environmental measurements: U.S. Nuclear Regulatory
Commission Report NUREG/CR-4007, 139 p.

Davis, L.C., Bartholomay, R.C., Fisher, J.C., and Maimer,
N.V,, 2015, Water-quality characteristics and trends for
selected wells possibly influenced by wastewater disposal
at the Idaho National Laboratory, Idaho, 1981-2012: U.S.
Geological Survey Scientific Investigations Report 2015-
5003 (DOE/ID-22233), 106 p., https://pubs.usgs.gov/
sir/2015/5003/.

Davis, L.C., Bartholomay, R.C., and Rattray, G.W., 2013, An
update of hydrologic conditions and distribution of selected
constituents in water, eastern Snake River Plain aquifer and
perched groundwater zones, Idaho National Laboratory,
Idaho, emphasis 2009—11: USGS Scientific Investigations
Report 2013-5214 (DOE/ID 22226), 89 p., https://doi.org/
10.3133/sir20135214.

Duke, C.L., Roback, R.C., Reimus, P.W., Bowman,
R.S., McLing, T.L., Baker, K.E., and Hull, L.C., 2007,
Elucidation of flow and transport processes in a variably
saturated system of interlayered sediment and fractured
rock using tracer tests: Vadose Zone Journal, v. 6, no. 4,
p. 855-867.

Faires, L.M., 1993, Methods of analysis by the U.S.
Geological Survey National Water Quality Laboratory—
Determinations of metals in water by inductively coupled
plasma-mass spectrometry: U.S. Geological Survey Open-
File Report 92-634, 28 p., https://doi.org/10.3133/0f192634.

Fienen, M.N., Doherty, J.E., Hunt, R.J., and Reeves, HW.,
2010, Using prediction uncertainty analysis to design hydro-
logic monitoring networks—Example applications from the
Great Lakes water availability pilot project: U.S. Geological
Survey Scientific Investigations Report 2010-5159, 44 p.,
https://pubs.usgs.gov/sir/2010/5159.

Fisher, J.C., 2013, Optimization of water-level monitoring
networks in the eastern Snake River Plain aquifer using a
kriging-based genetic algorithm method: U.S. Geological
Survey Scientific Investigations Report 2013-5120 (DOE/
ID-22224), 74 p., https://pubs.usgs.gov/sir/2013/5120/.

Fisher, J.C., 2020, inldata—Collection of datasets for the U.S.
Geological Survey-Idaho National Laboratory aquifer moni-
toring networks: U.S. Geological Survey software release,
R package, https://doi.org/10.5066/P9PPOUXZ.

Fisher, J.C., 2021, ObsNetQW—Assessment of a water-
quality aquifer monitoring network: U.S. Geological Survey
software release, R package, https://doi.org/10.5066/P9X7
1CSU.

Fishman, M.J., ed., 1993, v. 93—125. Methods of analysis
by the U.S. Geological Survey National Water Quality
Laboratory—Determination of inorganic and organic
constituents in water and fluvial sediments, U.S. Geological
Survey Open-File Report, 217 p., https://doi.org/10.3133/
ofr93125.

Fishman, M.J., and Friedman, L.C., eds., 1989, Methods for
determination of inorganic substances in water and fluvial
sediments (3d ed.): U.S. Geological Survey Techniques of
Water-Resources Investigations, book 5, chap. A1, 545 p.,
accessed March 28, 2019, at https://pubs.usgs.gov/twri/
twriS-al/.

Freeman, J.V., Walters, S.J., and Campbell, M.J., 2008, How
to display data: New York, Wiley, 109 p.

