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Preliminary Machine Learning Models of Manganese and 
1,4-Dioxane in Groundwater on Long Island, New York

By Leslie A. DeSimone

Abstract
Manganese and 1,4-dioxane in groundwater underlying 

Long Island, New York, were modeled with machine learning 
methods to demonstrate the use of these methods for mapping 
contaminants in groundwater in the Long Island aquifer system. 
XGBoost, a gradient boosted, ensemble tree method, was 
applied to data from 910 wells for manganese and 553 wells 
for 1,4-dioxane. Explanatory variables included soil properties, 
groundwater flow, land use, and other features that describe the 
hydrogeology and geochemistry of the aquifer system. Four 
models were developed to predict the probability of manganese 
concentrations greater than a detection level of 10 micrograms 
per liter (µg/L) and greater than three threshold concentrations 
(50, 150, and 300 µg/L) relevant to drinking-water quality. One 
model was developed to predict the probability of 1,4-dioxane 
concentrations greater than a detection level of 0.07 µg/L. 
The 1,4-dioxane model was limited geographically to Suffolk 
County because of data availability. Predictions were made for 
two layers in the upper glacial aquifer and three layers in the 
Magothy aquifer, which are the upper two of the three major 
aquifers of the Long Island aquifer system.

The objective of the study described in this report was 
to demonstrate the application of the methods rather than 
to develop precise estimates of manganese or 1,4-dioxane 
concentrations at any given location. The predictive models 
developed in the study are considered preliminary in the sense 
that they are an initial effort at developing these kinds of models 
specifically for Long Island. The models could be improved 
by the inclusion of additional data, by the use of methods to 
improve the modeling of infrequent high concentrations of 
manganese and 1,4-dioxane (above threshold concentrations), 
and by including more explanatory variables that specifically 
describe conditions and contaminant sources on Long Island. 
Nonetheless, the distribution of model predictions and the 
influence of explanatory variables in the models were consistent 
with the expected relations between contaminant concentrations 
and groundwater-flow-system characteristics and the distribu-
tion of manmade sources.

Mapped predictions indicated that manganese detections 
were more probable in the upper glacial aquifer and along the 
southern shore of Long Island, consistent with the distribution 
of anoxic conditions in groundwater in the Long Island aquifer 

system. Manganese was infrequently predicted at concentrations 
greater than thresholds of concern for drinking-water quality 
in any of the aquifer layers. Detections of 1,4-dioxane were 
predicted in the western, more highly developed parts of Suffolk 
County, in the upper glacial aquifer and the top and middle 
layers of the Magothy aquifer, and in northwestern Suffolk 
County in the bottom layer of the Magothy aquifer. Although 
preliminary in nature and based on limited data, these mapped 
predictions can be used to generally identify areas where 
manganese and 1,4-dioxane may be present at concentrations 
of concern to prioritize areas for future monitoring and to guide 
future modeling and mapping efforts.

Introduction
Groundwater is the sole source of drinking water for 

2.9 million people on Long Island, New York (fig. 1; U.S. 
Census Bureau, 2021). More than 1,200 public supply wells 
and about 45,000 domestic wells withdraw groundwater from 
the underlying Long Island aquifer system (Suffolk County 
Government, 2015; Long Island Commission for Aquifer 
Protection, 2019a). Permeable, sandy, and largely unconfined 
sediments form high-yield aquifers that are the source of this 
drinking water. However, these characteristics of the aquifers 
also make groundwater sources of drinking water on Long 
Island particularly susceptible to contamination.

Groundwater contamination on Long Island is a regional 
and complex problem (Watson and others, 2018; Long Island 
Commission for Aquifer Protection, 2019a). Contaminant 
sources associated with human activities are distributed across 
the landscape in the same areas in which supply wells are 
located. These sources include stormwater runoff, onsite sewage 
disposal systems, leaks and spills from commercial and indus-
trial activities, and fertilizer and pesticide applications (Kimmel, 
1984; Long Island Commission for Aquifer Protection, 2019a). 
Excessive nitrogen loads and the presence of volatile organic 
compounds (VOCs), pesticides, and other synthetic organic 
compounds are of concern and have been detected in drinking-
water supplies (Eckhardt and Stackelberg, 1995; Phillips and 
others, 2015; Long Island Commission for Aquifer Protection, 
2019a; Misut and others, 2020; Fisher and others, 2021). 
Excessive nitrogen also is a concern in groundwater discharge, 
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which delivers the accumulated loads from upgradient point 
and non-point sources to streams, ponds, and sensitive coastal 
waters such as Long Island Sound, Peconic Estuary, and Great 
South Bay (fig. 1). Additionally, because groundwater travel 
times from sources to discharge can be tens or hundreds of years 
long, contaminants released today and decades in the past will 
be of concern for many years to come.

Many agencies, organizations, and programs collect and 
analyze data on groundwater quality in the aquifer system 
underlying Long Island. Water suppliers monitor their drinking-
water sources for compliance with the Federal Safe Drinking 
Water Act (Public Law 93–523, 88 Stat. 1660). The Suffolk 
County Department of Health Services offers water-quality 
testing for residents who own private (domestic) wells (Suffolk 
County Government, 2021). Federal, State, Tribal, and county 
agencies [including the New York State Departments of 
Health and Environmental Conservation, the Nassau County 
Health Department, the Suffolk County Department of Health 
Services, the U.S. Geological Survey (USGS), the U.S. 
Environmental Protection Agency (EPA), and the Shinnecock 
Environmental Department] support or conduct groundwater 
quality monitoring, which sometimes includes broad suites of 
constituents (Long Island Commission for Aquifer Protection, 
2019a). Academic researchers also collect and compile 
groundwater quality data (for example, Stony Brook University, 
2021). Monitoring is conducted at individual contamination 
sites for investigative and regulatory purposes and to support 
possible remediation. All these efforts have resulted in a large 
amount of data to describe water quality at well sampling point 
locations within the Long Island aquifer system (Long Island 
Commission for Aquifer Protection, 2021).

Maps of contaminant occurrence can help water resource 
managers and the public to better understand the risks posed 
to drinking-water supplies by contaminants in groundwater. 
However, maps depicting point data have limitations for use 
in regional water-resource assessments, especially for uses in 
which data are spatially aggregated, such as contaminant load 
estimates or statistical summaries by area. Even with many 
data points available across a region, it is difficult to interpolate 
between sampling points, especially in three dimensions. 
These difficulties result because of the heterogeneity of 
sources, aquifer characteristics, groundwater-flow patterns, and 
subsurface chemical and biological processes. Extrapolation to 
unsampled areas may need to rely on relations of concentrations 
with coarsely scaled spatial proxies for contaminant sources, 
such as land use for manmade contaminants or geologic map 
formations for geogenic contaminants (chemicals from soils, 
rock, aquifer materials). For display and public education, 
regional-scale maps of point data (such as those showing 
contaminant concentrations) also can be difficult to interpret 
when data are dense and symbols overlap, although scalable 
interactive maps such as the collaborative WaterTraq application 
can address this problem (Long Island Commission for Aquifer 
Protection, 2021). Averaging across areas, such as towns 

or counties, also can be unsatisfying because this approach 
smooths out variations across large areas and maps may contain 
artificially sharp boundaries (Ryker, 2001).

Machine learning methods, when applied to point sample 
data from wells and relevant explanatory data, can produce 
models and maps that depict the three-dimensional distribution 
of contaminants in groundwater based on patterns learned 
from the data and thus are well suited for regional contaminant 
assessments. These methods have been successfully applied to 
map nitrate, arsenic, manganese, and salinity at the regional or 
national scale in the United States and elsewhere (Rodriguez-
Galiano and others, 2014; Ransom and others, 2017; Rosecrans 
and others, 2017; Erickson and others, 2018, 2021; Sajedi-
Hosseini and others, 2018; Knoll and others, 2019; Knierim 
and others, 2020; Pennino and others, 2020; Sahour and 
others, 2020). Machine learning methods work well to model 
contaminant occurrence in complex environments because these 
methods do not require that sources or underlying processes 
(for example, advective flow or chemical reactions) be known 
or explicitly specified in order to make accurate predictions. 
Rather than starting with a known or assumed set of relations 
between predictors and the simulated response variable, such 
as are incorporated within mathematical or physically based 
models, machine learning methods build models by learning the 
relations between predictors and response variables from the 
actual data (Elith and others, 2008). Additionally, the methods 
can accommodate complex, non-linear relations between the 
simulated contaminant and the explanatory variables and require 
no assumptions about the underlying statistical distributions of 
contaminant concentrations (Elith and others, 2008; Kuhn and 
Johnson, 2013). However, machine learning methods require 
large amounts of data that adequately represent the conditions 
in the target environment. In addition, the explanatory variables 
must be available throughout the areas for which predictions are 
made, when the models are used to predict and map contami-
nant concentrations across a study area.

In the study described here, the USGS developed 
preliminary models to predict manganese and 1,4-dioxane 
concentrations in groundwater in the Long Island aquifer system 
as an initial demonstration of the use of machine learning 
methods to model and map the quality of groundwater in this 
aquifer system. The large amount of monitoring data and the 
extensive past and present studies of the aquifer system (U.S. 
Geological Survey, 2021b) make Long Island an ideal location 
to apply these methods. This study was conducted as part of 
the USGS National Water-Quality Assessment (NAWQA) 
Program (more recently [2022] known as the National Water 
Quality Program) in conjunction with modeling and mapping 
groundwater quality in the Northern Atlantic Coastal Plain 
(NACP) regional aquifer system, in part using readily available 
data compiled for that regional study (DeSimone and others, 
2020; DeSimone and Ransom, 2021). The NACP aquifer 
system is one of the principal aquifers of the United States and 
extends along the eastern coast from North Carolina to Long 
Island. Manganese, dissolved oxygen, and pH were modelled 
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and mapped in three dimensions for the entire NACP, including 
the parts of the aquifer system underlying Long Island, as part 
of the NAWQA program.

