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Evaluation of Machine Learning Approaches 
for Predicting Streamflow Metrics Across the 
Conterminous United States

By Ken Eng and David M. Wolock

Abstract
Few regional or national scale studies have evaluated 

machine learning approaches for predicting streamflow 
metrics at ungaged locations. Most such studies are limited 
by the number of dimensions of the streamflow regime 
investigated. This study, in contrast, provides a comprehensive 
evaluation of the streamflow regime based on three widely 
available machine learning approaches (support vector 
regression, random forest, and cubist regression) and on 
multiple linear regression to predict 106 natural streamflow 
metrics at ungaged locations. This evaluation is done for 
545 streamgages across the northwest United States for 
recurrence-interval flood metrics and for 1,851 sites in the 
conterminous United States for non-flood metrics. The results 
indicate that for flood metrics, predictions by cubist regression 
and support vector regressions have substantially less error 
than the other approaches. For all the remaining streamflow 
metrics, random forest models outperform the other methods.

Introduction
State and local water resource managers often require 

streamflow (hereafter referred to as flow) metrics at locations 
on rivers and streams that have little to no flow information. 
This information is often required to set regulatory limits 
on water use, to balance the water needs of humans with the 
water needs required to maintain ecosystem resources (such 
as fisheries and recreation), and to assist with engineering 
design (such as culverts). To acquire this important informa-
tion, hydrologic models can be used to predict flows using 
statistical methods. Various statistical modeling approaches 
can be used for predicting flow metrics, including generalized 
least squares regression (Stedinger and Tasker, 1985) and 
a variety of machine-learning approaches (Jeong and Kim, 
2005; Carlisle and others, 2016; Eng and others, 2017; Eng 
and others, 2019). These empirical approaches typically use 

basin features—such as climate, soils, and topography—to 
predict flow characteristics and often are applied to large 
geographic regions.

Machine learning approaches are now widely applied in 
hydrology. Machine learning approaches have been used to 
predict flows ranging from next day flows (for example, He 
and others, 2014; Lima and others, 2016) to next month flows 
(for example, Noori and others, 2011; Sun and others, 2014), 
droughts (for example, Rhee and Im, 2017), and subannual 
floods (for example, Mosavi and others, 2018). Although 
machine learning approaches are commonly used, only a 
few studies have been completed in which machine learning 
approaches are applied to predict flow metrics at ungaged loca-
tions (for example, Zakaria and Shabri, 2012; Eng and others, 
2017; Peñas and others, 2018; Worland and others, 2018). Most 
of these studies investigated only a few dimensions of the flow 
regime—Zakaria and Shabri (2012) investigated flood metrics 
for a region in Malaysia (not shown) using support vector 
regression (SVR); Peñas and others (2018) investigated 16 flow 
metrics in a region of Spain (not shown) for generalized 
additive models, random forest (RF), and adaptive neuro fuzzy 
inference system approaches; and Worland and others (2018) 
focused on a low-flow metric in the southeast United States 
(not shown) for 8 machine learning approaches. Using only the 
RF approach, Eng and others (2017) comprehensively evalu-
ated the flow regime using more than 600 flow metrics across 
the conterminous United States.

The objective of this study is to extend the Eng and 
others (2017) evaluation of RF to include three additional 
approaches—multiple linear regression (LR) and two other 
machine learning approaches (SVR and cubist regression 
[CR]). This study focuses on 106 flow metrics that represent 
various dimensions of the flow regime including three temporal 
scales (instantaneous, annual, and seasonal/monthly) and 
metrics that are associated with ecological impairment. For 
flood metrics, 545 streamgages in the northwest United States 
(fig. 1) are used to evaluate the approaches. For the remaining 
flow metrics, 1,851 streamgages across the conterminous 
United States (fig. 2) are used to evaluate the approaches.
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Figure 1.  The northwest United States showing locations of 545 streamgages used to build models to predict flood flow metrics.
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Study Area and Basin Attributes
For flood metrics, 545 streamgages in Washington, 

Oregon, and Idaho are used (fig. 1). For the remaining 
flow metrics, 1,851 streamgages across the conterminous 
United States are used (fig. 2). These stations are a subset of 
about 9,000 streamgages in the Geospatial Attributes of Gages 
for Evaluating Streamflow II (called “GAGES II;” Falcone, 
2011) database. This database contains streamgages moni-
toring natural (referred to as “reference”) and heavily modified 
(referred to as “nonreference”) basins, the latter having been 
affected by dams and land cover changes. Associated with 
each streamgage are 176 geographic information system-
derived natural basin attributes calculated throughout the basin 
(app. 1). In summary, these attributes represent basin size 
and slope (n=2), climate (for example, number of days with 
measurable precipitation, annual and monthly precipitation, 
annual and monthly temperature, annual and monthly runoff, 
potential evapotranspiration, mean snow percentage of total 
precipitation, day of first freeze, and overland flow; n=64), 

base-flow measures (base-flow index, depth to water table, and 
subsurface contact time; n=3), soil properties (for example, 
permeability, bulk density, soil thickness, organic matter, 
surficial geology, chemical composition of rock, clay, silt, 
and sand percentages; n=87), and portion of the basin within 
each hydrologic landscape region (Wolock and others 2004, 
n=20). The annual and monthly runoff values are calculated at 
ungaged locations using the water balance model by Wolock 
and McCabe (1999), which uses precipitation and temperature 
information as inputs. Detailed descriptions of remaining 
basin attributes and source data are provided by Falcone 
(2011). Basin attributes potentially affected by direct human 
modifications, such as land use, vegetation (nonnative), and 
open water, were not considered as predictors. The 176 basin 
attributes are used as predictor variables in machine learning 
and LR approaches to predict flow metrics in this study 
(Falcone, 2011; Eng and others, 2017).
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Figure 2.  The United States showing locations of 1,851 streamgages used to build models to predict nonflood flow metrics.
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Methods
This section describes the methods used in the evaluation 

of LR and machine learning approaches for predicting flow 
metrics. The selection and calculation of flow metrics and a 
brief description of LR and machine learning approaches also 
are discussed in this section.

Flow Metrics

Selection of the 106 flow metrics includes 6 flow metrics 
that are ecologically relevant (Carlisle and others, 2017; 
Eng and others, 2019) and an additional 100 flow metrics 
chosen from the StreamStats (Ries and others, 2017) database 

(table 1). The 106 flow metrics consist of “interpretive” and 
“noninterpretive” measures of flow dimensions; interpretive 
flow metrics require subjective hydrologic judgement, such as 
fitting parametric distributions and removing outliers from data. 
Noninterpretive metrics do not require subjective judgement 
and include metrics such as the arithmetic mean or coefficient 
of variation. This list of 106 metrics represents flow metrics 
that State and local water resource managers need in order to 
predict conditions at ungaged locations. Each flow metric and a 
brief description are listed in table 1. To simplify the results and 
discussion of these flow metrics, the metrics are grouped into 
three types based on time frames—flood metrics, annual flow 
metrics, and seasonal/monthly flow metrics.

Table 1.  The 106 flow metrics assessed in this study.

[DA, drainage area; P10, 10-percent nonexceedance flow; P90, 90-percent nonexceedance flow]

Flow metric abbreviation
Number 

of metrics
Definition

  Flood metrics

QT 7 QT is the T-year (T=2, 5, 10, 25, 50, 100, and 500 years) recurrence interval flood metric 
calculated using flood frequency analysis on annual-time series of instantaneous flood peaks.

  Annual flow metrics

Q1/DA, Q7/DA, and Q30/DA 3 Q1/DA, Q7/DA, and Q30/DA are the 1-, 7-, and 30-day consecutive minimum flows normal-
ized by DA, respectively.

PX/DA 7 PX/DA is the X-percent (X=1*, 10, 25, 50, 75, 90, and 99*) nonexceedance flow normalized by 
DA. In other words, the X percent of daily flows that do not exceed the PX value.