Garabedian, S.P., 1986, Application of a parameter-estimation
technique to modeling the regional aquifer underlying
the eastern Snake River Plain, Idaho: U.S. Geological
Survey Water Supply Paper 2278, 60 p., https://doi.org/
10.3133/wsp2278.


https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1080/01621459.1988.10478639
https://www.netlib.org/a/
https://doi.org/10.1007/BF01032109
https://pubs.usgs.gov/sir/2015/5003/
https://pubs.usgs.gov/sir/2015/5003/
https://doi.org/10.3133/sir20135214
10.3133/sir20135214
10.3133/sir20135214
https://doi.org/10.3133/ofr92634
https://pubs.usgs.gov/sir/2010/5159
https://pubs.usgs.gov/sir/2013/5120/
https://doi.org/10.5066/P9PP9UXZ
https://doi.org/10.5066/P9PP9UXZ
https://doi.org/10.5066/P9X71CSU
https://doi.org/10.5066/P9X71CSU
https://doi.org/10.5066/P9X71CSU
https://doi.org/10.3133/ofr93125
https://doi.org/10.3133/ofr93125
https://pubs.usgs.gov/twri/twri5-a1/
https://pubs.usgs.gov/twri/twri5-a1/
https://doi.org/10.3133/wsp2278
https://doi.org/10.3133/wsp2278

Goerlitz, D.F., and Brown, E., 1972, Methods for analysis
of organic substances in water: U.S. Geological Survey
Techniques of Water-Resources Investigations, book 5,
chap. A3, 40 p., https://doi.org/10.3133/twri05A3 1972.

Helsel, D.R., 2005, Nondetects and data analysis—Statistics
for censored environmental data: Hoboken, New Jersey,
Wiley, 250 p.

Holland, J.H., 1975, Adaptation in natural and artificial
systems: Ann Arbor, Michigan, University of Michigan
Press, 183 p.

Hurvich, C.M., Simonoff, J.S., and Tsai, C.L., 1998,
Smoothing parameter selection in nonparametric regression
using an improved Akaike information criterion: Journal
of the Royal Statistical Society. Series B. Methodological,
v. 60, no. 2, p. 271-293.

Jacoby, W.G., 2000, Loess—A nonparametric, graphical tool
for depicting relationships between variables: Electoral
Studies, v. 19, no. 4, p. 577-613.

Johnson, V.M., Tuckfield, R.C., Ridley, M., and Anderson,
R., 1996, Reducing the sampling frequency of groundwater
monitoring wells: Environmental Science & Technology,
v. 30, no. 1, p. 355-358. https://doi.org/10.1021/es95033 5u.

Journel, A.G., and Deutsch, C.V., 1997, Rank order geo-
statistics—A proposal for a unique coding and common
processing of diverse data, in Baafi, E.Y., and Schofield,
N.A., eds., Geostatistics Wollongton *96, Volume. 1:
Dordrecht, The Netherlands, and Boston, Kluwer Academic,
p. 174-187.

Juang, K.-W., Lee, D.-Y., and Ellsworth, T.R., 2001, Using
rank-order geostatistics for spatial interpolation of highly
skewed data in a heavy-metal contaminated site: Journal of
Environmental Quality, v. 30, no. 3, p. 894-903.

Kalbfleisch, J.D., and Prentice, R.L., 2002, The statistical
analysis of failure time data 2nd ed.: Hoboken, New Jersey,
Wiley, 462 p.

Kaplan, E.L., and Meier, P., 1958, Nonparametric estimation
from incomplete observations: Journal of the American
Statistical Association, v. 53, no. 282, p. 457-481.

Kitanidis, P.K., 1997, Introduction to geostatistics—
Applications to hydrogeology: New York, Cambridge
University Press, p. 249.

Knobel, L.L., 2006, Evaluation of well-purging effects on
water-quality results for samples collected from the eastern
Snake River Plain aquifer underlying the Idaho National
Laboratory, Idaho: U.S. Geological Survey Scientific
Investigations Report 2006-5232 (DOE/ID-22200), 52
p., accessed March 28, 2019, at https://pubs.usgs.gov/sir/
2006/5232/.

References Cited 59

Knobel, L.L., Orr, B.R., and Cecil, L.D., 1992, Summary
of background concentrations of selected radiochemical
and chemical constituents in groundwater from the Snake
River Plain aquifer, Idaho—Estimated from an analysis of
previously published data: Journal of the Idaho Academy of
Science, v. 28, no. 1, p. 48-61.

