


Prepared in cooperation with San Bernardino Valley Municipal Water District

# Hydrogeologic Characterization of the Yucaipa Groundwater Subbasin

Chapter A in

**Hydrology of the Yucaipa Groundwater Subbasin: Characterization and Integrated Numerical Model, San Bernardino and Riverside Counties, California**



Scientific Investigations Report 2021-5118-A

**Cover:** Visualization of the simulated domain and hydrologic components from the Yucaipa Integrated Hydrologic Model.

# **Hydrogeologic Characterization of the Yucaipa Groundwater Subbasin**

By Geoffrey Cromwell, John A. Engott, Ayman H. Alzraiee, Christina L. Stamos,  
Gregory O. Mendez, Meghan C. Dick, and Sandra Bond

Chapter A in

**Hydrology of the Yucaipa Groundwater Subbasin: Characterization  
and Integrated Numerical Model, San Bernardino and Riverside  
Counties, California**

Edited by Geoffrey Cromwell and Ayman H. Alzraiee

Prepared in cooperation with San Bernardino Valley Municipal Water District

Scientific Investigations Report 2021–5118–A

## U.S. Geological Survey, Reston, Virginia: 2022

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit <https://www.usgs.gov> or call 1-888-ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit <https://store.usgs.gov/>.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Cromwell, G., Engott, J.A., Alzraiee, A.H., Stamos, C.L., Mendez, G.O., Dick, M.C., and Bond, S., 2022, Hydrogeologic characterization of the Yucaipa groundwater subbasin, chap. A in Cromwell, G., and Alzraiee, A.H., eds., Hydrology of the Yucaipa groundwater subbasin—Characterization and integrated numerical model, San Bernardino and Riverside Counties, California: U.S. Geological Survey Scientific Investigations Report 2021-5118-A, 81 p., <https://doi.org/10.3133/sir20215118A>.

Associated data for this publication:

Cromwell, G., Matti, J.C., and Roberts, S.A., 2022, Data release of hydrogeologic data of the Yucaipa groundwater subbasin, San Bernardino and Riverside Counties, California; U.S. Geological Survey Sciencebase data release, <https://doi.org/10.5066/P9F70YQR>.

ISSN 2328-0328 (online)

## Contents

|                                                                                            |    |
|--------------------------------------------------------------------------------------------|----|
| Introduction.....                                                                          | 1  |
| Previous Investigations.....                                                               | 1  |
| Purpose and Scope .....                                                                    | 4  |
| Description of Study Area .....                                                            | 4  |
| Groundwater Subareas of the Yucaipa Groundwater Subbasin .....                             | 5  |
| Climate .....                                                                              | 5  |
| Surface-Water Hydrology .....                                                              | 9  |
| Streams and Water Bodies.....                                                              | 9  |
| Surface-Water Monitoring.....                                                              | 10 |
| Land Use.....                                                                              | 13 |
| 1972 Land Use.....                                                                         | 19 |
| 1992 Land Use.....                                                                         | 19 |
| 2001 Land Use.....                                                                         | 21 |
| 2014 Land Use.....                                                                         | 21 |
| Geology.....                                                                               | 21 |
| Geologic Setting and Faults .....                                                          | 21 |
| Depth to Crystalline Basement.....                                                         | 23 |
| Geologic Formations and Deposits .....                                                     | 24 |
| Hydrogeology.....                                                                          | 25 |
| Hydrogeologic Units .....                                                                  | 25 |
| Faults and Flow Barriers.....                                                              | 29 |
| Aquifer Storage .....                                                                      | 30 |
| Water Budget .....                                                                         | 32 |
| Sources and Estimates of Recharge .....                                                    | 32 |
| Natural Recharge .....                                                                     | 33 |
| Mountain-Front Runoff and Infiltration of Streamflow .....                                 | 33 |
| Precipitation .....                                                                        | 33 |
| Subsurface Inflow .....                                                                    | 33 |
| Anthropogenic Recharge .....                                                               | 35 |
| Imported Water and Managed Aquifer Recharge .....                                          | 36 |
| Wastewater Effluent.....                                                                   | 37 |
| Irrigation Return from Agriculture, Golf Courses, Parks, and Residential Landscaping ..... | 37 |
| Municipal Water Systems .....                                                              | 39 |
| Estimates and Sources of Discharge .....                                                   | 39 |
| Pumpage.....                                                                               | 39 |
| Evapotranspiration .....                                                                   | 40 |
| Subsurface Outflow.....                                                                    | 40 |
| Groundwater Levels, Flow, and Movement.....                                                | 43 |
| Long-term Trends in Groundwater Levels .....                                               | 47 |
| Triple Falls Creek and Oak Glen Groundwater Subareas.....                                  | 55 |
| Gateway and Crafton Groundwater Subareas .....                                             | 57 |
| Wilson Creek Groundwater Subarea .....                                                     | 57 |
| Calimesa Groundwater Subarea.....                                                          | 58 |

|                                                           |    |
|-----------------------------------------------------------|----|
| Western Heights and Sand Canyon Groundwater Subareas..... | 58 |
| Hydrologic Flow Barriers.....                             | 58 |
| Water Chemistry .....                                     | 59 |
| Chemical Character of Groundwater .....                   | 60 |
| Sources and Ages of Groundwater .....                     | 65 |
| Stable Isotopes of Oxygen and Hydrogen .....              | 65 |
| Tritium and Carbon-14 Isotopes.....                       | 67 |
| Summary.....                                              | 68 |
| References Cited.....                                     | 70 |
| Appendix A1. Tables.....                                  | 76 |

## Figures

|                                                                                                                                                                                                                                                                                                                                                                    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A1. Map showing location of the Yucaipa groundwater subbasin, Yucaipa Valley watershed, and Upper Santa Ana Valley groundwater basin, San Bernardino and Riverside Counties, California .....                                                                                                                                                                      | 2  |
| A2. Map showing watersheds of the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                                                                                                                                                                                                                                | 3  |
| A3. Maps showing groundwater subareas within the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                                                                                                                                                                                   | 6  |
| A4. Map showing average annual precipitation, major and minor streams, and water course type, for the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                                                                                                                             | 8  |
| A5. Graph showing annual precipitation during 1947–2014 at climate station 47306 Redlands, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                                                                                                                                                                       | 9  |
| A6. Graphs showing measured annual mean streamflow and annual precipitation at San Bernardino County Flood Control District streamgages S3601A, 2915, S3601C, 2800, S3608A, and U.S. Geological Survey streamgages 11057000 and 11057500, in the Yucaipa groundwater subbasin and Yucaipa Valley watershed, San Bernardino and Riverside Counties, California..... | 11 |
| A7. Images showing land-use maps, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                                                                                                                                                                                                 | 14 |
| A8. Map showing geologic map of the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                                                                                                                                                                                                                              | 22 |
| A9. Map showing depth-to-crystalline basement and model faults from the three-dimensional hydrogeologic framework model, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                                                                                                          | 23 |
| A10. Maps showing hydrogeologic units and model faults used in the three-dimensional hydrogeologic framework model of the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                                                                                                                                        | 26 |
| A11. Images showing sections through the three-dimensional hydrogeologic framework model, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                                                                                                                                                                        | 27 |

|      |                                                                                                                                                                                                                                                                                                                                 |    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A12. | Graphs showing frequency of the percentage of coarse-, medium-, and fine-grained materials in hydrogeologic units used in the three-dimensional hydrogeologic framework model of the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                           | 29 |
| A13. | Map showing specific yield of the Yucaipa groundwater subbasin and the percentage of coarse-, medium-, and fine-grained materials in boreholes from within 100 feet above and below the groundwater elevation for January 1933 and fall 2006, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California ..... | 31 |
| A14. | Graphs showing estimates of safe yield to the Yucaipa groundwater subbasin and sustainable yield for groundwater subareas, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                                                                     | 34 |
| A15. | Map showing locations of anthropogenic recharge in the Yucaipa groundwater subbasin, and in the adjacent San Timoteo, San Bernardino and Rialto-Colton groundwater subbasins, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                  | 35 |
| A16. | Graph showing reported quantity of imported water to the Yucaipa groundwater subbasin from northern California, 2002–14, Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                                                                        | 36 |
| A17. | Maps showing estimated distribution of septic systems for 1972 and 2014, in the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                                                                                  | 38 |
| A18. | Graph showing wells with reported groundwater pumping information in the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                                                                                         | 41 |
| A19. | Map showing reported annual groundwater pumpage by subarea and total cumulative pumpage for the period 1947–2014 in the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                                                                         | 42 |
| A20. | Graph showing estimates of subsurface outflow across the western margin of the Yucaipa groundwater subbasin to the San Bernardino groundwater subbasin, for 1905–2014, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                         | 43 |
| A21. | Maps showing groundwater elevations in the Yucaipa groundwater subbasin for January 1933, 1967–68, June–November 2006, and June–November 2014.....                                                                                                                                                                              | 44 |
| A22. | Map showing location of selected wells with groundwater-level hydrographs, Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                                                                                       | 48 |
| A23. | Graphs showing measured groundwater elevations for selected wells in the Yucaipa groundwater subbasin, 1947–2014, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                                                                              | 49 |
| A24. | Graphs showing measured groundwater elevations for U.S. Geological Survey multiple-depth, monitoring-well sites YVWC, YVEP, YV6E, and YVDA, 1998–2014, Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                           | 56 |
| A25. | Map showing location of select wells with groundwater-quality data, Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.....                                                                                                                                              | 60 |

|                                                                                                                                                                                                                                                                                                                                                                 |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A26. Graphs showing major ion concentrations of groundwater from selected wells and imported water from northern California applied to the Wilson Creek spreading basins, Yucaipa groundwater subbasin, San Bernardino and Riverside Counties, California.....                                                                                                  | 62 |
| A27. Image of sections showing major ion concentrations of select wells as Stiff diagrams, hydrogeologic units and faults from the three-dimensional hydrogeologic framework model, and model layers of the Yucaipa Integrated Hydrologic Model, Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California..... | 63 |
| A28. Graph showing stable isotope composition of groundwater for select wells in the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                                                                                                                                            | 66 |

## Tables

|                                                                                                                                                                                                               |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A1. Estimated population of the Yucaipa groundwater subbasin for selected census years, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California .....                                     | 13 |
| A2. General land-use categories with corresponding LANDFIRE 140, GIRAS, NLCD, and LANDFIRE 105 vegetation codes and classes, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California..... | 18 |
| A3. General land use for 1972, 1992, 2001, and 2014, Yucaipa Valley watershed, San Bernardino County, California.....                                                                                         | 20 |

## Conversion Factors

U.S. customary units to International System of Units

| Multiply               | By       | To obtain                    |
|------------------------|----------|------------------------------|
| Length                 |          |                              |
| inch (in.)             | 2.54     | centimeter (cm)              |
| inch (in.)             | 25.4     | millimeter (mm)              |
| foot (ft)              | 0.3048   | meter (m)                    |
| mile (mi)              | 1.609    | kilometer (km)               |
| Area                   |          |                              |
| Acre                   | 4,047    | square meter ( $m^2$ )       |
| Acre                   | 0.4047   | hectare (ha)                 |
| Acre                   | 0.4047   | square hectometer ( $hm^2$ ) |
| Acre                   | 0.004047 | square kilometer ( $km^2$ )  |
| square mile ( $mi^2$ ) | 259.0    | hectare (ha)                 |
| square mile ( $mi^2$ ) | 2.590    | square kilometer ( $km^2$ )  |
| Volume                 |          |                              |
| acre-foot (acre-ft)    | 1,233    | cubic meter ( $m^3$ )        |
| acre-foot (acre-ft)    | 0.001233 | cubic hectometer ( $hm^3$ )  |

| Multiply                                                  | By       | To obtain                                                                    |
|-----------------------------------------------------------|----------|------------------------------------------------------------------------------|
| Flow rate                                                 |          |                                                                              |
| acre-foot per year (acre-ft/yr)                           | 1,233    | cubic meter per year (m <sup>3</sup> /yr)                                    |
| acre-foot per year (acre-ft/yr)                           | 0.001233 | cubic hectometer per year (hm <sup>3</sup> /yr)                              |
| cubic foot per second (ft <sup>3</sup> /s)                | 0.02832  | cubic meter per second (m <sup>3</sup> /s)                                   |
| gallon per minute (gal/min)                               | 0.06309  | liter per second (L/s)                                                       |
| gallon per day (gal/d)                                    | 0.003785 | cubic meter per day (m <sup>3</sup> /d)                                      |
| gallon per day per square foot ([gal/d]/ft <sup>2</sup> ) | 0.040746 | cubic meter per day per square meter ([m <sup>3</sup> /d])/km <sup>2</sup> ) |
| inch per year (in/yr)                                     | 25.4     | millimeter per year (mm/yr)                                                  |
| Radioactivity                                             |          |                                                                              |
| picocurie per liter (pCi/L)                               | 0.037    | becquerel per liter (Bq/L)                                                   |
| Specific capacity                                         |          |                                                                              |
| gallon per minute per foot ([gal/min]/ft)                 | 0.2070   | liter per second per meter ([L/s]/m)                                         |

International System of Units to U.S. customary units

| Multiply       | By       | To obtain                     |
|----------------|----------|-------------------------------|
| Length         |          |                               |
| meter (m)      | 3.281    | foot (ft)                     |
| kilometer (km) | 0.6214   | mile (mi)                     |
| kilometer (km) | 0.5400   | mile, nautical (nmi)          |
| meter (m)      | 1.094    | yard (yd)                     |
| Volume         |          |                               |
| liter (L)      | 33.81402 | ounce, fluid (fl. oz)         |
| liter (L)      | 2.113    | pint (pt)                     |
| liter (L)      | 1.057    | quart (qt)                    |
| liter (L)      | 0.2642   | gallon (gal)                  |
| liter (L)      | 61.02    | cubic inch (in <sup>3</sup> ) |

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

$$^{\circ}\text{F} = (1.8 \times ^{\circ}\text{C}) + 32.$$

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

$$^{\circ}\text{C} = (^{\circ}\text{F} - 32) / 1.8.$$

## Datum

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Elevation, as used in this report, refers to distance above the vertical datum.

## Supplemental Information

Concentrations of chemical constituents in water are given in either milligrams per liter (mg/L) or micrograms per liter ( $\mu\text{g}/\text{L}$ ).

Activities for radioactive constituents in water are given in picocuries per liter (pCi/L).

## Abbreviations

|                       |                                                             |
|-----------------------|-------------------------------------------------------------|
| $^{14}\text{C}$       | carbon-14                                                   |
| bls                   | below land surface                                          |
| DWR                   | California Department of Water Resources                    |
| ET                    | evapotranspiration                                          |
| GIRAS                 | Geographic Information Retrieval and Analysis System        |
| HFM                   | hydrogeologic framework model                               |
| ka                    | thousand years ago                                          |
| LANDFIRE              | Landscape Fire and Resource Management Planning Tools       |
| Ma                    | Mega-annum                                                  |
| MAR                   | Managed Aquifer Recharge                                    |
| NLCD                  | National Land Cover Database                                |
| PET                   | potential evapotranspiration                                |
| pmc                   | percent modern carbon                                       |
| PRISM                 | Parameter-Elevation Regressions on Independent Slopes Model |
| SBCFCD                | San Bernardino County Flood Control District                |
| SBVMWD                | San Bernardino Valley Municipal Water District              |
| SMWC                  | South Mesa Water Company                                    |
| TDS                   | Total dissolved solids                                      |
| USGS                  | U.S. Geological Survey                                      |
| WHWC                  | Western Heights Water Company                               |
| YIHM                  | Yucaipa Integrated Hydrologic Model                         |
| YVW                   | Yucaipa Valley watershed                                    |
| YVWD                  | Yucaipa Valley Water District                               |
| $\delta^{18}\text{O}$ | Delta oxygen-18                                             |
| $\delta^{2}\text{H}$  | Delta hydrogen-2                                            |

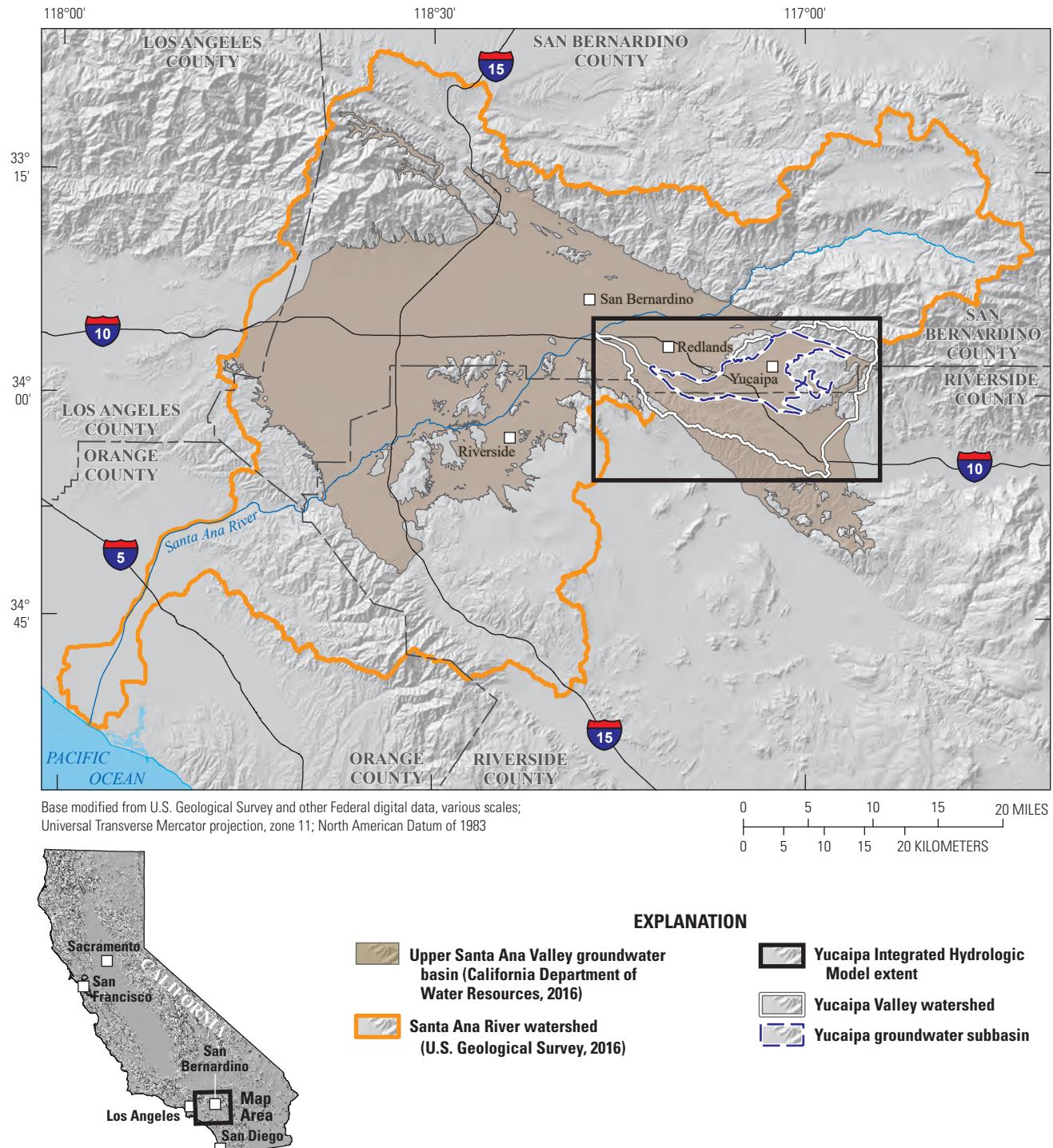
# Hydrogeologic Characterization of the Yucaipa Groundwater Subbasin

By Geoffrey Cromwell, John A. Engott, Ayman H. Alzraiee, Christina L. Stamos, Gregory O. Mendez, Meghan C. Dick, and Sandra Bond

## Introduction

Water management in the Santa Ana River watershed in San Bernardino and Riverside Counties in southern California (fig. A1) is complex with various water purveyors navigating geographic, geologic, hydrologic, and political challenges to provide a reliable water supply to stakeholders. As the population has increased throughout southern California, so has the demand for water. The Yucaipa groundwater subbasin (hereafter referred to as “Yucaipa subbasin”), one of nine groundwater subbasins in what the California Department of Water Resources (DWR) refers to as the Upper Santa Ana Valley groundwater basin (California Department of Water Resources, 2016; fig. A1; the DWR naming convention is used within this report), is no exception; steady population growth since the 1940s and changes in water use have forced local water purveyors to regularly adapt their water infrastructure. Water demands within the Yucaipa subbasin have historically been supplied by groundwater, but water imported via the California State Water Project has augmented the total water supply through direct use and through anthropogenic recharge at the Wilson Creek and Oak Glen Creek spreading basins since 2002. Overall demand for groundwater continues to rise, and local water managers are concerned that despite the influx of imported water, groundwater levels may decline to a point where producing water will be uneconomical, severely limiting the ability of local agencies to meet water-supply demand.

To better understand the hydrogeology and water resources in the Yucaipa subbasin, the U.S. Geological Survey (USGS) initiated a study in cooperation with the San Bernardino Valley Municipal Water District (SBVMWD) to characterize and model the hydrologic system of the Yucaipa subbasin and the surrounding Yucaipa Valley watershed (YVW; fig. A2). To gain this comprehensive understanding, a three-dimensional (3D) hydrogeologic framework model (HFM; Cromwell and Matti, 2022) was constructed to quantify the structure and extent of hydrogeologic units in the YVW; the hydrologic system was conceptualized and quantified (described in chapter A); and the Yucaipa Integrated Hydrological Model (YIHM; described in chapter B) was


developed to simulate the integrated surface-water and aquifer systems, including natural and anthropogenic recharge and discharge throughout the study area during 1947–2014.

## Previous Investigations

The earliest hydrologic investigation of the Yucaipa subbasin and surrounding area was by Hall (1888) and included maps showing regional irrigation and surface-water courses. More comprehensive hydrogeologic studies by Lippincott (1902a, b) and Mendenhall (1905, 1908) focused primarily on groundwater in the San Bernardino area (fig. A1). Groundwater storage capacity and groundwater flow and hydrogeology for 35 groundwater basins in southern California, including the Yucaipa subbasin, were estimated by Eckis (1934). The geology and hydrology of the Yucaipa subbasin were further refined by Burnham and Dutcher (1960), who established much of the foundational scientific understanding used in subsequent studies. Other hydrogeologic investigations focused on groundwater inflow and outflow of the Yucaipa subbasin (Gleason, 1947; Dutcher and Burnham, 1959; Dutcher and Fenzel, 1972), groundwater storage and artificial recharge (Moreland, 1970; Bloyd, 1971; Geoscience Support Services, Inc., 2015), groundwater levels and sustainable yield (Fletcher, 1976; Mann, 1986; Fox, 1987; Todd, 1988; Geoscience Support Services, Inc., 2014a), and water quality (Mendez and others, 2001).

Numerical simulations of the Yucaipa subbasin and adjacent aquifer systems include a simplified regional well-response model by Durbin (1974), hydrologic models of parts of the Yucaipa subbasin (Powers and Hardt, 1974; Geoscience Support Services, Inc., 2015), the San Timoteo groundwater subbasin (Rewis and others, 2006), and the San Bernardino groundwater subbasin (Durbin and Morgan, 1978; Hardt and Hutchinson, 1980; Hardt and Freckleton, 1987; Hughes, 1992; Danskin and others, 2006). Regional water-management studies are conducted regularly by the DWR (California Department of Water Resources, 1970, 1979, 1986), and SBVMWD (Water Systems Consulting, Inc., 2016).

## 2 Chapter A: Hydrogeologic Characterization of the Yucaipa Groundwater Subbasin



**Figure A1.** Location of the Yucaipa groundwater subbasin, Yucaipa Valley watershed, and Upper Santa Ana Valley groundwater basin, San Bernardino and Riverside Counties, California.

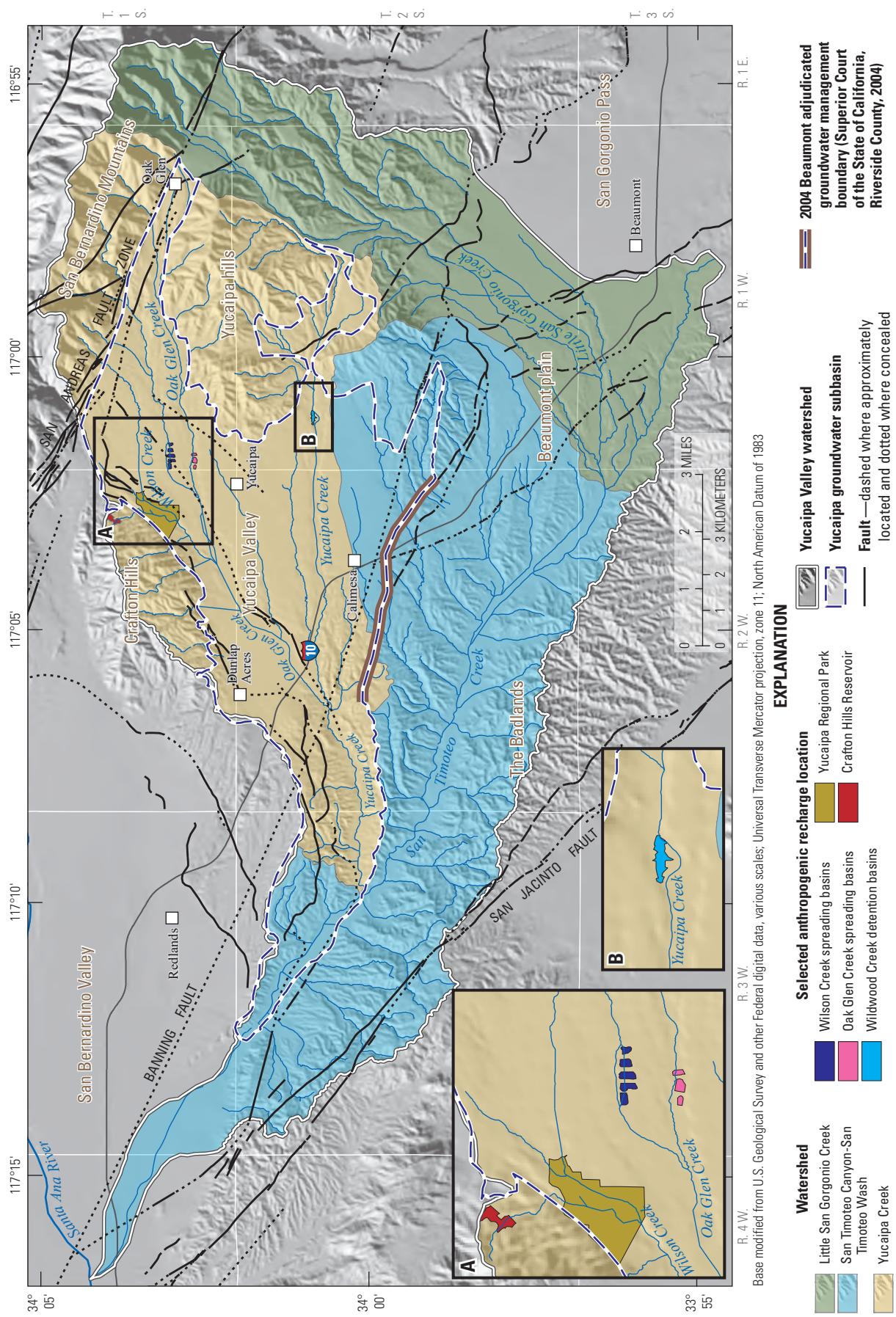



Figure A2. Watersheds of the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

Regional geologic and hydrogeologic mapping of the area was published originally by Eckis (1934) and then by Burnham and Dutcher (1960). A geologic mapping effort in the 1960s (with digital versions made available in the 2000s) provided baseline information for several later geologic maps throughout the greater Yucaipa subbasin area at various scales (Dibblee, 1964; Dibblee and Minch, 2003a, b, c, 2004). Revised geologic maps of the greater Yucaipa subbasin area have been published at various scales in the 2000s and 2010s (Morton and Matti, 2001; Matti and others, 2003a, b; Morton and Miller, 2006; Matti and others, 2015). A detailed map of surficial sediments and fault systems in the greater San Bernardino subbasin area was published by Matti and others (1985), which was then used to calculate the susceptibility of these sediments to earthquake-induced liquefaction (Matti and Carson, 1991). Geophysical investigations using gravity, aeromagnetic, and seismicity data established structural models of the Yucaipa subbasin (Mendez and others, 2016), the San Bernardino subbasin (Anderson and others, 2004), and the San Gorgonio Pass area south and east of the Yucaipa subbasin (Langenheim and others, 2005; [fig. A1](#)). Most recently, a hydrogeologic framework model (HFM) of the Yucaipa subbasin and the encompassing YVW was developed by Cromwell and Matti (2022); the HFM translates the physical subsurface hydrogeology into a numerical representation based on borehole data and other geologic and geophysical information.

## Purpose and Scope

The purpose of chapter A is to document historical hydrogeologic conditions and develop a conceptual understanding of the hydrologic system. The purpose of [chapter B](#) is to describe the development of the YIHM, including model calibration and simulation results. Historical climatic, geologic, and hydrologic data were compiled for 1947–2014 to evaluate hydrogeologic conditions in the Yucaipa subbasin and to guide development of the YIHM. Groundwater levels measured in wells were used to determine groundwater-level elevations. Groundwater-quality data were used to evaluate variations in areal and temporal groundwater quality, and sources of groundwater. The YIHM is simulated using the coupled Groundwater and Surface-water FLOW model (GSFLOW; Markstrom and others, 2008) and assesses water availability in the YVW in response to climatic stresses, land-use changes, and water-use changes from 1947 to 2014.

## Description of Study Area

The YVW is a semiarid inland valley that straddles southwestern San Bernardino County and northwestern Riverside County, about 12 miles (mi) southeast of the City of San Bernardino and about 75 mi east of Los Angeles,

California ([fig. A1](#)). Located in the upper part of the Santa Ana River watershed, the YVW is bounded on the north by the San Bernardino Mountains, on the southeast by the San Gorgonio Pass, on the south by the The Badlands (located just south of San Timoteo Canyon), on the northwest by the San Bernardino Valley, and on the west by the Crafton Hills ([fig. A2](#)). The Yucaipa subbasin is located within the YVW and encompasses 39 square miles, including the City of Yucaipa ([fig. A2](#)). The subbasin boundaries are geologic, structural, administrative, and topographic (California Department of Water Resources, 2016). Geologic boundaries identified by the California Department of Water Resources (2016) include both faults and geologic contacts. For example, the western and northern boundaries of the subbasin largely are fault controlled ([fig. A2](#)), as are groundwater subareas within the subbasin ([fig. A3](#)). By contrast, the eastern subbasin boundaries coincide with geologic contacts that develop between sedimentary basin-fill and adjacent uplands underlain by crystalline basement rocks. For example, the subbasin boundaries between the Yucaipa Valley and the low hills just east of the City of Yucaipa (hereafter referred to as “Yucaipa hills”; [fig. A2](#)). The southeastern and southern boundaries of the Yucaipa subbasin are based on multiple criteria (California Department of Water Resources, 2016, citing boundary locations adjudicated by the Superior Court of the State of California, Riverside County, 2004; [fig. A2](#)). To the southeast, the subbasin boundary coincides with an outcrop trace of the Banning fault; to the south the boundary coincides partly with a concealed trace of the Banning fault (as inferred by Burnham and Dutcher, 1960, p. 100; and Bloyd, 1971) and partly with physiographic features of the San Timoteo drainage ([fig. A2](#)).

The Yucaipa subbasin is the area of hydrogeologic interest for this study; therefore, most of the discussion and evaluation of the hydrogeologic system in this report focuses on the Yucaipa subbasin. The YVW, which encompasses the Yucaipa subbasin and its three source watersheds ([fig. A2](#)), is used as the active domain for the YIHM, which enables the YIHM to calculate surface and subsurface recharge across the entire subbasin. Therefore, some climatic, geologic, and hydrologic aspects of the YVW are discussed and evaluated in this report. The three watersheds that comprise the YVW are (1) Yucaipa Creek, (2) San Timoteo Canyon–San Timoteo Wash, and (3) Little San Gorgonio Creek (Watershed Boundary Dataset 12-digit hydrologic unit codes [HUC 12]; U.S. Geological Survey, 2016). The Little San Gorgonio Creek watershed does not coincide directly with the Yucaipa subbasin but rather drains from north to south and feeds into the San Timoteo Canyon–San Timoteo Wash watershed (U.S. Geological Survey, 2016). The San Timoteo Canyon–San Timoteo Wash watershed (named by the U.S Geological Survey, 2016) refers to San Timoteo Creek ([fig. A2](#)), in this report “San Timoteo Wash” is used in reference to the watershed with the same name, and “San Timoteo Creek” is used in reference to the stream.

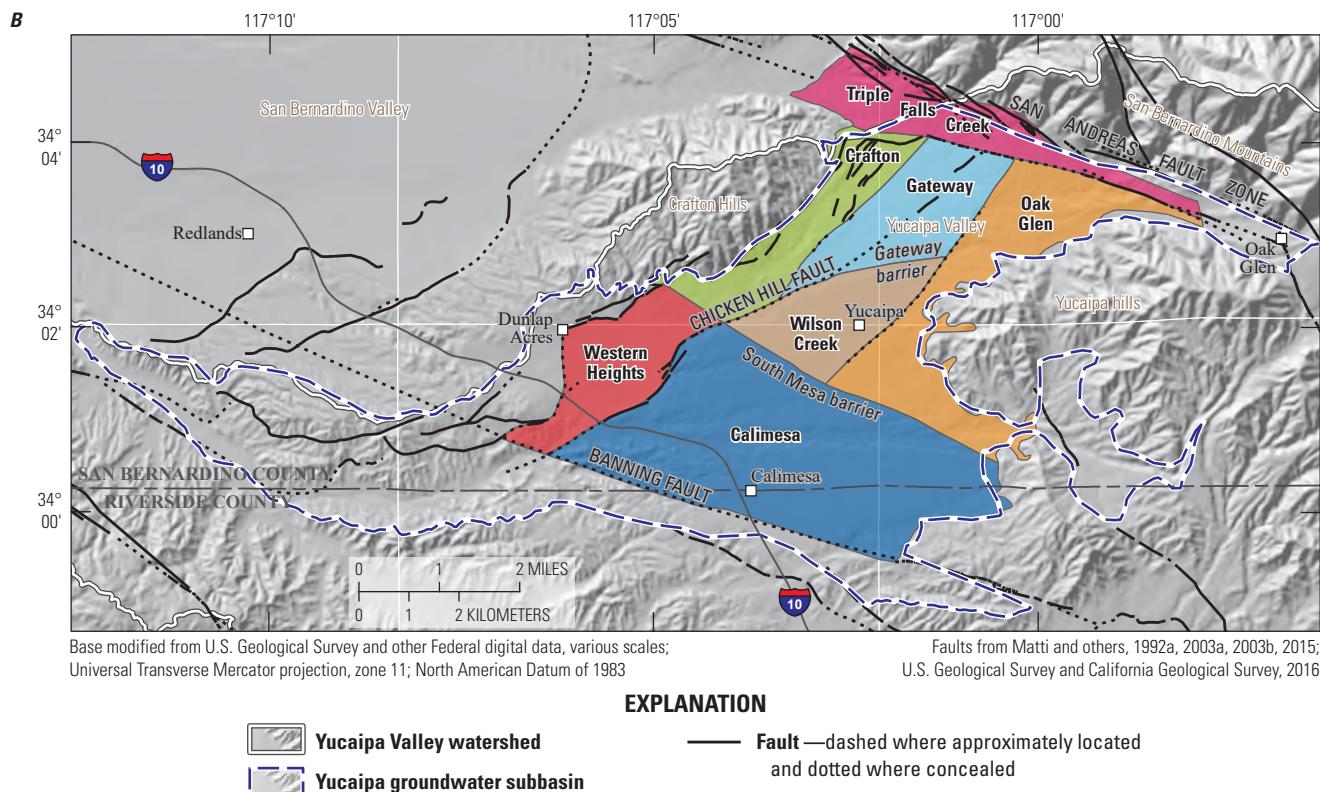
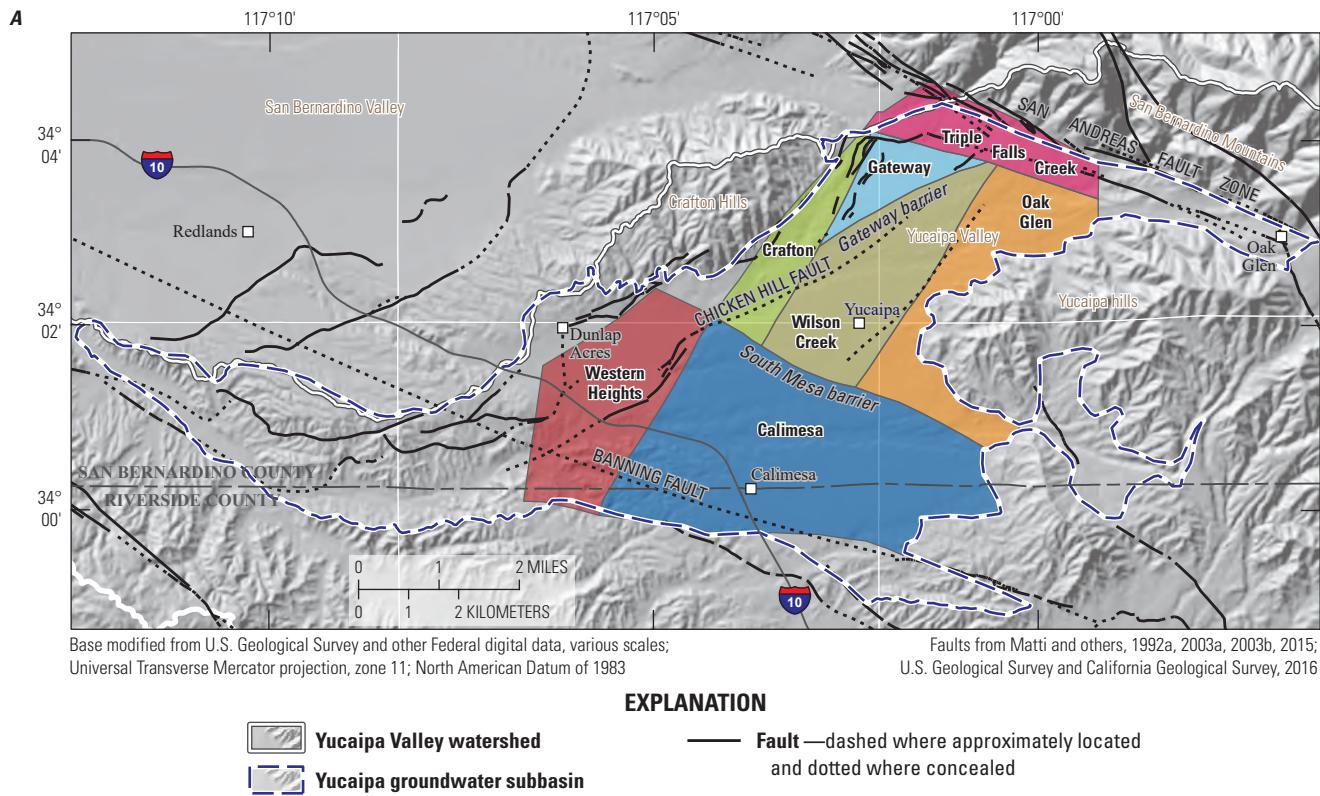
## Groundwater Subareas of the Yucaipa Groundwater Subbasin

The Yucaipa subbasin historically has been divided into smaller groundwater subareas (hereafter referred to as “subareas”) based on the location of faults and other barriers to groundwater flow. The Yucaipa subbasin was split into smaller subareas on the basis of groundwater levels that were offset across then-mapped faults and other unnamed faults, which collectively were referred to as “barriers to groundwater flow” by Burnham and Dutcher (1960). The extents and positions of the subareas were further refined by Moreland (1970; [fig. A3](#)).

Studies since Moreland (1970) have, in some cases, revised the locations, geologic history, and names of faults and barriers, although the structural and hydrogeologic interpretations remain generally consistent. Faults and subareas of the Yucaipa subbasin are shown in [figure A3](#). The mapped faults are from the Quaternary fault and fold database of the United States (U.S. Geological Survey and California Geological Survey, 2016), with the exception of the dotted where concealed Banning fault which is from the geologic maps of Matti and others (2003a, b, 2015). Subarea boundaries are from Moreland (1970; [fig. A3A](#)), Geoscience Support Services, Inc. (2014a; [fig. A3B](#)), and this study ([fig. A3C](#)). The structure with the most substantial revision since Moreland (1970) is the Banning fault, the southernmost groundwater-flow barrier defined by Moreland (1970; [fig. A3](#)). The Banning fault trace was initially mapped and interpreted as an active fault that formed the southern groundwater boundary of the Yucaipa subbasin by Burnham and Dutcher (1960) and was used by Moreland (1970) to define the southern extent of the Western Heights and Calimesa subareas. Later studies substantially revised the geologic history and location of the Banning fault (Matti and others, 1985; 1992a, b; 2003a, b, 2015; Morton and Miller, 2006); it was determined that the dotted where concealed part segment of the Banning fault that crosses the Yucaipa subbasin was of Miocene age, having ceased activity about 5 million years ago (Matti and others, 1992a; Cromwell and Matti, 2022). The revised mapped location of the dotted where concealed trace ([fig. A3](#)) is, in places, about 0.5 mi to the north of the location mapped by Burnham and Dutcher (1960). See Cromwell and Matti (2022) for a comprehensive discussion of the Banning fault in the Yucaipa subbasin.

All other faults and barriers used by Moreland (1970) to define subareas are, for the most part, structurally consistent with currently mapped fault locations, with the exception of the Gateway and South Mesa barriers. Neither barrier is associated with any currently mapped fault; however,

the inferred existence and location of these barriers were determined by Moreland (1970) from groundwater-level offsets from wells on either side of their inferred locations.



Recently, revised subarea boundaries were aligned with currently mapped faults (such as the Banning fault, see above) and a modified Gateway barrier location (which was adjusted south of that of Moreland, 1970; [fig. A3B](#)), by Geoscience Support Services, Inc. (2014a). For this current study, the subarea boundaries mapped by Moreland (1970) were retained, except where adjusted to align with currently mapped faults and to match the extent of the Yucaipa subbasin as defined by California Department of Water Resources (2016). As part of this effort, the number of subareas was expanded from 7 to 12. The five new subareas are, from east to west, Wildwood, Cherry Valley, Live Oak, Sand Canyon, and Smiley Heights. These new subareas were defined based on the boundaries of previously established subareas, the Yucaipa subbasin boundary, and current fault locations ([fig. A3C](#)).

## Climate

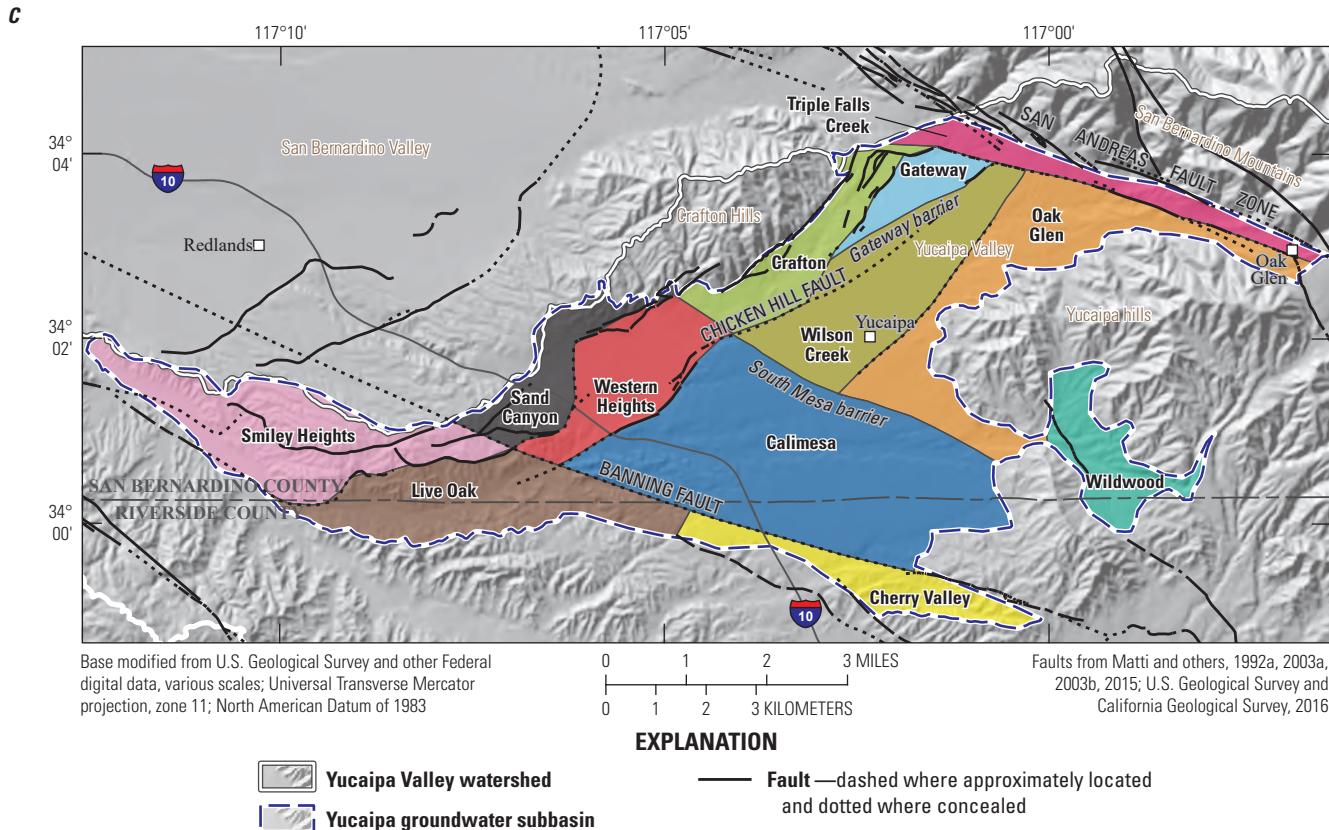
Elevation of the YVW ranges from less than 1,000 feet (ft) above the North American Vertical Datum of 1988 (NAVD 88) near the City of Redlands, to more than 8,000 ft above NAVD 88 in the San Bernardino Mountains ([fig. A2](#)). The Yucaipa Valley and the Beaumont plain are both at an elevation of about 2,500 ft above NAVD 88. Climate in the area is characterized by long, warm, dry summers and short, cool, wet winters. Temperatures in the Yucaipa Valley range from about 60 to 100 degrees Fahrenheit (°F) in the summer, and from about 40 to 70 °F in the winter (California Irrigation Management Information System, 2018). Precipitation mostly is in the form of rain, except in colder months when snow sometimes falls at higher elevations. The snowpack in the San Bernardino Mountains, if present, commonly lasts until April or May.

