USGS

science for a changing world




Cover. Inset: View looking downstream at U.S. Geological Survey streamgage
Wailupe Gulch at E. Hind Dr. Bridge, Oahu, HI (16247550). Photograph taken by
Timothy R. Brunetto, U.S. Geological Survey, September 27, 2017.

Background: View looking downstream and showing a drastic change

in channel morphology following major flooding at U.S. Geological Survey
streamgage Wailupe Gulch at E. Hind Dr. Bridge, Oahu, HI (16247550). Photograph
taken by Timothy R. Brunetto, U.S. Geological Survey, April 16, 2018.



Magnitude and Frequency of Floods on
Kaua‘i, 0‘ahu, Moloka‘i, Maui, and Hawai‘i,
State of Hawai‘i, Based on Data through
Water Year 2020

By Jackson N. Mitchell, Daniel M. Wagner, and Andrea G. Veilleux

Prepared in cooperation with the State of Hawai‘i Department of Transportation

Scientific Investigations Report 20235014

U.S. Department of the Interior
U.S. Geological Survey



U.S. Geological Survey, Reston, Virginia: 2023

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources,
natural hazards, and the environment—uvisit https://www.usgs.gov or call 1-888—ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit
https://store.usgs.gov/.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials
as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Mitchell, J.N., Wagner, D.M., and Veilleux, A.G., 2023, Magnitude and frequency of floods on Kaua'‘i, 0‘ahu, Moloka‘i,
Maui, and Hawai'‘i, State of Hawai‘i, based on data through water year 2020: U.S. Geological Survey Scientific
Investigations Report 2023-5014, 66 p. plus 4 appendixes, https://doi.org/10.3133/sir20235014.

Associated data for this publication:
Mitchell, J.N., 2022, Geospatial datasets for watershed delineation used in the update of Hawai‘i StreamStats, 2022:
U.S. Geological Survey data release, https://doi.org/10.5066/PIN61WJ7.

Mitchell, J.N., 2022, Basin characteristic rasters used in the update of Hawai‘i StreamStats, 2022: U.S. Geological
Survey data release, https://doi.org/10.5066/P9TOQANM.

Mitchell, J.N., and Wagner, D.M., 2023, Data in support of flood-frequency report—Magnitude and frequency of
floods on Kaua‘i, 0‘ahu, Moloka'i, Maui, and Hawai‘i, State of Hawai'‘i, based on data through water year 2020:
U.S. Geological Survey data release, https://doi.org/10.5066/P9GGPPV5.

ISSN 2328-0328 (online)


https://doi.org/10.3133/sir20235014
https://doi.org/10.5066/P9N61WJ7
https://doi.org/10.5066/P9TOQANM
https://doi.org/10.5066/P9GGPPV5

Contents
ADSTIACT ..ttt bbb A Rt b b s At s b s ae bt nas 1
oo VT3 T 3OO 1
PUIPOSE @NA SCOPE ..ottt bbb bbbt 9
PrEVIOUS STUIES ...eoceeececteeecteeteee ettt ettt s st a st sen st b ae st 9
DeSCription Of STUAY ArBa ...c.cvecvicreeceeeieeteeee ettt s bbb bbb aens 9
ClIMALE ettt bbb bbb a bbbt naen 10
RAINTAIL ..ottt bbbt 10
El Nifo-Southern Oscillation, Pacific Decadal Oscillation, and the Pacific
N L0 LA 1= T T 10
Trends in Extreme Rainfall..........cocicsccscs s 1
Flood Characteristics
Land Cover ......coveverreenns
Data Collection and Compilation
Streamgage Selection and Peak-FIOW Data ........cceuveuvereierneinsiie e 12
Trends i PEAK FIOWS ...ttt ettt ssnsnsenans 13
Methods for Trend ANAIYSES ... 13
Peak-FIOW Trend RESUILS .......cccueviececte ettt 15
Physical and Climatic Basin CharaCteriStiCs ......ouvueverreiereeeeeeeee et seses 20
Basin DeliNEAtiONS......c.cceuiciecie ettt 20
BaSin CharaCteriSTiCS. ..o cueruireeeceeteeteeeectee ettt se ettt ettt enaen 20
Magnitude and Frequency of Floods at Gaged SitesS.........cceeeecerreeeneceee e 23
Regional SKeW COBfICIBNT ...ttt 24
Expected Moments Algorithm Frequency ANalySis .......ooverrrneerereeneneereeeeseeseeeeeseeseesenes 25
Flow Intervals and Perception Thresholds
ContinUOUS-RECOIA GAGES ....cuvueviecteeecteteeee ettt bbb naen
O eI By Yo [= T G o[- PP
Low Outliers Identified with the Multiple Grubbs-Beck Test........cccccvvieveccnecerevecrrenn, 26
Flood-Frequency Estimates at Gaged SItes .....ccccvcvieeerverccreeeeeeeeeee e 26
Magnitude and Frequency of Floods at Ungaged SiteS ........ccvrrerreriernieneiseineiessssessssse e 27
Elimination of RedUNAant SiteS.....cccvruireieirrreireeeetss st ssssssessees
Exploratory Data Analysis.............
Regional Regression Equations
Example Using a Peak-Flow Regression EQUation........cccceeeeveecieecceicee e 34
ASSESSMENT OF Fit. oot s s 34
Accuracy and Limitations of Regional Regression EQUations .........ccoeverererenseneenenensiseeneinenns 34
Uncertainty of Individual Estimates Computed Using the Regression Equations................... 37
Application of METNOUS. ..ot
Weighting Flood-Frequency Estimates at Gaged Sites
Example of Weighting a Peak-Flow Estimate with Observed and Predicted Values.....39
Weighting Flood-Frequency Estimates at Ungaged Sites with Data from a Nearby Gage.....40
Comparison of Results With Previous StUdIBS ..o sessesssssnens 40
Estimating Flow Statistics USing StreamStats ...t 45
SUMMATY ..ottt bbb s bbb bbb s bbb s s bbb b et bt es st n b s nans 46