Knobel, L.L., Tucker, B.J., and Rousseau, J.P., 2008, Field
methods and quality-assurance plan for quality-of-
water activities, U.S. Geological Survey, Idaho National
Laboratory, Idaho: U.S. Geological Survey Open-File
Report 2008-1165 (DOE/ID-22206), 36 p., accessed
March 28, 2019, at https://pubs.usgs.gov/of/2008/1165/.

Koza, J.R., 1992, Genetic programming—On the program-
ming of computers by means of natural selection (complex
adaptive systems): London, A Bradford Book, 819 p.

Mann, L.J., 1986, Hydraulic properties of rock units and
chemical quality of water for INEL-1—A 10,365-foot
deep test hole drilled at the Idaho National Engineering
Laboratory, Idaho: U.S. Geological Survey Water-Resources
Investigations Report 86—4020 (DOE/ID-22070), 23 p.,
https://doi.org/10.3133/wri864020.

Mann, L.J., 1996, Quality-assurance plan and field methods
for quality-of-water activities, U.S. Geological Survey,
Idaho National Engineering Laboratory, Idaho: U.S.
Geological Survey Open-File Report 96-615 (DOE/
1D-22132), 37 p., https://doi.org/10.3133/0fr96615.

Mann, L.J., and Beasley, T.M., 1994, Todine-129 in the
Snake River Plain aquifer at and near the Idaho National
Engineering Laboratory, Idaho, 1990-1991: U.S. Geological
Survey Water-Resources Investigations Report 94-4053
(DOE/ID-22115), 27 p., https://doi.org/10.3133/wri944053.

Marler, R.T., and Arora, J.S., 2010, The weighted sum
method for multi-objective optimization—New insights:
Structural and Multidisciplinary Optimization, v. 41, no. 6,
p. 853-862, https://doi.org/10.1007/s00158-009-0460-7.

Martin, W.N., Lienig, J., and Cohoon, J.P., 1997, Island
(migration) models—Evolutionary algorithms based
on punctuated equilibria, chap. C6.3 of Bick, T., Fogel,
D.B., and Michalewicz, Z., eds., Handbook of evolution-
ary computation: Bristol, United Kingdom, Institute of
Physics, p. 1-16.

Matérn, B., 1960, Spatial variation—Stochastic models and
their applications to some problems in forest survey sam-
pling investigations: Report of the Forest Research Institute
of Sweden, v. 49, no. 5, 144 p.

McCurdy, D.E., Garbarino, J.R., and Mullin, A.H., 2008,
Interpreting and reporting radiological water-quality data:
U.S. Geological Survey Techniques and Methods, book 5,
chap. B6, 33 p., https://doi.org/10.3133/tm5B6.


https://doi.org/10.3133/twri05A3_1972
https://doi.org/10.3133/twri05A3_1972
https://doi.org/10.1021/es950335u
https://pubs.usgs.gov/sir/2006/5232/
https://pubs.usgs.gov/sir/2006/5232/
https://pubs.usgs.gov/of/2008/1165/
https://doi.org/10.3133/wri864020
https://doi.org/10.3133/wri864020
https://doi.org/10.3133/ofr96615
https://doi.org/10.3133/ofr96615
https://doi.org/10.3133/wri944053
https://doi.org/10.3133/wri944053
https://doi.org/10.1007/s00158-009-0460-7
https://doi.org/10.3133/tm5B6
https://doi.org/10.3133/tm5B6

60 Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

McKelvey, R.D., and Zavoina, W., 1975, A statistical model
for the analysis of ordinal dependent variables: The Journal
of Mathematical Sociology, v. 4, no. 1, p. 103—120.

Michel, R.L., 1989, Tritium deposition in the continen-
tal United States, 1953—1983: U.S. Geological Survey
Water-Resources Investigations Report 89—4072, 46 p.,
https://doi.org/10.3133/wri894072.