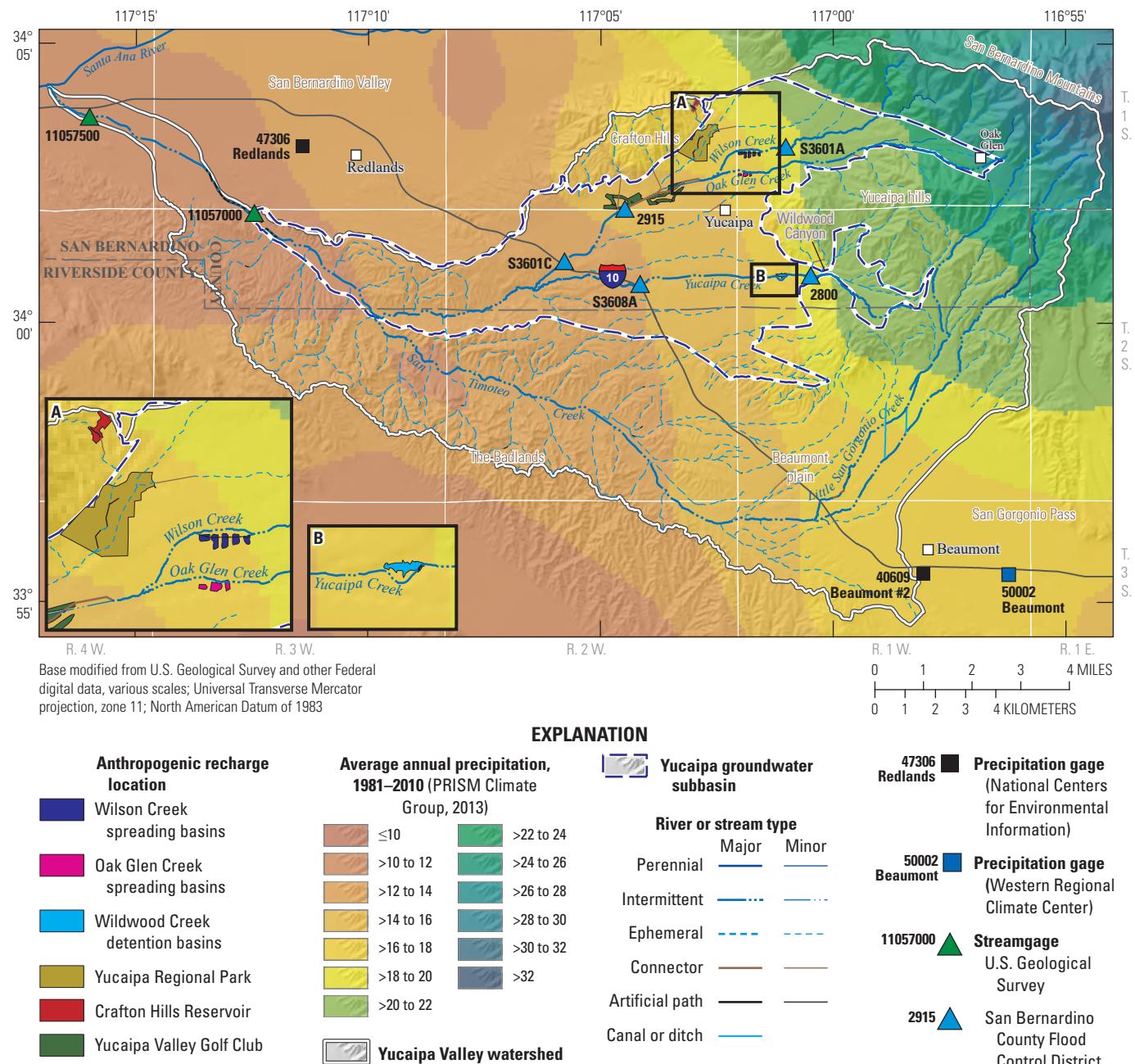
Climate data compiled for the YVW consists of daily values of precipitation and minimum and maximum temperature for the period of 1947–2014. Most daily precipitation and temperature data were retrieved from the National Centers for Environmental Information (NCEI; formerly the National Climatic Data Center; National Centers for Environmental Information, 2017) climate station 47306 Redlands and were supplemented with data from NCEI climate station 40609 Beaumont #2 and from Remote Automatic Weather station 50002 Beaumont of the Western Regional Climate Center (2017; [fig. A4](#)). Station 47306 Redlands had a nearly complete record from 1947 to 2014 (National Centers for Environmental Information, 2017); for the 24,837 days during 1947–2014, precipitation data were missing for only 388 days, and temperature data were missing for only 499 days.

## 6 Chapter A: Hydrogeologic Characterization of the Yucaipa Groundwater Subbasin

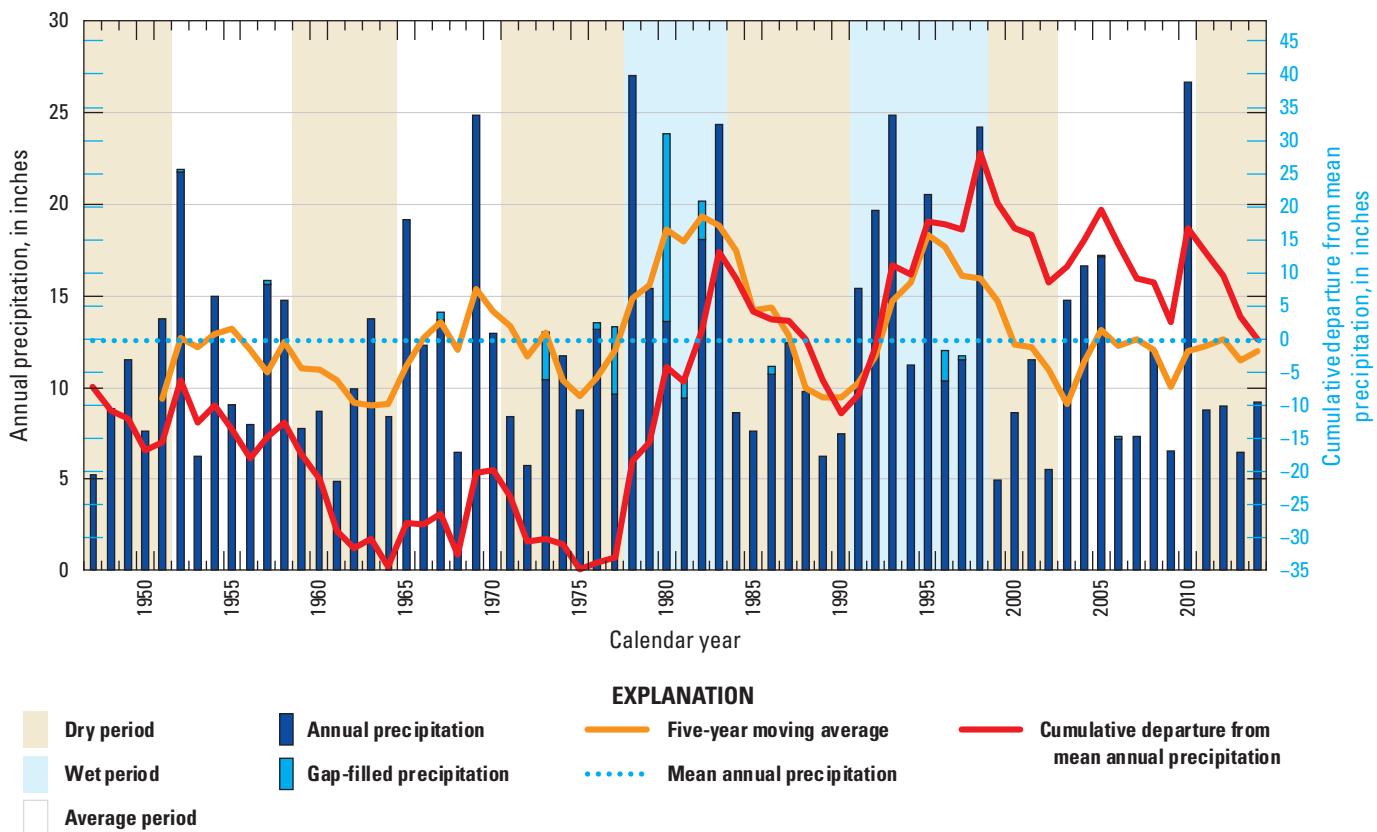


**Figure A3.** Groundwater subareas within the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California. A, Moreland (1970); B, Geoscience Support Services, Inc., (2014a); C, this study.





Figure A3.—Continued

Values for missing days were estimated using data from station 40609 Beaumont #2 and from station 50002 Beaumont when data were not available for 40609 Beaumont #2. Daily precipitation was estimated by calculating the ratio of mean monthly precipitation at station 47306 Redlands to stations 40609 Beaumont #2 and 50002 Beaumont and applying this ratio to precipitation for days when precipitation values at 47306 Redlands were missing. Similarly, gaps in temperature were estimated by calculating the difference in mean monthly minimum and maximum temperature between station 47306 Redlands, station 40609 Beaumont #2, or station 50002 Beaumont, if necessary, and applying this difference to temperatures for days in which temperature values at 47306 Redlands were missing.


Climate variability from 1947 to 2014 in the YVW was examined using the observed precipitation at 47306 Redlands with missing data estimated using the approach previously described (fig. A5). Average annual precipitation for the

YVW during 1947–2014 was about 12.5 inches per year (in/yr; fig. A5). Cumulative departure from the mean and the 5-year moving average of precipitation were used to help define climate periods. Dry periods were 1947–51, 1959–64, 1971–77, 1984–90, 1999–2002, and 2011–16. Wet periods were 1978–83 and 1991–98. Periods of both wet and dry years were 1952–58, 1965–70, and 2003–10.

Estimated precipitation ranged from about 10 in/yr in the San Bernardino Valley to about 18 in/yr in the Yucaipa Valley and Beaumont plain to more than 30 in/yr in the San Bernardino Mountains above the Oak Glen subarea (fig. A4). Precipitation estimates were from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) precipitation and air temperature database (PRISM Climate Group, 2013) which provides monthly maps at an 800-meter spatial resolution. PRISM uses measured precipitation data and spatially distributes precipitation by using regressions to account for orographic effects.



**Figure A4.** Average annual precipitation (PRISM Climate Group, 2013), major and minor streams, and water course type, for the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.



**Figure A5.** Annual precipitation during 1947–2014 at climate station 47306 Redlands (National Centers for Environmental Information, 2017), Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

## Surface-Water Hydrology

Surface-water flow in the Yucaipa subbasin occurs primarily during the wet season in intermittent, or ephemeral, streams. Surface water generally flows from the San Bernardino Mountains and Yucaipa hills in the north and east southwest toward San Timoteo Creek and the Santa Ana River before eventually discharging in the Pacific Ocean about 60 mi southwest of the Yucaipa subbasin (figs. A1, A4). Surface-water monitoring on streams in the Yucaipa subbasin provides estimates of streamflow and surface-water discharge.

## Streams and Water Bodies

Most of the streams in the Yucaipa subbasin are intermittent, or ephemeral (generally flowing only during the wet season), except in the upper reaches of Wilson Creek and Oak Glen Creek, where perennial flow occurs in the San Bernardino Mountains (fig. A4; U.S. Geological Survey, 2016). The three major streams that traverse the Yucaipa subbasin are Wilson Creek, Oak Glen Creek, and Yucaipa Creek. When water is present, these streams originate from headwaters in the north and northeast and flow west-southwest

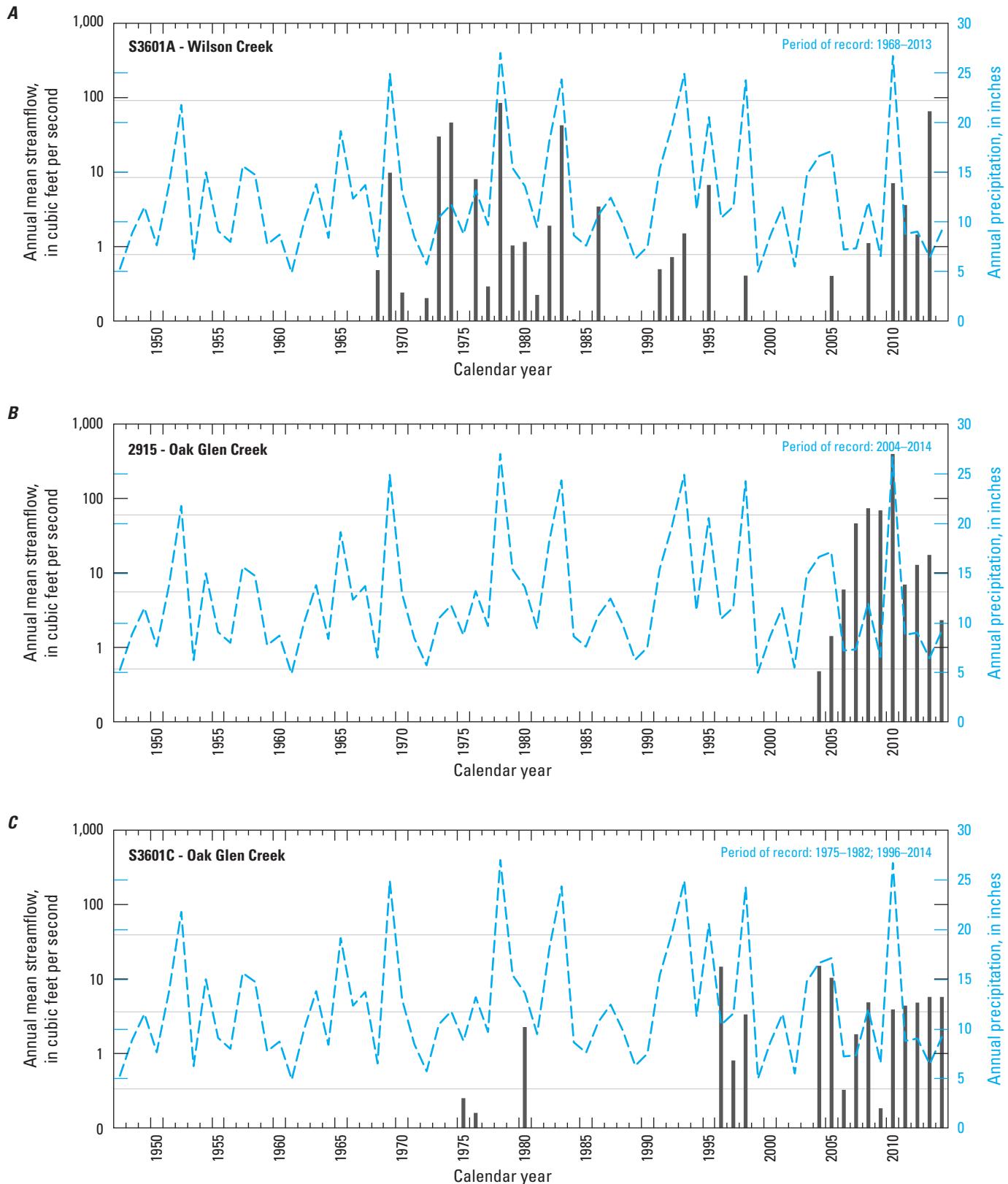
across the subbasin and eventually drain out of the subbasin along San Timoteo Creek to the Santa Ana River about 5 mi west of the City of Redlands (fig. A4).

Wilson Creek and Oak Glen Creek (fig. A4) both originate in the San Bernardino Mountains, merge in the Wilson Creek subarea (fig. A3) and continue as Oak Glen Creek. Yucaipa Creek originates in the Yucaipa hills and flows west-southwest across the Calimesa subarea where it merges with Oak Glen Creek. Yucaipa Creek then continues its course westward, where it joins San Timoteo Creek and exits the YVW. These major streams generally only flow during precipitation events that generate runoff and are ephemeral; they are fed mostly by smaller, minor, ephemeral streams (fig. A4). In some places, the streams are routed along lined connectors, artificial paths, canals, and ditches (fig. A4). Two minor streams with perennial flow feed into Oak Glen Creek and Wilson Creek from the San Bernardino Mountains. Small springs were present historically along the Chicken Hill fault in the Western Heights subarea (fig. A3; Moreland, 1970); these springs are no longer flowing because of lowering of the groundwater table. Anthropogenic water bodies in and adjacent to the Yucaipa subbasin include the Crafton Hills Reservoir and holding ponds in the Yucaipa Regional Park (fig. A2). Other anthropogenic surface-water structures include the Wilson Creek and Oak Glen Creek spreading basins and

the Wildwood Creek detention basins, which were developed as flood-control structures (fig. A2); the Wilson Creek and Oak Glen Creek spreading basins are also used for managed aquifer recharge (MAR).

## Surface-Water Monitoring

Streamflow along Wilson Creek, Oak Glen Creek, Yucaipa Creek, and San Timoteo Creek have been historically, or are presently, monitored by the San Bernardino County Flood Control District (SBCFCD) or the USGS at seven streamgages (figs. A4, A6). The variable streamflow measured at different points along the streams (fig. A6) indicate (1) variable channel types along the reaches, which in various locations cause streamflow infiltration to the unsaturated zone and little to no infiltration where connectors are lined, (2) the influence of increased runoff from anthropogenic sources, and (3) measurement uncertainty. The five streamgages operated by SBCFCD (S3601A, 2915, S3601C, 2800, and S3608A; San Bernardino Flood Control District, 2018) were designed to measure high volumes of streamflow during flood conditions; therefore, the measured rates of discharge during low streamflow conditions may be less reliable (San Bernardino County Flood Control District, written commun., 2019). The two streamgages operated by the USGS (11057000 and 11057500) were designed to measure volumes of streamflow from low-flow to high-flow conditions (U.S. Geological Survey, 2018); therefore, the quality of the reported data is more reliable.


Streamflow in Wilson Creek was recorded at the SBCFCD streamgage S3601A from 1968 to 2013 (figs. A4, A6A); this streamgage is about 0.5 mi upstream from the Wilson Creek spreading basins and about 2.5 mi upstream from the confluence of Wilson Creek and Oak Glen Creek. Measured annual mean streamflows at streamgage S3601A ranged from about 0.1 to 85 cubic feet per second ( $\text{ft}^3/\text{s}$ ). Measured streamflow generally was intermittent, often flowing for only a few days at a time during storm events, which is consistent with ephemeral streams in the Yucaipa Valley area where observed flow frequently occurs as short-lived, flash-flood flow events (Moreland, 1970). Patterns of annual mean streamflow generally reflect the temporal and spatial patterns of measured annual precipitation throughout the period of record, except for 1972–74, 1976, and 2011–13.

Streamflow in Oak Glen Creek has been recorded at the SBCFCD streamgages 2915 and S3601C (figs. A4, A6B, A6C). Streamgage 2915 is located about 2 mi south of the confluence with Wilson Creek, and has been operating since 2004. The upper reaches of Oak Glen Creek usually flow only in response to storm events and during winter months, but flow occasionally continues into the summer months

during particularly wet years (Moreland, 1970). Streamgage S3601C is located about 1.5 mi downstream from streamgage 2915 and about 0.8 mi upstream from the confluence with Yucaipa Creek; streamgage S3601C was in operation from 1975 to 1982 and from 1996 to 2014. Annual mean streamflow generally was lower at station S601C than at station 2915 for similar periods: Oak Glen Creek was channelized but unlined (as observed from Google Earth, imagery date December 2, 2018, Google, Landsat/Copernicus, 2021) between the two stations, so the difference in mean streamflow could be the result of streamflow losses from streambed infiltration. Measured streamflow records at stations 2915 and S3601C show near-perennial annual streamflows with annual mean discharge ranging from about 0.5 to 400  $\text{ft}^3/\text{s}$  and 0.02 to 15  $\text{ft}^3/\text{s}$ , respectively. Station 2915 was located immediately downstream from a lined, underground reach of Oak Glen Creek, near the Yucaipa Valley Golf Club, the Yucaipa Regional Park, and a residential neighborhood located between the golf club and the park (fig. A4); irrigation runoff and urban runoff may contribute to streamflow at this station.

Streamflow in Yucaipa Creek has been recorded at the SBCFCD streamgages 2800 and S3608A (figs. A4, A6D, A6E). Station 2800 is located at the mouth of Wildwood Canyon, about 3.5 mi upstream from station S3608A, and was operated from 1999 through 2014. Station S3608A is located about 2.25 mi upstream from the confluence with Oak Glen Creek and was operated from 1975 to 1977, and from 1996 to 2014. Annual mean streamflow at streamgages 2800 and S3608A ranged from about 0.004 to 221 and 0.1 to 115  $\text{ft}^3/\text{s}$ , respectively. Patterns of annual mean streamflow at both stations generally were inconsistent with patterns of annual precipitation for the period of record.

Streamflow in San Timoteo Creek has been recorded at USGS streamgages 11057000 and 11057500 (figs. A4, A6F, A6G). Streamgage 11057000 was about 3.3 miles downstream from the confluence with Yucaipa Creek and was operated from 1947 to 1979, after which time the streamgage was discontinued and removed. Streamgage 11057500 is about 4 mi downstream from streamgage 11057000 and about 1 mi upstream from the confluence of San Timoteo Creek and the Santa Ana River. Streamgage 11057500 was in operation from 1954 to 1965, 1968 to 1975, and 1979 to 2014. Annual mean streamflow records at streamgages 11057000 and 11057500 ranged from about 0.04 to 2 and 0.8 to 20  $\text{ft}^3/\text{s}$ , respectively. Most streamflow at these streamgages occur between the months of November and May in response to winter and spring storms. Annual mean streamflow at station 11057500 is inconsistent with patterns of precipitation because urban runoff from the City of Redlands flows into the lined, channelized section of San Timoteo Creek upstream from the streamgage (Alzraiee and others, 2022).



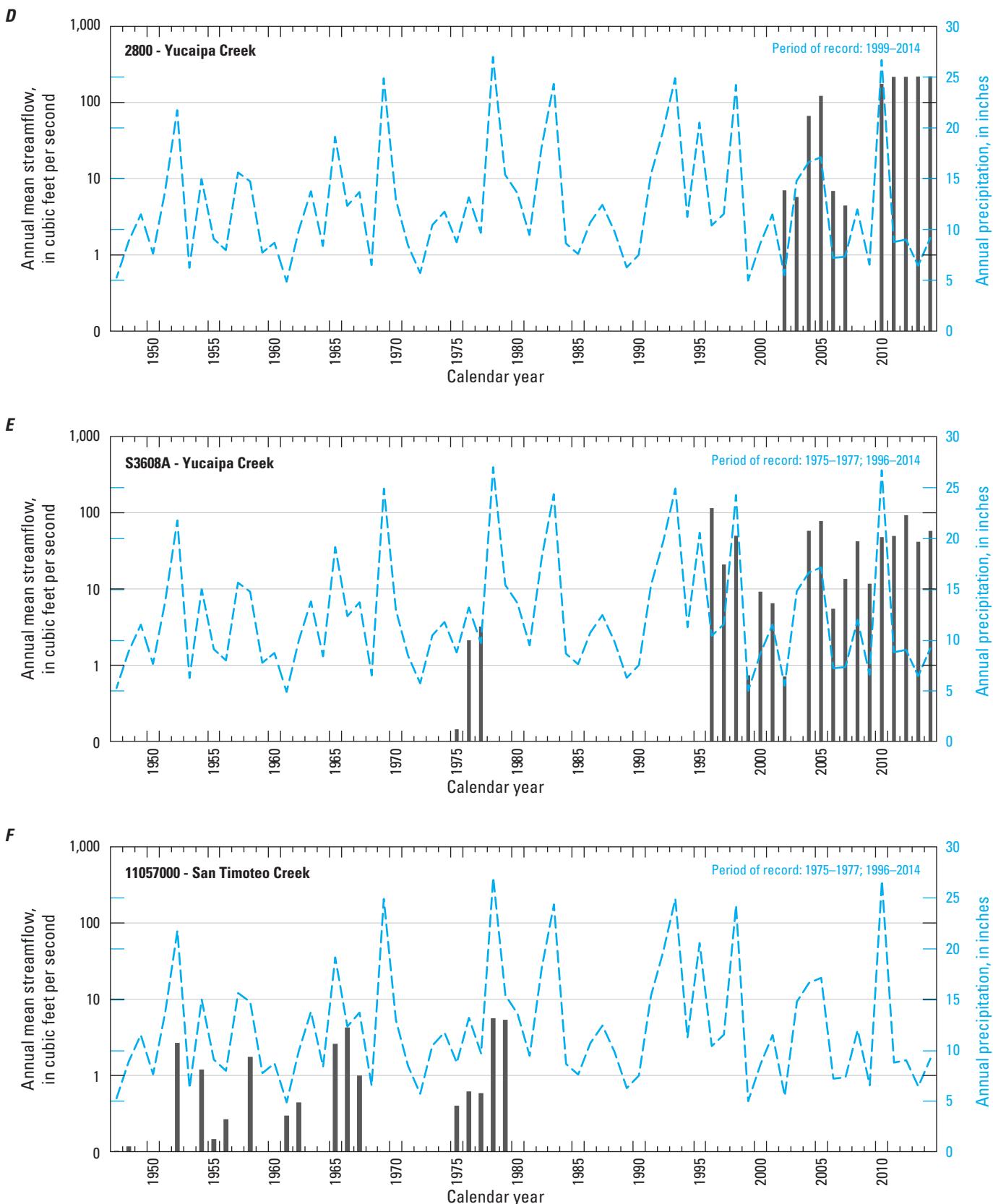



Figure A6.—Continued

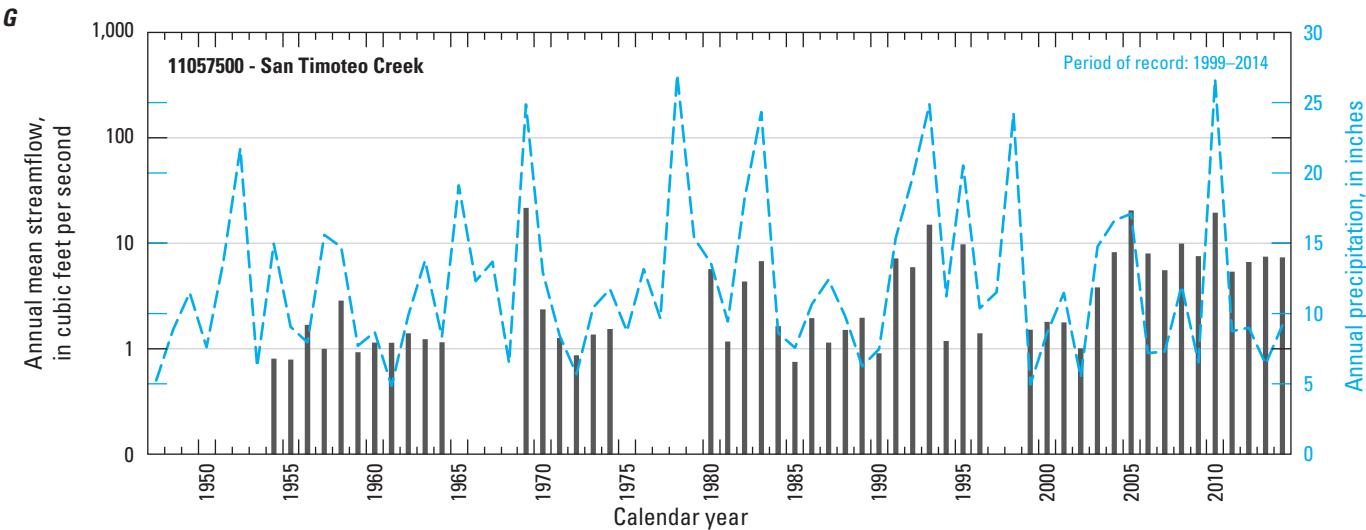
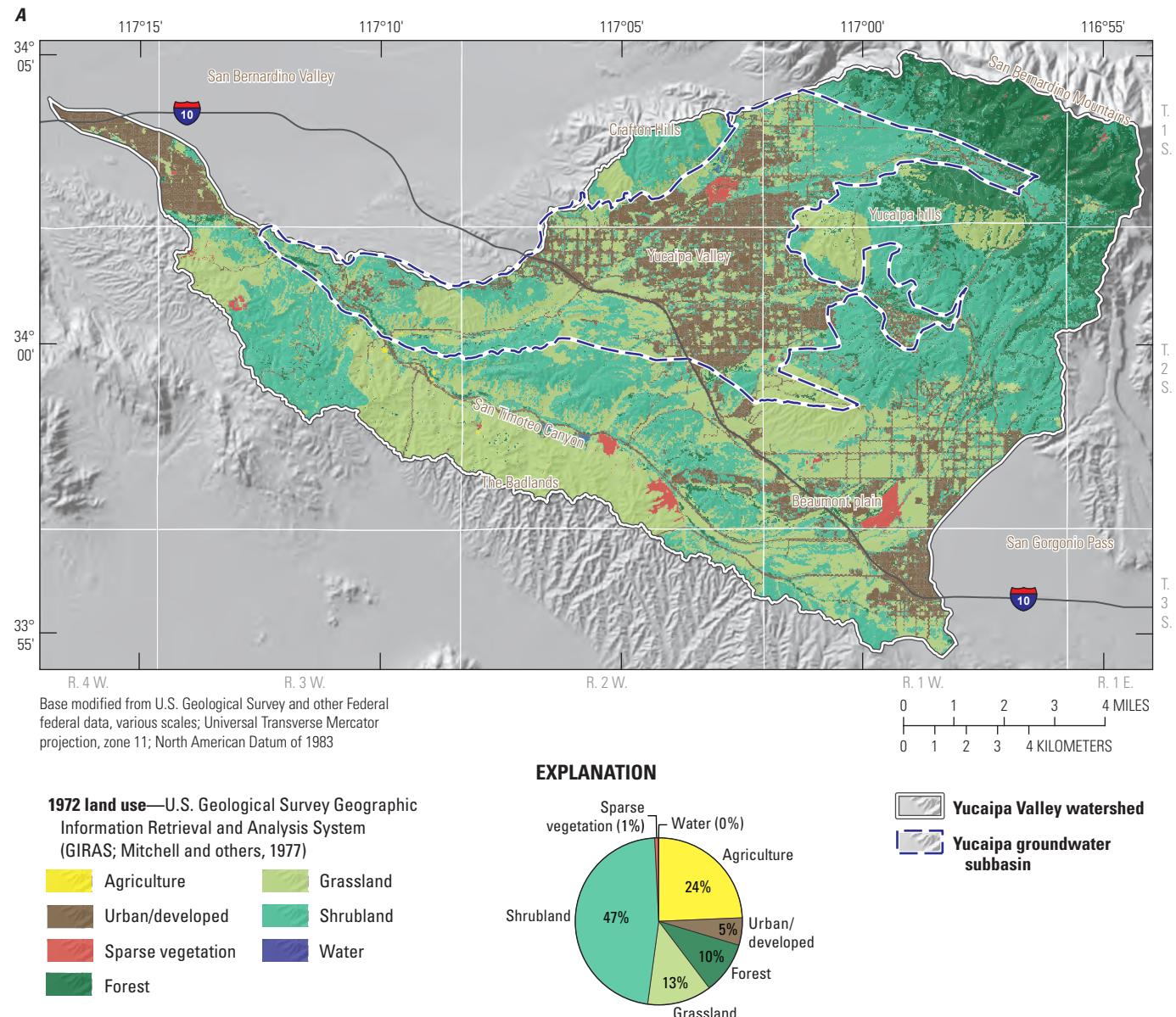



Figure A6.—Continued

## Land Use


The Yucaipa Valley was inhabited originally by Native Americans; the word “Yucaipa” is a variant of several names associated with the Native American Tribes of this area and refers to “wet lands” (Yucaipa Valley Water District, 2010). Small springs that discharged along the Chicken Hill fault and artesian conditions that created peaty areas in the Western Heights subarea may have contributed to the perception of the Yucaipa Valley having wetlands (Moreland, 1970). European settlement began in this area by the late 1700s, and the region around San Bernardino was controlled by Spanish mission churches that were transitioned to Spanish and later Mexican ranchos until the mid-1800s (Yucaipa Valley Water District, 2010). Grazing and agricultural development grew from the late 1700s through the 1800s, with irrigation infrastructure that brought water from perennial streams to drier parts of the Yucaipa Valley (Yucaipa Valley Water District, 2010). By the early 1900s, farming interests were mainly fruit orchards, and the area became synonymous with red apples (Mendez and others, 2001). Beginning in the 1940s, the area became a popular retirement destination and bedroom community for the greater Los Angeles metropolitan area. As the population increased (table A1) and more of the area was urbanized, agricultural lands shifted away from the Yucaipa Valley and into the surrounding mountains and foothills. Since about 1990, most of the agricultural lands have been replaced with planned residential developments and natural lands, although apple growing is still popular on the lower slopes of the San Bernardino Mountains, particularly along Oak Glen Creek (Mendez and others, 2001).

Land-use maps of the Yucaipa subbasin and the encompassing YVW were compiled for 1972, 1992, 2001, and 2014; the maps show changes in the use of developed,

**Table A1.** Estimated population of the Yucaipa groundwater subbasin for selected census years, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

| Census year | Estimated population |
|-------------|----------------------|
| 1950        | 539                  |
| 1970        | 21,460               |
| 1990        | 36,869               |
| 2000        | 45,958               |
| 2010        | 56,473               |

agricultural, and natural lands (figs. A7A–D). The sources of data for each land-use map are (1) for 1972, the USGS Geographic Information Retrieval and Analysis System (GIRAS; Mitchell and others, 1977), (2) for 1992, the National Land Cover Database (NLCD; Vogelmann and others, 2001), (3) for 2001, Landscape Fire and Resource Management Planning Tools (LANDFIRE) version 105 (LANDFIRE 105; LANDFIRE, 2001), and (4) for 2014, LANDFIRE version 140 (LANDFIRE 140; LANDFIRE, 2014). A consistent set of land-use categories was established by reclassifying the GIRAS, NLCD, and LANDFIRE 105 datasets to match the LANDFIRE 140 vegetation coding scheme and grouping these vegetation codes into general categories (table A2). The resolution of each dataset was maintained during reclassification, except for developed land categories in the 1972 GIRAS dataset. Developed lands can have a substantial impact on water-budget estimates; therefore, areas classified as developed lands in the relatively low-resolution GIRAS dataset were replaced with the coinciding land cover from the higher-resolution LANDFIRE 105 dataset. The resulting land-use maps for each year are shown in figures A7A–D, and summary statistics are listed in table A3.



**Figure A7.** Land-use maps, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California: A, 1972 (Mitchell and others, 1977); B, 1992 (Vogelmann and others, 2001); C, 2001 (LANDFIRE, 2001); and D, 2014 (LANDFIRE, 2014).

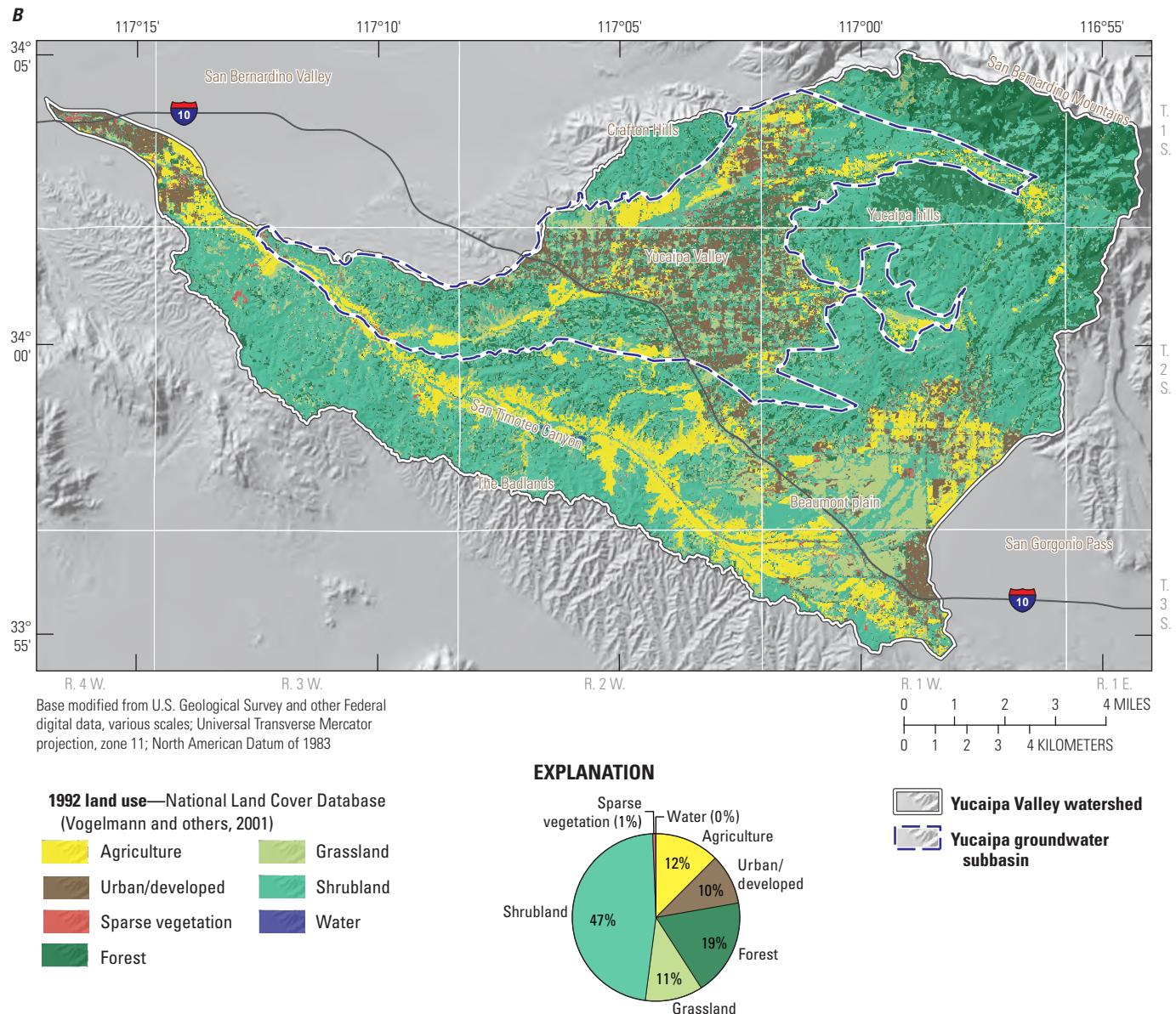



Figure A7.—Continued

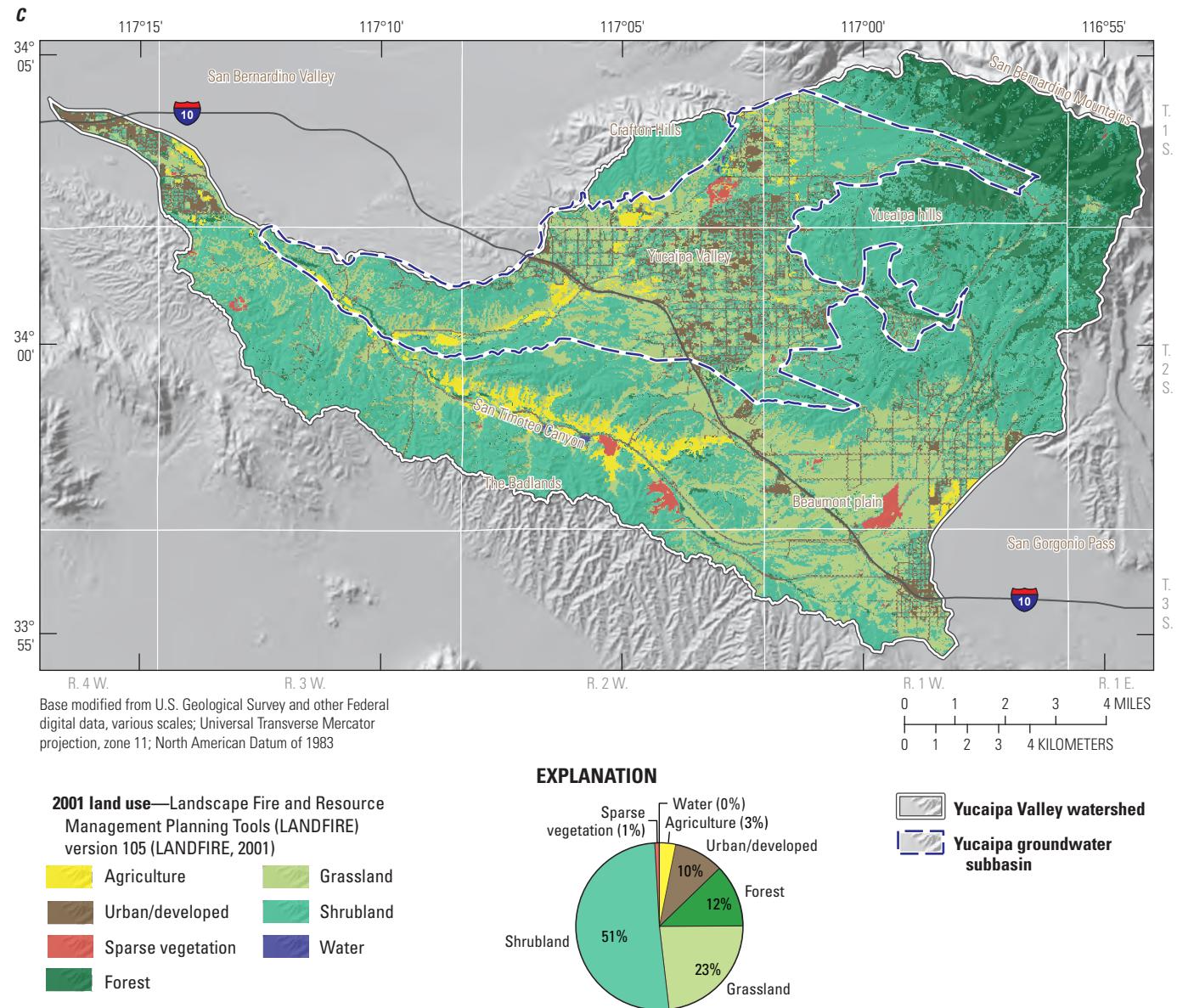



Figure A7.—Continued

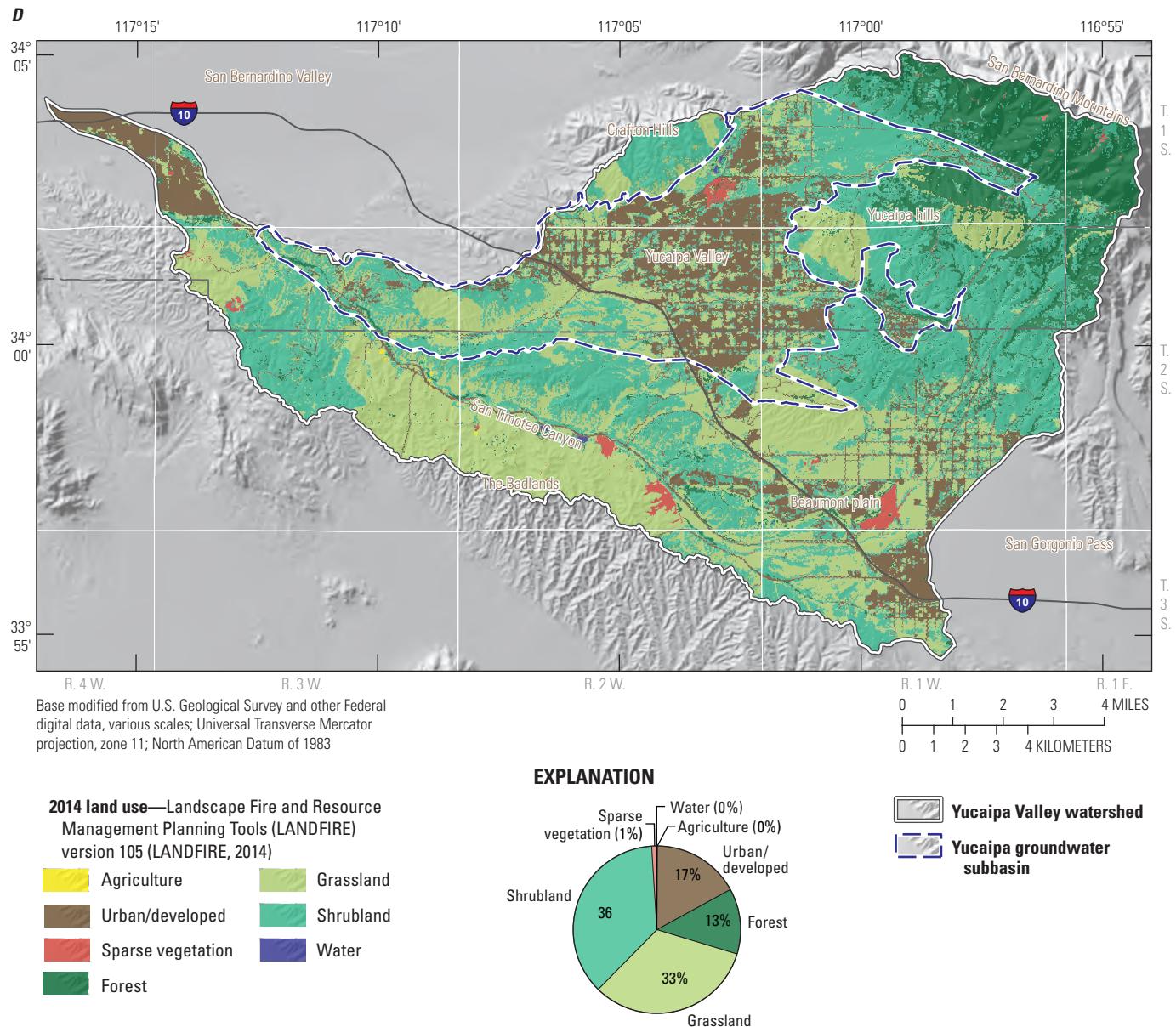



Figure A7.—Continued

**Table A2.** General land-use categories with corresponding LANDFIRE 140 (LANDFIRE, 2014), GIRAS (Mitchell and others, 1977), NLCD (Vogelmann and others, 2001), and LANDFIRE 105 (LANDFIRE, 2001) vegetation codes and classes, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

[LANDFIRE 140, Landscape Fire and Resource Management Planning Tools version 140; GIRAS, Geographic Information Retrieval and Analysis System; NLCD, National Land Cover Database; LANDFIRE 105, Landscape Fire and Resource Management Planning Tools version 105; —, not applicable]

| LANDFIRE<br>140 code | GIRAS class                                  | NLCD class                           | LANDFIRE<br>105 code |
|----------------------|----------------------------------------------|--------------------------------------|----------------------|
| Agriculture          |                                              |                                      |                      |
| 3980                 | Orchards, Groves, Vineyards, Nurseries       | Orchards/Vineyards/Other             | —                    |
| 3984                 | —                                            | Row Crops                            | 82                   |
| 3985                 | —                                            | —                                    | 65                   |
| 3986                 | —                                            | Fallow                               | —                    |
| 3987                 | Cropland and Pasture                         | Pasture/Hay                          | 81                   |
| 3988                 | —                                            | Small Grains                         | —                    |
| Developed            |                                              |                                      |                      |
| 3296                 | Mixed Urban or Built-up Land                 | Low Intensity Residential            | —                    |
| —                    | Other Urban or Built-up Land                 | —                                    | —                    |
| 3297                 | Residential                                  | High Intensity Residential           | 23                   |
| 3298                 | Commerical and Services                      | Commercial/Industrial/Transportation | 24                   |
| —                    | Industrial                                   | —                                    | —                    |
| —                    | Transportation, Communications and Utilities | —                                    | —                    |
| 3299                 | —                                            | —                                    | 25                   |
| Forest               |                                              |                                      |                      |
| 3014                 | Evergreen Forest Land                        | Evergreen Forest                     | 2014                 |
| 3019                 | —                                            | —                                    | 2019                 |
| 3027                 | —                                            | —                                    | 2027                 |
| 3028                 | —                                            | —                                    | 2028                 |
| 3029                 | —                                            | —                                    | 2029                 |
| 3031                 | —                                            | —                                    | 2031                 |
| 3034                 | —                                            | —                                    | 2034                 |
| 3113                 | —                                            | —                                    | 2113                 |
| 3118                 | Mixed Forest Land                            | Deciduous Forest                     | 2118                 |
| —                    | —                                            | Mixed Forest                         | —                    |
| 3152                 | —                                            | —                                    | 2152                 |
| 3155                 | —                                            | —                                    | 2155                 |
| 3536                 | —                                            | Woody Wetlands                       | —                    |
| 3910                 | —                                            | —                                    | 13                   |
| 3911                 | —                                            | —                                    | 14                   |
| 3912                 | —                                            | —                                    | 15                   |
| Grassland            |                                              |                                      |                      |
| 3129                 | —                                            | —                                    | 75                   |
| —                    | —                                            | —                                    | 76                   |
| —                    | —                                            | —                                    | 2129                 |
| 3181                 | —                                            | —                                    | 2181                 |
| 3184                 | Herbaceous Rangeland                         | Grassland/Herbaceous                 | 2184                 |
| —                    | Mixed Rangeland                              | —                                    | —                    |

**Table A2.** General land-use categories with corresponding LANDFIRE 140 (LANDFIRE, 2014), GIRAS (Mitchell and others, 1977), NLCD (Vogelmann and others, 2001), and LANDFIRE 105 (LANDFIRE, 2001) vegetation codes and classes, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.—Continued

[LANDFIRE 140, Landscape Fire and Resource Management Planning Tools version 140; GIRAS, Geographic Information Retrieval and Analysis System; NLCD, National Land Cover Database; LANDFIRE 105, Landscape Fire and Resource Management Planning Tools version 105; —, not applicable]

| LANDFIRE<br>140 code | GIRAS class                    | NLCD class                   | LANDFIRE<br>105 code |
|----------------------|--------------------------------|------------------------------|----------------------|
| Grassland—Continued  |                                |                              |                      |
| 3538                 | —                              | Emergent Herbaceous Wetlands | —                    |
| 3913                 | —                              | Urban/Recreational Grasses   | 16                   |
| 3949                 | Confined Feeding Operations    | —                            | —                    |
| Shrubland            |                                |                              |                      |
| 3082                 | —                              | —                            | 2082                 |
| 3087                 | —                              | —                            | 2087                 |
| 3088                 | —                              | —                            | 2088                 |
| 3092                 | —                              | —                            | 2092                 |
| 3097                 | Shrub and Brush Rangeland      | Shrubland                    | 2097                 |
| 3098                 | —                              | —                            | 2098                 |
| 3099                 | —                              | —                            | 2099                 |
| 3105                 | —                              | —                            | 2105                 |
| 3108                 | —                              | —                            | 2108                 |
| 3110                 | —                              | —                            | 2110                 |
| 3914                 | —                              | —                            | 17                   |
| Sparse vegetation    |                                |                              |                      |
| 3002                 | —                              | —                            | 2002                 |
| 3004                 | —                              | —                            | 2004                 |
| 3294                 | Sandy Areas Other than Beaches | Bare Rock/Sand/Clay          | 31                   |
| —                    | Transitional Areas             | —                            | —                    |
| Sater                |                                |                              |                      |
| 3292                 | Reservoirs                     | Open Water                   | 11                   |

## 1972 Land Use

In 1972, 5 percent of the YVW was developed and concentrated in the Yucaipa Valley, in the Beaumont plain, and in the San Bernardino Valley west of the City of Redlands (fig. A7A). Agricultural lands made up 24 percent of the YVW and were distributed throughout the YVW in the northern part of Yucaipa Valley, in the Beaumont plain, and along major and minor streams. Natural lands (forest, grassland, shrubland, and sparse vegetation) together comprised the remaining 70 percent of the YVW and were primarily located in the mountains and highland areas.

