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Continuous Monitoring and Bayesian Estimation of 
Nutrient and Sediment Loads from Illinois Watersheds, for 
Water Years 2016–2020

By Timothy O. Hodson, Paul J. Terrio, Colin S. Peake, and David J. Fazio

Abstract
The State of Illinois is one of the leading contribu-

tors of nitrogen, phosphorus, and suspended sediment to the 
Mississippi River and the Gulf of Mexico. During water years 
2016–20, the U.S. Geological Survey, in cooperation with the 
Illinois Environmental Protection Agency, operated continu-
ous monitoring stations on eight major rivers in Illinois to 
better quantify nutrient and sediment loadings from the State 
of Illinois to the Mississippi River. This report estimates 
nitrate, phosphorus, and suspended-sediment loadings over 
that period, which can provide a benchmark against which to 
assess future changes in loading.

In addition, this report develops a new method for incor-
porating the uncertainty created by gaps in continuous datasets 
based on Bayesian machine learning. Data gaps are a common 
problem in continuous monitoring, and gap filling is necessary 
to quantify loadings and the uncertainty in loadings, which is 
essential if these results are to provide a benchmark for future 
studies. The uncertainty estimates may also be useful in an 
operational context, and this report provides examples of how 
uncertainty can be used in monitoring-network design and 
potentially reducing monitoring costs.

Introduction
Drainage basins within the State of Illinois are diverse: 

from the densely populated Chicago metropolitan area in 
northeast Illinois to the sparsely populated row-crop agri-
cultural land throughout the State to the Shawnee National 
Forest in southern Illinois. The various areas with different 
land uses, particularly the intensely urban and agricultural 
areas, can contribute substantial inputs of nitrogen, phos-
phorus, and sediment to receiving streams and rivers. Excess 
nutrients, a condition known as eutrophication, can promote 
growth of algae and aquatic vegetation. Then as the algae 
and aquatic vegetation die and decompose, the water bodies 
they inhabited may become depleted of oxygen, a condition 
known as hypoxia. Hypoxia harms or kills fish and other 

fauna, affects recreational and commercial use of the water 
body, and contributes to taste and odor issues in drinking 
water. Nutrients from Illinois watersheds transported to and 
down the Mississippi River also contribute to hypoxia in the 
Gulf of Mexico (Alexander and others, 2008; Heimann and 
others, 2011; Sprague and others, 2011). In addition to these 
downstream effects, the loss of nitrogen and phosphorus from 
agricultural land is costly to farmers and producers, who must 
amend the loss by applying more fertilizer. Excessive sedi-
ment concentrations and loads also contribute to a variety of 
impairments, such as physical damage to the environment 
by limiting light penetration and decreasing euphotic zone 
depth, clogging fish gills, filling in coarse-substrate spawning 
and feeding areas, smothering invertebrate communities, and 
potentially consuming available oxygen if the sediment con-
tains organic material. Sediment deposition also causes costly 
damage to critical infrastructure like barge lanes and reservoirs 
used for water supply and flood control. Because phosphorus 
readily sorbs and desorbs to sediment and particulate matter, 
sediment transport can also transport and release phosphorus, 
which contributes to eutrophication in many water bodies 
(Duda, 1985).

Multiple studies have identified Illinois watersheds as 
having some of the highest yields of nitrogen, phosphorus, 
and sediment in the Mississippi River Basin (David and 
Gentry, 2000; Alexander and others, 2008; David and oth-
ers, 2010; Heimann and others, 2011; Jacobson and oth-
ers, 2011; Sprague and others, 2011; Robertson and others, 
2014; Robertson and Saad, 2019). In response to these high 
yields, the Illinois Environmental Protection Agency; Illinois 
Department of Agriculture; and representatives from various 
governmental, environmental, utility, and stakeholder groups 
developed the Illinois Nutrient Loss Reduction Strategy 
(NLRS) in 2015 with the primary goal of improving the 
management of surface water bodies throughout Illinois and 
completing the reduction of nitrogen, phosphorus, and sedi-
ment delivered to surface water bodies throughout Illinois 
(Illinois Environmental Protection Agency and others, 2015). 
The Illinois NLRS was designed as part of a coordinated effort 
with 10 other states in the Mississippi River Basin to reduce 
the nutrient load entering the Gulf of Mexico. These efforts 
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are expected to benefit local and regional communities and the 
Nation by helping to reduce losses of nutrients and sediments 
from the landscape.

As part of the NLRS, the U.S. Geological Survey 
(USGS), in fiscal and operational cooperation with the 
Illinois Environmental Protection Agency, began a monitor-
ing program in 2015 to measure and calculate nutrient (nitrate 
and total phosphorus [TP]) and suspended-sediment loads at 
monitoring stations on the eight primary Illinois rivers in the 
Upper Mississippi River Basin. To provide improved estimates 
of nutrient and sediment loadings, continuous (15-minute fre-
quency) sensors were installed to measure nitrate plus nitrate 
as nitrogen (NO23) and orthophosphate (PO4) concentrations, 
turbidity, and physicochemical properties (water temperature, 
pH, specific conductance, and dissolved oxygen). The continu-
ous data record can be used to provide a more complete and 
accurate record of constituent concentrations and loadings 
than periodic discrete sampling, particularly during high-
streamflow events where conditions can change rapidly.

Purpose and Scope
This report describes 5 years of continuous NO23, total 

phosphorus, and suspended-sediment data collected from 
October 1, 2015, through September 30, 2020, or water years 
(WY) 2016–20 (hereafter referred to as the study period). 
This 5-year dataset and accompanying analysis will assess 
the concentrations, loadings, and characteristics of nutrients 
and suspended sediment, as well as changes in constituent 
loads over time and in response to the implementation of 

nutrient-reduction land-use practices, wastewater and indus-
trial treatments, and regulatory efforts by comparing our 
results with the State’s initial baseline nutrient loadings calcu-
lated for 1980–96 (hereafter referred to as the baseline). These 
baseline loadings were established in the Nutrient Reduction 
Strategy’s Science Assessment (Illinois Environmental 
Protection Agency and others, 2015). The baseline loadings 
will be used by NLRS partners to determine progress toward 
achieving the goal of a 45-percent reduction in nutrient losses 
across the State of Illinois.

Methods
Eight major river basins in Illinois drain into the 

Mississippi River (fig. 1). For each of these eight basins, the 
most downstream USGS gaging station that was not substan-
tially affected by backwater from the Mississippi, Ohio, or 
Wabash Rivers was chosen. The cumulative drainage areas of 
these monitoring stations comprise approximately 73.9 per-
cent of the total land area of Illinois (table 1). Parts of some 
of these basins fall outside of Illinois, and contributions from 
those areas are included in the load estimates herein: part of 
the Rock River watershed in Wisconsin, the upstream part of 
the Kankakee River watershed in Indiana, as well as areas of 
other smaller watersheds throughout the State. Each site was 
instrumented with sensors to measure NO23 and PO4 con-
centrations, turbidity, water temperature, pH, specific conduc-
tance, and dissolved oxygen on a 15-minute (hereafter referred 
to as “continuous”) interval.

Table 1.  Continuous nutrient monitoring station information.

[USGS, U.S. Geological Survey; ID, identification; km2, square kilometer]

River USGS ID
Station drainage 

area 
(km2)

Station drain-
age area in 

Illinois 
(km2)

Basin drainage area 
in Illinois 

(km2)

  Percent of station 
drainage area in 

Illinois

  Areal percent of 
Illinois

Vermilion 03339000 3,341 3,105 3,372 93 2.1
Embarras 03346500 6,042 6,042 6,307 100 4.2
Little Wabash1 03381495 8,034 8,034 8,298 100 5.5
Rock 05446500 24,732 10,290 13,789 42 7.1
Green2 05447500 2,598 2,598 2,927 100 1.8
Illinois3 05586300 69,264 58,666 64,009 85 40.2
Kaskaskia 05595000 13,439 13,439 15,045 100 9.2
Big Muddy 05599490 5,592 5,592 6,180 100 3.8

1Drainage area numbers are for the nearby streamgage at Little Wabash River at Carmi, Illinois (U.S. Geological Survey identification number 03381500).
2The Green River is part of the Rock River drainage basin and is included in the 13,789 square kilometer Rock River drainage area in Illinois.
3Drainage area numbers are for the nearby streamgage at Illinois River at Valley City, Illinois (U.S. Geological Survey identification number 05586100).
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Data Collection

To the extent practicable, the monitoring instrumentations 
were in areas of the channel with well-mixed and continu-
ous streamflow, adequate depth under all streamflow condi-
tions, and protection from in-channel debris. Infrastructure at 
each monitoring station differed depending upon channel and 
streamflow characteristics, property ownership, and physical 
support and security requirements. Four of the stations were 
mounted, at least initially, to the downstream side of existing 
bridge piers. Two stations were mounted to cylindrical pier or 
bridge protection cells, and two stations were installed on the 
side of the channel because of a lack of an adequate bridge 
pier or other midchannel structure. Initially, the sensors and 
analyzers were installed in four 4-to-6-inch polyvinyl chloride 
(PVC) conduits with one conduit each for the YSI multime-
ter, Hach Nitratax sensor, WET Labs Cycle orthophosphate 
(Cycle-PO4) analyzer, and Hach Solitax turbidity sensor 
(table 2). These configurations changed during the 5-year 
monitoring period as more advantageous or reliable configura-
tions were determined. These changes are documented in the 
individual station summaries in appendix 1.

Each group of sensors was at or near an existing USGS 
streamflow-monitoring station, which provided continuous 
records of stream stage and flow. Continuous data and annual 
summaries of the minimum, maximum, and mean concentra-
tions for the water-quality parameters at each monitoring sta-
tion can be found at the National Water Information System: 

Web Interface (https:/​/waterdata​.usgs.gov/​nwis/​wys_​rpt/​?​site_​
no=​03339000, where 03339000 represents the 8-digit USGS 
station number).

Installations were on the downstream side of bridge sup-
ports or pier protection cells at 5 of the 8 sites. Installations 
failed in some places because of excessive debris and sedi-
mentation. Sites that required specialized infrastructure were 
the Little Wabash River at Main Street at Carmi, Illinois 
(03381500), Rock River near Joslin, Ill. (05446500), and 
Vermilion River near Danville, Ill. (03339000). At Little 
Wabash River at Carmi, the pipes had to be modified to handle 
the heavy sediment loads. The Rock River at Joslin site had 
seasonal problems because of river ice in winter and heavy 
biological growth in summer. Hanging pipes installed in 2019 
helped to mitigate ice damage and biological fouling at this 
site. Because of abundant debris and rapid sedimentation at the 
Vermilion River site, the instrumentation had to be relocated 
away from the bank. In 2017, a gage house was installed on 
the levee atop the bank with a pumping system to route water 
up from the river to the instruments inside the gage house. The 
expansion of the gage house resulted in this station becom-
ing a demonstration site to evaluate the ability of continuous 
phosphorus analyzers to monitor natural water bodies.

The continuous data record for each parameter was ana-
lyzed, approved, and audited according to established USGS 
protocols and methods (Wagner and others, 2006). These 
procedures included removal of obvious erroneous data, cor-
rection for sensor fouling and calibration drift, and comparison 
of continuous sensor data with periodic discrete verification 

Table 2.  Manufacturer specifications for each instrument.