Mean/DA 1 Mean/DA is the mean of the annual flows calculated from the daily flows normalized by DA.
Vmin and Vmax 2 Vmin and Vmax* are the coefficient of variation values of the annual minimum (min) and 

maximum (max) flows, respectively.
Dl and Dh 2 Dl and Dh are the average annual duration of flow pulses less than P10 (l) and greater than P90 

(h), respectively.
Fl and Fh 2 Fl* and Fh are the average annual number of flow pulses less than P10 (l) and greater than P90 

(h), respectively.
Skew 1 Skew* is calculated as the third moment of the daily flows.
Rises 1 Rises* is the number of days where flow is greater than the previous day divided by the total 

number of days.
  Seasonal/monthly flow metrics

Tl and Th 8 Tl and Th are the low (l)- and high (h)-flow timing metrics for winter, spring, summer, and fall 
(specifically, seasonal distributions of low and high-flow events).

PZ/DA in Jan., Feb., Mar., 
Apr., May, June, July, Aug., 
Sept., Oct., Nov., and Dec.

60 PZ/DA are the Z-percent (Z=10, 20, 50, 80, and 90) nonexceedance flows in Jan., Feb., Mar., 
Apr., May, June, July, Aug., Sept., Oct., Nov., and Dec. normalized by DA.

Jan., Feb., Mar., Apr., May, 
June, July, Aug., Sept., Oct., 
Nov., and Dec. mean/DA

12 Jan., Feb., Mar., Apr., May, June, July, Aug., Sept., Oct., Nov., and Dec. mean/DA are the 
monthly flows normalized by DA.

*The flow metric was determined to be associated with ecological impairment by Carlisle and others (2017).
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Recurrence interval flood values (2-, 5-, 10-, 25-, 50-, 
100-, and 500-year) are considered interpretative flow metrics 
because the flood values are calculated using Bulletin 17C 
(England and others, 2019) procedures, which involves fitting 
log Pearson Type III distributions to annual time series of 
instantaneous maximum flow values. In addition, prediction 
of the flood values requires development of a regional skew 
estimator (for example, Veilleux and others, 2011). Because 
of the interpretive nature of these factors, this study only uses 
previously determined recurrence interval flood values from 
published flood studies. All recurrence interval flood values 
are taken from flood studies in Washington, Oregon, and Idaho 
(Cooper, 2005; Mastin and others, 2016; Wood and others, 
2016). For some basins, Wood and others (2016) derived flood 
values from basins that have undergone human modifications 
by only analyzing periods of record not affected by those 
human impacts. This region was chosen because a regional 
skew map for the northwest United States is available (Wood 
and others, 2016, app. B). The flood metrics are log (base 10) 
transformed before being used to form models (for example, 
Thomas and Benson, 1970).

The remaining flow metrics are noninterpretive and 
are calculated across the conterminous United States for 
1950–2018. Methods outlined in Eng and others (2017) and 
Eng and others (2019) are used to calculate all nonflood flow 
metrics (except the monthly nonexceedance metrics) in this 
study. The monthly nonexceedance metrics are calculated 
by first taking all daily flow values for the month of interest 
in all years during 1950–2018. Months with missing daily 
flow values are excluded from analysis. These values are 
then ranked in descending order, and the flow values associ-
ated with 10, 20, 50, 80, and 90 percent of all flow values 
are assigned as the monthly nonexceedance values. Every 
magnitude-related flow metric (except flood metrics), such 
as mean flows, is normalized by drainage area to improve 
the predictability (for example, increasing the Nash-Sutcliffe 
Efficiency and reducing the percent bias) of these metrics 
(Eng and others, 2017). The flood metrics are log (base 10) 
transformed and are not normalized by drainage area in order 
to minimize bias. All noninterpretive flow metrics are avail-
able in an associated data release (Eng, 2022).

Linear Regression and Machine Learning 
Approaches

The purpose of this study is to evaluate the performance 
of three primary types of machine learning that are widely 
available to the public in different programming languages as 
well as LR. The three types of machine learning approaches 
are RF, epsilon SVR, and CR. In this study, the R program-
ming language “randomForest” package (Liaw and Wiener, 
2018) is used for RF, the SVR “e1071” package (Meyer and 
others, 2019) is used for SVR, and the “Cubist” package 
(Kuhn and others, 2020a) is used for CR.

RF is an ensemble classification and regression tree 
(CART) method (Breiman, 2001). A conceptual diagram of 
RF is shown in figure 3A. RF models typically are formed 
from hundreds to thousands of individual “trees.” For each 
tree, a random subset of predictor variables and associated 
predictands is selected to form the model. “Splits” are used to 
group the observations into two separate collections, and these 
splits are determined based on a randomly selected subset of 
predictors. These groups of observations are referred to as 
a “node.” Predictions from this model are calculated using 
a subset of data not chosen for model training (also known 
as out-of-bag). Thus, a prediction is made by inputting the 
independent variables through each tree (fig. 3A). Each tree 
results in a single prediction either by averaging the observa-
tions (regression) or by selecting the highest frequency class 
(classification) in the terminal nodes. The final prediction is 
calculated as the average of all predictions from every tree 
if using a RF regression. For RF classification, each tree 
results in a predicted class and the highest frequency (“votes”) 
of the predicted class among all trees is reported as the 
final class prediction.

SVR fits a function within a “corridor” defined in 
predictor-variable space (Vapnik, 1995). A conceptual 
diagram (fig. 3B) is shown to help understand how SVR fits 
functions. The width of the corridor, 2ε, is defined by the user, 
and this width substantially affects how the function fits the 
observations; larger width corridors (fig. 3B, right panel) fit 
functions that are more robust and less affected by swings in 
the observations compared to smaller width corridors (fig. 3B, 
left panel). The following two constraints are used on the 
placement of the function: (1) minimizing the function’s 
curvature within the corridor and (2) minimizing the devia-
tions from the function to observations outside of the corridor 
(Smola and Schölkopf, 2004).

CR is a hybrid of CART and regression (Quinlan, 1992; 
Quinlan, 1993a; Quinlan 1993b; Kuhn and others, 2020a). 
A conceptual diagram of CR is shown in figure 3C. Similar 
to CART, a tree is formed by successive splitting of the 
observations based on a selected predictor variable. Each 
split terminates in a node and CR fits a function (LR is used 
in this study), using all predictors that are used in all splits 
above the node to make predictions. The final prediction is 
obtained from the regressions in the terminal nodes, which 
are adjusted based on the preceding nodes regression. The 
CR tree is then simplified to a set of if-then rules to determine 
when to apply the LRs.

The datasets containing 545 and 1,851 streamgages are 
each split into a calibration and cross-validation dataset. The 
calibration dataset is formed from 90 percent of the total 
number of streamgages, and the remaining 10 percent are 
used as a cross-validation dataset. This process of creating 
calibration and cross-validation datasets is repeated 100 times 
using random selection of sites for the calibration and cross-
validation datasets.
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T T

EXPLANATION

Tree 1 Tree n

A. Random forest (ensemble of n trees)

B. Support vector regression

C. Cubist regression

X 1 <20 X 1 >20

X 3 >8X 3 <8

X 2 <3 X 2 >3

X 4 <18 X 4 >18

T

Inputs/independent variables: X 1 (=23), X 2 (=1), X 3 (=10), and X 4 (=20)

Split

Prediction tree 1, Y 1 Prediction tree n, Yn

T

TT

2ε

i) Small 2ε ii) Large 2ε

Random forest regression: average of all predictions (Y 1 to Yn)
Random forest classification: highest frequency (’votes’) of predicted class (Y 1,...,Yn)

X 1 <12 X 1 >12

X 3>8X 3<8

Inputs/independent variables: X1 (=15) and X3 (=7)

Prediction, Y

f (X 1) f (X 1)

f (X 1,X 3) f (X 1,X 3)T

T

T

[To make a prediction, the basin
attributes of the location of interest
are required (X1, X2, X3, and X4).
The blue lines and circles represent
a hypothetical decision making
process of the model. For this
example, the observation has
X1=23, so Tree 1 compares this
value to the first split value of 20
and decides to go down the right
side of the tree to the next node.
n, number, Yn, tree prediction]

Node (collection of observations)

Split based on the predictors
(such as X 1, X 2, X 3, and X 4).
The split value is determined
from all observations and their
associated basin attributes
used to form each tree.