## 1992 Land Use

By 1992, the percentage of developed lands had increased to 10 percent of the YVW; developed lands had expanded out from the city centers in the Yucaipa Valley and the Beaumont plain and had expanded at the western end of the YVW toward the City of Redlands (fig. A7B). The percentage of agricultural lands had decreased to 12 percent of the YVW; agricultural lands maintained a similar distribution as was observed in 1972 but shrank by half in total acreage and were replaced by both developed and natural lands, primarily forest. The percentage of natural lands had increased to 78 percent of the YVW; natural lands increased in northern Yucaipa Valley and the Beaumont plain, primarily replacing agricultural lands.

**Table A3.** General land use for 1972, 1992, 2001, and 2014, Yucaipa Valley watershed, San Bernardino County, California.[See table A2 for general land-use categories. Abbreviation: mi<sup>2</sup>, square mile]

| General land-use category | 1972              |                 |          | 1992              |                 |          | 2001              |                 |          | 2014              |                 |          |
|---------------------------|-------------------|-----------------|----------|-------------------|-----------------|----------|-------------------|-----------------|----------|-------------------|-----------------|----------|
|                           | Acres             | mi <sup>2</sup> | Percent  |
| Agriculture               | 12,131,793        | 18,956          | 24       | 6,223,794         | 9,725           | 12       | 1,563,658         | 2,443           | 3        | 41,561            | 65              | 0        |
| Developed                 | 2,640,718         | 4,126           | 5        | 4,859,584         | 7,593           | 10       | 4,802,974         | 7,505           | 10       | 8,452,378         | 13,207          | 17       |
| Forest                    | 5,012,269         | 7,832           | 10       | 9,315,270         | 14,555          | 19       | 6,050,678         | 9,454           | 12       | 6,305,606         | 9,853           | 13       |
| Grassland                 | 6,207,921         | 9,700           | 12       | 5,552,041         | 8,675           | 11       | 11,592,640        | 18,114          | 23       | 16,297,018        | 25,464          | 33       |
| Shrubland                 | 23,477,760        | 36,684          | 47       | 23,597,408        | 36,871          | 47       | 25,405,926        | 39,697          | 51       | 18,266,598        | 28,542          | 37       |
| Sparse vegetation         | 353,940           | 553             | 1        | 297,354           | 465             | 1        | 422,900           | 661             | 1        | 471,611           | 737             | 1        |
| Water                     | 35,725            | 56              | 0        | 14,676            | 23              | 0        | 21,350            | 33              | 0        | 25,352            | 40              | 0        |
| <b>TOTAL</b>              | <b>49,860,126</b> | <b>77,906</b>   | <b>—</b> | <b>49,860,128</b> | <b>77,906</b>   | <b>—</b> | <b>49,860,127</b> | <b>77,906</b>   | <b>—</b> | <b>49,860,124</b> | <b>77,906</b>   | <b>—</b> |

## 2001 Land Use

By 2001, the percentage of developed lands stayed constant at 10 percent of the YVW; the acreage of developed lands declined in parts of Yucaipa Valley and the Beaumont plain but increased at the western end of the YVW west of the City of Redlands (fig. A7C). The percentage of agricultural lands decreased to 3 percent of the YVW; the acreage of agricultural lands was substantially reduced in Yucaipa Valley, the Beaumont plain, and at the western end of the YVW, and the agricultural land that remained was concentrated along San Timoteo Creek and Yucaipa Creek near the The Badlands. Agricultural lands were replaced primarily by natural lands, particularly shrubland and grassland. The percentage of natural lands increased to 87 percent of the YVW; natural lands increased near the developed centers in Yucaipa Valley and the Beaumont plain, and along San Timoteo Creek, primarily replacing agricultural lands.

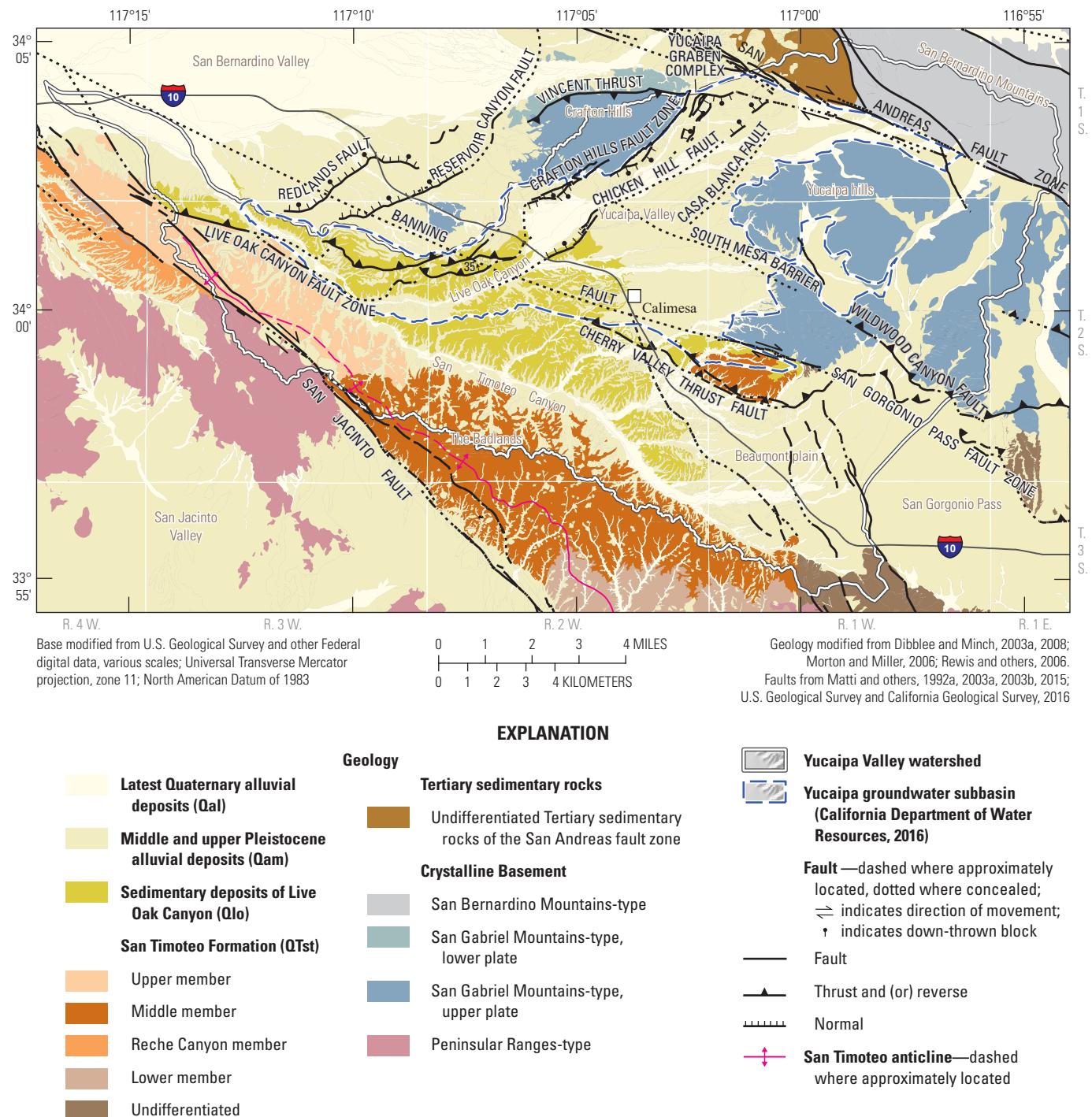
## 2014 Land Use

By 2014, the percentage of developed lands had increased to 17 percent of the YVW; the increase in acreage of developed lands was primarily the result of increased density in the Yucaipa Valley, in the Beaumont plain, and at the western end of the YVW near the City of Redlands (fig. A7D). The percentage of agricultural lands decreased to less than 0.1 percent of the YVW; agricultural lands remained only in a few areas along San Timoteo Creek and in the highlands near Oak Glen Creek. Agricultural lands were replaced primarily by developed lands in Yucaipa Valley, in the Beaumont plain, and near the City of Redlands and were replaced primarily by natural lands along San Timoteo Creek and Yucaipa Creek. Overall, the percentage of natural lands decreased to 83 percent of the YVW; the largest loss of natural lands was caused by the expansion of population centers in Yucaipa Valley and the Beaumont plain. Natural lands gained in acreage along San Timoteo Creek and Yucaipa Creek, primarily replacing agricultural lands in those areas.

## Geology

The Yucaipa subbasin is geologically, structurally, and hydrologically complex, with several faults and one major fold structure affecting a variety of surface-water and groundwater processes. This section presents the geologic setting and structure of the Yucaipa subbasin.

## Geologic Setting and Faults


The Yucaipa subbasin is a sediment-filled depression (up to more than 8,000 ft deep) situated between the northwest-trending San Andreas fault zone and San Jacinto fault (fig. A8). The geology of the Yucaipa subbasin and the encompassing YVW consists of Mesozoic and older

crystalline basement rocks overlain by Tertiary and early Quaternary sedimentary materials—including the San Timoteo Formation and sedimentary deposits of Live Oak Canyon—and later Quaternary alluvial deposits (fig. A8; Cromwell and Matti, 2022). The San Timoteo Formation, sedimentary deposits of Live Oak Canyon, and later Quaternary alluvial deposits (consisting of middle and upper Pleistocene and latest Quaternary alluvial deposits; fig A8) comprise the majority of the sedimentary basin-fill materials that overlie the crystalline rocks. These basin-fill materials are sourced from the crystalline basement rocks northwest of the Yucaipa subbasin.

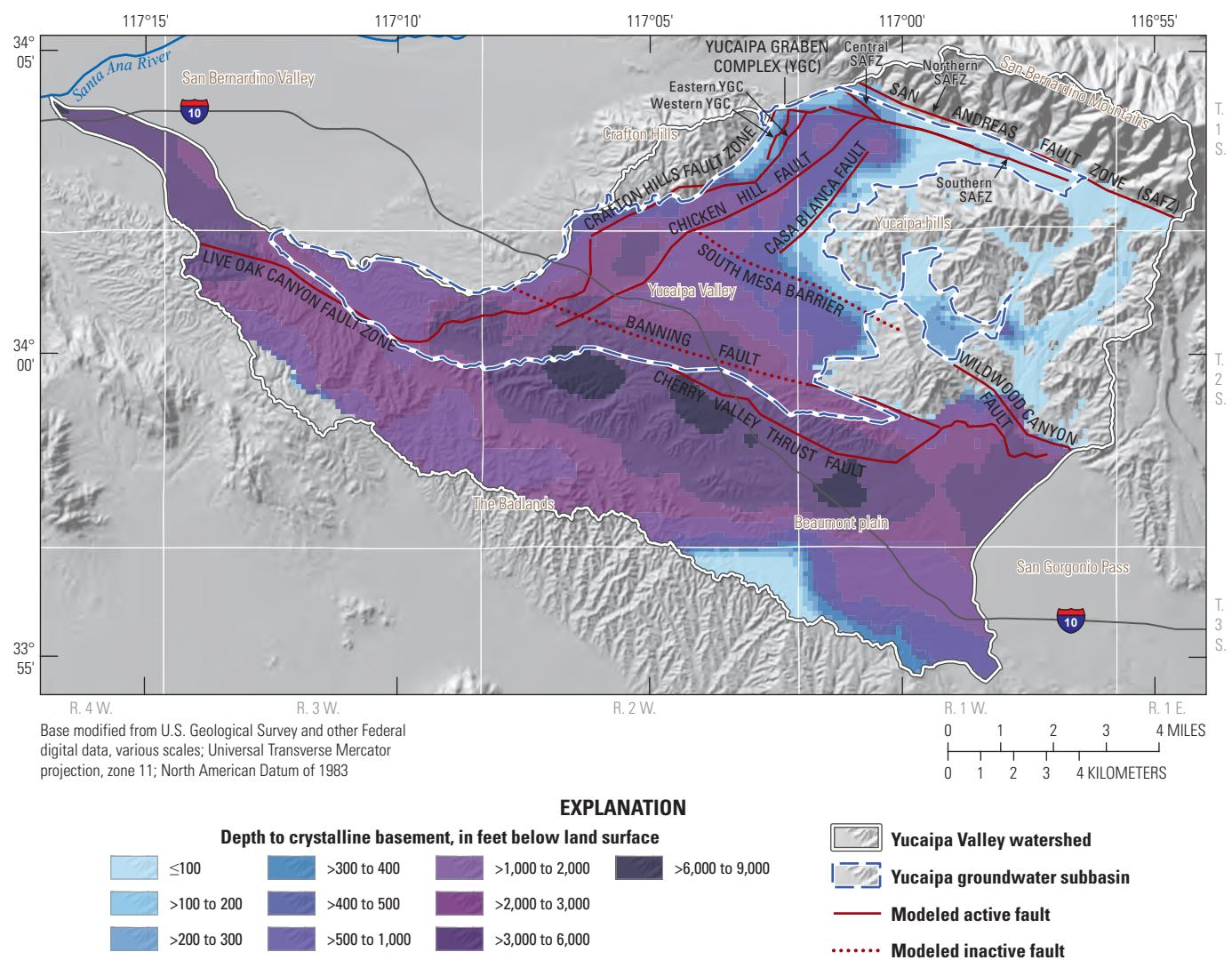
The San Andreas fault zone is an active right-lateral fault zone that forms the northern boundary of the Yucaipa subbasin and is the most widely recognized structural element in the area. In the Yucaipa subbasin, the fault zone is characterized by individual en echelon fault segments with a northwesterly trend (fig. A8). The Banning fault transects the subbasin (fig. A8) and is a late Miocene right-lateral structure whose movement history ended at about 5 Mega-annum (Ma; Matti and others, 1985, 1992a). The age of the fault along the southeastern extent of the Yucaipa subbasin is less certain: The Quaternary Fold and Fault Database of the United States (U.S. Geological Survey and California Geological Survey, 2016) indicates that this segment may have been active as recently as the late Quaternary, while Matti and others (2015) attributed slip to local late Quaternary reactivation of the fault.

A region-wide “right step” transfers right-lateral slip between the San Andreas fault zone and the San Jacinto fault and produces a domain of extension (Morton and Matti, 1993; Anderson and others, 2004) and a series of northeast-southwest trending dip-slip faults in the Yucaipa subbasin. Activity along the San Jacinto fault also has caused folding along the San Timoteo anticline. The dip-slip faults generally have normal displacement (with the exception of the Live Oak Canyon fault zone; Matti and others, 2003a; Cromwell and Matti, 2022) and bound the northwestern margin of the Yucaipa subbasin (such as the Crafton Hills fault zone) and traverse other parts of the subbasin (such as the Chicken Hill fault and possibly the Casa Blanca fault). Some of the dip-slip faults have been active in the Holocene and are expressed at land surface; other faults such as the Casa Blanca fault have been inactive long enough to lack identifiable surface expression.

Displacement on dip-slip faults caused tectonic subsidence in the Yucaipa subbasin, down-dropping crystalline basement rocks and facilitating the accumulation of the sedimentary basin-fill material in the resulting sedimentary basin (Matti and others, 2015). East of the Yucaipa subbasin in the YVW, tectonic convergence in the San Gorgonio Pass fault zone (Matti and others, 2015) generated north-dipping thrust and reverse faults such as the Cherry Valley thrust fault, the Wildwood Canyon fault, and other faults associated with the San Gorgonio Pass fault zone. These faults offset the Plio-Pleistocene sedimentary materials of the San Timoteo Formation in the hanging wall over younger sedimentary materials in the footwall of the Cherry Valley thrust fault.



**Figure A8.** Geologic map of the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California, from Cromwell and Matti (2022).


The San Timoteo anticline is a northwest-trending and gently northwest-plunging anticlinal fold present throughout much of The Badlands (fig. A8). Folding of the San Timoteo anticline likely initiated about 1.2 million years ago (Matti and others, 2015), deforming existing Pliocene and Pleistocene sedimentary materials of the San Timoteo Formation. Folding

likely terminated some time prior to 100 thousand years ago (ka; Kendrick and others, 2002). Deposition of sedimentary deposits of Live Oak Canyon post-dates much of the folding associated with the San Timoteo anticline, probably resulting in an angular unconformity with the underlying San Timoteo Formation (Matti and others, 2015).

## Depth to Crystalline Basement

Basin structure of the Yucaipa subbasin and the encompassing YVW was defined in Cromwell and Matti (2022) using geologic data from boreholes and geologic maps and a compilation of gravity-derived depth-to-basement estimates from Anderson and others (2004), Langenheim and others (2005), and Mendez and others (2016). The previously published depth-to-basement studies estimated depth-to-basement for different but overlapping geographic extents using gravity, aeromagnetic, and seismic geophysical methods (Cromwell and Matti, 2022). The result of this compilation was a continuous interpolation of the depth-to-crystalline basement (fig. A9) that was derived from

the original datasets mentioned above. Depth-to-crystalline basement ranged from about 300 to more than 3,000 ft in the Yucaipa Valley, from about 1,000 to 8,000 ft in the Beaumont plain, and to almost 9,000-ft south of the Banning fault. Depth-to-crystalline basement is relatively shallow (generally less than about 100 ft) in modern stream channels in the San Bernardino Mountains and in areas adjacent to the Crafton Hills, the Yucaipa hills, the San Bernardino Mountains, and the southern part of The Badlands. Variations in depth-to-crystalline basement in this area are the result of down-dropping along dip-slip faults as a result of extension in the right-step between the San Andreas fault zone and the San Jacinto fault (Cromwell and Matti, 2022).



**Figure A9.** Depth-to-crystalline basement and model faults from the three-dimensional hydrogeologic framework model (Cromwell and Matti, 2022), Yucaipa Valley watershed, San Bernardino and Riverside Counties, California. Modified from Cromwell and Matti (2022).

## Geologic Formations and Deposits

Mesozoic and older crystalline basement rocks underlie the sedimentary basin-fill materials and are exposed in the Crafton Hills, Yucaipa hills, and the San Bernardino Mountains (fig. A8). These rocks consist of igneous and metamorphic rocks that comprise three different lithologic provenances (Cromwell and Matti, 2022). These rocks form the structural basin in which sedimentary basin-fill materials were deposited. A zone of weathered saprolitic basement material is found in outcrops and at depth in certain areas (such as USGS multiple-depth, monitoring well sites YV6E and YVEP; Mendez and others, 2016, 2018; U.S. Geological Survey, 2018); this weathered material overlies more competent crystalline rock and may be extensive across the Yucaipa subbasin (Cromwell and Matti, 2022). Electric logs from USGS multiple-depth monitoring-well sites YV6E and YVEP showed an increase in resistivity where the lithologic logs identified crystalline basement rocks; cores collected from the bottom of these well sites confirmed they penetrated crystalline basement rocks (Mendez and others, 2018; Cromwell and Matti, 2022).

Undifferentiated Tertiary sedimentary rocks located between strands of the San Andreas fault zone at the northeastern margin of the Yucaipa subbasin (fig. A8) include the Mill Creek (Gibson, 1971) and Warm Springs Canyon Formations (Matti and others, 2003a; Morton and Miller, 2006). The age of these continental sedimentary rocks is not well constrained, but they are probably late Miocene and constitute thick sedimentary fill sequences deposited in and adjacent to the San Andreas fault zone (Matti and others, 2003a). Deep, old sedimentary rocks are likely present in the subsurface in the deep structural lows of the Western Heights subarea and south of the Banning fault (fig. A9; Cromwell and Matti, 2022). Not enough is known about these rocks to interpret their formation assignment, and these units were not identified in lithologic boreholes during development of the HFM (Cromwell and Matti, 2022). If present, these rocks are likely below the depth of investigation of this report.

The San Timoteo Formation crops out mainly in The Badlands (fig. A8; Morton and Matti, 2001; Matti and others, 2003b, 2015) and on the hanging wall of the Cherry Valley thrust fault. From The Badlands, the San Timoteo Formation dips to the north-northeast beneath the younger sedimentary basin-fill materials, likely pinching out at depth northeast of the Banning fault (Cromwell and Matti, 2022). Regionally, the San Timoteo Formation is separated into multiple members and subunits (fig. A8; Morton and Miller, 2006; Matti and others, 2015). The upper member and Reche Canyon member crop out in the northwestern part of The Badlands (Morton and Matti, 2001; Matti and others 2003b; Morton and Miller, 2006) and probably have no counterparts within the Yucaipa

subbasin, although the upper member crops out adjacent to the Yucaipa subbasin boundary. The middle and lower members of the San Timoteo Formation crop out mainly south of the Yucaipa subbasin (Matti and others, 2015), as do undifferentiated sediments of the formation (Dibblee and Minch, 2003a; Rewis and others, 2006). The San Timoteo Formation consists primarily of compacted, consolidated, and cemented clays and silts (Frick, 1921; Matti and others, 2015). The middle and upper members of the San Timoteo Formation range from about 5.0 Ma (Albright 1997, 1999) to about 1.2–1.5 Ma (Morton and others, 1986; Repenning, 1987; Morton and Matti, 1993; Reynolds and others, 2013), with cessation of deposition roughly coinciding with inception of folding along the San Timoteo anticline (Matti and others, 2015) around 1.2 Ma.

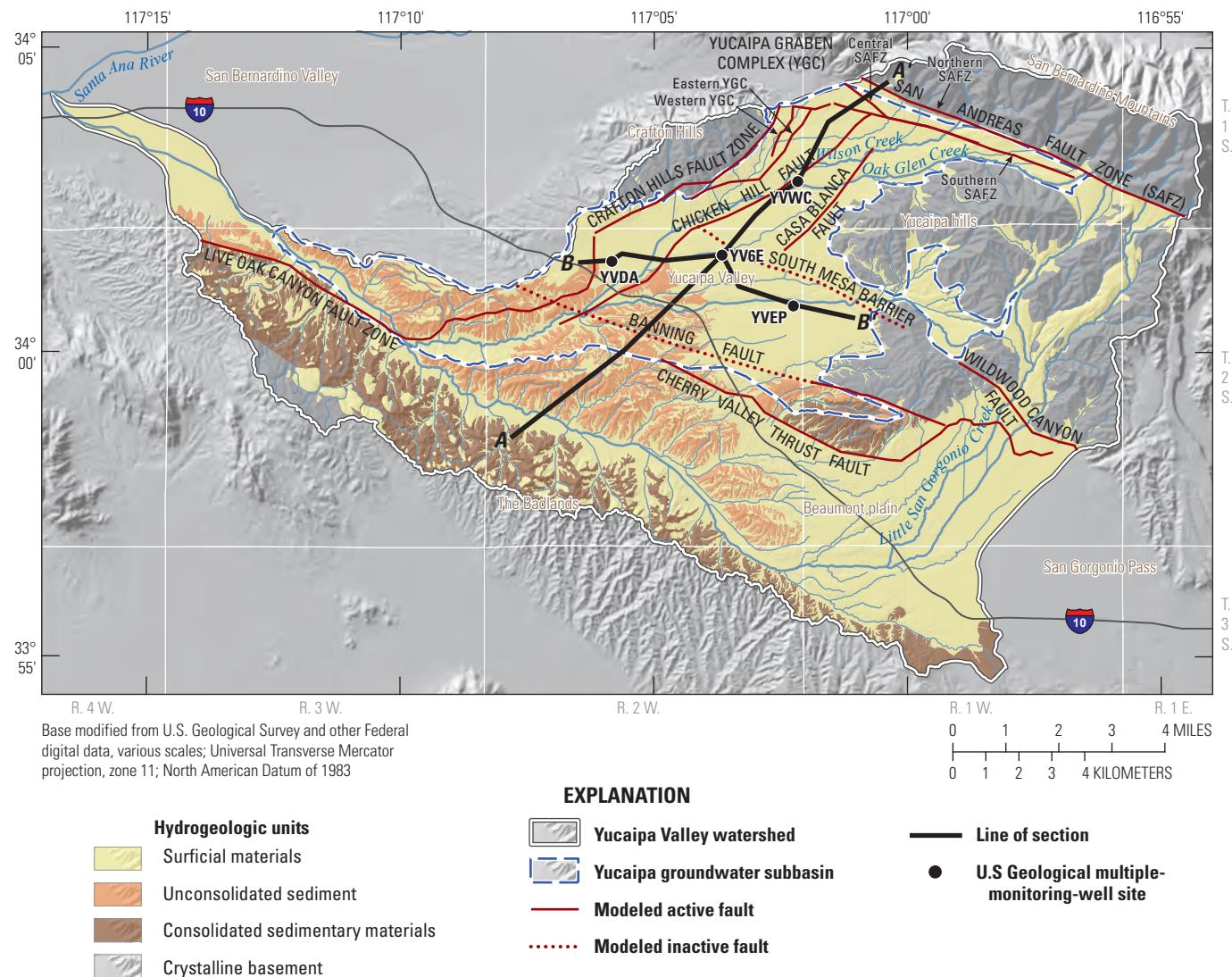
The sedimentary deposits of Live Oak Canyon generally crop out north and east of San Timoteo Canyon, between The Badlands and Interstate 10. The sedimentary deposits of Live Oak Canyon likely comprise much of the sedimentary basin fill in the Yucaipa subbasin north of San Timoteo Canyon (Matti and others, 2015; Cromwell and Matti, 2022). Sedimentary deposits of Live Oak Canyon consist of light-gray to very pale-brown, sand- and gravel-bearing deposits; with lesser amounts of yellow, brown, and light-gray mud-bearing deposits (Matti and others, 2015). A magnetostratigraphic profile across the sedimentary deposits of Live Oak Canyon (Albright, 1997, 1999) captured the Brunhes-Matuyama geomagnetic field reversal at about 780 ka. Parts of the Live Oak sequence overlying the Brunhes-Matuyama reversal are younger than 780 ka and may be as young as 500–600 ka (Matti and others, 2015, p. 20). Albright (1997, 1999) and Matti and others (2015) discussed evidence that the lower part of the sedimentary deposits of Live Oak Canyon is as old as 1.2–1.5 Ma, with Matti and others (2015) preferring an age of 1.2 Ma for the base of the formation.

Middle and upper Pleistocene alluvial deposits occur throughout the Yucaipa subbasin (fig. A8). They underlie the broad mesa-like landform of Yucaipa Valley (fig. A8) and can be observed best in the steep walls of that landform and the flanks of nearby geomorphic terraces. The lithologic character and depositional setting of middle and upper Pleistocene alluvial deposits vary throughout the study area. Near crystalline-basement rock source areas, the deposits are gravel rich and more poorly sorted; in distal settings, the deposits are sandier and locally have fine-grained intervals of silt and clay. Oldest sedimentary materials comprising the middle and upper Pleistocene alluvial deposits are capped by pedogenic-soil profiles having thick, very red argillic B horizons that probably are on the order of 500,000 years old (Matti and others, 2003a).

Latest Quaternary alluvial deposits are the youngest geologic materials in the Yucaipa subbasin, and are comprised of latest Pleistocene and Holocene alluvial deposits that occur along streams and in channels incised into older geologic formations (fig. A8). The young alluvial deposits are comprised of very young and young axial-channel, alluvial-valley, and wash deposits; with local landslide deposits and are likely younger than about 15,000 years old (Matti and others, 2003a). Very young wash deposits are located in the lowlands of the Yucaipa Valley and include active and progressively less active to abandoned materials (Matti and others, 2003a). Young deposits (the oldest materials of the late Quaternary alluvial deposits) are sandy and gravelly deposits with minimal soil-profile development, indicating that these are Holocene to latest Pleistocene soils that are between 15,000 and 1,000 years old (Matti and others, 2003a).

## Hydrogeology

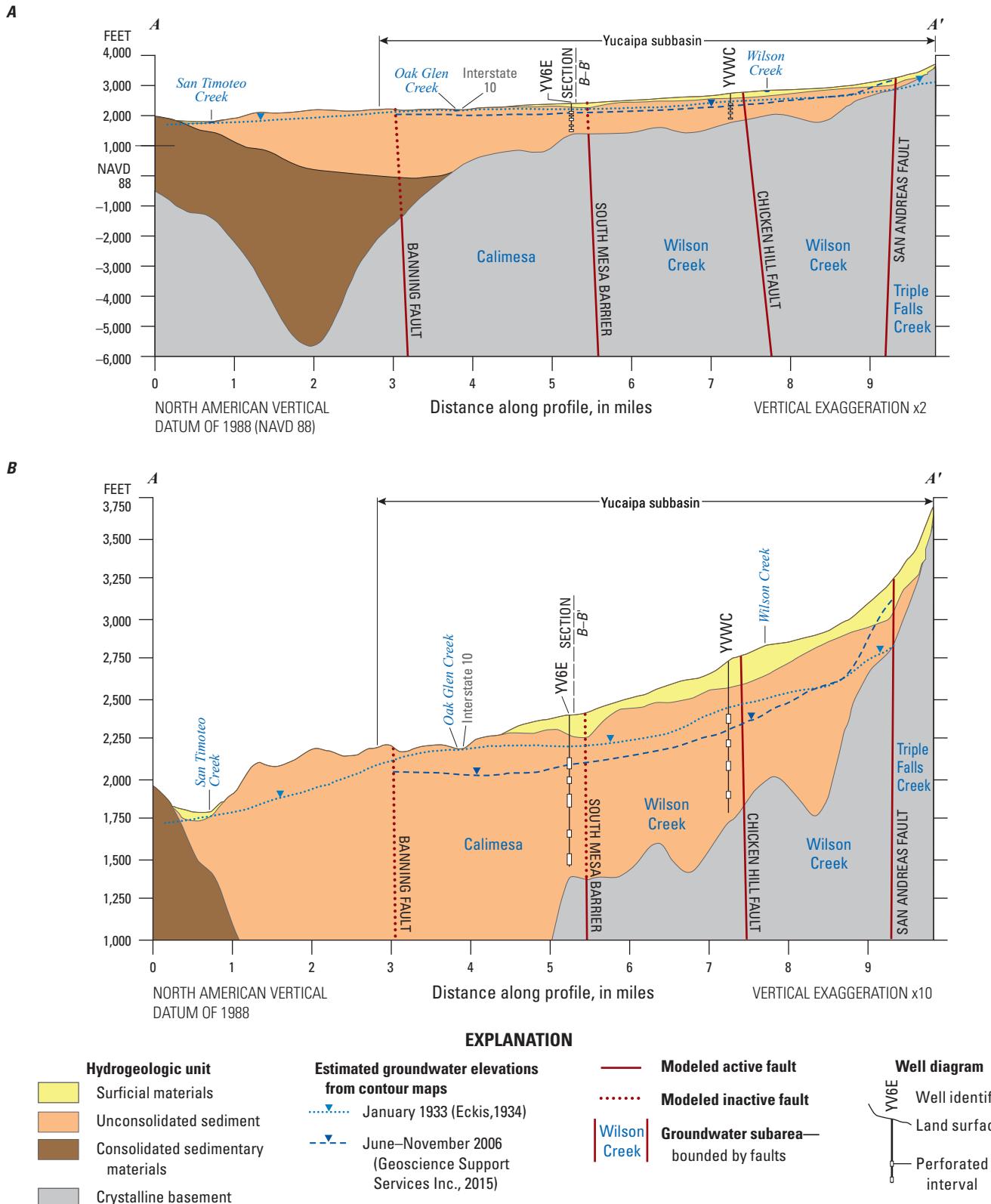
This section presents the hydrogeologic setting of the Yucaipa subbasin and evaluates aquifer characteristics and controls on the aquifer system. To define and visualize the hydrogeologic and structural architecture of the Yucaipa subbasin, a 3D HFM of the Yucaipa subbasin and the encompassing YVW was constructed by Cromwell and Matti (2022) and archived in a USGS data release (Cromwell and others, 2022). The HFM was used to help understand the groundwater hydrology and define the model boundaries and hydraulic characteristics of the YIHM (described in chapter B). The HFM was developed from geologic, geophysical, and hydrogeologic data and is a digital representation of thickness and extent of four hydrogeologic units (described in the “[Hydrogeologic Units](#)” section) and the structural geometry of hydrogeologically important faults and folds. The HFM was constructed using EarthVision, a 3D geologic-modeling software package (Dynamic Graphics, Inc., 2015) and Esri ArcGIS geographic information system software. A complete discussion of the HFM development and results can be found in Cromwell and Matti (2022).


## Hydrogeologic Units

The geologic units of the Yucaipa subbasin (fig. A8) were classified into four hydrogeologic units that represent the aquifer system (fig. A10). Three units comprise the sedimentary basin-fill aquifer system, and the fourth unit comprises the basal hard rock that underlies the basin-filling units. The four units from youngest (shallowest) to oldest (deepest) are (1) surficial materials, which comprises parts of the middle and upper Pleistocene alluvial deposits and latest Quaternary alluvial deposits, (2) unconsolidated sediment, which comprises the sedimentary deposits of Live Oak Canyon and parts of the middle and upper Pleistocene

alluvial deposits, (3) consolidated sedimentary materials, which comprises deep subsurface sedimentary rocks and the San Timoteo Formation, and (4) crystalline basement, which comprises Mesozoic crystalline rocks and undifferentiated Tertiary sedimentary rocks of the San Andreas fault zone. The hydrogeologic units discussed in this chapter are identical to those discussed in chapter B and used in the HFM of Cromwell and Matti (2022). Sections through the HFM show (1) the hydrostratigraphic relation of the hydrogeologic units and faults simulated in the model and (2) the depth and perforated intervals of the USGS multiple-depth, monitoring-well sites (fig. A11; table A1.1).

The surficial materials unit ranges in thickness from about 30 to 300 ft, blankets the broad floor of the Yucaipa Valley, and is present in stream channels incised into underlying hydrogeologic units (figs. A10, A11). The surficial materials unit is generally above the water table, which is about 200 to 300 ft below land surface (bls) throughout much of the subbasin (fig. A11); therefore, the unit is unsaturated in most places. The surficial materials unit is characterized by a heterogeneous mixture of fine-, medium-, and coarse-grained sediment (fig. A12; Cromwell and Matti, 2022). The unconsolidated sediment unit comprises the principal basin-fill aquifer and are found across the Yucaipa subbasin. These materials range in thickness from about 600 to 1,500 ft in the Yucaipa Valley (Cromwell and Matti, 2022). Most wells in the subbasin are perforated in this hydrogeologic unit. The unconsolidated sediment unit is characterized by a heterogeneous mixture of fine-, medium-, and coarse-grained sediment (fig. A12; Cromwell and Matti, 2022). Median specific capacity is 21.2 gallons per minute per foot (gal/min/ft), with a range of 0.1–1,333 gal/min/ft based on data from 20 wells, as reported by Reavis and others (2006). Median specific capacity is 18.0 gal/min/ft, with a range of values from 4 to 36 gal/min/ft, as reported by Geoscience Support Services, Inc. (2014b). The unconsolidated sediment have an estimated permeability of 220 gallons per day per square foot (gal/d/ft<sup>2</sup>; Dutcher and Fenzel, 1972).


In the Western Heights subarea, a layer of fine-grained material overlies the main aquifer system, forming a perched zone within the unconsolidated sediment unit (Moreland, 1970). Measured groundwater levels in USGS multiple-depth, monitoring-well site YVDA indicate a 200-ft downward vertical gradient in groundwater-level elevation between the shallowest well (YVDA5; perforated from 230 to 250 ft bls) and the next shallowest well (YVDA4; perforated from 440 to 460 ft bls). This substantial gradient indicates that YVDA5 is perforated within the perched zone (see “[Long Term Trends in Groundwater Levels](#)” or Mendez and others, 2018). Geophysical logs and drillers’ lithologic descriptions for YVDA indicate that the depth of the fine-grained layer is about 270 ft bls at that location (Mendez and others, 2018). The depth of the fine-grained layer in the Western Heights subareas was previously estimated to be about 300 ft bls (Moreland, 1970).



**Figure A10.** Hydrogeologic units and model faults used in the three-dimensional hydrogeologic framework model of the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California (modified from Cromwell and Matti, 2022).

The consolidated sedimentary materials unit is exposed at land surface in The Badlands, where it dips to the north-northeast beneath the unconsolidated sediment and surficial materials; the unit also crops out in the hanging wall of the Cherry Valley thrust fault (fig. A10). The consolidated sedimentary materials are characterized by a relatively large percentage of fine-and medium-grained sediment (fig. A12; Cromwell and Matti, 2022) and have a relatively low estimated permeability of 5 gal/d/ft<sup>2</sup> (Dutcher and Fenzel,

1972), indicating that this unit has less readily available groundwater in storage. The estimated permeability value is from the “lower member of the San Timoteo Formation” (Dutcher and Fenzel, 1972); the approximate measurement location of this measurement is consistent with the San Timoteo Formation which corresponds to the consolidated sedimentary materials hydrogeologic unit used in this study. The substantial geographic exposure of this unit in The Badlands may provide moderate amounts of recharge.



**Figure A11.** Sections through the three-dimensional hydrogeologic framework model of Cromwell and Matti (2022), Yucaipa Valley watershed, San Bernardino and Riverside Counties, California. Section lines are shown in figure A10. Sections show faults, subareas, and estimated groundwater levels from groundwater level contour maps for January 1933 (Eckis, 1934) and June to November 2006 (Geoscience Support Services, Inc., 2015). A, and B, southwest-northeast section; C, and D, west-east section. U.S. Geological Survey multiple-depth, monitoring-well sites with perforation intervals are shown.

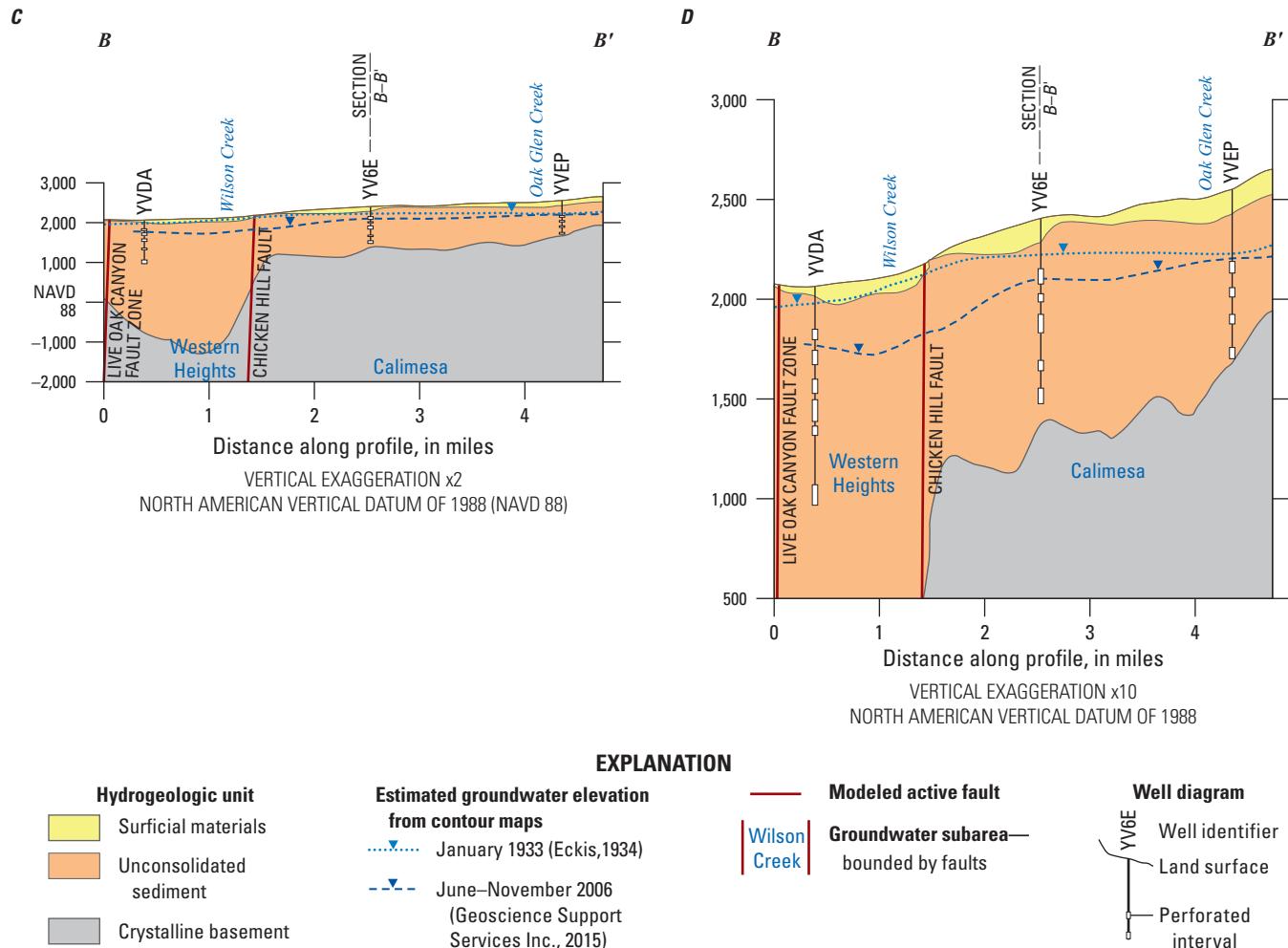
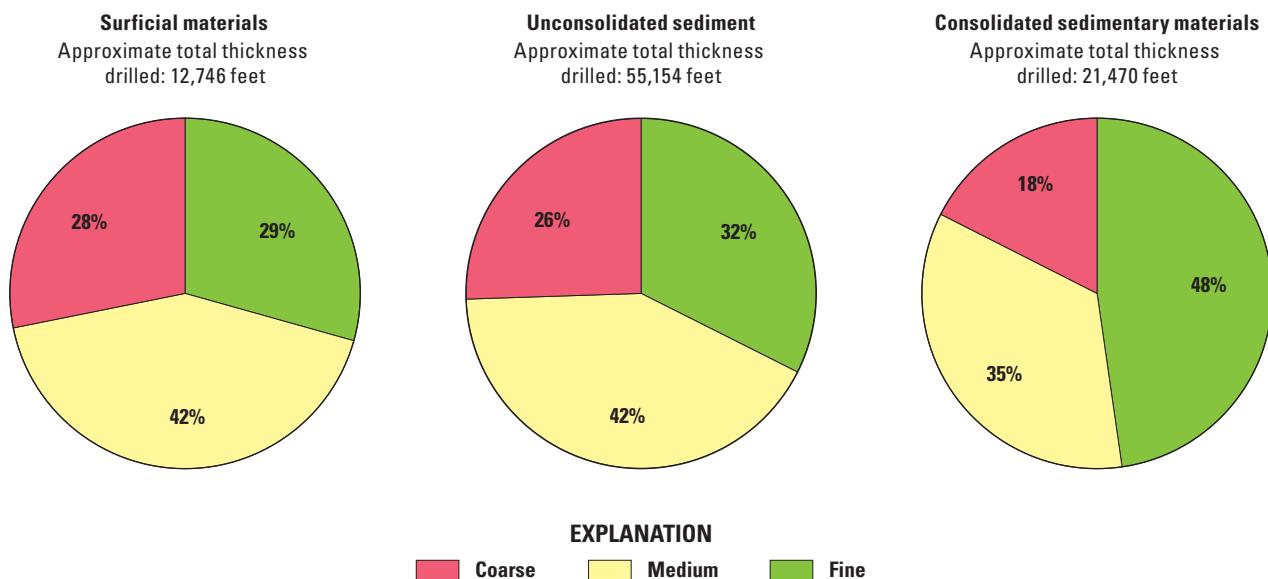




Figure A11.—Continued

Crystalline basement is exposed at land surface in the Crafton Hills, the Yucaipa hills, and the San Bernardino Mountains; and underlies the three younger hydrogeologic units (figs. A10, A11). Crystalline basement generally is faulted, fractured and weathered, in both surface outcrops and in the subsurface (Cromwell and Matti, 2022). This unit likely does not contain large volumes of groundwater; however, small-scale fractures, joints, and faults may provide conduits for transmitting recharge into the crystalline subsurface and then laterally into the sedimentary basin-fill deposits (Cromwell and Matti, 2022). The crystalline basement surface of the HFM in figure A11 is projected below the total depth of USGS multiple-depth, monitoring well sites YV6E and YVEP, despite the fact that, as noted earlier, electric logs,

lithologic logs, and cores collected from the sites showed that they penetrated crystalline basement (Mendez and others, 2016). There are two reasons for this discrepancy: (1) the original gravity-derived depth-to-basement estimates for these well sites were lower than the observed depths of crystalline basement in the logs, likely due to the large amounts of fractured crystalline rock in the area (Mendez and others, 2016); and (2) the crystalline basement surface of the HFM was interpolated over a grid spacing that was three times coarser than the original gravity-derived, depth-to-basement estimates. Therefore, the crystalline basement surface is an approximation of the original estimates (Cromwell and Matti, 2022).