[°C, degree Celsius; ±, plus or minus; mS/cm, millisiemens per centimeter; %, percent; mg/L, milligram per liter; CT, calibration temperature; FNU, Formazin 
Nephelometric Unit; <, less than; mm, millimeter; mg N/L, milligram of nitrogen per liter; mg P/L, milligrams of phosphorus per liter]

Parameter Instrument Range Accuracy   Resolution

Water temperature YSI EXO2 multiparameter 
sonde −5–50°C −5–35°C: ±0.01°C; 

35–50°C: ±0.05°C 0.001°C

Specific conduc-
tance

YSI EXO2 multiparameter 
sonde 0−200 mS/cm 0–100 mS/cm: ±0.5%; 

100–200 mS/cm: ±1%
0.0001–0.01 mS/cm, range 

dependent

Dissolved oxygen YSI EXO2 multiparameter 
sonde 0−50 mg/L 0–20 mg/L: ±1.0%; 

20–50 mg/L: ±5.0% 0.1 mg/L

pH YSI EXO2 multiparameter 
sonde 0–14 units ±0.1 units within ±10°C of CT, 

±0.2 units otherwise 0.01 units

Turbidity YSI EXO2 multiparameter 
sonde 0−4000 FNU 0–999 FNU: ±2%; 

1000–4000 FNU: ±5%
0–999 FNU: 0.01 FNU; 

1000–4000 FNU: 0.1 FNU
Turbidity Hach Solitax 0–4000 FNU 0–1000 FNU: <1% with calibration 0.01 FNU

Nitrate plus nitrite Hach Nitratax plus sc 2 mm 0–50 mg N/L ±3% or 0.5 mg N/L, whichever is 
greater 0.1 mg N/L

Orthophosphate WET Labs Cycle-PO4

0–0.3 mg P/L; 
0.3–1.2 mg P/L 
possible

0.0077 mg P/L 0.001 mg P/L

Orthophosphate YSI P700 0.05–15 mg P/L ±2% or 0.05 mg P/L, whichever is 
greater 0.01 mg P/L

https://waterdata.usgs.gov/nwis/wys_rpt/?site_no=03339000
https://waterdata.usgs.gov/nwis/wys_rpt/?site_no=03339000
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samples that were analyzed by the USGS National Water 
Quality Laboratory. Mean annual nutrient and suspended-
sediment loads were estimated from continuous data using 
methods described in the next section.

Covariate-Based Bayesian Imputation

Collection of continuous water data has expanded rapidly 
during the previous decade. With this new style of environ-
mental monitoring come new challenges, one of which is 
how to quantify the uncertainty in the continuous records. 
All measurements are imperfect and inherently include some 
uncertainty. But uncertainty arises from other sources as well, 
such as from sampling procedures and models used to fill data 
gaps. Addressing each component of uncertainty in an ad hoc 
manner can quickly become overwhelming. This problem 
becomes more manageable, however, using Bayesian methods. 
Several definitions exist as to what distinguishes a method as 
“Bayesian,” but most simply, Bayesian methods use Bayes’ 
theorem to learn about the world from observations and prior 
knowledge. A key strength of the Bayesian perspective is that 
each source of uncertainty can be treated as a single phenome-
non, such as missing data or data that are partially unobserved. 
By treating all missing data as random variables, Bayes’ theo-
rem provides a logical means through which to determine the 
probable values of missing data if given a set of observations 
and prior knowledge.

Every measurement and, by extension, every inference 
incorporates some uncertainty arising from missing data. If 
that uncertainty is not adequately quantified, the measurement 
is of little practical use. Methods for quantifying uncertainty 
have evolved in an ad hoc manner among scientific disci-
plines, and at the time of writing, no well-established “best” 
practices for quantifying uncertainty in continuous water-
quality data exist. One basic approach estimates missing data 
based on a surrogate. But surrogate data can have gaps as well, 
leading to studies that use multiple surrogate models, switch-
ing among them depending on data availability (Robertson and 
others, 2018; Lathrop and others, 2019). For example, a study 
may use turbidity as a surrogate for suspended-sediment con-
centration (SSC), then use another surrogate, like streamflow, 
to predict SSC when turbidity data are unavailable in what is 
essentially a form of analysis (Little and Rubin, 2019).

The exact implementation varies, but typically, a set 
of potential surrogate models are ranked by goodness of fit. 
Then, predictions are made by applying the models in rank 
order: the highest ranked model is used first, then the second 
ranked model fills in gaps where the first surrogate was miss-
ing, and so forth. This multimodel approach can work well 
for small data gaps, but its shortcomings may become more 
apparent as gaps increase. Firstly, it is only statistically valid 
if the data are missing completely at random; in other words, 
gaps are not dependent on the values of the data (Little and 
Rubin, 2019). Because the missing completely at random 
condition is usually unrealistic in practice, predictions made 

by combining multiple surrogate models may be biased. While 
this bias shrinks as the data become more complete, it is 
impossible to assess the magnitude of the bias. Secondly, the 
multimodel approach wastes information by not sharing infor-
mation among the different surrogate models. For example, by 
regressing SSC on streamflow, the model typically ignores all 
the information that turbidity data provide about the covari-
ance of SSC and streamflow.

This study develops an alternative approach that uses 
Bayesian modeling to impute missing data using covariates (in 
statistics, imputation is the process of replacing missing values 
with estimates). Bayesian imputation is more resilient against 
missing data bias; more efficient in terms of information use; 
and, ultimately, more flexible because of the ease with which 
it incorporates other sources of uncertainty. The details of the 
method are described in the following sections, but these are 
not necessary to interpret the results. Readers interested only 
in results need only know that the method predicts concentra-
tions of a constituent in a river on the basis of correlations 
among the target constituent concentration and other sur-
rogates measured during the study, such as water tempera-
ture, pH, dissolved oxygen, specific conductance, turbidity, 
streamflow, season, and time. A more technical summary of 
the approach is that the model assumes the joint distribution of 
the data is multivariate lognormal, learns the joint distribution 
from observations, and then simulates any missing observa-
tions using the learned joint distribution (correlations).

Notation
Some notation is helpful to describe the predictive model. 

Boldface lowercase letters indicate vectors (for example, ​x ​), 
and lightface lowercase letters represent scalars (​σ ​, � z). 
Boldface uppercase letters indicate matrices (A​​, Ʃ). The 
notation a� � represents the probability of the random variable 
a, and a b c| ,� � represents the conditional probability of a  
given b  and c . This bracket notation provides a compact way 
to specify stochastic models, but sometimes the distribution 
needs to be explicit. For example, the following are all equiva-
lent ways of expressing a normally distributed variable x  with 
mean µ and variance σ 2:

	 [ ],x � � 2 � (1)

	 ( )2,  normal x µ σ � (2)

	 x normal� � �� �, 2 � (3)

where
	 x	 is a random variable,
	 μ	 is the mean of x, and
	 σ2	 is the variance of x.
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Deterministic models are denoted by g(), with the model 
arguments contained inside the parentheses, so a simple linear 
model is represented as

	 ( ) 0 1,   g x xβ β= +β � (4)

where
	 g	 is a deterministic model, and
	​ β​	 is a vector containing the model parameters.

Model Overview
This study uses a Bayesian hierarchical model to predict 

concentrations and loads of water-quality constituents from 
continuous surrogate observations. The general approach, first 
described by Berliner (1996), simulates imperfect observa-
tional data using three conditionally independent classes of 
models: process models representing some set of physical 
processes in the world (these can range from physically based 
to purely empirical models), observational models represent-
ing inaccuracies in measuring the true state of that process, 
and parameter models representing prior knowledge about the 
parameters used in the model.

Observational Model
True water quality is never known. At best, we can make 

an imperfect measurement of the true state. The observational 
model relates the imperfect measurement to the true state. For 
example, an optical nitrate sensor measures the concentra-
tion of nitrate in a river by the absorbance of ultraviolet light 
passing through the water. Optical nitrate sensor measurement 
or any other means of measuring nitrate is subject to observa-
tional error. The observational model links the noisy sensor 
observation ( y ) and the true concentration (c). Assuming the 
sensor is affected by a linear bias and noise, the observational 
model becomes

	 ( ) 2| , , oy d c σ  β � (5)

	 ( ) 1, od c cβ β= +β � (6)

where
	 y	 is the observed concentration,
	 d	 models the linear bias,
	 c	 is the true concentration, and
	 σ o

2 	 is the variance of the noise term.

Some readers may find the following forms, which are 
other ways of expressing the same model, more familiar:

	 y co� � �� �1  � (7)

	 ( )20,  oNormal σ∼ � (8)

where
	  	 is the noise term.

To estimate the true concentration (in other words, 
calibrate the sensor), water samples are collected periodi-
cally from the river and analyzed in a lab. These laboratory 
measurements are assumed to be a perfect measurement of the 
true concentration in the river. That assumption is, of course, 
an approximation: laboratory measurements are not perfect, 
samples get mislabeled, samples degrade between collection 
and analysis, and the water in the sample may not be represen-
tative of the entire depth and width of the river. Nevertheless, 
if these unobserved sources of uncertainty are small relative to 
the observed uncertainty, they can be ignored without signifi-
cantly biasing the estimate of the overall uncertainty. Although 
not done in this report, each of these sources of uncertainty 
could be incorporated within a hierarchical framework through 
additional observation models.

Process Model
The process model describes the factors that affect 

the true state (z) of the system, in this context, constituent 
concentrations in a river. The physical and chemical pro-
cesses affecting the state of a river system are complex. If 
those processes are known, they can be represented within a 
process model using physical equations or parameterization. 
More commonly, those processes are unknown, or at least 
their boundary conditions are too poorly defined to adequately 
model them. In such cases, the “process” model is merely an 
attempt to describe the correlations within a dataset. This latter 
type of process model is sometimes referred to as descriptive 
or empirical in other disciplines, but the distinction between 
empirically and physically based models is poorly defined in 
practice. In the type of modeling discussed herein, the term 
process model reflects that the model represents some set of 
physical processes and is used regardless of the level of physi-
cal realism depicted within the model.

Descriptive models tend to generalize poorly, but they 
can work well for estimating missing data, so long as the 
assumptions in the model are consistent with the real world. 
This study adopts the descriptive approach and makes two 
assumptions in the process model: (1) the concentrations of 
some constituent in a river (c) reflect a complex interaction of 
processes, some of which correlate to measurable quantities 
like streamflow (q​​); season and time (t ​​); as well as a range 
of other continuously monitored covariates like water tem-
perature, pH, dissolved oxygen concentration, and turbidity 
(collectively called ​x​). And (2) the processes not represented 
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in the model are uncorrelated in time (in other words, the model residuals are uncorrelated in time); although rarely true in time 
series analyses, this assumption is frequently made to make models more tractable. Under these assumptions, the probability 
distribution for the true state z  can be written as

		             [ ]log ,  log ,sin 2 ,  cos 2 ,  ,  logc q t t tπ π=z x � (9)

				    ( ), lognormal∼ Σz μ � (10)

where
	 z	 is the true state of the system,
	 c	 is concentration of the constituent of interest,
	 q	 is daily mean streamflow,
	 t	 is time in decimal years,
	 x	 are other covariates,
	 μ 	 is a vector containing the median value for each element in ​z​, and
	 Σ	 is the covariance of ​z ​.

This formulation of the process model has the convenient property that if only c, q , and t  are observed (in other words, the 
only covariate observations are streamflow and time), the model is equivalent to the popular five-parameter model (C5) devel-
oped by Cohn and others (1992):

		  ( ) ( )0 1 2 3 4log  log sin 2 cos 2  c q t t tβ β β π β π β= + + + + � (11)

Parameter Models
The parameter models describe the prior distributions of any unobserved components in the model; in essence, they rep-

resent knowledge of the world before collecting any observations. To reflect general ignorance of the true model parameters, 
weakly informative priors were selected. After standardizing the observations, reasonable priors for the process model are

				    ( )0,1 j Normalµ ∼ � (12)

			               ( )2,  pLKJ η σ∼ =Σ � (13)

			             � p HalfCauchy� � �2 5. � (14)

where
	 µ j 	 is the prior mean for each of the j  covariates in z ​,​
	 LKJ 	 is a function defining the prior distribution of the covariance matrix Σ  (Lewandowski and others, 2009),
	 η �	 is a hyperprior affecting the shape of the LKJ distribution, � �1 is standard, and
	 σ p	 is a hyperprior on the standard deviation of the LKJ distribution.