Minasny, B., and McBratney, A.B., 2005, The Matérn function
as a general model for soil variograms: Geoderma, v. 128,
nos. 3—4, p. 192-207.

Moore, D., and McCabe, G., 2003, Introduction to the prac-
tice of statistics (4th ed.): New York, W.H. Freeman and
Company, 438 p.

Mueller, D.K., Schertz, T.L., Martin, J.D., and Sandstrom,
M.W., 2015, Design, analysis, and interpretation of field
quality-control data for water-sampling projects: U.S.
Geological Survey Techniques and Methods, book 4, chap.
C4, 54 p., https://doi.org/10.3133/tm4C4.

Mueller, D.K., and Titus, C.J., 2005, Quality of nutrient data
from streams and ground water sampled during water
years 1992-2001: U.S. Geological Survey Scientific
Investigations Report 2005-5106, 27 p., https://pubs
.usgs.gov/sir/2005/5106/.

Nimmo, J.R., Perkins, K.S., Rose, P.E., Rousseau, J.P., Orr,
B.R., Twining, B.V., and Anderson, S.R., 2002, Kilometer-
scale rapid transport of naphthalene sulfonate tracer in the
unsaturated zone at the Idaho National Engineering and
Environmental Laboratory: Vadose Zone Journal, v. 1, no. 1,
p. 89-101.

Nuzzo, R., 2014, Scientific method—Statistical errors: Nature,
v. 506, no. 7487, p. 150-152.

Olmsted, F.H., 1962, Chemical and physical character of
ground water in the National Reactor Testing Station,
Idaho: U.S. Atomic Energy Commission, Idaho Operations
Office Publication IDO-22043-USGS, 142 p., accessed
March 28, 2019, at https://digital.library.unt.edu/ark:/67531/
metadc100251/.

Orr, B.R., Cecil, L.D., and Knobel, L.L., 1991, Background
concentrations of selected radionuclides, organic com-
pounds, and chemical constituents in ground water in the
vicinity of the Idaho National Engineering Laboratory: U.S.
Geological Survey Water-Resources Investigations Report
91-4015 (DOE/ID-22094), 52 p., https://doi.org/10.3133/
wri914015.

Pebesma, E.J., 2004, Multivariable geostatistics in S—The
gstat package: Computers & Geosciences, v. 30, no. 7,
p. 683-691.

Plummer, L.N., Rupert, M.G., Busenberg, E., and Schlosser,
P., 2000, Age of irrigation water in ground water from the
eastern Snake River Plain aquifer, South-central Idaho:
Ground Water, v. 38, no. 2, p. 264-283, https://doi.org/
10.1111/5.1745-6584.2000.tb0033 8 x.

R Core Team, 2019, R—A language and environment for
statistical computing: Vienna, Austria, R Foundation for
Statistical Computing, accessed on March 28, 2019, at
https://www.r-project.org/.

Rattray, G.W., 2012, Evaluation of quality-control data
collected by the U.S. Geological Survey for routine
water-quality activities at the Idaho National Laboratory,
Idaho, 1996-2001: U.S. Geological Survey Scientific
Investigations Report 2012-5270 (DOE/ID-22222), 74 p.,
https://doi.org/10.3133/sir20125270.

Rattray, G.W., 2014, Evaluation of quality-control data col-
lected by the U.S. Geological Survey for routine water-
quality activities at the Idaho National Laboratory and
vicinity, southeastern Idaho, 2002-08: USGS Scientific
Investigations Report 2014-5027 (DOE/ID-22228), 66 p.,
https://doi.org/10.3133/sir20145027.

Reed, P.M., Ellsworth, T.R., and Minsker, B.S., 2004, Spatial
interpolation methods for nonstationary plume data: Ground
Water, v. 42, no. 2, p. 190-202.

