

Prepared in cooperation with the Kansas Water Office, the Kansas Department of Health and Environment, The Nature Conservancy, the City of Lawrence, the City of Manhattan, the City of Olathe, the City of Topeka, WaterOne, and Evergy

**Linear Regression Model Documentation for Computing
Water-Quality Constituent Concentrations or Densities Using
Continuous Real-Time Water-Quality Data for the Kansas
River above Topeka Weir at Topeka, Kansas, November 2018
through June 2021**

Scientific Investigations Report 2022–5130

Cover. Photograph showing the Kansas River above Topeka Weir, taken June 1, 2022, by Brad Lukasz, U.S. Geological Survey.

Linear Regression Model Documentation for Computing Water-Quality Constituent Concentrations or Densities Using Continuous Real-Time Water-Quality Data for the Kansas River above Topeka Weir at Topeka, Kansas, November 2018 through June 2021

By Thomas J. Williams

Prepared in cooperation with the Kansas Water Office, the Kansas Department of Health and Environment, The Nature Conservancy, the City of Lawrence, the City of Manhattan, the City of Olathe, the City of Topeka, WaterOne, and Evergy

Scientific Investigations Report 2022–5130

U.S. Geological Survey, Reston, Virginia: 2023

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit <https://www.usgs.gov> or call 1-888-ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit <https://store.usgs.gov/>.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Williams, T.J., 2023, Linear regression model documentation for computing water-quality constituent concentrations or densities using continuous real-time water-quality data for the Kansas River above Topeka Weir at Topeka, Kansas, November 2018 through June 2021: U.S. Geological Survey Scientific Investigations Report 2022-5130, 14 p., <https://doi.org/10.3133/sir20225130>.

Associated data for this publication:

U.S. Geological Survey, 2022, USGS water data for the Nation: U.S. Geological Survey National Water Information System database, <https://doi.org/10.5066/F7P55KJN>.

ISSN 2328-0328 (online)

Acknowledgments

The author thanks the Kansas Water Office, the Kansas Department of Health and Environment, The Nature Conservancy, the City of Lawrence, the City of Manhattan, the City of Olathe, the City of Topeka, WaterOne, and Evergy for a beneficial and lasting partnership in monitoring water-quality conditions in the Kansas River.

The author thanks U.S. Geological Survey technical reviewers Teresa Rasmussen (Lawrence, Kansas), Kyle Juracek (Lawrence, Kans.), Mandy Stone (Lawrence, Kans.), and Tim Hoffman (Troy, New York) for reviewing previous drafts of this report. The author also thanks U.S. Geological Survey geographer Diana Restrepo-Osorio for assistance in adjusting the study area map to fit the needs of this report. Lastly, this report would not have been possible without the hard work by past and present U.S. Geological Survey staff at the Kansas Water Science Center who assisted with data collection, analyses, and project and database management.

Contents

Acknowledgments.....	iii
Abstract.....	1
Introduction.....	1
Purpose and Scope	2
Description of Study Area	2
Methods.....	4
Continuous Streamflow and Water-Quality Monitoring.....	4
Discrete Water-Quality Sampling.....	5
Quality Assurance and Quality Control of Continuous and Discrete Water-Quality Data	5
Development of Regression Models	6
Developed Regression Models.....	10
Total Dissolved Solids, Major Ions, and Hardness.....	10
Total Nitrogen, Total Kjeldahl Nitrogen, Total Phosphorus, and Chlorophyll <i>a</i>	10
Total Suspended Solids and Suspended Sediment.....	10
<i>Escherichia coli</i> Bacteria	10
Summary.....	11
References Cited.....	11
Appendices 1–14. Model Archival Summaries	14

Figures

1. Map showing location of the Kansas River at Wamego, Kansas; Kansas River above Topeka Weir at Topeka, Kans.; and Kansas River at De Soto, Kans., streamgages and discrete water-quality sampling sites in the lower Kansas River Basin.....	3
2. Graph showing streamflow duration curve and discrete water-quality samples at the Kansas River above Topeka Weir at Topeka, Kansas, streamgage during November 2018 through June 2021.....	4
3. Photograph showing continuous water-quality monitor deployment at the Kansas River above Topeka Weir at Topeka, Kansas, streamgage during November 2018 through June 2021.....	5

Table

1. Linear regression models and summary statistics for computations of continuous water-quality constituent concentrations or densities for the Kansas River above Topeka Weir at Topeka, Kansas, streamgage using data collected during November 2018 through June 2021	7
--	---

Conversion Factors

U.S. customary units to International System of Units

Multiply	By	To obtain
Length		
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
Area		
square mile (mi ²)	259.0	hectare (ha)
square mile (mi ²)	2.590	square kilometer (km ²)

International System of Units to U.S. customary units

Multiply	By	To obtain
Volume		
milliliter (mL)	0.0338	ounce, fluid (fl. oz)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

$$^{\circ}\text{F} = (1.8 \times ^{\circ}\text{C}) + 32.$$

Datum

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Supplemental Information

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C).

Concentrations of chemical constituents in water are given in either milligrams per liter (mg/L) or micrograms per liter (µg/L).

Densities of *Escherichia coli* bacteria are given in colony forming units per 100 milliliters (cfu/100 mL).

Abbreviations

<i>E. coli</i>	<i>Escherichia coli</i>
log	logarithm with base 10
MRL	minimum reporting limit
<i>PRESS</i>	prediction error sum of squares
QC	quality control
R^2	coefficient of determination
<i>RMSE</i>	root mean square error
RPD	relative percentage difference
TKN	total Kjeldahl nitrogen
USGS	U.S. Geological Survey

Linear Regression Model Documentation for Computing Water-Quality Constituent Concentrations or Densities Using Continuous Real-Time Water-Quality Data for the Kansas River above Topeka Weir at Topeka, Kansas, November 2018 through June 2021

By Thomas J. Williams

Abstract

The Kansas River and its associated alluvial aquifer provide drinking water to more than 950,000 people in northeastern Kansas. Water suppliers that rely on the Kansas River as a water-supply source use physical and chemical processes to treat and remove contaminants before public distribution. An early-notification system of changing water-quality conditions allows water suppliers to proactively make decisions that affect water treatment. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas Water Plan), the Kansas Department of Health and Environment, The Nature Conservancy, the City of Lawrence, the City of Manhattan, the City of Olathe, the City of Topeka, WaterOne, and Evergy, began collecting water-quality data at the Kansas River above Topeka Weir at Topeka, Kansas (USGS site 06888990, hereafter referred to as the “Topeka site”), during November 2018 to develop linear regression models that relate continuous in situ water-quality sensor measurements to discretely sampled water-quality constituent concentrations or densities. The addition of the Topeka site expanded an existing water-quality monitoring network, which included the upstream Kansas River at Wamego, Kans., and downstream Kansas River at De Soto, Kans., sites. Linear regression analysis was used to develop models that compute real-time concentrations or densities for total dissolved solids, major ions, hardness as calcium carbonate, nutrients (nitrogen and phosphorus species), chlorophyll *a*, total suspended solids, suspended sediment, and *Escherichia coli* at the Topeka site using data collected during November 2018 through June 2021. Water-quality constituent concentrations or densities computed from the models documented in this report are available at the USGS National Real-Time Water-Quality website (<https://nrtwq.usgs.gov>), are useful to the public for cultural and recreational purposes, and can be used to guide water-treatment processes, compare conditions with Federal and State water-quality criteria, and characterize changes in Kansas River water-quality conditions through time.

Introduction

Water suppliers use the Kansas River and its associated alluvial aquifer to supply drinking water to more than 950,000 people throughout northeastern Kansas (Josh Olson, Kansas Water Office, written commun., July 21, 2022). Other uses of the Kansas River include cultural and recreational, industrial, food procurement, aquatic-life support, ground-water recharge, irrigation, and livestock water use (Kansas Department of Health and Environment, 2011). Water suppliers that rely on the Kansas River as a water-supply source use numerous physiochemical processes to treat and remove contaminants from the water before distribution. Water-quality characteristics of the source water determine the treatment processes used by water suppliers to effectively remove contaminants. An early-notification system of changing water-quality conditions near water-supply intakes allows water suppliers to proactively make decisions that affect water treatment. The water-quality data used to develop this early-notification system can also be used to characterize water-quality conditions in the Kansas River over time.