The half-Cauchy distribution of σ p was chosen as a good default, weakly informative prior for hierarchical models 
(Gelman and others, 2008). The LKJ prior is a prior on the correlation matrix Σ  and controls the expected amount of correlation 
among the covariates z . For � �1​​, the model will favor less correlation, so setting ​� � 2​ is a means of regularization and helps 
prevent overfitting in models with several covariates. Weakly informative priors for the observation model are

				     ( )0 0,1 Normalβ ∼ � (15)

				      ( )1 1,1 Normalβ ∼ � (16)
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				    � o HalfCauchy� � �1 � (17)

where
	 β1	 has been centered on 1 to reflect that the sensor has been calibrated such that its measurement and true state 

should have a ratio of approximately 1:1.

The Full Joint Distribution Model
Combining observational, process, and parameter models yields the full joint model, which provides a basis for estimat-

ing the posterior distribution (the probability of the unobserved model parameters conditional on the observed data and prior 
knowledge):

	                                           

]


[ ][ ][ ] [ ]
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posterior

observed processunobserved paras mob ervati etero sn

, , , , | ,  | , , | ,  |
n

p o i o i p p o
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iμ Σ β x β z μ Σ μ Σ

�
(18)

where
	 n	 is the number of observations, and
	 i	 represents the ith observation.

Recalling log ,
c zi i� � � 1  and lumping c  within z � and lumping the unobserved parameters into a single variable, ​θ ​, the poste-

rior distribution reduces to

			          [ ] [ ]
posterior

,   , | ,   | ,  y y≡


μ θ Σ β x θ z � (19)

where
	 θ 	 represents the lumped parameters.

Finding the posterior distribution is only the first step. In this case, learning the model parameters, θ ​​, is only a means to 
predict the true state of the river (z), which has only been partially observed during the experiment. The next step is to estimate 
the distribution of the missing data zmis misy,�� � conditional on the observed data zobs obsy,�� �, also known as the posterior predictive 
distribution, which is calculated from the posterior by marginalizing over θ :

	                                                  [ ] [ ][ ]
posterior predictive posterior

, | ,  ,  | ,  ,  | , dmis mis obs obs obs mis obs obs obs obsy y y y y∝ ∫
 

z z z θ z θ z θ � (20)

where
	 mis	 denotes missing data, and
	 obs	 denotes observed data.

Assuming the missing data are missing at random (MAR), which means the missing data are independent of the observed 
data, the posterior predictive distribution simplifies to

                                                              
[ ] [ ][ ]

posterior pre

sob erv.  proc.

dictive posterior

,  | ,  , | | , dmis mis obs obs mis mis obs obsy y y y
×

∝ ∫
  





 

 



z z z θ θ z θ
�

(21)

Under the MAR assumption, the probability distribution of the missing data can be estimated by simulating θ  from the 
posterior distribution, then feeding the simulated θ  ​​back into the empirical models (forward simulation). Once enough samples 
are generated, the posterior and posterior predictive distributions are approximately equivalent to the distribution of the sam-
ples. If the data are MAR and the Markov Chain Monte Carlo (MCMC) algorithm has converged, these samples will provide 
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an unbiased approximation of the probability distribution of the missing data. Although in principle MAR is unprovable, in 
practice, its plausibility is enhanced by including as many covariates as possible to decrease the degree to which gaps depend on 
unobserved variables (Gelman and others, 2013, p. 450).

Nonidentifiability
The full joint-distribution model described in the previous section was used to predict nitrate concentrations based on 

measurements made with an optical nitrate sensor (observational model) or other covariates during gaps in the sensor data 
(process model). A similar type of model was used to predict SSC and TP concentrations but with slight modification; SSC and 
TP concentrations were predicted using turbidity, as well as other surrogates. Because the relation between the surrogate and the 
target constituent is nonlinear and potentially heteroskedastic, the observation model uses a lognormal distribution instead of a 
normal one:

				    ( )2,  s lognormal c σ∼ � (22)

where
	 s	 is the surrogate observation.

Then the full joint model becomes

	                                                  [ ]( ) ( )


a
params.

observ tion process

| , , | ,  ,
n

i o i p
i

lognormal s c lognormalσ σ× ×∏








iβ z μ Σ � (23)

Here, processes and observational models are lognormally distributed, so the joint model is no longer identifiable. By omit-
ting the observational model and including the surrogate ( s) within x ​​, the model is made identifiable again. In doing so, the 
model loses the ability to distinguish between observation uncertainty and process uncertainty, but that sacrifice is unimportant 
to quantify the overall prediction uncertainty.

Concentration and Load Estimation
The posterior predictive distributions of NO23, TP, and SSC concentrations were simulated from the full joint model 

using MCMC with the Python package PyMC3 version 3.8 (Salvatier and others, 2016). A useful property of MCMC is that 
any quantity derived from a random variable also becomes a random variable; this process is known as equivariance. Because 
the instantaneous river load can be derived by multiplying concentration by streamflow, the posterior predictive distribution for 
the load is estimated by simply multiplying the posterior predictive distribution of concentration by a simultaneous streamflow 
measurement. The uncertainty inherent in those streamflow measurements is ignored because the magnitude of that uncertainty 
is essentially unknown.

Limitations
The models used in this study make three assumptions that are violated in practice. (1) The continuous data are downs-

ampled to daily means. The observation model assumes the true concentration is also observed as a daily mean, when in fact, the 
true concentration is only observed as an instantaneous value. The model was initially run without downsampling but that cre-
ated problems for the MCMC sampler; however, the results were similar to the daily timestep model. (2) The imputation model 
makes no correction for censoring—that is, samples reported as a less than or greater than value by the laboratory. Censoring 
in this dataset was minimal, effecting less than 1 percent of the data, so it should not introduce significant bias. Nevertheless, 
censoring in other studies may be more extensive for other sites or constituents. In those instances, it is up to the investigator to 
decide whether it is better to correct for censoring bias or missing data bias; at the time of writing, no model fully corrects for 
both. (3) The model assumes no serial correlation exists among its errors. This simplification is commonly assumed but rarely 
justified in modeling water-quality timeseries. In general, the bias introduced by this assumption decreases with better surrogates 
and fewer data gaps. Each of these three limitations could be addressed by building upon the basic modeling approach herein, 
but that was beyond the scope of this study.
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Data Coverage
The percentage of continuous data coverage from 

October 1, 2015, to September 30, 2020, for each monitor-
ing site is shown in table 3. Data coverages were greater than 
or equal to 75 percent for 37 out of 64 sensors and analyzers 
that were deployed at the monitoring sites. Data coverages at 
Rock and Green Rivers were less than other sites because the 
sensors were removed during winter to prevent damage by 
ice flows and because of biological fouling in summer. Little 
Wabash had the least coverage of all sites because the sensors 
were either covered with silt during the recession of high-
streamflow events or were out of water at low streamflows 
(less than approximately 24 cubic meters per second.

The Cycle-PO4 analyzer was used to collect continuous 
(2-hour interval) PO4 concentration data. At the start of the 
project, the Cycle-PO4 was the only commercially available, 
battery-powered orthophosphate analyzer. But for the sites in 
this study, the Cycle-PO4 proved unreliable and inaccurate at 
estimating PO4 concentrations during highly turbid conditions 
or when PO4 concentrations exceeded 0.3 milligrams of phos-
phorus per liter. Cycle-PO4 analyzers were initially deployed 
at all eight rivers but were eventually scaled back to just two 
sites (the Illinois and Kaskaskia Rivers) because of excessive 
maintenance requirements and manufacturer servicing times. 
These rivers were prioritized because PO4 concentrations 
were strongly correlated with TP concentrations at these riv-
ers, these rivers represent two of the largest watersheds, and 
these rivers were thought to have the largest phosphorus loads.

In November 2017, a YSI P700 PO4 analyzer was 
installed at the Vermilion River station, which was possible 
because the gage was supplied with alternating current power. 
Because of its superior filtration system, the YSI P700 was 
more reliable during turbid conditions, which is why the 
Vermilion River station had the highest orthophosphate data 
coverage of any site in the study.

Continuous PO4 concentration data used in this study 
were determined using two different onsite analyzers (only one 
analyzer was used at any site), and the discrete PO4 concen-
trations were measured at the USGS National Water Quality 
Laboratory. Data are available from the National Water 
Information System (U.S. Geological Survey, 2021). Although 
analytical procedures differed slightly among instruments, the 
results are deemed comparable and are hereafter collectively 
referred to as “orthophosphate” or “PO4.”

Streamflow and Discrete 
Water-Quality Data

The water-quality monitoring stations were at estab-
lished USGS streamgages. Streamflow measurements were 
made according to established USGS methods and pro-
tocols (Turnipseed and Sauer, 2010; Mueller and others, 
2013). Computation of the continuous streamflow record, 
including analysis, approval, and auditing procedures, was 
also performed according to established USGS methods 
(Kennedy, 1983).

A summary of streamflow at the eight monitoring sites 
and a comparison between the 5-year study period (WY 
2016–20) and the 1980–96 baseline period is provided in 
table 4. Streamflows at the monitoring stations were nearly 
proportional to the upstream drainage areas, as would be 
expected. Mean streamflow yields ranged from 0.32 to 
0.39 cubic meters per square kilometer (m3/km2) at five of the 
monitoring stations; however, the Rock River (0.47 m3/km2), 
 Embarras River (0.45 m3/km2), and Little Wabash River 
(0.49 m3/km2) had higher streamflow yields (approximately 
25 percent higher). Mean annual streamflows during WY 
2016–20 were consistently higher than the mean annual 
streamflows during the 1980–96 baseline, particularly for the 
Rock and Green Rivers in the northwest part of the State.

Table 3.  Percentage of record with continuous data coverage from October 1, 2015, to September 30, 2020.

[Temp., temperature; SC, specific conductance; DO, dissolved oxygen; NO23, nitrate plus nitrite; PO4, orthophosphate]

River Temp. SC DO pH Turbidity (YSI) Turbidity (Hach) NO23 PO4

Vermilion 80 80 79 75 79 76 77 178
Embarras 99 99 99 89 99 85 87 9
Little Wabash 53 52 41 41 49 61 62 5
Rock 69 67 67 64 58 57 68 2
Green 75 73 65 69 61 58 73 3
Illinois 98 93 98 89 97 90 94 29
Kaskaskia 98 95 96 95 98 94 95 32
Big Muddy 91 91 91 82 86 84 78 25

1Orthophosphate analyzer upgraded to YSI P700 on November 1, 2017.
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Discrete water-quality samples were collected routinely 
at each site during maintenance visits and storm events. Data 
are available from the National Water Information System 
(U.S. Geological Survey, 2021). These samples were col-
lected to provide direct measures of nutrients and sediment to 
develop surrogate models and quantify errors in sensor data. 
Analytical method information used for the discrete water-
quality samples is provided in table 5. Discrete samples were 
typically collected using a weighted-bottle sampler with a 
1-liter precleaned polypropylene bottle suspended by a rope 
and raised and lowered by hand. The sampler was lowered as 
quickly as possible to the location and depth of the continuous 
sensors, where the bottle was allowed to fill, thereby obtain-
ing a water sample from as close to the sensor as possible. 
Periodically, depth- and width-integrated cross-sectional 
samples were also collected for nutrients and suspended sedi-
ment. These samples were used to characterize whether water 
passing by the sensor was representative of the cross section 
of the river. Particular effort was made to collect cross-section 
samples during high-streamflow events when channel and 
streamflow conditions can differ substantially from low and 
normal streamflow periods. A corresponding weighted-bottle 

point sample at the sensor location was collected with the 
cross-section samples for comparison purposes. Relative per-
cent differences between all point and cross-section samples 
had a mean value of 8.8 and a median value of 6.1, and almost 
no sites had consistent biases, indicating that the samples 
were representative of the full river transect. Only SSC at 
the Illinois River station showed a general bias of higher 
concentrations in the point samples (median relative percent 
difference of 10.8). Summary statistics of the discrete sample 
concentrations at each of the eight nutrient monitoring stations 
are shown in table 6.