Reed, P.M., Minsker, B.S., and Valocchi, A.J., 2000, Cost-
effective long-term groundwater monitoring design using
a genetic algorithm and global mass interpolation: Water
Resources Research, v. 36, no. 12, p. 3731-3741.

Robertson, J.B., Schoen, R., and Barraclough, J.T., 1974,
The influence of liquid waste disposal on the geochemistry
of water at the National Reactor Testing Station, Idaho,
1952-1970: U.S. Geological Survey Open-File Report
73-238 (IDO-22053), 231 p., https://doi.org/10.3133/0fr7
3238.

Rossi, R.E., Mulla, D.J., Journel, A.G., and Franz, E.H., 1992,
Geostatistical tools for modeling and interpreting ecological
spatial dependence: Ecological Monographs, v. 62, no. 2,
p.277-314.

Scrucca, L., 2017, On some extensions to GA package—
Hybrid optimisation, parallelisation and islands evolution:
The R Journal, v. 9, no. 1, p. 187-206.

She, N., 1997, Analyzing censored water quality data using a
non-parametric approach: Journal of the American Water
Resources Association, v. 33, no. 3, p. 615-624.

Snyder, D.T., 2008, Estimated depth to ground water and con-
figuration of the water table in the Portland, Oregon area:
U.S. Geological Survey Scientific Investigations Report
2008-5059, 40 p., accessed April 23, 2019, at https://pubs
.usgs.gov/sir/2008/5059/.


https://doi.org/10.3133/wri894072
https://doi.org/10.3133/tm4C4
https://doi.org/10.3133/tm4C4
https://pubs.usgs.gov/sir/2005/5106/
https://pubs.usgs.gov/sir/2005/5106/
https://digital.library.unt.edu/ark:/67531/metadc100251/
https://digital.library.unt.edu/ark:/67531/metadc100251/
https://doi.org/10.3133/wri914015
https://doi.org/10.3133/wri914015
https://doi.org/10.3133/wri914015
https://doi.org/10.1111/j.1745-6584.2000.tb00338.x
https://doi.org/10.1111/j.1745-6584.2000.tb00338.x
https://www.r-project.org/
https://doi.org/10.3133/sir20125270
https://doi.org/10.3133/sir20125270
https://doi.org/10.3133/sir20145027
https://doi.org/10.3133/sir20145027
https://doi.org/10.3133/ofr73238
https://doi.org/10.3133/ofr73238
https://doi.org/10.3133/ofr73238
https://pubs.usgs.gov/sir/2008/5059/
https://pubs.usgs.gov/sir/2008/5059/

Stein, M.L., 1999, Interpolation of spatial data—Some theory
for kriging: New York, Springer, 247 p.

Stevens, H.H., Ficke, J.F., and Smoot, G.F., 1975, Water
temperature—Influential factors, field measurement, and
data presentation: U.S. Geological Survey Techniques of
Water-Resources Investigations, book 1, chap. D1, 65 p.,
accessed March 28, 2019, at https://pubs.usgs.gov/twri/
twril-d1/.

Thatcher, L.L., Janzer, V.J., and Edwards, K.W., 1977,
Methods for determination of radioactive substances
in water and fluvial sediments: U.S. Geological Survey
Techniques of Water-Resources Investigations, book 5,
chap. AS, 95 p., accessed March 28, 2019, at https://pubs
.usgs.gov/twri/twrisas/.

Timme, P.J., 1995, National Water Quality Laboratory, 1995
services catalog: U.S. Geological Survey Open-File Report
95-352, p. 92., https://doi.org/10.3133/0fr95352.

U.S. Geological Survey, 1985, National water sum-
mary, 1984—Hydrologic events, selected water-quality
trends, and ground-water resources: U.S. Geological
Survey Water-Supply Paper 2275, 467 p., https://doi.org/
10.3133/wsp2275.

U.S. Geological Survey, 2019, USGS water data for the

Nation: U.S. Geological Survey National Water Information

System database, accessed June 11, 2019, at https://doi.org/
10.5066/F7P55KJIN.