ACKNOWIBAGMENTS ..ottt ettt ettt st saees 46



RETEIENCES CItB.......ceeeeecectee ettt bttt bbbt s sttt s s 47
Appendix 1. Streamgages Considered for Flood-Frequency Analysis, State of Hawai'i ............. 54
Appendix 2. Summary of Mann-Kendall and Pettitt Trend-Test Results for the
Peak-Flow Data Used in this Study, State of Hawai‘i........cccccvevevicecrcseeeccseseeeeeeee 55
Appendix 3. Regional Skew Regression Analysis for State of Hawai‘i .......cccoeveeerneiveverieinninnnnes 56
Appendix 4. Magnitude, Variance, and Prediction Intervals of Annual Exceedance
Probability Floods for Selected Streamgages in the State of Hawai‘i ........c.cccocoevveervicnncee. 66
Figures
1. Map showing distribution of mean annual rainfall, State of Hawai‘i.......cccccoovvrrrrninenee 3
2. Map showing streamgages with at least 10 years of usable peak-flow data,
Kaua'i, State 0f HAWAI T ....cc.overeeiecsei et 4
3. Map showing streamgages with at least 10 years of usable peak-flow data,
0'ahu, State Of HAWAI T ...ttt ssees 5
4. Map showing streamgages with at least 10 years of usable peak-flow data,
MoloKa'‘i, State 0f HAWAI‘T c.veveeeceeecreeeeeeecectcee ettt ss et st naene 6
5. Map showing streamgages with at least 10 years of usable peak-flow data,
Maui, State Of HAWAI L. ...cueeeeeecereireieeeisesese st ssees 7
6. Map showing streamgages with at least 10 years of usable peak-flow data,
Island of Hawai'i, State 0f HAWaI'i......ccouviuiereeireseeeese e ssees 8
7. Graph showing the total number of annual peak discharges used for each year
in this study, State of Hawai‘i, 19112021 ..ot 14
8. Graph showing the percentage of annual peak discharges by month for this
study, State of HAWAIT ..c.cuieeececcccceee e s 14
9. Graph showing the temporal availability of peak-flow data for each region and
island in the study area, State of HAWai‘i .....cccoeveuveeeecreieseeecse s 16
10. Graphs showing the number of annual peaks used for each year in the study

11.

12.

13.