Imputation Results
Figure 2 compares the posterior nitrate loads estimated 

at the Green River using three approaches. The term “pos-
terior” refers to the fact that the probability distribution was 
calculated after considering the data; it can be thought of 
as the uncertainty in the result based on the set of observa-
tions and the model. The three approaches are (A) using only 

Table 4.  Summary of streamflow during the 2016–20 water years and streamflow relative to the 1980–96 baseline period.

River
2016 2017 2018 2019 2020

2016–20 
mean

1980–96 
mean

Change from 
1980–96 to 
2016–20, in 

percentAnnual streamflow, in millions of cubic meters

Vermilion 1,361 1,182 1,255 1,526 1,188 1,303 1,143 14
Embarras 2,510 2,428 2,348 3,623 3,192 2,820 11,943 45
Little Wabash 3,848 2,501 3,211 5,503 4,580 3,929 2,856 38
Rock 9,079 11,742 9,764 15,360 12,308 11,651 6,846 70
Green 1,052 833 758 1,618 1,002 1,052 701 50
Illinois 27,392 26,085 20,449 37,553 33,238 28,944 23,437 23
Kaskaskia 5,247 4,200 3,934 7,962 7,267 5,722 14,086 40
Big Muddy 2,887 1,661 1,995 3,288 2,327 2,432 1,975 23
    Total 106,755 101,266 87,428 152,866 130,205 115,704 42,987 Mean =35

1Estimate based on upstream site and scaled by drainage area ratio.

Table 5.  Analytical method information for discrete water-quality samples.

[µm, micrometers; mg/L, milligrams per liter; sulfuric acid, H2SO4; <, less than]

Parameter Preservation Analysis method   Limit detection method

Nitrate plus nitrite as nitrogen Filtered (0.45 µm), chilled, dark 
bottle

Colorimetry, enzymatic 
reduction-diazotization (Patton 
and Kryskalla, 2011)

0.04 mg/L

Total phosphorus Chilled, H2SO4 acid to pH<2 Colorimetry, alkaline persulfate 
digestion (Fishman, 1993) 0.01 mg/L

Orthophosphate Filtered (0.45 µm), chilled, dark 
bottle

Colorimetry, phosphomolyb-
date reduction (Patton and 
Kryskalla, 2003)

0.004 mg/L
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the discrete data with the C5-like model discussed in the 
“Methods” section, which is equivalent to the C5 model with 
regularization (that is, the addition of constraints to reduce 
overfitting); (B) using continuous data with the standard 
method imputation (also discussed in the “Methods” section), 
which is to fill gaps with the C5-like model; and (C) using 
the method developed in this study, which fills gaps in the con-
tinuous data with Bayesian imputation based on covariates.

At the Green River, continuous monitoring with the 
standard method of filling gaps (B) offered only modest 
improvement over discrete sampling. The poor performance 
of continuous monitoring is in part due to the extent of gaps at 
this site but also their timing. Like many continuous monitor-
ing sites, data gaps were more frequent during periods of high 
streamflow because instruments are more prone to damage or 
foul during high streamflow. For the sites and constituents in 
this study, most loading occurs during short-duration storm 
events, and even short data gaps during these critical periods 

can contribute substantial uncertainty to load estimates. 
Because the standard method of imputing gaps presumes that 
gaps occur at random, which is typically untrue in practice, 
this method can yield biased results.

Another shortcoming of the standard approach is its 
reliance on a small number of discrete samples to impute the 
missing periods, whereas the Bayesian approach learns the full 
joint distribution, and thereby incorporates all the information 
from continuous monitoring when imputing data. Because of 
these two factors, Bayesian imputation provides a more pre-
cise and less biased estimate of loading, so long as the MCMC 
sampling properly converges, which can be assessed through 
standard metrics (for review, see Gelman and others, 2013).

For the Green River example shown in figure 2, Bayesian 
imputation (C) yielded significantly lower mean annual loads 
and lower uncertainty than the standard method of filling 
gaps in continuous data (B). In general, however, the differ-
ence between these methods will depend on the distribution 

Table 6.  Summary of discrete water-quality samples collected during the 2016–20 water years. Data available from the National Water 
Information System (U.S. Geological Survey, 2021).

[mg/L, milligrams per liter]

Constituent River
Sample 
count

Minimum 
(mg/L)

Maximum 
(mg/L)

Median 
(mg/L)

25th percentile 
(mg/L)

75th percen-
tile 

(mg/L)

Nitrate

Vermilion 99 0.54 10.80 5.58 3.71 6.84
Embarras 72 0.04 6.92 1.84 0.47 3.27
Little Wabash 72 0.06 4.80 0.84 0.43 1.31
Rock 32 2.11 6.61 4.45 3.57 5.55
Green 33 1.03 9.50 4.70 3.48 7.48
Illinois 177 1.02 6.78 3.72 2.91 4.50
Kaskaskia 68 0.04 3.48 0.60 0.34 1.29
Big Muddy 70 0.05 1.28 0.39 0.27 0.58

Total phosphorus

Vermilion 103 0.07 1.69 0.25 0.15 0.49
Embarras 72 0.07 1.17 0.29 0.18 0.47
Little Wabash 73 0.08 1.27 0.31 0.18 0.49
Rock 94 0.06 0.65 0.19 0.14 0.24
Green 97 0.04 1.85 0.1 0.07 0.2
Illinois 181 0.12 1.07 0.32 0.24 0.4
Kaskaskia 64 0.13 1 0.38 0.27 0.63
Big Muddy 73 0.12 1.24 0.22 0.17 0.3

Suspended-sediment 
concentration

Vermilion 101 1 2,210 121 25 499
Embarras 63 14 1,240 169 57 443
Little Wabash 69 14 3,510 108 46 306
Rock 49 9 486 70 48 89
Green 52 11 950 92 62 225
Illinois 201 19 1,700 86 63 134
Kaskaskia 68 16 925 83 44 221
Big Muddy 70 8 929 71 37 140



Comparison Among Model Forms    13

and extent of missing data. When data gaps are small, the 
two methods will produce similar results. If missing data bias 
causes the standard method to underestimate uncertainty, 
Bayesian imputation may yield a larger, albeit more accurate, 
uncertainty estimate.

Comparison Among Model Forms
The nitrate and suspended-sediment models used in this 

study share a similar structure with one key difference: nitrate 
was measured by a nitrate sensor, which is designed and cali-
brated to respond linearly to changes in nitrate concentration. 
By comparison, none of the sensors directly measure SSC, and 
turbidity, its best proxy, responds nonlinearly to changes in 
suspended-sediment concentration. This difference is reflected 
in the structure of the respective models. In the nitrate model, 
the linear nitrate sensor is represented in the observational 
model (eqs. 1–3), whereas the other surrogates are represented 
in the lognormal process model. Conversely, the SSC model 
has no observational model, only the surrogates represented in 
the lognormal process model.

Although the simpler lognormal model could be used for 
nitrate, it overestimates uncertainty, especially at high con-
centrations, because it treats the nitrate sensor as a nonlinear 
surrogate for the true nitrate concentration. Thus, using expert 
knowledge to structure the model to reflect the data-generating 
process more accurately can dramatically reduce uncertainty 
without requiring additional data.

Once onsite TP analyzers become commercially avail-
able, an observational model could be used to estimate TP. 
However, with the technology available during the study, 
only the dissolved fraction (PO4) could be measured onsite, 
whereas the particulate fraction must be estimated using dis-
crete sampling or using a surrogate, like turbidity. Neither of 
the previous models are ideally suited for this case. The initial 
approach to modeling TP was essentially a hybrid of the two 
models: an observational model was used to represent the in 
situ measurements of the PO4 fraction and a lognormal sur-
rogate model represented the particulate fraction. But, unlike 
nitrate, the additional complexity failed to substantially reduce 
uncertainty in load estimates. Figure 3 compares phosphorus 
loads from the Illinois River estimated by (A) the discrete data 
with a C5-like model, (B) continuous data with the simple sur-
rogate model, and (C) continuous data with the two-fraction 
model. Only the Illinois River, Kaskaskia River, and Vermilion 
River stations had enough PO4 data to use the two-fraction 
model, and in both cases, results from the two-fraction model 
were similar to those obtained by a simpler model. Moreover, 
omitting PO4 data entirely did not substantially affect load 
estimates at the monitoring stations in this study.

Models were only evaluated for their uncertainty in 
annual loads. In other contexts, such as predicting instanta-
neous concentration, the two-fractional model might outper-
form the simpler model. A previous study at the Illinois River 
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Figure 2.  Graphs showing mean annual nitrate load at 
Green River near Geneseo based on A, discrete data with 
C5-like model B, continuous data with C5-like gap filling 
and C, continuous data with Bayesian imputation. The 
black line shows the 94-percent highest posterior density 
of that distribution, which is approximately the 94-percent 
confidence interval in this case, and the blue line represents 
the posterior predictive distribution obtained by the Markov 
Chain Monte Carlo algorithm.
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station showed that including continuous PO4 data improved 
predictions of TP concentration (Terrio and others, 2015), so it 
was thought PO4 data would reduce load uncertainty as well. 
The fact that it did not likely reflects the sources and processes 
affecting phosphorus transport in these watersheds—in gen-
eral, periods of high PO4 concentration were associated with 
below-mean streamflow and did not contribute much load. 
In addition, the PO4 analyzers were unreliable during high 
streamflow when most loading typically occurs, so the most 
critical periods of record were missing. Different hydrologic 
conditions, as well as the development of more reliable PO4 
analyzers and, eventually, TP analyzers, will affect model 
performance in future applications, and further research could 
explore the factors affecting whether a particular model or set 
of instruments is likely to perform better than another.

Loads and Yields
The following sections present annual and mean annual 

loads and yields of nitrate, phosphorus, and sediment for each 
monitoring station during WY 2016–20 on the basis of results 
from the full joint-distribution model. Estimated daily loads 
generated by the model are available in an accompanying 
data release (Hodson and others, 2021). To assess the benefit 
of continuous monitoring relative to discrete sampling, loads 
were also estimated using only discrete sampling data and 
streamflow with the same model, which is equivalent to the 
classic C5 model (Cohn and others, 1992) with regulariza-
tion. Load estimates using continuous and discrete datasets 
are shown in figures 4–7 in the following sections. Each 
figure depicts the posterior probability distribution of the 
mean annual load during the 2016–20 water years. Additional 
comparison of the models will be discussed in the “Model 
Comparison” section.

Lastly, results from this study are used to assess how 
nutrient loads from the eight Illinois rivers have changed 
relative to those during the 1980–96 baseline period. Loads 
for the baseline period were estimated by David and others 
(2015) using discrete sample data and different models, so 
any comparisons between the baseline and this study may be 
biased by differences in methodology (see figs. 5–7 and the 
“Comparison Among Model Forms” section). Correcting such 
bias is an important topic for future research but was beyond 
the scope of this study. With that important caveat, the follow-
ing sections provide a brief overview of some of the largest 
apparent differences between loadings during the study and 
baseline periods.