The three dots represent all the tree
models (tree 2 to tree n-1) that
form the random forest.

[To make a prediction, the basin
attributes of the location of interest are
required (X1 and X3). The blue lines and
circles represent a hypothetical decision
making process of the model. For this
example, the observation has X1=15,
so the cubist model compares this value
to the first split value of 12 and decides
to go down the right side of the tree to
the next node. n, number,
Yn, tree prediction]

Node (collection of observations)

Split based on the predictors (such as X1
and X3). The split value is determined
from all observations and their
associated basin attributes used to
form each tree.

EXPLANATION

EXPLANATION
Corridor of width 2ε

Fitted function

Observation

Observation no longer outside the
corridor when increasing 2ε 

Nodes

Figure 3.  Conceptual diagram of A, random forest; B, support vector regression; and C, cubist regression.
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For RF, the methods from Eng and others (2017) are 
used in this study. To summarize, initial RF models are 
formed using all 176 basin attributes as predictors for each 
flow metric to determine the most influential predictors based 
on the importance measure by Friedman (2001). From these 
initial models, the top 20 predictors are identified and a final 
model is formed using only these 20 predictors for each flow 
metric. The value of 20 is subjectively chosen to increase the 
probability that only influential basin attributes are chosen 
at each split for all the trees that form the forest, so that trees 
using noninfluential basin attributes are reduced. The tuning 
parameters for the SVR and CR are optimized using the caret 
R package (Kuhn and others, 2020b).

A back-stepwise LR, stepAIC function in the R language 
package MASS (Ripley and others, 2020), is used in this study 
to provide the baseline for comparison. This method can result 
in selection of more than one dozen predictor variables, which 
leads to overfit models. The number of predictors to include 
in a linear regression can be determined from previous studies 
(for example, Jennings and others, 1994; Lombard, 2004; 
Wilkowske and others, 2008; Dudley, 2015); for a variety of 
flow characteristics, the number of predictors in linear regres-
sions often does not exceed five. The top five basin attributes 
identified by the stepAIC function are used in this study.

Performance of all methods is based on 100 bootstrapped 
cross-validation test datasets. For all flow metrics, a composite 
performance metric (CPM) is used (Eng and others, 2017). In 
the composite approach, performance is measured based on a 
normalized sum of four weakly correlated (Pearson correla-
tion less than 0.3) performance measures—Nash-Sutcliffe 
Efficiency (Nash and Sutcliffe, 1970), percent bias (Gupta 
and others, 1999), mean of the observed values divided by 
predicted values (Carlisle and others, 2010), and the standard 
deviation of observed values divided by predicted values 
(Carlisle and others, 2010). Each performance measure is 
normalized to a value from 0 to 0.25 and summed, so that the 
total CPM score varies between 0 and 1, where a higher CPM 
score indicates better performance.

For flood metrics, the root mean square error (RMSE, 
Aitchison and Brown, 1957) also is reported in this study in 
addition to the CPM because the RMSE is of primary interest 
to end users (Jennings and others, 1994). The RMSE value is 
expressed as a percentage of the observed value as follows:

	​ RMSE ​ =  100 ​​[​​(20.074x10)​​​ ​σ​ ε​ 2​​ − 1]​​​ 0.5​​� (1)

where

	​​ σ​ ε​ 2​ ​ = ​
​∑​ i=1​ N  ​ ​​(log ​Q​ T,i​​ − log ​​   Q ​​ T,i​​)​​​ 

2
​
  _____________________  N  ​​� (2)

where
	 N	 is the total number of residuals for all 

bootstraps,
	 QT	 is the observed T-year flood metric, and

	​​ ​   Q ​​ T​​​	 is the predicted T-year flood metric.

The LR, SVR, RF, and CR methods identify specific 
drivers that are the most statistically significant predictors 
related to flow metrics. To generalize these relations, flow 
metrics and predictors are grouped into similar types. The flow 
metrics are grouped according to the following categories: 
(1) magnitude flow metrics are grouped into low (1-, 7-, and 
30-day consecutive minimum flows; and 1-, 10-, and 25-percent 
nonexceedance flows), high (75-, 80-, 90-, and 99-percent 
nonexceedance flows), and mean (average daily flow and 
50-percent nonexceedance flow) (miscellaneous metrics [such 
as rises] and groups consisting of less than three metrics are 
excluded for simplicity) in each of the flood, annual flow, and 
monthly flow metrics categories; and (2) monthly flow metrics 
and predictors are generalized by season (winter [November, 
December, and January]; spring [February, March, and April]; 
summer [May, June, and July]; and fall [August, September, and 
October]).

The predictors are generalized by identifying the top three 
predictors for the best performing method for each flow metric. 
For LR, the predictors associated with the lowest p-values are 
selected. For RF, top predictors are identified by the largest 
reductions in the mean square error for the model that results 
when these predictors are included in the models. Lastly, the 
R caret package (Kuhn and others, 2020b) is used for CR and 
SVR to determine the top predictors. The top three predictors 
are identified for each method in each bootstrap. The predictors 
that have the highest frequency for all bootstraps are chosen as 
the most statistically significant predictors. These predictors are 
generalized by type (specifically, basin feature (drainage area 
[DA] and slope), runoff, precipitation, temperature, base flow, 
and soils). Lastly, all predictors that are significant in more than 
one-half of the models for each generalized flow group (for 
example, winter low flows) are retained.

To examine the relation of significant predictors to the 
predictand, partial dependency plots are used. These plots 
indicate how the predictand varies as the predictor of interest 
is changed, while holding the other predictors constant. 
These relations can indicate nonlinear increases, decreases, 
and invariant behaviors over different ranges of the predictor 
variable. The partial dependency plot “pdp” R programming 
package is used in this study (Greenwell, 2018).

Performance Evaluation
The evaluation of machine learning and LR are described 

in this section. First, the evaluation of approaches for flood 
metrics at 545 streamgages in the northwest United States is 
described. Second, the evaluation of approaches for annual 
flow metrics at 1,851 streamgages across the conterminous 
United States is described. Lastly, the evaluation of 
approaches for seasonal and monthly flow metrics at 
1,851 streamgages is provided.
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Flood Metrics

CR and SVR result in the lowest RMSE values for all 
recurrence intervals (fig. 4, top panel) for flood metrics. In 
general, LR is associated with the poorest performance. CR 
and SVR result in about 20- to 30-percent reductions in the 
RMSE values when compared to LR. Examination of the 
observed flood metrics compared to the predicted metrics 
shows that RF is underpredicting the largest values and 
overpredicting the smallest flood values, whereas the other 
approaches do not share this problem (fig. 5). Figure 5 shows 
that the predicted values for the CR and SVR approaches are 
more precise than for the other approaches over the entire 
range of observed values. The vertical “banding” feature 
(fig. 5) illustrates the variability in the predicted metrics 
because of the bootstrapping procedure used for creating 
cross-validation datasets.

For all flood metrics, the top predictors for the CR method 
are log (base 10) transformed drainage area, winter precipita-
tion, and winter runoff values (Wolock and McCabe, 1999) 
with base-flow index being used often in rule sets (table 2).

Annual Flow Metrics

For the most part, RF results in the largest CPM values 
for all annual flow metrics (fig. 4, bottom panel). In several 
instances, RF substantially outperforms other approaches (for 
example, skew of the daily flows, duration, and frequency of 
high-flow pulses); however, in several instances, the perfor-
mance gains compared to the other approaches are more modest 
(for example, median and mean flows). In addition, high flow, 
mean flow, skew of the daily flows, and number of rises metrics, 
are more predictable than the metrics related to low flows.