14,

15.

and a flag plot showing the percentage of streamgages with statistically
significant increasing and decreasing monotonic trends in annual peak

discharge, State 0f HAWaI ..ottt enen 17
Graph showing the percentage of streamgages with statistically significant

decadal trends in annual peak discharge, State of Hawai‘i........cccccovuvevervcrvenircrccrincrnnnees 18
Graph showing the results of the Pettitt test for step trends applied to

peak-flow data from streamgages used in this study, State of Hawai‘i......c..ccccocovvnrenne. 19

Graph showing an example of output from flood-frequency software PeakFQ

version 7.3 for U.S. Geological Survey station 16247000 Palolo Stream near

Honolulu, O‘ahu, Hawai'i, using expected moments algorithm with Multiple
Grubbs-Beck Test and station SKEW ONIY ..o seeseesenes 24

Graph showing an example of output from flood-frequency software PeakFQ

version 7.3 containing potentially influential low floods for U.S. Geological

Survey station 16103000 Hanalei River nr Hanalei, Kaua‘i, HI, using expected

moments algorithm with Multiple Grubbs-Beck Test and station skew only................... 27
Graphs showing comparisons between the 0.01 annual exceedance probability

peak discharges estimated from the Log-Pearson Type Il frequency curve and

the regional regression equations, State of Hawai‘i .......ccocveeveeecneneiececesseneseeeene 35



Tables

1.

Graphs showing the residuals from the regional regression equations for the

0.01 annual exceedance probability peak discharges, State of Hawai'i...........cccccuun...... 36
Graphs showing comparisons between the 0.01 annual exceedance probability

peak discharges from this study with the previously published estimates for the

220 streamgages included in both STUAIES ....c.vuvveeeeerrrrrercree e 1M

Boxplots showing comparisons between the annual exceedance probability
peak discharges from this study with the previously published estimates for the
220 streamgages included in both StUdIES ......ccccvevcceeecece e 42

Annual exceedance probabilities and corresponding recurrence intervals for
frequency of floods on Kaua‘i, 0‘ahu, Moloka‘i, Maui, and Hawai‘i, State of Hawaifi......2
Comparison of annual peak-flow data used in this study through water year

2020 relative to data used in previous U.S. Geological Survey flood-frequency

Study, State Of HAWAI T ... 9
Selected drainage-basin characteristics evaluated in regional regression
analysis for this study, State 0f HAWai i ..o 21

General perception-threshold and flow-interval settings applied to peak-flow
data in the expected moments algorithm analysis to estimate peak-flow
statistics at streamgages, State of Hawai‘i......coccoevvnerecescnesecsesee e 26

Regional regression equations and performance metrics for estimating peak
discharges for selected annual exceedance probabilities for ungaged streams

INthe STate Of HAWAI T ...c..ciueeceecececeece ettt bbb 30
Ranges of basin characteristics used to develop 10 regional regression
equations, State 0f HAWAI i ......c.c.ccuececece e 33

Selected results of regional peak-flow regression equations developed by this
study compared to those from Oki and others (2010)..........ccoeueevererrereeeesesee s 44



Vi

Conversion Factors

U.S. customary units to International System of Units

Multiply By To obtain

Length
inch (in.) 254 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

acre 4,047 square meter (m?)
square mile (mi?) 2.590 square kilometer (km?)

Volume
cubic foot (ft3) 0.02832 cubic meter (m?)

Flow rate
cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
cubic foot per second per square 0.01093 cubic meter per second per square

mile ([ft/s]/mi?) kilometer ([m?3/s]/km?)

gallon per day (gal/d) 0.003785 cubic meter per day (m?3/d)

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/18.

Datums

Vertical coordinate information is referenced to mean sea level.

Horizontal coordinate information is referenced to North American Datum of 1983 (NAD 83).

Altitude, as used in this report, refers to distance above the vertical datum.



Bayesian weighted least squares/Bayesian generalized least squares

Abbreviations

AEP annual exceedance probability
ANOVA analysis of variance

AVP average variance of prediction
B-WLS/B-GLS

DAR drainage area ratio

DEM digital elevation model

EMA expected moments algorithm
GIS geographic information system
GLS generalized least squared

LTP long-term persistence

MEV model error variance

MGBT Multiple Grubbs-Beck Test
NAD 83 North American Datum of 1983
NED National Elevation Dataset
NHD National Hydrography Dataset
NWIS National Water Information System
OLS ordinary least squares

PILF potentially influential low flood
R? coefficient of determination
SEP standard error of prediction
STP short-term persistence

USGS U.S. Geological Survey

WLS weighted least squares

WREG

Weighted-Multiple-Linear Regression (software program)

vii






Magnitude and Frequency of Floods on Kaua‘i, 0‘ahu,
Moloka‘i, Maui, and Hawai‘i, State of Hawai‘i, Based on