Nitrate

Mean annual nitrate loads and yields for WY 2016–20 
ranged from 1.3 to 113.6 metric kilotons and 0.23 to 2.57 met-
ric tons per square kilometer, respectively (table 7, figs. 4 and 
5). Most notable is that the Vermilion River had the largest 

nitrate yield and fourth largest load but is only 2.5 percent 
of all the basin areas. Like mean annual streamflow, the 
mean annual nitrate loads during the 2016–20 period were 
consistently higher than those during the 1980–96 baseline 
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Figure 3.  Graphs showing mean annual phosphorus load 
at the Illinois River near Florence based on A, discrete data 
with C5-like model B, continuous data with simple surrogate 
model and C, continuous data with two-fraction model. The 
black line shows the 94-percent highest posterior density 
of that distribution, which is approximately the 94-percent 
confidence interval in this case, and the blue line represents 
the posterior predictive distribution obtained by the Markov 
Chain Monte Carlo algorithm.
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period, except for the Vermilion and Embarras Rivers. The 
Illinois River had a small 7-percent increase in the mean 
annual nitrate load compared to a 19-percent increase in mean 
annual streamflow, indicating that concentration dropped 
during the same period. The Rock River had the second larg-
est nitrate load and largest increase in nitrate load; however, 
the 78-percent increase in nitrate load corresponded to a 
70-percent increase in mean annual streamflow.

Phosphorus

Mean annual phosphorus loads and yields for WY 
2016–20 ranged from 0.3 to 9.7 metric kilotons and 0.10 to 
0.19 metric tons per square kilometer, respectively (table 8, 
figs. 4 and 6). Most notable is that the Kaskaskia River had the 
largest phosphorus yield and second largest load but is only 
10.1 percent of the total basin areas. Like mean annual stream-
flow, the mean annual phosphorus loads during the 2016–20 
period were consistently higher than those during the 1980–96 
baseline period, except for the Vermillion and Green Rivers. 
The Rock River had a small 14-percent increase in the mean 
annual phosphorus load compared to a 70-percent increase 
in mean annual streamflow. The Kaskaskia and Big Muddy 
Rivers had the largest increase in loads (98 and 75 percent, 
respectively) corresponding to only 40 and 23 percent, respec-
tively, increases in mean annual streamflow.

Suspended Sediment

Mean suspended-sediment loads and yields for WY 
2016–20 ranged from 208 to 4,112 kilotons and 33 to 168 met-
ric tons per square kilometer, respectively (table 9, figs. 4 and 

7). Most notable is that the Embarras River had the largest 
suspended-sediment yield and second largest load but is only 
4.5 percent of the total basin areas. Also, even though the 
Kaskaskia River had the highest phosphorus yield, it had the 
fourth lowest sediment yield, whereas the Rock River had the 
lowest phosphorus and sediment yield.

Continuous Monitoring and Discrete 
Sampling

To assess the added value in having continuous monitor-
ing over discrete sampling alone, the imputation model was 
first trained using the continuous dataset, then the model was 
retrained using only discrete observations and continuous 
streamflow, and the two results were compared (note that the 
models used to generate these results differ from those used by 
the Illinois NLRS, which were not evaluated in this compari-
son). In this comparison, the discrete-data model was simple. 
A more sophisticated model may perform better, but the same 
argument could be made of the continuous-data model. By 
using the same model with both datasets, we attempt to make a 
fair comparison of the monitoring strategies. In this study, the 
value of continuous monitoring was assessed on mean loads 
and loading uncertainty, but in practice, monitoring networks 
serve multiple goals, which could all factor into the value of 
the monitoring network.

The posterior mean annual loads for the continuous and 
discrete datasets are shown in figures 5–7. In general, loads 
were lower, and uncertainties were smaller for the models 
trained on continuous data. However, individual monitoring 
stations contributed different amounts of uncertainty to the 

Table 7.  Annual nitrate loads by river estimate based on continuous monitoring with full joint distribution model with Bayesian 
imputation.

[km2, square kilometer; WY, water year; NA, not applicable]

River

Annual nitrate load (metric kilotons) Mean annual 
yield (metric 
tons per km2) 
2016–20 mean

2016 WY 2017 WY 2018 WY 2019 WY 2020 WY
2016–20 

mean
1980–96 mean

Vermilion 8.1 8.7 10.1 8.5 7.6 8.6 9.1 2.57
Embarras 7.8 12.1 5.0 12.1 7.1 8.8 110.4 1.46
Little Wabash 3.5 2.5 2.5 5.4 2.2 3.2 2.8 0.40
Rock 41.2 54.3 36.5 58.5 46.0 47.3 26.6 1.91
Green 6.6 4.8 3.5 9.6 4.1 5.7 3.6 2.19
Illinois 124.0 112.6 71.6 145.6 114.2 113.6 106.6 1.64
Kaskaskia 5.6 3.7 5.6 8.3 7.4 6.1 25.4 0.45
Big Muddy 1.3 0.9 1.2 1.6 1.6 1.3 0.9 0.23

Total 198.0 199.6 136.0 249.5 190.1 194.6 165.4 NA

1Estimate based on upstream station (U.S. Geological Survey identification number 03345500) and scaled by drainage area ratio.
2Estimate based on upstream station (U.S. Geological Survey identification number 05594100) and scaled by drainage area ratio.
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Figure 4.  Graphs showing mean annual yields in metric tons per square kilometer for water years 2016–20 for A, nitrate; B, 
phosphorus; and C, suspended sediment. Estimate is based on continuous monitoring with Bayesian imputation.
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Figure 5.  Graph showing mean annual nitrate load by river based on continuous monitoring with Bayesian imputation (blue) and 
discrete sampling with C5-like model (red).
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overall total. In our comparison, the overall load estimated 
from the discrete data was biased high relative to the continu-
ous data for every constituent: 7 percent for nitrate, 9 per-
cent for phosphorus, and 30 percent for suspended sediment 
(figs. 5–7). Whether or not a monitoring network can accu-
rately estimate a quantity is intrinsic to the network’s value. 
Furthermore, such bias presents an important consideration 
for continuous monitoring networks, including this effort in 
Illinois. In the past, water-quality monitoring was primarily 
carried out by discrete sampling. As continuous monitoring 
becomes more commonplace, loads could appear to decrease 
over time because of the shift in monitoring approaches; there-
fore, comparisons between periods of continuous and discrete 
data need to be made with care. For that reason, this report 
only highlights some of the largest apparent loading trends and 
avoids examining them in detail.

The other benefit of continuous monitoring was that it 
tended to reduce the uncertainty associated with load esti-
mates. Continuous monitoring reduced uncertainty more 
at some sites than others. Because reducing uncertainty is 
equivalent to gaining information, the previous statement also 
means continuous monitoring added more information for 
some sites than for others. In figures 5–7, the widths of the 
posterior distributions are analogous to the uncertainty in each 
model. Without being mathematically rigorous, the difference 
in widths between the discrete- versus the continuous-based 
probability distributions can be thought of as the difference in 
uncertainty, or the information gain, that resulted from con-
tinuous monitoring. If the distribution of the continuous model 
was narrower than that of the discrete model, then continuous 
monitoring added information. If means and widths of both 
distributions were similar, then continuous monitoring poten-
tially added little-to-no additional information.

Streamflow was an important factor affecting the infor-
mation gain from continuous monitoring. Recall that load 
is determined by multiplying concentration by streamflow. 
Therefore, if all sites had similar uncertainty in concentration, 
that uncertainty is then multiplied by streamflow in determin-
ing loading, and as a result, the largest rivers will also tend to 
have the largest uncertainty in load. Consequently, loads in 
larger rivers tend to benefit most from continuous monitor-
ing in the sense that these sites add the most information to 
the overall load estimate. All other things being equal, when 
planning a continuous monitoring network for monitoring 
loads, giving the largest watersheds priority may be a ben-
eficial approach. This runs counter to some conventional 
thinking that assumes that because conditions on large rivers 
typically change gradually, less frequent monitoring may suf-
fice. Smaller rivers tended to contribute smaller loads, though 
not always, and as a result, benefited less from continuous 
monitoring. However, because of their greater variability 
in concentration and streamflow, smaller rivers may benefit 
more from continuous monitoring in other contexts. Changes 
in concentrations and loads resulting from best management 
practices are generally observed sooner in small watersheds 
compared to large watersheds, and continuous monitoring 
can help quantify these changes more rapidly and with less 
uncertainty. Continuous monitoring can also be advantageous 
in monitoring for and predicting extremes. Many machine-
learning techniques and numerical models rely on some form 
of regularization during the calibration process. Regularization 
helps to reduce prediction error by biasing all estimates toward 
the mean, but this can adversely affect other properties of the 
distribution, such as the frequency and magnitude of extreme 
events. Collecting more data, as in continuous monitoring, 

Table 8.  Annual phosphorus load by river; estimate based on continuous monitoring with Bayesian imputation.

[km2, square kilometer; WY, water year]

River

Annual phosphorus load (metric kilotons) Mean annual 
yield (metric tons 

per km2) 
2016–20 

mean

2016 WY 2017 WY 2018 WY 2019 WY 2020 WY
2016–20 

mean
1980–96 

mean

Vermilion 0.5 0.3 0.4 0.5 0.4 0.4 0.4 0.12
Embarras 1.1 0.9 0.8 1.5 1.4 1.1 10.8 0.18
Little Wabash 1.3 0.8 1.0 1.9 1.9 1.4 0.9 0.18
Rock 1.8 2.6 2.1 3.1 2.4 2.4 2.1 0.10
Green 0.3 0.2 0.2 0.5 0.2 0.3 0.3 0.12
Illinois 10.2 8.7 7.6 11.7 10.2 9.7 7.4 0.14
Kaskaskia 2.4 1.7 1.7 3.5 3.7 2.6 21.3 0.19
Big Muddy 0.7 0.5 0.6 0.8 0.7 0.7 0.4 0.13
Total 18.3 15.6 14.4 23.6 20.8 18.5 13.7 NA

1Estimate based on upstream station (U.S. Geological Survey identification number 03345500) and scaled by drainage area ratio.
2Estimate based on upstream station (U.S. Geological Survey identification number 05594100) and scaled by drainage area ratio.
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Figure 6.  Graph showing mean annual phosphorus load by river based on continuous monitoring with Bayesian imputation (blue) and 
discrete sampling with C5-like model (red).

Table 9.  Annual suspended-sediment load by river; estimate based on continuous monitoring with Bayesian imputation.

[km2, square kilometers; WY, water year; NA, not available]

River
Annual suspended-sediment load (metric kilotons)

Mean annual 
yield (metric 
tons per km2)

2016 WY 2017 WY 2018 WY 2019 WY 2020 WY 2016–20 mean
2016–20 

mean

Vermilion 455 300 390 344 317 361 108
Embarras 1,177 926 753 1,200 1,037 1,018 168
Little Wabash 643 454 492 858 743 638 80
Rock 791 1,101 678 891 661 824 33
Green 303 169 114 344 109 208 80
Illinois 4,771 3,754 3,315 4,629 4,092 4,112 59
Kaskaskia 955 556 745 978 1228 892 66
Big Muddy 328 233 246 280 243 266 48
Total 9,421 7,494 6,733 9,523 8,430 8,320 NA
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minimizes the importance and effects of regularization, which 
is another inherent benefit of continuous monitoring over 
discrete sampling.

There were several exceptions to the general trend 
of information gain scaling with streamflow, however. 
Continuously monitored surrogates that were strongly corre-
lated with the target constituent added more information than 
weakly correlated surrogates. In general, optically measured 
NO23 concentration was strongly correlated with true nitrate 
concentration, as was turbidity with suspended-sediment 
concentration, so these data typically added substantial infor-
mation. Conversely, surrogates for TP were typically not as 
strongly correlated, so continuous monitoring tended to be less 
beneficial for estimating phosphorus loads. Furthermore, the 
strength of each surrogate varied among watersheds, because 
of differences in geology and land use.

These factors, as well as the extent of data gaps (table 3), 
all affect the information gain from continuous monitoring. 
For example, continuous monitoring of the Embarras River 
contributed a large amount of information, apparently because 
the discrete-data model performed unusually poorly at this 
station. In cases like this, preexisting sampling data could help 
inform the design of a new continuous monitoring network. 