Manganese and 1,4-dioxane were selected for modeling on 
Long Island as representative geogenic and manmade contami-
nants of current concern for drinking-water quality. Manganese 
is both a nuisance contaminant and a potential health concern in 
drinking-water sources. As a nuisance contaminant, manganese 
degrades water quality by causing an unpleasant taste and color, 
by staining laundry and plumbing, and by accumulating in 
distribution systems (World Health Organization, 2017). The 
EPA has established a non-regulatory secondary maximum 
contaminant level (SMCL) of 50 micrograms per liter (µg/L) 
as a guideline for manganese concentration in public water 
supplies. Manganese in drinking water also is an emerging 
health concern because of its potential neurological effects, 
especially in children (Ljung and Vahter, 2007; Björklund and 
others, 2017). The EPA lifetime health advisory for manganese 
concentration in public water supplies is 300 µg/L. Manganese 
is common in geologic materials and is present in Long Island 
aquifer system sediments as oxide coatings on grain surfaces 
(Walter, 1997). Manganese solubility is controlled by pH 
and redox conditions; therefore, the presence of manganese 
dissolved in groundwater depends, largely, on geochemical 
conditions within the aquifer system. On Long Island, manga-
nese dissolved in groundwater sometimes requires treatment 
in both public supply and domestic wells (Suffolk County 
Government, 2015; Long Island Commission for Aquifer 
Protection, 2019a, Suffolk County Water Authority, 2021). 

Manganese also has been measured at elevated concentrations 
in groundwater downgradient of composting facilities on Long 
Island (Suffolk County Department of Health Services, 2016).

1,4-Dioxane is a synthetic organic compound of emerging 
concern for drinking-water supplies on Long Island and 
nationally (Stepien and others, 2014; U.S. Environmental 
Protection Agency, 2017; Long Island Commission for Aquifer 
Protection, 2019a). In 2020, New York State established a 
maximum contaminant level (MCL) of 1 µg/L for 1,4-dioxane 
in public water supplies, and the compound has been on the 
EPA contaminant candidate list since 2009 (U.S. Environmental 
Protection Agency, 2009, 2021; New York State Department of 
Health, 2020). The compound is considered a likely carcinogen 
(Agency for Toxic Substances and Disease Registry, 2012). 
1,4-Dioxane was used as a stabilizer for solvents, such as 
1,1,1-trichloroethane (TCA), and is detected in groundwater 
associated with contamination by TCA and other chlorinated 
solvents (U.S. Environmental Protection Agency, 2017). 
1,4-Dioxane is present in many commercial, industrial, and 
consumer products including cleaning and personal care 
products, antifreeze, paint strippers, and waxes, and also is 
used in manufacturing. 1,4-Dioxane is mobile and persistent 
in groundwater because it is hydrophilic (having a tendency 
to mix with, dissolve in, or be wetted by water) and is not 
readily sorbed or biodegraded; 1,4-dioxane contamination also 
is expensive and difficult to treat in public supply systems. 
Detections of 1,4-dioxane are widespread in public supply 
wells on Long Island (Long Island Commission for Aquifer 
Protection, 2019b).
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Purpose and Scope

This report documents the development and use of 
machine learning methods to model and map manganese and 
1,4-dioxane in groundwater underlying Long Island. The 
models were developed to investigate the use of machine 
learning methods with available data to characterize the 
occurrence and distribution of contaminants in groundwater 
within the Long Island aquifer system. The models are 
considered preliminary in the sense that they are an initial 
effort at developing these kinds of models specifically for 
Long Island. The models were based on only a selected 
fraction of the available data that potentially could be used for 
these purposes, in terms of both concentration data in water 
from wells and explanatory variables relevant to Long Island 
groundwater quality. The models provide an initial depiction 
of predictions for the selected contaminants in groundwater 
underlying Long Island. Four models were developed for 
manganese, predicting the probability of detection and 
of concentrations exceeding three thresholds relevant for 
drinking-water quality. The models for manganese extend 
across the entire Long Island area. One model was developed 
for 1,4-dioxane, predicting the probability of detection. The 
1,4-dioxane model is limited geographically to Suffolk County 
(fig. 1), because 1,4-dioxane data were available only for that 
area in this study. Similarly, the models are limited to the 
upper glacial and Magothy aquifers of the Long Island aquifer 
system because limited data were available for the deeper 
Lloyd aquifer. The models also represent discrete snapshots 
in time, based on the temporal distribution of water-quality 
data. For manganese, the time period represented is a 20-year 
period centered on 2010, whereas for 1,4-dioxane, only 2018 
is represented.

This report describes data compilation, explanatory 
variable processing, model development and evaluation, 
and model applications to make predictions across the study 
area. Predictions concerning manganese and 1,4-dioxane 
concentrations were made at a 500-square-foot (ft2) resolution 
for five depth horizons within the Long Island aquifer system, 
of which three are shown in this report (all predictions are 
provided in DeSimone, 2023). Thus, the predictions depict the 
three-dimensional distribution of manganese and 1,4-dioxane 
in the aquifer system. Model limitations also are discussed, 
including suggestions for model improvement by the inclusion 
of additional data and testing.

Study Area

Long Island extends eastwards from the southernmost tip 
of New York State, roughly parallel to the Connecticut coast 
(fig. 1). Long Island is about 1,400 square miles (mi2) in area 
and 120 miles (mi) long, with a maximum width of about 23 
mi. The island is bounded by Long Island Sound to the north 
and the Atlantic Ocean on the south and east, and it is divided 
politically into four counties. Kings and Queens Counties, at 

the western end, are boroughs of New York City and contain 
nearly two-thirds of the island’s total population of 8 million 
(U.S. Census Bureau, 2021). These counties use drinking 
water provided by the New York City supply system from 
reservoirs in upstate New York. Nassau and Suffolk Counties, 
which occupy most of the land area of the island, rely on 
public or domestic wells located on the island to supply their 
combined population of 2.9 million (U.S. Census Bureau, 
2021). More than 400 million gallons per day (Mgal/d) are 
pumped from public supply wells, and an additional 15 Mgal/d 
is withdrawn by domestic (private household) wells, on an 
average annual basis (Kenny and others, 2009; Long Island 
Commission for Aquifer Protection, 2019a).

Land use and population density generally vary from 
west to east on Long Island along a gradient of decreasing 
development. High- and medium-intensity developed land 
use occupies most of Kings and Queens Counties (fig. 2; U.S. 
Geological Survey, 2021a, b). Nassau County contains mostly 
medium-to-low intensity developed land use and developed 
open space, along with some high-intensity developed, forest, 
and other undeveloped land uses/land cover. Land use in 
Suffolk County varies from high-, medium-, and low-intensity 
developed land use and developed open space in the west to 
forest, agriculture, and predominantly low-intensity developed 
land use/land cover in the east. Population density ranged 
from less than 1,000 people per hectare in parts of Suffolk and 
Nassau Counties to more than 16,000 people per hectare in 
parts of Kings and Queens Counties in 2010 (Falcone, 2016).

The aquifer system underlying Long Island is predomi-
nantly composed of glaciofluvial, glaciolacustrine, deltaic, and 
morainal sediments of Pleistocene and Cretaceous age, which 
form a seaward thickening wedge over crystalline bedrock 
and reach a total thickness of nearly 2,000 feet (ft; Walter and 
others, 2020b). The upper glacial aquifer and the Magothy 
aquifer and its associated aquifers (Monmouth greensand 
and Jameco aquifer, collectively referred to as the “Magothy 
aquifer” in this report) are the primary sources of drinking 
water supplies on Long Island (fig. 3). The low-permeability 
Gardiners Clay, which is of limited areal extent, separates the 
upper glacial and Magothy aquifer mainly along the southern 
shore of Long Island. The Lloyd aquifer, not included this 
study, underlies the Magothy aquifer and is separated from 
the Magothy aquifer by the Raritan confining unit (Walter and 
others, 2020b). Lithologically, the aquifer system sediments 
range from coarse-grained sand and gravel to silt and clay. 
Glacial moraines, composed of more poorly sorted and less 
permeable sediments than the fluvial and deltaic deposits, 
extend in an east-west trending band on the northern half of 
the island and into the two forks on the eastern end (Walter 
and Finkelstein, 2020; Walter and others, 2020b). Lignite, 
a low-grade coal, is common as interstitial particles and 
as interbedded layers and lenses in the middle parts of the 
Magothy aquifer (Walter and Finkelstein, 2020).

In the upper glacial aquifer, groundwater is recharged 
across the landscape from precipitation and groundwater 
flow is towards freshwater streams and the coasts (fig. 3). A 
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regional groundwater divide extends in the east-west direction 
along the center of the island. The Magothy and Lloyd aqui-
fers are recharged by downward vertical flow in bands along 
this groundwater divide, which represent about one-quarter of 
the island area for recharge to the Magothy aquifer and only 
about 1 percent of the island area for recharge to the Lloyd 
aquifer (Walter and others, 2020b). Groundwater in the upper 
glacial aquifer is generally young (less than 25 years residence 
time), except near the shore where flow is upward from the 

Magothy aquifer to discharge; groundwater in the Magothy 
aquifer is generally tens to hundreds of years old; and ground-
water in the Lloyd aquifer is generally thousands of years 
old, based on groundwater-flow model simulations (Buxton 
and Modica, 1992). In the vertical dimension, the freshwater 
aquifers are bounded by salty groundwater (fig. 3); pumping 
has moved the saltwater interface inland along in parts of 
Kings and Queens Counties and along the southwestern shore 
of the Nassau and Suffolk Counties (Stumm and others, 2020).
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Data Compilation

Manganese and 1,4-Dioxane Concentrations

Data on manganese and 1,4-dioxane concentrations in 
groundwater underlying Long Island consisted of well-sample 
data from the USGS National Water Information System 
(NWIS) database, the U.S. Environmental Protection Agency 
(EPA) Safe Drinking Water Information (SDWIS) database, 
and the Suffolk County Water Authority (SCWA). The NWIS 
and SDWIS data were compiled as part of a national data 
aggregation by the USGS, in support of multiple water-quality 
investigations of the NAWQA program (Erickson and others, 
2019). A total of 910 samples were used for manganese 
models (fig. 4A). Most of the manganese data (66 percent) 
were from the SCWA, and the remaining data were equally 
from NWIS and SDWIS (17 percent each). Manganese data 
extended across all of Long Island (fig. 4A). A total of 553 
well samples were used for 1,4-dioxane, all located in Suffolk 
County and all from the SCWA (fig. 4B). The samples were 
primarily from public supply wells; the manganese data also 
included about 10 percent samples from monitoring wells and 
about 1 percent samples from supply wells of other types, 
including domestic wells. Both manganese and 1,4-dioxane 
data were denser in the western part of the island than in the 
east, reflecting the distribution of public supply wells across 
the island.