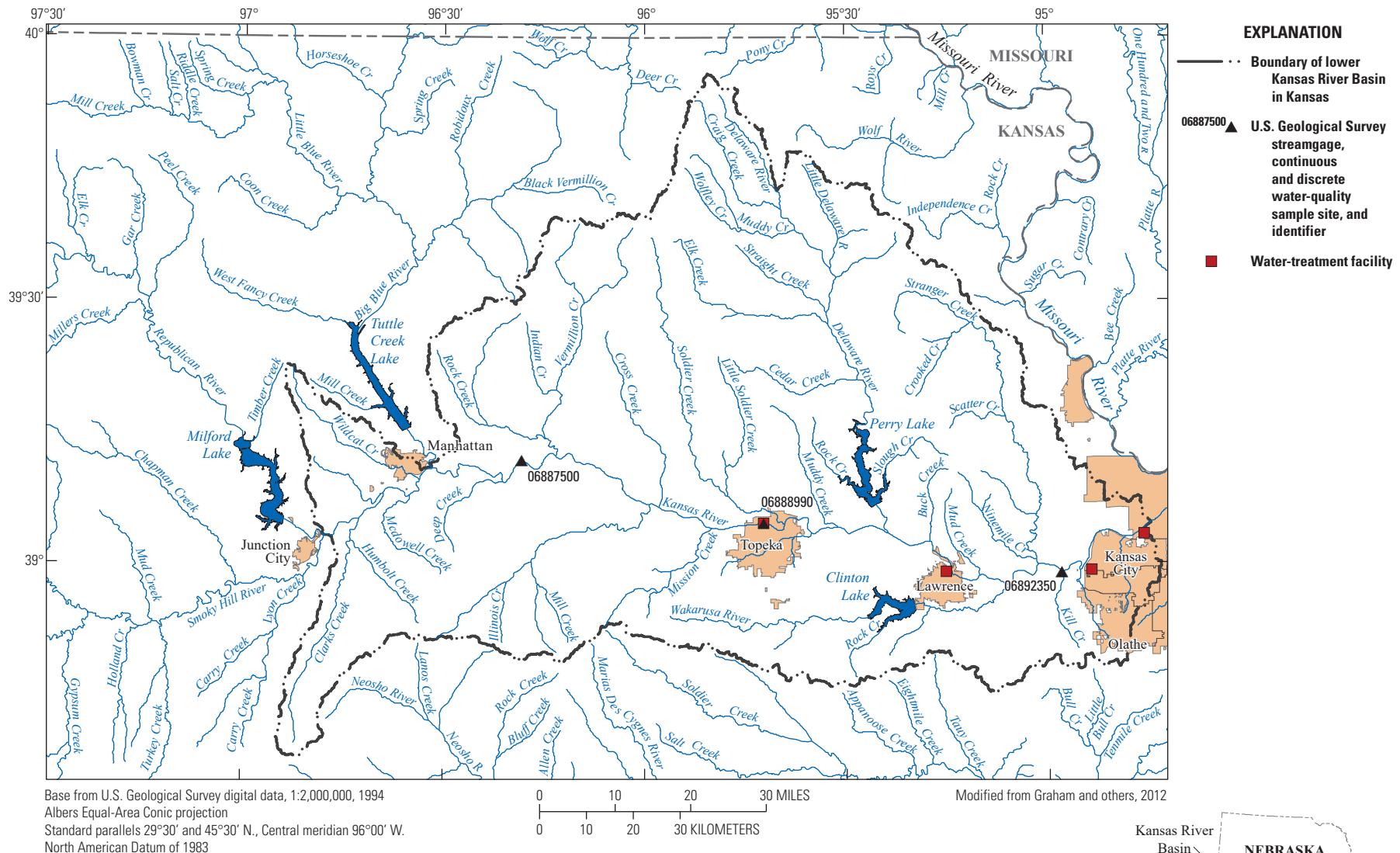
Concomitant continuous in situ water-quality monitoring and discrete water-quality sampling in the Kansas River began during July 1999 primarily to characterize water-quality conditions by developing regression models using a combination of continuous water-quality monitor data and discrete water-quality samples to compute continuous concentrations or densities of water-quality constituents that are not easily measured in real time (Rasmussen and others, 2005). As part of this initial effort, regression models that computed concentrations or densities of major ions, nutrients, sediment, fecal indicator bacteria, and trace elements at sites near Wamego, Topeka, and De Soto, Kansas, during July 1999 through September 2005 were developed (Rasmussen and others, 2005).

Kansas River water-quality sampling resumed after upstream releases from Milford Lake (a reservoir that contributes streamflow to the Kansas River) during a toxic

2 Linear Regression Model Documentation for Computing Water-Quality Constituent Concentrations or Densities, Topeka

cyanobacterial event in August 2011 to primarily characterize transport of cyanobacteria, cyanotoxins, and associated taste-and-odor compounds from upstream reservoirs to the Kansas River (Graham and others, 2012). After the Milford Lake release event, continuous and discrete water-quality monitoring resumed at the Kansas River at Wamego (U.S. Geological Survey [USGS] site 06887500; hereafter referred to as the “Wamego site”) and De Soto (USGS site 06892350; hereafter referred to as the “De Soto site”), Kans., sites in July 2012 to characterize water-quality conditions, including cyanobacteria and associated toxins and taste-and-odor compounds, and to develop an early-notification system of changing water-quality conditions that could affect drinking-water treatment processes (Foster and Graham, 2016; Graham and others, 2018). Regression models were developed as part of this effort that documented relations between continuous and discrete water-quality data to provide real-time computations of constituent concentrations or densities for major ions, nutrients, sediment, and fecal indicator bacteria at the Wamego and De Soto sites using data collected during July 2012 through June 2015 (Foster and Graham, 2016). Similar data collected during July 1999 through September 2005 (Rasmussen and others, 2005) were not considered in the model-calibration dataset (data used for model development) used by Foster and Graham (2016) because of potential confounding factors introduced from updated analytical methods and sensor technology, potential changes in drainage basin practices, water-quality conditions, riverine processes, and elapsed time between datasets (Foster and Graham, 2016). Previously published (Foster and Graham, 2016) linear regression models for computing concentrations or densities of major ions, nutrients, sediment, and fecal indicator bacteria at the Wamego and De Soto sites were updated using additional model-calibration data collected through September 2019 (Williams, 2021). This expanded model-calibration dataset was also used to develop additional new linear regression models for computing concentrations or densities of hardness as calcium carbonate, chlorophyll *a*, and total suspended solids at the Wamego and De Soto sites; nitrate plus nitrite and total phosphorus at the De Soto site; and *Escherichia coli* (*E. coli*) bacteria, fecal coliform bacteria, and enterococci bacteria at the Wamego site (Williams, 2021). Updated Kansas River models for the Wamego and De Soto sites are available at the USGS National Real-Time Water-Quality website (<https://nrtwq.usgs.gov>).

The USGS, in cooperation with the Kansas Water Office (funded in part through the Kansas Water Plan), the Kansas Department of Health and Environment, The Nature Conservancy, the City of Lawrence, the City of Manhattan, the City of Olathe, the City of Topeka, WaterOne, and Evergy, established a new continuous and discrete water-quality monitoring site at the Kansas River above Topeka Weir at Topeka, Kans. (USGS site 06888990; hereafter referred to as the “Topeka site”), in November 2018 to expand the Kansas River water-quality monitoring network by adding an intermediate location between the Wamego (upstream) and De Soto (downstream) monitoring sites. The continuous and


discrete water-quality data collected at the Topeka site during November 2018 through June 2021 were used to develop new linear regression models and expand the early-notification system of changing water-quality conditions that may affect water treatment. Real-time computations of water-quality constituent concentrations or densities using the models documented in this report are available at the USGS National Real-Time Water-Quality website (<https://nrtwq.usgs.gov>).