Data through Water Year 2020

By Jackson N. Mitchell, Daniel M. Wagner, and Andrea G. Veilleux

Abstract

Accurate estimates of flood magnitude and frequency
are needed to (1) optimize the design and location of
infrastructure, including dams, culverts, bridges, industrial
buildings, and highways, and (2) inform flood-zoning and
flood-insurance studies. The U.S. Geological Survey (USGS),
in cooperation with the State of Hawai‘i Department of
Transportation, estimated flood magnitudes for the 50-,

20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance
probabilities (AEP) for unregulated streamgages in Kaua‘i,
O¢ahu, Moloka‘i, Maui, and Hawai‘i, State of Hawai‘i,
using data through water year 2020. Regression equations
were developed to estimate flood magnitude and associated
frequency at ungaged streams. This study improves upon

a previous USGS flood-frequency report (Oki and others,
2010) by including more peak-flow data, implementing
new statistical methods in flood-frequency analysis, and
using updated techniques to estimate the regional-skewness
coefficient (regional skew).

Flood magnitude and frequency at 238 streamgages
were estimated—following national guidelines established in
Bulletin 17C (England and others, 2019)—by fitting annual
peak-flow data to the Log-Pearson Type III distribution
using the expected moments algorithm and the PeakFQ
flood-frequency software. Potentially influential low outliers
in the data were identified and removed using the Multiple
Grubbs-Beck Test. An updated regional skew for Hawai‘i was
estimated using the Bayesian weighted least squares/Bayesian
generalized least squares method. The updated regional skew
employs a constant model for the five islands in the study area
and has a value of —0.157 (mean square error of 0.212).

Multiple linear regression techniques were used to
develop regression equations that relate basin and climatic
characteristics to peak flows at streamgages. The regression
equations can be applied to estimate flood magnitude and
frequency at ungaged sites. The study area was split into
10 regions—2 regions per island, generally following
a leeward/windward division—containing from 9 to 49
streamgages each. The final regression equations for each

region were determined with generalized least-squares analysis
using the USGS weighted-multiple-linear regression (WREG)
program. The standard error of prediction at the 1-percent AEP
for the regression equations ranged from 18 to 164 percent;
the pseudo coefficient of determination (pseudo-R?) at the
1-percent AEP ranged from 46 to 100 percent. The regression
equations performed well for all regions except leeward
Moloka‘i and southern Island of Hawai‘i; for all other regions,
the pseudo-R? values ranged from about 75 to 100 percent.
Compared to the regression equations developed by Oki and
others (2010), the regression equations in this study generally
showed modest improvements, although the magnitude of
differences varied for each region.

Peak-flow estimates at the 238 streamgages included
in this study are improved by weighting the at-site statistics
computed with PeakFQ and the predicted flows based on the
regression equations. Results of this study—including the final
peak-flow estimates at streamgages and the regional regression
equations—are implemented in the USGS StreamStats web
application (U.S. Geological Survey, 2023, StreamStats:
https://streamstats.usgs.gov/ss/). StreamStats provides
a consistent approach for obtaining peak-flow estimates
at streamgages and for applying the regional regression
equations for estimating peak flows at ungaged locations.

Introduction

Flooding in Hawai‘i routinely causes considerable
property damage and fatality (Paulson and others, 1991,
p. 250; Fontaine and Hill, 2002; National Oceanic and
Atmospheric Administration, 2018). To minimize the
negative consequences of flooding, accurate estimates of
flood magnitude and frequency are needed to (1) optimize the
design and location of infrastructure, including dams, culverts,
bridges, industrial buildings, and highways, and (2) inform
flood-zoning and flood-insurance studies. Overestimations of
flood magnitude may result in excessive infrastructure design
and cost, whereas underestimations of flood magnitude may
result in preventable property damage and deaths.


https://streamstats.usgs.gov/ss/

2 Magnitude and Frequency of Floods on Kaua'i, 0°ahu, Moloka'i, Maui, and Hawai'i, State of Hawai'i

Flood-frequency analysis is a set of statistical techniques
that uses records of past floods to estimate the magnitude and
frequency of future floods. Annual maximum instantaneous
discharge data (hereinafter referred to as “peak-flow data”)
from streamflow-gaging stations (hereinafter referred to as
“streamgages”’) provide the foundation for flood-frequency
analysis. At streamgages with sufficiently long records
(generally about 10 years), peak-flow data can be used
directly to compute flood statistics. At ungaged locations
or streamgages with short records, regional regression
equations—developed using basin and climatic characteristics
and flood statistics at streamgages in a hydrologically similar
region—can be used to estimate flood statistics.