Because of the substantial number and variety of flow 
metrics evaluated in this study, two metrics are arbitrarily 
selected for further examination—the annual frequency of 
high-flow pulses and the 20-percent nonexceedance flows in 
June. Examination of the predicted and observed frequency 

of high-flow pulses (fig. 6) shows that LR, RF, and SVR 
approaches are underpredicting the largest values and 
overpredicting the smallest values. The CR approach did not 
result in these underpredictions and overpredictions; however, 
the CR approach resulted in a large amount of variability 
in the predicted values unlike the other approaches. Unlike 
RF and CR approaches, LR and SVR methods also predict 
negative values at small observed values in a limited number 
of validation test sites (generally less than 10 percent).

Generally, base flow and soil characteristics (such as soils 
in hydrologic group A) are the most common predictors of 
low-flow metrics (table 2). Spring and summer runoff and soil 
characteristics (silt and sand content percentages) are the top 
predictors of annual high-flow metrics (table 2).

Seasonal and Monthly Flow Metrics

In general, the RF approach results in the largest CPM 
values for the seasonal timing metrics and for monthly flow 
metrics (fig. 7). The seasonal and monthly flow metrics are 
more predictable during the wetter months in the United States 
(typically January through May) than the drier months 
(typically from June through September). Also, the high-flow 
metrics tend to be more predictable than low-flow metrics for 
all seasons. The flow metrics associated with higher flows are 
more predictable than those for low flows for every month. 
The predicted versus observed plots of the 20-percent nonex-
ceedance flows in June (fig. 8) show that these approaches 
underpredict the larger values. Similar to the annual metrics, 
LR and SVR approaches predict negative flow values for 
small magnitude observed values.

Runoff metrics are common significant predictors for 
most seasonal and monthly flow metrics (table 2). Base-flow 
measures also are significant predictors primarily for low 
and mean flow metrics. Precipitation, temperature, and soil 
metrics are less common predictors among these flow metrics 
compared to runoff or base flow.
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Multiple linear regression
Random forest

Cubist regression
Support vector regression

Multiple linear regression
Random forest

Cubist regression
Support vector regression

Q 2 Q 5 Q 10 Q 25 Q 50 Q 100 Q 500
Flood metric (log base 10)

68 (0.80) 77 (0.77) 78 (0.76) 81 (0.75) 83 (0.74) 86 (0.73) 92 (0.71)
71 (0.79) 67 (0.80) 67 (0.80) 69 (0.79) 70 (0.78) 72 (0.78) 78 (0.76)

49 (0.86) 48 (0.86) 49 (0.86) 54 (0.84) 58 (0.83) 67 (0.80)
48 (0.86) 46 (0.87) 46 (0.87) 51 (0.85) 53 (0.84) 56 (0.83) 66 (0.80)

51 (0.85)

40 100
Root mean square error (expressed as a percentage of the observed value)

0.63 0.63 0.65 0.62 0.64 0.68 0.62 0.68 0.58 0.71 0.78 0.75 0.76 0.77 0.74 0.71 0.83 0.85 0.79
0.72 0.69 0.55 0.51 0.57 0.68 0.71

0.70 0.67 0.60 0.60 0.69 0.69 0.60
0.70 0.67 0.68 0.58 0.66 0.68 0.75

0.52 0.53 0.57 0.47 0.55 0.62 0.51 0.53 0.51 0.68 0.72 0.70

0.56 0.57 0.59 0.55 0.58 0.63 0.49 0.41 0.51 0.69 0.71 0.71
0.53 0.53 0.56 0.49 0.56 0.63 0.47 0.53 0.52 0.69 0.72 0.70

Q 1/DA Q 7/DA Q 30/DA P 01/DA* P 10/DA P 25/DA Vmin Dl Fl * P 50/DA Mean /DA P 75/DA P 90/DA P 99/DA* Vmax* Dh Fh Skew* Rises*
Low flows Mean flows High flows Miscellaneous

0.3 0.9
Composite performance metric

[Bold text indicates top performing method; * indicates the flow metric was determined to be associated with ecological impairment by Carlisle and others (2017);
Qn, n-day consecutive minimum flow; DA, drainage area; Pn, n-percent nonexceedance flow; Vmin, coefficient of variation of the annual minimum flow; DI, average annual duration
of flow pulses <P 10; FI, average annual number of flow pulses <P 10; Vmax, coefficient of variation of the annual maximum flow; Dh, average annual duration of flow pulses >P 90;
Fh, average number of flow pulses >P 90; Skew, the third moment of daily flows; Rises, number of days where flow is greater than the previous day divided by the total number of days]

EXPLANATION

EXPLANATION

[Bold text indicates top performing method; Qn, n-year recurrence interval flood metric]

Figure 4.  Root mean square error and composite performance metric values (values in parentheses) for flood (top panel) and annual flow metrics (bottom panel).
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Figure 5.  Observed versus predicted log 50-year recurrence interval flood. A, multiple linear 
regression; B, random forest; C, support vector regression; and D, cubist regression.
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Table 2.  Significant generalized predictors for the best performing method (cubist regression for flood flow metrics and random forest 
for nonflood flow metrics).

[X, statistically significant predictor; DA, drainage area; W, winter (November, December, and January); --, no data; HGA, hydrologic group A (high infiltration 
rates); HGD, hydrologic group D (low infiltration rates); Sp, spring (February, March, and April); Su, summer (May, June, and July); silt, silt content percentage; 
sand, sand content percentage; Sl, basin slope; F, fall (August, September, and October)]

Type Basin feature Runoff Precipitation Temperature Base flow Soil

Annual

Flood flows X(DA) X(W) X(W) -- X --
Annual flow metrics

Low flows -- -- -- -- X X (HGA and HGD)
High flows -- X(Sp and Su) -- -- -- X (silt and sand)

Seasonal/monthly flow metrics—Winter

Low flows -- X(annual) -- -- X --
Mean flows -- X(W) -- -- -- --
High flows -- X(W) -- -- -- --

Seasonal/monthly flow metrics—Spring

Low flows -- X(annual) -- -- X --
Mean flows -- X(W) -- -- -- --
High flows -- X(W) -- -- X --

Seasonal/monthly flow metrics—Summer

Low flows -- -- -- X --
Mean flows X(Sl) -- -- -- X --
High flows -- -- -- -- -- --

Seasonal/monthly flow metrics—Fall

Low flows -- -- -- -- X X(HGA)
Mean flows -- X(F) X(Su) -- X --
High flows -- -- X(F) -- -- --
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Figure 7.  Performance metrics for the seasonal and monthly flow metrics.

EXPLANATION

P 50/DA Mean/DA P 50/DA Mean/DA P 50/DA Mean/DA
0.61 0.62 0.57 0.64 0.59 0.63 0.62 0.65 0.66 0.68 0.66 0.65 0.65 0.66 0.66 0.69 0.64 0.66
0.67 0.69 0.71 0.73 0.72 0.73 0.67 0.69 0.71 0.73 0.72 0.74 0.69 0.69 0.71 0.73 0.73 0.74
0.63 0.65 0.68 0.69 0.69 0.68 0.65 0.67 0.68 0.69 0.68 0.68 0.66 0.68 0.68 0.70 0.69 0.68
0.64 0.66 0.67 0.69 0.67 0.68 0.66 0.68 0.69 0.69 0.67 0.67 0.67 0.68 0.69 0.69 0.68 0.68

Winter

0.49 0.65
0.65 0.72
0.59 0.70

0.70
November December January

0.59

P 50/DA Mean/DA P 50/DA Mean/DA P 50/DAMean/DA
0.67 0.68 0.68 0.69 0.68 0.68 0.67 0.67 0.68 0.68 0.69 0.67 0.68 0.69 0.67 0.71 0.65 0.69
0.69 0.70 0.71 0.75 0.75 0.76 0.70 0.71 0.72 0.78 0.75 0.76 0.70 0.71 0.72 0.75 0.75 0.76
0.66 0.68 0.69 0.70 0.70 0.68 0.67 0.68 0.69 0.70 0.69 0.69 0.67 0.68 0.69 0.70 0.69 0.69
0.67 0.69 0.69 0.70 0.69 0.68 0.69 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.69 0.68 0.67 0.65