Purpose and Scope

The purpose of this report is to describe linear regression models that were developed to continuously compute water-quality constituent concentrations or densities at the Topeka site. Models were developed for total dissolved solids, major ions, hardness as calcium carbonate, nutrients (nitrogen and phosphorus species), chlorophyll *a*, total suspended solids, suspended sediment, and *E. coli* bacteria using continuous and discrete water-quality data collected during November 2018 through June 2021. Constituents were selected for model development based on evaluation of model-diagnostic statistics, relevance to water-treatment managers, association with State water-quality criteria or impairments, previously published Kansas River models (Rasmussen and others, 2005; Foster and Graham, 2016; Williams, 2021), and overall dataset suitability for model development. Linear regression models documented in this report provide real-time computations of water-quality constituent concentrations or densities that are not easily measured in real time. The addition of the Topeka site to the Kansas River monitoring network provides insight into water-quality conditions between the rural Wamego site and urban De Soto site. Model computations can be used to characterize water-quality conditions that may affect drinking-water treatment at the Topeka site, compare to previously published model-computed concentrations or densities (Williams, 2021) at the Wamego and De Soto sites, compare conditions with Federal and State water-quality criteria, evaluate changes in water-quality conditions in the Kansas River through time, and provide public recreation information.

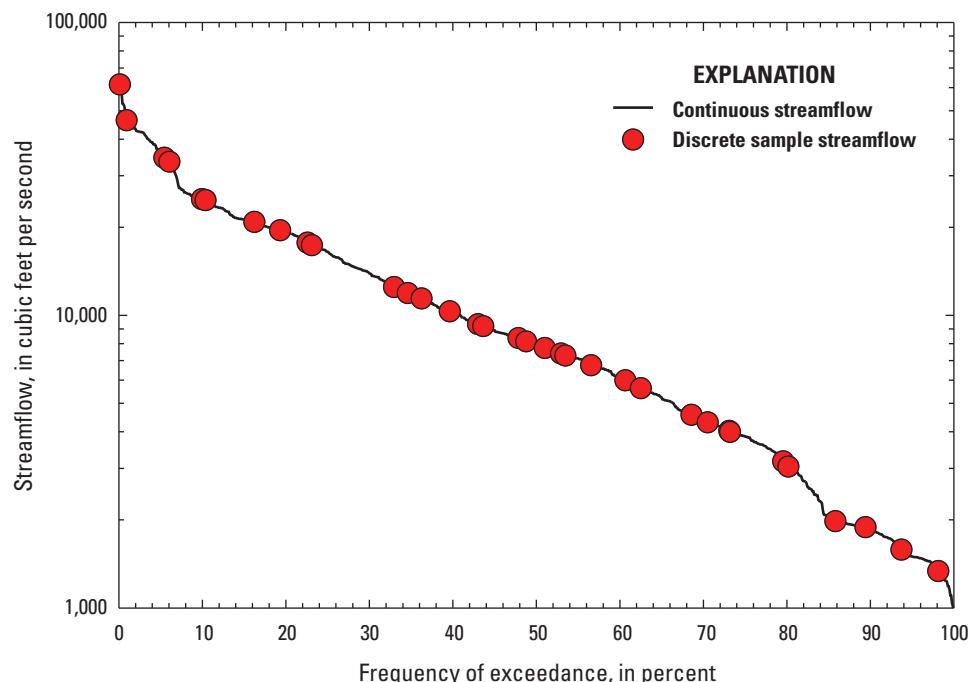
Description of Study Area

The Kansas River Basin covers 60,097 square miles (mi^2) of northern Kansas and parts of Nebraska and Colorado (fig. 1). The Kansas River flows 174 miles (mi) from the confluence of the Smoky Hill and Republican Rivers near Junction City, Kans., to its confluence with the Missouri River at Kansas City, Kans. (fig. 1). The study area, or lower Kansas River Basin, covers a 5,448- mi^2 area downstream from the Smoky Hill and Republican River confluence. Kansas River streamflow is regulated by four large bottom-release reservoirs (Milford Lake, Tuttle Creek Lake, Perry Lake, and Clinton Lake; fig. 1) that were constructed during the 1960s

Figure 1. Location of the Kansas River at Wamego, Kansas; Kansas River above Topeka Weir at Topeka, Kans.; and Kansas River at De Soto, Kans., streamgages and discrete water-quality sampling sites in the lower Kansas River Basin (U.S. Geological Survey stations 06887500, 06888990, and 06892350, respectively).

through 1970s for flood control, recreation, and public-water supply (U.S. Army Corps of Engineers, 2017). About 77 percent of the study area is used for agricultural purposes, and about 9 percent is represented by urban areas (Fry and others, 2011). Four major urban areas are along the Kansas River: Manhattan, Topeka, Lawrence, and the Kansas City metropolitan area, Kans. (fig. 1). These cities, and several smaller municipalities, use the Kansas River and its alluvial aquifer as a water-supply source. The study area is described in additional detail by Rasmussen and others (2005), Graham and others (2012, 2018), and Foster and Graham (2016).

Linear regression models that continuously compute water-quality constituent concentrations or densities were developed for the Topeka site, which is intermediately between the Wamego (rural, upstream) and De Soto (urban, downstream) monitoring sites (fig. 1). The Topeka site is on the southern bank of the Kansas River in Topeka and is about 40 river miles downstream from the Wamego site, about 58 river miles upstream from the De Soto site, and upstream from water-treatment facilities in Lawrence, Olathe, and Kansas City, Kans. (fig. 1). Public recreation, including kayaking, boating, and fishing, is common downstream from the Topeka site using a nearby access ramp.


Methods

The USGS collected continuous and discrete water-quality data at the Topeka site over the range of observed streamflows during November 2018 through June 2021 (fig. 2). These data were used to develop linear regression models at the Topeka site for total dissolved solids, major ions, hardness as calcium carbonate, nutrients (nitrogen and phosphorus species), chlorophyll *a*, total suspended solids, suspended sediment, and *E. coli* bacteria.

Continuous Streamflow and Water-Quality Monitoring

The USGS began collecting continuous (15-minute interval) streamflow data at the Topeka site during November 2015 (U.S. Geological Survey, 2022) using standard USGS methods (Sauer and Turnipseed, 2010; Turnipseed and Sauer, 2010). These data are available in near-real time (hourly) from the USGS National Water Information System database at <https://doi.org/10.5066/F7P55KJN> (U.S. Geological Survey, 2022) by using station number 06888990.

The USGS began collecting continuous (15-minute interval) water-quality data at the Topeka site in November 2018. During November 2018 through June 2021, a YSI EXO2 water-quality monitor (YSI, Inc., 2017) was deployed by suspension from a building structure about 1 to 3 feet below the water surface on the southern bank of the Kansas River (fig. 3). Limited access

Figure 2. Streamflow duration curve and discrete water-quality samples at the Kansas River above Topeka Weir at Topeka, Kansas, streamgage (U.S. Geological Survey station 06888990) during November 2018 through June 2021. Data from U.S. Geological Survey, 2022.

Figure 3. Continuous water-quality monitor deployment at the Kansas River above Topeka Weir at Topeka, Kansas, streamgage (U.S. Geological Survey station 06888990) during November 2018 through June 2021. Photograph by Joey Filby, City of Topeka.

and safety concerns prevented the use of bridge deployment at the centroid of flow (optimal deployment method used at the Wamego and De Soto sites; Williams [2021]). The water-quality monitor was equipped with water temperature, specific conductance, pH, dissolved oxygen, turbidity, and chlorophyll and phycocyanin fluorescence sensors. The water-quality monitor was operated and maintained using standard USGS methods (Wagner and others, 2006; Bennett and others, 2014). All continuous water-quality data are available in near-real time (hourly) from the USGS National Water Information System database at <https://doi.org/10.5066/F7P55KJN> (U.S. Geological Survey, 2022) by using station number 06888990.