All manganese and 1,4-dioxane data were from 
samples representing individual wells and were of untreated 
groundwater. Sample collection dates for manganese data 
ranged from 1999 to 2018; however, only 10 samples 
were collected prior to 2008 and 60 percent (including all 
SCWA samples) were collected in 2010. All samples for 
1,4-dioxane were collected in 2018. Samples for manganese 
were analyzed primarily by inductively coupled plasma-mass 
spectrometry (EPA method 200.8 or USGS method PLM43; 
U.S. Environmental Protection Agency, 1994a; Faires, 1992) 
and secondarily by inductively coupled plasma-atomic 
emission spectrometry (EPA method 200.7 or USGS method 
PLA11, U.S. Environmental Protection Agency, 1994b; 
Fishman, 1993). Analytical method information was not 
available for SDWIS samples for manganese. All samples for 
1,4-dioxane were analyzed by solid-phase extraction and gas 
chromatograph/mass spectrometry (EPA method 522; Munch 
and Grimmett, 2008). Quality-control data specific to the 
manganese or 1,4-dioxane analytical data were not reviewed 
as part of this study. Manganese analysis was conducted on 
filtered samples for SCWA and NWIS data and on whole-
water (unfiltered) samples for SDWIS; inclusion of unfiltered 
analysis for SDWIS data introduced an additional source of 
variability into the manganese dataset but this variability was 
considered acceptable in order to increase the sample size. 
Analysis for 1,4-dioxane samples was conducted on whole 
water (unfiltered) samples.

Prediction Points

The points at which predictions were made for 
manganese and 1,4-dioxane across the study area corre-
sponded spatially to the central locations of the Long Island 
groundwater-flow model grid of Walter and others (2020a, b). 
This model has a three-dimensional grid of 500-×500-ft cell 
size in the horizontal dimension, rotated 18 degrees coun-
terclockwise with respect to north, and 25 layers of variable 
thickness in the vertical dimension. Layering in the vertical 
dimension reflects the dimensions of the aquifer and confining 
unit layers (Walter and others, 2020b). Predictions were made 
for the land surface area of Long Island (excluding several 
small islands in Queens and Suffolk counties) plus a 1.24-mi 
buffer area at five depth horizons that correspond to 5 of the 
25 model layers: the shallow upper glacial aquifer (flow model 
grid layer 1), the deep upper glacial aquifer (layer 3), the top 
of the Magothy aquifer (layer 5), the middle of the Magothy 
aquifer (layer 14), and the bottom of the Magothy aquifer 
(layer 23). Prediction points were the vertical midpoints of the 
model grid layers. For the uppermost model layer (layer 1), 
the simulated water table rather than the layer top (which was 
set equal to the land surface) was used to determine the layer 
midpoint to use for predictions. For the upper glacial aquifer 
(layers 1 and 3), the depth horizons at which the predictions 
are made are relatively flat lying but vary in altitude; for the 
Magothy aquifer (layers 5, 14, and 23), the depth horizons 
of predictions slope downwards towards the southern coast 
(Walter and others, 2020b, fig. 20). For mapping, prediction 
points were converted to raster data layers using a raster 
representation of the flow model grid.

Explanatory Variables

Thirty-two explanatory variables were provided 
as input to the machine learning models (table 1). The 
variables described position on the landscape with respect to 
surface-water flow, position in the groundwater-flow system, 
groundwater recharge and flow, aquifer characteristics, the 
predicted geochemical conditions of pH and low dissolved 
oxygen, land-surface and water-table altitudes, land use, soil 
characteristics, population density, and the presence or absence 
of public water supply and sewers. Variables that represented 
surface characteristics, such as land use, were the same for all 
depths at single horizontal location. Variables that represented 
subsurface characteristics, such as aquifer texture variables 
or pH, varied with depth. Categorical information, such the 
presence or absence of public water, were described by binary 
variables indicting true or false. The variables, their sources, 
and the methods used to attribute them to wells or prediction 
points are described in the following sections.
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Table 1.  Explanatory variables used in developing machine learning models for Long Island, New York.

Variable name Variable description Type Source

AquiferGrp.GLA Vertical location is in the upper glacial aquifer, 
binary variable

Subsurface This study

AquiferGrp.MAG Vertical location is in the Magothy aquifer, binary 
variable

Subsurface This study

Confined.YES Aquifer is confined at location, binary variable Subsurface Walter and others (2020a, b)
CuThkover Thickness of overlying confining units, in feet Subsurface Walter and others (2020a, b)
DissOxy_lt1 Predicted probability of dissolved oxygen less than 

1 milligram per liter
Subsurface DeSimone and others (2020), DeSimone 

and Pope (2020)
GwAge_median Median simulated groundwater residence time, 

in years
Subsurface DeSimone and Pope (2020), Pope and 

others (2020)
GWFlux_thkwtd Thickness-weighted, simulated groundwater flux, 

in square feet per day
Subsurface Walter and others (2020a, b)

Land_surface Altitude of the land surface, in feet above 
North American Vertical Datum of 1988

Surface Walter and others (2020a, b)

LandUse_Ag Agricultural land use, percentage of area 
surrounding well

Surface Falcone (2015)

LandUse_Resi Residential land use, percentage of area 
surrounding well

Surface Falcone (2015)

LandUse_Undev Undeveloped land use, percentage of area 
surrounding well

Surface Falcone (2015)

LandUse_Urban Urban land use, percentage of area surrounding well Surface Falcone (2015)
Lignite_mean Probability of lignite presence in aquifer sediments Subsurface Finkelstein and Walter (2020), Walter and 

Finkelstein (2020)
Magothy_RechA.YES Location within recharge area of the Magothy 

aquifer, binary variable
Surface Walter and others (2020b)

MOHP_DSD1 Multiorder hydrologic position variable DSD1, 
in meters

Surface Belitz and others (2019); Moore and others 
(2019)

MOHP_LP2 Multiorder hydrologic position variable LP2, 
dimensionless

Surface Belitz and others (2019); Moore and others 
(2019)

pH Predicted pH Subsurface DeSimone and others (2020), DeSimone 
and Pope (2020)

PopDens Population density, mean in area surrounding well, 
people per hectare

Surface Falcone (2016)

Pyrite_mean Probability of pyrite presence in aquifer sediments Subsurface Finkelstein and Walter (2020), Walter and 
Finkelstein (2020)

Recharge Recharge from a soil-water balance model, in feet 
per day

Surface Walter and others (2020a, b)

Sewer_PrivW.PWS Public water supply is present at location, 
binary variable

Surface Walter and others (2020a, b)

Sewer_PrivW.PVW Private water supply is present at location, 
binary variable

Surface Walter and others (2020a, b)

Sewer_PrivW.SEW Sewering is present at location, binary variable Surface Walter and others (2020a, b)
SiltClay_mean Probability of clay presence in aquifer sediments Subsurface Finkelstein and Walter (2020), Walter and 

Finkelstein (2020)
Soil_ClayPct Soil percent clay, mean in area surrounding well Surface Wieczorek (2014)
Soil_Hydric Soil percent hydric soils, mean in area 

surrounding well
Surface Wieczorek (2014)

Soil_OrgMat Soil organic matter content, mean percent in area 
surrounding well

Surface Wieczorek (2014)
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Surface Variables
Explanatory variables representing soil characteristics, 

land use, and population density were attributed to well 
and prediction point locations as area-weighted averages 
within 1,640-ft circular buffer areas surrounding the point 
locations. Soil characteristics were calculated as area- and 
depth-weighted averages of Soil Survey Geographic database 
(SSURGO) variables compiled by Wieczorek (2014). 
Land-use variables were derived from a national data layer 
(NAWQA wall-to-wall anthropogenic land use trends 
[NWALT]) compiled by Falcone (2015). The 19 land uses of 
the NWALT database were combined into four explanatory 
variables as follows. Agricultural combined categories of 
crops (land-use class 43), pasture/hay (class 44), and grazing 
potential (class 45). Residential combined categories of 
recreation (class 24), high density residential (class 25), 
low-medium density residential (class 26), and developed, 
other (class 27). Undeveloped combined the semi-developed 
categories of urban interface, high (class 31), urban interface, 
low-medium (class 32), and anthropogenic (manmade), other 
(class 33) with the categories of mining/extraction (class 
41), timber and forest cutting (class 42), low use (class 50), 
and very low use, conservation (class 60). Urban combined 
categories of major transportation (class 21), commercial/
services (class 22), and industrial/military (class 23). The 
combined results from 2002 and 2012 land use data layers 
were averaged to form the final four explanatory variables. 
Population density was derived from the 2010 data layer 
compiled by Falcone (2016).