One of the most commonly used flood statistics is the
annual exceedance probability (AEP), which describes the
likelihood that a given flood magnitude will be equaled or
exceeded during any year. For example, if a flood discharge
of 500 cubic feet per second (ft*/s) has an AEP of 0.01 at a
location along a stream, there is a 1-percent chance a flood
discharge that equals or exceeds 500 ft3/s will take place at
that location in any given year. The AEP is used to describe
flood frequency in this report instead of the recurrence
interval (for example, “100-year flood”) because recurrence
intervals are often misunderstood. For example, the term
“100-year flood” may be falsely interpreted to mean that a
given flood magnitude will occur only once during a given
100-year period. In reality, a 100-year flood has a 1-percent
probability of occurring in any given year. The occurrence
of a I-percent-AEP flood in a given year has no effect on the
probability of an equally large flood occurring in the following
year (Holmes and Dinicola, 2010). AEPs are the inverse of
recurrence intervals (table 1).

Flood-frequency analyses for a study area are updated
periodically to incorporate new streamflow information,
improved statistical techniques, and improved computations

Table 1.

of basin and climatic characteristics for use in regression
equations. The previous U.S. Geological Survey (USGS)
flood-frequency study in Hawai‘i (Oki and others, 2010)
followed Bulletin 17B guidelines (Interagency Advisory
Committee on Water Data, 1982) and used data from USGS
streamgages from water years' 1911 through 2008. New
national guidelines for flood-frequency analysis were released
in Bulletin 17C (England and others, 2019). Bulletin 17C
describes improved statistical techniques, including (1) a
generalized representation of flood data, called the expected
moments algorithm (EMA), which accommodates censored
and interval data types, (2) improved methods for computing
confidence intervals, (3) the Multiple Grubbs-Beck Test to
identify potentially influential low floods in the dataset, and
(4) improved techniques to estimate the regional-skewness
coefficient (hereinafter referred to as “regional skew”).
Given the availability of additional data since 2008 and

the recent release of new flood-frequency guidelines, the
USGS—in cooperation with the State of Hawai‘i Department
of Transportation—undertook a study to update estimates

of flood magnitude and frequency for gaged and ungaged
streams in Hawai‘i (fig. 1). The study incorporates data
through water year 2020. At two streamgages (USGS
streamgages 16345000 [Opacula Stream near Wahiawa,
O‘ahu] and 16587000 [Honopou Stream near Huelo, Maui]),
data through water year 2021 were included because the
2021 peak flows were exceptional and the largest on record
for each streamgage. Throughout the report, streamgages are
identified by their 8-digit USGS streamgage number. The
locations of streamgages can be found in figures 2—6, and each
streamgage’s use is described in table 1.1 (app. 1).

A water year is the 12-month period beginning on October 1 and ending on
September 30 and is designated by the ending year.

Annual exceedance probabilities and corresponding recurrence intervals for

frequency of floods on Kaua‘i, 0‘ahu, Moloka‘i, Maui, and Hawai‘i, State of Hawai'i.

Annual exceedance Annual exceedance Recurrence Probability of occurrence
probability probability (percentage) interval (years) in any given year

0.5 50.0 2 lin2

0.2 20.0 5 lin5

0.1 10.0 10 lin 10

0.04 4.0 25 1in 25

0.02 2.0 50 1in 50

0.01 1.0 100 1 in 100

0.005 0.5 200 1in 200

0.002 0.2 500 1in 500
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Magnitude and Frequency of Floods on Kaua'i, 0°ahu, Moloka'i, Maui, and Hawai'i, State of Hawai'i
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Figure 6. Streamgages with at least 10 years of usable peak-flow data, Island of Hawai'i, State of Hawai'i, 1911-2020.



Purpose and Scope

The purpose of this report is to present methods and
results for estimating the magnitude and frequency of floods
for unregulated streams on five of the main Hawaiian Islands:
Kaua‘i, O‘ahu, Moloka‘i, Maui, and Hawai‘i. (Unregulated
streams are those for which peak flows are not altered to a
large extent by upstream reservoirs, dams, diversions, or other
structures.) The report describes (1) updated flood flows at
selected streamgages for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and
0.2-percent AEPs using peak-flow data through water year
2020, (2) regional-skew estimates for Hawai‘i, (3) regression
equations for relating basin and climatic characteristics to
flood flows at ungaged stream sites for the 50-, 20-, 10-,
4-,2-,1-,0.5-, and 0.2-percent AEPs, and (4) the accuracy
and limitations of the regression equations. The regression
equations developed were incorporated in the web-based
USGS StreamStats application for Hawai‘i (Rosa and Oki,
2010). This report supersedes previous flood-frequency reports
in Hawai‘i (the most recent being Oki and others, 2010) by
including more recent peak-flow data through water year
2020 (table 2) and by implementing advances in statistical
techniques developed after previous reports were published.