Spring

0.33 0.64
0.64 0.84
0.58 0.78
0.59 0.71

February March April

P 50/DA Mean/DA P 50/DA Mean/DA P 50/DAMean/DA
0.65 0.65 0.66 0.69 0.68 0.68 0.57 0.59 0.62 0.68 0.66 0.68 0.53 0.54 0.59 0.65 0.64 0.67
0.69 0.70 0.71 0.73 0.72 0.72 0.68 0.69 0.70 0.72 0.71 0.71 0.64 0.65 0.68 0.70 0.70 0.70
0.65 0.66 0.67 0.68 0.67 0.67 0.62 0.63 0.66 0.68 0.67 0.67 0.58 0.60 0.63 0.65 0.66 0.66
0.66 0.66 0.67 0.68 0.67 0.63 0.63 0.64 0.65 0.68 0.66 0.66 0.54 0.56 0.59 0.63 0.63 0.64

Summer

0.53 0.50

0.67
0.67 0.74
0.63
0.62 0.66

May June July

P 50/DA Mean/DA P 50/DA Mean/DA P 50/DA Mean/DA
0.50 0.52 0.56 0.61 0.60 0.60 0.50 0.52 0.57 0.62 0.60 0.60 0.52 0.56 0.63 0.66 0.62 0.66
0.62 0.63 0.65 0.68 0.68 0.69 0.62 0.63 0.65 0.68 0.68 0.69 0.63 0.64 0.68 0.71 0.70 0.71
0.54 0.55 0.58 0.60 0.60 0.62 0.55 0.56 0.58 0.63 0.63 0.62 0.56 0.58 0.62 0.68 0.67 0.67
0.50 0.51 0.55 0.58 0.58 0.59 0.50 0.52 0.57 0.61 0.61 0.62 0.54 0.57 0.64 0.67 0.65 0.64
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P 80/DA P 90/DA P 80/DA P 90/DA P 80/DA P 90/DA
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Multiple linear regression
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Cubist regression
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Multiple linear regression
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Cubist regression
Support vector regression

Multiple linear regression
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Cubist regression
Support vector regression

Multiple linear regression
Random forest

Cubist regression
Support vector regression

0.3 0.9
Composite performance metric

[Bold text indicates top performing
method; TI, low-flow timing metric;
Th, high-flow timing metric; Pn, n-percent
nonexceedance flow; DA, drainage area;
Mean, average daily flow]
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Discussion on Performance of 
Approaches

This section compares the performance of machine 
learning approaches for some flow metrics to methods 
reported in the literature. Discussion of possible causes 
and solutions for poor performance by machine learning 
approaches also is described in this section. In addition, 
significant hydrological processes identified in the analysis are 
described. Lastly, limitations of the analysis are discussed.

Machine Learning Approaches

Generally, flow metrics describing median and high-flow 
events are more predictable than metrics for low-flow events 
regardless of the modeling approach. This result is consistent 
with Eng and others (2017) for RF and, in general, with the 
four approaches (except duration of high pulses) in Peñas and 
others (2018). Metrics based on the Julian day of high- and 
low-flow events to represent timing of these events are often 
unpredictable (Eng and others, 2017; Peñas and others, 2018). 
High- and low-flow timing metrics based on the frequency 
of occurrence, however, are predictable in this study and 
consistent with Eng and others (2019). For flood metrics, CR 
and SVR provided substantial gains in prediction accuracy 
compared to the conventional LR method. For extreme low-
flow metrics, such as the 7-day, 10-year flow, Worland and 
others (2018) reported that CR outperforms the other methods 
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regression; B, random forest; C, support vector regression; and D, cubist regression.
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evaluated including RF and SVR for a southeast region in the 
United States. For all other nonextreme flow metrics (except 
the timing of low-flow events in fall), RF outperforms other 
methods. Some of the predictive gains by RF compared to the 
other methods are marginal (for example, February median 
flow normalized by DA), whereas other gains are more 
substantial (for example, March mean flow normalized by 
DA) based on the CPM metric.

An advantage of using CR is that CR simplifies the tree 
into a set of rules and associated LRs that make CR much 
more intuitive for most users compared to the other machine 
learning approaches. CR is similar to region of influence 
approaches (for example, Burn, 1990; Eng and others, 2005), 
but instead of using a Euclidean metric to determine groups of 
similar observations in predictor-variable space, CR uses rules 
developed from splits in the tree (specifically, interactions 
among the predictor variables) to determine subspaces where 
those observations in each subspace would be fit with a LR. 
A weakness of LR is identification of these predictor variable 
interactions since they are required to be specified a priori in 
the initial formation of the model. This process is complicated 
when the pool of predictors is large. The large reductions in 
RMSE from LR to CR indicate that the relation among the 
predictand and predictors is not linear throughout the range 
of predictand values. CR is able to parse linear portions of the 
nonlinear relation to improve predictions.

RF is a widely applied method in hydrology, but RF 
performs poorly for flood metrics because of underprediction 
and overprediction at the minimum and maximum ranges of 
the flow metric values. This effect is a commonly reported 
problem with RF (for example, Zhang and Lu, 2012). Causes 
of this underprediction and overprediction could be due to the 
imbalance in the range of observation values of the training 
data (specifically, few observations at the extreme values 
relative to the median) (Chen and others, 2004; Zimmerman 
and others, 2018), the random selection of predictor variables 
used to determine splits, and the averaging of observations 
within the terminal nodes of each tree in the forest.

When few extreme observations are available, RF will 
tend to select a disproportionate number of observations not 
from the extremes when training tree models, and as a result, 
RF will underpredict or overpredict extreme values. Down 
sampling (specifically, reducing the number of observations, 
which results in about an equal number of observations 
throughout all ranges of values) nonextreme observations can 
be used to reduce the underpredictions or overpredictions at 
the extreme values (Chen and others, 2004). Down sampling, 
however, is not incorporated in the randomForest package in 
R (ver. 3.5.0; R Core Team 2018). For regression applications, 
binning would be required, such as using deciles and some 
number of observations pulled from each bin to achieve a 
dataset that has about equal representation throughout all 
values of the predictand.

For RF, the random selection of predictors at splits can 
result in trees that predict poorly if the predictand is highly 
dependent on a single predictor and the pool of predictors is 

large. For example, drainage area is typically the most domi-
nant and significant predictor for flood metrics. If the frequency 
of using drainage area as a predictor is low for all trees in the 
forest, the averaged predictions will likely be poor. Weighting 
predictors or simply locking some to be chosen at the splits 
could reduce the formation of poorly predicting tree models.

Lastly, the averaging of observations in the terminal 
nodes of each tree in a forest could contribute to the 
underprediction and overprediction at extreme values of the 
observations and can be best demonstrated by the application 
to flood metrics. This averaging will push the predictions 
towards the median of observed values. Use of a regression 
function in the terminal nodes for the most extreme observed 
values could alleviate/reduce this underprediction and 
overprediction problem. CR and RF share this feature of using 
regression trees, but one primary difference between CR and 
RF is how the observations are treated in the nodes—CR uses 
LR, whereas RF uses an average value. CR does not have 
issues with underprediction and overprediction at the extreme 
ranges of the observations. The CPM accounts for percent bias 
throughout the range of observation values, so if predictions 
are systematically high or low for different portions of the 
predicted range (for example, for predictions of flood flows by 
RF), these systematic deviations can balance each other out.

Thus, the difference in performance of the machine 
learning approaches for the different flow metrics could be 
due to three factors—the imbalance in the range of observa-
tion values of the training data, the predictand being highly 
dependent on a single predictor (such as flood metrics), and 
the averaging of observations in the terminal nodes of RF.