Land-surface altitude, water-table altitude, recharge, 
and the presence of public water supply or sewers were from 
the data compiled for, or simulated by, the groundwater-flow 
model of Walter and others (2020a, b) representing average 
2005–15 conditions. These variables were attributed to well 
and prediction point locations by intersecting the point loca-
tions with a geographic information system (GIS) data layer 
of the flow model grid. Variables were set equal to the values 
of the grid cells in which the points were located. The land-
surface altitude was equal to the top of the uppermost layer 
of flow model, which is the land surface derived from light 
detection and ranging (lidar) data (Westenbroek and others, 

2010; Walter and others, 2020b). Recharge is derived from a 
soil-water balance model, and the values of this variable were 
the unadjusted values prior to model calibration. The variable 
describing location within the recharge area of the Magothy 
aquifer was also based on groundwater flow simulations, but 
represents the predevelopment conditions, as shown in Walter 
and others (2020b, fig. 33).

Explanatory variables describing position on the land 
surface with respect to streams and their watersheds include 
two multiorder hydrologic position (MOHP) variables 
determined from Belitz and others (2019) and Moore and 
others (2019). These variables describe the distance between 
streams and their watershed divides (DSD variables) and the 
relative lateral position between streams and their divides 
(LP variables) for each location in a watershed, for streams 
of orders 1 (headwater streams) to 9 (large rivers). DSD1 and 
LP2 were selected for use in this study from among possible 
MOHP variables, based on visual inspection of their variation 
across Long Island. The MOHP variables were attributed to 
well and prediction point locations by intersecting the point 
locations with the MOHP raster GIS data layers (Moore and 
others, 2019).

Subsurface Variables
Subsurface explanatory variables were attributed to well 

locations based on the vertical location of the well screen. 
Where well screen information was not available, well screen 
bottom altitude was set equal to well depth, and well screen 
top altitude was estimated by assuming a well screen length 
of 60 ft, which was about the average well screen length 
for public supply wells in the dataset used in this study. For 
prediction points, subsurface variables were attributed to 
points based on the depth or altitude of the prediction point; 
for variables derived from the groundwater-flow model, values 
were directly assigned based on the flow model grid layer 
corresponding to the prediction point. The well-depth variable 
was set equal to the depth of the prediction point below 
land surface.

The aquifer in which a well or prediction point was 
located, the presence of overlying confining units, and the 
thickness of overlying confining units was determined using 

Table 1.  Explanatory variables used in developing machine learning models for Long Island, New York.—Continued

Variable name Variable description Type Source

Soil_SandPct Soil percent sand, mean in area surrounding well Surface Wieczorek (2014)
Soil_SiltPct Soil percent silt, mean in area surrounding well Surface Wieczorek (2014)
Soil_WatCap Soil available water capacity, mean in area 

surrounding well, in centimeters per centimeter
Surface Wieczorek (2014)

WaterTable Altitude of the simulated water table, in feet above 
North American Vertical Datum of 1988

Surface Walter and others (2020a, b)

Well_depth Depth of the well or prediction point (vertical 
location), in feet below land surface

Subsurface This study
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the Long Island aquifer system hydrogeologic framework as 
depicted in the dimensions of the flow model grid (Walter 
and others, 2020a, b). For wells with screen altitude data that 
would have placed them in flow model grid zones simulated 
as confining units or moraine (14 wells or 1.5 percent of the 
total number of wells), variables based on the flow model grid 
were designated as missing. Thickness-weighted, simulated 
groundwater flux was calculated by summing cell-by-cell 
inflows for the simulated 2005–15 period and dividing by cell 
thickness; for the topmost model layer (layer 1), cell thickness 
was based on the simulated water table and the bottom of 
layer 1. In cases where well screens extended across more than 
one model layer within the same aquifer, values of thickness-
weighted, simulated groundwater flux for the layers at the well 
location intersected by the screen were averaged. For predic-
tion points, which were only located within a single model 
layer by design, the value of thickness-weighted, simulated 
groundwater flux was set equal to the value for the layer, as 
previously described.

The explanatory variables representing the probability 
of clay, lignite, and pyrite in aquifer sediments were derived 
from the three-dimensional texture model of the upper glacial 
and Magothy aquifers underlying Long Island as described 
by Finkelstein and Walter (2020) and Walter and Finkelstein 
(2020). These variables were included because the presence 
of clay, lignite, and pyrite potentially affect geochemical 
conditions in the aquifer sediments where these materials are 
present. Lignite, a low-grade coal, and pyrite, an iron sulfide 
mineral, are reducing agents and, when chemically weathered, 
cause oxygen to be depleted. Clay-rich aquifer sediments also 
can be associated with reducing conditions. In the horizontal 
dimensions, the 500-ft2 resolution grid of texture data points 
corresponds to the flow model grid of Walter and others 
(2020a, b). Thus, flow-cell location was used to identify the 
texture model grid cell where each well or prediction point 
was located. Texture model values, which are spaced vertically 
at 10-ft depth intervals, were averaged within the top and 
bottom of well screen altitudes to determine these explanatory 
variables for most wells. For some short-screened (less than 
10 ft) wells, the well screen fell between texture model values; 
these wells were assigned the texture model values vertically 
closest to the well screen top or bottom altitude. Prediction 
points, which were single altitude values, similarly were 
assigned the texture model value closest in altitude to the 
prediction point.

pH and the probability of low dissolved oxygen 
(dissolved oxygen concentration less than 1 mg/L) were from 
1-square-kilometer (km2 [0.4-mi2]) resolution predictions for 
the regional NACP aquifer system from machine learning 
models (DeSimone and Pope, 2020; DeSimone and others, 
2020). pH and the probability of low dissolved oxygen 
were included because these variables describe aquifer 
geochemistry and are particularly important for manganese 
solubility and sorption. The median simulated groundwater 
residence time was derived from values calculated as input to 
the regional NACP pH and dissolved oxygen machine learning 

models (DeSimone and Pope, 2020), which were based on 
data in Pope and others (2020). Groundwater residence time 
is a potentially important variable for both manmade and 
geogenic contaminants. Younger water is more likely to have 
been affected by land-surface activities, and concentrations 
of geogenic contaminants can change along flow paths as 
groundwater quality evolves through reaction with aquifer 
sediments. In the NACP model datasets, each regional aquifer 
is represented by a single value, so that there was one value 
each for the surficial (the upper glacial) and the Magothy 
aquifers. Well and prediction point locations were intersected 
with a GIS data layer of the regional NACP prediction grid. 
Variable values of pH, the probability of low dissolved 
oxygen, and median simulated groundwater residence time 
were set equal to the values of the 1-km2 regional grid cell 
and the regional aquifer where the well or prediction point 
was located.

Machine Learning Modeling Methods
The XGBoost method was used to fit machine learning 

models to the manganese and 1,4-dioxane concentration 
data. XGBoost is a gradient boosting, ensemble tree method 
in which predictive models are built from many simple 
decision trees (Friedman, 2001; Elith and others, 2008; Chen 
and Guestrin, 2016). Decision trees are added sequentially 
in model building and each new tree is fit to the residuals of 
the previous predictions. XGBoost uses stochastic gradient 
boosting, which builds each tree on a random subset of the 
data, thereby increasing model robustness, and includes 
regularization terms to counteract data overfitting (Friedman, 
2002; Chen and Guestrin, 2016). Overfitting occurs when a 
model is so closely constructed to fit the training data that it 
does not generalize well to new data.

Models were developed to predict the probability of 
concentrations greater than threshold concentration values for 
both manganese and 1,4-dioxane. For manganese, four models 
were developed, predicting the probability of (1) detection, 
represented by a threshold of 10 µg/L, (2) concentrations 
exceeding the SMCL of 50 µg/L, (3) concentrations exceeding 
150 µg/L, which is one-half the EPA lifetime health advisory, 
and (4) concentrations exceeding the health advisory of 300 
µg/L (U.S. Environmental Protection Agency, 2018). For 
1,4-dioxane, one model was developed to predict the prob-
ability of detection, represented by a threshold of 0.07 µg/L.

XGBoost was implemented in the R computing environ-
ment (version 3.6.3; R Core Team, 2021) using the R packages 
xgboost (version 1.1.1.1; Chen and others, 2020) and caret 
(classification and regression training, version 6.0–86; Kuhn, 
2019). Modeling was performed on the USGS Tallgrass super-
computer (U.S. Geological Survey, 2021c). The XGBoost 
algorithm was run to generate tree-based models (general 
parameter booster equal to “gbtree”) and the loss function 
was specified for binary classification (learning parameter 
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objective equal to “binary:logistic”). Hyperparameters 
(XGBoost booster parameters) were determined using a grid 
search. A large grid (7,776 total combinations) including 
multiple values for each hyperparameter was tested. Seven 
hyperparameters were adjusted: nrounds, the maximum 
number of iterations; eta, which controls the learning rate 
or the contribution of each subsequent tree; max_depth, 
the maximum allowed tree depth; min_child_weight, the 
minimum number of instances (observations) allowed in a tree 
leaf; col_subsample_bytree, the proportion of total features 
used to construct each tree; subsample, the proportion of the 
total training data observations used to build each tree; and 
gamma, a regularization parameter (Chen and others, 2020). 
The range of values in the grid were as follows: nrounds, from 
100 to 700 (varying by 100); eta, from 0.005 to 0.2 (5 values); 
max_depth, from 3 to 9 (varying by 2); min_child_weight, 
from 3 to 9 (varying by 3); colsample_bytree, from 0.5 to 0.9 
(varying by 0.2); subsample, from 0.5 to 0.9 (varying by 2); 
and gamma, from 0 to 1 (varying by 1).