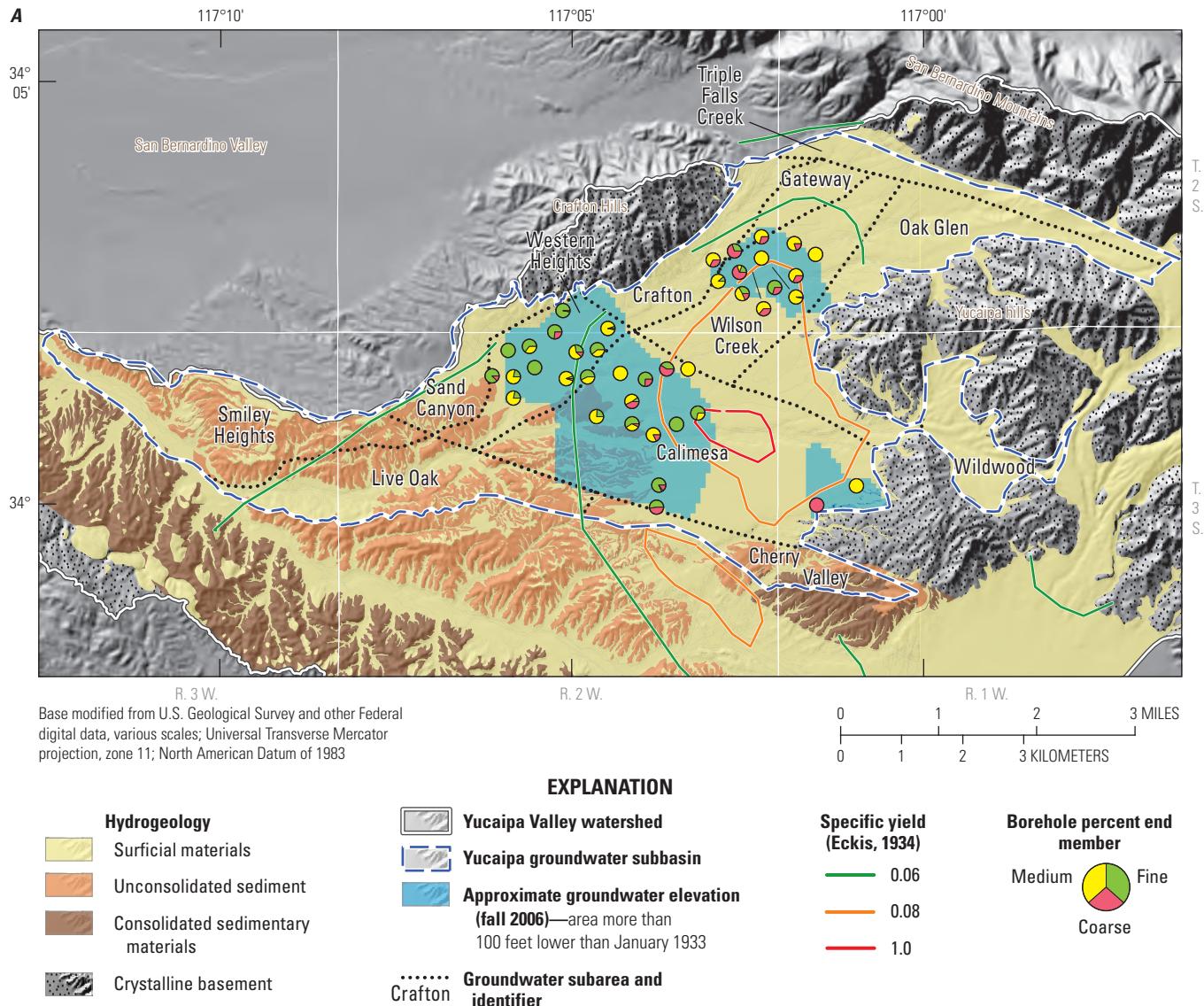
**Figure A12.** Frequency of the percentage of coarse-, medium-, and fine-grained materials in hydrogeologic units used in the three-dimensional hydrogeologic framework model of the Yucaipa Valley watershed, San Bernardino and Riverside Counties, California (Cromwell and Matti, 2022). Frequency values are normalized by the total thickness of boreholes that penetrate each hydrogeologic unit.

## Faults and Flow Barriers

The HFM includes 13 faults that affect the structure of the Yucaipa subbasin and may be barriers to groundwater flow (fig. A10; Cromwell and Matti, 2022). The surface traces of these model faults are derived from the Quaternary faults and fold database of the United States (fig. A7; Moreland, 1970; Matti and others, 2003a, b, 2015; Nicholson and others, 2013, 2014; U.S. Geological Survey and California Geological Survey, 2016) and most faults were projected into the subsurface at near-vertical or vertical orientations (Cromwell and Matti, 2022). However, the Cherry Valley thrust fault and southern San Andreas fault were projected at dip-angles derived from their data sources. All faults, with the exception of the western segment of the Banning fault and the South Mesa barrier, were considered active faults and were modeled so that they cut across all hydrogeologic units. The western segment of the Banning fault and the South Mesa barrier were considered inactive and were modeled to only cross-cut crystalline basement (fig. A11). Activity along the western segment of the Banning fault predates deposition of the San Timoteo Formation and the sedimentary deposits of the Live Oak Canyon (Matti and others, 1985, 1992a, b, 2003a; Morton and Miller, 2006; Cromwell and Matti, 2022), and the hydrogeologic units that represent them; therefore, this segment of the Banning fault only cross-cuts crystalline

basement. The South Mesa barrier is not recognized as an active fault in the Quaternary Fault and Fold Database of the United States (fig. A8; U.S. Geological Survey and California Geological Survey, 2016), and surface expression has not been identified at land surface (Moreland, 1970). Therefore, the South Mesa barrier was assumed to only offset the crystalline basement and not the overlying unconsolidated sediment or surficial materials (Cromwell and Matti, 2022).

Previous investigations have shown that faults in the Yucaipa subbasin affect groundwater flow in the basin-fill hydrogeologic units (Burnham and Dutcher, 1960; Moreland, 1970; Dutcher and Fenzel, 1972) based on vertical changes in groundwater levels across the faults. Faults can act as barriers to groundwater flow because of the presence of fine-grained sediment in the fault gouge, chemical cementation of proximal sediment, or the juxtaposition of layers across faults caused by either sharp folds or the vertical and (or) horizontal displacement of beds. The inactive faults—the inactive strand of the Banning fault and South Mesa barrier—are not interpreted to directly offset or juxtapose layers within the basin-fill hydrogeologic units. However, the inactive faults indirectly may cause thinning or pinching out of hydrostratigraphic layers that “drape” across structural crests in crystalline basement (fig. A11; Cromwell and Matti, 2022), potentially restricting the movement of groundwater (Reichard and others, 2003).


## Aquifer Storage

Specific yield is one type of storage measurement that is used to characterize the capacity of an aquifer to release groundwater from storage. Specific yield is unitless and is defined as the ratio of the volume of water that a saturated unconfined aquifer will yield by gravity, compared to the total volume of the aquifer (Johnson, 1967). Specific yield throughout the Yucaipa subbasin was estimated to be about 0.06–0.10 (fig. A13; Eckis, 1934) from borehole lithology data 100 ft above and below the groundwater elevation in January 1933. Lesser specific yield values generally were observed in the southwestern part of the Yucaipa subbasin where the unconsolidated sediment crops out or are near land surface; lesser specific yield values generally also were observed in the northern part of the Yucaipa subbasin adjacent to the Crafton Hills and San Bernardino Mountains. Greater specific yield values generally were observed in the central part the Yucaipa subbasin, where surficial materials are observed at land surface and are as much as 200 ft thick (figs. A10, A11).

Changes in groundwater levels may affect estimates of specific yield because of changes in sediment grain size at different depths within the aquifer. Specific yield values based on historical groundwater levels may no longer be appropriate if groundwater levels have declined or risen substantially, as is the case in some parts of the Yucaipa subbasin. A comparison of the difference in the percentage of fine-, medium-, and

coarse-grained sediment above and below groundwater elevations in January 1933 (Eckis, 1934) and fall 2006 (Geoscience Support Services, Inc., 2015) demonstrates how changes in specific yield can occur with groundwater-level variations. By the fall of 2006, groundwater levels in the Yucaipa subbasin had declined more than 100 ft since January 1933 in certain areas (fig. A13; see the “[Groundwater Levels, Flow, and Movement](#)” section chapter A of this report). In January 1933, boreholes in the Western Heights and Calimesa subareas showed that sediment within 100 ft of the groundwater table was generally fine and medium grained, and sediment in the Wilson Creek subarea was generally medium and coarse grained (fig. A13A).

In the fall of 2006, boreholes in the Western Heights and Calimesa subareas showed that sediment within 100 ft of the groundwater table was generally fine and coarse grained (fig. A13B). The increase in coarse-grained sediment in these subareas could result in greater specific yield estimates for fall 2006 relative to specific yield estimates for January 1933. Boreholes in the Wilson Creek groundwater subarea showed that sediment within 100 ft of the groundwater table was generally medium grained with a greater percentage of fine-grained sediment in some places. The relative increase in fine-grained sediment in this subarea could result in lesser specific yield estimates for fall 2006 relative to specific yield estimates for January 1933.



**Figure A13.** Specific yield of the Yucaipa groundwater subbasin from Eckis (1934) and the percentage of coarse-, medium-, and fine-grained materials in boreholes from within 100 feet above and below the groundwater elevation for A, January 1933 and B, fall 2006, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

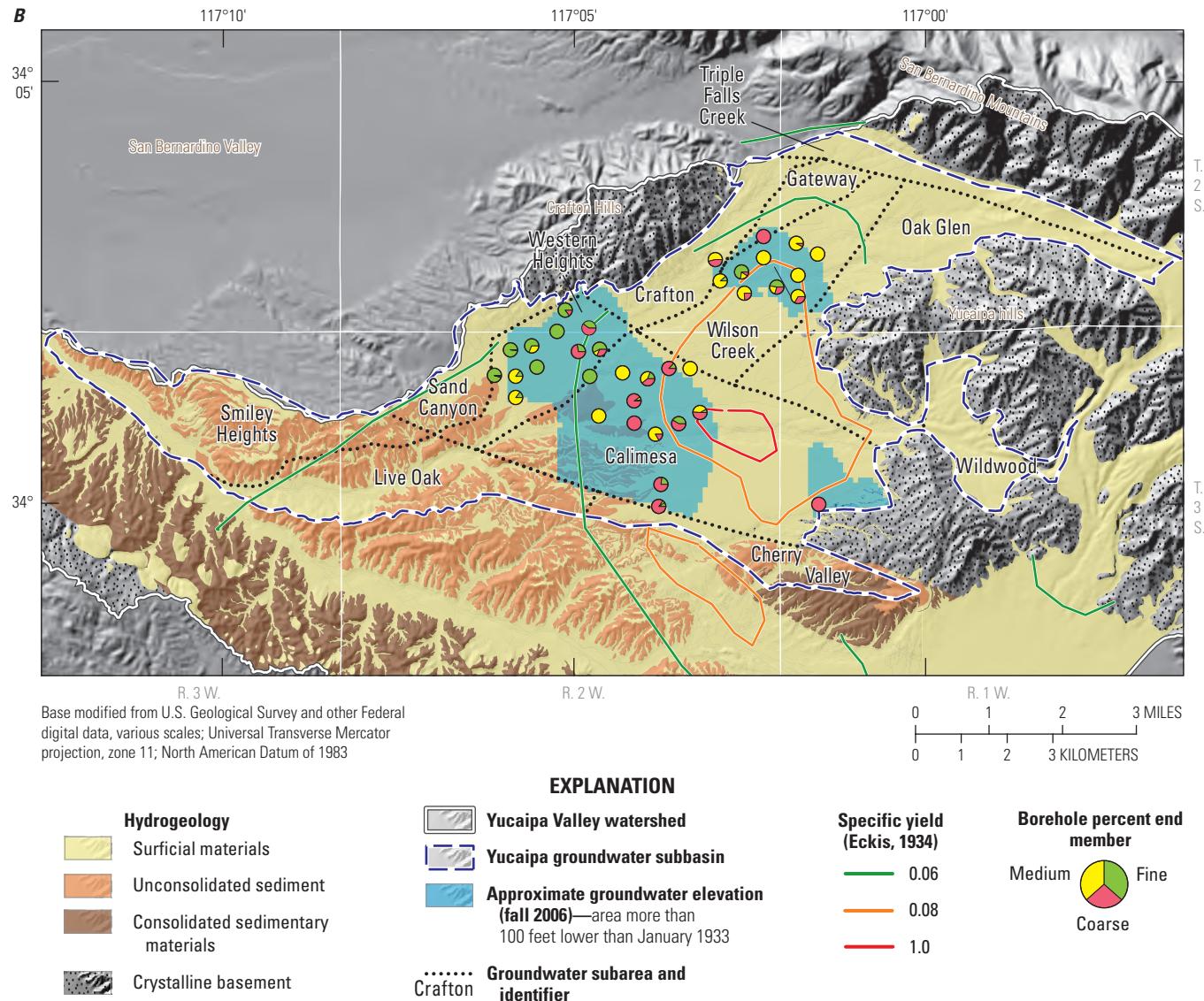



Figure A13.—Continued

## Water Budget

The aquifer system of the Yucaipa subbasin is recharged from both natural and anthropogenic sources and is affected by the withdrawal of water primarily from groundwater pumpage. The contributions to and withdrawals from the aquifer system vary across the Yucaipa subbasin and vary through time. This section presents (1) sources and estimates of groundwater recharge and discharge in the Yucaipa subbasin; (2) historical levels, flow, and movement of groundwater across the Yucaipa subbasin; (3) long-term trends in groundwater levels for individual subareas; and (4) water chemistry information describing the chemical character, source, and age of groundwater in the Yucaipa subbasin.

## Sources and Estimates of Recharge

Groundwater recharge to the aquifer system occurs from natural and anthropogenic sources and occurs in different quantities across the subbasin. Recharge to the basin-fill aquifer is the primary interest of this study because most groundwater is stored in and extracted from the sediments that comprise the basin-fill aquifer, not the underlying crystalline basement. Sources of natural recharge to the basin-fill aquifer include (1) mountain-front runoff and infiltration of streamflow that percolates below the root zone (known as deep percolation) as delivered by inflow from ephemeral streams, (2) deep percolation of precipitation, (3) subsurface inflow of groundwater from adjacent groundwater basins, and (4) underflow from the crystalline basement. Known and potential sources of anthropogenic recharge to the basin-fill aquifer include (1) application of water for managed aquifer

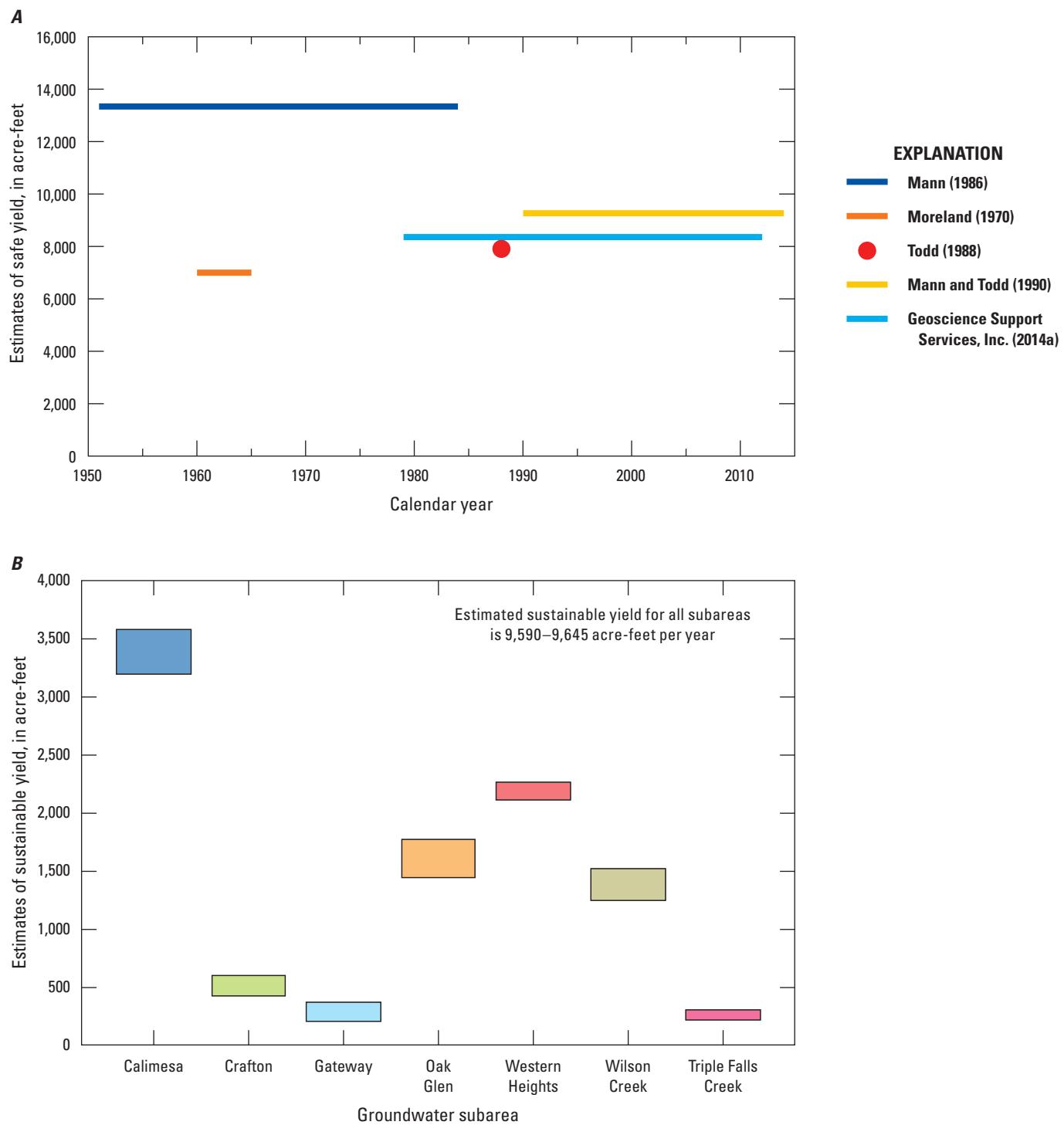
recharge (MAR); (2) potential leakage of reservoirs and holding ponds; (3) infiltration of wastewater effluent from septic tanks; (4) irrigation return from agriculture, golf courses, parks, and residential landscaping; and (5) potential leakage from municipal water systems.

## Natural Recharge

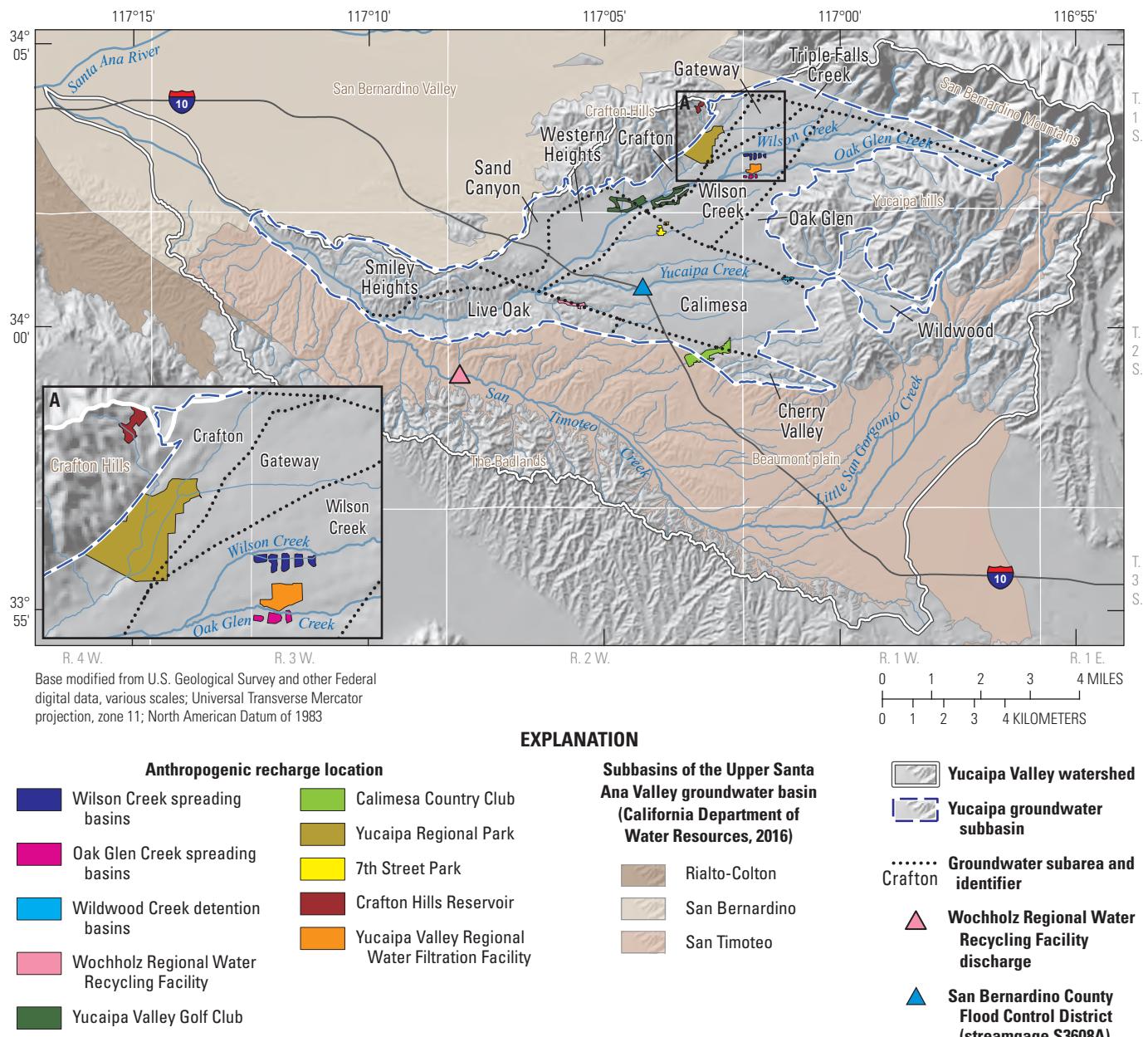
Sources of natural recharge to the basin-fill aquifer include (1) deep percolation of mountain-front runoff and infiltration of streamflow, (2) deep percolation of precipitation, (3) subsurface inflow from adjacent groundwater basins, and (4) underflow from the crystalline basement. Estimates of natural groundwater recharge in the Yucaipa subbasin have been reported by some previous investigators as values of available water supply or safe yield and range from about 7,000 to 13,300 acre-feet per year (acre-ft/yr; [fig. A14A](#); Moreland, 1970; Mann, 1986; Todd, 1988; Mann and Todd, 1990; Geoscience Support Services, Inc., 2014a). The variability in these estimates likely resulted from different methods of calculation, different periods of investigation, and different areas of study; however, the wide variation in estimates provides a range in the potential amount of recharge that may occur under various conditions.

## Mountain-Front Runoff and Infiltration of Streamflow

Water from deep percolation of mountain-front runoff as delivered by streamflow infiltration and surface streamflow infiltration are the main sources of natural recharge to the aquifer system. For 1979–2012, recharge from deep percolation of mountain-front runoff and surface streamflow infiltration was estimated to account for 53 percent of natural recharge, or about 4,500 acre-ft/yr (Geoscience Support Services, Inc., 2014a). Recharge from mountain-front runoff generally was from the Triple Falls Creek and Oak Glen subareas (adjacent to the San Bernardino Mountains), the Calimesa subarea (adjacent to the Yucaipa hills), and the Crafton subarea (adjacent to the Crafton Hills; Moreland, 1970). Mountain-front runoff usually was from flash-flood streamflow events; therefore, potential recharge may have been limited in some subareas (Moreland, 1970). Recharge from surface streamflow infiltration was primarily in the Wilson Creek subarea where Oak Glen Creek has a large drainage area ([figs. A2, A15](#)) and often has streamflow late into the summer months, particularly during years of above-average precipitation (Moreland, 1970). A relatively high percentage of medium- and coarse-grained sediment


in the Wilson Creek subarea ([fig. A13](#)) likely allowed streamflow in Oak Glen Creek to infiltrate readily into the thick unsaturated zone and percolate to the aquifer system. Surface streamflow infiltration also resulted in recharge in the Calimesa subarea from Yucaipa Creek and other streams that feed into Yucaipa Creek ([fig. A15](#)), and from smaller streams flowing from the Yucaipa hills (Burnham and Dutcher, 1960). In the Western Heights subarea, the layer of fine-grained material at 270–300 ft bls may have limited the deep percolation of mountain-front runoff and surface streamflow infiltration to the aquifer system (Moreland, 1970).

## Precipitation


Groundwater recharge from deep percolation of precipitation occurs across the Yucaipa subbasin. For 1979–2012, recharge from deep percolation of precipitation was estimated to account for 12 percent of natural recharge, or about 1,000 acre-ft/yr (Geoscience Support Services, Inc., 2014a). Depth-to-groundwater was generally greater than 100 ft, and was more than 300 ft deep in some subareas ([fig. A11](#)), which could infer that deep percolation from precipitation may be minimal in most subareas. Substantial recharge from precipitation probably is limited to the Triple Falls Creek and Oak Glen subareas, where average annual precipitation is greatest. In the Western Heights subarea, the layer of fine-grained material at 270–300 ft bls may limit infiltration of precipitation to the aquifer system (Moreland, 1970).

## Subsurface Inflow

Subsurface inflow of groundwater from adjacent areas is a likely source of recharge to the Yucaipa subbasin. Groundwater generally flows from northeast to southwest through the Yucaipa subbasin (see “[Long-term Trends in Groundwater Levels](#)” section); therefore, subsurface inflow is likely across the San Andreas fault zone, at the base of the San Bernardino Mountains, and at the base of the Yucaipa hills (Eckis, 1934; Burnham and Dutcher, 1960; Moreland, 1970). Subsurface inflows are primarily in the Triple Falls Creek and Oak Glen subareas, where groundwater flows through saturated fractures and fissures in the crystalline basement hydrogeologic unit (Burnham and Dutcher, 1960; Moreland, 1970). For 1979–2012, recharge from subsurface inflow was estimated to account for 35 percent of natural recharge, or about 2,900 acre-ft/yr (Geoscience Support Services, Inc., 2014a).



**Figure A14.** Estimates of *A*, safe yield to the Yucaipa groundwater subbasin and *B*, sustainable yield for groundwater subareas (Geoscience Support Services, Inc., 2014a), Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

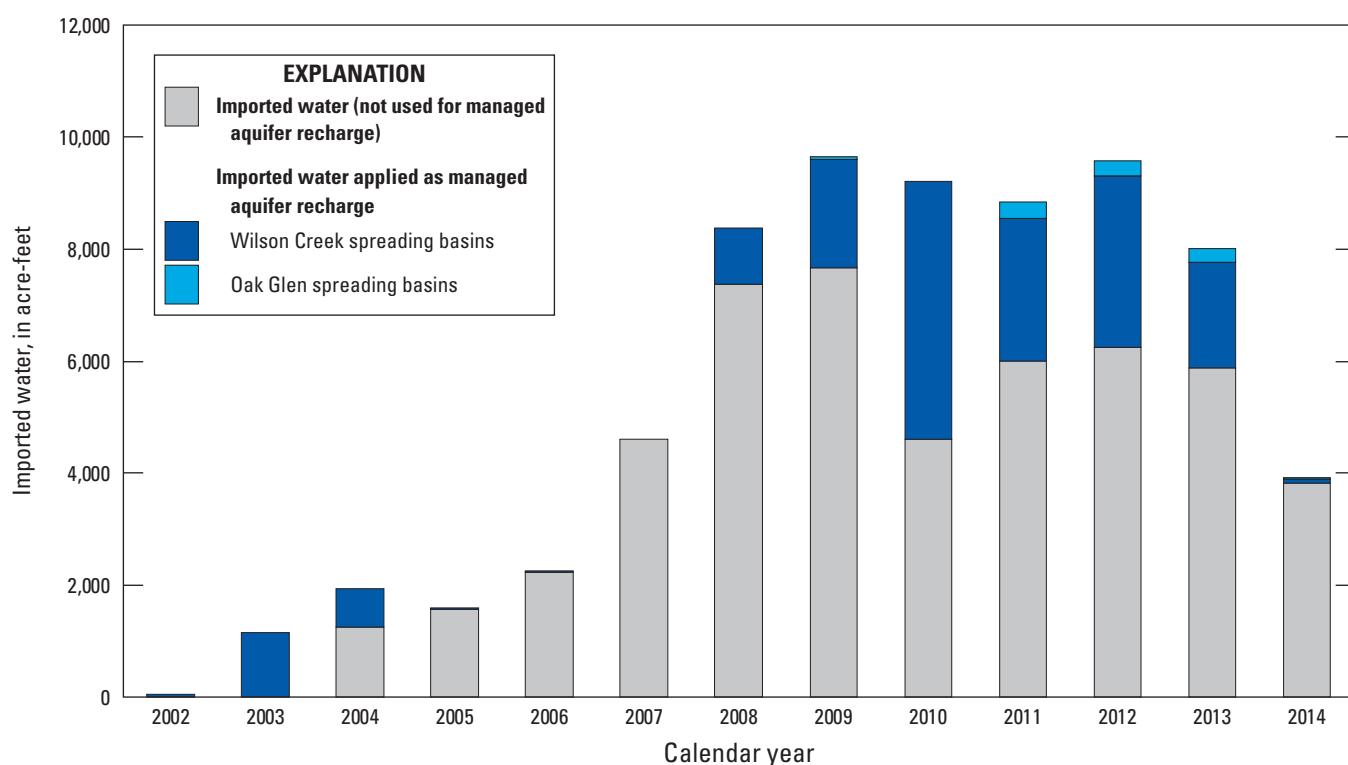


**Figure A15.** Locations of anthropogenic recharge in the Yucaipa groundwater subbasin, and in the adjacent San Timoteo, San Bernardino, and Rialto-Colton groundwater subbasins, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

## Anthropogenic Recharge

Sources of anthropogenic recharge to the basin-fill aquifer include (1) the application of water for MAR; (2) potential leakage of reservoirs and holding ponds; (3) infiltration of wastewater effluent from septic tanks; (4) irrigation return from agriculture, golf courses, parks, and residential landscaping; and (5) potential leakage from municipal water systems. The estimated quantity of potential recharge from these sources is generally an estimate of the amount of water applied at or lost near land surface. For example, Mills (2009) estimated a 50 percent loss of

wastewater from septic-return flow because of evaporation and transpiration. The actual amount of infiltration to the basin-fill aquifer from these sources could be less because of losses from evaporation at or near land surface. The rate at which anthropogenic sources recharge the aquifer system is subject to travel time necessary for the water to migrate through the thick unsaturated zone to the groundwater table, which is affected by the hydrogeology of the subbasin. In the Western Heights subarea, the fine-grained perched layer may cause substantially longer travel times than in other parts of the Yucaipa subbasin.


### Imported Water and Managed Aquifer Recharge

Water from northern California has been imported to the Yucaipa subbasin via the California State Water Project aqueduct since 2002 and has been distributed for many purposes. From 2002 to 2014, about 69,000 acre-ft of water was imported to the Yucaipa subbasin (A. Jones, San Bernardino Valley Municipal Water District, written commun., 2016; [fig. A16](#)). Imported water was stored in the Crafton Hills Reservoir and was (1) applied directly to the Wilson Creek and Oak Glen Creek spreading basins ([fig. A15](#)) for MAR via infiltration, (2) released as seepage to holding ponds in the Yucaipa Regional Park, and (3) used to augment the municipal-water and recycled-water supply for irrigation to golf courses, parks, and residential landscaping.

During 2002–14, a combined amount of about 18,000 acre-ft of imported water from northern California was applied to the Wilson Creek and Oak Glen Creek spreading basins, which were constructed originally as flood-control structures along Wilson and Oak Glen Creeks ([fig. A15](#)). Up to about 4,600 and 300 acre-ft/yr were applied at the Wilson Creek and Oak Glen Creek spreading basins, respectively ([fig. A16](#); A. Jones, San Bernardino Valley Municipal Water District, written commun., 2016; B. Brown, Yucaipa Valley Water District, written commun., 2016). Additional recharge

beyond direct application of imported water likely occurred at both MAR locations during large streamflow and precipitation events where surface water was captured in the spreading basins. For example, the Wilson Creek spreading basins have a diversion structure to capture water from Wilson Creek during such events. The amount of non-imported water captured at the spreading basins is generally not metered or reported, however, an estimated 1,220 acre-ft of water was captured at the Wilson Creek spreading basins in the 1958 water year (Moreland, 1970), during which time precipitation was slightly above average.

The Wildwood Creek detention basins along Yucaipa Creek ([fig. A15](#)) that were constructed in 2010 are sources of potential MAR. Water for MAR has not been applied regularly at these locations, but recharge may occur from inadvertent capture of surface water during large streamflow and precipitation events. The annual mean streamflow at SBCFCD streamgage S3608A, about 2.5 mi downstream from the Wildwood Creek detention basins along Yucaipa Creek ([fig. A15](#)), is about 30,000–67,000 acre-ft/yr (42–93 ft<sup>3</sup>/s) for 2010–14 ([fig. A6E](#)). This range of streamflow could be considered the maximum potential quantity of water available to be captured at the Wildwood Creek detention basins.



**Figure A16.** Reported quantity of imported water to the Yucaipa groundwater subbasin from northern California, 2002–14, Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

Imported water released as seepage from the Crafton Hills Reservoir (fig. A15) helps maintain water levels in three holding ponds in Yucaipa Regional Park (not pictured in fig. A15) and is estimated to be about 80 acre-ft/yr (T. Wehling, California Department of Water Resources, written commun., 2020). These three holding ponds in the park were constructed in the 1990s and are used for recreation. In the holding ponds, clay and asphaltic liners prevent leakage, and drain blankets control seepage at the base of the dams (W. Huang, San Bernardino Valley Municipal Water District, written commun., 2020). Although these ponds were constructed to eliminate or minimize leakage, some recharge to the aquifer system may result from infiltration of water through cracks in the pond liners or from seepage through the drain blankets. The Crafton Hills Reservoir is unlined, and leakage directly from the reservoir may be an additional source of recharge.

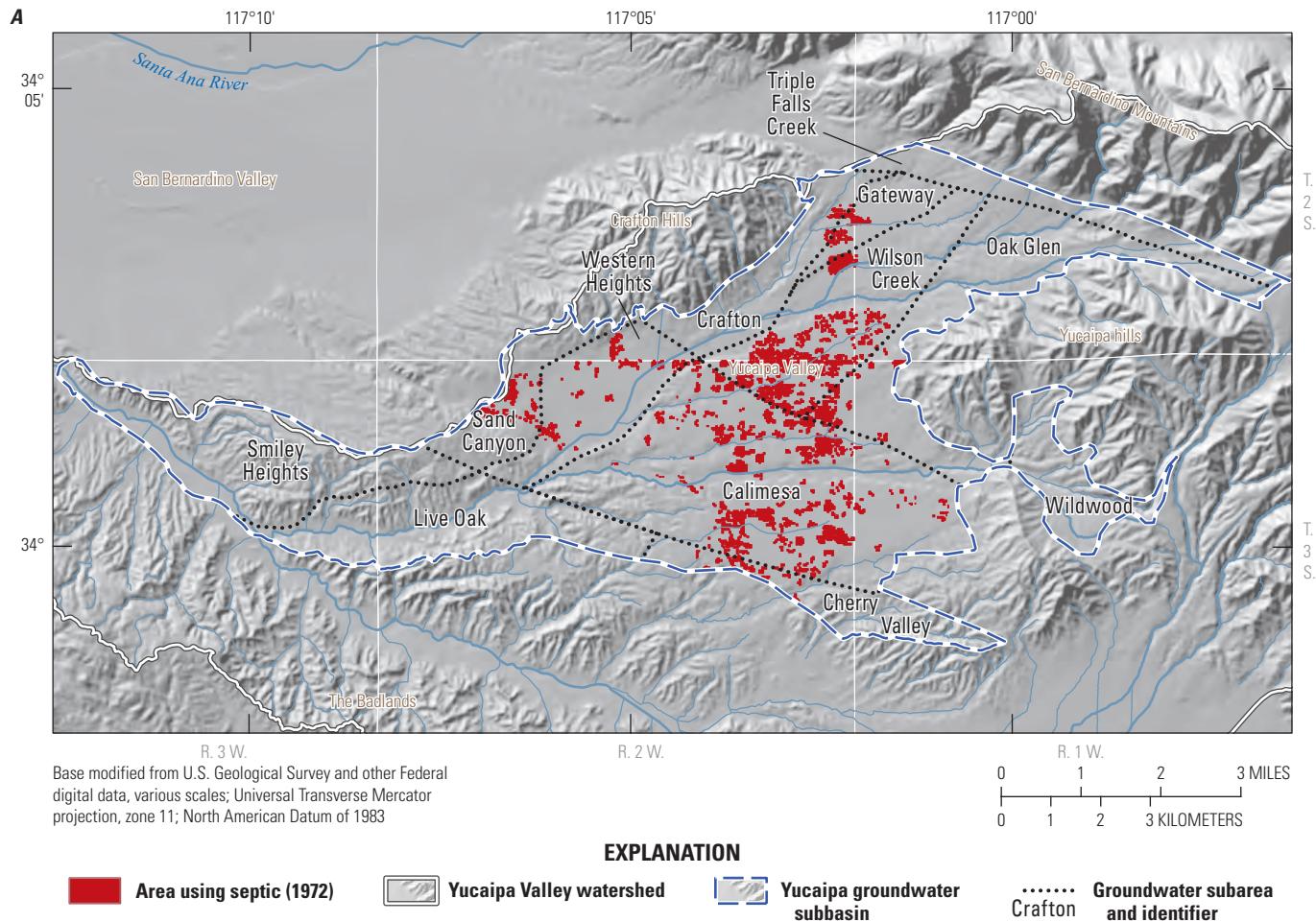
### Wastewater Effluent

Infiltration of wastewater effluent results from domestic septic systems and treatment facilities. Prior to 1986, septic systems were the primary method for disposal of residential wastewater effluent in the Yucaipa subbasin (Yucaipa Valley Water District, 2010). Since the construction of a sewer network in 1986, most wastewater from the Yucaipa Valley Water District (YVWD) sewer service area has been piped to the Wochholz Regional Water Recycling Facility. Treated wastewater is either discharged as effluent to San Timoteo Creek (fig. A15) or used to augment the recycled-water supply.

Since 1986, treated wastewater effluent from the Wochholz Regional Water Recycling Facility has been discharged to San Timoteo Creek, which is south of the Yucaipa subbasin (fig. A15); from 1986 to 2014, the amount of treated effluent discharged to San Timoteo Creek has ranged from about 100 to 4,200 acre-ft/yr, with an average of about 3,100 acre-ft/yr (K. King, Yucaipa Valley Water District, written commun., 2016). However, not all residences in the Yucaipa subbasin have been connected to the sewer system. In 2016, several areas, including much of the Western Heights subarea, used septic systems for disposal of wastewater effluent (J. Zoba, Yucaipa Valley Water District, written commun., 2017).

Estimates of infiltration of wastewater effluent from septic systems were calculated for 1950, 1970, 1990, 2000, and 2010. The spatial and temporal distribution of septic systems was estimated from land-use data for 1972 and 2014 (figs. A7, A17; Mitchell and others, 1977; LANDFIRE, 2014) and from the YVWD sewer network service area (fig. A17B; J. Zoba, Yucaipa Valley Water District, written commun., 2017). The quantity of discharge from septic systems was based on population estimates of the Yucaipa subbasin

(table A1; U.S. Census Bureau, 1952; Manson and others, 2019) and an average septic-tank discharge of 70 gallons per day per person (gal/d/p; Umari and others, 1993).


The spatial distribution of septic systems for 1950 and 1970 (fig. A17A) was assumed to include all areas designated as “Developed” in the 1972 land-use map (fig. A7A). For years prior to 1986, we assumed that the entire population of the Yucaipa subbasin (table A1) used septic systems. The estimated quantity of discharge from septic systems for 1950 and 1970 was about 40 and 1,700 acre-ft, respectively.

The spatial distributions of septic systems for 1990, 2000, and 2010 (fig. A17B) were assumed to include (1) “Developed” areas in the 2014 (fig. A7D; LANDFIRE, 2014) land-use map that intersected areas designated as “Unavailable” in the 2016 YVWD sewer network service area and (2) “Developed” areas from the 2014 land-use map located outside of the 2016 YVWD sewer network service area (fig. A17B). After 1986, we assumed the use of septic systems was limited to those areas without access to the sewer network. For 2010, we estimated 4.5 percent of the estimated population of the Yucaipa subbasin (table A1) was using septic. This estimate was based on the overlap of the distribution of septic systems for 2014 (fig. A17B) with spatial population data for 2010 from Manson and others (2019). For the purposes of this calculation, we assumed that the same percentage of the population was using septic in 1990 and 2000. The estimated quantity of discharge from septic systems for 1990, 2000, and 2010 was about 130, 160, and 200 acre-ft, respectively.

### Irrigation Return from Agriculture, Golf Courses, Parks, and Residential Landscaping

Irrigation return is the fraction of water that has been used to irrigate agriculture, grassy areas in golf courses, parks, and residential landscaping; is not consumed by evapotranspiration; and subsequently infiltrates to the aquifer system. The amount of water that is lost through evapotranspiration and does not infiltrate to the water table is considered consumptive use. The consumptive use associated with each type of irrigation was estimated based on the percentage of irrigated land, reference evapotranspiration, and crop coefficients. The methods used to estimate consumptive use and the magnitudes of these estimates are described in more detail in chapter B of this report.

Irrigation return from agriculture is water that has been applied to irrigate crops, is not consumed by the crops, and subsequently infiltrates to the aquifer system. Water for this type of irrigation is supplied from locally pumped groundwater. Recharge based on crop type and irrigation requirements in the Yucaipa subbasin was estimated using the calibrated YIHM; recharge estimates and the YIHM are discussed in more detail in chapter B.



**Figure A17.** Estimated distribution of septic systems for A, 1972 and B, 2014, in the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

Irrigation return from golf courses, parks, and residential landscaping is water that has been applied to irrigate turf grass; is not consumed by the turf grass; and subsequently infiltrates to the aquifer system. Water for this type of irrigation is supplied from locally pumped groundwater and recycled water. Recycled water consists of untreated imported water from northern California, treated water from the Wochholz Regional Water Recycling Facility, or water from backwashing filters in water-treatment plants. The desired water demand of turf grass has been estimated to be about 4 acre-ft/yr per irrigated acre for golf courses (U.S. Golf Association, 2012) and about 1.6 acre-ft/yr of per irrigated acre for recreational-use at parks and residential landscaping (Hanak and Neumark, 2006). The amount of return flow from golf courses, parks, and residential landscaping was estimated to range from about 15 to 30 percent of total applied water at each location (Hardt and Hutchinson, 1980; Danskin and others, 2006; Water Systems Consulting, Inc., 2016).

The Yucaipa subbasin had two golf courses in operation during the study period (1947–2014)—Yucaipa Valley Golf Club and Calimesa Country Club (fig. A15). Yucaipa Valley

Golf Club has been in operation since 1999, and Calimesa Country Club operated during 1958–2017. About 215 acre-ft of recycled water was applied at the Yucaipa Valley Golf Club for 2019 (J. Ares, Yucaipa Valley Water District, written commun., 2020), and an average of about 260 acre-ft/yr was applied at Calimesa Country Club during 2010–14.

Yucaipa Regional Park, which was been in operation since the late 1990s (Hanak and Neumark, 2006), and other smaller parks, such as the 7th Street Park in the Calimesa subarea, require irrigation to maintain turf grass for recreational use (fig. A15). During 2010–14, about 35 acre-ft/yr of recycled water was applied at 7th Street Park (J. Ares, Yucaipa Valley Water District, written commun., 2020). Residential landscaping also requires irrigation, but the locations and amounts of applied irrigation often are unavailable. In 2019, about 730 acre-ft of recycled water was applied as irrigation in Chapman Heights, a residential neighborhood at the base of the Crafton Hills that is adjacent to the Yucaipa Valley Golf Club. (J. Ares, Yucaipa Valley Water District, written commun., 2020).

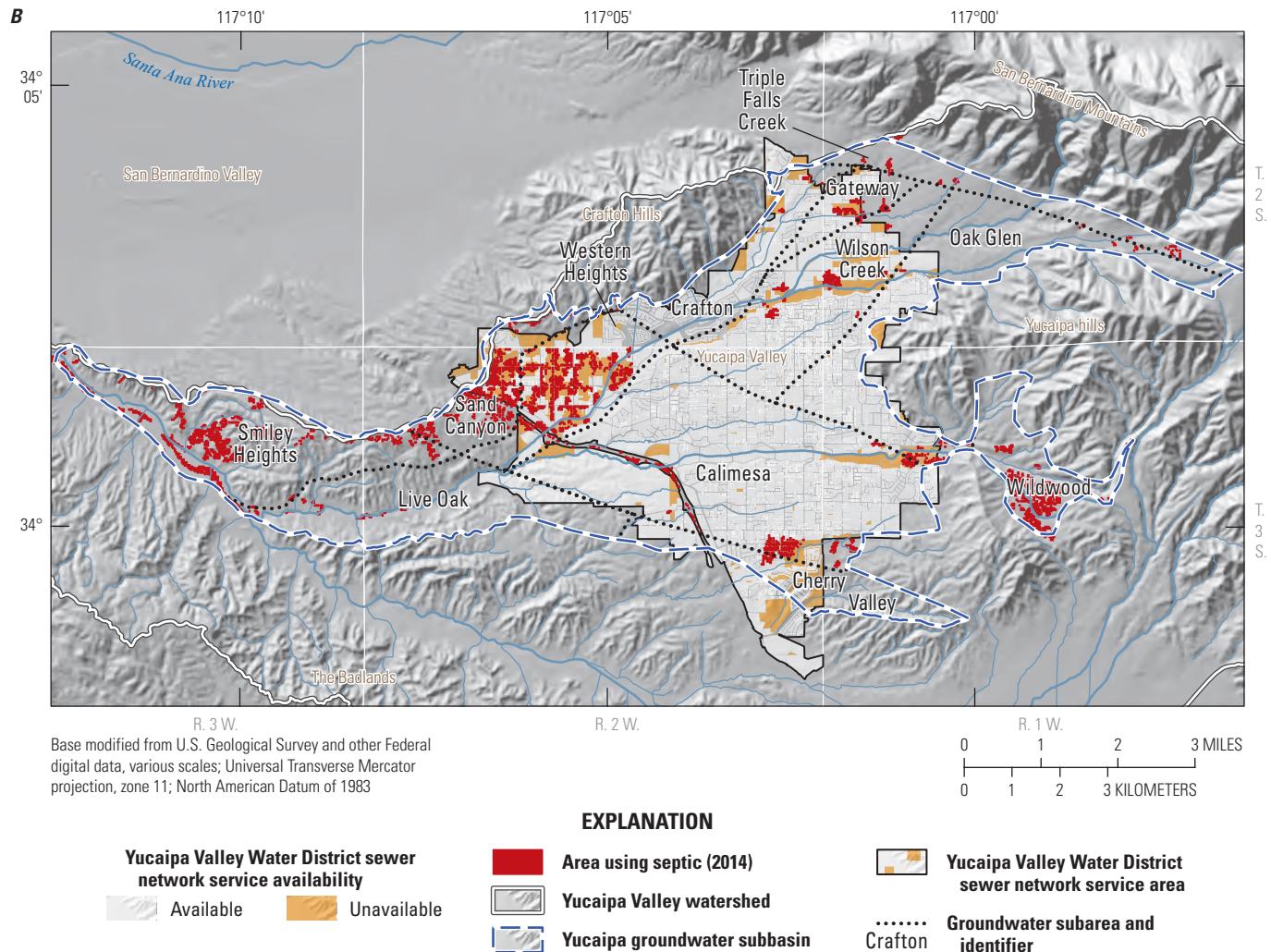



Figure A17.—Continued

## Municipal Water Systems

Leakage from a municipal water system is water that was routed for domestic and municipal use that infiltrates to the aquifer system via leaks and cracks in the municipal piping infrastructure. The amount of return flow from leakage in the municipal-water system for the YVWD service area is estimated to range from about 5 to 10 percent of the total municipal water demand (Yucaipa Valley Water District, 2010; American Water Works Association, 2018).