Where available, sampling data could be used to make pre-
liminary assessments of load uncertainty to prioritize sites for 
continuous monitoring.

Using information gain to assess the value of continuous 
monitoring has an important shortcoming. These uncertainty 
estimates are biased because the models make unrealistic 
assumptions, mainly that model errors are uncorrelated in 
time. This bias tends to increase with weaker surrogates 
because weak surrogates typically have larger and more cor-
related errors. Because the discrete (C5-like) model uses only 
streamflow and time as surrogates, both of which are weak, 
uncertainty in the discrete model tends to be larger than that of 
the continuous models. Furthermore, violations of the model 
assumptions also bias other quantities, such as estimates of the 
mean. In other words, there is no guarantee inferences from a 
biased model will be correct, which can have ramifications for 
scientists and policymakers.
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Figure 7.  Graph showing mean annual suspended-sediment load by river based on continuous monitoring with Bayesian imputation 
(blue) and discrete sampling with C5-like model (red).
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Network Improvements
Uncertainty information is also useful in prioritizing 

upgrades and maintenance in existing monitoring networks. Of 
the three constituents in this study—nitrate, phosphorus, and 
suspended sediment—continuous monitoring yielded the least 
uncertainty for nitrate (fig. 5), probably because the optical 
nitrate sensor was a strong surrogate—reasonably linear and 
low error with independent and identically distributed errors—
for the true nitrate concentration. For most monitoring sta-
tions, further improvements, such as protection against debris 
or ice, might improve nitrate data coverage but are unlikely to 
have a substantive effect on the overall (network-wide) load 
estimate. Most of the uncertainty in overall nitrate load was 
from the Rock and Illinois Rivers (fig. 5). Data coverage for 
nitrate at the Illinois River station was 94 percent (table 3), 
so the potential for improvement is small. Data coverage was 
lower at the Rock River station (68 percent), so there is more 
potential for improvement if conditions at the site permit.

Though uncertainty in suspended-sediment loading was 
larger than for nitrate, continuous monitoring again offered 
clear benefit by reducing uncertainty relative to the load 
estimates on the basis of discrete sampling (fig. 7). Compared 
to nitrate, the larger uncertainty in suspended sediment is con-
sistent with turbidity being a weaker surrogate for sediment in 
the sense that the correlation between turbidity and sediment 
concentration is both weaker and less linear than the correla-
tion between optical nitrate and true nitrate. It is assumed the 
difference in uncertainty between these constituents primarily 
reflects this difference in surrogate strength and not the extent 
of data gaps because both sets of surrogates had similar data 
coverage. Therefore, advances in suspended-sediment sensors 
might lead to better sediment load estimates in the future, but 
better protection for the existing monitoring installations or 
making more frequent maintenance visits is unlikely to sub-
stantially reduce uncertainty.

Continuous monitoring arguably offered the least benefit 
for measuring phosphorus load but also the most potential for 
improvement once onsite TP analyzers become available. The 
quality of existing TP surrogates, such as turbidity and PO4, 
varied among the monitoring stations. In some watersheds, 
turbidity was a good surrogate for TP, and further improve-
ments to these stations may offer little benefit for load estima-
tion. Just two stations—the Illinois River and the Kaskaskia 
River—were responsible for most of the uncertainty in the 
overall phosphorus load (fig. 6). In the future, upgrading these 
two stations with TP analyzers could substantially lower the 
overall uncertainty in phosphorus loading.

Summary
From water years 2016 through 2020, the U.S. 

Geological Survey operated continuous monitoring stations 
at eight major rivers in Illinois with a combined drainage area 

covering approximately 74 percent of the land area of the 
State. Information from these sites could provide a benchmark 
from which to evaluate changes in nutrient and sediment loads 
from rivers throughout Illinois, which is critical for assessing 
the efficacy of nutrient and soil management practices that are 
being implemented to conserve topsoil and reduce the State’s 
contribution of nutrients entering the Gulf of Mexico.

The use of continuous monitoring is growing as water-
quality sensors become less expensive and more reliable, but 
this shift also brings new challenges. Continuous monitoring 
data contain gaps that must be filled before the data can be 
used for inference. Continuous monitoring is also more costly 
than periodic sampling, and that added expense needs to be 
justified by showing that continuous monitoring results in 
better estimates relative to what would be obtained through 
periodic sampling. This study presents a new method of filling 
gaps in continuous data that corrects for missing data bias that 
affected previous gap-filling methods. Results from this new 
method indicate that continuous monitoring yielded lower 
estimates of loads, with lower uncertainties, relative to those 
computed with periodic sampling over the same period.

An uncertainty assessment is critical for any measure-
ment used in science or policymaking, but it can also be 
useful operationally. This study provides examples of how 
uncertainty information can be used to plan or upgrade exist-
ing monitoring networks in a cost-effective manner, thereby 
helping to reduce the cost of continuous monitoring while 
maximizing its benefit.
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Appendix 1.  Station Descriptions
This appendix describes summary statistics, seasonality, 

diurnal cycling, and storm-event patterns for each parameter 
during the study period, as well as descriptions of setting, 
instrumentation, and streamflow characteristics for each sta-
tion. Summary statistics for each parameter are shown by site 
in table 1.1. These statistics were based on 15-minute mea-
surements, and not daily means. Furthermore, the statistics are 
based only on the observed data record that contains substan-
tial gaps (table 3) that may bias these estimates compared to 
the true range of conditions.

Seasonality
Water temperature fluctuated seasonally with air tempera-

ture at all sites. Seasonal patterns in specific conductance were 
site dependent. In the Vermilion, Rock, and Illinois Rivers, 
specific conductance peaked during the winter, whereas in 
the Big Muddy River, specific conductance peaked in the 
fall. Specific conductance did not have strong seasonality in 
the Embarras, Little Wabash, Green, or Kaskaskia Rivers. 
Dissolved oxygen varied seasonally at all sites with concentra-
tions peaking during winter. Seasonality in dissolved oxygen 
concentrations was typically larger in smaller watersheds. pH 
did not vary seasonally in its mean, but it did in its variance 
with typically less variability in winter. Seasonally, turbidity 
did not have many patterns in magnitude or frequency except 
during summer and early fall. During these times, streamflows 
were typically lower resulting in less turbid conditions at all 
sites. All rivers, except the Big Muddy River, had seasonal-
ity in nitrate concentrations with higher concentrations in late 
spring or early summer and lower concentrations in late sum-
mer or early fall.

Diurnal Cycling
Diurnal cycling was observed in most watersheds. Water 

temperature cycled diurnally at moderate to low streamflows, 
with more pronounced diurnal cycling during the summer. 
Specific conductance generally did not exhibit diurnal cycling 

except at the Rock River where it occurred during periods of 
steady streamflow. Dissolved oxygen cycled diurnally at all 
sites, with the largest fluctuations occurring at low stream-
flow and on smaller rivers. Diurnal cycling of pH was more 
pronounced during the summer and in smaller watersheds. 
Diurnal cycling of turbidity occurred at the Embarras, Little 
Wabash, Green, Illinois, Kaskaskia and Big Muddy Rivers 
and was most pronounced during summer low streamflows. 
Diurnal cycling was not observed in nitrate; if it occurred, it 
was below the resolution of the sensors used in this study.

Storm Events
For most constituents, storm events disrupted the general 

seasonal and diurnal patterns. During rain events, water tem-
peratures typically rose during winter and fell during summer 
at all sites. Specific conductance would decrease rapidly dur-
ing storm events, then gradually return to pre-event levels as 
streamflow decreased. Dissolved oxygen typically decreased 
during storm events regardless of the season, although some-
times it increased. pH typically decreased during storm events, 
and the magnitude of decrease correlated with the magnitude 
of the storm event. pH gradually returned to pre-event condi-
tions as streamflow decreased. Turbidity and streamflow were 
correlated at all sites; however, turbidity is influenced by other 
factors such that the largest streamflows were not always 
associated with the highest turbidities. The highest turbidities 
occurred as streamflow increased during storm events. The 
response of nitrate concentrations during storm events varied 
among sites. The general pattern is that the initial streamflow 
increase from a rain event will reduce nitrate concentrations, 
but as streamflows decrease, nitrate will peak. This general 
pattern is applicable outside of the spring and early summer 
window when concentrations are highest. During the spring to 
early summer period, nitrate concentrations’ response to rain 
events is highly erratic. In this period, rain events can cause 
increases or decreases in nitrate concentrations, as well as 
differences in lag times between peak streamflows and peak 
nitrate concentrations.
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Table 1.1.  Continuous data summary by constituent and river for the 2016–20 water years. Data available from the National Water 
Information System (U.S. Geological Survey, 2021).

[°C, degrees Celsius; μS/cm, microsiemens per centimeter; mg/L, milligrams per liter; FNU, Formazin Nephelometric Units; mg P/L, milligrams of phosphorus 
per liter; m3/s, cubic meters per second]

Constituent River Minimum Maximum Median 25th percentile 75th percentile

Temperature (°C)

Vermilion 0.8 32.2 17.1 9.1 24.5
Embarras −0.1 32.7 15 6.9 24.5
Little Wabash 0.1 31.8 17.4 7.1 24.8
Rock −0.1 30 15.5 6.5 23.4
Green −0.1 30.4 15.1 7.4 21.8
Illinois 0 31.8 14 5.5 24.7
Kaskaskia 0 32.6 16 7.1 24.8
Big Muddy −0.1 31.3 14.9 7.3 24.7

Specific conductance  
(μS/cm)

Vermilion 237 918 598 546 638
Embarras 104 732 449 344 534
Little Wabash 100 825 292 208 436
Rock 349 883 645 599 683
Green 231 901 690 658 714
Illinois 389 1040 698 628 771
Kaskaskia 112 682 357 304 419
Big Muddy 118 2020 516 410 675

Dissolved oxygen (mg/L)

Vermilion 4.3 20.9 9.6 8 11.6
Embarras 0.2 20.4 9.2 7 11.3
Little Wabash −0.1 13.4 6.25 4.8 8.9
Rock 4.8 18.7 10.4 8.4 13
Green 2.6 16.2 9.6 8 11.4
Illinois 2.7 16 9.6 6.4 12.1
Kaskaskia −0.1 21.4 8.5 6 11.4
Big Muddy −0.1 14.1 7.4 4.7 10

pH

Vermilion 7.4 9.1 8.2 8.1 8.4
Embarras 6.7 9 7.9 7.7 8.2
Little Wabash 6.4 8.4 7.3 7.1 7.6
Rock 7.5 9 8.4 8.2 8.5
Green 7 8.7 8 7.8 8.1
Illinois 7.3 9.3 8.1 7.9 8.3
Kaskaskia 6.6 9 7.7 7.5 7.9
Big Muddy 6.7 8.5 7.2 7.1 7.4

Turbidity hach (FNU)

Vermilion 2.9 1820 18.1 10 43.8
Embarras 2.6 1780 46 21 128
Little Wabash 3.9 3940 80 43.1 140
Rock 0.0 861 28.4 18 43.2
Green 0.5 1990 12.9 7.5 26
Illinois 5.9 1400 61 39 103
Kaskaskia 2.7 759 40 24 78.6
Big Muddy 3.6 1140 45.5 28.8 72
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Vermilion River near Danville, Illinois
U.S. Geological Survey (USGS) station number 03339000 
(Illinois Environmental Protection Agency [IEPA] station 
number BP–08)

Location—Latitude 40°06′03″, longitude 87°35′50″, 
referenced to North American Datum of 1983, in NW¼NW¼ 
sec. 22, T. 19 N., R. 11 W., Vermilion County, Ill., hydrologic 
unit 05120109, on right bank at Danville sewage-treatment 

plant, 1.7 miles upstream from Stony Creek, 2.2 miles south-
east of Danville, and at mile 19.5 (U.S. Geological Survey, 
2021).