Discrete Water-Quality Sampling

Water-quality samples were collected at the Topeka site on a biweekly to monthly basis during November 2018 through June 2020, on a monthly to bimonthly basis during July 2020 through June 2021, and during selected reservoir release and runoff events. Using this fixed-schedule sampling approach, water-quality samples were collected over the range of study period streamflows (fig. 2). Initially, during November 18, 2018, through February 5, 2019, three water-quality samples were collected 0.2 mi downstream from the continuous water-quality monitor location using depth- and width-integrated sampling techniques (U.S. Geological Survey, 2006) from a watercraft. This location was selected for safety reasons because of proximity of an upstream low-head dam (0.1 mi downstream from the continuous water-quality monitor location). Remaining samples were collected from the continuous water-quality monitor location because of greater accessibility throughout the study period streamflow range. Therefore, during February 19, 2019, through June 2021, all

samples, excluding *E. coli* bacteria, were collected from the water-quality monitor location using a US DH-95 or US D-95 sampler (Edwards and Glysson, 1999) with depth-integrated sampling techniques (U.S. Geological Survey, 2006). Samples of *E. coli* bacteria were collected from the same location using a sterile, autoclaved bottle in a weighted basket. The water-quality monitor location provided the greatest safety and allowed for consistent sampling methodology and location regardless of streamflow conditions. All water-quality samples were analyzed for total dissolved solids, major ions, hardness as calcium carbonate, total nitrogen (particulate plus dissolved nitrogen), total Kjeldahl nitrogen (TKN; total concentration of organic nitrogen and ammonia), total phosphorus, chlorophyll *a*, total suspended solids, suspended sediment, and *E. coli* bacteria.

Total dissolved solids, major ions, hardness as calcium carbonate, nutrients (nitrogen and phosphorus species), and total suspended solids were analyzed by the USGS National Water Quality Laboratory in Lakewood, Colorado, using the methods documented by Fishman and Friedman (1989). Chlorophyll *a* was analyzed by the USGS National Water Quality Laboratory in Lakewood, Colo., using U.S. Environmental Protection Agency Method 445.0 (Arar and Collins, 1997). Suspended-sediment concentration was analyzed at the USGS Iowa Sediment Laboratory in Iowa City, Iowa, following methods documented by Guy (1969). Samples of *E. coli* bacteria were analyzed by the USGS Kansas Water Science Center following the methods documented by Myers and others (2014). All of these data are available from the USGS National Water Information System database at <https://doi.org/10.5066/F7P55KJN> (U.S. Geological Survey, 2022) by using station number 06888990.

Phytoplankton community composition and abundance, microcystin (a cyanotoxin), and geosmin and 2-methylisoborneol (taste-and-odor compounds) samples also were collected during each water-quality sampling. However, additional data collected during cyanobacteria, microcystin, and taste-and-odor events are necessary to obtain representative model-calibration datasets for model development at the Topeka site. Water-quality sampling and analytical methodology for these constituents are described in greater detail by Foster and Graham (2016) and Graham and others (2018).

Quality Assurance and Quality Control of Continuous and Discrete Water-Quality Data

All continuous and discrete water-quality data collected during November 2018 through June 2021 were reviewed and approved quarterly, following USGS guidance (U.S. Geological Survey, 2016, 2017). Continuous water-quality data occasionally were corrected or deleted because of fouling, sensor calibration drift (Wagner and others, 2006; Bennett and others, 2014), equipment malfunction, or temporary removal of the water-quality monitor to avoid loss or damage during below-freezing surface-water temperatures.

6 Linear Regression Model Documentation for Computing Water-Quality Constituent Concentrations or Densities, Topeka

During November 2018 through June 2021, about 3 percent of the water-temperature, pH, dissolved oxygen, and phyco-cyanin fluorescence records and about 4 percent of the specific conductance, turbidity, and chlorophyll fluorescence records at the Topeka site were missing or deleted because of excessive fouling.

Quality-control (QC) samples were collected for about 10 percent of all discrete water-quality samples. Concurrent replicate QC samples were collected to characterize variability in sample results that could potentially be introduced by sample-collection methods, sample processing techniques, and analytical method (Rasmussen and others, 2014; Mueller and others, 2015). Relative percentage difference (RPD) was used to quantify differences in noncensored (data reported as greater than or equal to the laboratory minimum reporting limit [MRL]) constituent concentrations or densities among concurrent replicate pairs and was calculated by dividing the absolute difference of a replicate pair of samples by their mean value and multiplying by 100 (Zar, 1999). Concurrent replicate RPDs met QC objectives if a constituent's median RPD was less than or equal to 5 percent for total dissolved solids, major ions, and hardness as calcium carbonate; less than or equal to 10 percent for nutrients (nitrogen and phosphorus species), chlorophyll *a*, total suspended solids, and suspended-sediment concentration; and less than or equal to 30 percent for *E. coli* bacteria (Williams, 2021). Three concurrent replicate pairs were collected from the Topeka site during November 2018 through June 2021. QC objectives were met for concurrent replicate pairs for all constituents used for model development documented in this report. Median RPDs among concurrent replicate pairs for total dissolved solids, major ions, and hardness as calcium carbonate were less than 1 percent. Nutrient (nitrogen and phosphorus species) and chlorophyll *a* median concurrent replicate RPDs were less than 4 percent. Median concurrent replicate RPDs were less than 9 percent for total suspended solids and suspended-sediment concentration. The median RPD among *E. coli* bacteria concurrent replicates was 20 percent. Variability among *E. coli* bacteria concurrent replicate densities can increase if samples are insufficiently mixed during sample processing (Myers and others, 2014).

Three field blank samples were collected from the Topeka site during November 2018 through June 2021 to characterize bias caused by sampling procedures and analytical methods (Mueller and others, 2015). QC objectives were met if field blank sample concentrations were less than or equal to the associated MRL. Field blank sample concentrations were less than or equal to MRLs with the exception of one sample analyte. Chloride was the single constituent that had at least one detection (0.03 milligram per liter [mg/L]) greater than the MRL (0.02 mg/L) in all blank samples collected during the study period. Equipment- and procedure-blank samples were collected for all *E. coli* bacteria samples during November 2018 through June 2021. No *E. coli* bacteria detections were in any equipment- or procedure-blank samples during the study period.

Concomitant field and in situ water-quality monitor (YSI EXO2) physiochemical properties were measured during discrete sampling events to compare sample-collection methods (depth- and width-integrated [collection method used during November 18, 2018, through February 5, 2019] and depth-integrated [collection method used during February 19, 2019, through June 2021]). Cross-sectional profile water-quality physiochemical properties were measured about 1 foot below the water surface alongside the depth- and width-integrated discretely collected samples; these samples coincided with the 84th, 81st, and 52d percentiles of daily mean study period streamflows. Two sets of vertical-profile cross-sectional water-quality physiochemical properties were measured at several depths at each cross-section location; these two vertical-profile cross-sectional measurements coincided with the 19th and 69th percentiles of daily mean study period streamflows. The Topeka site's stream conditions were arbitrarily considered to be well mixed if field-measured profile and in situ measurement statistics (water temperature, specific conductance, and dissolved oxygen means and pH medians) were within 5 percent. RPDs among concomitant cross-sectional and in situ continuous water-quality monitor statistics were calculated to determine if the initial depth- and width-integrated samples were comparable to the depth-integrated samples collected at the in situ continuous water-quality monitor location. RPDs among concomitant cross-sectional profile and in situ continuous water-quality monitor measurement statistics were less than 4 percent. RPDs among concomitant vertical-profile cross-sectional and in situ continuous water-quality monitor statistics were equal to or less than 3 percent. This information indicated that the Kansas River at the Topeka site likely was generally well mixed; therefore, all water-quality samples, regardless of sample-collection technique, were considered during model development.