Previous Studies

The USGS began collecting streamflow data in Hawai‘i
in 1909 (Yamanaga, 1972, p. 1). The number of active
streamgages increased until the late 1960s and decreased
steadily since that time. In water year 2020, the USGS had
137 active streamgages in Hawai‘i (the number of active
streamgages includes streamgages that are not included in the
present study).

Previous flood studies in Hawai‘i include descriptive
and quantitative investigations related to storm-drainage
standards, peak-flow statistics, and (or) regional regression
equations at spatial scales ranging from individual floods to
statewide studies. For a detailed list and descriptions of past
studies related to floods in Hawai‘i, see Oki and others (2010,
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app. A). Prior to the study described in this report, the most
recent estimates of peak-flow statistics for streams in Hawai‘i
were published in 2010 (Oki and others), using data from
streamgages on Kaua‘i, O‘ahu, Moloka‘i, Maui, and Hawai‘i
through water year 2008. Oki and others (2010) applied the
methods described in Bulletin 17B (Interagency Advisory
Committee on Water Data, 1982) to estimate AEP flows at
235 streamgages and developed regression equations to relate
flood flows to basin characteristics at ungaged locations.
Peak-flow estimates from Oki and others (2010) are compared
to those generated by this study in the “Comparison of Results
with Previous Studies” section.

Description of Study Area

The eight main islands in the State of Hawai‘i, located in
the north Pacific Ocean, trend northwest to southeast and have
a total land area of 6,420 square miles (mi?). The majority of
each island was formed by shield-stage volcanic eruptions,
and the southeastern islands are geologically the youngest.
The area considered for flood-frequency analysis in this study
(hereinafter referred to as “study area”) includes the five
islands of Kaua‘i, O‘ahu, Moloka‘i, Maui, and Hawai‘i, which
have a total land area of 5,904 mi2. The maximum altitudes
for the islands in the study area are 5,246 feet (ft) for Kaua‘i;
4,046 ft for Oahu; 4,948 ft for Moloka‘i; 10,016 ft for Maui;
and 13,781 ft for Hawai‘i (U.S. Geological Survey, 2013). The
individual islands in the study area are commonly divided into
two physiographic zones, windward and leeward, based on
their exposure to the predominant northeasterly winds.

Drainage basins in the study area are characterized by
relatively small sizes, amphitheater-shaped valley heads, steep
walls, and gently sloping floors (Wong, 1994). In geologically
older areas (for example, northern Kaua‘i) with abundant
rainfall, erosion and mass wasting have created large valleys
and well-defined stream channels; in geologically younger
areas (for example, southern Island of Hawai‘i), valleys are
smaller and well-defined stream channels are uncommon
because high-permeability soils and rocks at the surface allow

Table 2. Comparison of annual peak-flow data used in this study through water year 2020 relative to data used in a previous
U.S. Geological Survey flood-frequency study (Oki and others, 2010), State of Hawaii.

Number of streamgages

10 or more years of annual peak-flow

25 or more years of annual peak-flow

50 or more years of annual peak-flow

Location data used data used data used
Oki and others This study Oki and others This study Oki and others This study
(through water (through water (through water (through water (through water (through water
year 2008) year 2020) year 2008) year 2020) year 2008) year 2020)
Kaua‘i 37 37 27 27 13 19
O‘ahu 71 78 54 55 17 27
Moloka‘i 22 22 21 20 3 3
Maui 58 58 46 49 10 14
Hawai‘i 47 43 21 22 3 7
State total 235 238 169 173 46 70
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rainwater to infiltrate before eroding the land. The topography
of Hawaiian shield volcanoes leads to a radial drainage pattern
where streams tend to flow away from each other (Oki and
others, 2010).