## Estimates and Sources of Discharge

Groundwater is discharged from the Yucaipa subbasin by three general mechanisms: (1) groundwater pumping for agricultural, municipal, and recreational uses; (2) groundwater evapotranspiration; and (3) subsurface outflow to adjacent

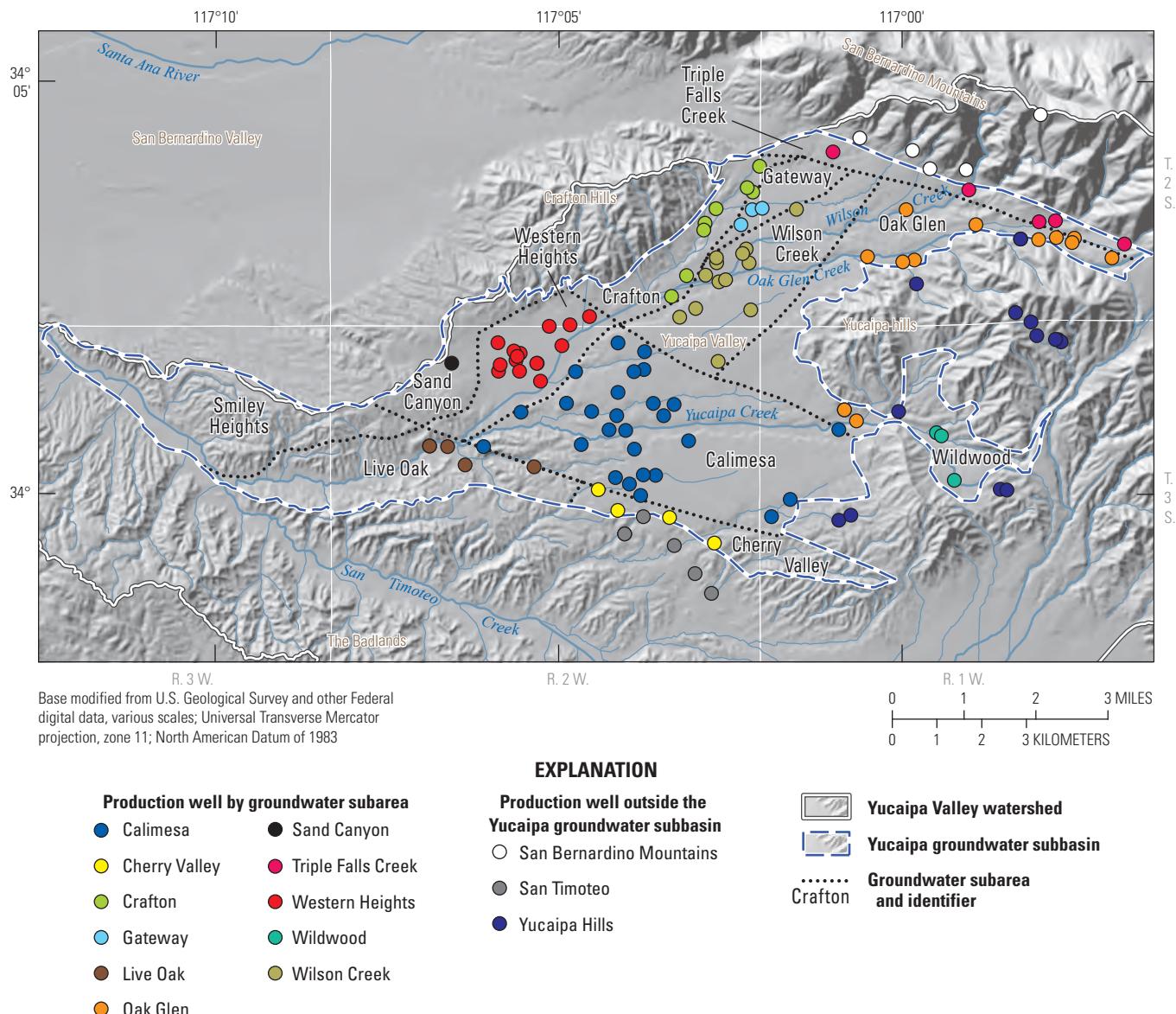
areas. Pumpage, or anthropogenic discharge, is the main mechanism by which groundwater is removed from the Yucaipa subbasin.

## Pumpage

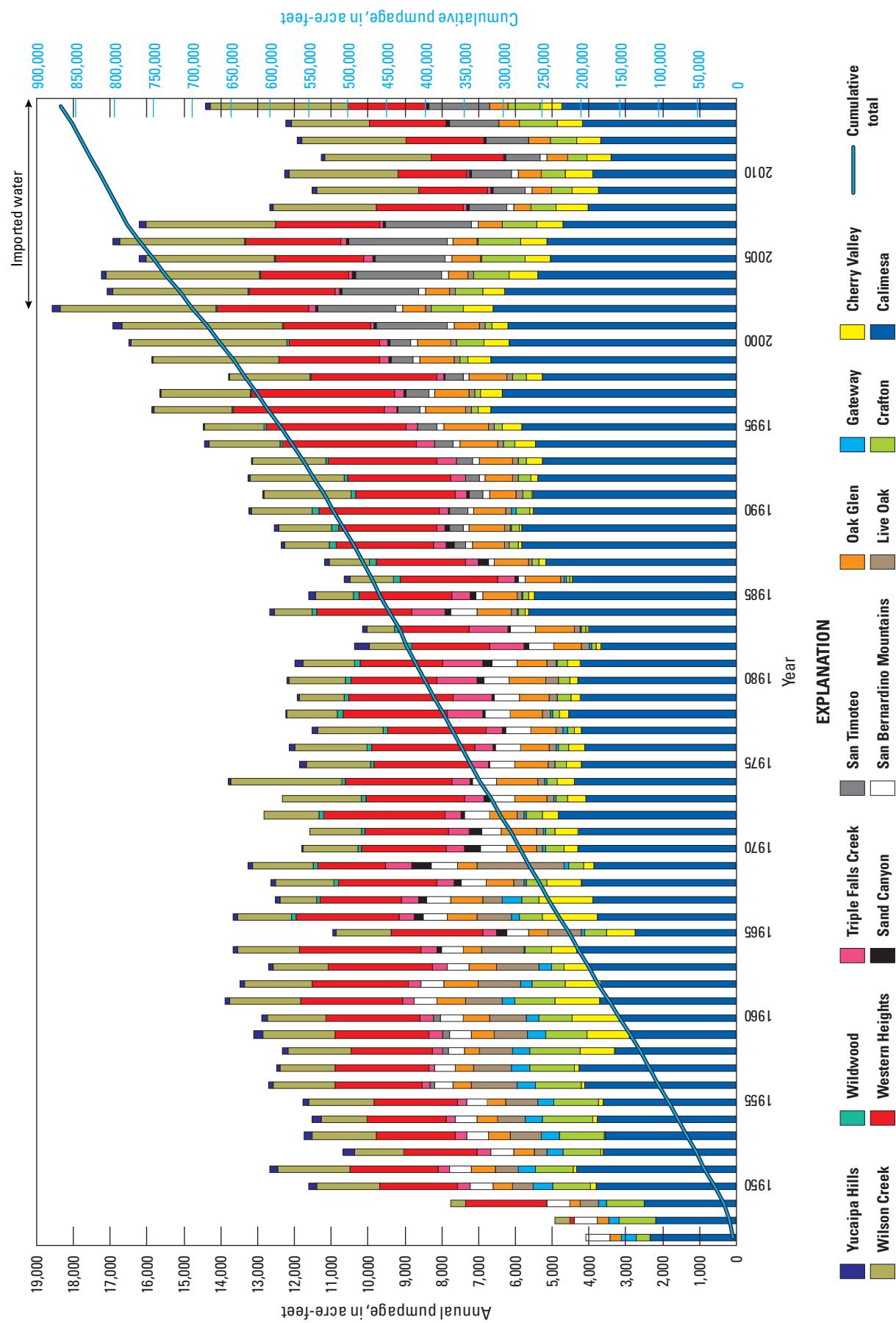
Groundwater pumpage in the Yucaipa subbasin is used to meet water demands from four water-use sectors: residential, landscape, industrial and commercial, and agricultural. In the early 1900s, water was used mainly for fruit orchards and other crops (see the “Land Use” section). By the late 1940s to mid-1950s, the population increased, and water use shifted to satisfy mostly the residential water demand. By 2010, residential water use in the Yucaipa subbasin was about 77 percent of the total water demand, followed by landscape water use that accounted for about 15 percent of the total water use. Agricultural, industrial, and other water uses accounted for about 8 percent of total water use (Yucaipa Valley Water District, 2010).

Groundwater pumpage data were compiled from five sources. The primary source of pumpage information was from SBVMWD (A. Jones, San Bernardino Valley Municipal Water District, written commun., 2016), which provided annual pumpage data for private and municipal wells during 1947–2014. These data were supplemented by monthly and annual pumpage data from YVWD (B. Brown, Yucaipa Valley Water District, written commun., 2016), South Mesa Water Company (SMWC; D. Armstrong, South Mesa Water Company, written commun., 2016), Western Heights Water Company (WHWC; B. Brown, Western Heights Water Company, written commun., 2016), and Geoscience Support Services, Inc. (J. Yeh, Geoscience Support Services, Inc., written commun., 2018). Pumpage data compiled from YVWD, SMWC, and WHWC were considered more accurate overall than the pumpage data from SBVMWD because these sources (1) reported data monthly instead of annually, (2) sometimes had pumpage data for wells and time periods not in the SBVMWD dataset, and (3) often contained updated well names and California state well numbers. Pumpage data from Geoscience Support Services, Inc. were used to fill in missing data by well and month if data were absent in the other datasets. The locations of wells for which pumpage data were compiled are shown in [figure A18](#). The quantities of total annual pumpage were compiled from these wells by groundwater subarea for the period 1947–2014 ([fig A19](#); [table A1.2](#)).

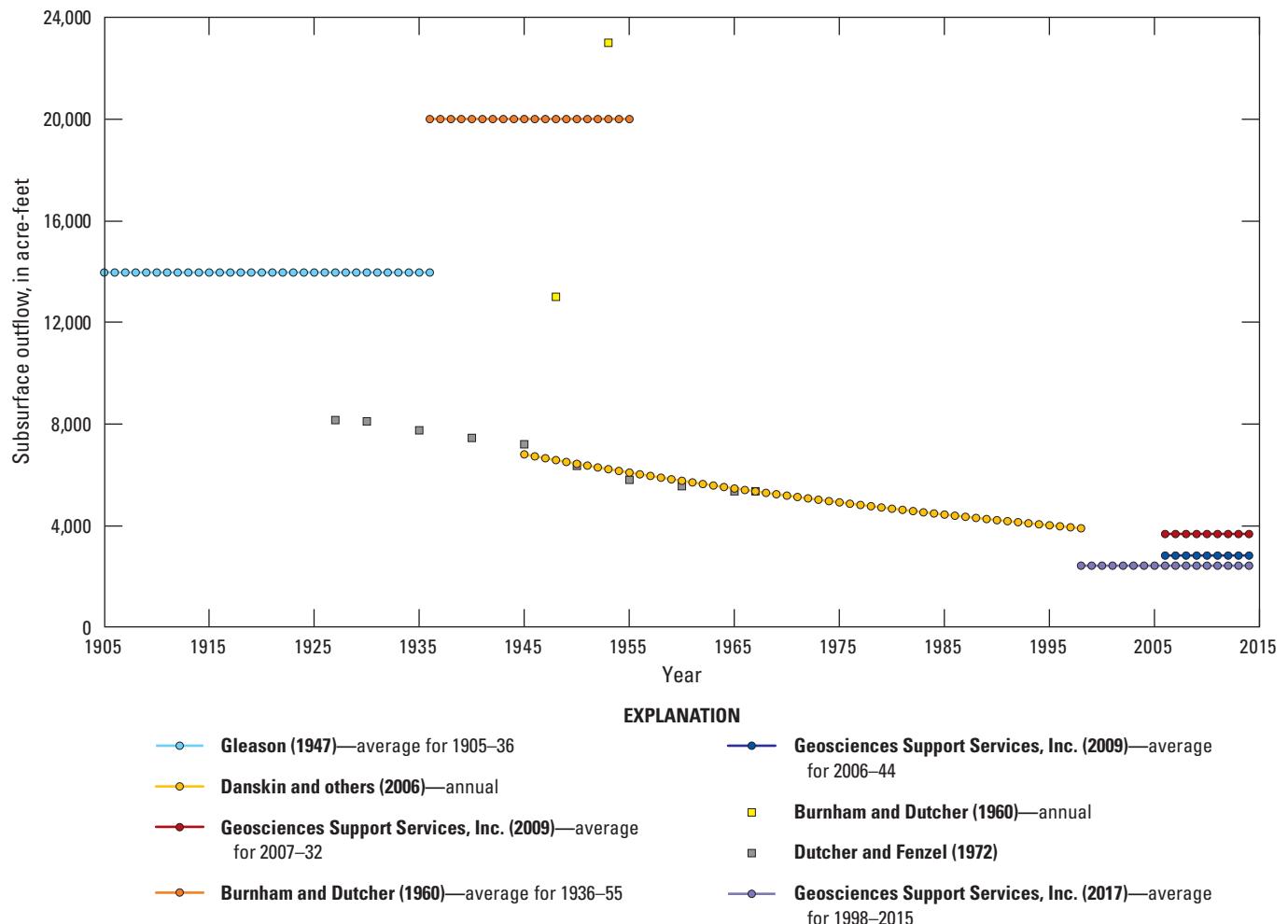
During 1947–2014, groundwater pumpage ranged from about 4,000 to 18,500 acre-ft/yr, and the cumulative quantity of groundwater extracted by pumpage was almost 870,000 acre-ft/yr ([fig. A19](#)). From 1950 to 1985, groundwater pumpage ranged from about 10,000 to 14,000 acre-ft/yr. From 1986 to the mid-2000s, groundwater pumpage increased steadily from about 10,000 acre-ft/yr and culminated in a period of 8 years (2000–07) with annual pumpage exceeding 16,000 acre-ft/yr ([fig. A19](#)). From 2008 to 2013, annual groundwater pumpage was reduced, corresponding to deliveries of imported water of more than about 8,000 acre-ft/yr ([figs. A16, A19](#)).


Most of the groundwater pumpage occurred in the Calimesa subarea, accounting for about 35 percent of the total quantity of groundwater pumpage extracted in the Yucaipa subbasin, or about 4,500 acre-ft/yr. The Western Heights and Wilson Creek subareas accounted for about 20 and 16 percent of total pumpage, or about 2,500 and 2,000 acre-ft/yr, respectively. All other subareas accounted for less than about 6 percent of total pumpage each, or less than about 700 acre-ft/yr.

## Evapotranspiration


Evapotranspiration (ET) is the combined water loss to the atmosphere from evaporation of surficial water and soil water and transpiration by plants. Evapotranspiration is a function of potential evapotranspiration (PET), water availability, soil texture, vegetation type, vegetation density, and root depth. Potential evapotranspiration is the rate of ET that is possible given an unlimited supply of soil water (California Irrigation Management Information System, 2005) under specific climatic conditions. If the water supply is limited, actual ET will be less than PET. Estimates of natural discharge from evapotranspiration for 1966–2016 and 1996–2015 were about 800 and 1,000 acre-ft/yr, respectively (Geoscience Support Services, Inc., 2017, 2018). The average PET rate and the total actual ET from the soil, unsaturated, and saturated zones were estimated as part of calibration of the YIHM using vegetation types and other land-use categories in land-use maps as shown in [figure A7](#).

## Subsurface Outflow


Subsurface outflow to adjacent groundwater basins is a source of natural discharge from the Yucaipa subbasin. Groundwater generally flows from north and east to south and west through the Yucaipa subbasin. Therefore, subsurface outflow is likely (1) across the northwestern margin of the Yucaipa subbasin west of the Triple Falls Creek groundwater subarea, between the Crafton Hills and San Bernardino Mountains; and (2) across the western margin of the Yucaipa subbasin, southwest of the Crafton Hills toward the Santa Ana River and into the San Bernardino groundwater subbasin ([fig. A15](#)). For 1955, subsurface outflow across the northwestern margin of the subbasin was estimated to be about 2,000 acre-ft/yr (Dutcher and Burnham, 1959). For 1905–2014, subsurface outflow across the western margin was estimated to range from about 2,400 to 20,000 acre-ft/yr ([fig. A20](#); Gleason, 1947; Burnham and Dutcher, 1960; Dutcher and Fenzel, 1972; Danskin and others, 2006; Geoscience Support Services, Inc., 2009, 2017). Results of early and recent studies were combined in [figure A20](#) to demonstrate a general decrease in estimated subsurface flow that likely can be attributed to a steady decline in groundwater levels in the Yucaipa subbasin caused by pumpage (Dutcher and Fenzel, 1972; Danskin and others, 2006; see also the “[Long-term trends in Groundwater Levels](#)” section). However, some variability in these estimates likely results from different methods of calculation, different periods of investigation, and different areas of study along the western margin.

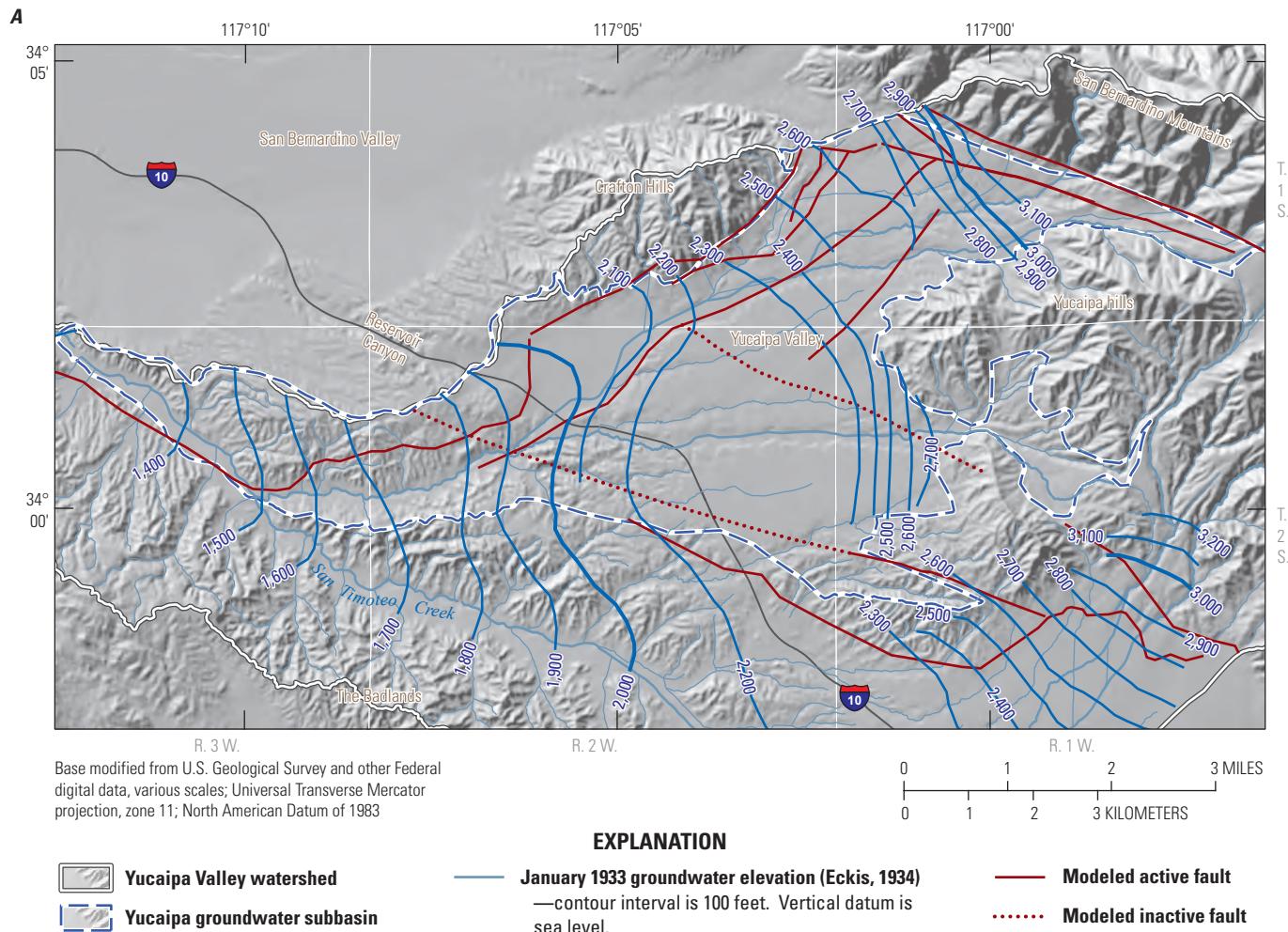


**Figure A18.** Wells with reported groundwater pumping information in the Yucaipa groundwatersubbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.



**Figure A19.** Reported annual groundwater pumpage by groundwater subarea and total cumulative pumpage for the period 1947–2014 in the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.




**Figure A20.** Estimates of subsurface outflow across the western margin of the Yucaipa groundwater subbasin to the San Bernardino groundwater subbasin, for 1905–2014, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

## Groundwater Levels, Flow, and Movement

The long-term reliance on groundwater in the Yucaipa subbasin for agricultural and municipal use caused a substantial decline in the depth of groundwater starting in the early 1900s followed by a modest recovery resulting from recent MAR and deliveries of imported water. In general, most groundwater in the Yucaipa subbasin originates as recharge from deep percolation of mountain-front runoff as delivered by streamflow infiltration from the San Bernardino Mountains and Yucaipa hills that flows west-southwest toward San Timoteo Creek (fig. A21). This general direction of groundwater flow was the same during natural conditions (pre-1900s), early development (about 1900–45), and post-World War II development (about 1945–2014). Although local changes in the direction of groundwater flow have occurred within the different subareas as a result of varying

amounts and locations of natural recharge and anthropogenic recharge, pumpage has been the primary influence of groundwater-flow direction.

Historically, springs and small areas of peaty land were present in the Western Heights subarea at the mouth of Live Oak Canyon (Mendenhall, 1905) and near the Sand Canyon subarea at the top of Reservoir Canyon (fig. A21A) crossing into the San Bernardino Valley (Burnham and Dutcher, 1960). The presence of springs and peaty land in the Western Heights subarea is coincident with northeasterly dipping beds of the (now called) sedimentary deposits of Live Oak Canyon, which were interpreted to inhibit groundwater flow, causing groundwater to rise to the surface (Mendenhall, 1905). From 1895 to 1900, several wells drilled in the Western Heights and Sand Canyon subareas were artesian (Mendenhall, 1905). Other springs were present at the mouth of and in the Calimesa subarea along the Chicken Hill fault (Burnham and Dutcher, 1960; Moreland, 1970) and at the mouth of Wildwood Canyon (fig. A4) in the southeastern part of the Oak Glen subarea (Burnham and Dutcher, 1960).



**Figure A21.** Groundwater elevations in the Yucaipa groundwater subbasin for *A*, January 1933 (Eckis, 1934); *B*, 1967–68 (Moreland, 1970; Bloyd, 1971; Dutcher and Fenzel, 1972); *C*, June–November 2006 (Geoscience Support Services, Inc., 2015); and *D*, June–November 2014 (Geoscience Support Services, Inc., 2015).

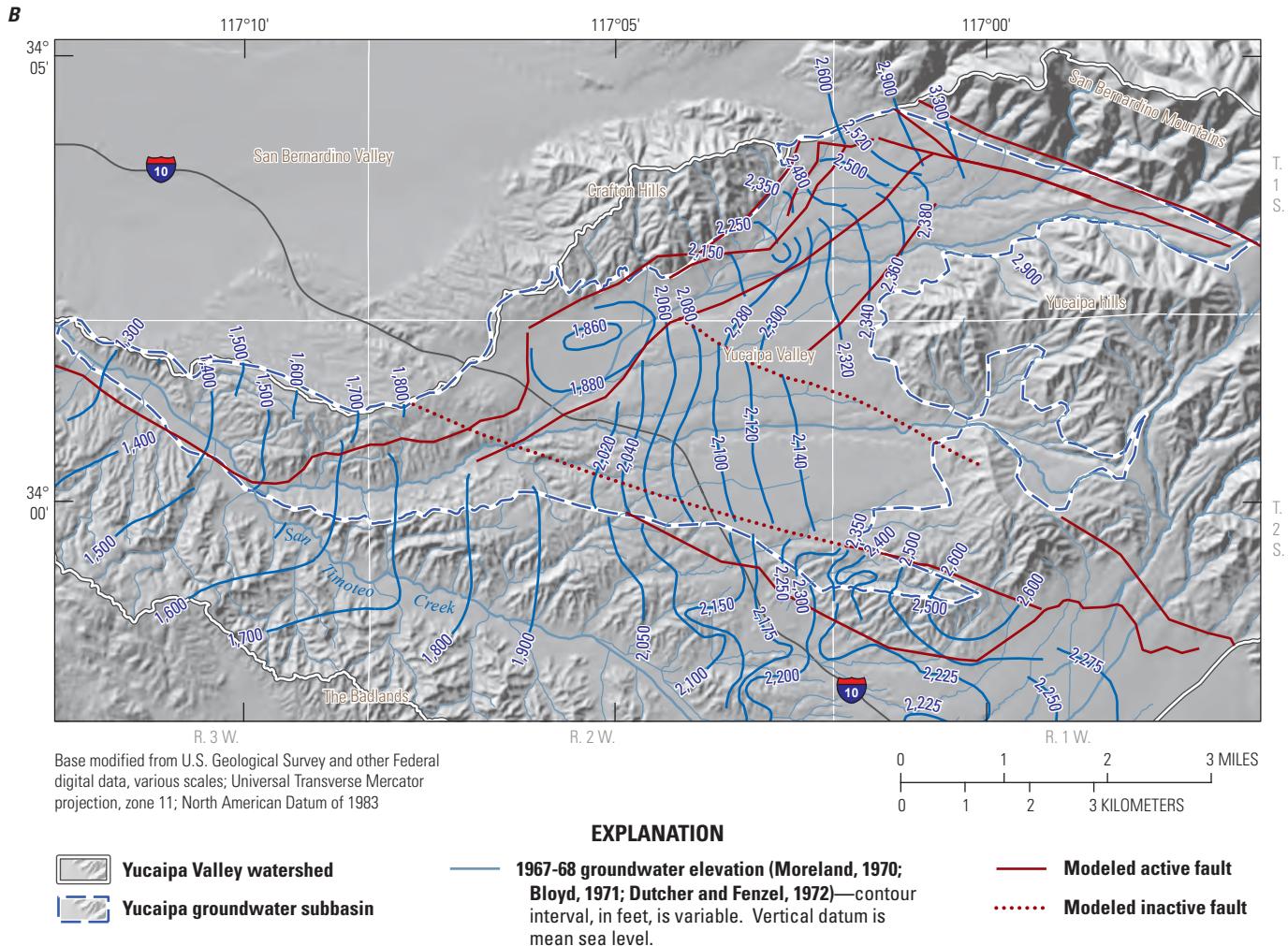
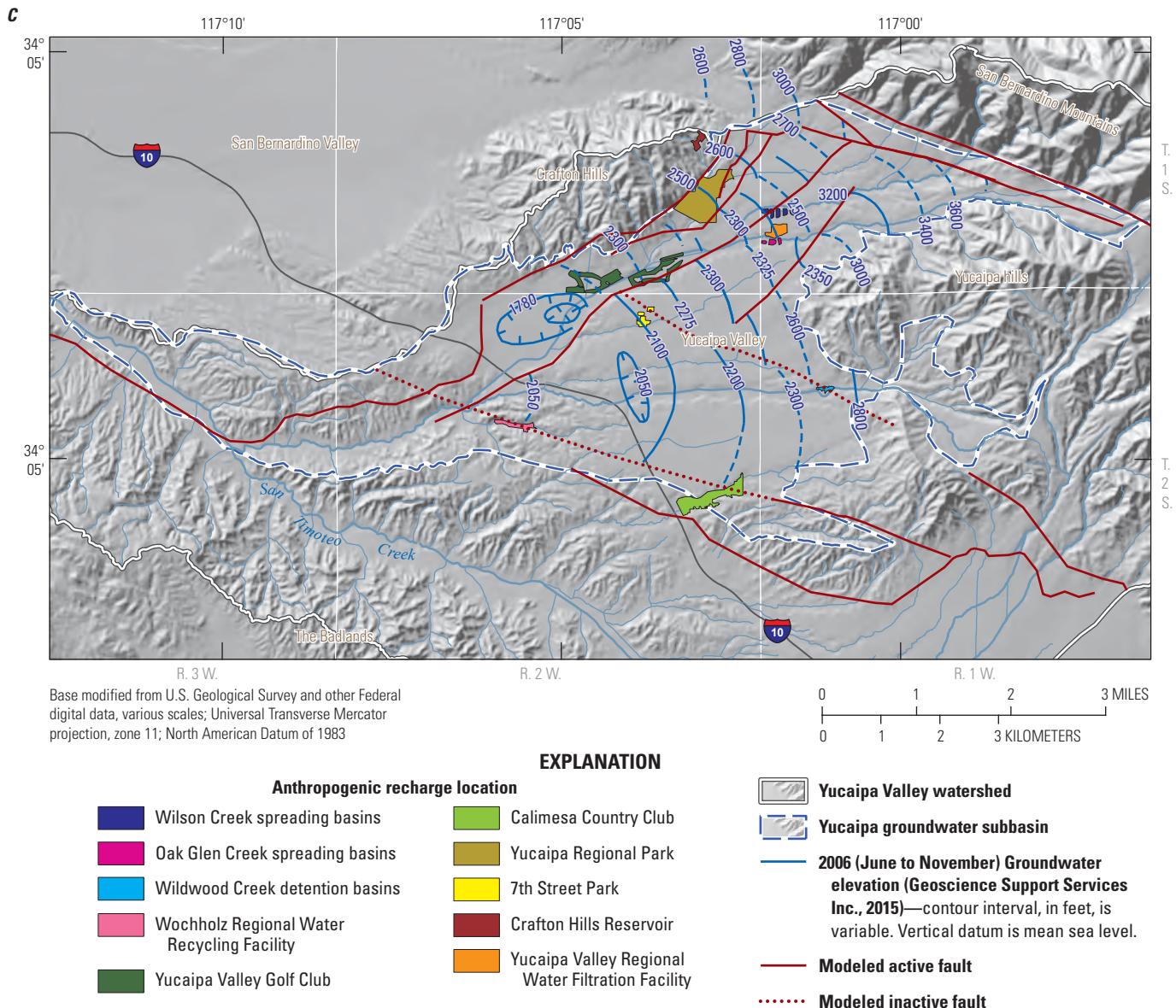
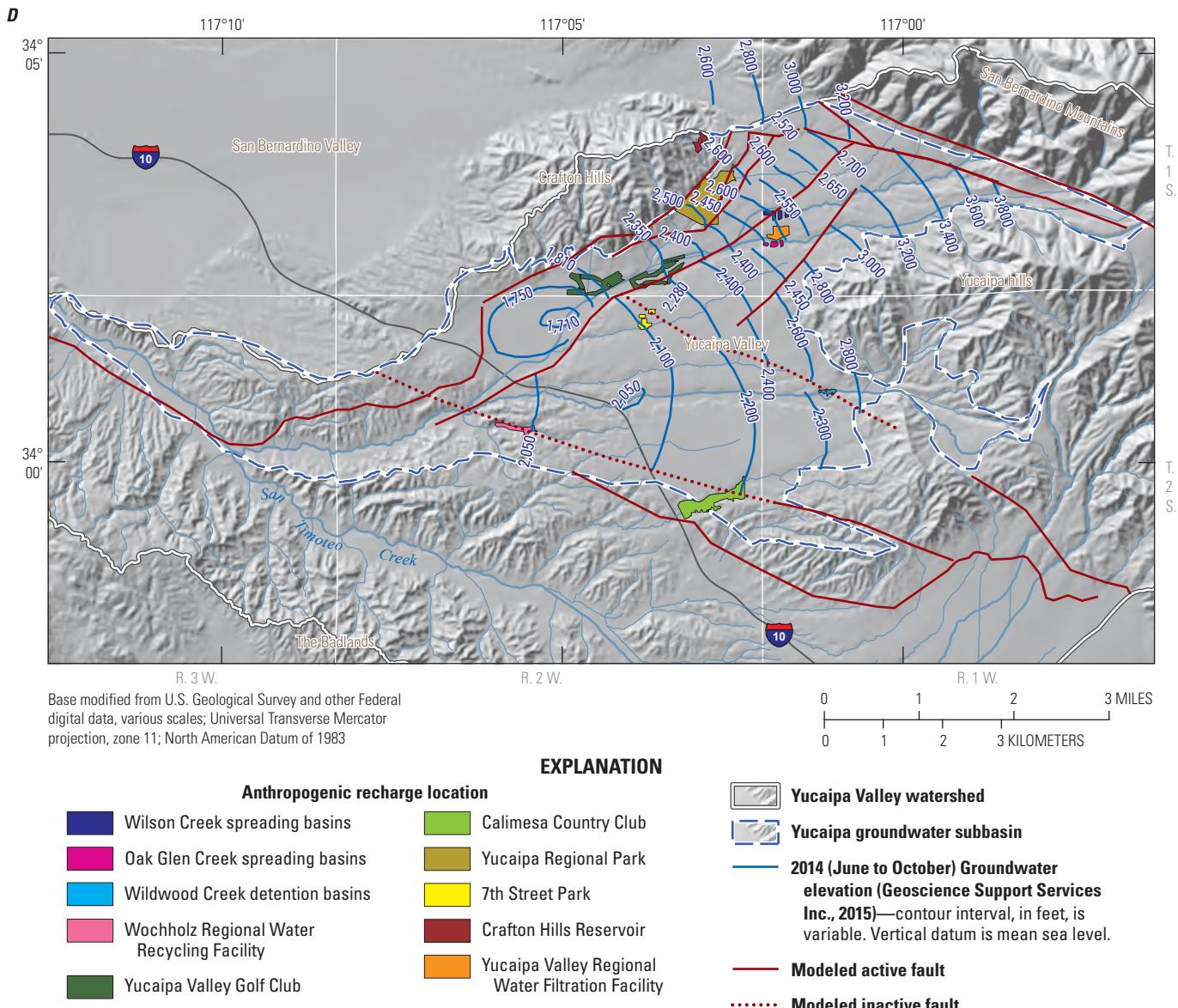



Figure A21.—Continued

The expansion of agriculture in the early 1900s and the subsequent increase in pumpage eventually lowered the groundwater table throughout the Yucaipa subbasin and caused the springs along the faults and artesian wells in the Western Heights and Sand Canyon subareas to go dry (Moreland, 1970). A regional groundwater map was produced for the greater Los Angeles area for January 1933 including the Yucaipa subbasin (fig. A21A; Eckis, 1934). Groundwater elevations for January 1933 ranged from higher than 3,100 ft in the northeastern part of the Yucaipa subbasin near the San Bernardino Mountains, to about 1,300 ft along San Timoteo Creek at the western end of the Yucaipa subbasin. Groundwater elevations adjacent to the San Bernardino Mountains and Yucaipa hills sloped steeply to the southwest and were above land surface in Oak Glen Creek (referred to as Live Oak Creek by Eckis [1934]) and other streams in the northeast part of the Yucaipa subbasin (Eckis, 1934). In the Western Heights subarea, groundwater was observed at land surface, indicating that the groundwater table had not yet been lowered below land surface by 1933 (Eckis, 1934).

The gradual decline of groundwater levels in the Yucaipa subbasin continued into the post-World War II development boom that started in about 1945. By the late 1960s, increases in pumpage in response to population growth exceeded most estimates of recharge (figs. A14, A19), which resulted in local changes in the direction of groundwater flow and a decline of groundwater levels in some subareas (fig. A21B). The direction of groundwater flow in the Yucaipa subbasin had the same general character from January 1933 (fig. A21A) through the 1960s (fig. A21B). Groundwater elevations during 1967–68 ranged from higher than 3,300 ft near the San Bernardino Mountains to less than 1,300 ft along San Timoteo Creek at the western end of the Yucaipa subbasin. Groundwater elevations were compiled for 1968 from Moreland (1970) for the central and northern part of the Yucaipa subbasin, for 1967 from Bloyd (1971) for the area south and east of the Yucaipa subbasin, and for spring 1967 from Dutcher and Fenzel (1972) for the area south and west of the Yucaipa subbasin. Overall maximum and minimum groundwater levels across the Yucaipa subbasin





Figure A21.—Continued

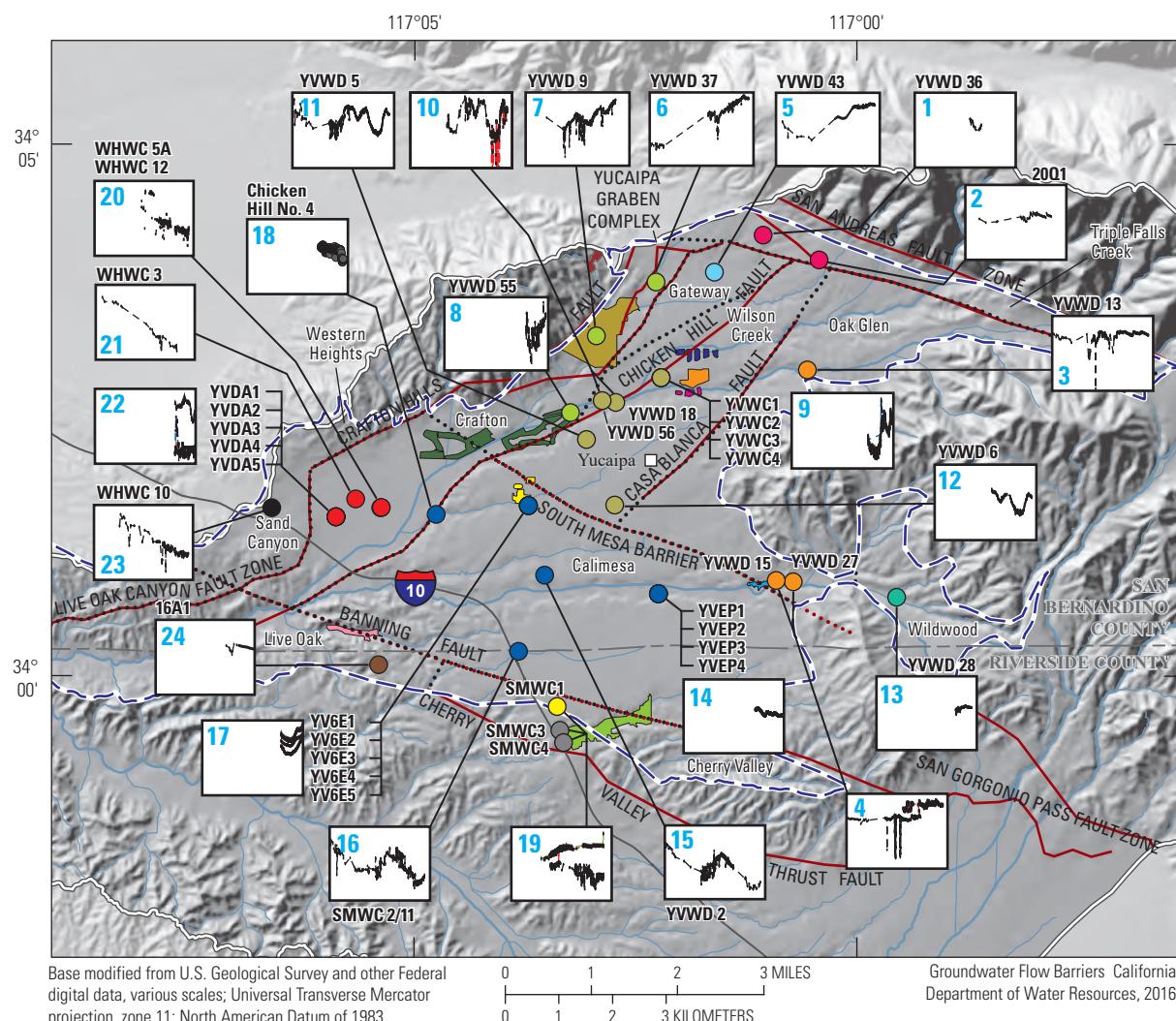
were similar to those in January 1933, but groundwater levels declined from about 100 to 200 ft in the Gateway, Wilson Creek, Calimesa, and Western Heights subareas as a result of pumping. Notable pumping depressions occurred in the Wilson Creek and Western Heights subareas (fig. A21B).

Groundwater pumpage increased steadily from 1986 to the mid-2000s, culminating in a period of 8 years (2000–07) with the most annual pumpage during the period of record (fig. A19). Groundwater elevations in the Yucaipa subbasin during June–November 2006 (Geoscience Support Services, Inc., 2015) indicated additional decline in groundwater elevations since 1967–68 and more pronounced pumping depressions in the Western Heights and Calimesa subareas

(fig. A21C). Since 1967–68, groundwater elevations declined about 50–200 ft, mostly in the Western Heights and Calimesa subareas.

During June–November 2014, groundwater elevations in the Yucaipa subbasin indicated that the direction of regional groundwater flow had the same general regional trends as previous years (fig. A21D; Geoscience Support Services, Inc., 2015). Groundwater elevations declined in some parts of the Yucaipa subbasin but remained near or were higher than levels in 2006 in subareas that received imported water. The introduction of imported water corresponded to a decrease in groundwater pumping, especially after 2007, when deliveries of imported water exceeded about 8,000 acre-ft/yr (figs. A16, A19); the combination of this additional source of water and




**Figure A21.**—Continued

a decrease in pumping caused the groundwater elevations to rise by as much as 200 ft since about 2006 in the Wilson Creek subarea (figs. A21C, A21D).

### Long-term Trends in Groundwater Levels

Long-term groundwater-level data from individual wells with multiple measurements can provide insights about how stresses on the aquifer system affect groundwater levels through time. The historical data available in the Yucaipa subbasin document the long-term trends in groundwater levels throughout the Yucaipa subbasin, and the data were

used to evaluate hydrologic differences among subareas, the effects of long-term pumping, the effects of MAR water, and potential hydrologic barriers to groundwater flow. Long-term hydrographs were constructed for wells throughout the Yucaipa subbasin with groundwater-level data spanning the periods 1947–2014 (figs. A22, A23; table A1.1; U.S. Geological Survey, 2018) and 1998–2014 (fig. A24; table A1.1; U.S. Geological Survey, 2018). To show trends throughout the longest possible period, groundwater-level data from nearby wells of similar construction were combined on the same hydrographs.



#### Anthropogenic recharge location

- Wilson Creek spreading basins
- Oak Glen Creek spreading basins
- Wildwood Creek detention basins
- Wochholz Regional Water Recycling Facility
- Yucaipa Valley Golf Club
- Calimesa Country Club
- Yucaipa Regional Park
- 7th Street Park
- Crafton Hills Reservoir
- Yucaipa Valley Regional Water Filtration Facility



YVWD 2

Thumbnail of hydrograph, well identifier and hydrograph identifier (blue) shown in figure A.23 and figure A.24



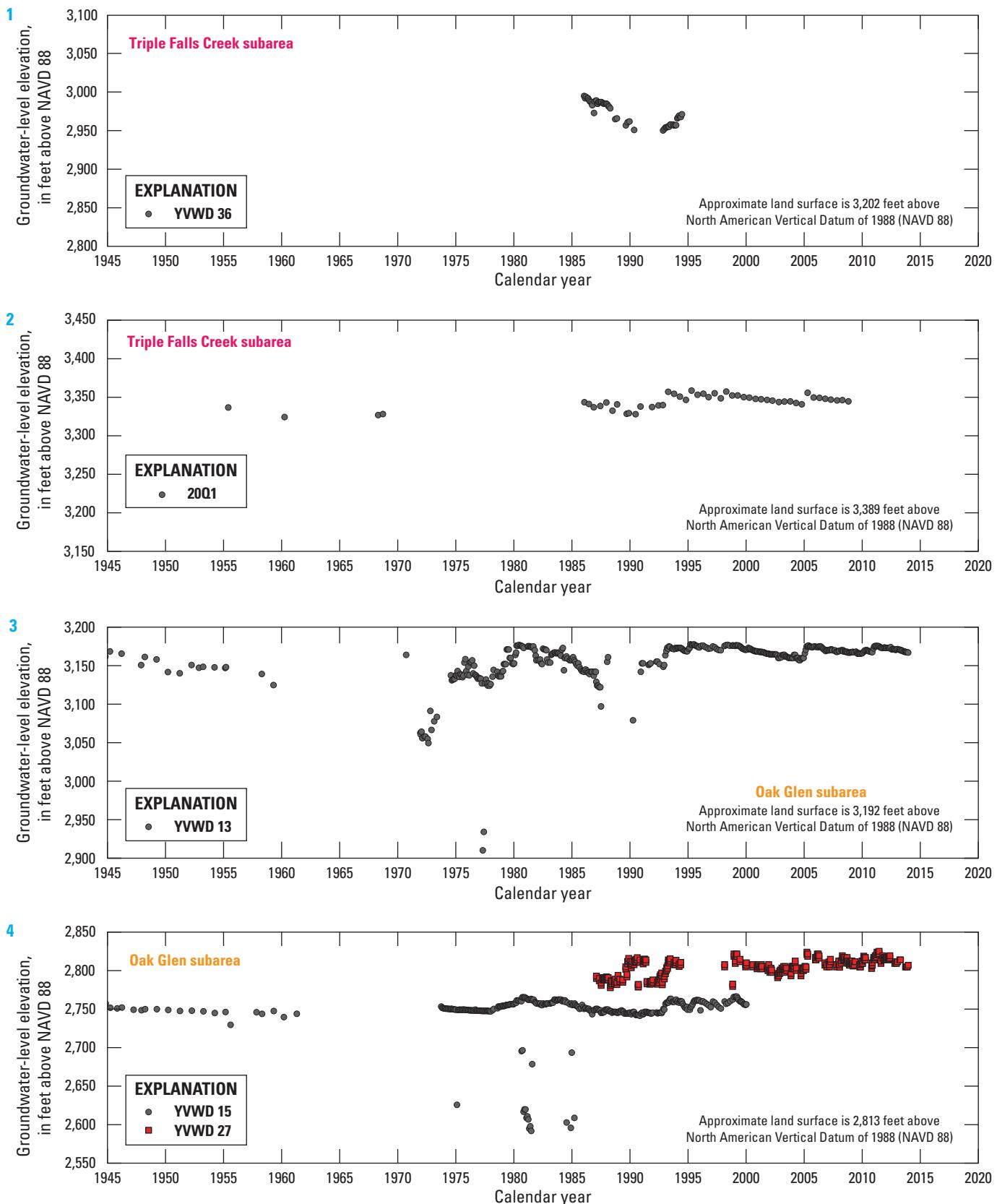
YVWD 16

Yucaipa Valley watershed  
Yucaipa groundwater subbasin

..... Groundwater subarea and identifier

— Modeled active fault

..... Modeled inactive fault


#### Hydrograph wells by subarea

|               |                    |
|---------------|--------------------|
| Calimesa      | Sand Canyon        |
| Cherry Valley | Triple Falls Creek |
| Crafton       | Western Heights    |
| Gateway       | Wildwood           |
| Live Oak      | Wilson Creek       |
| Oak Glen      |                    |

#### Hydrograph wells outside Yucaipa subbasin

- San Timoteo

**Figure A22.** Location of selected wells with groundwater-level hydrographs shown in figures A23 and A24, Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California. Well information is summarized in table A1.1, and groundwater-level data can be accessed from the U.S. Geological Survey National Water Information System database (U.S. Geological Survey, 2018).



**Figure A23.** Measured groundwater elevations for selected wells in the Yucaipa groundwater subbasin, 1947–2014, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California. Figure panel numbers correspond to thumbnail panel numbers in figure A22.