XGBoost hyperparameters were selected using tenfold 
cross validation, implemented in the caret package, and 
applied to training subsets of the well data. The manganese 
and 1,4-dioxane well datasets were divided into training (80 
percent of the data) and testing (20 percent) subsets for each 
of the five models using the createDataPartition function 
of the caret package. This function divides datasets in such 
a way that the relative proportions of observations within 
user-specified classes is maintained (v. 6.0–86; Kuhn, 2019). 
The cross-validation process further partitions the training 
data subset to build models for each unique combination of 
hyperparameters. In tenfold cross validation, the training 
dataset is split into 10 subsets (folds), of which 9 are used to 
build the model, and the held-out 10th fold is used to evaluate 
the model. This splitting and model building is repeated 
10 times. Model performance is quantified by averaging a 
selected performance metric across the 10 cross-validation 
holdout folds. In this study, accuracy was the performance 
metric selected for use in cross validation. The XGBoost 
hyperparameters used in the model with the highest accuracy 
were the selected hyperparameters.

Final machine learning models were built for the four 
manganese concentration thresholds and for 1,4-dioxane using 
the hyperparameters selected through cross validation and 

the complete training dataset. These final models were then 
tested by using them to make predictions for the 20 percent 
testing data subsets, which were not used in model building. 
Model performance metrics included the following: accuracy, 
the percentage of correctly predicted observations; sensitivity 
(also known as recall), the percentage of true positive 
observations predicted correctly; specificity, the percentage 
of true negative observations predicted correctly; kappa, a 
measure of agreement between observed and predicted values 
that accounts for the agreement that would result because of 
chance (Kuhn and Johnson, 2013); and a metric termed AUC, 
the area under the receiver operating characteristic (ROC) 
curve (Fawcett, 2006). All performance metrics except AUC 
were calculated using the confusionMatrix function of the R 
caret package (v. 6.0–86; Kuhn, 2019). AUC was calculated 
using the roc function of the pROC R package (v. 1.16.2).

Manganese and 1,4-Dioxane 
Concentrations in Groundwater From 
Wells

Manganese concentrations ranged from less than 10 
µg/L to 9,000 µg/L in the dataset used to develop the machine 
learning models. Manganese was detected in groundwater at 
concentrations greater than or equal to 10 µg/L in 31.1 percent 
of well samples (table 2). Only 2.9 percent of concentrations 
were greater than the health advisory of 300 µg/L, and 12.1 
percent were greater than the SMCL of 50 µg/L. Manganese 
concentrations in groundwater from the upper glacial aquifer 
were higher and exceeded the SMCL or health advisory about 
twice as frequently as concentrations in groundwater from the 
Magothy aquifer. 1,4-Dioxane was detected (concentration 
greater than or equal to 0.07 µg/L) in 42.0 percent of ground-
water samples in the dataset used for the machine learning 
model, at concentrations that ranged from 0.07 to 22.3 µg/L. 
In contrast to detection frequencies and concentrations of 
manganese, detection frequencies for 1,4-dioxane in the upper 
glacial and Magothy aquifers were similar.
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Predictive Models of Manganese and 
1,4-Dioxane

Model Selection and Performance

The final XGBoost models developed for manganese and 
1,4-dioxane are described in terms of their hyperparameters 
in table 3 and their performance metrics in table 4. The 
model objects, input data, and output data are documented 
in DeSimone (2023). For simplicity during this preliminary 
study, all five final models were selected by maximizing 
accuracy, as described previously, during hyperparameter 
tuning (model training). Accuracy in this context is the 
proportion of correct predictions, both positive (correctly 
predicting a concentration above the threshold) and negative 
(correctly predicting a concentration below the threshold), 
where positive predictions are instances in which the 
predicted probability is greater than 0.5. Use of accuracy as 
the performance metric to maximize during model training 
is reflected in the high accuracy metrics for all five models 
(table 4). The high accuracy values also may indicate that the 
models may overfit the training data.

For classification models based on datasets in which 
the negative instances greatly outnumber the positive 
instances, accuracy is an overly optimistic measure of model 
performance (Kuhn and Johnson, 2013). High accuracies 
can be achieved by simply predicting the majority class 

because correct prediction of the minority class, which is 
often of greater interest, contributes little to overall accuracy 
(Maloof, 2003; Sun and others, 2009). The kappa statistic is 
an alternative measure of the agreement between predicted 
and observed classes that takes into account the degree of 
agreement that would result because of chance (Viera and 
Garrett, 2005; Kuhn and Johnson, 2013). Kappa values 
range from 0 (no agreement) to 1 (perfect agreement). 

Table 2.  Well characteristics and manganese and 1,4-dioxane concentrations by aquifer in the data used to build the machine learning 
models, Long Island, New York.

[Data are summarized from DeSimone (2023). Percentages may not sum to 100 because of rounding. ft bls, feet below land surface; µg/L, microgram per liter; 
%, percentage; >, greater than; <, less than; ≥, greater than or equal to; ≤, less than or equal to; —, not available]

Characteristic
Upper glacial 

aquifer
Magothy
aquifer

Aquifer 
undetermined

All
wells

Manganese

Number of wells 344 552 14 910
Well depth, minimum, in ft bls 13 90 — 13
Well depth, median, in ft bls 149 503 — 376
Well depth, maximum, in ft bls 730 900 — 900
Concentration, percentage of wells >300 µg/L 4.7 1.3 21.4 2.9
Concentration, percentage of wells >50 to ≤300 µg/L 14.0 5.8 28.6 9.2
Concentration, percentage of wells ≥10 to ≤50 µg/L 19.2 19.4 0 19.0
Concentration, percentage of wells <10 µg/L 62.2 73.6 50 68.9

1,4-Dioxane

Number of wells 226 319 8 553
Well depth, minimum, in ft bls 35 199 — 35
Well depth, median, in ft bls 170 525 — 383
Well depth, maximum, in ft bls 730 838 — 838
Concentration, percentage of wells ≥0.07 µg/L 40.3 42.6 62.5 42.0
Concentration, percentage of wells <0.07 µg/L 59.7 57.4 37.5 58.0

Table 3.  XGBoost hyperparameters used in the final models for 
predicting manganese and 1,4-dioxane in groundwater underlying 
Long Island, New York.

[Data are from models documented in DeSimone (2023). XGBoost hyperpa-
rameters are defined in Chen and others (2020). Mn, manganese; >, greater 
than; ≥, greater than or equal to; µg/L, microgram per liter]

XGBoost hyperparameter

Manganese

1,4-Dioxane 
≥ 0.07 µg/LMn ≥10 

µg/L
Mn > 

50 µg/L

Mn 
> 150 
µg/L

Mn 
> 300 
µg/L

nrounds 300 200 300 400 100

max_depth 5 7 5 5 9

eta 0.1 0.1 0.1 0.1 0.02

gamma 0 1 0 0 1

colsample_bytree 0.7 0.7 0.7 0.5 0.5

min_child_weight 3 6 3 3 3

subsample 0.7 0.9 0.5 0.5 0.9
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The kappa values for the testing data subsets for models 
were within the ranges of agreement described as follows 
(Viera and Garrett, 2005): substantial agreement (from 0.61 
to 0.80) for the 1.4-dioxane model and moderate agreement 
(from 0.41 to 0.60) for the manganese models. Sensitivity is 
the proportion of correctly predicted positive instances (here, 
detections or concentrations greater than the threshold); its 
inverse, specificity, is the proportion of correctly predicted 
negative instances. In the manganese and 1,4-dioxane models, 
sensitivity was less than specificity for all models in both 
training and testing data subsets; among the manganese 
models, sensitivity was low for the three models predicting the 
probability of manganese concentrations greater than 50, 150, 
and 300 µg/L (table 4).

Sensitivity, specificity, kappa, and accuracy all are 
dependent on the probability threshold (0.5 in this study) used 
to classify model output into positive and negative instances. 
The AUC performance statistic describes the capability of 
a classification model to distinguish between positive and 
negative instances across all possible probability thresholds 
(James and others, 2013). AUC values are not biased towards 
the minority or majority class and are relatively insensitive 
to class imbalance (unequal data distribution among classes) 
except when data are highly skewed (Fawcett, 2006; Branco 
and others, 2016). AUC is the area under a curve that plots the 
true positive rate (correct classification of positive instances, 
the same as sensitivity) against the false positive rate 
(incorrectly classifying negative instances as positive) as the 
probability threshold for classification changes. AUC values 
range from 0 to 1, with a value of 1 indicating perfect capa-
bility to distinguish between positive and negative instances, 
a value of 0.5 indicting a capability no better than chance, and 
a value of 0 indicating perfect incorrect classification. AUC 
values for the testing data subsets ranged from 0.714 to 0.904 
for manganese and AUC was 0.951 for 1,4-dioxane (table 4), 
indicating predictive skill relative to no-information, chance 
predictions.

Changing the probability threshold for identifying posi-
tive instances is one approach for addressing class imbalance 
in predictive models; other approaches include altering the 

input datasets or modeling process through oversampling, 
undersampling, or weighting (Maloof, 2003; Sun and others, 
2009; Branco and others, 2016; Krawczyk, 2016). Altering 
the input datasets or modeling process to address imbalance 
was beyond the scope of this study. However, changing the 
probability threshold is a postprocessing step that can be 
easily applied to model output. This approach was applied to 
the output from manganese models at the 50, 150, and 300 
µg/L concentration thresholds. Using a probability threshold 
of 0.3 rather than 0.5 to identify positive predicted instances 
increased the training data subset sensitivity to 0.977 (from 
0.852) for the 50 µg/L manganese model, to 0.949 (from 
0.718) for 150 µg/L model, and to 0.714 (from 0.619) for 
the 300 µg/L model. For the testing data subsets, sensitivity 
increased to 0.545 (from 0.318) for the 50 µg/L model and 
to 0.556 (from 0.333) for the 150 µg/L model; testing data 
sensitivity for the 300 µg/L model (0.400) did not change.