U.S. Geological Survey, 2020, Idaho National Laboratory
project office: U.S. Geological Survey Idaho National
Laboratory project office web page, accessed in 2020,
at https://www.usgs.gov/centers/id-water/science/idaho-
national-laboratory-project-office.

U.S. Geological Survey, [variously dated], National field man-

ual for the collection of water-quality data: U.S. Geological

Survey Techniques of Water-Resources Investigations, book
9, chaps. A1-A9., accessed March 28, 2019, at https://water

.usgs.gov/owq/FieldManual/.

References Cited 61

Wegner, S.J., 1989, Selected quality assurance data for water
samples collected by the U.S. Geological Survey, Idaho
National Engineering Laboratory Idaho, 1980 to 1988: U.S.
Geological Survey Water-Resources Investigations Report
89-4168 (DOE/ID-22085), 91 p., https://doi.org/10.3133/
wri894168.

Wershaw, R.L., Fishman, M.J., Grabbe, R.R., and Lowe,
L.E., eds., 1987, Methods for the determination of organic
substances in water and fluvial sediments (revised ed.):
U.S. Geological Survey Techniques of Water-Resource
Investigation, book 5, chap. A3, 80 p., https://doi.org/
10.3133/twri05A3.

Williams, L.M., 1996, Evaluation of quality assurance/qual-
ity control data collected by the U.S. Geological Survey for
water-quality activities at the Idaho National Engineering
Laboratory, Idaho, 1989 through 1993: U.S. Geological
Survey Water-Resources Investigations Report 964148
(DOE/ID-22129), 116 p., https://doi.org/10.3133/wri96
4148.

Williams, L.M., 1997, Evaluation of quality assurance/qual-
ity control data collected by the U.S. Geological Survey for
water-quality activities at the Idaho National Engineering
Laboratory, Idaho, 1994 through 1995: U.S. Geological
Survey Water-Resources Investigations Report 97-4058
(DOE/ID-22136), 87 p., https://doi.org/10.3133/wri974058.

Wood, W.W., 1976, Guidelines for collection and field analysis
of ground-water samples for selected unstable constituents:
U.S. Geological Survey Techniques of Water-Resource
Investigation, book 1, chap. D2, 24 p., accessed on
March 28, 2019, at https://pubs.usgs.gov/twri/twril-d2/.


https://pubs.usgs.gov/twri/twri1-d1/
https://pubs.usgs.gov/twri/twri1-d1/
https://pubs.usgs.gov/twri/twri5a5/
https://pubs.usgs.gov/twri/twri5a5/
https://doi.org/10.3133/ofr95352
https://doi.org/10.3133/wsp2275
https://doi.org/10.3133/wsp2275
https://doi.org/10.5066/F7P55KJN
https://doi.org/10.5066/F7P55KJN
https://doi.org/10.5066/F7P55KJN
https://www.usgs.gov/centers/id-water/science/idaho-national-laboratory-project-office
https://www.usgs.gov/centers/id-water/science/idaho-national-laboratory-project-office
https://water.usgs.gov/owq/FieldManual/
https://water.usgs.gov/owq/FieldManual/
https://doi.org/10.3133/wri894168
https://doi.org/10.3133/wri894168
https://doi.org/10.3133/wri894168
https://doi.org/10.3133/twri05A3
https://doi.org/10.3133/twri05A3
https://doi.org/10.3133/twri05A3
https://doi.org/10.3133/wri964148
https://doi.org/10.3133/wri964148
https://doi.org/10.3133/wri964148
https://doi.org/10.3133/wri974058
https://doi.org/10.3133/wri974058
https://pubs.usgs.gov/twri/twri1-d2/

62 Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

Appendix 1. Interactive Web Maps
Appendix 1 contains interactive maps showing the location of monitoring wells, long-term monotonic trends, optimal sam-

pling sites, historical sampling frequencies, and optimal sampling intervals. Appendix 1 is an HTML file available for download
at https://doi.org/10.3133/sir20215031.