Climate

The climate of Hawai‘i is characterized by mild
temperatures, moderate humidity, prevailing northeasterly
winds, a dry summer season from May through September,
and a wet winter season from October through April
(Sanderson, 1993). Hawai‘i lies to the southwest of the
North Pacific anticyclone—a semi-permanent, high-pressure
atmospheric system that is responsible for the prevailing
northeasterly winds, known locally as “trade winds” (Wyrtki
and Meyers, 1976). The North Pacific anticyclone and other
migratory weather systems are the dominant controls on
Hawai‘i’s climate (Schroeder, 1981; Lyons, 1982; Chu and
others, 1993). During the dry season, the trade winds blow
85 to 95 percent of the time (Sanderson, 1993; Garza and
others, 2012). During the wet season, the trade winds diminish
(only blowing 50-80 percent of the time), which allows more
migratory storm systems to influence the islands’ weather.

Rainfall

Rainfall in Hawai‘i has extreme spatial gradients
related to altitude and the orientation of the topography
relative to the northeasterly trade winds (Giambelluca and
others, 1986; Sanderson, 1993) (fig. 6). As moist air from
the northeast encounters the windward slopes of the islands,
the air rises, cools, and condenses to form precipitation
known as “orographic rainfall.” The air that passes over the
windward slopes loses moisture, resulting in substantially
less rainfall for the areas on the leeward (southwest) side
of mountain barriers—this is known as the “rain-shadow
effect” (Giambelluca and others, 1986). In some places, mean
annual rainfall can vary by as much as 100 inches per mile
(Giambelluca and others, 2013). Rainfall maxima for the
islands in the study area are 393 inches per year (in/yr) for
Kaua‘i, 279 in/yr for O‘ahu, 168 in/yr for Moloka‘i, 404 in/yr
for Maui, and 300 in/yr for Hawai‘i (Giambelluca and others,
2013). Rainfall maxima for each island generally occur on
the windward slopes between altitudes of 2,000 and 6,000 ft
(Giambelluca and others, 2013). Precipitation decreases above
altitudes of 6,000 ft because of a trade wind inversion, where
moist air is prevented from continuing to rise up the mountain
because air temperatures increase with altitude between about
6,000 and 8,000 ft (Giambelluca and Nullet, 1991; Chen and
Feng, 1995; Cao and others, 2007).

Rain gages across Hawai‘i hold many of the United
States records for extreme rainfall, including the 24-hour
record set in 2018 when 49.7 inches of rain fell at
Waipa Garden near Hanalei, Kaua‘i (National Oceanic
and Atmospheric Administration, 2018). Although

trade-wind-driven orographic rainfall contributes the majority
of the annual rainfall for most areas, rainfall associated with
atmospheric disturbances may be responsible for most of the
high-intensity rainfall events (Longman and others, 2021).
Intense rainfall in Hawai‘i is usually related to one of the
following four types of atmospheric disturbances:

(1) cold fronts;
(2) subtropical cyclones (Kona lows);

(3) upper-tropospheric disturbances (upper-level
lows); and

(4) tropical cyclones (Kodama and Barnes, 1997; Caruso
and Businger, 2006; Perica and others, 2009; Longman
and others, 2021).

El Nino-Southern Oscillation, Pacific Decadal
Oscillation, and the Pacific North American

Three natural teleconnections (related climate anomalies
that are separated by large distances) exert strong influences
on the climate of Hawai‘i: El Niflo—Southern Oscillation
(ENSO), Pacific Decadal Oscillation (PDO), and the Pacific
North American (PNA). These teleconnections, which operate
on different time scales, are not independent and in some cases
can modulate the effects of each other (Chu and Chen, 2005;
Yu and Zwiers, 2007; Frazier and others, 2018).

One of the primary drivers behind interannual climate
variability for Hawai‘i is ENSO (Lyons, 1982; Chu, 1995;
Chu and Chen, 2005; Elison Timm and others, 2011), which
characterizes the combined effects of sea-surface-temperature
and atmospheric-pressure anomalies in the tropical Pacific
Ocean (Rasmusson and Carpenter, 1982; Trenberth, 1997).
The ENSO cycle is commonly divided into three phases
based on sea-surface-temperature anomalies in the central
and eastern tropical Pacific Ocean: El Niflo (warm ocean
water), La Nifia (cold ocean water), and neutral. ENSO phases
generally last 6-18 months and can have wide-ranging effects
on rainfall, surface-air temperatures, and global-circulation
patterns (Trenberth and Hurrell, 1994; Kestin and others,
1998; Kim and others, 2003). Generally, El Nifio phases
result in below-average rainfall and La Nifia phases result in
above-average rainfall for Hawai‘i (Ropelewski and Halpert,
1987; Chu, 1995; Chu and Chen, 2005; Giambelluca and
others, 2013); however, rainfall during La Nifia phases may
have started to decrease in the early 1980s (O’Connor and
others, 2015). In addition to the generally positive correlation
between La Nifia phases and annual rainfall, extreme rainfall
events may be more likely during La Nifia phases than El Nifio
phases (Chu and others, 2010; Chen and Chu, 2014).