It is important to note, however, that the small sample 
size of the testing data subsets (181 or 182 samples), 
combined with the low frequency of positive instances, meant 
that the numbers of positive instances in testing data subsets 
for the models were small (22, 9, and 5 positive instances 
for the 50, 150, and 300 µg/L models, respectively). Thus, 
a small change in the number of positive instances correctly 
or incorrectly predicted results in a relatively large change 
in sensitivity for the models (for example, a change in the 
prediction of one of the five positive instances in the 300 µg/L 
model would change the sensitivity by 0.2). The models also 
have random components, both in the model-development 
algorithm and in the training/testing data partitioning, and this 
randomness also introduces instability in model-performance 
metrics when sample sizes are small. A conclusion from this 
analysis, and from the model-performance metrics for these 
models generally, is that a larger dataset or the use of methods 
to address class imbalance, such as the methods described 
previously, would be needed to better predict manganese 
concentrations for the higher concentration thresholds.
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Explanatory Variables in the Models

The final models retained 23 to 31 of the 32 explanatory 
variables that were provided as input to the model develop-
ment process. In this section, the explanatory variables that 
were the most important are described and their influence 
on model predictions is discussed. Patterns of explanatory 
variable importance and influence that are interpretable and 
consistent with prior understanding provide confidence in 
model predictions because this consistency indicates that the 
models are capturing and simulating patterns that are reflective 
of underlying physical, chemical, or biological processes. 
However, it should be noted that explanatory variables may be 
used as surrogates for other factors or processes that are not 
included in the model, or their influence may reflect interac-
tions with other variables that are not readily discernable.

The top 10 most influential variables in each model 
are shown in figure 5, where influence is described by the 
XGBoost gain metric; gain quantifies the fractional contribu-
tion of the variable to model predictions (Chen and others, 
2020). The complete listing of variables in each final model 
and their importance rankings are provided in appendix 1. The 
direction of influence of these variables is shown by partial 
dependence plots (PDPs; fig. 6). A PDP shows the average 
change in the predicted probability as a variable changes in 
value when all other variables in the model are held at their 

observed values (Greenwell, 2017). For simplicity, PDPs are 
shown for the top 10 ranked variables for the 1,4-dioxane 
model and for only one of the manganese models, the model 
predicting the probability of manganese concentrations greater 
than or equal to 10 µg/L (manganese detection). Note that 
PDPs do not capture interactions between variables and can 
be difficult to interpret when relations are complex and not 
monotonic, especially for lower-ranked explanatory variables.

Depth or vertical location in the Long Island aquifer 
system, captured by the variable Well_depth, was among the 
top three most important variables in all but two of the models 
and was among the top 10 in all models (fig. 5). The direction 
of influence of Well_depth also was the same in all models; 
the predicted probability of manganese concentrations above 
thresholds or 1,4-dioxane detection decreased with increasing 
well depth. For 1,4-dioxane, the predicted probability of 
detection started decreasing at a deeper depth (about 400 ft; 
fig. 6M), than for manganese (about 200 ft; fig. 6B), possibly 
reflecting the greater prevalence of 1,4-dioxane deeper in 
the Magothy aquifer (Long Island Commission for Aquifer 
Protection, 2019b) compared with manganese.

Land-surface and water-table altitudes also were among 
the top ranked variables in the manganese and 1,4-dioxane 
models (fig. 5, Land_surface and WaterTable variables). For 
these variables, however, the directions of influence in the 
manganese models and in the 1,4-dioxane model were not 

Table 4.  Performance metrics for training and testing data subsets of the final models for predicting manganese and 1,4-dioxane in 
groundwater underlying Long Island, New York.

[Data are from models documented in DeSimone (2023). The data subsets contained 728 or 729 (training) and 181 or 182 (testing) samples for manganese (Mn) 
and 443 (training) and 110 (testing) samples for 1,4-dioxane. µg/L, microgram per liter; AUC, area under the receiver operating characteristic curve; >, greater 
than; > greater than or equal to]

Model performance metric
Manganese

1,4-Dioxane 
>0.07 µg/LMn >10 

µg/L
Mn >50 µg/L Mn >150 µg/L

Mn >300 
µg/L

Training data subsets

Accuracy 1.000 0.977 0.984 0.988 0.948
Sensitivity 1.000 0.852 0.718 0.619 0.946
Specificity 1.000 0.994 0.999 0.999 0.949
Kappa 1.000 0.885 0.815 0.737 0.894
AUC 1.000 0.999 0.999 0.982 0.989
Percentage in positive class, predicted 31.1 10.6 1.4 1.9 42.7
Percentage in positive class, observed 31.1 12.1 5.3 2.9 42.0

Testing data subsets

Accuracy 0.768 0.907 0.961 0.983 0.846
Sensitivity 0.696 0.318 0.333 0.400 0.783
Specificity 0.800 0.988 0.994 1.000 0.891
Kappa 0.478 0.410 0.445 0.565 0.680
AUC 0.781 0.782 0.904 0.714 0.951
Percentage in positive class, predicted 35.4 5.0 2.2 1.1 39.1
Percentage in positive class, observed 30.9 12.1 5.0 2.8 41.8
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the same. The predicted probability of 1,4-dioxane detection 
was greater at higher water-table and land-surface altitudes 
(fig. 6K–L), whereas the predicted probability of manganese 
concentrations above thresholds decreased at higher land-
surface altitudes, and when it was among the top 20 variables 
in the manganese models, at higher water-table altitudes 
(fig. 5A; the PDP for the WaterTable variable was not among 
the top 10 for the manganese model at the 10 µg/L threshold 
and is not shown). These relations point to the more likely 
presence of higher manganese concentrations in groundwater 
beneath low-lying areas and near the coast of Long Island, and 
the more likely detection of 1,4-dioxane in the central, upland 
areas of the island.

Some of the most important variables in the manganese 
models described location on the landscape with respect to 
surface-water flow and location within the groundwater-
flow system. These include thickness-weighted, simulated 
groundwater flux (GWFlux_thkwtd), which was among the 
top five variables in all four manganese models, and the two 
MOHP variables (MOHP_DSD1, MOHP_LP2) that describe 
land-surface position with respect to streams (fig. 5A–D). 
The GWFlux_thkwtd and MOHP variables were not among 
the top 10 most influential variables in the 1,4-dioxane 
model. Instead, three of the four variables representing land 
use, LandUse_Resi, LandUse_Undev, and LandUse_Urban, 
were the fourth, sixth, and seventh most influential variables, 
respectively, in the 1,4-dioxane model (fig. 5E). In contrast, a 
land use variable was among the top 10 (ranked sixth) in only 
one of the manganese models. The contrasting importance 
of flow-related variables on manganese concentrations 
as compared to the importance of land-use variables on 

1,4-dioxane detection is consistent with the primarily geogenic 
sources of manganese as opposed to the manmade sources of 
1,4-dioxane.

The redox condition variable DissOxy_lt1, the prob-
ability of low dissolved oxygen (dissolved oxygen concentra-
tion less than 1 mg/L), was ranked ninth, third, and fifth in 
the three lower threshold manganese models (10, 50, and 150 
µg/L, respectively) and eleventh in the 300-µg/L threshold 
manganese model and in the 1,4-dioxane model. Conceptually, 
low dissolved oxygen (anoxic redox condition) is positively 
associated with dissolved manganese in groundwater, because 
manganese is more soluble in anoxic water, and that is the 
direction of influence of the DissOxy_lt1 variable on the 
probability of manganese detection, at concentrations greater 
than 10 µg/L. The direction of influence of the variable in 
the 1,4-dioxane model was the opposite; the probability of 
1,4-dioxane detection was less with increasing probability 
of low dissolved oxygen. This relation may reflect the less 
likely detection of 1,4-dioxane in old, confined groundwater 
that was recharged before 1,4-dioxane use that is also anoxic, 
rather than any direct influence of redox condition, especially 
if 1,4-dioxane could be degraded under aerobic conditions 
(Adamson and others, 2015). The influence of DissOxy_lt1, 
the probability of low dissolved oxygen, in the three manga-
nese models at thresholds other than 10 µg/L, was either not 
monotonic (50 and 300 µg/L models) or was inversely related 
to the probability of manganese concentrations greater than 
the model threshold (150 µg/L). These complex relations 
may result in part because of interactions among explanatory 
variables that were not investigated as part of this study.
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Figure 5.  Top ten most influential explanatory variables in the manganese and 1,4-dioxane models for Long Island, New 
York. A, Manganese greater than or equal to 10 micrograms per liter. B, Manganese greater than 50 micrograms per liter. C, 
Manganese greater than 150 micrograms per liter. D, Manganese greater than 300 micrograms per liter. E, 1,4-Dioxane greater 
than or equal to 0.07 microgram per liter. Explanatory variable names are defined in table 1.
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Figure 6.  Partial dependence plots for the top ten most influential explanatory variables in the model of A–J, manganese greater than or equal to 10 micrograms per liter 
and K–T, 1,4-dioxane greater than or equal to 0.07 microgram per liter for Long Island, New York. Explanatory variable names are defined in table 1. NAVD 88, North American 
Vertical Datum of 1988.
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Mapped Predictions

The predicted probability of manganese detected at 
concentrations greater than or equal to 10 µg/L, manganese 
concentrations greater than the SMCL of 50 µg/L, and 
1,4-dioxane detected at concentrations greater than or equal to 
0.07 µg/L are shown in figures 7 to 11. Predicted probabilities 
are shown at two depth horizons in the upper glacial aquifer 
(figs. 7–8), and at three depth horizons in the Magothy aquifer 
(top, middle, and bottom; figs. 9–11). Predictions are not 
shown for manganese concentrations greater than 150 and 300 
µg/L thresholds because of their infrequent occurrence and 
the low sensitivity of the models at those thresholds. Mapped 
predictions are available in tagged image file format (tiff) in 
DeSimone (2023).