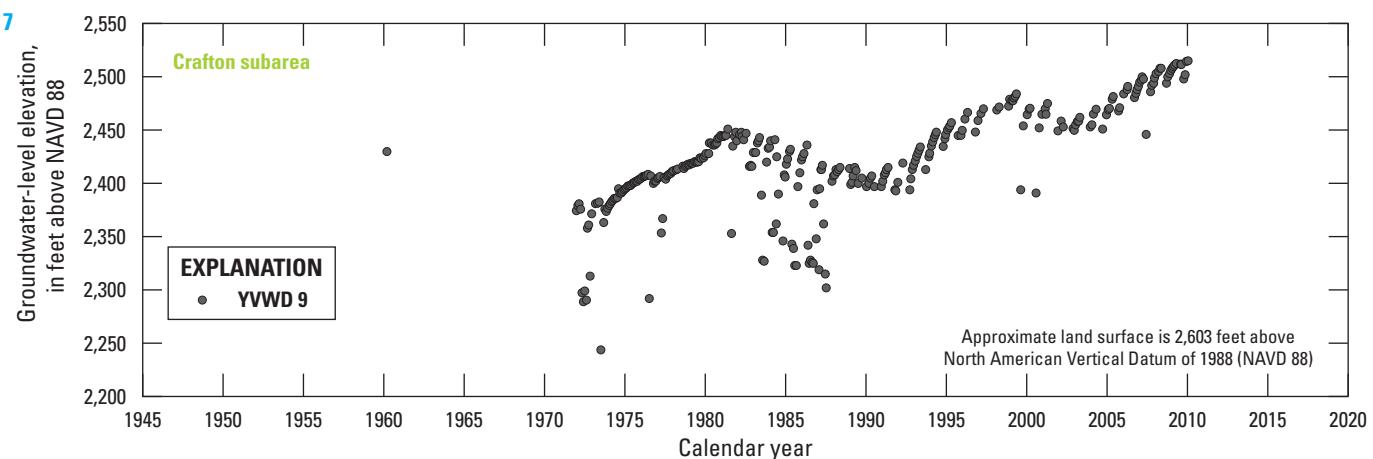
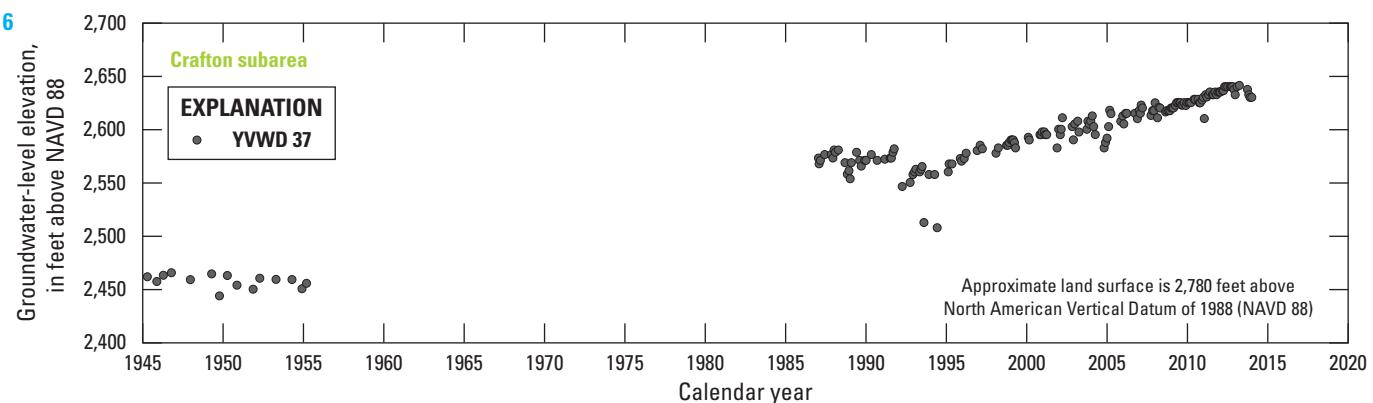
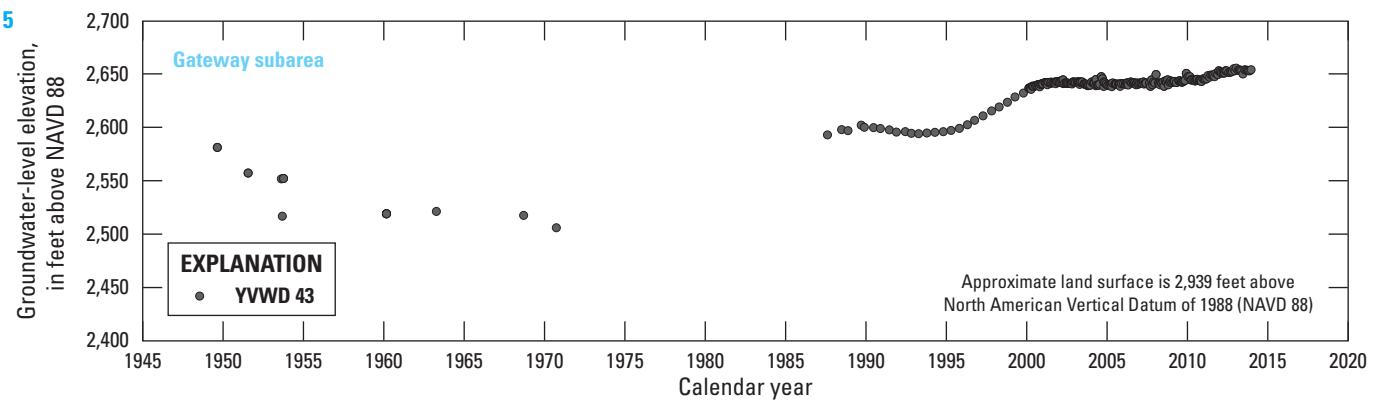





Figure A23.—Continued

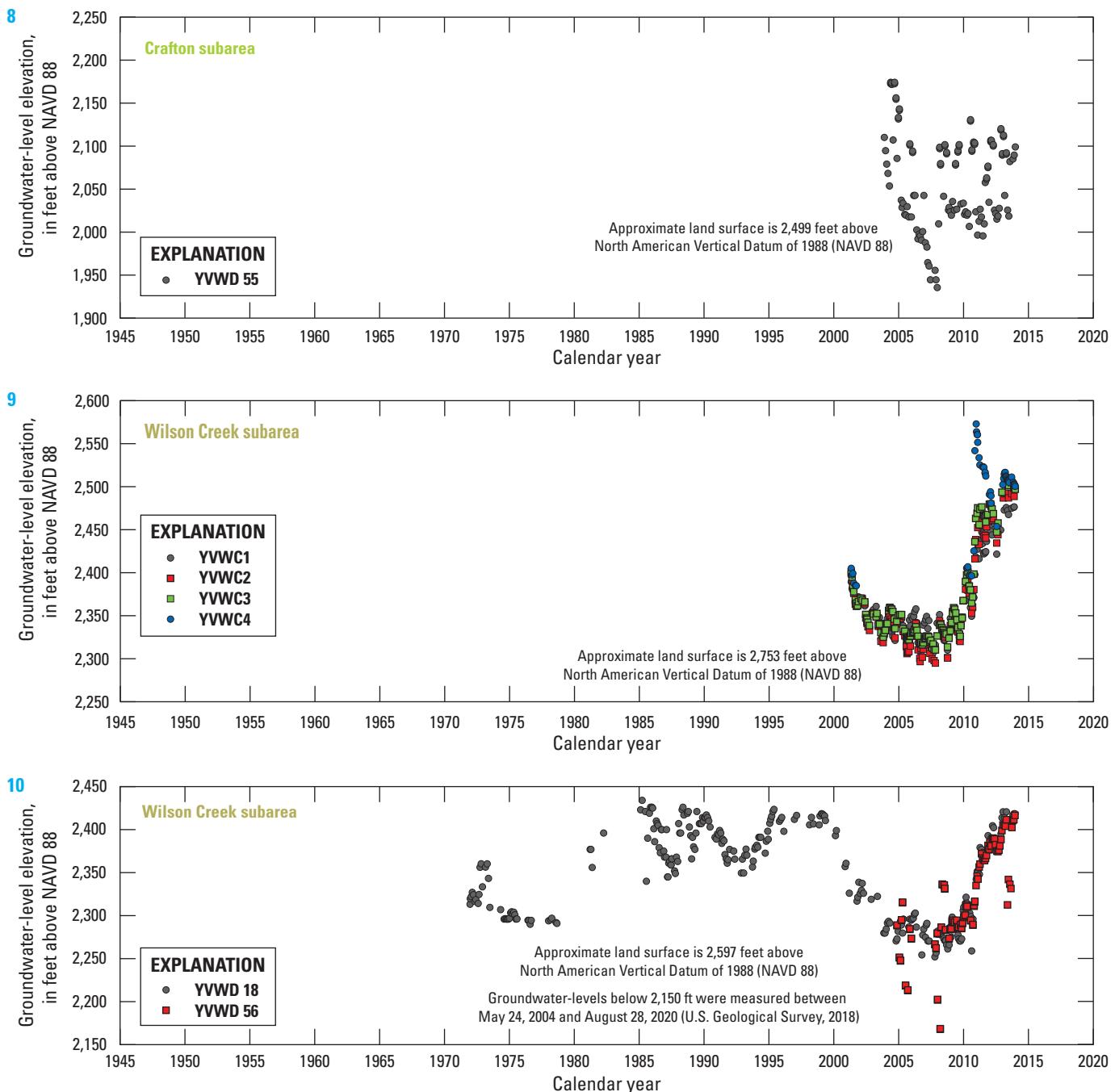



Figure A23.—Continued

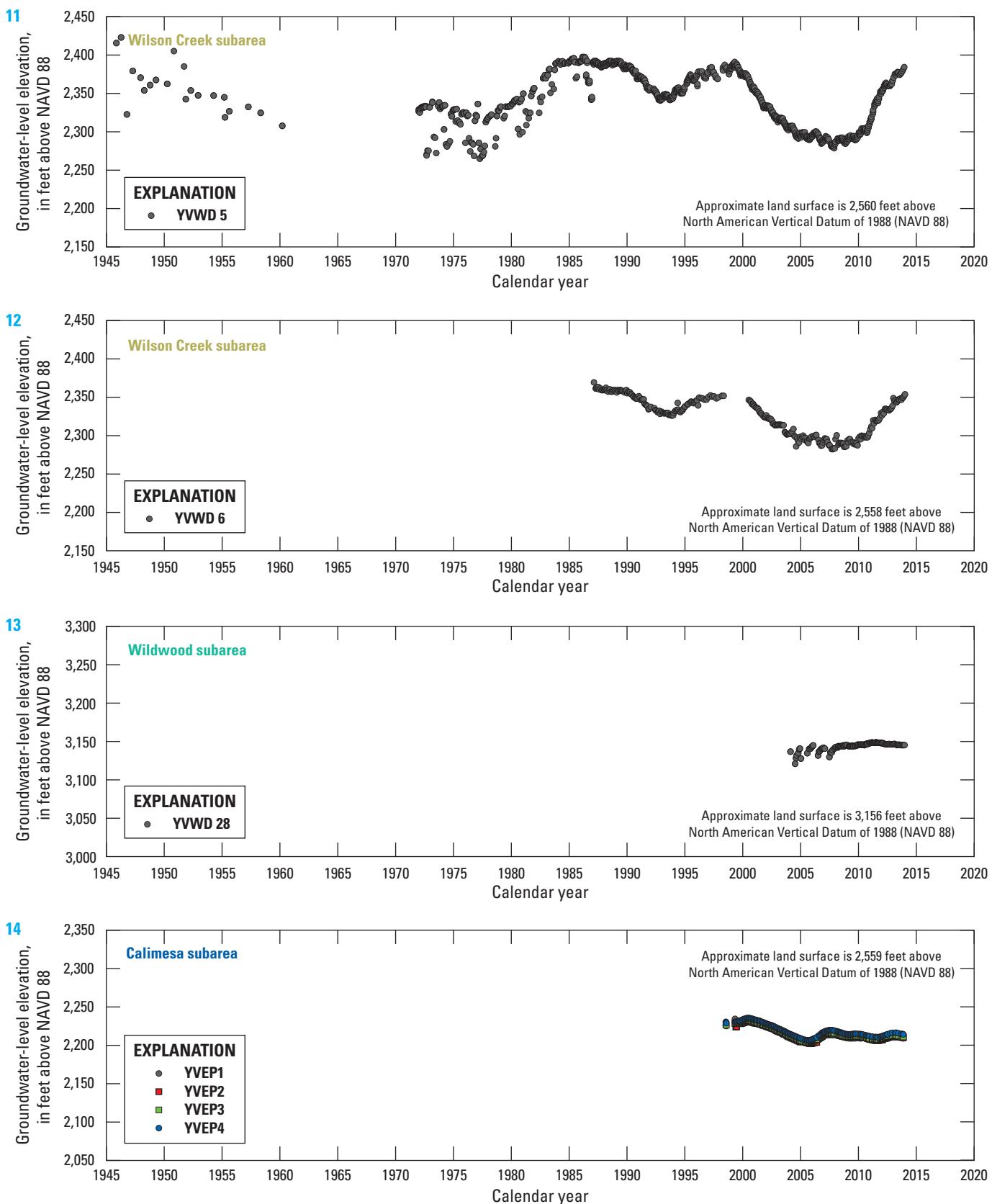



Figure A23.—Continued

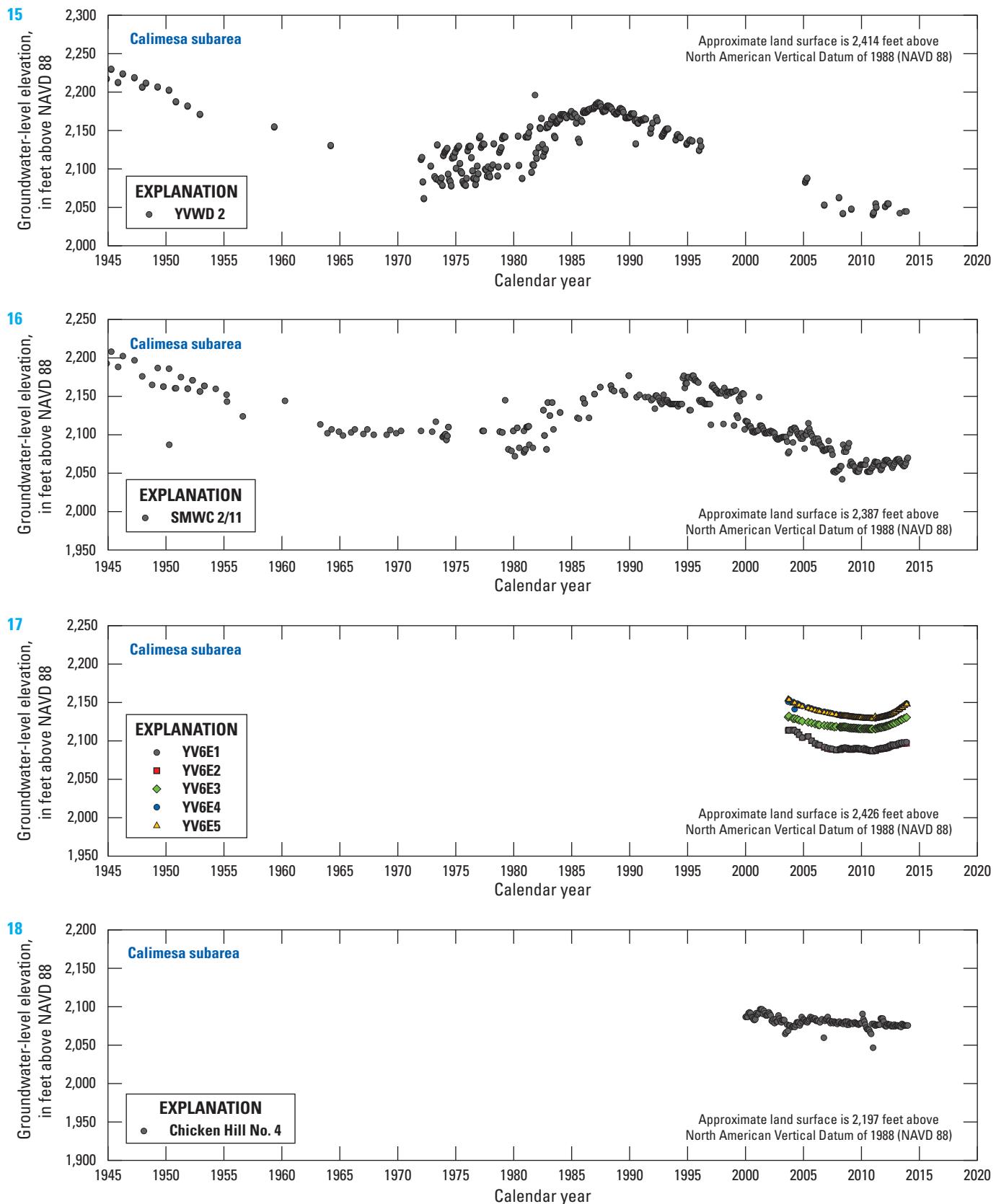



Figure A23.—Continued

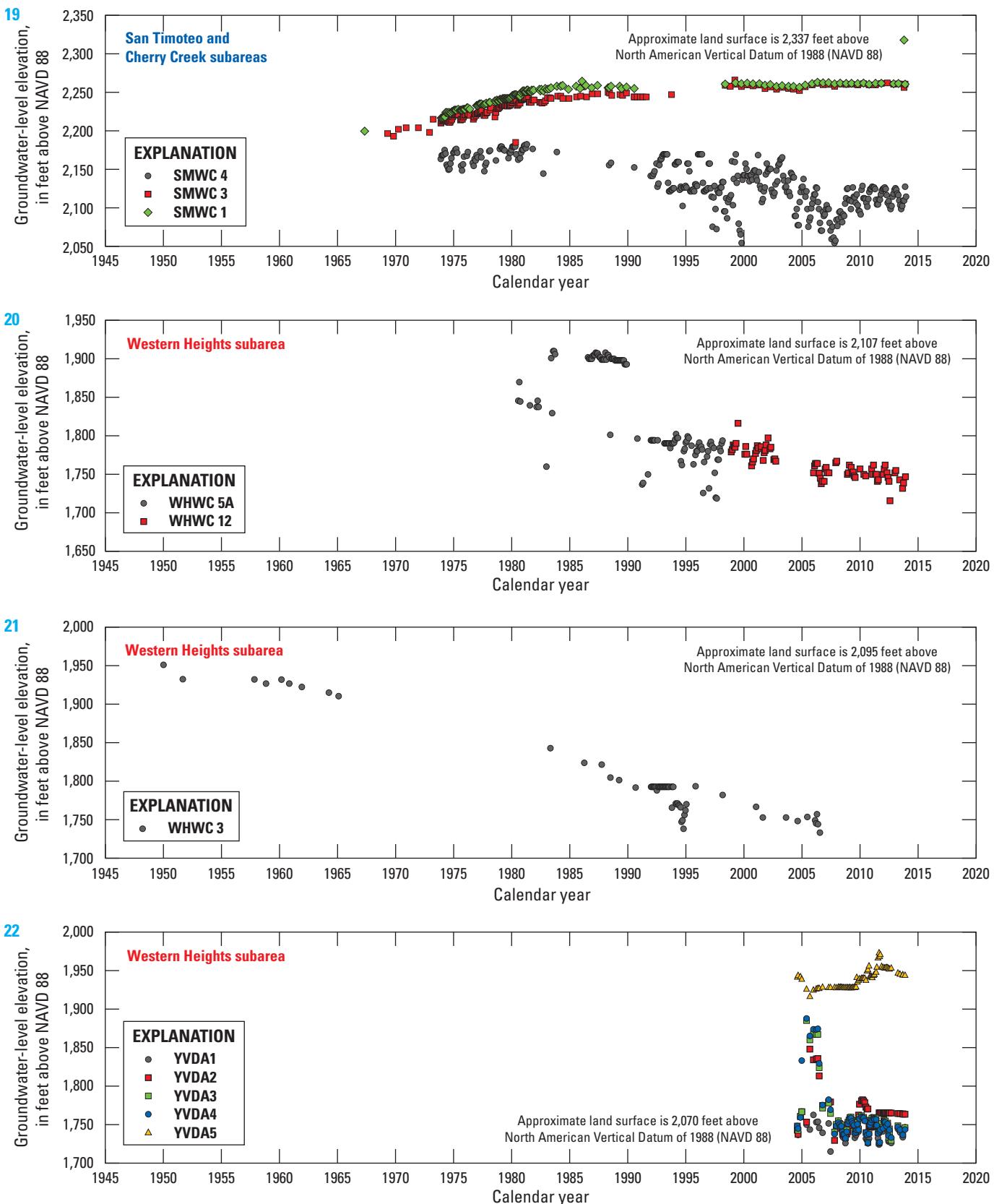



Figure A23.—Continued

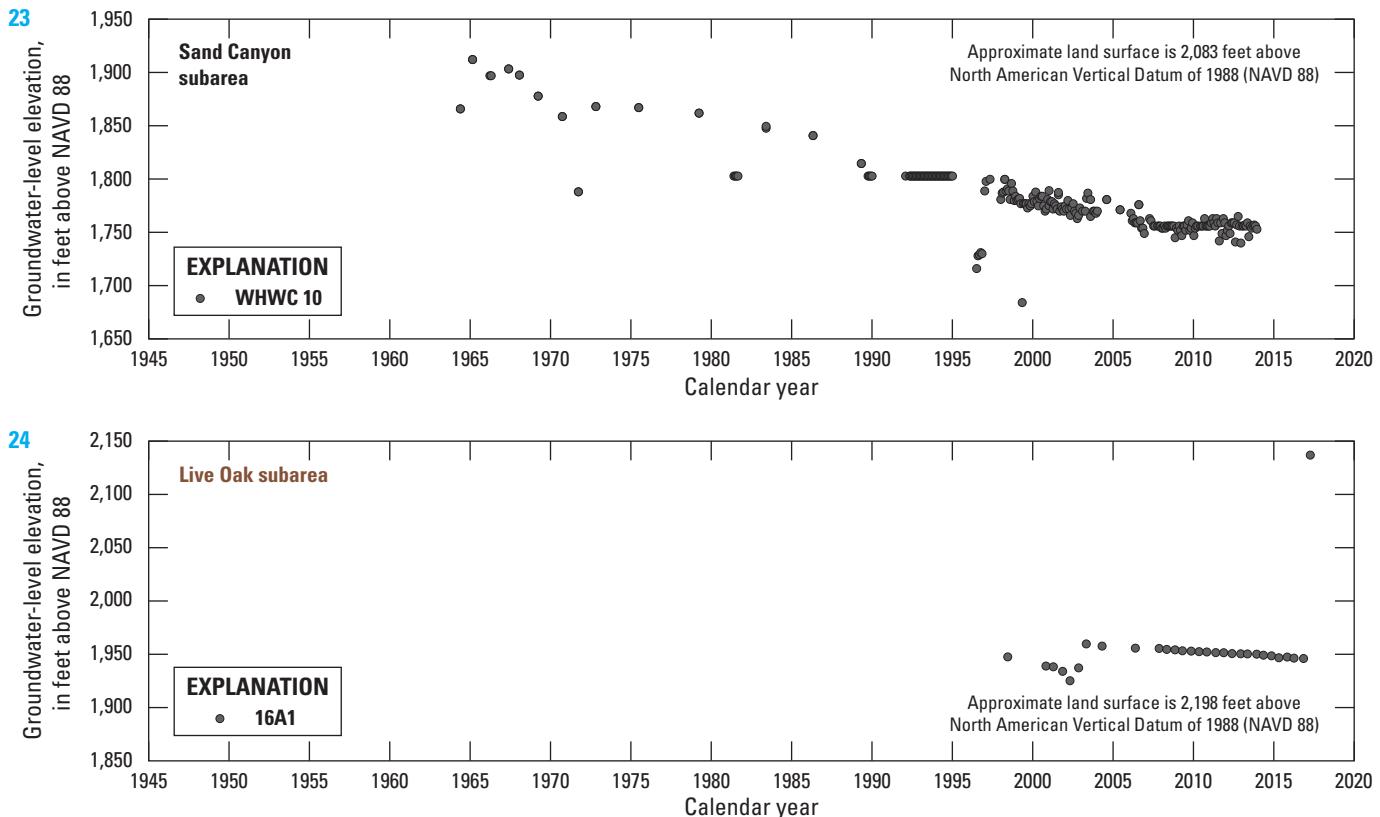
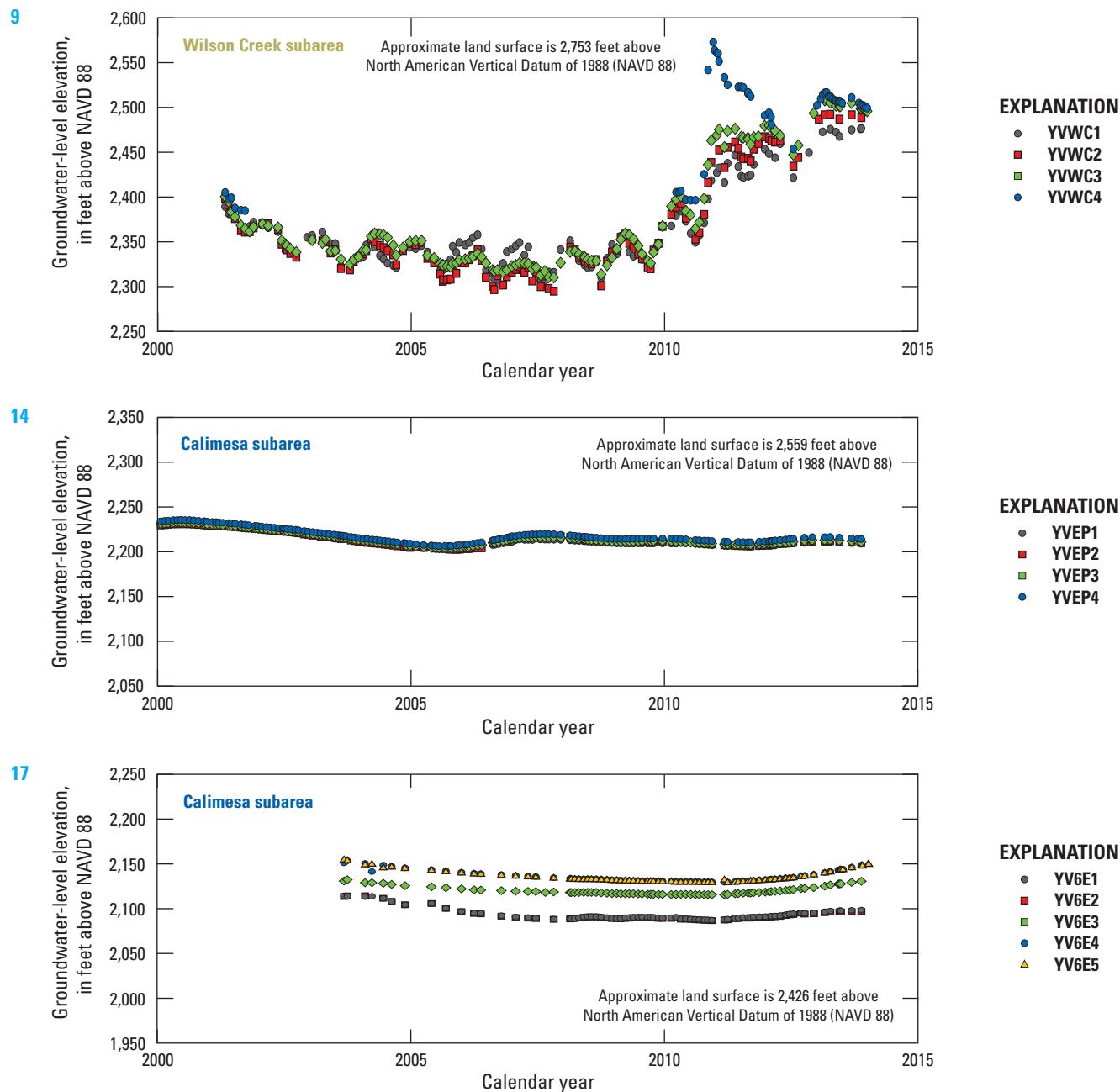




Figure A23.—Continued

Groundwater levels in the Yucaipa subbasin are generally sensitive to changes in climate. Groundwater levels generally increased during wet periods and declined during dry periods and intervening periods with average precipitation (fig. A5). Individual subareas have variable responses to climate that generally depend on local pumpage and hydrogeologic conditions. In general, groundwater levels declined until about the mid-1970s, increased during wet periods from 1978 to 1983 and 1991 to 1998, and declined from the late-1990s until about 2008. After 2008, groundwater levels generally stabilized or increased in conjunction with imported water deliveries of more than about 8,000 acre-ft/yr and a corresponding subbasin-wide decrease in pumpage.

### Triple Falls Creek and Oak Glen Groundwater Subareas

Wells in the Triple Falls Creek and Oak Glen subareas are near sources of natural recharge: deep percolation of mountain-front runoff, streamflow, and precipitation from the San Bernardino Mountains and Yucaipa hills. These wells include YVWD 36, 20Q1, YVWD 13, YVWD 15 and YVWD 27 (hydrographs 1–4, respectively; figs. A22, A23; table A1.1; U.S. Geological Survey, 2018). The data from these five wells generally show relatively constant groundwater levels throughout the period of record, indicative of the relatively constant annual recharge rates. Most variations in groundwater levels are associated with periods of increased pumpage during years with low precipitation or years with greater than average recharge (hydrographs 1–4, respectively; figs. A22, A23).



**Figure A24.** Measured groundwater elevations for U.S. Geological Survey multiple-depth, monitoring-well sites YVWC, YVEP, YV6E, and YVDA, 1998–2014, Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California. Figure panel numbers correspond to thumbnail panel numbers in [figure A22](#).

22

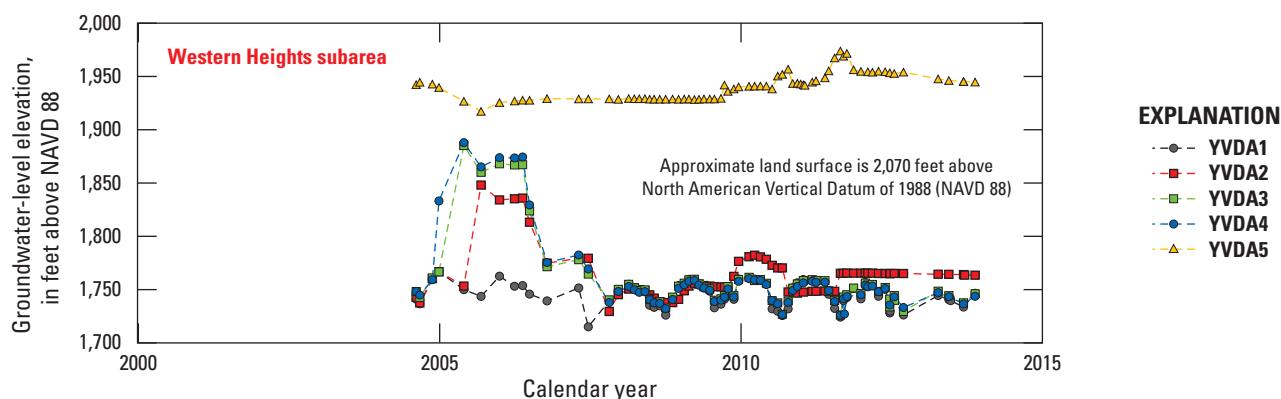



Figure A24.—Continued

## Gateway and Crafton Groundwater Subareas

Wells with long-term groundwater data in the Gateway and Crafton subareas include wells YVWD 43, YVWD 37, YVWD 9, and YVWD 55 (figs. A22, A23; table A1.1; U.S. Geological Survey, 2018). These wells are located near sources of natural recharge. Groundwater-level data from wells in these subareas showed a decline until about 1970, similar to wells in most other areas in the Yucaipa subbasin; however, unlike wells in other subareas, groundwater levels in wells from the Gateway and Grafton subareas increased through 2014 (hydrographs 5–8, respectively; figs. A22, A23). The steepest increases in groundwater-levels in the Gateway and Crafton subareas followed the period when annual pumping in the subareas declined from historical highs in the 1950s and 1960s to historical lows in subsequent decades (fig. A19; table A1.2). Beginning in the 1990s when the Yucaipa Regional Park was constructed, groundwater levels in the Crafton subarea may have responded to infiltration of irrigation return or to leakage or seepage from holding ponds in the park (fig. A22).

## Wilson Creek Groundwater Subarea

Long-term wells in the Wilson Creek subarea are located proximal to and downgradient of the Wilson Creek and Oak Glen Creek spreading basins and include the USGS multiple-depth, monitoring-well site YVWC

(wells YVWC1–4) and wells YVWD 18, YVWD 56, YVWD 5, and YVWD 6 (hydrographs 9–12, respectively; figs. A22, A23, A24; table A1.1; U.S. Geological Survey, 2018). Groundwater-level data from wells in the Wilson Creek subarea show the same general trend as wells in most other areas in the Yucaipa subbasin. Beginning in 2008, the application of imported water to the Wilson Creek and Oak Glen Creek spreading basins for MAR exceeded more than about 8,000 acre-ft/yr (fig. A16), and groundwater levels in the Wilson Creek subarea rose as much as 80–190 ft since 2009 (figs. A23, A24) in response to a reduction in pumping (fig. A19) and application of MAR water.

The combined effects of reduction in pumping and of the MAR water on groundwater levels is shown at the USGS multiple-depth, monitoring-well site YVWC (figs. A22, A23, A24; table A1.1; U.S. Geological Survey, 2018). The shallowest well (YVWC4), installed to a depth of about 370 ft, had become dry in late 2001 but became saturated again in 2010 after application of MAR water (fig. A24; see the “Water Chemistry” section). In addition to increasing groundwater levels, the occasionally upward vertical gradient, prior to about 2009, from the deeper wells, YVWC1 and YVWC2 (838 and 658 ft bsl, respectively), to the shallower wells, YVWC3 and YVWC4 (515 and 370 ft bsl, respectively), was reversed (fig. A24). After 2009, groundwater levels in the shallower wells were consistently higher than those in the deeper wells, indicating a downward vertical gradient.

## Calimesa Groundwater Subarea

Long-term wells located throughout the Calimesa subarea include USGS multiple-depth, monitoring-well sites YVEP and YV6E (wells YVEP1–4 and YV6E1–5), wells YVWD 2 and SMWC 2/11, and Chicken Hill No. 4 (hydrographs 14–18; [figs. A22, A23, A24](#)). Groundwater levels in the Calimesa subarea declined until about the mid-1970s, increased from the mid-1970s to the late 1980s, and then declined again until about 2008, after which time groundwater levels stabilized or gradually increased. Groundwater levels did not appear to increase during the wet period of 1991–98, which was a notable departure from other subareas in the Yucaipa subbasin. After 1984, pumping rates in the Calimesa subarea increased to historical highs and averaged more than 5,500 acre-ft/yr from 1984 to 2007; cumulative pumping during this period overwhelmed any increased recharge during the 1991–98 wet years, and groundwater levels declined to historical lows. The decline in groundwater levels continued until about 2008 when pumping in the subarea decreased and groundwater levels partially recovered in some areas ([figs. A23, A24](#)).

The USGS multiple-depth, monitoring-well sites YVEP and YV6E are located in the eastern and northern parts of the Calimesa subarea, respectively (hydrographs 14 and 17; [figs. A22, A23, A24](#); [table A1.1](#); U.S. Geological Survey, 2018). Groundwater levels in all four wells at site YVEP (849–400 ft bls) were similar, indicating that there is little, if any, vertical gradient in this part of the subarea ([fig. A24](#)). In contrast, the groundwater levels at site YV6E show a downward vertical gradient from shallower wells YV6E4 and YV6E5 (399 and 309 ft bls, respectively) to deeper wells YV6E1 and YV6E2 (884 and 747 ft bls, respectively); differences of about 50–60 ft were observed between the shallow and deep wells. The result is a downward vertical gradient of about 0.1 ft/ft (50–60 ft groundwater level difference over 575 ft of depth). This downward vertical gradient could be caused by localized infiltration from irrigation return at 7th Street Park ([fig. A15](#)).

## Western Heights and Sand Canyon Groundwater Subareas

Long-term wells in the Western Heights and Sand Canyon subareas include USGS multiple-depth, monitoring-well sites YVDA and wells WHWC 5A and WHWC 12, WHWC 3, and WHWC 10 (hydrographs 20–23; [figs. A22, A23, A24](#); [table A1.1](#); U.S. Geological Survey, 2018). Groundwater-level data from these wells showed continuous groundwater-level declines from 1947 to about 2008, after which time groundwater levels slightly recovered. The continuous decline in groundwater levels can be attributed to (1) consistent pumping in the Western Heights subarea from 1947 to 2008 (about 2,600 acre-ft/yr; [fig. A19](#); [table A1.2](#)), (2) relatively limited recharge to the subarea caused by a layer of fine-grained material that may have limited infiltration of

natural water sources to the aquifer system (Moreland, 1970), and (3) the presence of the Chicken Hill fault that restricted groundwater flow into the subarea (see the “[Hydrologic Flow Barriers](#)” section). The recovery of groundwater-levels after about 2008 likely was a result of reduced pumping across the Yucaipa subbasin because of the addition of imported water to the municipal water supply.

Groundwater levels for wells YVDA1–4 at the USGS multiple-depth, monitoring-well site YVDA ([figs. A22, A23, A24](#); [table A1.1](#); U.S. Geological Survey, 2018) showed seasonal responses to pumping after 2008 and were likely influenced by nearby pumping wells. Groundwater levels for the shallowest well, YVDA5 (246 ft bls) were about 200 ft higher than the deeper wells YVDA1–4 (1,053–446 ft bls), supporting the observed presence of a perched aquifer in the Western Heights subarea caused by a fine-grained layer at about 270–300 ft bls (about 1,770–1,800 ft above NAVD 88; Moreland, 1970; Mendez and others, 2018; also see the “[Hydrogeologic Units](#)” section).

## Hydrologic Flow Barriers

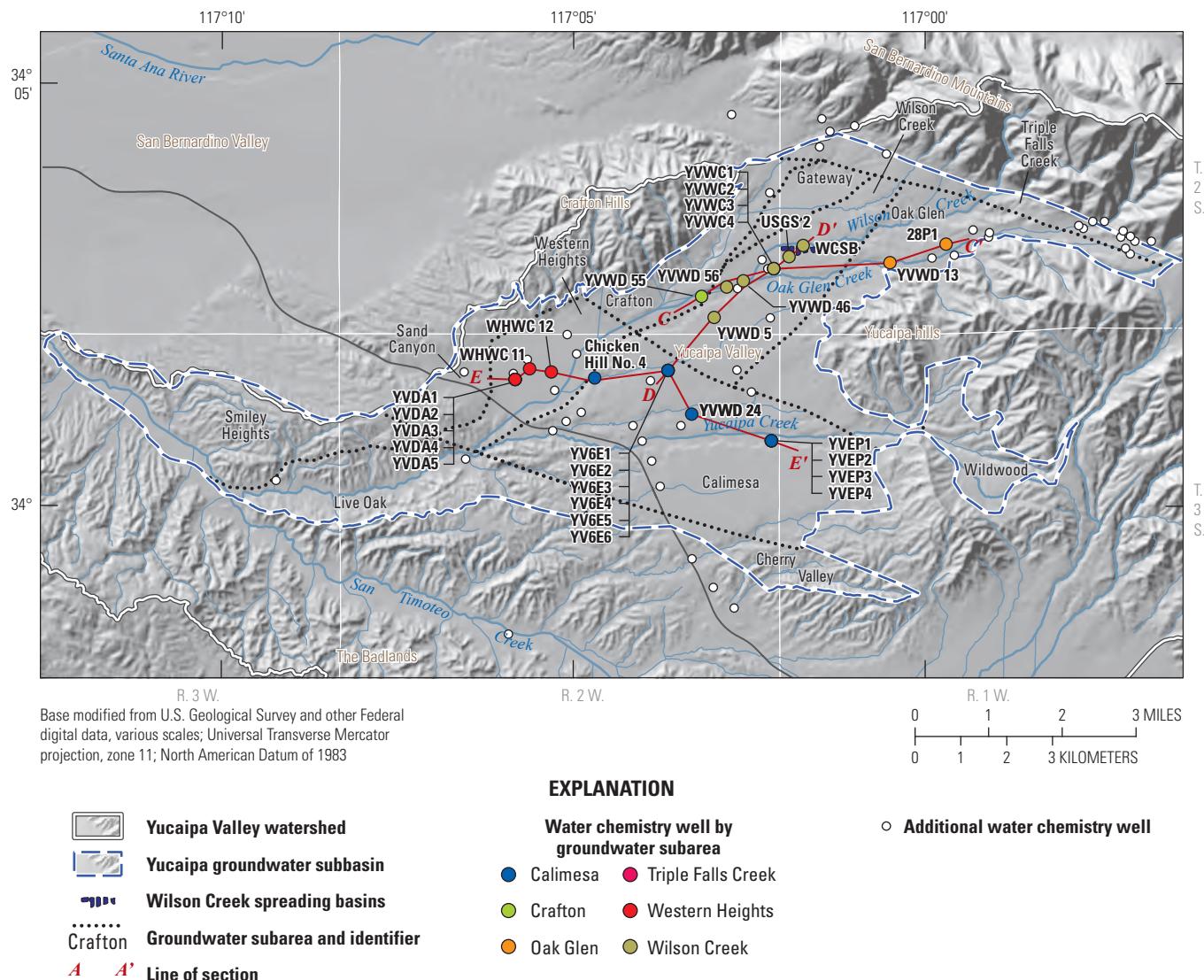
Hydrologic flow barriers affect groundwater by causing groundwater-level differences across the barrier when they are oriented oblique to groundwater flow. Variable groundwater-flow directions and groundwater levels among groundwater subareas indicate different amounts of recharge and pumping and illustrate how subsurface structures have compartmentalized the Yucaipa subbasin. The degree of offset of long-term groundwater levels in wells across geologic structures such as faults and folds indicate the effects these structures have on groundwater flow. These effects are indicated by the groundwater-level data from wells on opposite sides of known structures, such as the Chicken Hill fault, South Mesa barrier, Banning fault, Cherry Valley thrust fault, and San Andreas fault zone. Other barriers suggested by previous researchers include the Yucaipa barrier, the Gateway barrier, and the Casa Blanca fault ([fig. A22](#); Eckis, 1934; Burnham and Dutcher, 1960; Moreland, 1970).

The northeast-southwest trending Chicken Hill fault in the Yucaipa subbasin is a prominent hydrologic flow barrier that illustrates the control that geologic structures have on groundwater levels. The Chicken Hill No. 4 well in the Calimesa subarea and WHWC 12 well in the Western Heights subarea (hydrographs 18 and 20, respectively; [figs. A22, A23](#); [table A1.1](#); U.S. Geological Survey, 2018) are located on opposite sides of the southern segment of the Chicken Hill fault. Groundwater levels in well Chicken Hill No. 4 are about 360 ft higher than groundwater levels in well WHWC 12 during the same period of record, and both wells have different patterns of observed groundwater-levels, indicating that the southern part of the Chicken Hill fault restricts groundwater flow. In contrast, wells YVWD 18 and YVWD 56 (hydrograph 10; [fig. A23](#)) are located on opposite

sides of the northern segment of the Chicken Hill fault in the Wilson Creek subarea (fig. A22). Groundwater levels in both wells have similar levels and similar responses to pumping, indicating that the northern segment of the Chicken Hill fault has little restriction on groundwater flow.

The South Mesa barrier probably is a fault, and its vertical displacement likely affects groundwater flow (Moreland, 1970). This restriction in groundwater flow is indicated by the observed differences in the groundwater levels in well YVWD 6 (hydrograph 12; fig. A22) in the Wilson Creek subarea and USGS multiple-depth, monitoring-well site YV6E (hydrograph 17; fig. A24) in the Calimesa subarea. The reported depth of well YVWD 6 (629 ft bls) was between the reported depths of wells YV6E2 and YV6E3 (747 and 547 ft bls, respectively). Groundwater levels in upgradient YVWD 6 were about 200–250 ft higher than the groundwater levels in downgradient wells YV6E2 and YV6E3 during the same period, although the difference in location of the wells may account for some of the observed differences in groundwater levels. The South Mesa barrier, or the fold structure associated with the South Mesa barrier (see the “[Hydrogeologic Units](#)” section), may restrict groundwater flow.

Previous studies considered the Banning fault to have a slight effect on groundwater flow; groundwater-level displacements across the fault were generally small, and barrier effects were inferred from differences in hydrographs on either side of the fault (Moreland, 1970). Wells SMWC 2/11 in the Calimesa subarea and 16A1 in the Live Oak subarea (hydrographs 16 and 24, respectively; figs. A22, A23) are located north and south of the Banning fault, respectively. Groundwater levels in the upgradient well SMWC 2/11 are about 100 ft higher than groundwater levels in the downgradient well 16A1 during the same period. The 1.5 mi difference in location of the wells may account for some of the observed differences in groundwater levels. Therefore, the Banning fault, or more accurately, the fold structure associated with the Banning fault (see “[Hydrogeologic Units](#)” section), may affect groundwater flow.


The Cherry Valley thrust fault was believed to be at least a partial barrier to groundwater flow. Groundwater levels were observed to be higher in wells on the north side of the fault trace in the Yucaipa subbasin (Burnham and Dutcher, 1960) and near the Beaumont plain, east of the Yucaipa subbasin (Rewis and others, 2006). Differences in drawdown in wells across the fault trace during aquifer pump tests were also observed in wells near the Beaumont plain (Rewis and others, 2006). The plane of the fault dips north-northeast at a shallow angle (between 8 and 39 degrees; Matti and others, 2015), plunging from the mapped fault trace into the Yucaipa subbasin to the northeast. Wells SMWC 3 and SMWC 1 are completed above the projected plane of the Cherry Valley thrust fault and have groundwater levels that are about 50–150 ft higher than groundwater levels in well

SMWC 4 (hydrograph 19; figs. A22, A23), which is completed below the projected fault plane. Groundwater levels in wells SMWC 3 and SMWC 1 increase throughout the period of record; in contrast, groundwater levels in well SMWC 4 decrease throughout the period of record and show substantial variations due to groundwater pumping. The elevation and observed patterns of groundwater levels in wells completed above and below the projected plane of the Cherry Valley thrust fault indicate that the fault is a barrier to groundwater flow at least in the vicinity of the Yucaipa subbasin.

Individual faults of the San Andreas fault zone are believed to be barriers to groundwater flow, especially where the faults represent the contact between basin-fill sediment and crystalline basement; springs and heavy vegetation were observed where the fault strands crossed canyon mouths (Burnham and Dutcher, 1960; Moreland, 1970). Wells drilled in the fault zone were reported to have encountered fault-gouge material, which can inhibit groundwater flow; and tunnels dug across the fault zone reportedly resulted in depletion of groundwater storage on the upgradient side of the fault (Burnham and Dutcher, 1960).

## Water Chemistry

Water chemistry data provided information on the general groundwater quality, including type, source, and age of groundwater in the Yucaipa subbasin. The groundwater-quality analyses were used to evaluate the vertical and geographic chemical variability within the aquifer system. Groundwater-quality data compiled for this report and described in this section were sampled and reported by Mendez and others (2001), Rewis and others (2006), and Mendez and others (2018) and include analyses of major ions, nutrients, stable isotopes of oxygen and hydrogen (oxygen-18 and hydrogen-2, respectively), tritium, and carbon-14 ( $^{14}\text{C}$ ), a radioactive isotope of carbon that occurs naturally and was also produced by atmospheric bomb explosions. Complete analyses of all samples can be retrieved from the USGS National Water Information System database (U.S. Geological Survey, 2018). The chemical data compiled for this report were used to characterize the areal, vertical, and temporal variations in groundwater quality in the Yucaipa subbasin, and the type, source, and age of groundwater. These data were compiled for monitoring wells and production wells primarily within the Yucaipa subbasin (fig. A25; table A1.1; U.S. Geological Survey, 2018). Unless otherwise stated, wells with multiple chemical analyses are represented in the following water chemistry figures by a single value corresponding to the most recent sample with select constituents within the study period (1947–2014).



**Figure A25.** Location of select wells with groundwater-quality data shown in [figures A26–A28](#), Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

## Chemical Character of Groundwater

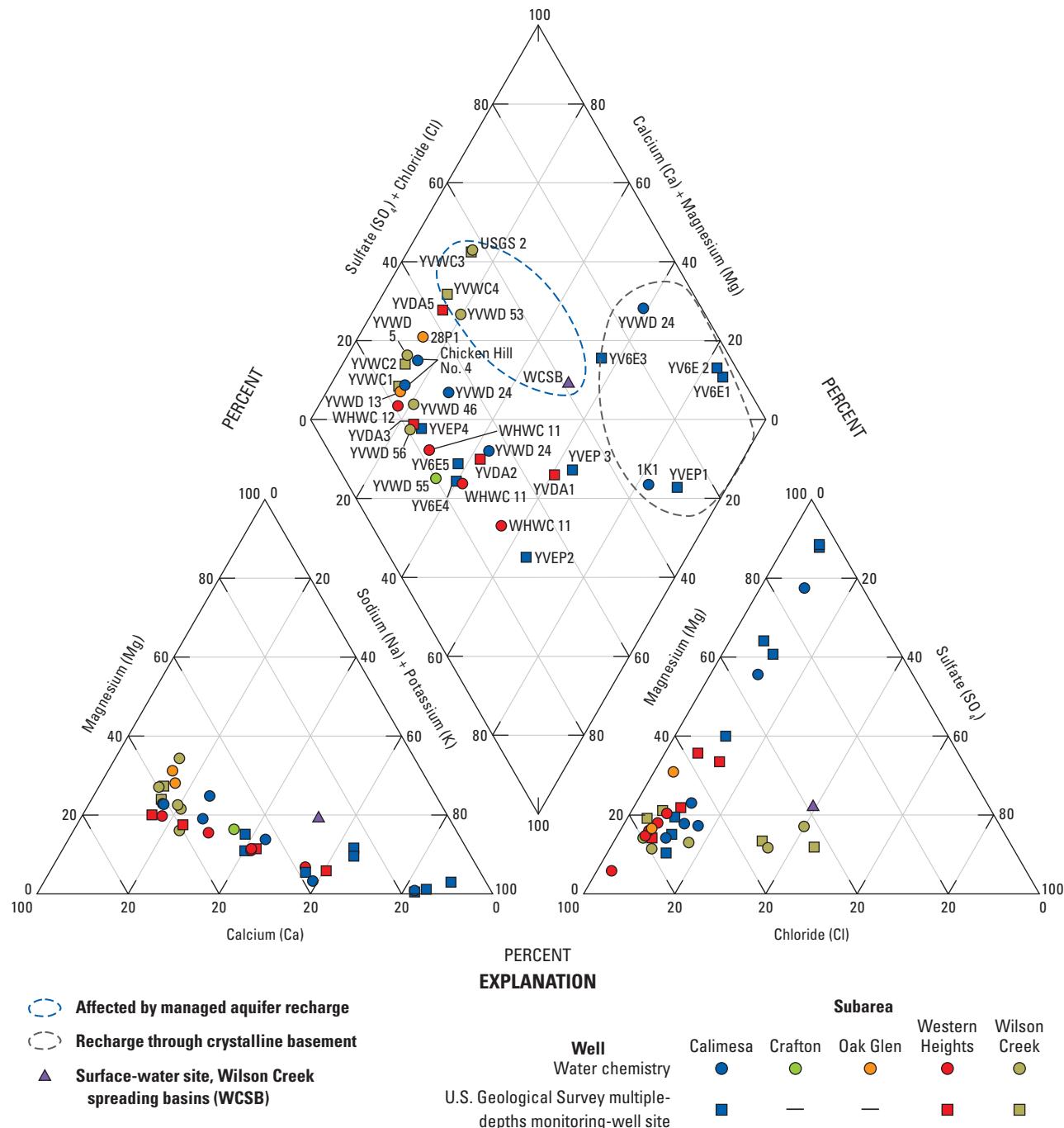
The chemical character of groundwater in the Yucaipa subbasin was determined using analyses of major and minor ion concentrations, nutrient concentrations, and dissolved total solids concentrations (TDS) for depth-dependent and bulk samples collected from USGS multiple-depth, monitoring-well sites, and other monitoring and production wells, located throughout the Yucaipa subbasin. The major ion composition of groundwater in the Yucaipa subbasin shows that TDS ranged from about 225 to 1,120 milligrams per liter (mg/L; U.S. Geological Survey, 2018). Groundwater samples with lower TDS concentrations generally were collected from wells near sources of natural recharge; samples with the highest TDS concentrations were collected from deep wells near the contact with the crystalline basement. In the Western Heights subarea, the perched aquifer above the fine-grained

layer at about 270–300 ft bbls showed a unique chemical character compared to groundwater from the rest of subbasin. Groundwater data from USGS multiple-depth, monitoring well site YVDA indicated that the shallowest well, YVDA5 (in the perched aquifer) had TDS concentrations that were about 200 mg/L greater than concentrations in the deeper wells YVDA1–4, where TDS concentrations did not exceed about 320 mg/L.