Development of Regression Models

Models that related continuous in situ water-quality sensor measurements, streamflow, and seasonal components to discrete sample water-quality constituent concentrations or densities using linear regression analysis and data collected during November 2018 through June 2021 were developed. All regression models were developed using R programming language, version 4.2.0 (R Core Team, 2022). Models were developed using ordinary least squares estimation for constituents with model-calibration datasets containing no left-censored data (data reported as less than the laboratory MRL). Ordinary least squares estimation was used to develop models that compute continuous concentrations or densities of total dissolved solids, calcium, magnesium, sodium, sulfate, chloride, hardness as calcium carbonate, total nitrogen (particulate plus dissolved nitrogen), TKN, total phosphorus, chlorophyll *a*, suspended sediment, and *E. coli* bacteria. These constituents were selected for model development based on evaluation of model-diagnostic statistics, relevance to water-treatment

Table 1. Linear regression models and summary statistics for computations of continuous water-quality constituent concentrations or densities for the Kansas River above Topeka Weir at Topeka, Kansas, streamgage (U.S. Geological Survey station 06888990) using data collected during November 2018 through June 2021.

[R^2 , coefficient of determination; MSE , mean square error; $RMSE$, root mean square error; RSE , residual standard error; $MSPE$, model standard percentage error; n , number of discrete samples used in model development dataset; mg/L, milligram per liter; SC, continuously measured specific conductance in microsiemens per centimeter at 25 degrees Celsius; OLS, ordinary least squares; app., appendix; --, not applicable; log, logarithm with base 10; $CaCO_3$, calcium carbonate; TBY, turbidity in formazin nephelometric units; AMLE, absolute maximum likelihood estimation; $\mu g/L$, microgram per liter; fCHL, chlorophyll fluorescence at wavelength of 650 to 700 nanometers in relative fluorescence units; <, less than; colonies/100 mL, colonies per 100 milliliters]

Regression model	Regression estimation method	Model archival summary	Adjusted R^2	^a Pseudo- R^2	MSE	$RMSE$	Estimated RSE (unbiased)	Mean $MSPE$	Bias correction factor (Duan, 1983)	Discrete data used in model development dataset				
										n	Percentage of censored data	Range of values in variable measurements	Mean	Median
Total dissolved solids (TDS), mg/L														
$TDS = 0.584(SC) + 39.3$	OLS	App. 1	0.974	--	1,000	31.7	31.7	6.16	--	34	0	TDS: 202–839 SC: 188–1,420	514 814	502 778
Calcium (Ca), dissolved, mg/L														
$log(Ca) = 0.739log(SC) - 0.234$	OLS	App. 2	0.938	--	0.00159	0.0399	0.0399	9.21	1.00	34	0	Ca: 31.7–120 SC: 188–1,420	81.7 814	85.3 778
Magnesium (Mg), dissolved, mg/L														
$log(Mg) = 0.893log(SC) - 1.35$	OLS	App. 3	0.954	--	0.00169	0.0411	0.0411	9.48	1.00	34	0	Mg: 4.96–27.7 SC: 188–1,420	17.6 814	19.0 778
Sodium (Na), dissolved, mg/L														
$log(Na) = 1.63log(SC) - 3.00$	OLS	App. 4	0.981	--	0.00229	0.0479	0.0479	11.1	1.01	34	0	Na: 3.75–158 SC: 188–1,420	62.3 814	52.9 778
Sulfate (SO_4), dissolved, mg/L														
$log(SO_4) = 1.38log(SC) - 1.97$	OLS	App. 5	0.932	--	0.00613	0.0783	0.0783	18.1	1.01	34	0	SO_4 : 9.22–196 SC: 188–1,420	116 814	126 778
Chloride (Cl), dissolved, mg/L														
$log(Cl) = 1.83log(SC) - 3.48$	OLS	App. 6	0.967	--	0.00498	0.0706	0.0706	16.3	1.01	34	0	Cl: 3.01–228 SC: 188–1,420	79.0 814	62.8 778
Hardness ($CaCO_3$), mg/L														
$log(CaCO_3) = 0.771log(SC) + 0.201$	OLS	App. 7	0.947	--	0.00145	0.0381	0.0381	8.78	1.00	34	0	$CaCO_3$: 99.8–412 SC: 188–1,420	276 814	289 778
Total nitrogen (TN), total particulate nitrogen plus dissolved nitrogen, mg/L														
$log(TN) = 0.373log(TBY) - 0.387$	OLS	App. 8	0.743	--	0.0182	0.135	0.135	31.7	1.05	34	0	TN: 0.788–8.03 TBY: 8.23–1,240	2.62 230	1.94 60.6
Total Kjeldahl nitrogen (TKN), mg/L; total ammonia plus organic nitrogen, mg/L														
$log(TKN) = 0.507log(TBY) - 0.902$	OLS	App. 9	0.922	--	0.00837	0.0915	0.0915	21.2	1.02	34	0	TKN: 0.440–5.80 TBY: 8.23–1,240	1.65 230	0.875 60.6

Table 1. Linear regression models and summary statistics for computations of continuous water-quality constituent concentrations or densities for the Kansas River above Topeka Weir at Topeka, Kansas, streamgage (U.S. Geological Survey station 06888990) using data collected during November 2018 through June 2021.—Continued

[R^2 , coefficient of determination; MSE , mean square error; $RMSE$, root mean square error; RSE , residual standard error; $MSPE$, model standard percentage error; n , number of discrete samples used in model development dataset; mg/L, milligram per liter; SC, continuously measured specific conductance in microsiemens per centimeter at 25 degrees Celsius; OLS, ordinary least squares; app., appendix; --, not applicable; log, logarithm with base 10; $CaCO_3$, calcium carbonate; TBY, turbidity in formazin nephelometric units; AMLE, absolute maximum likelihood estimation; $\mu g/L$, microgram per liter; fCHL, chlorophyll fluorescence at wavelength of 650 to 700 nanometers in relative fluorescence units; <, less than; colonies/100 mL, colonies per 100 milliliters]

Regression model	Regression estimation method	Model archival summary	Adjusted R^2	^a Pseudo- R^2	MSE	$RMSE$	Estimated RSE (unbiased)	Mean $MSPE$	Bias correction factor (Duan, 1983)	Discrete data used in model development dataset				
										n	Percentage of censored data	Range of values in variable measurements	Mean	Median
Total phosphorus (TP), mg/L														
log(TP)= 0.566log(TBY)-1.43	OLS	App. 10	0.914	--	0.0117	0.108	0.108	25.2	1.03	34	0	TP: 0.140–2.45	0.668	0.390
Chlorophyll <i>a</i> , (Chla), $\mu g/L$														
log(Chla)= 1.26log(fCHL)+0.687	OLS	App. 11	0.809	--	0.0392	0.198	0.198	47.1	1.1	34	0	Chla: 1.40–59.9	19.2	13.8
Total suspended solids, (TSS), mg/L														
log(TSS)= 1.06log(TBY)+0.205	AMLE	App. 12	--	0.943	--	--	0.165	--	1.06	34	5.90	TSS: <15.0–3,480	526	136
Suspended-sediment concentration (SSC), mg/L														
log(SSC)= 1.07log(TBY)+0.29	OLS	App. 13	0.989	--	0.0051	0.0712	0.0712	16.5	1.01	33	0	SSC: 18–3,710	735	161
<i>Escherichia coli</i> bacteria (ECB), colonies/100 mL														
log(ECB)= 1.69log(TBY)-1.04	OLS	App. 14	0.791	--	0.289	0.538	0.538	158	1.85	34	0	ECB: 6.00–41,000	4,510	64.0

^aPseudo- R^2 is computed using the McKelvey-Zavoina method (McKelvey and Zavoina, 1975). For uncensored data, pseudo- R^2 is equal to the R^2 value for ordinary least squares.

managers, association with State water-quality criteria or impairments, previously published Kansas River models (Rasmussen and others, 2005; Foster and Graham, 2016; Williams, 2021), and overall dataset suitability for model development. If censored data were present in a constituent's model-calibration dataset, then Tobit regression estimation was used to develop models using the absolute maximum likelihood estimation procedure (Hald, 1949; Cohen, 1950; Tobin, 1958; Helsel and others, 2020). Absolute maximum likelihood estimation was used to develop the model that computes continuous concentrations of total suspended solids. Percentages of censored data and the model estimation method for each water-quality constituent are reported in **table 1** and appendixes 1–14.