Predicted detections of manganese (concentrations 
greater than or equal to 10 µg/L, probability greater than 0.5) 
were distributed throughout much of the top layer of the upper 
glacial aquifer and were predicted with higher probability 
along the southern shore and in the central part of the island 
(fig. 7). In the bottom layer of the upper glacial aquifer and in 
the top and middle layers of the underlying Magothy aquifer 

(figs. 8–10), predicted manganese detections were more 
limited to the southern half of the island. This distribution 
of manganese detections is consistent with the occurrence 
of groundwater in which oxygen has been depleted over 
long flow paths along the southern shore or through contact 
with reducing material such as lignite or pyrite (Brown 
and others, 1999; Walter and Finkelstein, 2020), and the 
increased solubility of manganese under reducing conditions. 
Manganese concentrations greater than the SMCL of 50 
µg/L were predicted infrequently in any of the aquifer layers 
(figs. 7–11).

Detections of 1,4-dioxane (concentrations greater than 
or equal to 0.07 µg/L, probability greater than 0.5) were 
predicted across most of the western, more highly developed 
half of Suffolk County. The areas in which 1,4-dioxane was 
predicted to occur, in both the upper glacial aquifer layers and 
in the top and middle of the Magothy aquifer, were similar and 
extended from the northern shore to near the southern shore 
of the island in these aquifer layers (figs. 7–10). In the bottom 
layer of the Magothy aquifer (fig. 11), the area in which 
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concentrations greater than or equal to (≥) 10 micrograms per liter, B, manganese concentrations greater than (>) 50 micrograms per 
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concentrations greater than or equal to (≥) 10 micrograms per liter, B, manganese concentrations greater than (>) 50 micrograms per 
liter, and C, 1,4-dioxane concentrations ≥0.07 microgram per liter. <, less than.



22    Preliminary Machine Learning Models of Manganese and 1,4-Dioxane in Groundwater on Long Island, New York

72°74°

41°

40°30'

0 10 20 30 40 50 MILES

0 10 20 30 40 50 KILOMETERS

72°74°

41°

40°30'

C
72°74°

41°

40°30'

0 10 20 30 40 50 MILES

0 10 20 30 40 50 KILOMETERS

0 10 20 30 40 50 MILES

0 10 20 30 40 50 KILOMETERS

A

B

Long Island Sound

ATLANTIC OCEAN

Long Island Sound

ATLANTIC OCEAN

Long Island Sound

ATLANTIC OCEAN

Base map from U.S. Geological Survey National Atlas digital data, 1:2,000,000 scale
New York (Long Island) FIPS 3104 State Plane Lambert conformal conic projection
North American Datum of 1927

NY

NJ

CT

NY

NJ

CT

NY

NJ

EXPLANATION

<0.1
>0.1 to 0.3
>0.3 to 0.5

>0.5 to 0.7
>0.7 to 0.9
>0.9

Predicted probability
No data

CT

CT

CT

EXPLANATION

<0.1
>0.1 to 0.3
>0.3 to 0.5

>0.5 to 0.7
>0.7 to 0.9
>0.9

No data

EXPLANATION

<0.1
>0.1 to 0.3
>0.3 to 0.5

>0.5 to 0.7
>0.7 to 0.9
>0.9

Predicted probability

Predicted probability

No data

Figure 9.  Predicted probability for the top layer of the Magothy aquifer underlying Long Island, New York, of A, manganese 
concentrations greater than or equal to (≥) 10 micrograms per liter, B, manganese concentrations greater than (>) 50 micrograms per 
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Figure 10.  Predicted probability for a middle layer of the Magothy aquifer underlying Long Island, New York, of A, manganese 
concentrations greater than or equal to (≥) 10 micrograms per liter, B, manganese concentrations greater than (>) 50 
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Figure 11.  Predicted probability for the bottom layer of the Magothy aquifer underlying Long Island, New York, of A, manganese 
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1,4-dioxane was predicted likely to be detected was smaller 
and was limited to the northwestern part of Suffolk County 
near the northern shore.

Model Limitations

The machine learning models developed in this study are 
considered preliminary and their interpretations are otherwise 
limited for various reasons, as discussed in this section. The 
models developed for this study were based on a selected 
fraction of the data potentially available for use in modeling 
manganese and 1,4-dioxane concentrations in groundwater 
underlying Long Island. The relatively small sample size and 
sparse distribution of samples in some parts of the aquifer 
system place limits on the accuracy that the models can 
achieve. Class imbalance (unequal data distribution among 
classes) in the model training data, especially when combined 
with the small sample size, also limited the capability of the 
models to correctly predict high concentrations of manganese 
and 1,4-dioxane (model sensitivity). These limitations could 
be addressed by expanding the datasets used to build the 
models and by use of more sophisticated modeling methods 
than used here to address class imbalance. In addition, it is 
anticipated that additional explanatory variables, specific 
to Long Island, such as historical land use and improved 
resolution of groundwater-flow and source information, 
would also likely improve model accuracy, sensitivity, and 
overall model performance.

The degree to which model results accurately described 
the entire aquifer system was also potentially affected by the 
representativeness of the well dataset. One example of such a 
potential effect is the possible effect of well type. Nearly all of 
the concentration data used to build the models in this study 
were collected from public supply wells, which may shape 
the water-quality dataset in various ways (Suffolk County 
Government, 2015). Public supply wells open to unconsoli-
dated deposits typically have long well screens (for example, 
more than 10 ft). Water withdrawn from a long-screened well 
may be a mixture of groundwater from parts of the aquifer with 
differing geochemical conditions. This introduces variability 
that may make it more difficult to predict a redox-sensitive 
constituent like manganese, especially when redox conditions 
are affected by heterogeneous aquifer sediment textures 
(Walter, 1997; Brown and others, 2019; Walter and Finkelstein, 
2020). Additionally, the high pumping rates (for example, 
hundreds or thousands of gallons per minute) at some supply 
wells may alter flow directions so that their samples reflect 
water quality over a broader area and from shallower depths 
than samples from wells with lower pumping rates or with no 
active withdrawals. Expansion of the well dataset to include 
data from monitoring wells could provide insight into the 
representativeness of models built primarily on public supply 
well data such as those of the present study. Expanding the 
dataset to include monitoring wells could perhaps also fill 

some of the spatial gaps in sample density, especially for 
1,4-dioxane, and thereby better define the conditions associated 
with 1,4-dioxane detection across Long Island.

Temporal variability in manganese or 1,4-dioxane 
concentrations was not considered extensively in developing 
the models described here. Constituent concentrations in 
groundwater are not static over time, even for constituents 
like manganese that originate primarily from geogenic sources 
(Degnan and others, 2020). Manganese concentration data 
were collected from a 20-year time period (1999 to 2018), 
over which concentrations may have varied because of 
changes in the groundwater-flow system, seasonal effects, 
or locally, manmade sources such as compositing facilities 
(Suffolk County Department of Health Services, 2016). 
1,4-Dioxane data were all collected in 2018, but even data 
from a single year such as these data represent a large time 
period (multiple years) in source characteristics because of 
the varying groundwater-travel times from sources to the 
sampling locations. Explanatory variables that varied over 
time were represented by a single year, centrally located 
within the 20-year time period, or averaged over multiple 
years. For contaminants that vary over time, time averaging 
of explanatory variables and temporal discord between the 
explanatory variables and the sample data may reduce the 
meaningful, process-based information provided by the 
explanatory variables. For contaminants that vary over short 
time periods (for example, weeks or months), use of single 
point-in-time concentration data may introduce variability that 
cannot be accurately predicted using static, long-term-averaged 
explanatory variables and cannot be well characterized at the 
regional scale.

Finally, spatial resolution places limitations on model 
accuracy as well as limitations on intended model use. For 
example, some explanatory variables, such as predicted pH, the 
predicted probability of low dissolved oxygen, and simulated 
groundwater residence time, were obtained from regional 
groundwater-flow models. The spatial resolution of these 
variables is relatively coarse compared to the size of Long 
Island, and model predictions reflect the spatial resolution 
of the explanatory variables. Finer scale data would be more 
useful for the Long Island machine learning models and could 
increase model accuracy. Moreover, although predictions 
presented in this report are at a relatively fine grid cell resolu-
tion of 500 ft2, the model results are intended to represent 
regional patterns across Long Island rather than to predict 
concentrations at specific point locations.

Summary
Groundwater is the sole source of drinking water for 

millions of people in Long Island, New York. More than 1,200 
public supply wells and about 45,000 domestic wells withdraw 
groundwater from the Long Island aquifer system. Permeable, 
sandy, and largely unconfined sediments form high-yield 
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aquifers that are the source of this drinking water. However, 
these characteristics of the aquifers also make groundwater 
sources of drinking water on Long Island particularly suscep-
tible to contamination. Groundwater contamination on Long 
Island is a regional and complex problem.

The objective of the study described here was to 
demonstrate the application of machine learning methods 
to model and map contaminants in groundwater underlying 
Long Island. The aquifers considered in this study consist 
of the upper glacial aquifer and the Magothy aquifer, which 
are the upper two of the three major aquifers of the Long 
Island aquifer system. The predictive models developed in the 
study are considered preliminary in the sense that they are an 
initial effort at developing these kinds of models specifically 
for Long Island. The models were based on only a selected 
fraction of the available data that potentially could be used 
for these purposes, in terms of both concentration data in 
water from wells and explanatory variables relevant to Long 
Island groundwater quality. This study was completed by the 
U.S. Geological Survey as part of the National Water-Quality 
Assessment Program (more recently known as the National 
Water Quality Program).