Station description—The river is entrenched at this site, 
promoting high velocities and streamflows that transport abun-
dant debris and sediment. The bridge and channel configura-
tion prevents a bridge-pier installation, so the sensors were 
initially on the streambank; however, the bank experienced 
rapid sediment deposition during storm events. Consequently, 
the sensors were relocated to a gage house with a pumping 

Table 1.1.  Continuous data summary by constituent and river for the 2016–20 water years. Data available from the National Water 
Information System (U.S. Geological Survey, 2021).—Continued

[°C, degrees Celsius; μS/cm, microsiemens per centimeter; mg/L, milligrams per liter; FNU, Formazin Nephelometric Units; mg P/L, milligrams of phosphorus 
per liter; m3/s, cubic meters per second]

Constituent River Minimum Maximum Median 25th percentile 75th percentile

Turbidity YSI (FNU)

Vermilion 0 1300 16.3 10 35.3
Embarras 0.3 991 33.7 17.8 94.2
Little Wabash 0.4 1580 58.1 30.6 104
Rock 1.4 561 25.2 15 37.4
Green 0 1290 12.4 8.2 27.7
Illinois 0.1 1630 45.9 30.1 77.5
Kaskaskia 1.5 540 34 21 64.9
Big Muddy 2 758 35.8 22.4 59.2

Nitrate plus nitrite (mg/L)

Vermilion 0.3 25.1 5.7 3.75 7.31
Embarras 0 14.1 2.32 0.8 4
Little Wabash 0.1 7 1.2 0.8 1.7
Rock 1.4 13.5 4.1 3.57 5.11
Green 0.5 13.7 4.1 3.1 5.58
Illinois 0.8 7.51 3.74 2.79 4.6
Kaskaskia 0 9.43 0.9 0.5 1.5
Big Muddy 0 4.79 0.5 0.39 0.7

Orthophosphate 
(mg P/L)

Vermilion 0.05 1.37 0.19 0.1 0.23
Embarras 0.001 0.777 0.09 0.05 0.21
Little Wabash 0.01 0.287 0.1 0.06 0.14
Rock 0.003 0.163 0.07 0.05 0.09
Green 0.004 0.356 0.03 0.02 0.04
Illinois 0.075 0.512 0.22 0.18 0.27
Kaskaskia 0.002 0.621 0.17 0.11 0.23
Big Muddy 0.005 0.458 0.12 0.08 0.16

Streamflow (m3/s)

Vermilion 1.1 1124.2 22.9 9.3 43.9
Embarras 0.8 1067.5 33.7 12.1 115.0
Little Wabash 0.4 900.5 62.3 10.3 211.0
Rock 90.6 1257.3 328.5 223.1 470.1
Green 3.1 322.8 24.7 15.2 38.8
Illinois 90.6 3284.7 821.2 475.7 1214.8
Kaskaskia 1.4 1565.9 122.9 46.2 286.0
Big Muddy −79.3 903.3 40.2 16.2 100.0
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system atop the streambank in the summer of 2017. Since 
that time, the longest data gaps are related to low water levels 
and damage sustained during the February 2018 flood event. 
Shortly after the pumping system was installed, the WET Labs 
Cycle orthophosphate (Cycle-PO4) analyzer was replaced 
with a YSI P700 orthophosphate (PO4) analyzer, which was 
better suited to the high PO4 and sediment concentrations at 
the site. Before the installation of the gage house, the sensors 
were removed during the winter because of ice accumulation. 
At very low streamflows, the pump intake can come out of the 
water. During periods of extended drought (2019), this can 
result in months of missing data. Although drought periods do 
not contribute substantial nutrient loads, they can impact other 
designated uses, such as supporting aquatic life and recreation, 
so these gaps may negatively impact some secondary monitor-
ing objectives. During the spring of 2018, an autosampler was 
installed to sample high-turbidity events.

Instrumentation—The station includes the following 
water-quality monitoring instrumentation:

•	 YSI EXO 2 with water temperature, specific conduc-
tance, dissolved oxygen, pH, and turbidity probes 
measuring at a 15-minute interval;

•	 Hach Nitratax nitrate sensor measuring at a 15-minute 
interval;

•	 Hach Solitax turbidity sensor measuring at a 15-mintue 
interval;

•	 Sea-Bird Cycle-PO4 PO4 analyzer measuring at a 
2-hour interval (discontinued in 2017);

•	 YSI P700 PO4 analyzer measuring at a 15-minute 
interval;

•	 ISCO refrigerated autosampler triggered by turbid-
ity; and a

•	 Campbell Scientific CR6 datalogger.
Streamflow characteristics—During the study, this site 

experienced two of the largest streamflow events on record 
(fig. 1.1): the first, in December 2015, was the 6th largest 
recorded streamflow event with daily mean streamflow at 
slightly under 991 cubic meters per second (m3/s), and the sec-
ond, in February 2018, was the third largest recorded stream-
flow event with a mean streamflow of about 1,050 m3/s. The 
largest recorded streamflow was 1,380 m3/s in March 1939. 
Extended periods of low streamflows are common during late 
summer and early fall. The lowest daily mean streamflow dur-
ing the study was 1.3 m3/s in September 2019, with the lowest 
on record being 0.05 m3/s in 1920 and 1930.

Embarras River at Lawrenceville, Ill
USGS station number 03346500 (IEPA site number BE–01)

Location—Latitude 38°43′25″, longitude 87°39′52″, ref-
erenced to North American Datum of 1983, in NE¼SW¼ sec. 
5, T. 3 N., R. 11 W., Lawrence County, Ill., hydrologic unit 
05120112, on left bank at downstream side of U.S. Business 
Route 50 bridge in Lawrenceville, and at mile 6.7 (U.S. 
Geological Survey, 2021).

Station description—Because of the configuration of the 
stream channel and bridge piers, the sensors at this station are 
positioned in perforated pipes mounted to the stream-channel 
side of a bridge pier. The sensors are serviced from a platform 
mounted to the pier and are inaccessible above moderate 
stages. PO4 monitoring was discontinued in 2018 because of 
the excessive fouling caused by high turbidity levels at this 
site.

Instrumentation—The station includes the following 
water-quality monitoring instrumentation:

•	 YSI EXO 2 with water temperature, specific conduc-
tance, dissolved oxygen, pH, and turbidity probes 
measuring at a 15-minute interval;

•	 Hach Nitratax nitrate sensor measuring at a 15-minute 
interval;

•	 Hach Solitax turbidity sensor measuring at a 15-mintue 
interval;

•	 Sea-Bird Cycle-PO4 PO4 analyzer measuring at a 
2-hour interval (discontinued in 2018); and a

•	 Campbell Scientific CR6 datalogger.
Streamflow characteristics—The highest streamflow dur-

ing the study period occurred in early May 2017, with a mean 
daily streamflow of 1,056 m3/s (fig. 1.2). This was the 5th larg-
est mean daily streamflow on record, with the highest recorded 
streamflow of 1,345 m3/s recorded in June 2008. Later, in 
October 2017, the lowest mean daily streamflow was observed 
at only 0.97 m3/s, with the lowest recorded mean daily 
streamflow of 0.71 m3/s recorded in August 2012. The typical 
pattern of higher streamflows after spring rain events and low 
streamflows in the late summer/early fall predominates during 
the study period and historical record.
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Figure 1.1.  Timeseries of streamflow, nitrate plus nitrite, phosphorus, and suspended sediment for the Vermilion River at Danville.
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Figure 1.2.  Timeseries of streamflow, nitrate plus nitrite, phosphorus, and suspended sediment for the Embarras River at 
Lawrenceville.
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Little Wabash River at Main Street at 
Carmi, Ill
USGS station number 03381495 ([IEPA] site number C–23)

Location—Latitude 38°05′32″, longitude 88°09′22″ refer-
enced to North American Datum of 1983, in NW¼SE¼NE¼ 
sec. 13, T. 5 S., R. 9 E., White County, Ill., hydrologic unit 
05120114, at auxiliary gaging station at Main Street Bridge 
in Carmi, 5.0 miles downstream from Skillet Fork and at mile 
33.8 (U.S. Geological Survey, 2021).

Station description—This station presents some chal-
lenges because of the large range of stream stages throughout 
the year. Additionally, a massive debris jam on the upstream 
side of the bridge caused streambed conditions to change 
rapidly. The pipes that house the sensors have been modified 
several times to accommodate variable sedimentation rates. 
The sensors are mounted as near to the streambed as practi-
cal, but they come out of water during low streamflow, which 
is detrimental to some instruments. As a result, the YSI EXO 
2 is removed during low streamflows, but the Hach Nitratax 
and Solitax are left in place. The Hach sensors are less likely 
to be damaged when running dry, and this allows nitrate and 
turbidity data to be recorded above a certain stage when field 
servicing may not be practical. PO4 monitoring was discontin-
ued here because of the high turbidity levels and the sensors 
coming out of the water. Also, fish kills occurred near the gage 
in at least 3 of the 5 years during the study period.

Instrumentation—The station includes the following 
water-quality monitoring instrumentation:

•	 YSI EXO 2 with water temperature, specific conduc-
tance, dissolved oxygen, pH, and turbidity probes 
measuring at a 15-minute interval;

•	 Hach Nitratax nitrate sensor measuring at a 15-minute 
interval;

•	 Hach Solitax turbidity sensor measuring at a 15-mintue 
interval;

•	 Sea-Bird Cycle-PO4 PO4 analyzer measuring at a 
2-hour interval (discontinued in 2017); and a

•	 Campbell Scientific CR6 datalogger.
Streamflow characteristics—Streamflow during the 

study period was largely normal with a range of streamflows 
consistent with historical events since the site’s inception in 
1992. The Little Wabash River at Main Street at Carmi is the 
auxiliary gage to the primary gage, Little Wabash River at 
Carmi (USGS station number 03381500), where streamflow 
is calculated using the water surface slope between the two 
gages. Because no major inflows between the gages are pres-
ent, streamflow from the primary gage can be used. During 
the period of record, the highest mean daily streamflow was 
approximately 900 m3/s on May 8, 2017 (fig. 1.3), with the 
greatest recorded mean daily streamflow of 1,565 m3/s in May 
2011. The lowest streamflow occurred in October 2017 with 
a mean daily streamflow of 0.4 m3/s, with the lowest recorded 
being 0.017 m3/s in July 1954. The typical pattern of higher 
streamflows after spring rain events and low streamflows 
in the late summer/early fall predominates during the study 
period and historical record.
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Figure 1.3.  Timeseries of streamflow, nitrate plus nitrite, phosphorus, and suspended sediment for the Little Wabash River at Carmi.



Appendix 1.  Station Descriptions    31

Rock River near Joslin, Ill
USGS station number 05446500 (IEPA site number P–04)

Location—Latitude 41°33′22″, longitude 90°11′07″ 
referenced to North American Datum of 1983, in NE¼NE¼ 
sec. 18, T. 18 N., R. 3 E., Rock Island County, Ill., hydrologic 
unit 07090005, near center of span on downstream side of 
bridge on State Highway 92, 1.8 miles east of Joslin, 14.5 
miles downstream from Rock Creek, and at mile 26.9 (U.S. 
Geological Survey, 2021).

Station description—Maintaining infrastructure and 
data record at this station was problematic. The instrumenta-
tion was initially installed in heavy-gauge polyvinyl chloride 
conduits mounted to a large metal platform installed to girders 
on the downstream side of a bridge pier near the center of 
the channel. However, seasonal ice formation and ice flows 
damaged the conduits and mounts every winter, so it was not 
practical to keep the instrumentation installed during the win-
ter. Sometimes there were substantial periods between when 
damage occurred and when repairs could be made, because of 
safety concerns and streamflow conditions limiting access to 
the damaged areas. In 2019, the fixed conduits were replaced 
with swinging, chain-suspended conduits allowing the conduit 
positions to compensate for changes in streamflow and to ride 
up on top of ice flows in the hope that this might help miti-
gate some of the damage to the conduits and instrumentation. 
PO4 monitoring was discontinued at this site because calcium 
carbonate accumulation damaged the analyzers. In 2018, an 
ISCO automated sampler was installed.