Appendix 2. Software User Manual

Appendix 2 is a software user manual describing package datasets and processing programs (also known as functions in R).
Appendix 2 is contained in an HTML file available for download at https://doi.org/10.3133/sir20215031.

Appendix 3. Graphs Showing Replicate-Paired Data and Variability Models
Appendix 3 shows two-range models for each of the selected constituents measured for in replicate samples collected from

wells in the Idaho National Laboratory water-quality network, Idaho, 1989-2018. Appendix 3 is an Adobe Acrobat” PDF file
available for download at https://doi.org/10.3133/sir20215031.

Appendix 4. Time-Series Graphs Showing Water-Quality Measurements

Appendix 4 shows time-series graphs with Type-1 and Type-2 data classification for selected constituents. Appendix 4 is an
Adobe Acrobat” PDF file available for download at https://doi.org/10.3133/sir20215031.

Appendix 5. Time-Series Graphs Showing Local Regression Models

Appendix 5 shows time-series graphs with local temporal trends for selected constituents measured for in water samples
from wells in the Idaho National Laboratory water-quality network, Idaho, 1989-2018. Appendix 5 is an Adobe Acrobat® PDF
file available for download at https://doi.org/10.3133/sir20215031.

Appendix 6. Table Summarizing Survival Regression Models

Appendix 6 is a table that describes fitted survival regression models for selected constituents measured for in water sam-
ples collected from wells in the Idaho National Laboratory water-quality network, Idaho, 1989-2018. Appendix 6 is an Adobe
Acrobat”™ PDF file available for download at https://doi.org/10.3133/sir20215031.

Appendix 7. Time-Series Graphs Showing Survival Regression Models

Appendix 7 shows time-series graphs for fitted survival regression models for selected constituents measured for in water
samples collected from wells in the Idaho National Laboratory water-quality network, Idaho, 1989-2018. Appendix 7 is an
Adobe Acrobat” PDF file available for download at https://doi.org/10.3133/sir20215031.

Appendix 8. Graphs Showing Variogram Models

Appendix 8 shows graphs for fitted theoretical variogram models for selected constituents measured for in water sam-
ples collected from wells in the Idaho National Laboratory water-quality network, Idaho, and temporally averaged during
1989-2018. Appendix 8 is an Adobe Acrobat” PDF file available for download at https://doi.org/10.3133/sir20215031.
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Appendix 9. Maps Showing Kriging Estimates and Observations

Appendix 9 shows maps of kriging estimates and uncertainties for selected constituents measured for in water samples col-
lected from wells in the Idaho National Laboratory water-quality aquifer monitoring network, Idaho, 1989-2018. Appendix 9 is
an Adobe Acrobat® PDF file available for download at https://doi.org/10.3133/sir20215031.

Appendix 10. Graphs Showing Weighted Objective-Function Values

Appendix 10 shows maps of the weighted objective-function values throughout the Island Parallel Genetic Algorithm
search—removing 10, 20, 30, 40, and 50 wells from the existing U.S. Geological Survey water-quality monitoring network at
the Idaho National Laboratory, Idaho. Appendix 10 is an Adobe Acrobat” PDF file available for download at https://doi.org/
10.3133/sir20215031.

Appendix 11. Maps Showing Difference Between Kriged Prediction Surfaces

Appendix 11 shows maps of the difference between the kriged prediction surface using the existing and reduced U.S.
Geological Survey water-quality monitoring network at the Idaho National Laboratory and vicinity, Idaho. Appendix 11 is an
Adobe Acrobat” PDF file available for download at https://doi.org/10.3133/sir20215031.

Appendix 12. Table Summarizing Reductions in Sampling Interval

Appendix 12 provides a table showing for each well-analyte combination an optimal sampling interval at the Idaho
National Laboratory and vicinity, Idaho. Appendix 12 is an Adobe Acrobat” PDF file available for download at https://doi.org/
10.3133/sir20215031.
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