Hydrological Processes

Climate is a primary variable that affects flooding 
through winter runoff and by intense and sustained orographic 
precipitation caused by atmospheric rivers (Ralph and others, 
2006; Neiman and others, 2011). These atmospheric rivers are 
narrow corridors of highly intense water vapor transport in the 
lower atmosphere (Zhu and Newell, 1998; Ralph and others, 
2004; Ralph and Dettinger, 2011). These corridors can occur 
during summer and winter, but the corridors that occur during 
winter are associated with stronger water vapor transport 
(Neiman and others, 2008). The seasonality of floods west 
of the Cascade Mountain Range (fig. 1) in the United States 
occur predominantly during winter (Mastin and others, 
2016), and the partial dependency plot (fig. 9A) for December 
precipitation shows a linear increasing relation with floods.

In addition to climatic factors, hydrologic processes 
are affected by soil and lithologic characteristics. The effect 
of soil and lithology is quantified in the partial dependency 
plot (fig. 9B) for soils in hydrologic group A. This partial 
dependency plot clearly shows that runoff (flow per unit area) 
increases as the percentage of soils in hydrologic group A 
increases. This effect is expected because hydrologic group A 
is representative of well-drained soils with high permeability. 
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These soil conditions promote rapid movement of water 
through the soil zone. This effect of well-drained soils also 
is supported by the partial dependency plot for the base-flow 
index (fig. 9C), which indicates high percentages of base 
flow in runoff that only will occur in areas conducive to 
subsurface flow. Base-flow variables are consistently shown 
to be significant for low-flow metrics (for example, Smakhtin, 
2001). The soils in hydrologic group A and base-flow index 
variables are weakly correlated to one another (correlation 
coefficient, ρ, about equal to 0.3).

The application of the methods in this study assumes that 
the observations are independent of one another. For flood 
metrics, this assumption may be violated, and methods need 
to be developed to reweight observations when developing 
models, such as generalized least squares (GLS) regression 
(Stedinger and Tasker, 1985). However, development of 
equivalent GLS functionality for each machine learning 
approach is outside the scope of this study.

This study analysis assumed no significant trends in the 
flow metrics (in other words, no time-varying flow metrics). 
Nevertheless, the machine learning approaches in this study 
can be easily modified to produce time-varying predictions 
rather than static predictions using frameworks such as 
cross-section time series analysis (also referred to as “panel” 
analysis) or approaches developed by Miller and others 
(2018). Month-year specific flow metrics were predicted by 
Miller and others (2018) using a mixture of static and time-
varying climate predictor variables, but a discussion of this 
approach is beyond the scope of this paper.

Lastly, the effect of redefining the regions of interest based 
on the results from this study are unknown. Inclusion or exclu-
sion of additional basins as a result of extending or shrinking 
the study areas changes the robustness of the parameters of the 
models, and either increases or decreases the homogenization 
of the predictors and predictands. These changes could possibly 
change the results from this study. Analysis of these effects, 
however, also is outside the scope of this study.
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Summary
This study provides a comprehensive evaluation of the 

streamflow regime based on three widely available machine 
learning approaches (support vector regression, random forest, 
and cubist regression) and for multiple linear regression to 
predict 106 natural streamflow metrics at ungaged locations. 
The results indicate that for flood metrics, predictions 
by cubist regression and support vector regressions have 
substantially less error than the other approaches. For all 
the remaining streamflow metrics, random forest models 
outperform the other methods. It should be noted that some of 
the predictive gains by random forest were modest, such as the 
gains for median and monthly flows.
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Appendix 1.  176 Basin Attributes and Corresponding Descriptions
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Table 1.1.  176 basin attribute numbers, acronyms, and descriptions.

Basin 
attribute 
number

Basin attribute acronym Description

1 DRAIN_SQKM Watershed drainage area, in square kilometers.
2 PPTAVG_BASIN Average annual precipitation for the watershed, in centimeters.
3 T_AVG_BASIN Average annual air temperature for the watershed, in degrees Celsius.
4 RH_BASIN Watershed average relative humidity, in percent.
5 FST32F_BASIN Watershed average of mean day of the year of first freeze.
6 LST32F_BASIN Watershed average of mean day of the year of last freeze.
7 WD_JAN_BASIN Watershed average of number of days of measurable precipitation in January, in days.
8 WD_FEB_BASIN Watershed average of number of days of measurable precipitation in February, in days.
9 WD_MAR_BASIN Watershed average of number of days of measurable precipitation in March, in days.
10 WD_APR_BASIN Watershed average of number of days of measurable precipitation in April, in days.
11 WD_MAY_BASIN Watershed average of number of days of measurable precipitation in May, in days.
12 WD_JUN_BASIN Watershed average of number of days of measurable precipitation in June, in days.
13 WD_JUL_BASIN Watershed average of number of days of measurable precipitation in July, in days.
14 WD_AUG_BASIN Watershed average of number of days of measurable precipitation in August, in days.
15 WD_SEP_BASIN Watershed average of number of days of measurable precipitation in September, in days.
16 WD_OCT_BASIN Watershed average of number of days of measurable precipitation in October, in days.
17 WD_NOV_BASIN Watershed average of number of days of measurable precipitation in November, in days.
18 WD_DEC_BASIN Watershed average of number of days of measurable precipitation in December, in days.
19 WD_BASIN Watershed average of annual number of days of measurable precipitation, in days.
20 WDMAX_BASIN Watershed average of monthly maximum number of days of measurable precipitation, in 

days.
21 WDMIN_BASIN Watershed average of monthly minimum number of days of measurable precipitation, in 

days.
22 PET Average annual potential evapotranspiration, in millimeters.
23 SNOW_PCT_PRECIP Snow percent of total precipitation, in percent.
24 JAN_PPT_CM Average January precipitation for the watershed, in centimeters.
25 FEB_PPT_CM Average February precipitation for the watershed, in centimeters.
26 MAR_PPT_CM Average March precipitation for the watershed, in centimeters.
27 APR_PPT_CM Average April precipitation for the watershed, in centimeters.
28 MAY_PPT_CM Average May precipitation for the watershed, in centimeters.
29 JUN_PPT_CM Average June precipitation for the watershed, in centimeters.
30 JUL_PPT_CM Average July precipitation for the watershed, in centimeters.
31 AUG_PPT_CM Average August precipitation for the watershed, in centimeters.
32 SEP_PPT_CM Average September precipitation for the watershed, in centimeters.
33 OCT_PPT_CM Average October precipitation for the watershed, in centimeters.
34 NOV_PPT_CM Average November precipitation for the watershed, in centimeters.
35 DEC_PPT_CM Average December precipitation for the watershed, in centimeters.
36 JAN_TMP_DEGC Average January air temperature for the watershed, in degrees Celsius.
37 FEB_TMP_DEGC Average February air temperature for the watershed, in degrees Celsius.
38 MAR_TMP_DEGC Average March air temperature for the watershed, in degrees Celsius.
39 APR_TMP_DEGC Average April air temperature for the watershed, in degrees Celsius.
40 MAY_TMP_DEGC Average May air temperature for the watershed, in degrees Celsius.
41 JUN_TMP_DEGC Average June air temperature for the watershed, in degrees Celsius.
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Table 1.1.  176 basin attribute numbers, acronyms, and descriptions.—Continued

Basin 
attribute 
number

Basin attribute acronym Description

42 JUL_TMP_DEGC Average July air temperature for the watershed, in degrees Celsius.
43 AUG_TMP_DEGC Average August air temperature for the watershed, in degrees Celsius.
44 SEP_TMP_DEGC Average September air temperature for the watershed, in degrees Celsius.
45 OCT_TMP_DEGC Average October air temperature for the watershed, in degrees Celsius.
46 NOV_TMP_DEGC Average November air temperature for the watershed, in degrees Celsius.
47 DEC_TMP_DEGC Average December air temperature for the watershed, in degrees Celsius.
48 ET Average annual evapotranspiration, in millimeters.
49 BEDROCK_PERM Bedrock permeability class, dimensionless.
50 BFI_AVE Base-flow index (BFI). The BFI is a ratio of base flow to total streamflow, expressed as a 

percentage and ranging from 0 to 100. Base flow is the sustained, slowly varying compo-
nent of streamflow, usually attributed to groundwater discharge to a stream.