Manganese and 1,4-dioxane in groundwater underlying 
Long Island were modeled using machine learning methods 
and the resulting predictions mapped in three dimensions. The 
models were based on concentration data in groundwater from 
910 wells for manganese and from 553 wells for 1,4-dioxane, 
mostly from public supply wells. Explanatory variables 
described soil, aquifer, and groundwater-flow characteristics, 
land use, the predicted pH and probability of low dissolved 
oxygen in groundwater, and other features of the Long Island 
study area. Four models were developed for manganese, 
predicting the probability of detection (represented by a 
threshold of 10 micrograms per liter [µg/L]), concentrations 
exceeding the secondary maximum contaminant level (SMCL) 
of 50 µg/L, concentrations exceeding 150 µg/L (which is 
one-half the U.S. Environmental Protection Agency [EPA] 
lifetime health advisory), and concentrations exceeding the 
health advisory of 300 µg/L. For 1,4-dioxane, one model was 
developed to predict the probability of detection, represented 
by a threshold of 0.07 µg/L. The model for 1,4-dioxane was 
limited geographically to Suffolk County, which extends 
across central and eastern Long Island.

The machine learning models were developed using 
the XGBoost algorithm, a gradient boosted, ensemble tree 
machine learning method, in the R computing environment. 
The XGBoost models were trained on 80 percent of the 
groundwater sample data from wells, using tenfold cross 
validation, and were tested using the remaining 20 percent of 
the data. Accuracy, as the proportion of all correctly predicted 
observations, both positive and negative, ranged from 0.768 
to 0.983 in testing data subsets for the models. However, 
the manganese datasets were imbalanced, especially at the 
higher concentration thresholds, and accuracy is an overly 
optimistic performance metric for imbalanced datasets. An 
alternative measure, kappa, indicated significant agreement 

between predicted and observed values in testing data for 
the 1,4-dioxane model (kappa equal to 0.680) and moderate 
agreement for the manganese models (kappa from 0.410 to 
0.565). AUC, another metric relatively insensitive to class 
imbalance, ranged from 0.714 to 0.951 for testing datasets for 
the models. Sensitivity, the proportion of correctly predicted 
positive instances, was relatively high (0.783) for 1,4-dioxane, 
moderate (0.696) for the manganese model at the 10 µg/L 
threshold, and low (from 0.318 to 0.400) for the other three 
manganese models.

The most influential explanatory variables in all five 
models included vertical location within the aquifer system 
(depth) as one of the highest ranked variables. For all models, 
the probability of detection or concentrations greater than 
modeled thresholds decreased with increasing depth. Variables 
that described location on the landscape with respect to 
surface-water flow and location within the groundwater-flow 
system were more influential in the manganese models, and 
variables representing land use were more influential in the 
1,4-dioxane model, consistent with the geogenic and manmade 
sources, respectively, of these contaminants. Thus, patterns 
and directions of variable influence for these and several other 
variables generally were consistent with prior understanding 
of some of controlling factors on the occurrence and distribu-
tion of manganese and 1,4-dioxane in groundwater in the Long 
Island aquifer system.

Maps of the modeling results showed that the manganese 
detections (at concentrations greater than or equal to 10 
µg/L) were predicted as more probable in the upper glacial 
aquifer and along the southern shore, consistent with the 
distribution of anoxic conditions in groundwater in the Long 
Island aquifer system. 1,4-Dioxane detections were predicted 
as more probable in the western half of Suffolk County. The 
area of predicted 1,4-dioxane detections in western Suffolk 
County extended from the north to near the southern shore 
in the upper glacial aquifer and in the top and middle layers 
of the Magothy aquifer but was more limited in extent in the 
bottom layer of the Magothy aquifer. The modeling results 
and mapped predictions can be used to illustrate the areas 
where these contaminants are more likely to be a concern 
for groundwater sources of drinking water on Long Island. 
Models and results could be improved by the inclusion of 
more data, especially at concentrations greater than the higher 
concentration thresholds for manganese and in deeper aquifer 
layers, by the use of more sophisticated modeling methods to 
address class imbalance, and by including more explanatory 
variables that specifically described hydrologic and water-
quality conditions and possible contaminant sources on Long 
Island. The modeling results described here are considered 
preliminary and are intended to illustrate the application of 
the machine learning methods, rather than to provide precise 
estimates of manganese or 1,4-dioxane concentrations at 
specific locations on Long Island.
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Appendix 1.  Explanatory Variables and Ranking in the Machine 
Learning Models

Explanatory variables included in the final models 
for manganese and 1,4-dioxane are listed in the tables in 
this appendix. Rank is enumerated based on gain, which 
is a measure of the contribution of the variable to model 

predictions in the XGBoost modeling algorithm (Chen and 
Guestrin, 2016). Gain was calculated using the xgboost R 
package (Chen and others, 2020). Explanatory variables are 
explained in table 1 in the main text.

Table 1.1.  Explanatory variables in the model of manganese 
greater than or equal to 10 micrograms per liter, Long Island, 
New York.

[Explanatory variables are described in table 1 of this report]

Rank Explanatory variable Gain

1 Land_surface 0.080551894
2 Well_depth 0.069432075
3 GWFlux_thkwtd 0.058924202
4 MOHP_LP2 0.058553458
5 SiltClay_mean 0.054766287
6 GwAge_median 0.054650286
7 MOHP_DSD1 0.053846462
8 Soil_OrgMat 0.046437049
9 DissOxy_lt1 0.045388638
10 Lignite_mean 0.045331756
11 LandUse_Resi 0.043975977
12 pH 0.043631995
13 Soil_WatCap 0.041501765
14 Recharge 0.040102429
15 Soil_ClayPct 0.033834587
16 Soil_SiltPct 0.030106743
17 PopDens 0.029252544
18 Soil_SandPct 0.027103265
19 WaterTable 0.025847263
20 LandUse_Urban 0.023788129
21 LandUse_Undev 0.021066815
22 Pyrite_mean 0.020860252
23 Soil_Hydric 0.01842885
24 LandUse_Ag 0.010728219
25 AquiferGrp.GLA 0.008814428
26 CuThkover 0.00842339
27 Magothy_RchA.YES 0.003246649
28 Sewer_PrivW.PWS 0.000935299
29 Confined.YES 0.000288224
30 AquiferGrp.MAG 0.000181071

Table 1.2.  Explanatory variables in the model of manganese 
greater than 50 micrograms per liter, Long Island, New York.

[Explanatory variables are described in table 1 of this report]

Rank Explanatory variable Gain

1 Well_depth 0.113727239
2 PopDens 0.102867056
3 DissOxy_lt1 0.078383704
4 MOHP_DSD1 0.07402121
5 GWFlux_thkwtd 0.071153436
6 LandUse_Urban 0.058121514
7 SiltClay_mean 0.050731782
8 Soil_OrgMat 0.046795386
9 Land_surface 0.045835213
10 Recharge 0.042662973
11 MOHP_LP2 0.040531883
12 LandUse_Resi 0.038196165
13 pH 0.030841094
14 GwAge_median 0.029226292
15 WaterTable 0.02755664
16 Soil_SiltPct 0.020973466
17 LandUse_Undev 0.019739823
18 Soil_WatCap 0.016172546
19 Soil_ClayPct 0.014699247
20 Magothy_RchA.YES 0.014074981
21 Soil_Hydric 0.012180356
22 CuThkover 0.009950033
23 Soil_SandPct 0.009932837
24 Pyrite_mean 0.007510001
25 Lignite_mean 0.007368347
26 LandUse_Ag 0.006254789
27 Sewer_PrivW.PWS 0.006176242
28 AquiferGrp.GLA 0.004315744
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Table 1.3.  Explanatory variables in the model of manganese 
greater than 150 micrograms per liter, Long Island, New York.

[Explanatory variables are described in table 1 of this report]

Rank Explanatory variable Gain

1 GWFlux_thkwtd 0.081845692
2 pH 0.073483058
3 PopDens 0.072466444
4 MOHP_DSD1 0.071694153
5 DissOxy_lt1 0.066140054
6 MOHP_LP2 0.061574031
7 SiltClay_mean 0.055874789
8 Well_depth 0.055055853
9 WaterTable 0.049511108
10 Soil_OrgMat 0.046629907
11 Soil_WatCap 0.040069401
12 Land_surface 0.039770311
13 LandUse_Urban 0.039028781
14 GwAge_median 0.037295518
15 LandUse_Resi 0.029153759
16 Recharge 0.028843425
17 Soil_Hydric 0.027804845
18 Soil_ClayPct 0.024625987
19 Soil_SiltPct 0.022248251
20 Lignite_mean 0.021348421
21 Soil_SandPct 0.020824595
22 AquiferGrp.GLA 0.010511579
23 Pyrite_mean 0.009846371
24 LandUse_Undev 0.007628616
25 CuThkover 0.005129644
26 LandUse_Ag 0.001595407

Table 1.4.  Explanatory variables in the model of manganese 
greater than 300 micrograms per liter, Long Island, New York.

[Explanatory variables are described in table 1 of this report]

Rank Explanatory variable Gain

1 WaterTable 0.149005729
2 Recharge 0.110666768
3 GWFlux_thkwtd 0.087984132
4 Land_surface 0.076161771
5 PopDens 0.074875836
6 MOHP_DSD1 0.069206691
7 MOHP_LP2 0.061725801
8 SiltClay_mean 0.057556779
9 pH 0.050024995
10 Well_depth 0.042117984
11 DissOxy_lt1 0.041558766
12 Lignite_mean 0.03438322
13 Soil_Hydric 0.027057144
14 GwAge_median 0.024412479
15 LandUse_Urban 0.023773296
16 LandUse_Undev 0.020400714
17 LandUse_Resi 0.017207106
18 Soil_ClayPct 0.011259015
19 Soil_WatCap 0.006637009
20 Confined.YES 0.004948789
21 Soil_OrgMat 0.00484475
22 AquiferGrp.GLA 0.004125797
23 Soil_SiltPct 0.0000654
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