Instrumentation—The station includes the following 
water-quality monitoring instrumentation:

•	 YSI EXO 2 with water temperature, specific conduc-
tance, dissolved oxygen, pH, and turbidity probes 
measuring at a 15-minute interval;

•	 Hach Nitratax nitrate sensor measuring at a 15-minute 
interval;

•	 Hach Solitax turbidity sensor measuring at a 15-mintue 
interval;

•	 Sea-Bird Cycle-PO4 PO4 analyzer measuring at a 
2-hour interval (discontinued in 2017);

•	 ISCO autosampler triggered by turbidity; and a

•	 Campbell Scientific CR6 datalogger.
Streamflow characteristics—Streamflow during the study 

period was representative of the historical record. During the 
study period, the highest daily mean streamflow during the 
study was about 1,240 m3/s in February 2019 (fig. 1.4), with 
the highest daily mean streamflow recorded being 1,265 m3/s 
in June 2002. The lowest daily mean streamflow during the 
period was approximately 93 m3/s in October 2015, where 
the lowest daily mean streamflow recorded was 23.6 m3/s in 
January 1940 because of backwater effects from ice. The river 
is generally homogeneous at this location, and the monitoring 
station is well located in the middle of a straight section of 
the channel. Typically, there is substantial streamflow in the 
river throughout the year, with the highest streamflows during 
spring rain events and the lowest streamflows during the late 
summer and early fall months.
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Figure 1.4.  Timeseries of streamflow, nitrate plus nitrite, phosphorus, and suspended sediment for the Rock River at Joslin.
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Green River near Geneseo, Ill
USGS station number 05447500 (IEPA site number PB–04)

Location—Latitude 41°29′20″, longitude 90°09′27″ 
referenced to North American Datum of 1983, in NE¼SW¼ 
sec. 4, T. 17 N., R. 3 E., Henry County, Ill., hydrologic unit 
07090007, on upstream side of bridge on State Highway 
82, 1.4 mi upstream from Geneseo Creek, 2.4 mi north of 
Geneseo, and at mile 14.9 (U.S. Geological Survey, 2021).

Station description—Because of the configuration of the 
stream channel and bridge piers, the sensors at this station 
are positioned in perforated conduits mounted to the stream-
channel side of an abandoned bridge abutment. Because of 
ice flows, the sensors are routinely removed in the winter. 
Additionally, ice flows damaged the conduit resulting in 
extended intervals of missing data while repairs were made. 
PO4 monitoring was discontinued in 2017 because of high 
concentrations at or near the top of the analyzers range and the 
unreliability of the analyzer during high turbidity events. In 
2018, an ISCO automated sampler was added.

Instrumentation—The station includes the following 
water-quality monitoring instrumentation:

•	 YSI EXO 2 with water temperature, specific conduc-
tance, dissolved oxygen, pH, and turbidity probes 
measuring at a 15-minute interval;

•	 Hach Nitratax nitrate sensor measuring at a 15-minute 
interval;

•	 Hach Solitax turbidity sensor measuring at a 15-mintue 
interval;

•	 Sea-Bird Cycle-PO4 PO4 analyzer measuring at a 
2-hour interval (discontinued in 2017);

•	 ISCO autosampler triggered by turbidity; and a

•	 Campbell Scientific CR6 datalogger.
Streamflow characteristics—Streamflow over the 

described study period was generally representative of the 
site since recording began in 1940. The highest streamflow 
during the study period occurred in early May 2019, with 
a mean daily streamflow of 300 m3/s (fig. 1.5). The highest 
mean daily streamflow recorded is 342 m3/s in June 1974. 
The lowest mean daily streamflow was observed at 4.4 m3/s 
in September 2017, with the lowest recorded mean daily 
streamflow of 0.6 m3/s recorded in January 1977. The typical 
pattern of higher streamflows after spring rain events and low 
streamflows in the late summer/early fall predominates during 
the study period and historical record.
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Figure 1.5.  Timeseries of streamflow, nitrate plus nitrite, phosphorus, and suspended sediment for the Green River at Geneseo.
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Illinois River at Florence, Ill
USGS station number 05586300 (5.4 miles downstream from 
IEPA site number D–32)

Location—Latitude 39°37′58″, Longitude 90°36′28″ 
referenced to North American Datum of 1983, in NE¼SE¼ 
NW¼ sec. 25, T. 14 N., R. 14 W., Pike County, Ill., hydro-
logic unit 07130011, on right upstream bridge protection cell 
of Route 100/106 bridge, 0.3 miles east of Township Road 
3982E, 0.3 miles north of Florence, 3 miles southwest of 
Bloomfield, 62 miles downstream from La Moine River, and 
mile 56.0 (U.S. Geological Survey, 2021).

Station description—The instrumentation at the site 
is protected behind a pier protection cell, and the physical 
configuration allows sensors to be located with adequate depth 
under all streamflow conditions and during all seasons. Cross-
sectional measurements of physical and chemical conditions 
have demonstrated that the stream channel at this site is well-
mixed at all stream stages.

Instrumentation—The station includes the following 
water-quality monitoring instrumentation:

•	 YSI EXO 2 with water temperature, specific conduc-
tance, dissolved oxygen, pH, and turbidity probes 
measuring at a 15-minute interval;

•	 Hach Nitratax nitrate sensor measuring at a 15-minute 
interval;

•	 Hach Solitax turbidity sensor measuring at a 15-mintue 
interval;

•	 Sea-Bird Cycle-PO4 PO4 analyzer measuring at a 
2-hour interval; and a

•	 Campbell Scientific CR6 datalogger.
Streamflow characteristics—Streamflow at this station is 

measured from a nearby gage on the Illinois River at Valley 
City, Ill., (USGS 05586100) because no major tributaries flow 
between the two stations. Streamflows can be influenced by 
upstream streamflow regulation within the Des Plaines River, 
Chicago Waterway, and Sangamon River, as well as locks 
and dams on the Illinois River itself. Streamflow required to 
support commercial shipping is maintained, other than during 
extreme periods. The station is far enough upstream to prevent 
backwater influence from the Mississippi River during flood 
conditions. During the study period, the largest daily mean 
streamflow was approximately 3,230 m3/s in January 2016 
(fig. 1.6), with the largest daily mean streamflow being 3,483 
m3/s in May 1943. The lowest daily mean streamflow was 
approximately 106 m3/s in September 2020, with the lowest 
recorded being 38 m3/s in September 1984. Streamflow is 
typically highest in late spring and lowest in late summer and 
early fall.

Kaskaskia River at New Athens, Ill
USGS station number 05595000 (IEPA site number O–03)

Location—Latitude 38°19′11″, longitude 89°53′19″ refer-
enced to North American Datum of 1983, in SE¼ NW¼NW¼ 
sec. 33, T. 2 S., R. 7 W., St. Clair County, Ill., hydrologic unit 
07140204, on right downstream side of bridge on battery cell 
at State Highway 13 at New Athens, 1.4 mi downstream from 
Silver Creek and at mile 28.4 (U.S. Geological Survey, 2021).

Station description—Instrumentation at the site is well 
protected, and the physical configuration of the site allows 
sensors to be located with adequate depth under all streamflow 
conditions and during all seasons. During the summer months, 
the channel at the site can become stratified.

Instrumentation—The station includes the following 
water-quality monitoring instrumentation:

•	 YSI EXO 2 with water temperature, specific conduc-
tance, dissolved oxygen, pH, and turbidity probes 
measuring at a 15-minute interval;

•	 Hach Nitratax nitrate sensor measuring at a 15-minute 
interval;

•	 Hach Solitax turbidity sensor measuring at a 15-mintue 
interval;

•	 Sea-Bird Cycle-PO4 PO4 analyzer measuring at a 
2-hour interval; and a

•	 Campbell Scientific CR6 datalogger.
Streamflow characteristics—Streamflow at this site 

is largely dependent on dams and reservoir management 
upstream, as well as backwater effects from the Mississippi 
River. Upstream from the site, the Carlyle Reservoir Dam 
helps to regulate streamflow, and downstream, the Mississippi 
River can influence streamflows, as well as a lock and dam at 
the mouth of the Kaskaskia River. Because of these difficult 
streamflow regimes, index velocity measurements began at the 
site in 2009. During the study period, the highest mean daily 
streamflow was about 1,566 m3/s in January 2016 (fig. 1.7). 
This was the highest streamflow since modern records began 
in 2009. It is not uncommon for the streamflow to be zero or 
even slightly negative (reverse streamflow) during low stream-
flows. However, negative streamflows did not occur during the 
study. The typical pattern of higher streamflows after spring 
rain events and low streamflows in the late summer/early fall 
predominates during the study period and historical record.
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Figure 1.6.  Timeseries of streamflow, nitrate plus nitrite, phosphorus, and suspended sediment for the Illinois River at Florence.
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Figure 1.7.  Timeseries of streamflow, nitrate plus nitrite, phosphorus, and suspended sediment for the Kaskaskia River at New 
Athens.
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Big Muddy River at Route 127 at 
Murphysboro, Ill
USGS station number 05599490 (IEPA site number N–12)

Location—Latitude 37°45′30″, longitude 89°19′40″ 
referenced to North American Datum of 1983, in NE¼NE¼ 
sec. 9, T. 9 S., R. 2 W., Jackson County, Ill., hydrologic unit 
07140106, on right bank on upstream side of State Highway 
127 in Murphysboro, and at mile 37.5 (U.S. Geological 
Survey, 2021).

Station description—The Big Muddy River station 
operates reliably with respect to equipment performance and 
data continuity. One large data gap occurred in the summer 
of 2017 when sensors were removed during bridge construc-
tion. Equipment at the site is well protected, and the physical 
configuration allows sensors to be located with adequate depth 
under all streamflow conditions and during all seasons. Water 
temperatures generally remain warm enough and stream stage 
fluctuations are suitable for year-round operation. During low 
summer streamflows, the river can become stratified at this 
site, but this is unlikely to impact load estimates, which are 
more reflective of conditions at high streamflows.

Instrumentation—The station includes the following 
water-quality monitoring instrumentation:

•	 YSI EXO 2 with water temperature, specific conduc-
tance, dissolved oxygen, pH, and turbidity probes 
measuring at a 15-minute interval;

•	 Hach Nitratax nitrate sensor measuring at a 15-minute 
interval;

•	 Hach Solitax turbidity sensor measuring at a 15-mintue 
interval;

•	 Sea-Bird Cycle-PO4 PO4 analyzer measuring at a 
2-hour interval; and a

•	 Campbell Scientific CR6 datalogger.
Streamflow characteristics—Streamflow at this site is 

influenced by multiple reservoirs, most notably Rend Lake 
and Crab Orchard Lake. Reservoir management during storm 
events, as well as backwater effects from the Mississippi 
River, can influence streamflow. During the study period, the 
highest mean daily streamflow was about 818 m3/s in May 
2017 (fig. 1.8). Peak streamflow for the site is 1,200 m3/s in 
May 2011. It is not uncommon for the streamflow to be at zero 
or negative because of backwater effects of floods downstream 
on the Mississippi River. During the study period, the larg-
est reverse streamflow event took place in May 2019 at −15 
m3/s. The typical pattern of higher streamflows after spring 
rain events and low streamflows in the late summer/early fall 
predominates during the study period and historical record.
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Figure 1.8.  Timeseries of streamflow, nitrate plus nitrite, phosphorus, and suspended sediment for the Big Muddy River at 
Murphysboro.
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