51 PERDUN Dunne overland flow, also known as saturation overland flow, is generated in a basin when 
the water table "outcrops" on the land surface (due to the infiltration and redistribution 
of soil moisture within the basin), thereby producing temporary saturated areas. These 
saturated areas generate Dunne overland flow through exfiltration of shallow groundwater 
and by routing precipitation directly to the stream network.

52 PERHOR Horton overland flow, also known as infiltration-excess overland flow, is generated in a basin 
when infiltration rates are exceeded by precipitation rates.

53 TOPWET Topographic wetness index, ln(a/S); where “ln” is the natural log, “a” is the upslope area per 
unit contour length and “S” is the slope at that point.

54 CONTACT Subsurface flow contact time index. The subsurface contact time index estimates the number 
of days that infiltrated water resides in the saturated subsurface zone of the basin before 
discharging into the stream.

55 RUNAVE Estimated watershed annual runoff, in millimeters per year.
56 WB_JAN_MM Estimated watershed January runoff, in millimeters per month.
57 WB_FEB_MM Estimated watershed February runoff, in millimeters per month.
58 WB_MAR_MM Estimated watershed March runoff, in millimeters per month.
59 WB_APR_MM Estimated watershed April runoff, in millimeters per month.
60 WB_MAY_MM Estimated watershed May runoff, in millimeters per month.
61 WB_JUN_MM Estimated watershed June runoff, in millimeters per month.
62 WB_JUL_MM Estimated watershed July runoff, in millimeters per month.
63 WB_AUG_MM Estimated watershed August runoff, in millimeters per month.
64 WB_SEP_MM Estimated watershed September runoff, in millimeters per month.
65 WB_OCT_MM Estimated watershed October runoff, in millimeters per month.
66 WB_NOV_MM Estimated watershed November runoff, in millimeters per month.
67 WB_DEC_MM Estimated watershed December runoff, in millimeters per month.
68 WB_ANN_MM Estimated watershed annual runoff, in millimeters per year.
69 DEPTH_WATTAB Average value of depth to seasonally high water table, in feet.
70 HGA Percentage of soils in hydrologic group A. Hydrologic group A soils have high infiltration 

rates. Soils are deep and well drained and, typically, have high sand and gravel content.
71 HGB Percentage of soils in hydrologic group B. Hydrologic group B soils have moderate infiltra-

tion rates. Soils are moderately deep, moderately well drained, and moderately coarse in 
texture.

72 HGAD Percentage of soils in hydrologic group A/D. Hydrologic group A/D soils have group A char-
acteristics (high infiltration rates) when artificially drained and have group D characteris-
tics (very slow infiltration rates) when not drained.
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Table 1.1.  176 basin attribute numbers, acronyms, and descriptions.—Continued

Basin 
attribute 
number

Basin attribute acronym Description

73 HGC Percentage of soils in hydrologic group C. Hydrologic group C soils have slow soil infiltra-
tion rates. The soil profiles include layers impeding downward movement of water and, 
typically, have moderately fine or fine texture.

74 HGD Percentage of soils in hydrologic group D. Hydrologic group D soils have very slow infiltra-
tion rates. Soils are clayey, have a high water table, or have a shallow impervious layer.

75 HGAC Percentage of soils in hydrologic group A/C. Hydrologic group A/C soils have group A char-
acteristics (high infiltration rates) when artificially drained and have group C characteris-
tics (slow infiltration rates) when not drained.

76 HGBD Percentage of soils in hydrologic group B/D. Hydrologic group B/D soils have group B 
characteristics (moderate infiltration rates) when artificially drained and have group D 
characteristics (very slow infiltration rates) when not drained.

77 HGCD Percentage of soils in hydrologic group C/D. Hydrologic group C/D soils have group C char-
acteristics (slow infiltration rates) when artificially drained and have group D characteris-
tics (very slow infiltration rates) when not drained.

78 HGBC Percentage of soils in hydrologic group B/C. Hydrologic group B/C soils have group B 
characteristics (moderate infiltration rates) when artificially drained and have group C 
characteristics (slow infiltration rates) when not drained.

79 AWCAVE Average value for the range of available water capacity for the soil layer or horizon, in 
inches of water per inches of soil depth.

80 PERMAVE Average permeability, in inches per hour.
81 BDAVE Average value of bulk density, in grams per cubic centimeter.
82 OMAVE Average value of organic matter content, in percent by weight.
83 WTDEPAVE Average value of depth to seasonally high water table, in feet.
84 ROCKDEPAVE Average value of total soil thickness examined, in inches.
85 NO4AVE Average value of percent by weight of soil material less than 3 inches in size and passing a 

No. 4 sieve (5 millimeters).
86 NO200AVE Average value of percent by weight of soil material less than 3 inches in size and passing a 

No. 200 sieve (.074 millimeters).
87 NO10AVE Average value of percent by weight of soil material less than 3 inches in size and passing a 

No. 10 sieve (2 millimeters).
88 CLAYAVE Average value of clay content, in percent.
89 SILTAVE Average value of silt content, in percent.
90 SANDAVE Average value of sand content, in percent.
91 KFACT_UP Average K-factor value for the uppermost soil horizon in each soil component. K-factor is 

an erodibility factor which quantifies the susceptibility of soil particles to detachment and 
movement by water. The K-factor is used in the Universal Soil Loss Equation (USLE) to 
estimate soil loss by water. Higher values of K-factor indicate greater potential for erosion.

92 RFACT Rainfall and Runoff factor (“R factor” of Universal Soil Loss Equation)
93 SLOPE_PCT_30M Mean watershed slope, in percent.
94 HLR1 Areal extent of Hydrologic Landscape Region 1 in watershed, in percent.
95 HLR2 Areal extent of Hydrologic Landscape Region 2 in watershed, in percent.
96 HLR3 Areal extent of Hydrologic Landscape Region 3 in watershed, in percent.
97 HLR4 Areal extent of Hydrologic Landscape Region 4 in watershed, in percent.
98 HLR5 Areal extent of Hydrologic Landscape Region 5 in watershed, in percent.
99 HLR6 Areal extent of Hydrologic Landscape Region 6 in watershed, in percent.
100 HLR7 Areal extent of Hydrologic Landscape Region 7 in watershed, in percent.
101 HLR8 Areal extent of Hydrologic Landscape Region 8 in watershed, in percent.
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Table 1.1.  176 basin attribute numbers, acronyms, and descriptions.—Continued

Basin 
attribute 
number

Basin attribute acronym Description

102 HLR9 Areal extent of Hydrologic Landscape Region 9 in watershed, in percent.
103 HLR10 Areal extent of Hydrologic Landscape Region 10 in watershed, in percent.
104 HLR11 Areal extent of Hydrologic Landscape Region 11 in watershed, in percent.
105 HLR12 Areal extent of Hydrologic Landscape Region 12 in watershed, in percent.
106 HLR13 Areal extent of Hydrologic Landscape Region 13 in watershed, in percent.
107 HLR14 Areal extent of Hydrologic Landscape Region 14 in watershed, in percent.
108 HLR15 Areal extent of Hydrologic Landscape Region 15 in watershed, in percent.
109 HLR16 Areal extent of Hydrologic Landscape Region 16 in watershed, in percent.
110 HLR17 Areal extent of Hydrologic Landscape Region 17 in watershed, in percent.
111 HLR18 Areal extent of Hydrologic Landscape Region 18 in watershed, in percent.
112 HLR19 Areal extent of Hydrologic Landscape Region 19 in watershed, in percent.
113 HLR20 Areal extent of Hydrologic Landscape Region 20 in watershed, in percent.
114 gneiss A metamorphic rock characterized by layers or aligned streaks of mineral grains. Gneiss can 

be formed from sedimentary, volcanic, or plutonic rocks by intense metamorphism and 
deformation (Reed and Bush, 2005).

115 granitic Light-colored plutonic rocks composed chiefly of quartz and feldspar and small amounts of 
mica, hornblende, and other minerals (Reed and Bush, 2005).