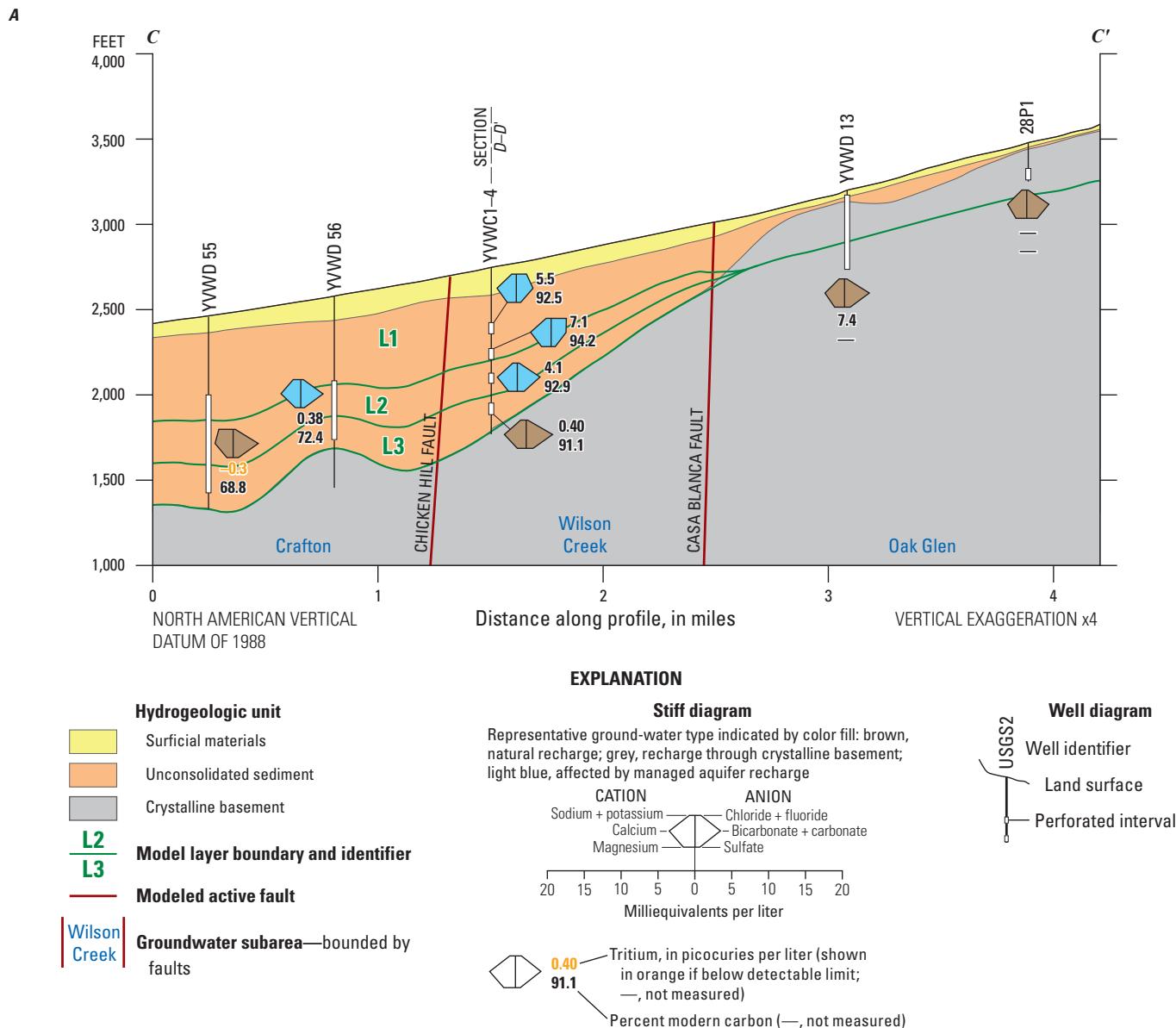
The four water types observed in the Yucaipa subbasin based on the major ion composition were (1) calcium-bicarbonate-type present across the subbasin, which originates from local recharge areas to the northeast; (2) sodium-sulfate-type that likely flows through long pathways through the crystalline basement; (3) sulfate-rich, calcium-bicarbonate-type in a perched aquifer in the Western Heights subarea; and (4) chloride-type, imported water from

northern California that is elevated compared to the chloride in native groundwater and is recharged at the Wilson Creek and Oak Glen Creek spreading basins (fig. A26).

The chemical character of groundwater is illustrated for the aquifer system on a Piper diagram (Piper, 1944; fig. A26) and using Stiff diagrams on three sections through the Yucaipa subbasin (fig. A27). Piper diagrams are useful to determine if simple mixing between chemically different water has occurred (Hem, 1985) and show the relative contribution of major cations and anions, on a charge-equivalent basis, to the ionic content of the water (Piper, 1944). Stiff diagrams depict the concentrations of major ions in milliequivalents per liter (meq/L) and indicate relative proportions of major ions (Stiff, 1951). Analyses with similarly shaped diagrams represent groundwater with similar chemical characteristics with respect to major ions. Changes in the width of the diagrams indicate differences in the concentrations of dissolved constituents. Water that contains higher concentrations of major ions has a wider diagram than a diagram for water with lower concentrations. The left side of the diagram shows the major cations: sodium plus potassium ( $\text{Na}^++\text{K}^+$ ) at the top, calcium ( $\text{Ca}^+$ ) in the middle, and magnesium ( $\text{Mg}^{++}$ ) at the bottom. The right side of the diagram shows the major anions: chloride plus fluoride ( $\text{Cl}^-+\text{F}^-$ ) at the top, carbonate plus bicarbonate ( $\text{CO}_3^{2-}+\text{HCO}_3^-$ ) in the middle, and sulfate ( $\text{SO}_4^{2-}$ ) on the bottom. Figures A26 and A27 show the chemical character of the same set of samples from selected groundwater wells, including bulk and depth-dependent samples. Stiff diagrams representing bulk samples are placed at the top of a well's perforated interval, and diagrams representing depth-dependent samples are shown at the depth from which the samples were analyzed for each well (fig. A27). Also shown are hydrogeologic units and faults from the HFM and model layers used in the YIHM (chapter B).


Groundwater sampled from most wells indicated mostly homogeneous native water types throughout the Yucaipa subbasin. Stiff diagrams were used to characterize groundwater sampled from most wells as calcium-bicarbonate-type water that was sourced from areas of natural recharge in the northeastern part of the Yucaipa subbasin (brown Stiff diagrams in fig. A27). Three additional groundwater types with distinct characteristics that indicate different sources of recharge were evident in some wells in the Calimesa, Western Heights, and Wilson Creek subareas. These groundwater types reflect sources of groundwater recharged from subsurface flow through crystalline basement (gray Stiff diagrams in figs. A27B, A27C), groundwater in the perched aquifer in the Western Heights groundwater subarea (red Stiff diagram in fig. A27C), and imported water from northern California (light blue Stiff diagrams in figs. A27A, A27B).

Most wells in the Yucaipa subbasin have groundwater quality that reflects the chemical character of locally recharged water from deep percolation of mountain-front runoff, streamflow, and precipitation. The chemical characters of groundwater in the Oak Glen and Triple Falls Creek subareas likely are representative of locally recharged water


because water in these subareas is likely only recharged from local sources (see the “Natural Recharge” section). A Stiff diagram was used to characterize groundwater from wells 28P1 and YVWD 13 in the Oak Glen subarea as calcium-bicarbonate-type water with TDS concentrations of less than 300 mg/L (fig. A27A; U.S. Geological Survey, 2018). The chemical characters of most other wells in the Yucaipa subbasin were similar, indicating that most groundwater is locally recharged.

Groundwater recharged through crystalline basement is evident in the Calimesa subarea from deep wells at USGS multiple-depth, monitoring-well site YV6E, wells YVWD 24 and 1K1, and possibly from deep wells at USGS multiple-depth, monitoring-well site YVEP (figs. A27B, A27C, A28; U.S. Geological Survey, 2018). A Stiff diagram was used to characterize groundwater in these wells as sodium-sulfate-type water with concentrations of sodium plus potassium and sulfate that were greater than samples from shallower wells at the same location. At well site YV6E, sodium plus potassium and sulfate concentrations from the deepest well, YV6E1, were greater than 310 and 630 mg/L, respectively, or about 6 and 15 times greater than respective concentrations in the shallowest well, YV6E5 (figs. A27B, A27C). This elevated sodium plus potassium and sulfate chemical signature is consistent with observations of groundwater quality sampled from wells near the Beaumont plain and indicates groundwater had recharged through crystalline rock (Rewis and others, 2006, well 22G3, figs. 31, 32; fig. A26).

The two deep wells at well site YV6E (about 885 and 750 ft bbls, respectively; table A1.1) are completed in, or very near, crystalline basement (Mendez and others, 2016, 2018). However, the crystalline basement surface was projected below the total depth of the well site (Cromwell and Matti, 2022). The groundwater chemistry from these wells indicated that the source of the groundwater at these great depths was mainly from the weathered saprolitic material or fractured crystalline basement. Samples at well YVWD 24 have similar depth-dependent concentrations of sodium plus potassium and sulfate; deeper samples (about 540 ft bbls) have sodium plus potassium and sulfate concentrations of about 145 and 370 mg/L, respectively, while shallower samples (about 420 ft bbls) have concentrations of about 30 and 28 mg/L, respectively (fig. A27C; U.S. Geological Survey, 2018). The three deeper wells at YVEP also were completed in or very near crystalline basement (Mendez and others, 2016, 2018), however. The crystalline basement surface is projected below the total depth of the well site similar to wells at site YV6E (Cromwell and Matti, 2022). Deeper wells at site YVEP had sodium plus potassium and sulfate concentrations that ranged from 100 to 150 mg/L and 120 to 190 mg/L, respectively. Duplicate samples from the shallowest well, YVEP4, had sodium plus potassium and sulfate concentrations that were less than or equal to 33 and 25 mg/L, respectively. Measured concentrations of sodium plus potassium and sulfate at well



**Figure A26.** Major ion concentrations of groundwater from selected wells and imported water from northern California applied to the Wilson Creek spreading basins, Yucaipa groundwater subbasin, San Bernardino and Riverside Counties, California.



**Figure A27.** Sections showing major ion concentrations of select wells as Stiff diagrams, hydrogeologic units and faults from the three-dimensional hydrogeologic framework model of Cromwell and Matti (2022), and model layers of the Yucaipa Integrated Hydrologic Model, Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California. Refer to [figure A25](#) for locations of sections. *A*, section through the Crafton, Wilson Creek, and Oak Glen groundwater subareas; *B*, section through the Calimesa and Wilson Creek groundwater subareas; and *C*, section through the Western Heights and Calimesa groundwater subareas.

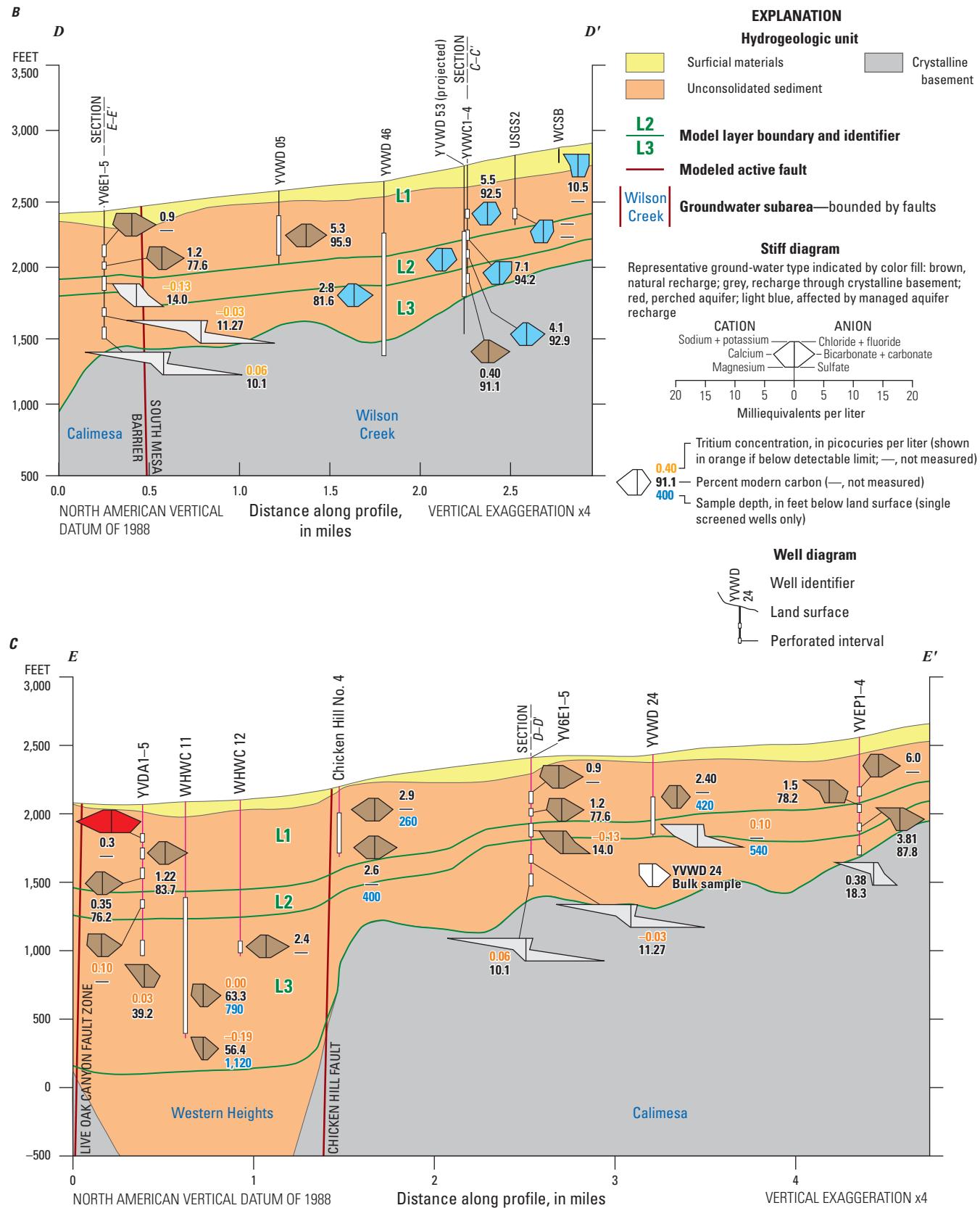


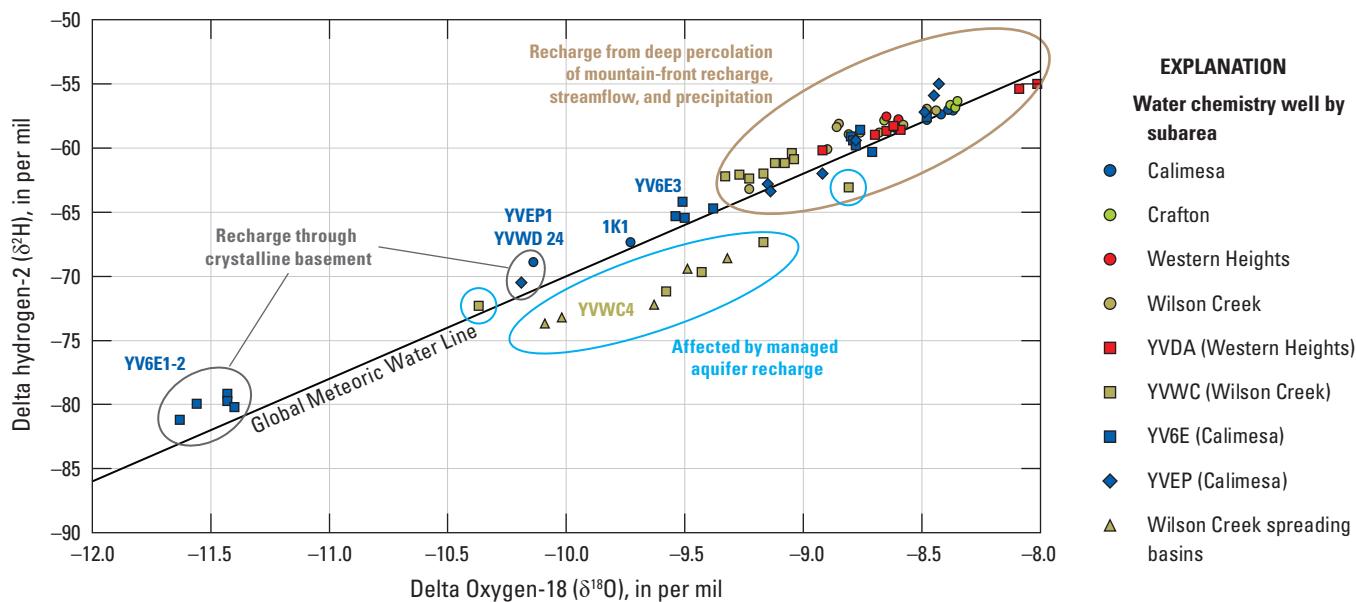

Figure A27.—Continued

sites YV6E, YVEP, and well YVWD 24, and the proximity of the deep wells in YV6E and YVEP to crystalline basement, indicate groundwater flow through crystalline basement.

Groundwater from the perched aquifer in the Western Heights subarea has higher concentrations of select major ions than naturally recharged groundwater in the Yucaipa subbasin (U.S. Geological Survey, 2018); the different groundwater type is evident in USGS multiple-depth, monitoring-well site YVDA (fig. A27C). The shallowest well, YVDA5 (246 ft bls; table A1.1), is located above the fine-grained layer (about 270–300 ft bls) that creates the perched aquifer in the Western Heights subarea; YVDA5 has greater concentrations of chloride, fluoride, sulfate, and bicarbonate relative to groundwater in deeper wells at well site YVDA and other wells in the subarea (figs. A26, A27C; U.S. Geological Survey, 2018). A Stiff diagram was used to characterize groundwater in well YVDA5 as sulfate-rich, calcium-bicarbonate-type water with TDS concentrations that ranged from 559 to 575 mg/L; in deeper wells YVDA1–4, groundwater TDS concentrations ranged from 265 to 291 mg/L (fig. A27C; U.S. Geological Survey, 2018). The fine-grained sediments that caused the perched aquifer inhibited the vertical downward migration of water to the deeper aquifer system. Therefore, groundwater from this shallow zone likely retained a unique chemical signature.

Signatures of locally recharged water and water imported from northern California are identifiable in samples from several wells in the Wilson Creek subarea, indicating a mixture of the two water types. Imported water from northern California applied as MAR at the Wilson Creek and Oak Glen Creek spreading basins is evident in groundwater at the USGS multiple-depth, monitoring-well site YVWC and selected wells in the Wilson Creek subarea (figs. A27A, A27B). A Stiff diagram was used to characterize imported water from northern California sampled at the Wilson Creek spreading basins as sodium chloride and potassium chloride-type water with TDS concentrations that ranged from 256 to 315 mg/L (fig. A27B; U.S. Geological Survey, 2018). Concentrations of sodium and chloride in imported water sampled from the Wilson Creek spreading basins ranged from 54.0 to 67.8 mg/L and 66.8 to 109.0 mg/L, respectively, and were as much as 4 and 10 times greater than the sodium and chloride concentrations from most groundwater samples in the Wilson Creek subarea (fig. A27B; U.S. Geological Survey, 2017). The consistent application of imported water for MAR began in 2008, and groundwater samples collected after 2008 from wells YVWC2, YVWC3, YVWC4, USGS 2, YVWD 44, YVWD 46, YVWD 53, and YVWD 56 had increased

concentrations of sodium and (or) chloride (U.S. Geological Survey, 2017), meaning these wells contain some portion of imported water.


## Sources and Ages of Groundwater

The ratios of stable isotopes of oxygen and hydrogen have become standard hydrologic tools for the analysis of groundwater recharge sources and movement (International Atomic Energy Agency, 1981). Investigators also have used other isotopic data, such as the combination of the radioactive isotopes of hydrogen and carbon, to (1) effectively identify sources of recharge, (2) determine the age or the time since recharge occurred for groundwater, and (3) identify geologic controls on the movement of groundwater in arid environments (Izbicki and Michel, 2004). The isotopes of oxygen and hydrogen, and the radioactive isotopes of hydrogen (tritium) and carbon-14 from selected wells (U.S. Geological Survey, 2018), were used to help determine the sources and ages of water in the Yucaipa subbasin.

## Stable Isotopes of Oxygen and Hydrogen

Oxygen-18 ( $^{18}\text{O}$ ) and hydrogen-2 ( $^2\text{H}$ ) are naturally occurring stable isotopes of oxygen and hydrogen, respectively. Atoms of  $^{18}\text{O}$  and  $^2\text{H}$  have more neutrons and a greater atomic mass than the more common isotopes of oxygen-16 ( $^{16}\text{O}$ ) and hydrogen-1 ( $^1\text{H}$ ). The differences in weight result in differences in the physical and chemical behavior of the heavier, less abundant isotopes. The isotopic ratios are expressed in delta notation ( $\delta$ ) as parts per thousand (per mil) differences relative to the standard known as Vienna Standard Mean Ocean Water (Gonfiantini, 1978). The average  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  composition of precipitation throughout the world is linearly correlated because most of the world's precipitation is derived originally from the evaporation of seawater. The linear relation between global  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  is known as the global meteoric water line (Craig, 1961; fig. A28).

Differences in isotopic composition can be used to help determine the general atmospheric conditions at the time of precipitation and the effects of evaporation before water entered the aquifer system. The  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  of groundwater relative to the global meteoric water line provides evidence of the source of the water and fractionation processes that have affected stable-isotope values. In some areas, fractionation during atmospheric condensation and precipitation or during evaporation prior to groundwater recharge, may result in recharge waters with different  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  values (Fournier and Thompson, 1980; Friedman and others, 1992).



**Figure A28.** Stable isotope composition of groundwater for select wells in the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

Information about the source and evaporative history of water can be used to evaluate the movement of water between parts of an aquifer system. Because groundwater moves slowly, isotopic data collected near the end of long flow lines typically preserve a record of groundwater recharge and movement under predevelopment conditions. This record is especially useful in aquifer systems where traditional hydrologic data, such as water levels, have been altered by pumping, by changes in recharge and discharge, or by human activities. In the Yucaipa subbasin, ratios of stable isotopes of oxygen and hydrogen were evaluated to provide insight about the source, movement, and evaporative history of water in the Yucaipa subbasin. (fig. A28).

Locally recharged groundwater from deep percolation of mountain-front runoff and infiltration of streamflow and precipitation had the heaviest stable isotopic concentrations of all groundwater types in the Yucaipa subbasin, with  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  concentrations ranging from -8.00 to -9.50 and -55.00 to -65.00, respectively (fig. A28). The consistent grouping of stable isotopic values indicated that most groundwater in the aquifer has a characteristic groundwater type and is locally recharged. Samples representing locally recharged groundwater the characteristic groundwater type generally plotted slightly to the left of the global meteoric water line, indicating that this type of groundwater quickly infiltrated into the aquifer with little evaporation. Groundwater from the perched aquifer (well YVDA5) has isotopic values within the range of other naturally recharged wells (fig. A28), indicating a similar source of recharge from deep percolation of mountain-front runoff and infiltration of streamflow and precipitation.

Imported water from northern California had lighter stable isotopic concentrations than locally recharged water. Samples from the Wilson Creek spreading basins and well YVWC4 had  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  concentrations ranging from -8.75 to -10.50 and -63.00 to -70.25, respectively. Most samples representing imported water plotted to the right of the global meteoric water line likely because of evaporation during the time required to transport imported water from northern California to the Yucaipa subbasin; that is, evaporation caused an increased enrichment of  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  prior to infiltration.

Groundwater recharged through crystalline basement has lighter stable isotopes than locally recharged water. Samples from wells YV6E1-3, YVEP1, and a deep sample from YVWD 24, have  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  concentrations ranging from -10.14 to -11.63 and -68.89 to -81.20, respectively (fig. A27). These samples plot slightly to the left of the global meteoric water line like locally recharged water, indicating that the water did not evaporate much before infiltrating into the aquifer system. Fractionation processes during atmospheric condensation may result in water with different  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  values. Water from a given air mass that condensed at higher elevations and cooler temperatures contains a greater amount of the lighter isotopes of oxygen and hydrogen and has lighter (more negative)  $\delta^{18}\text{O}$  and  $\delta^2\text{H}$  values than water that condensed from a similar air mass at lower elevations and warmer temperatures. The lighter stable isotopic concentrations in samples recharged through or influenced by water recharged through crystalline basement were indicative of groundwater recharged at higher elevations or in a cooler climate relative to characteristic groundwater in the Yucaipa subbasin (fig. A28).

Groundwater recharged through crystalline basement in the Yucaipa subbasin had similar  $\delta^2\text{H}$  values to a volume-weighted average of precipitation of  $\delta^2\text{H}$  collected near Big Bear, California (−77 per mil; Friedman and others, 1992), at an elevation of about 7,000 ft above sea level—an elevation equivalent to the San Bernardino Mountains in the northeast portion of the Yucaipa subbasin. Groundwater recharged through crystalline basement likely originated in the San Bernardino Mountains and passed through weathered saprolitic material or fractured crystalline basement until recharging the basin-fill aquifer at depth. This recharge and groundwater-flow process likely occurred throughout long periods of time as indicated by the absence of detectable tritium in most groundwater samples recharged through crystalline basement.

Samples from wells YV6E3, YVEP1, and YVWD 24 had major ion concentrations, stable isotopes ratios, and tritium concentrations (see the “[Tritium and Carbon-14 Isotopes](#)” section) that indicated a mixture of water recharged through crystalline basement, and water recharged from deep percolation of mountain-front runoff and infiltration of streamflow and precipitation. For instance, stable isotope ratios of samples in these wells are between the range of heavier ratios of locally recharged groundwater and lighter ratios of wells YV6E1 and YV6E2, which are recharged through crystalline basement ([fig. A28](#)).

## Tritium and Carbon-14 Isotopes

Tritium ( ${}^3\text{H}$ ) can be a naturally occurring or anthropogenic radioactive isotope of hydrogen and has a half-life of 12.4 years. In this report, the activity of tritium was measured in picocuries per liter (pCi/L); 1 pCi/L is equivalent to about 2.2 disintegrations of tritium per minute or about one tritium atom in  $3.1 \times 10^{17}$  atoms of hydrogen. Prior to 1952, tritium activity in precipitation in coastal California ranged from 9.6 to 16 pCi/L (R. Michel, U.S. Geological Survey, oral commun., 2006; Borchers and Lyttge, 2007). The release of about 800 kilograms of tritium into the atmosphere from atmospheric testing of nuclear weapons from 1952 to 1962 caused tritium activity increased to greater than 2,000 pCi/L (Michel, 1989), and tritium concentrations in precipitation and groundwater recharge increased during that time. After cessation of atmospheric testing of nuclear weapons in 1962, the tritium concentration of precipitation decreased, and by 2002, tritium levels in precipitation had decreased to near pre-1952 levels (Michel, 1989). Tritium concentrations are not affected substantially by chemical reactions other than radioactive decay because tritium is part of the water molecule; therefore, tritium is an excellent tracer of the movement and relative age of water since 1952. In this report,

groundwater that has detectable tritium greater than 0.3 pCi/L (Mendez and others, 2001) is interpreted to be water recharged after 1952 or recent recharge.

Carbon-14 ( ${}^{14}\text{C}$ ) isotopes also are effective for determining the age (time since recharge) of groundwater and the potential effects of age on the movement of groundwater. Carbon-14 is a naturally occurring radioactive isotope of carbon that has a half-life of about 5,730 years (Mook, 1980). Carbon-14 data are expressed in this report as percent modern carbon (pmc) by comparing  ${}^{14}\text{C}$  activities to the specific activity of National Bureau of Standards oxalic acid; 13.56 disintegrations per minute per gram of carbon in the year 1950 equals 100 pmc (Kalin, 2000). Like tritium,  ${}^{14}\text{C}$  was produced by the atmospheric testing of nuclear weapons (Mook, 1980). As a result,  ${}^{14}\text{C}$  activities may exceed 100 pmc in areas where groundwater contains tritium.

Carbon-14 activities are used to determine the age of groundwater samples on timescales ranging from recent to more than 20,000 years before the year 1950. Carbon-14 is not part of the water molecule; therefore,  ${}^{14}\text{C}$  activities may be affected by chemical reactions that add or remove carbon to the groundwater. In addition,  ${}^{14}\text{C}$  activities are affected by the mixing of younger water that has a higher  ${}^{14}\text{C}$  activity with older water that has lower  ${}^{14}\text{C}$  activity. Assuming an initial 100 pmc in the recharging groundwater with only radioactive decay and neglecting geochemical reactions that occur between groundwater and aquifer materials, groundwater having 90 pmc would have recharged 370 years before present, and groundwater having 50 pmc would have been recharged 5,730 years before present (Izbicki and Michel, 2004). These ages are referred to as “uncorrected ages.” In general, uncorrected  ${}^{14}\text{C}$  ages are older than the actual age of the associated groundwater. For the regional aquifer in the Mojave River groundwater basin (not shown; about 40 mi northwest of the Yucaipa subbasin),  ${}^{14}\text{C}$  ages are as much as 30 percent older than actual groundwater ages (Izbicki and others, 1995).

Groundwater samples with tritium concentrations above the detectable limit were found in shallow wells in the Yucaipa subbasin ([fig. A27](#)) and were associated with locally recharged water and water imported from northern California. The presence of detectable tritium indicates that these groundwater samples had some portion of recently recharged water. The highest concentrations of tritium generally were found in wells located near sources of natural recharge, such as wells YVWD 13 and YVEP4 in the Oak Glen and Calimesa subareas, respectively ([figs. A27A, A27C](#)). High concentrations of tritium also were found in wells proximal to the Wilson Creek and Oak Glen Creek spreading basins, where imported water from northern California is applied as MAR, such as well YVWC2-4 in the Wilson Creek subarea ([figs. A27A, A27B](#)). Carbon-14 concentrations in wells with detectable tritium generally ranged from about 70 pmc to more than about 95 pmc, indicating recent recharge.

Groundwater samples with tritium concentrations below the detectable limit were found in deep wells in the Calimesa and Western Heights subareas (figs. A27B, A27C) and were generally associated with locally recharged water and water recharged through crystalline basement. The absence of detectable tritium indicated that these groundwater samples were not recharged recently. In the Western Heights subarea, groundwater samples without detectable tritium have major ion and stable isotopic concentrations associated with locally recharged water and have low concentrations of  $^{14}\text{C}$  (wells YVDA1, YVDA2, and WHWC 11; fig. A27C). The absence of recent recharge (as indicated by the absence of detectable tritium and low concentrations of  $^{14}\text{C}$ ) in these wells can be explained by the abundance of slow-moving, unpumped, older water at depth and by limited mixing of groundwater within the aquifer.

In the Calimesa subarea, groundwater samples without detectable tritium had major ion and stable isotopic concentrations generally associated with water recharged through crystalline basement and had low concentrations of  $^{14}\text{C}$  (wells YV6E1, YV6E2, YV6E3, and YVWD 24; fig. A27C). The absence of detectable tritium and low concentrations of  $^{14}\text{C}$  in these wells can be explained by the abundance of slow-moving, unpumped older water at depth, and long, slow travel times of groundwater that likely originated in the San Bernardino Mountains and passed through weathered saprolitic material or fractured crystalline basement before recharging the basin-fill aquifer.

## Summary

To better understand the hydrogeology and water resources in the Yucaipa groundwater subbasin (hereafter referred to as “Yucaipa subbasin”), the U.S. Geological Survey (USGS) initiated a study in cooperation with the San Bernardino Valley Municipal Water District (SBVMWD) to characterize and model the hydrologic system of the Yucaipa subbasin and the surrounding Yucaipa Valley watershed (YVW). The YVW is a semiarid inland area that straddles southwestern San Bernardino County and northwestern Riverside County, about 12 miles (mi) southeast of the City of San Bernardino and about 75 mi east of Los Angeles, California. The YVW is bounded on the north by the San Bernardino Mountains, on the southeast by the San Gorgonio Pass, on the south by The Badlands, on the northwest by the San Bernardino Valley, and on the west by the Crafton Hills. The YVW is comprised of three watersheds that encompass the Yucaipa subbasin: (1) Yucaipa Creek, (2) San Timoteo Canyon—San Timoteo Wash, and (3) Little San Gorgonio

Creek. The YVW is used as the active domain for the Yucaipa Integrated Hydrologic Model (YIHM) in chapter B of this report.

The Yucaipa subbasin is located within the YVW and is the area of hydrogeologic interest for this study. The subbasin encompasses 39 square miles, including the City of Yucaipa. The boundaries of the Yucaipa subbasin are (1) along geologic contacts between the sedimentary basin-fill within the Yucaipa valley and the uplands of Yucaipa hills, (2) along active faults such as the San Andreas and Crafton Hills fault zones, (3) along outcrops and partly concealed traces of the Banning fault, (4) along topographic surface divides, and (5) along locations adjudicated by the Superior Court of the State of California, Riverside County (2004).

Population growth since the 1940s and changes in water use have forced local water purveyors to adapt water infrastructure to meet demand. Groundwater historically has been the dominant source of water in the Yucaipa subbasin, but water imported via the California State Water Project has augmented the water supply since 2002. Local water managers are concerned that despite the influx of imported water, groundwater levels may decline to a point where producing water will be uneconomical, severely limiting the ability of local agencies to meet water-supply demand.

Climate in the Yucaipa subbasin is characterized by long, warm, dry summers and short, cool, wet winters. Precipitation mostly is in the form of rain, except in colder months when snow sometimes falls at higher elevations. If present, snowpack in the San Bernardino Mountains commonly lasts until April or May. Estimated average precipitation ranges from about 18 inches per year (in/yr) in the Yucaipa Valley to more than 30 in/yr in the San Bernardino Mountains. The average annual recorded precipitation during 1947–2014 was about 12.5 in/yr.

Surface-water flow in the Yucaipa subbasin occurs primarily during the wet season in intermittent or ephemeral streams. The three major streams that traverse the Yucaipa subbasin are Wilson Creek, Oak Glen Creek, and Yucaipa Creek. Perennial flow occurs in the upper reaches of the Wilson Creek and Oak Glen Creek watersheds in the San Bernardino Mountains. The direction of surface water generally flows from the San Bernardino Mountains and Yucaipa hills in the northeast, southwest toward Sam Timoteo Creek and the Santa Ana River, before eventually discharging in the Pacific Ocean about 60 mi southwest of the Yucaipa subbasin. Small springs were present historically along the Chicken Hill fault in the Western Heights groundwater subarea; these springs are no longer flowing because the groundwater table was lowered. Streamflow has been historically monitored at seven streamgages. Annual mean streamflow at the streamgages generally indicate the temporal and spatial patterns of measured average annual precipitation.

Land in the Yucaipa subbasin and encompassing YVW has been used for agriculture and developed into urban areas. Both agricultural and developed lands have been located in the Yucaipa Valley, the Beaumont plain, and in the upland areas of the Yucaipa subbasin. Detailed land-use maps of the YVW show a decrease in agricultural land and an increase in developed land through time. In the 1970s, about 20 percent of land in the YVW was used for agriculture and about 5 percent was developed. By 2014, agricultural land was almost completely absent in the YVW, and about 17 percent of land was developed.

The aquifer system in the Yucaipa subbasin consists of three basin-fill aquifer units—surficial materials, unconsolidated sediment, and consolidated sedimentary materials. Underlying the basin-fill aquifer units is crystalline basement, which includes a layer of weathered saprolitic material along and above its interpreted upper surface. Within the Yucaipa subbasin, a series of faults and groundwater barriers delineate 11 groundwater subareas (hereafter referred to as “subareas”), 7 of which comprise the majority of the aquifer system. Several faults and barriers were identified as likely to inhibit groundwater flow, including the Chicken Hill fault, the Cherry Valley thrust fault, and structural folds associated with the South Mesa barrier and the inactive strand of the Banning fault.

Recharge to the basin-fill aquifer occurs primarily as deep percolation of mountain-front runoff and infiltration of streamflow in the Oak Glen, Triple Falls Creek, and Wilson Creek groundwater subareas in the northeastern part of the Yucaipa subbasin. Underflow from crystalline basement and infiltration from precipitation are additional sources of natural recharge to the basin-fill aquifer. Estimates of historical annual recharge generally ranged from about 7,000 acre-feet per year (acre-ft/yr) to more than 13,000 acre-ft/yr. Water from northern California has been imported to the Yucaipa subbasin since 2002, applied directly as managed aquifer recharge (MAR) to the Wilson Creek and Oak Glen Creek spreading basins, and treated and used to augment the municipal water supply. During 2002–14, about 69,200 acre-ft of water was imported to the subbasin; about 17,900 acre-ft of this amount was applied as MAR. Importation of water reduced the demand for groundwater pumping in the Yucaipa subbasin. Average annual pumpage during 1947–2014 was about 12,800 acre-ft/yr and ranged from as low as about 4,000 acre-feet (acre-ft) in 1947 to as much as about 18,500 acre-ft in 2002.

The predominant direction of groundwater flow under historical and present-day conditions is from the northeastern part of the subbasin adjacent to the San Bernardino Mountains

and Yucaipa hills, to the west and south to San Timoteo Creek, and eventually to the Santa Ana River west of the Yucaipa subbasin. Natural discharge of groundwater occurs as evapotranspiration and as subsurface outflow along the western margin of the Yucaipa subbasin to the adjacent San Bernardino groundwater subbasin. Estimates of subsurface outflow across the western margin range from about 2,400 to 20,000 acre-ft/yr for 1905–2014. The decline in estimated outflow values during this period likely resulted from a steady decline of groundwater levels in the Yucaipa subbasin caused by pumping. The long-term extraction of groundwater has caused groundwater levels to decrease by almost 200 feet since the 1940s in parts of the Calimesa and Western Heights groundwater subareas. In contrast, observed declines in groundwater levels were less substantial in subareas near areas of natural recharge (such as the Oak Glen, Wilson Creek, and Crafton groundwater subareas). In some locations within these subareas, water levels have increased, likely resulting from pumping reduction and MAR.

Four groundwater types were identified in the Yucaipa subbasin, and the chemical character of the four groundwater types varied depending on the source and location of recharge. Most groundwater in the Yucaipa subbasin was calcium-bicarbonate-type water that was locally recharged from deep percolation of mountain-front runoff, streamflow, and precipitation. Groundwater recharged through crystalline basement was sodium-sulfate-type water and was identified in deep wells in the Calimesa subarea. Groundwater in a perched aquifer in the Western Heights subarea was sulfate-rich, calcium-bicarbonate-type water. Water imported from northern California and applied as MAR in the Wilson Creek groundwater subarea was chloride-type water. At least some samples of all groundwater types, except for water recharged through crystalline basement, had detectable tritium, indicating that most groundwater types had modern recharge ages. The concentrations of total dissolved solids (TDS) of groundwater ranged from about 225 to 1,120 milligrams per liter; groundwater samples with lower TDS concentrations generally were collected from wells near sources of natural recharge; samples with the highest TDS concentrations were collected from deep wells near the contact with the crystalline basement.

The hydrologic characterization of the Yucaipa subbasin presented in this chapter supports development of an integrated numerical hydrologic model. The development and calibration of this model is presented in [Chapter B](#) of this report. This model further refines the hydrologic understanding of the Yucaipa subbasin and the encompassing YVW.

## References Cited

American Water Works Association, 2018, California-Nevada American Water Works Association water loss technical assistance program: American Water Works Association California-Nevada Section, accessed April 1, 2021, at [https://wuedata.water.ca.gov/awwa\\_plans](https://wuedata.water.ca.gov/awwa_plans).

Anderson, M., Matti, J., and Jachens, R., 2004, Structural model of the San Bernardino basin, California, from analysis of gravity, aeromagnetic, and seismicity data: *Journal of Geophysical Research*, v. 109, no. B4, 24 p., <https://doi.org/10.1029/2003JB002544>.

Bloyd, R.M., 1971, Underground storage of imported water in the San Gorgonio Pass area, southern California: U.S. Geological Survey Water Supply Paper 1999–D, 37 p., accessed May 14, 2018, at <https://doi.org/10.3133/wsp1999D>.

Borchers, J.W., and Lyttge, M.S., 2007, Results of the level-1 water-quality inventory at the Pinnacles National Monument, June 2006: U.S. Geological Survey Data Series 283, 54 p., accessed April 30, 2020, at <https://doi.org/10.3133/ds283>.

Burnham, W.L., and Dutcher, L.C., 1960, Geology and ground-water hydrology of the Redlands Beaumont area, California, with special reference to ground-water outflow: U.S. Geological Survey Unnumbered Series, 352 p., <https://doi.org/10.3133/1094>.

California Department of Water Resources, 1970, Meeting water demands in the Bunker Hill–San Timoteo area—Geology, hydrology, and operation–economics studies: California Department of Water Resources Bulletin 104–5, 75 p.

California Department of Water Resources, 1979, Preliminary evaluation of State Water Project ground-water storage program, Bunker Hill–San Timoteo–Yucaipa basins: 82 p.

California Department of Water Resources, 1986, San Bernardino–San Gorgonio water resources management investigation: Southern District, 83 p.

California Department of Water Resources, 2016, California’s groundwater, working toward sustainability: California Department of Water Resources Bulletin 118, Interim Update 2016, accessed May 23, 2018, at <https://www.water.ca.gov/Programs/Groundwater-Management/Bulletin-118>.

California Irrigation Management Information System (CIMIS), 2005, Department of Water Resources and University of California, Davis: data accessed on March 31, 2010, at <http://www.cimis.water.ca.gov/>.

California Irrigation Management Information System, 2018, Spatial Report: California Department of Water Resources, accessed September 26, 2017, at <https://cimis.water.ca.gov>

Craig, H., 1961, Isotope variations in meteoric water: *Science*, v. 133, no. 3465, p. 1702–1703, <https://doi.org/10.1126/science.133.3465.1702>.

Cromwell, G., and Matti, J.C., 2022, Geology and hydrogeology of the Yucaipa groundwater subbasin, San Bernardino and Riverside Counties, California: U.S. Geological Survey Scientific Investigations Report 2021–5129, 52 p., <https://doi.org/10.3133/sir20215129>.

Cromwell, G., Matti, J.C., and Roberts, S.A., 2022, Data release of hydrogeologic data of the Yucaipa groundwater subbasin, San Bernardino and Riverside Counties, California; U.S. Geological Survey Sciencebase data release, <https://doi.org/10.5066/P9F7OYQR>.

Danskin, W.R., McPherson, K.R., and Woolfenden, L.R., 2006, Hydrology, description of computer models, and evaluation of selected water-management alternatives in the San Bernardino area, California: U.S. Geological Survey Open-File Report 2005–1278, 947 p., 2 pls., <https://doi.org/10.3133/ofr20051278>.

Dibblee, T.W., 1964, Geologic map of the San Gorgonio Mountain quadrangle, San Bernardino and Riverside Counties, California: U.S. Geological Survey Miscellaneous Geologic Investigations Map I–431, 1:62,500 scale, accessed June 7, 2018, at [https://ngmdb.usgs.gov/ProdDesc/proddesc\\_99.htm](https://ngmdb.usgs.gov/ProdDesc/proddesc_99.htm).

Dibblee, T.W., and Minch, J.A., 2003a, Geologic map of the Beaumont quadrangle, Riverside County, California: Dibblee Geological Foundation, Dibblee Foundation Map DF–114, 1:24,000 scale, accessed June 7, 2018, at [https://ngmdb.usgs.gov/ProdDesc/proddesc\\_71734.htm](https://ngmdb.usgs.gov/ProdDesc/proddesc_71734.htm).

Dibblee, T.W., and Minch, J.A., 2003b, Geologic map of the El Casco quadrangle, Riverside County, California: Dibblee Geological Foundation, Dibblee Foundation Map DF–113, 1:24,000 scale, accessed June 7, 2018, at [https://ngmdb.usgs.gov/ProdDesc/proddesc\\_71735.htm](https://ngmdb.usgs.gov/ProdDesc/proddesc_71735.htm).

Dibblee, T.W., and Minch, J.A., 2003c, Geologic map of the Sunnymead/south 1/2 of Redlands quadrangles, San Bernardino and Riverside County, California: Dibblee Geological Foundation, Dibblee Foundation Map DF–110, 1:24,000 scale, accessed June 7, 2018, at [https://ngmdb.usgs.gov/ProdDesc/proddesc\\_71736.htm](https://ngmdb.usgs.gov/ProdDesc/proddesc_71736.htm).

Dibblee, T.W., and Minch, J.A., 2004, Geologic map of the Yucaipa quadrangle, Riverside County, California: Dibblee Geological Foundation, Dibblee Foundation Map DF–124, 1:24,000 scale, accessed June 7, 2018, at [https://ngmdb.usgs.gov/ProdDesc/proddesc\\_71755.htm](https://ngmdb.usgs.gov/ProdDesc/proddesc_71755.htm).

Dibblee, T.W., and Minch, J.A., 2008, Geologic map of the San Gorgonio Mountain and Morongo Valley quadrangles, San Bernardino and Riverside Counties, California: Dibblee Geological Foundation, Dibblee Foundation Map DF-381, scale 1:62,500, accessed June 7, 2018, at [https://ngmdb.usgs.gov/ProdDesc/proddesc\\_84181.htm](https://ngmdb.usgs.gov/ProdDesc/proddesc_84181.htm).

Durbin, T.J., 1974, Digital simulation of the effects of urbanization on runoff in the upper Santa Ana Valley, California: U.S. Geological Survey Water Resources Investigations Report 41-73, 44 p., <https://doi.org/10.3133/wri7341>.

Durbin, T.J., and Morgan, C.O., 1978, Well-response model of the confined area, Bunker Hill ground-water basin, San Bernardino, California: U.S. Geological Survey Water-Resources Investigations Report 77-129, 39 p., <https://doi.org/10.3133/wri77129>.