Chlorophyll *a* and *E. coli* bacteria sample data included some results qualified as "estimated" in accordance with standard laboratory quality-assurance procedures. Estimated results were investigated as potential outliers by confirming correct database entry, evaluating laboratory analytical performance, and reviewing all field notes associated with the samples in question (Rasmussen and others, 2009). Estimated results within the chlorophyll *a* and *E. coli* bacteria model-calibration datasets are identified in appendixes 11 and 14, respectively; were not determined to have errors associated with sample collection, processing, or analysis; and were therefore considered valid.

Potential explanatory variables that were considered during linear regression model development were continuous streamflow, water temperature, specific conductance, dissolved oxygen, turbidity, chlorophyll and phycocyanin fluorescence, and seasonal components (sine and cosine variables). Potential explanatory variables were evaluated individually and in combination and were interpolated by discrete water-quality sample time within the 15-minute continuous record. Explanatory variable data were not interpolated by sample time if the sample time coincided with a gap in the continuous record (because of excessive fouling, equipment malfunction, or equipment removal) that exceeded 2 hours (Williams, 2021). If gaps in the continuous record exceeded 2 hours and prevented interpolation based on discrete water-quality sample time, then data collected using water-quality monitors during discrete sample collection were used for inclusion in the model-calibration dataset.

Preliminary linear regression models were evaluated based on range and distribution of continuous and discrete model-calibration data, patterns in residual plots, and the following model diagnostic statistics: adjusted coefficient of determination (R^2), pseudo- R^2 (computed for Tobit regression models only; McKelvey and Zavoina, 1975), Mallows' C_p (Mallows, 1973), root mean square error ($RMSE$), and prediction error sum of squares ($PRESS$; Rasmussen and others, 2009; Helsel and others, 2020). The best linear regression model was selected for each response variable (total dissolved solids, calcium, magnesium, sodium, sulfate, chloride, hardness as calcium carbonate, total nitrogen [particulate plus dissolved nitrogen], TKN, total phosphorus, chlorophyll *a*, total

suspended solids, suspended sediment, and *E. coli* bacteria) when variance explained by the model (adjusted R^2 or pseudo- R^2) was maximized and greater than or equal to 0.60, model precision was high and model bias was low (Mallows' C_p), uncertainty in model computations was minimized ($RMSE$ and $PRESS$), and heteroscedasticity (irregular scatter) was minimal in residual plots (Rasmussen and others, 2009; Helsel and others, 2020). Potential explanatory variables were not included in the final selected regression model if they had a probability greater than 0.05. Model simplicity and previously published explanatory variables at other Kansas River sites (Rasmussen and others, 2005; Foster and Graham 2016; Williams, 2021) also were considered during the model selection process.

Logarithmic transformations (logarithm with base 10 [log] transformations) of the response and explanatory variables were used during model development if heteroscedasticity was apparent in plots of response variable residuals compared to model computed values (shown in appendixes 1–14). If log transformations were used in the final selected model, a bias correction factor was computed and used for the retransformation of log-transformed computations back into their original units (Duan, 1983) to reduce inherent negative bias introduced by log transformations (Helsel and others, 2020).

Multiple explanatory variables for a given linear regression model were considered if the additional variable increased the variance (as indicated by adjusted R^2 or pseudo- R^2) explained by the model by at least 5 percent, decreased Mallows' C_p , minimized $RMSE$ and $PRESS$, and minimized heteroscedasticity in residual plots. Additionally, multiple explanatory variables were considered for inclusion in the final selected model if their variance inflation factors (Marquardt, 1970) were less than 4, indicating minimal multicollinearity (O'Brien, 2007; Vatcheva and others, 2016; Helsel and others, 2020).

Potential outliers initially were identified by viewing bivariate plots of the model-calibration data for each set of response and explanatory variables (Rasmussen and others, 2009). Studentized residuals from preliminary models were inspected for values greater than three or less than negative three (Pardoe, 2020). Values outside of that range were considered potential outliers and were investigated. Additionally, computations of leverage, Cook's distance, and difference in fits statistics were used to estimate potential outlier effect on the final selected regression model (Cook, 1977; Helsel and others, 2020). Outliers were investigated for potential removal from the model-calibration dataset by confirming correct database entry, evaluating laboratory analytical performance, and reviewing field notes associated with the sample in question (Rasmussen and others, 2009). Outlier identification and justification for removal are included, when applicable, in appendixes 1–14. Model development methodology is described in additional detail in appendixes 1–14.

Developed Regression Models

Linear regression models that compute continuous water-quality constituent concentrations or densities of total dissolved solids, calcium, magnesium, sodium, sulfate, chloride, hardness as calcium carbonate, total nitrogen (particulate plus dissolved nitrogen), TKN, total phosphorus, chlorophyll *a*, total suspended solids, suspended sediment, and *E. coli* bacteria were developed. A single model was selected for each constituent. Each model form, model diagnostic statistics, and data summary statistics are listed in [table 1](#). Model archival summaries that document model development information, statistical output (R Core Team, 2022), and model-calibration datasets are provided in appendixes 1–14.

Total Dissolved Solids, Major Ions, and Hardness

Specific conductance was the single explanatory variable used to model for total dissolved solids, calcium, magnesium, sodium, sulfate, chloride, and hardness as calcium carbonate at the Topeka site ([table 1](#); appendixes 1–7). Specific conductance, a measure of the surface water's ability to conduct an electrical current, is positively correlated with total dissolved solids and other charged ionic species (Hem, 1985) and explained about 93–98 percent of the variance (as indicated by adjusted R^2) in total dissolved solids, major ions, and hardness as calcium carbonate concentrations ([table 1](#); appendixes 1–7). Specific conductance was also the single explanatory variable used to model for these constituents in previously published models at the Wamego and De Soto sites (Rasmussen and others, 2005; Foster and Graham, 2016; Williams, 2021).

Total Nitrogen, Total Kjeldahl Nitrogen, Total Phosphorus, and Chlorophyll *a*

Turbidity was the single explanatory variable used to model for total nitrogen, TKN, and total phosphorus at the Topeka site ([table 1](#); appendixes 8–10). Turbidity, a measure of surface-water clarity caused by the presence of suspended and dissolved material, typically increases during precipitation runoff events. Nutrients, as well as other contaminants, tend to physically bind to suspended and dissolved material in the Kansas River (Rasmussen and others, 2005; Graham and others, 2018). Turbidity explained about 74, 92, and 91 percent of variability in total nitrogen, TKN, and total phosphorus concentrations, respectively ([table 1](#)). The TKN model may overestimate computed TKN concentrations in the low (0.0 to 0.70 mg/L) and high (3.11 to 4.73 mg/L) ranges and underestimate computed TKN concentrations in the middle range (0.71 to 3.10 mg/L) because of larger scatter observed in plots of residual and regression computed TKN and residual TKN and turbidity (appendix 9). Additional TKN model-calibration data may improve this limitation in the future. Turbidity also

was selected as an explanatory variable for nutrient (nitrogen and phosphorus species) models published by Rasmussen and others (2005), Foster and Graham (2016), and Williams (2021) at the Wamego and De Soto sites.

Chlorophyll fluorescence was the single explanatory variable used to model for chlorophyll *a* at the Topeka site ([table 1](#); appendix 11). Although an unknown level of uncertainty is inherent to fluorescence sensors (because of nonphotochemical quenching, matrix effects, and variable fluorescence responses of differing plankton communities [Foster and others, 2022]), chlorophyll fluorescence makes physical and statistical sense as an explanatory variable for chlorophyll *a* because chlorophyll *a* pigments fluoresce when irradiated by certain wavelengths of light emitted from the chlorophyll fluorescence sensor. Chlorophyll fluorescence explained about 81 percent of the variability in chlorophyll *a* concentration. The chlorophyll *a* model may overestimate computed chlorophyll *a* concentration in the upper range based on irregular scatter in the plot of observed and regression computed chlorophyll *a* (appendix 11). Additional chlorophyll *a* model-calibration data may improve this limitation in the future. Chlorophyll fluorescence was also the single explanatory variable used to model for chlorophyll *a* concentration in the models previously published by Williams (2021) at the Wamego and De Soto sites.