116 ultramafic Dark-colored plutonic or volcanic rocks composed chiefly of feldspar and dark minerals rich 
in iron and magnesium, such as hornblende, pyroxene, and olivine, and containing little or 
no quartz (Reed and Bush, 2005).

117 Quarternary Rock from the last period of the Cenozoic Era. It began about 1.8 million years ago and 
extends to the present. (Reed and Bush, 2005).

118 sedimentary Rocks composed of material derived from weathering or disintegration of older rocks that 
was transported and deposited by water, air, or ice, or of material that accumulates by 
other natural agents, such as chemical precipitation from solution or secretion by organ-
isms (Reed and Bush, 2005).

119 volcanic Finely crystalline or glassy igneous rocks that form by volcanic action at or near the surface 
(Reed and Bush, 2005).

120 water Water (Reed and Bush, 2005).
121 Anorthosite A plutonic rock composed almost entirely of calcium-rich feldspar (Reed and Bush, 2005).
122 intermediate Medium- to dark-gray plutonic or volcanic rocks composed of roughly equal amounts of 

quartz, feldspar, mica, and hornblende. (Reed and Bush, 2005).
123 SGEO1 si - Sea islands, in percent (Hunt, 1979).
124 SGEO2 cr - Coral, in percent (Hunt, 1979).
125 SGEO3 bm - Backshore deposits, in percent (Hunt, 1979).
126 SGEO4 pW - Pre-Wisconsinan drift, in percent (Hunt, 1979).
127 SGEO5 tg - Till, or ground moraine, in percent (Hunt, 1979).
128 SGEO6 ts - Ice-laid deposits, like tg but mostly sand and silt, in percent (Hunt, 1979).
129 SGEO7 ts/K,T - Thin ice-laid deposits, like ts but thin and discontinuous. Extensive exposure of 

underlying Cretaceous- and Tertiary-age formations, in percent (Hunt, 1979).
130 SGEO8 mg - Deposits of mountain glaciers, in percent (Hunt, 1979).
131 SGEO9 w - Gravel, sand and clay deposited by glacial streams adjacent to or downstream from tem-

porary ice fronts, in percent (Hunt, 1979).
132 SGEO10 al - Floodplain and alluvium gravel terraces, in percent (Hunt, 1979).
133 SGEO11 fg - Fan gravels, in percent (Hunt, 1979).
134 SGEO12 fs - Fan sands, in percent (Hunt, 1979).
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Table 1.1.  176 basin attribute numbers, acronyms, and descriptions.—Continued

Basin 
attribute 
number

Basin attribute acronym Description

135 SGEO13 osg - Pliocene-age and older stream deposits on the Great Plains, in percent (Hunt, 1979).
136 SGEO14 l - Lake deposits, in percent (Hunt, 1979).
137 SGEO15 s - Sand sheets, mostly with dunes or sand mounds at surface, in percent (Hunt, 1979).
138 SGEO16 s/osg - Sand sheets on sandy and gravelly Ogallala Formation in southern Great Plains, in 

percent (Hunt, 1979).
139 SGEO17 wl - Wisconsinan loess, in percent (Hunt, 1979).
140 SGEO18 es - Deeply weathered loess, in percent (Hunt, 1979).
141 SGEO19 b - Basalt, in percent (Hunt, 1979).
142 SGEO20 br - Bedrock, in percent (Hunt, 1979).
143 SGEO21 rsh - Micaceous residuum without much quartz; clay mostly kaolinite, in percent (Hunt, 

1979).
144 SGEO22 rgr - Residuum with abundant quartz; much less mica than rsh, but equal to clay, in percent 

(Hunt, 1979).
145 SGEO23 rga - Clay residuum with little mica or quartz; mostly massive kaolinitic clay, in percent 

(Hunt, 1979).
146 SGEO24 rls - Red clay, massive clay that is generally kaolinitic, in percent (Hunt, 1979).
147 SGEO25 rlc - Cherty red clay; similar to rls, but with chert from the parent rock, in percent (Hunt, 

1979).
148 SGEO26 rtr - Residuum on Triassic-age formations; depths less than most other saprolite, reddish 

color, largely inherited from parent rock, in percent (Hunt, 1979).
149 SGEO27 rs - Sandy residuum, derived by intensive weathering of sandstone formations. Sand locally 

is in dunes, in percent (Hunt, 1979).
150 SGEO28 rc - Clay residuum that swells when wet; developed by weathering of poorly consolidated 

shale, containing the clay mineral montmorillonite, generally less than 10 feet, in percent 
(Hunt, 1979).

151 SGEO29 rl - Loam; texture variable, ranging from sand to clay, mostly non-swelling clay mineral, 
kaolinite; otherwise similar to rc, in percent (Hunt, 1979).

152 SGEO30 rg - Intensively weathered upper Tertiary- and Quaternary-age gravels; thickness generally 
less than 30 feet, distribution not completely known, in percent (Hunt, 1979).

153 SGEO31 rph - Phosphatic clay; poorly sorted clay and phosphate pebbles or nodules in sandy matrix. 
Thickness 10 to 50 feet, commonly overlain by loose sand. Major source of phosphate 
fertilizer, in percent (Hunt, 1979).

154 SGEO32 rsi - Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet, in 
percent (Hunt, 1979).

155 SGEO33 ls - Silt on limestone; probably includes considerable loess; extensive bare rock, in percent 
(Hunt, 1979).

156 SGEO34 ss - Sandy ground; mostly on poorly consolidated sandstone formations, in percent (Hunt, 
1979).

157 SGEO35 sh - Shaley or sandy ground; on mixed sandstone and shale formations; where shaley, con-
tains considerable swelling clay, in percent (Hunt, 1979).

158 SGEO36 gyp - Sandy gypsiferous ground; many sinks, local dunes; vegetation scanty or lacking 
where there is much gypsum or other salt, in percent (Hunt, 1979).

159 SGEO37 c - Clayey ground on weathered Permian- and/or Triassic-age red beds, in percent (Hunt, 
1979).

160 SGEO38 m - Marshes, swamps, peat deposits; only locally thicker than 12 feet, in percent (Hunt, 
1979).
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Table 1.1.  176 basin attribute numbers, acronyms, and descriptions.—Continued

Basin 
attribute 
number

Basin attribute acronym Description

161 SGEO39 gp - Sandy coastal ground with organic layer over a shallow water table, groundwater pod-
sols, in percent (Hunt, 1979).

162 SGEO40 co/ss,sh - Sandy and stony colluvium derived mostly from sandstone and shale, in percent 
(Hunt, 1979).

163 SGEO41 co/ls - Stony colluvium on limestone; considerable admixed silt, possibly of loess origin, in 
percent (Hunt, 1979).

164 SGEO42 co/m - Stony colluvium on metamorphic rocks; less silt and clay than in co/ls, in percent 
(Hunt, 1979).

165 SGEO43 co/v - Colluvium on volcanic rocks, in percent (Hunt, 1979).
166 SGEO44 co/gr - Bouldery and sandy colluvium on granitic rocks, in percent (Hunt, 1979).
167 SGEO45 co/c - Clayey and loamy colluvium; on poorly consolidated rocks on lee sides of Pacific 

Coast Ranges, in percent (Hunt, 1979).
168 cao20mar14 Rock calcium oxide concentration, in percent.
169 fe20mar141 Rock iron oxide concentration, in percent.
170 k20mar141 Rock potassium oxide concentration, in percent.
171 mgo20mar141 Rock magnesium oxide concentration, in percent.
172 p20mar141 Rock phosphorus concentration, in percent.
173 perm20mar14 Rock hydraulic conductivity, in 10-6 meters per second.
174 s20mar141 Rock sulfur concentration, in percent.
175 si20mar141 Rock silicon oxide concentration, in percent.
176 ucs20mar141 Rock uniaxial compressive strength, in megapascals.

https://pubs.usgs.gov/atlas/geologic/
https://pubs.usgs.gov/atlas/geologic/
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