Dutcher, L.C., and Burnham, W.L., 1959, Geology and ground-water hydrology of the Mill Creek area, San Bernardino County, California: U.S. Geological Survey Open-File Report 59-38, 229 p., <https://doi.org/10.3133/ofr5938>.

Dutcher, L.C., and Fenzel, W.C., 1972, Ground-water outflow, San Timoteo-Smiley Heights, Upper Santa Ana Valley, Southern California, 1927 through 1968: U.S. Geological Survey Open-File Report 72-97, 32 p. accessed November 2, 2016, at <https://doi.org/10.3133/ofr7297>.

Dynamic Graphics, Inc., 2015, EarthVision, accessed November 24, 2015, at <https://www.dgi.com/earthvision/evmain.html>.

Eckis, R., 1934, Geology and ground-water storage capacity of valley fill, South Coastal Basin Investigation: California Division of Water Resources Bulletin 45, 273 p.

Fletcher, G.L., 1976, Fluctuation of water levels in wells in the Yucaipa area, 1965-75: San Bernardino Valley Municipal Water District, Report No. ENG-76-E2, 17 p.

Fox, R.C., 1987, A hydrogeologic analysis and projected water level decline in Western Heights subbasin: A report for Western Heights Water Company, 21 p.

Frick, C., 1921, Extinct vertebrate faunas of the Badlands of Bautista Creek and San Timoteo Canyon, southern California: Berkeley, University of California Publications in Geology, p. 277-424.

Fournier, R.O., and Thompson, J.M., 1980, The recharge area for the Coso, California, geothermal system deduced from  $\delta D$  and  $\delta^{18}\text{O}$  in thermal and nonthermal waters in the region: U.S. Geological Survey Open-File Report 80-454, 27 p., <https://pubs.er.usgs.gov/publication/ofr80454>.

Friedman, I., Smith, G.I., Gleason, J.D., Warden, A., and Harris, J.M., 1992, Stable isotope composition of waters in southeastern California—1. Modern precipitation: Journal of Geophysical Research, v. 97, no. D5, p. 5795-5812, <https://doi.org/10.1029/92JD00184>.

Geoscience Support Services, Inc., 2009, San Bernardino basin area refined basin flow model and solute transport model report: Prepared for San Bernardino Valley Municipal Water District, dated September 30, 2009, 319 p.

Geoscience Support Services, Inc., 2014a, Determination of the usable capacity and safe yield for each sub-basin within the Yucaipa basin area: Prepared for San Bernardino Valley Municipal Water District, dated April 17, 2014, 167 p.

Geoscience Support Services, Inc., 2014b, Recharge investigation of the Yucaipa groundwater basin: Prepared for San Bernardino Valley Municipal Water District, dated December 12, 2014, 338 p.

Geoscience Support Services, Inc., 2015, Historical annual change in groundwater storage capacity—Yucaipa Groundwater Basin: Draft Report, dated April 6, 2015, 577 p.

Geoscience Support Services, Inc., 2017, Calculation of annual water budgets and validation of annual change in storage using the Yucaipa watershed and groundwater models—TM1—Model Calibration: Draft Report, dated July 28, 2017, 71 p.

Geoscience Support Services, Inc., 2018, Upper Santa Ana River Integrated Model—TM3—Model Calibration: Draft Report, dated June 29, 2018, 666 p.

Gibson, R.C., 1971, Nonmarine turbidites and the San Andreas fault, in Elders, W.A., ed., Geological excursions in southern California: Riverside, University of California Campus Museum Contributions, no. 1, p. 167-181.

Gleason, S.B., 1947, South coastal basin investigation, overdraft on ground-water basins: California Department of Public Works, Division of Water Resources, Bulletin 53, 256 p.

Gonfiantini, R., 1978, Standards for stable isotope measurements in natural compounds: Nature, v. 271, no. 5645, p. 534-536, <https://doi.org/10.1038/271534a0>.

Hall, W.H., 1888, Irrigation in [southern] California—the field, water supply, and works—organization and operation in San Diego, San Bernardino, and Los Angeles counties: Second part of the report of the State engineer of California on irrigation and the irrigation questions, Sacramento, California, State Printing Office, 672 p.

Hanak, E., and Neumark, D., 2006, Lawns and water demand in California: California Economic Policy, Public Policy Institute of California, v. 2 no. 2, 24 p., [https://www.ppic.org/content/pubs/cep/EP\\_706EHEP.pdf](https://www.ppic.org/content/pubs/cep/EP_706EHEP.pdf).

Hardt, W.F., and Freckleton, J.R., 1987, Aquifer response to recharge and pumping, San Bernardino ground-water basin, California: U.S. Geological Survey Water-Resources Investigations Report 86-4140, 69 p., <https://doi.org/10.3133/wri864140>.

Hardt, W.F., and Hutchinson, C.B., 1980, Development and use of a mathematical model of the San Bernardino Valley ground-water basin, California: U.S. Geological Survey Open File Report 80-576, 80 p., <https://doi.org/10.3133/ofr80576>.

Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3d ed): U.S. Geological Survey Water-Supply Paper 2254, 263 p., <https://doi.org/10.3133/wsp2254>.

Hughes, C.L., 1992, 2-D modeling of heat flow in the San Bernardino Valley, southern California: Riverside, University of California Riverside, M.S. thesis, 169 p.

International Atomic Energy Agency, 1981, Stable isotope hydrology: Technical Report Series No. 210, 339 p.

Izbicki, J.A., and Michel, R.L., 2004, Movement and age of ground water in the Western part of the Mojave Desert, Southern California, USA: U.S. Geological Survey Water-Resources Investigations Report 2003-4314, 35 p., <https://doi.org/10.3133/wri034314>.

Izbicki, J.A., Martin, P., and Michel, R.L., 1995, Source, movement and age of groundwater in the upper part of the Mojave River basin, in Adar, E.M., and Leibundgut, C., eds., Application of tracers in arid zone hydrology, International Association of Hydrological Sciences, no. 232, p. 43-56.

Johnson, A.I., 1967, Specific yield—Compilation of specific yields for various materials: U.S. Geological Survey Water Supply Paper 1662-D, 74 p., accessed April 2, 2020, at <https://doi.org/10.3133/wsp1662D>.

Kalin, R.M., 2000, Radiocarbon dating of groundwater systems, in Cook, P.G., and Herczeg, A.L., eds., Chapter 4: Environmental tracers in subsurface hydrology: Boston, Kluwer Academic Publishers, p. 111-144, [https://doi.org/10.1007/978-1-4615-4557-6\\_4](https://doi.org/10.1007/978-1-4615-4557-6_4).

Kendrick, K.J., Morton, D.M., Wells, S.G., and Simpson, R.W., 2002, Spatial and temporal deformation along the northern San Jacinto Fault, Southern California—Implications for slip rates: Bulletin of the Seismological Society of America, v. 92, no. 7, p. 2782-2802, <https://doi.org/10.1785/0120000615>.

LANDFIRE, 2001, Existing vegetation type layer, LANDFIRE 1.0.5: U.S. Department of the Interior, U.S. Geological Survey, accessed March 27, 2017, at <https://landfire.cr.usgs.gov/viewer/>.

LANDFIRE, 2014, Existing vegetation type layer, LANDFIRE 1.4.0: U.S. Department of the Interior, U.S. Geological Survey, accessed March 27, 2017, at <https://landfire.cr.usgs.gov/viewer/>.

Langenheim, V.E., Jachens, R.C., Matti, J.C., Hauksson, E., Morton, D.M., and Christensen, A., 2005, Geophysical evidence for wedging in the San Gorgonio Pass structural knot, southern San Andreas fault zone, southern California: Geological Society of America Bulletin, v. 117, no. 11-12, p. 1554-1572, <https://doi.org/10.1130/B25760.1>.

Lippincott, J.B., 1902a, Development and application of water near San Bernardino, Colton, and Riverside, California, Part 1: U.S. Geological Survey Water-Supply Paper 59, 95 p.

Lippincott, J.B., 1902b, Development and application of water near San Bernardino, Colton, and Riverside, California, Part 2: U.S. Geological Survey Water-Supply Paper, v. 60, p. 96-141.

Mann, J.F., Jr., 1986, Revised safe yield of the Yucaipa sub-basins: San Bernardino Valley Municipal Water District, unpublished report, 7 p.

Mann, J.F., Jr., and Todd, D.K., 1990, Perennial yield, Yucaipa groundwater basin: San Bernardino Valley Municipal Water District and Yucaipa Valley Water District, unpublished report, 4 p.

Manson, S., Schroeder, J., Van Riper, D., and Ruggles, S., 2019, IPUMS National Historical Geographic Information System: Version 14.0 [Database]: IPUMS, Minneapolis, Minnesota, <https://doi.org/10.18128/D050.V14.0>.

Markstrom, S.L., Niswonger, R.G., Regan, R.S., Prudic, D.E., and Barlow, P.M., 2008, GSFLOW—Coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005): U.S. Geological Survey Techniques and Methods, book 6, chap. D1, 240 p., <https://doi.org/10.3133/tm6D1>.

Matti, J.C., Morton, D.M., and Cox, B.F., 1985, Distribution and geologic relations of fault systems in the vicinity of the Central Transverse Ranges, southern California: U.S. Geological Survey Open-File Report 85-365, scale 1:250,000, 27 p., <https://doi.org/10.3133/ofr85365>.

Matti, J.C., and Carson, S.E., 1991, Liquefaction susceptibility in the San Bernardino Valley and vicinity, southern California—A regional evaluation: U.S. Geological Survey Bulletin 1898, 53 p., <https://doi.org/10.3133/b1898>.

Matti, J.C., Morton, D.M., and Cox, B.F., 1992a, The San Andreas fault system in the vicinity of the Central Transverse Ranges Province, southern California: U.S. Geological Survey Open-File Report 92-354, 49 p., <https://doi.org/10.3133/ofr92354>.

Matti, J.C., Morton, D.M., Cox, B.F., Carson, S.E., and Yetter, T.J., 1992b, Geologic map of the Yucaipa 7.5' quadrangle, California: U.S. Geological Survey Open-File Report 92-446, 14 p., scale 1:24,000, <https://doi.org/10.3133/ofr92446>.

Matti, J.C., Morton, D.M., Cox, B.F., Carson, S.E., and Yetter, T.J., 2003a, Geologic map and digital database of the Yucaipa 7.5' Quadrangle, San Bernardino and Riverside Counties, California, version 1.0: U.S. Geological Survey Open-File Report 2003-301, 41 p., <https://doi.org/10.3133/ofr03301>.

Matti, J.C., Morton, D.M., Cox, B.F., Kendrick, K.J., Cossette, P.M., Jones, B., and Kennedy, S.A. 2003b, Geologic map and digital database of the Redlands 7.5' quadrangle, San Bernardino and Riverside Counties, California: U.S. Geological Survey Open-File Report 2003-302, 9 p., <https://doi.org/10.3133/ofr03302>.

Matti, J.C., Morton, D.M., and Langenheim, V.E., 2015, Geologic and geophysical maps of the El Casco 7.5' Quadrangle, Riverside County, Southern California, with accompanying geologic-map database: U.S. Geological Survey Open-File Report 2010-1274, 141 p., <https://doi.org/10.3133/ofr20101274>.

Mendenhall, W.C., 1905, Hydrology of San Bernardino Valley, California: U.S. Geological Survey Water-Supply Paper 142, 124 p., <https://doi.org/10.3133/wsp142>.

Mendenhall, W.C., 1908, Ground waters and irrigation enterprises in the foothill belt, southern California: U.S. Geological Survey Water-Supply Paper 219, 180 p., <https://doi.org/10.3133/wsp219>.

Mendez, G.O., Danskin, W.R., and Burton, C.A., 2001, Surface-water and ground-water quality in the Yucaipa area, San Bernardino and Riverside Counties, California, 1996-98: U.S. Geological Survey Water-Resources Investigations Report 2000-4269, 47 p., <https://doi.org/10.3133/wri004269>.

Mendez, G.O., Anders, R., McPherson, K.R., and Danskin, W.R., 2018, Geologic, hydrologic, and water-quality data from multiple-well monitoring sites in the Bunker Hill and Yucaipa Groundwater Subbasins, San Bernardino County, California, 1974-2016: U.S. Geological Survey Data Series 1096, 215 p., accessed November 10, 2018, at <https://doi.org/10.3133/ds1096>.

Mendez, G.O., Langenheim, V.E., Morita, A., and Danskin, W.R., 2016, Geologic structure of the Yucaipa area inferred from gravity data, San Bernardino and Riverside Counties, California: U.S. Geological Survey Open-File Report 2016-1127, 23 p., <https://doi.org/10.3133/ofr20161127>.

Michel, R.L., 1989, Tritium deposition in the continental United States, 1953-1983: U.S. Geological Survey Water-Resources Investigations Report 89-4072, 46 p., <https://doi.org/10.3133/wri894072>.

Mills, W.R., 2009, Borrego Water District integrated water resources management plan final report: 128 p., accessed August 31, 2015, at <https://borregowd.org/wp-content/uploads/2020/05/Borrego-Valley-IWMP-Final-2009.pdf>.

Mitchell, W.B., Guptill, S.C., Anderson, K.E., Fegeas, R.G., and Hallam, C.A., 1977, GIRAS—A geographic information retrieval and analysis system for handling land use and land cover data: U.S. Geological Survey Professional Paper 1059, 16 p., <https://doi.org/10.3133/pp1059>.

Mook, W.G., 1980, The dissolution-exchange model for dating of groundwater with  $^{14}\text{C}$ , in Fritz, P., and Fontes, J.C., eds., Handbook of Environmental Isotopes—Geochemistry v. 1: Amsterdam, Elsevier, p. 50-74.

Moreland, J.A., 1970, Artificial recharge, Yucaipa, California: U.S. Geological Survey Open-File Report 5020-33, 44 p.

Morton, D.M., and Matti, J.C., 1993, Extension and contraction within an evolving divergent strike-slip fault complex—The San Andreas and San Jacinto fault zones at their convergence in southern California, chap. 5 of Powell, R.E., Weldon, R.J., II, and Matti, J.C., The San Andreas Fault system—Displacement, palinspastic reconstruction, and geologic evolution: Geological Society of America, v. 178, p. 217-230, <https://doi.org/10.1130/MEM178-p217>.

Morton, D.M., and Matti, J.C., 2001, Geologic map of the Sunnymead 7.5' quadrangle, Riverside County, California: U.S. Geological Survey Open-File Report 2001-2450, <https://doi.org/10.3133/ofr01450>.

Morton, D.M., and Miller, F.K., 2006, Geologic map of the San Bernardino and Santa Ana 30' x 60' quadrangles, California: U.S. Geological Survey Open-File Report 2006-1217, 194 p., <https://doi.org/10.3133/ofr20061217>.

Morton, D.M., Matti, J.C., Miller, F.K., and Repenning, C.A., 1986, Pleistocene conglomerate from the San Timoteo Badlands, southern California—Constraints on strike-slip displacements on the San Andreas fault: Geological Society of America Abstracts with Programs, v. 18, p. 161.

National Centers for Environmental Information, 2017, Global historical climatology network—Daily: ver. 3, accessed February 22, 2017, at <https://www.ncei.noaa.gov/access/search/data-search/daily-summaries>.

Nicholson, C., Plesch, A., Sorlien, C.C., Shaw, J.H., and Hauksson, E., 2013, Updating the 3D fault set for the SCEC Community Fault Model (CFM-v4) and revising its associated fault database: Southern California Earthquake Center Annual Meeting.

Nicholson, C., Plesch, A., Sorlien, C.C., Shaw, J.H., and Hauksson, E., 2014, The SCEC 3D Community Fault Model (CFM Version 5.0)—An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California: Southern California Earthquake Center Annual Meeting, T31B-4585.

Piper, A.M., 1944, A graphic procedure in the geochemical interpretation of water analyses: Transactions - American Geophysical Union, v. 25, no. 6, p. 914–923, <https://doi.org/10.1029/TR025i006p00914>.

Powers, W.R., III, and Hardt, W.F., 1974, Oak Glen water resources development study using modeling techniques, San Bernardino County, California: U.S. Geological Survey Water-Resources Investigations Report 74–31, 59 p., <https://doi.org/10.3133/wri7431>.

PRISM Climate Group, 2013, 30-year normals: Oregon State University, created September 11, 2013, <http://prism.oregonstate.edu>.

Reichard, E.G., Land, M., Crawford, S.M., Johnson, T.D., Everett, R.R., Kulshan, T.V., Ponti, D.J., Halford, K.L., Johnson, T.A., Paybins, K.S., and Nishikawa, T., 2003, Geohydrology, geochemistry, and ground-water simulation-optimization of the Central and West Coast Basins, Los Angeles County, California: U.S. Geological Survey Water Resources Investigations Report 2003–4065, 184 p., <https://doi.org/10.3133/wri034065>.

Rewis, D.L., Christensen, A.H., Matti, J.C., Hevesi, J.A., Nishikawa, T., and Martin, P., 2006, Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning storage units, San Gorgonio Pass area, Riverside County, California: U.S. Geological Survey Scientific Investigations Report 2006–5026, 191 p., <https://doi.org/10.3133/sir20065026>.

San Bernardino Flood Control District, 2018, DPW on-line data: accessed February 6, 2018, at [http://www.sbccounty.gov/dpw/pwg/Online\\_Data/Online\\_Data\\_Intro.htm](http://www.sbccounty.gov/dpw/pwg/Online_Data/Online_Data_Intro.htm).

Stiff, H.A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Journal of Petroleum Technology, v. 3, no. 10, p. 15–17, <https://doi.org/10.2118/951376-G>.

Superior Court of the State of California, Riverside County, 2004, Judgement pursuant to stipulation adjudicating groundwater rights in the Beaumont Basin, filed February 4, 2004, accessed May 2, 2020, at <http://documents.yvwd.dst.ca.us/bbwm/documents/formation/judgment.pdf>.

Todd, D.K., 1988, Perennial yield of the Yucaipa groundwater basin: Report to Yucaipa Valley Water District, 71 p.

Umari, A.M.J., Martin, P., Schroeder, R.A., Duell, L.F.W., Jr., and Fay, R.G., 1993, Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California: U.S. Geological Survey Water-Resources Investigations Report 93–4137, 83 p., <https://doi.org/10.3133/wri934137>.

U.S. Census Bureau, 1952, 1950 Census of population—Volume 1—Number of inhabitants, California: U.S. Census Bureau, 48 p., accessed August 24, 2020, at <https://www2.census.gov/library/publications/decennial/1950/population-volume-1/vol-01-08.pdf>.

U.S. Geological Survey, 2016, National Hydrography Dataset (ver. USGS National Hydrography Dataset Best Resolution (NHD) for Hydrologic Units (HU) 8 – 18070202 and 18070203 (published 20161105)), accessed November 11, 2016, at <https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products>.

U.S. Geological Survey, 2018, USGS water data for the Nation: U.S. Geological Survey national water information system database, accessed October 16, 2018, at <https://doi.org/10.5066/F7P55KJN>.

U.S. Geological Survey and California Geological Survey, 2016, Quaternary fault and fold database for the United States: accessed October 18, 2016, at [https://earthquake.usgs.gov/cfusion/qfault/query\\_main\\_AB\\_advanced.cfm](https://earthquake.usgs.gov/cfusion/qfault/query_main_AB_advanced.cfm).

U.S. Golf Association, 2012, How much water does golf use and where does it come from?: Golf’s Use of Water—Challenges and Opportunities, A USGA Summit on Golf Course Water Use, November 2012, TGIF Record Number 214418, 2 p., <https://www.usga.org/content/dam/usga/pdf/Water%20Resource%20Center/how-much-water-does-golf-use.pdf>.

Vogelmann, J.E., Howard, S.M., Yang, L., Larson, C.R., Wylie, B.K., and Van Driel, J.N., 2001, Completion of the 1990's national land cover data set for the conterminous United States: Photogrammetric Engineering and Remote Sensing, v. 67, p. 650–662.

Water Systems Consulting, Inc., 2016, 2015 San Bernardino Valley regional urban water management plan: 389 p., accessed August 6, 2021, at <https://www.sbvwmwd.com/home/showdocument?id=4196>.

Western Regional Climate Center, 2017, RAWs sites: accessed February 22, 2017, at <https://wrcc.dri.edu/wraws/scaF.html>.

Yucaipa Valley Water District, 2010, 2010 urban water management plan: Yucaipa Valley Water District, Yucaipa, California, 132 p., accessed March 5, 2020, at <http://documents.yvwd.dst.ca.us/publications/uwmp/yvwd-uwmp.pdf>.

## Appendix A1. Tables

This appendix includes two tables. Information on wells used for groundwater-level and groundwater-quality data is included in [table A1.1](#), and annual groundwater pumpage by groundwater subarea is included in [table A1.2](#).

## References Cited

U.S. Geological Survey, 2018, USGS water data for the Nation: U.S. Geological Survey National Water Information System database, accessed October 16, 2018, at <https://doi.org/10.5066/F7P55KJN>.

**Table A1.1.** Selected wells with groundwater-level and water-quality data, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

[Water quality data from National Water Information System (NWIS; U.S. Geological Survey, 2018). **Abbreviations:** NAVD 88, North American Vertical Datum of 1988; —, not applicable]

| Well name          | USGS site name                                          | USGS site number | Approximate land-surface altitude, in feet (NAVD 88) | Well depth, in feet | Use of data                                       | Groundwater subarea |
|--------------------|---------------------------------------------------------|------------------|------------------------------------------------------|---------------------|---------------------------------------------------|---------------------|
| 1K1                | 002S002W01K001S                                         | 340124117021301  | 2,576.73                                             | 356                 | Water quality diagram                             | Calimesa            |
| 16A1               | 002S002W16A001S                                         | 340006117051801  | 2,198                                                | —                   | Hydrograph <sup>1</sup>                           | Live Oak            |
| 20Q1               | 001S001W20Q001S                                         | 340355117001901  | 3,389                                                | —                   | Hydrograph <sup>1</sup>                           | Triple Falls Creek  |
| 28P1               | 001S001W28P001S                                         | 340306116593901  | 3,547                                                | 223                 | Water quality diagram                             | Oak Glen            |
| Chicken Hill No. 4 | 002S002W03L001S                                         | 340129117044201  | 2,197                                                | 505                 | Hydrograph <sup>2</sup> , water quality diagram   | Calimesa            |
| SMWC 1             | 002S002W14J002S                                         | 335943117032001  | 2,418.07                                             | 400                 | Hydrograph <sup>1,3</sup>                         | Cherry Valley       |
| SMWC 3             | 002S002W14R001S                                         | 335930117032101  | 2,355.99                                             | 500                 | Hydrograph <sup>1,3</sup>                         | San Timoteo         |
| SMWC 4             | 002S002W14R003S                                         | 335924117031701  | 2,336.53                                             | 1,000               | Hydrograph <sup>3</sup> , water quality diagram   | San Timoteo         |
| SMWC 5             | 002S002W14M001S                                         | 335949117040601  | 2,336                                                | 1,119               | Hydrograph <sup>3</sup>                           | Cherry Valley       |
| SMWC 2/11          | 002S002W14C001S                                         | 340014117034301  | 2,387                                                | 443                 | Hydrograph <sup>1,3</sup>                         | Calimesa            |
| USGS 2             | 001S001W30N001S                                         | 340257117015301  | 2,814.34                                             | 500                 | Water quality diagram                             | Wilson Creek        |
| WCSB               | Outflow into Wilson Creek Spreading Ponds nr Yucaipa CA | 340305117014401  | 2,883                                                | —                   | Water quality diagram                             | Wilson Creek        |
| WHWC 10            | 002S002W05K001S                                         | 340135117063001  | 2,083                                                | 690                 | Hydrograph <sup>1,4</sup>                         | Sand Canyon         |
| WHWC 11            | 002S002W04G004S                                         | 340137117053501  | 2,090                                                | 1,710               | Water quality diagram                             | Western Heights     |
| WHWC 12            | 002S002W04J003S                                         | 340135117051502  | 2,107                                                | 1,100               | Hydrograph <sup>1,4</sup> , water quality diagram | Western Heights     |
| WHWC 3             | 002S002W04G002S                                         | 340140117053301  | 2,094.82                                             | 615                 | Hydrograph <sup>4</sup>                           | Western Heights     |
| WHWC 5A            | 002S002W04J002S                                         | 340135117051601  | 2,107                                                | 1,100               | Hydrograph <sup>4</sup>                           | Western Heights     |
| YV6E1              | 002S002W02F002S                                         | 340136117033901  | 2,426.41                                             | 884                 | Hydrograph <sup>1</sup> , water quality diagram   | Calimesa            |
| YV6E2              | 002S002W02F003S                                         | 340136117033902  | 2,426.41                                             | 747                 | Hydrograph <sup>1</sup> , water quality diagram   | Calimesa            |
| YV6E3              | 002S002W02F004S                                         | 340136117033903  | 2,426.41                                             | 547                 | Hydrograph <sup>1</sup> , water quality diagram   | Calimesa            |

**Table A1.1.** Selected wells with groundwater-level and water-quality data, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.—Continued

[Water quality data from National Water Information System (NWIS; U.S. Geological Survey, 2018). Abbreviations: NAVD 88, North American Vertical Datum of 1988; —, not applicable]

| Well name | USGS site name  | USGS site number | Approximate land-surface altitude, in feet (NAVD 88) | Well depth, in feet | Use of data                                       | Groundwater subarea |
|-----------|-----------------|------------------|------------------------------------------------------|---------------------|---------------------------------------------------|---------------------|
| YV6E4     | 002S002W02F005S | 340136117033904  | 2,426.41                                             | 399                 | Hydrograph <sup>1</sup> , water quality diagram   | Calimesa            |
| YV6E5     | 002S002W02F006S | 340136117033905  | 2,426.41                                             | 309                 | Hydrograph <sup>1</sup> , water quality diagram   | Calimesa            |
| YVDA1     | 002S002W04L002S | 340130117054901  | 2,069.97                                             | 1,053               | Hydrograph <sup>1</sup> , water quality diagram   | Western Heights     |
| YVDA2     | 002S002W04L003S | 340130117054902  | 2,069.97                                             | 820                 | Hydrograph <sup>1</sup> , water quality diagram   | Western Heights     |
| YVDA3     | 002S002W04L004S | 340130117054903  | 2,069.97                                             | 593                 | Hydrograph <sup>1</sup> , water quality diagram   | Western Heights     |
| YVDA4     | 002S002W04L005S | 340130117054904  | 2,069.97                                             | 446                 | Hydrograph <sup>1</sup> , water quality diagram   | Western Heights     |
| YVDA5     | 002S002W04L006S | 340130117054905  | 2,069.97                                             | 246                 | Hydrograph <sup>1</sup> , water quality diagram   | Western Heights     |
| YVEP1     | 002S002W12H001S | 340046117020801  | 2,559.47                                             | 849                 | Hydrograph <sup>1</sup> , water quality diagram   | Calimesa            |
| YVEP2     | 002S002W12H002S | 340046117020802  | 2,559.47                                             | 655                 | Hydrograph <sup>1</sup> , water quality diagram   | Calimesa            |
| YVEP3     | 002S002W12H003S | 340046117020803  | 2,559.47                                             | 528                 | Hydrograph <sup>1</sup> , water quality diagram   | Calimesa            |
| YVEP4     | 002S002W12H004S | 340046117020804  | 2,559.47                                             | 400                 | Hydrograph <sup>1</sup> , water quality diagram   | Calimesa            |
| YVWC1     | 001S002W36A002S | 340248117020901  | 2,753.09                                             | 838                 | Hydrograph <sup>1</sup> , water quality diagram   | Wilson Creek        |
| YVWC2     | 001S002W36A003S | 340248117020902  | 2,753.09                                             | 658                 | Hydrograph <sup>1</sup> , water quality diagram   | Wilson Creek        |
| YVWC3     | 001S002W36A004S | 340248117020903  | 2,753.09                                             | 515                 | Hydrograph <sup>1</sup> , water quality diagram   | Wilson Creek        |
| YVWC4     | 001S002W36A005S | 340248117020904  | 2,753.09                                             | 370                 | Hydrograph <sup>1</sup> , water quality diagram   | Wilson Creek        |
| YVWD 2    | 002S002W11B001S | 340057117032501  | 2,414                                                | 638                 | Hydrograph <sup>1,5</sup>                         | Calimesa            |
| YVWD 5    | 001S002W36N001S | 340215117025701  | 2,560                                                | 482                 | Hydrograph <sup>1,5</sup> , water quality diagram | Wilson Creek        |
| YVWD 6    | 002S002W01F001S | 340136117023701  | 2,558.27                                             | 629                 | Hydrograph <sup>1,5</sup>                         | Wilson Creek        |
| YVWD 9    | 001S002W25M001S | 340312117025001  | 2,602.81                                             | 506                 | Hydrograph <sup>5</sup>                           | Crafton             |
| YVWD 13   | 001S001W32C001S | 340253117002701  | 3,192                                                | 415                 | Hydrograph <sup>1,5</sup> , water quality diagram | Oak Glen            |
| YVWD 15   | 001S001W32C001S | 340054117004801  | 2,813                                                | 129                 | Hydrograph <sup>5</sup>                           | Oak Glen            |
| YVWD 18   | 001S002W36F001S | 340233117023501  | 2,597                                                | 596                 | Hydrograph <sup>5</sup>                           | Wilson Creek        |
| YVWD 24   | 002S002W11A001S | 340105117031601  | 2,440                                                | 590                 | Water quality diagram                             | Calimesa            |
| YVWD 27   | 002S001W08F001S | 340054117002901  | 2,854                                                | 314                 | Hydrograph <sup>1,5</sup>                         | Oak Glen            |
| YVWD 28   | 002S001W09G001S | 340041117592001  | 3,156.00                                             | 606                 | Hydrograph <sup>1,5</sup>                         | Wildwood            |

**Table A1.1.** Selected wells with groundwater-level and water-quality data, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.—Continued

[Water quality data from National Water Information System (NWIS; U.S. Geological Survey, 2018). **Abbreviations:** NAVD 88, North American Vertical Datum of 1988; —, not applicable]

| Well name | USGS site name  | USGS site number | Approximate land-surface altitude, in feet (NAVD 88) | Well depth, in feet | Use of data                                       | Groundwater subarea |
|-----------|-----------------|------------------|------------------------------------------------------|---------------------|---------------------------------------------------|---------------------|
| YVWD 36   | 001S001W20M001S | 340409117005701  | 3,201.83                                             | 443                 | Hydrograph <sup>5</sup>                           | Triple Falls Creek  |
| YVWD 37   | 001S002W25A001S | 340343117021201  | 2,780                                                | 468                 | Hydrograph <sup>1,5</sup>                         | Crafton             |
| YVWD 43   | 001S001W19P001S | 340348117013001  | 2,939                                                | 350                 | Hydrograph <sup>1,5</sup>                         | Gateway             |
| YVWD 46   | 001S002W36G001S | 340236117023101  | 2,630                                                | 1,150               | Water quality diagram                             | Wilson Creek        |
| YVWD 53   | 001S002W25R004S | 340255117021601  | 2,733.00                                             | 970                 | Water quality diagram                             | Wilson Creek        |
| YVWD 55   | 001S002W35H003S | 340223117031801  | 2,499                                                | 1,050               | Hydrograph <sup>1,5</sup> , water quality diagram | Crafton             |
| YVWD 56   | 001S002W36F004S | 340239117024801  | 2,573                                                | 850                 | Hydrograph <sup>1,5</sup> , water quality diagram | Crafton             |

<sup>1</sup>Hydrograph data from NWIS (U.S. Geological Survey, 2018).

<sup>2</sup>Hydrograph data from D. Kerns, City of Redlands, written commun., 2016.

<sup>3</sup>Hydrograph data from D. Armstrong, South Mesa Water Company, written commun., 2016.

<sup>4</sup>Hydrograph data from B. Brown, Western Heights Water Company, written commun., 2016.

<sup>5</sup>Hydrograph data from B. Wall, Yucaipa Valley Water District, written commun., 2016.

**Table A1.2.** Annual groundwater pumpage by groundwater subarea in the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.

[All values are in acre-ft. Values of 0 were for years with a reported pumpage of 0 acre-feet. Groundwater pumpage data was compiled from San Bernardino Valley Municipal Water District (A. Jones, San Bernardino Valley Municipal Water District, written commun., 2016) and supplemented by additional data from Yucaipa Valley Water District (B. Brown, Yucaipa Valley Water District, written commun., 2016), South Mesa Water Company (D. Armstrong, South Mesa Water Company, written commun., 2016), Western Heights Water Company (B. Brown, Western Heights Water Company, written commun., 2016), and Geoscience Support Services, Inc. (J. Yeh, Geoscience Support Services, Inc., written commun., 2018) Abbreviation: —, no reported pumpage]

| Year | Calimesa | Cherry Valley | Crafton | Gateway | Live Oak | Oak Glen | San Bernardino Mountains | San Timoteo | Triple Falls Creek | Sand Canyon | Western Heights | Wildwood | Wilson Creek | Yucaipa Hills | Total  |
|------|----------|---------------|---------|---------|----------|----------|--------------------------|-------------|--------------------|-------------|-----------------|----------|--------------|---------------|--------|
| 1947 | 2,351    | —             | 358     | 424     | —        | 290      | 653                      | —           | —                  | —           | —               | —        | —            | —             | 4,076  |
| 1948 | 2,177    | —             | 1,022   | 280     | —        | 290      | 638                      | —           | —                  | —           | 102             | —        | 412          | —             | 4,921  |
| 1949 | 2,496    | —             | 1,018   | 240     | 482      | 290      | 624                      | —           | —                  | —           | 2,195           | —        | 400          | —             | 7,745  |
| 1950 | 3,817    | 157           | 1,000   | 540     | 557      | 549      | 616                      | —           | 340                | —           | 2,121           | —        | 1,695        | 225           | 11,617 |
| 1951 | 4,347    | 83            | 1,012   | 466     | 627      | 649      | 609                      | —           | 305                | —           | 2,401           | —        | 1,968        | 195           | 12,662 |
| 1952 | 3,624    | 74            | 998     | 446     | 355      | 557      | 602                      | —           | 380                | —           | 2,007           | —        | 1,339        | 294           | 10,676 |
| 1953 | 3,547    | 54            | 1,192   | 500     | 841      | 590      | 595                      | —           | 300                | —           | 2,145           | —        | 1,768        | 220           | 11,752 |
| 1954 | 3,781    | 115           | 1,375   | 480     | 742      | 548      | 587                      | —           | 241                | —           | 2,149           | —        | 1,262        | 229           | 11,509 |
| 1955 | 3,620    | 112           | 1,216   | 460     | 863      | 494      | 551                      | —           | 260                | —           | 2,270           | —        | 1,754        | 155           | 11,755 |
| 1956 | 4,114    | 113           | 1,237   | 490     | 1,253    | 495      | 479                      | 123         | 240                | —           | 2,245           | —        | 1,692        | 131           | 12,712 |
| 1957 | 4,277    | 121           | 1,212   | 487     | 1,028    | 518      | 537                      | —           | 170                | —           | 2,539           | —        | 1,507        | 85            | 12,481 |
| 1958 | 3,311    | 941           | 1,373   | 462     | 878      | 404      | 448                      | 169         | 255                | —           | 2,206           | —        | 1,715        | 170           | 12,332 |
| 1959 | 2,921    | 1,124         | 1,117   | 521     | 904      | 624      | 583                      | 169         | 378                | —           | 2,549           | —        | 1,974        | 248           | 13,112 |
| 1960 | 3,175    | 1,287         | 891     | 353     | 983      | 723      | 639                      | 171         | 384                | —           | 2,539           | —        | 1,583        | 152           | 12,880 |
| 1961 | 3,720    | 1,201         | 1,091   | 342     | 984      | 793      | 611                      | —           | 311                | —           | 2,774           | —        | 1,941        | 110           | 13,878 |
| 1962 | 3,686    | 976           | 891     | 297     | 1,165    | 936      | 613                      | —           | 353                | —           | 2,596           | —        | 1,831        | 122           | 13,466 |
| 1963 | 3,985    | 696           | 349     | 343     | 1,155    | 720      | 612                      | —           | 385                | —           | 2,839           | —        | 1,477        | 131           | 12,692 |
| 1964 | 4,347    | 689           | 695     | 39      | 1,138    | 500      | 612                      | —           | 412                | 124         | 3,305           | —        | 1,689        | 116           | 13,666 |
| 1965 | 2,747    | 784           | 601     | 71      | 921      | 509      | 612                      | —           | 382                | 258         | 2,490           | —        | 1,483        | 88            | 10,946 |
| 1966 | 3,773    | 1,487         | 643     | 200     | 954      | 801      | 636                      | —           | 404                | 252         | 2,815           | 114      | 1,465        | 106           | 13,650 |
| 1967 | 3,891    | 1,462         | 490     | 513     | 544      | 865      | 636                      | —           | 464                | 215         | 2,210           | 114      | 972          | 130           | 12,506 |
| 1968 | 4,201    | 937           | 558     | 69      | 286      | 749      | 680                      | —           | 461                | 189         | 2,685           | 114      | 1,579        | 117           | 12,625 |
| 1969 | 3,859    | 293           | 397     | 131     | 2,364    | 530      | 709                      | —           | 726                | 530         | 1,821           | 114      | 1,672        | 100           | 13,246 |
| 1970 | 4,319    | 360           | 495     | 80      | 173      | 799      | 709                      | —           | 522                | 435         | 2,276           | 114      | 1,474        | 20            | 11,776 |
| 1971 | 4,313    | 603           | 267     | 51      | 183      | 983      | 506                      | 0           | 550                | 364         | 2,256           | 114      | 1,391        | 0             | 11,581 |
| 1972 | 4,828    | 454           | 433     | 39      | 185      | 751      | 680                      | 0           | 425                | 112         | 3,301           | 114      | 1,511        | 0             | 12,833 |
| 1973 | 4,084    | 486           | 316     | 60      | 193      | 870      | 680                      | —           | 530                | 179         | 2,661           | 114      | 2,155        | 0             | 12,328 |
| 1974 | 4,410    | 445           | 285     | 69      | 186      | 1,106    | 680                      | —           | 503                | 52          | 2,869           | 114      | 3,003        | 64            | 13,786 |

**Table A1.2.** Annual groundwater pumpage by groundwater subarea in the Yucaipa watershed, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.—Continued

[All values are in acre-ft. Values of 0 were for years with a reported pumpage of 0 acre-feet. Groundwater pumpage data was compiled from San Bernardino Valley Municipal Water District (A. Jones, San Bernardino Valley Municipal Water District, written commun., 2016) and supplemented by additional data from Yucaipa Valley Water District (B. Brown, Yucaipa Valley Water District, written commun., 2016), South Mesa Water Company (D. Armstrong, South Mesa Water Company, written commun., 2016), Western Heights Water Company (B. Brown, Western Heights Water Company, written commun., 2016), and Geoscience Support Services, Inc. (J. Yeh, Geoscience Support Services, Inc., written commun., 2018) Abbreviation: —, no reported pumpage]

| Year | Calimesa | Cherry Valley | Crafton | Gateway | Live Oak | Oak Glen | San Bernardino Mountains | Timoteo | San Canyon | Triple Falls Creek | Sand Canyon | Western Heights | Wildwood | Wilson Creek | Yuccaipa Hills | Total |
|------|----------|---------------|---------|---------|----------|----------|--------------------------|---------|------------|--------------------|-------------|-----------------|----------|--------------|----------------|-------|
| 1975 | 4,216    | 403           | 311     | 6       | 190      | 878      | 680                      | —       | 453        | 47                 | 2,641       | 112             | 1,748    | 175          | 11,860         |       |
| 1976 | 4,131    | 437           | 263     | 52      | 186      | 804      | 680                      | —       | 483        | 62                 | 2,804       | 126             | 1,953    | 171          | 12,152         |       |
| 1977 | 4,201    | 202           | 195     | 110     | 191      | 680      | 680                      | —       | 447        | 94                 | 2,668       | 120             | 1,769    | 158          | 11,515         |       |
| 1978 | 4,546    | 251           | 197     | 49      | 229      | 861      | 680                      | —       | 962        | 79                 | 2,815       | 151             | 1,372    | 29           | 12,221         |       |
| 1979 | 4,257    | 248           | 369     | 1       | 210      | 816      | 680                      | —       | 1,058      | 45                 | 2,847       | 114             | 1,212    | 73           | 11,930         |       |
| 1980 | 4,307    | 219           | 298     | 6       | 350      | 991      | 680                      | —       | 1,106      | 177                | 2,328       | 142             | 1,527    | 78           | 12,209         |       |
| 1981 | 4,243    | 349           | 277     | 29      | 249      | 809      | 680                      | —       | 1,091      | 235                | 2,246       | 165             | 1,380    | 225          | 11,978         |       |
| 1982 | 3,694    | 106           | 127     | 65      | 223      | 744      | 680                      | —       | 941        | 135                | 2,095       | 123             | 1,025    | 395          | 10,353         |       |
| 1983 | 4,031    | 51            | 130     | 16      | 185      | 1,042    | 680                      | —       | 1,057      | 64                 | 1,926       | 97              | 742      | 117          | 10,138         |       |
| 1984 | 5,636    | 105           | 177     | 40      | 140      | 944      | 711                      | —       | 910        | 163                | 2,555       | 127             | 1,037    | 113          | 12,658         |       |
| 1985 | 5,501    | 126           | 172     | 34      | 118      | 936      | 174                      | —       | 497        | 162                | 2,531       | 140             | 1,038    | 191          | 11,620         |       |
| 1986 | 4,446    | 81            | 96      | 40      | 121      | 960      | 175                      | —       | 467        | 95                 | 2,652       | 169             | 1,188    | 153          | 10,643         |       |
| 1987 | 5,184    | 191           | 179     | 0       | 95       | 912      | 175                      | —       | 357        | 271                | 2,418       | 178             | 1,099    | 126          | 11,185         |       |
| 1988 | 5,840    | 73            | 249     | 0       | 145      | 858      | 175                      | 326     | 334        | 227                | 2,638       | 194             | 1,201    | 99           | 12,359         |       |
| 1989 | 5,822    | 54            | 226     | 40      | 165      | 937      | 175                      | 384     | 219        | 121                | 2,647       | 198             | 1,425    | 121          | 12,534         |       |
| 1990 | 5,513    | 113           | 357     | 119     | 175      | 851      | 175                      | 489     | 251        | 29                 | 3,267       | 172             | 1,644    | 63           | 13,218         |       |
| 1991 | 5,514    | 47            | 229     | 16      | 180      | 723      | 175                      | 382     | 306        | 49                 | 2,730       | 112             | 2,354    | 30           | 12,848         |       |
| 1992 | 5,394    | 185           | 335     | 0       | 150      | 755      | 175                      | 346     | 407        | 12                 | 2,805       | 87              | 2,551    | 44           | 13,246         |       |
| 1993 | 5,263    | 442           | 208     | 1       | 160      | 911      | 175                      | 434     | 548        | 0                  | 2,944       | 57              | 1,998    | 6            | 13,147         |       |
| 1994 | 5,450    | 553           | 335     | 0       | 152      | 1,020    | 175                      | 501     | 490        | 1                  | 3,656       | 71              | 1,909    | 131          | 14,445         |       |
| 1995 | 5,829    | 543           | 211     | 0       | 160      | 1,198    | 175                      | 528     | 315        | 1                  | 3,799       | 76              | 1,599    | 41           | 14,476         |       |
| 1996 | 6,655    | 362           | 190     | 0       | 150      | 1,074    | 175                      | 595     | 368        | 2                  | 4,086       | 52              | 2,095    | 56           | 15,860         |       |
| 1997 | 6,371    | 571           | 150     | 0       | 157      | 937      | 175                      | 612     | 254        | 52                 | 3,874       | 38              | 2,434    | 42           | 15,667         |       |
| 1998 | 5,271    | 443           | 358     | 0       | 152      | 1,024    | 175                      | 478     | 198        | 27                 | 3,431       | 28              | 2,158    | 55           | 13,799         |       |
| 1999 | 6,656    | 637           | 226     | 0       | 154      | 936      | 175                      | 580     | 241        | 68                 | 2,735       | 25              | 3,422    | 28           | 15,883         |       |
| 2000 | 6,158    | 692           | 750     | 0       | 148      | 913      | 176                      | 576     | 233        | 50                 | 2,455       | 46              | 4,225    | 76           | 16,498         |       |
| 2001 | 6,187    | 440           | 193     | 0       | 145      | 709      | 175                      | 1,921   | 112        | 63                 | 2,343       | 45              | 4,355    | 237          | 16,925         |       |
| 2002 | 6,616    | 789           | 888     | 0       | 149      | 621      | 175                      | 2,139   | 163        | 60                 | 2,505       | 30              | 4,229    | 212          | 18,576         |       |

**Table A1.2.** Annual groundwater pumpage by groundwater subarea in the Yucaipa groundwater subbasin, Yucaipa Valley watershed, San Bernardino and Riverside Counties, California.—Continued

[All values are in acre-ft. Values of 0 were for years with a reported pumpage of 0 acre-feet. Groundwater pumpage data was compiled from San Bernardino Valley Municipal Water District (A. Jones, San Bernardino Valley Municipal Water District, written commun., 2016) and supplemented by additional data from Yucaipa Valley Water District (B. Brown, Yucaipa Valley Water District, written commun., 2016), South Mesa Water Company (D. Armstrong, South Mesa Water Company, written commun., 2016), Western Heights Water Company (B. Brown, Western Heights Water Company, written commun., 2016), and Geoscience Support Services, Inc. (J. Yeh, Geoscience Support Services, Inc., written commun., 2018) Abbreviation: —, no reported pumpage]

| Year | Calimesa | Cherry Valley | Crafton | Gateway | Live Oak | Oak Glen | San Bernardino Mountains | San Timoteo | Triple Falls Creek | Sand Canyon | Western Heights | Wildwood | Wilson Creek | Yucaipa Hills | Total  |
|------|----------|---------------|---------|---------|----------|----------|--------------------------|-------------|--------------------|-------------|-----------------|----------|--------------|---------------|--------|
| 2003 | 6,289    | 601           | 748     | 0       | 153      | 659      | 175                      | 2,082       | 142                | 63          | 2,307           | 29       | 3,672        | 164           | 17,085 |
| 2004 | 5,384    | 786           | 958     | 0       | 150      | 538      | 175                      | 2,339       | 87                 | 102         | 2,412           | 29       | 4,142        | 142           | 17,243 |
| 2005 | 5,066    | 679           | 1,172   | 0       | 25       | 786      | 175                      | 1,917       | 242                | 63          | 2,376           | 45       | 3,490        | 167           | 16,203 |
| 2006 | 5,131    | 721           | 1,174   | 0       | 1        | 659      | 175                      | 2,672       | 158                | 54          | 2,582           | 32       | 3,374        | 199           | 16,931 |
| 2007 | 4,708    | 708           | 957     | 0       | 0        | 638      | 176                      | 2,349       | 113                | 49          | 2,809           | 22       | 3,495        | 183           | 16,207 |
| 2008 | 4,028    | 876           | 685     | 0       | 0        | 459      | 175                      | 1,043       | 78                 | 63          | 2,376           | 0        | 2,801        | 97            | 12,682 |
| 2009 | 3,742    | 708           | 563     | 0       | 0        | 546      | 175                      | 886         | 71                 | 61          | 1,865           | 0        | 2,786        | 131           | 11,533 |
| 2010 | 3,907    | 744           | 657     | 0       | 0        | 612      | 175                      | 1,104       | 58                 | 53          | 1,875           | 0        | 2,971        | 112           | 12,268 |
| 2011 | 3,407    | 648           | 542     | 0       | 0        | 545      | 175                      | 945         | 33                 | 34          | 1,963           | 0        | 2,871        | 111           | 11,274 |
| 2012 | 3,682    | 655           | 707     | 0       | 0        | 601      | 1                        | 1,148       | 0                  | 63          | 2,124           | 0        | 2,821        | 108           | 11,909 |
| 2013 | 4,196    | 663           | 1,037   | 0       | 0        | 554      | 3                        | 1,343       | 21                 | 75          | 2,071           | 0        | 2,116        | 170           | 12,248 |
| 2014 | 4,731    | 594           | 864     | 0       | 0        | 521      | 0                        | 1,641       | 14                 | 56          | 2,124           | 0        | 3,746        | 108           | 14,400 |



For more information concerning the research in this report,  
contact the

Director, California Water Science Center  
U.S. Geological Survey  
6000 J Street, Placer Hall  
Sacramento, California 95819  
<https://ca.water.usgs.gov>

Publishing support provided by the

U.S. Geological Survey Science Publishing Network, Sacramento  
Publishing Service Center