Total Suspended Solids and Suspended Sediment

Turbidity was the single explanatory variable used to model for total suspended solids and suspended sediment at the Topeka site ([table 1](#); appendixes 12 and 13). Turbidity was positively correlated with total suspended solids and suspended sediment and explained about 94 and 99 percent of the variance in these constituents, respectively. Turbidity was also the single explanatory variable used to model for these constituents in the models previously published by Rasmussen and others (2005), Foster and Graham (2016; did not publish models for total suspended solids), and Williams (2021) at the Wamego and De Soto sites.

Escherichia coli Bacteria

Turbidity was the single explanatory variable used to model for *E. coli* bacteria at the Topeka site ([table 1](#); appendix 14), likely because *E. coli* tend to physically bind to suspended material. Turbidity explained about 79 percent of the variance in *E. coli* density and was also the single explanatory variable used to model for *E. coli* models previously published by Rasmussen and others (2005), Foster and Graham (2016; published *E. coli* model for De Soto site only), and Williams (2021) at the Wamego and De Soto sites.

Summary

Water suppliers rely on the Kansas River and its alluvial aquifer to supply drinking water to more than 950,000 people throughout northeastern Kansas. They use numerous physiochemical processes to treat and remove contaminants from source water before public distribution. An early-notification system of changing water-quality conditions near water-supply intakes allows water suppliers to proactively make decisions that affect water treatment. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas Water Plan), the Kansas Department of Health and Environment, The Nature Conservancy, the City of Lawrence, the City of Manhattan, the City of Olathe, the City of Topeka, WaterOne, and Evergy, established a new continuous and discrete water-quality monitoring site at the Kansas River above Topeka Weir at Topeka, Kansas (USGS site 06888990; hereafter referred to as the “Topeka site”), in November 2018 to expand the Kansas River water-quality monitoring network by adding an intermediate location between the existing monitoring sites at Wamego (upstream) and De Soto (downstream), Kans. The continuous and discrete water-quality data were collected by the USGS at the Topeka site over the range of observed streamflow conditions during November 2018 through June 2021 and were used to develop new linear regression models and expand the early-notification system of changing water-quality conditions that may affect water treatment. Continuous water-quality data collected at the site were water temperature, specific conductance, pH, dissolved oxygen, turbidity, and chlorophyll and phycocyanin fluorescence. All discrete water-quality samples were analyzed for total dissolved solids, major ions, hardness as calcium carbonate, nutrients (nitrogen and phosphorus species), chlorophyll *a*, total suspended solids, suspended sediment, and *Escherichia coli* bacteria. Models that relate the continuous water-quality sensor measurements to discrete sample water-quality constituent concentrations or densities were developed for total dissolved solids, calcium, magnesium, sodium, sulfate, chloride, hardness as calcium carbonate, total nitrogen [particulate plus dissolved nitrogen], total Kjeldahl nitrogen, total phosphorus, chlorophyll *a*, total suspended solids, suspended sediment, and *Escherichia coli* bacteria. Evaluating model performance on an ongoing basis will be necessary to continue to provide model computations in the future. Additional model-calibration data collected during conditions outside of those observed during the study period may improve future model performance.

The models documented in this report provide real-time computations of water-quality constituent concentrations or densities that are not easily measured in real time. Model computations are useful to the public for cultural and recreational purposes and can be used to characterize water-quality conditions that may affect drinking-water treatment at the Topeka site, compare to previously published model-computed concentrations or densities at the Wamego and De Soto sites, compare conditions with Federal and State water-quality criteria, and evaluate changes in water-quality conditions in the Kansas River through time.

References Cited

- Arar, E.J., and Collins, G.B., 1997, Method 445.0—In vitro determination of chlorophyll *a* and pheophytin *a* in marine and freshwater algae by fluorescence (rev. 1.2): U.S. Environmental Protection Agency, Office of Research and Development, 22 p.
- Bennett, T.J., Graham, J.L., Foster, G.M., Stone, M.L., Juracek, K.E., Rasmussen, T.J., and Putnam, J.E., 2014, U.S. Geological Survey quality-assurance plan for continuous water-quality monitoring in Kansas, 2014: U.S. Geological Survey Open-File Report 2014-1151, 34 p. plus appendixes, accessed April 2022 at <https://doi.org/10.3133/ofr20141151>.
- Cohen, A.C., Jr., 1950, Estimating the mean and variance of normal populations from singly truncated and doubly truncated samples: Annals of Mathematical Statistics, v. 21, no. 4, p. 557–569, accessed April 2022 at <https://doi.org/10.1214/aoms/1177729751>.
- Cook, R.D., 1977, Detection of influential observations in linear regression: Technometrics, v. 19, no. 1, p. 15–18. [Also available at <https://www.jstor.org/stable/1268249>.]
- Duan, N., 1983, Smearing estimate—A nonparametric retransformation method: Journal of the American Statistical Association, v. 78, no. 383, p. 605–610. [Also available at <https://doi.org/10.1080/01621459.1983.10478017>.]
- Edwards, T.K., and Glysson, D.G., 1999, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. C2, 89 p. [Also available at <https://doi.org/10.3133/twri03C2>.]
- Fishman, M.J., and Friedman, L.C., 1989, Methods for determination of inorganic substances in water and fluvial sediments (3d ed.): U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, 545 p. [Also available at <https://doi.org/10.3133/twri05A1>.]
- Foster, G.M., and Graham, J.L., 2016, Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015: U.S. Geological Survey Open-File Report 2016-1040, 27 p., accessed April 2022 at <https://doi.org/10.3133/ofr20161040>.

- Foster, G.M., Graham, J.L., Bergamaschi, B.A., Carpenter, K.D., Downing, B.D., Pellerin, B.A., Rounds, S.A., and Saraceno, J.F., 2022, Field techniques for the determination of algal pigment fluorescence in environmental waters—Principles and guidelines for instrument and sensor selection, operation, quality assurance, and data reporting: U.S. Geological Survey Techniques and Methods, book 1, chap. D10, 34 p. [Also available at <https://doi.org/10.3133/tm1D10>.]
- Fry, J.A., Xian, G.S., Jin, S., Dewitz, J., Homer, C.G., Yang, L., Barnes, C.A., Herold, N.D., and Wickham, J.D., 2011, Completion of the 2006 National Land Cover Database for the conterminous United States: Photogrammetric Engineering and Remote Sensing, v. 77, no. 9, p. 858–864.
- Graham, J.L., Foster, G.M., Williams, T.J., Mahoney, M.D., May, M.R., and Loftin, K.A., 2018, Water-quality conditions with an emphasis on cyanobacteria and associated toxins and taste-and-odor compounds in the Kansas River, Kansas, July 2012 through September 2016: U.S. Geological Survey Scientific Investigations Report 2018–5089, 55 p. [Also available at <https://doi.org/10.3133/sir20185089>.]
- Graham, J.L., Ziegler, A.C., Loving, B.L., and Loftin, K.A., 2012, Fate and transport of cyanobacteria and associated toxins and taste-and-odor compounds from upstream reservoir releases in the Kansas River, Kansas, September and October 2011: U.S. Geological Survey Scientific Investigations Report 2012–5129, 65 p. [Also available at <https://doi.org/10.3133/sir20125129>.]
- Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. C1, 58 p. [Also available at <https://doi.org/10.3133/twri05C1>.]
- Hald, A., 1949, Maximum likelihood estimation of the parameters of a normal distribution which is truncated at a known point: Scandinavian Actuarial Journal, v. 1949, no. 1, p. 119–134. [Also available at <https://doi.org/10.1080/03461238.1949.10419767>.]
- Helsel, D.R., Hirsch, R.M., Ryberg, K.R., Archfield, S.A., and Gilroy, E.J., 2020, Statistical methods in water resources: U.S. Geological Survey Techniques and Methods, book 4, chap. A3, 458 p. [Also available at <https://doi.org/10.3133/tm4A3>.] [Supersedes USGS Techniques of Water-Resources Investigations, book 4, chap. A3, version 1.1.]
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p, 4 pls. [Also available at <https://doi.org/10.3133/wsp2254>.]
- Kansas Department of Health and Environment, 2011, Kansas-Lower Republican Basin [total maximum daily load]: Kansas Department of Health and Environment web page, accessed April 2022 at <https://www.kdhe.ks.gov/1455/Kansas-Lower-Republican-River-Basin>.
- Mallows, C.L., 1973, Some comments on C_p : Technometrics, v. 15, no. 4, p. 661–675, accessed April 2022 at <https://doi.org/10.1080/00401706.1973.10489103>.
- Marquardt, D.W., 1970, Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation: Technometrics, v. 12, no. 3, p. 591–612. [Also available at <https://doi.org/10.2307/1267205>.]
- McKelvey, R.D., and Zavoina, W., 1975, A statistical model for the analysis of ordinal level dependent variables: The Journal of Mathematical Sociology, v. 4, no. 1, p. 103–120. [Also available at <https://doi.org/10.1080/0022250X.1975.9989847>.]
- Mueller, D.K., Schertz, T.L., Martin, J.D., and Sandstrom, M.W., 2015, Design, analysis, and interpretation of field quality-control data for water-sampling projects: U.S. Geological Survey Techniques and Methods, book 4, chap. C4, 54 p., accessed April 2022 at <https://doi.org/10.3133/tm4C4>.
- Myers, D.N., Stoeckel, D.M., Bushon, R.N., Francy, D.S., and Brady A.M.G., 2014, Chapter A7.1, Fecal indicator bacteria: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A7.1. [Also available at <https://doi.org/10.3133/twri09A7.1>.]
- O'Brien, R.M., 2007, A caution regarding rules of thumb of variance inflation factors: Quality & Quantity, v. 41, no. 5, p. 673–690, accessed April 2022 at <https://doi.org/10.1007/s11135-006-9018-6>.
- Pardoe, I., 2020, Applied regression modeling (3d ed.): United Kingdom, John Wiley & Sons, 336 p.
- R Core Team, 2022, R—A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing software release, accessed April 2022 at <https://www.r-project.org/>.
- Rasmussen, P.P., Gray, J.R., Glysson, G.D., and Ziegler, A.C., 2009, Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity sensor and streamflow data: U.S. Geological Survey Techniques and Methods, book 3, chap. C4, 53 p. [Also available at <https://doi.org/10.3133/tm3C4>.]

- Rasmussen, T.J., Bennett, T.J., Stone, M.L., Foster, G.M., Graham, J.L., and Putnam, J.E., 2014, Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014: U.S. Geological Survey Open-File Report 2014-1233, 41 p., accessed April 2022 at <https://doi.org/10.3133/ofr20141233>.
- Rasmussen, T.J., Ziegler, A.C., and Rasmussen, P.P., 2005, Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003: U.S. Geological Survey Scientific Investigations Report 2005-5165, 117 p. [Also available at <https://doi.org/10.3133/sir20055165>.]
- Sauer, V.B., and Turnipseed, D.P., 2010, Stage measurement at gaging stations: U.S. Geological Survey Techniques and Methods, book 3, chap. A7, 45 p., accessed April 2022 at <https://doi.org/10.3133/tm3A7>.
- Tobin, J., 1958, Estimation of relationships for limited dependent variables: *Econometrica*, v. 26, no. 1, p. 24–36. [Also available at <https://doi.org/10.2307/1907382>.]
- Turnipseed, D.P., and Sauer, V.B., 2010, Discharge measurements at gaging stations: U.S. Geological Survey Techniques and Methods, book 3, chap. A8, 87 p., accessed April 2022 at <https://doi.org/10.3133/tm3A8>.
- U.S. Army Corps of Engineers, 2017, Lakes in the Kansas City district: U.S. Army Corps of Engineers, web page, accessed April 2022 at <https://www.nwk.usace.army.mil/Locations/>.
- U.S. Geological Survey, 2006, Collection of water samples (ver. 2.0, September 2006): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A4, 166 p. [Also available at <https://doi.org/10.3133/twri09A4>.]
- U.S. Geological Survey, 2016, Policy and guidance for approval of surrogate regression models for computation of time series suspended-sediment concentrations and loads: U.S. Geological Survey Office of Water Quality Technical Memorandum no. 2016.10, accessed April 2022 at <https://water.usgs.gov/admin/memo/QW/qw2016.10.pdf>.
- U.S. Geological Survey, 2017, Procedures for processing, approving, publishing, and auditing time-series records for water data: U.S. Geological Survey Office of Water Quality Technical Memorandum no. 2017.07, accessed April 2022 at <https://water.usgs.gov/admin/memo/QW/qw2017.07.pdf>.
- U.S. Geological Survey, 2022, USGS water data for the Nation: U.S. Geological Survey National Water Information System database, accessed April 2022 at <https://doi.org/10.5066/F7P55KJN>.
- Vatcheva, K.P., Lee, M., McCormick, J.B., and Rahbar, M.H., 2016, Multicollinearity in regression analyses conducted in epidemiologic studies: *Epidemiology*, v. 6, no. 2, 9 p., accessed April 2022 at <https://doi.org/10.4172/2161-1165.1000227>.
- Wagner, R.J., Boulger, R.W., Jr., Oblinger, C.J., and Smith, B.A., 2006, Guidelines and standard procedures for continuous water-quality monitors—Station operation, record computation, and data reporting: U.S. Geological Survey Techniques and Methods, book 1, chap. D3, 51 p. plus 8 attachments. [Also available at <https://doi.org/10.3133/tm1D3>.] [Supersedes USGS Water-Resources Investigations Report 2000-4252.]
- Williams, T.J., 2021, Linear regression model documentation and updates for computing water-quality constituent concentrations or densities using continuous real-time water-quality data for the Kansas River, Kansas, July 2012 through September 2019: U.S. Geological Survey Open-File Report 2021-1018, 18 p., accessed April 2022 at <https://doi.org/10.3133/ofr20211018>.
- YSI, Inc., 2017, EXO user manual—Advanced water quality monitoring platform (rev. G): Yellow Springs, Ohio, YSI, Inc., 154 p., accessed April 2022 at <https://www.ysi.com/file%20library/documents/manuals/exo-user-manual-web.pdf>.
- Zar, J.H., 1999, Biostatistical analysis (4th ed.): New Jersey, Prentice-Hall Inc., 663 p.

Appendices 1–14. Model Archival Summaries

The model archival summaries for this report, provided in appendixes 1–14, are available for download at <https://doi.org/10.3133/sir20225130>. A list of the appendix titles is included for the convenience of the reader:

- Appendix 1. Model Archival Summary for Total Dissolved Solids Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 2. Model Archival Summary for Calcium Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 3. Model Archival Summary for Magnesium Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 4. Model Archival Summary for Sodium Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 5. Model Archival Summary for Sulfate Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 6. Model Archival Summary for Chloride Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 7. Model Archival Summary for Hardness Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 8. Model Archival Summary for Total Nitrogen Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 9. Model Archival Summary for Total Kjeldahl Nitrogen Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 10. Model Archival Summary for Total Phosphorus Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 11. Model Archival Summary for Chlorophyll *a* Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 12. Model Archival Summary for Total Suspended Solids Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021
- Appendix 13. Model Archival Summary for Suspended-Sediment Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during December 2018 through June 2021
- Appendix 14. Model Archival Summary for *Escherichia coli* Bacteria Concentration at U.S. Geological Survey Site 06888990, Kansas River above Topeka Weir at Topeka, Kansas, during November 2018 through June 2021

For more information about this publication, contact:

Director, USGS Kansas Water Science Center
1217 Biltmore Drive
Lawrence, KS 66049
785-842-9909

For additional information, visit: <https://www.usgs.gov/centers/kswsc>

Publishing support provided by the
Rolla Publishing Service Center