The PDO has similar characteristics to ENSO but
operates on an interdecadal time scale: PDO phases last about
20-30 years (Mantua and others, 1997; Minobe and Mantua,
1999). The PDO index, the most common metric of the PDO,
is the leading principal component of an empirical orthogonal



function analysis of sea-surface-temperature anomalies over
the North Pacific Ocean (poleward of 20°N) (Mantua and
Hare, 2002). Positive phases of the PDO index are associated
with cooler water in the interior of the North Pacific Ocean
and warmer water along the Pacific coast of North America;
the opposite pattern occurs during the negative phase (Mantua
and others, 1997). Rainfall in Hawai‘i is negatively correlated
with the PDO index (Mantua and others, 1997; Chu and Chen,
2005; Diaz and Giambelluca, 2012), and positive PDO phases
may strengthen the effects of ENSO variability on rainfall
(Chu and Chen, 2005; Verdon and Franks, 2006; Elison Timm
and others, 2020). The PDO index shifted from a positive
phase into a predominantly neutral or negative phase during
the 1990s and returned to a positive phase in about 2014
(National Oceanic and Atmospheric Administration, 2021).
The PNA teleconnection relates the atmospheric
circulation pattern over the North Pacific with the pattern
over North America (Wallace and Gutzler, 1981; Leathers
and others, 1991). The PNA—which has both a positive
and negative phase—is quasi-periodic and has a recurrence
interval ranging from a few years to a few decades (Wallace
and Gutzler, 1981; Trouet and Taylor, 2010). During the
positive phase, Hawai‘i tends to receive less rainfall; during
the negative phase, Hawai‘i tends to receive more rainfall
(Chu and others, 1993). Jayawardena and Chen (2016) found
that a negative PNA phase was associated with three unusually
prolonged heavy-rainfall periods in 1951, 1979, and 2006. In
a multiple-linear regression analysis using ENSO, PDO, and
PNA to model rainfall in Hawai‘i, Frazier and others (2018)
determined that PNA best describes the interannual variability
in wet-season rainfall, whereas ENSO best describes the
interannual variability in dry-season rainfall. (Frazier and
others [2018] defined the wet season and dry season as
November—April and May—October, respectively.)

Trends in Extreme Rainfall

Global climate change and cyclical changes in regional
climate may influence the frequency and intensity of heavy
rainfall events in Hawai‘i. Studies of past rainfall extremes—
using daily rainfall data, annual maximum daily rainfall data,
and climate-change indices—have found generally decreasing
trends for O‘ahu, Maui, and Kaua‘i (Kruk and Levinson,
2008; Perica and others, 2009; Chu and others, 2010; Elison
Timm and others, 2011; Chen and Chu, 2014; Huang and
others, 2021). For most measures of extreme rainfall, the
Island of Hawai‘i was the only island in the study area that
had some evidence of increasing trends (Chu and others,
2010; Chen and Chu, 2014); however, Huang and others
(2021) reviewed daily rainfall maxima during 1970-2005
and found no evidence of consistent increases on the Island
of Hawai‘i. Analyses of extreme rainfall trends on Moloka‘i
are inconclusive due to limited historical data. Causes for the
generally decreasing trends are uncertain but may be related
to a poleward shift in the Pacific storm track (Yin, 2005), the
increasing frequency and decreasing altitude of the trade-wind
inversion (Cao and others, 2007; Longman and others, 2015),
or decreasing in trade-wind frequency (Garza and others,
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2012). The factors affecting rainfall climatology in Hawai‘i
are complex, and estimates of future trends in extreme rainfall
remain inconclusive (Elison Timm and others, 2011; Norton
and others, 2011; Elison Timm and others, 2020; Xue and
others, 2020).

Flood Characteristics

Streamflow in Hawai‘i consists of the following:

(1) direct runoff of rainfall, in the form of overland
flow and subsurface stormflow that rapidly returns
infiltrated water to the stream;

(2) groundwater discharge, in the form of base flow,
where the stream intersects the water table;

(3) water returned from stream-bank storage;
(4) rain that falls directly on streams; and

(5) any additional water, including excess irrigation water
discharged to the stream by humans (Oki, 2003).

In heavy rainfall leading to most floods, direct runoff
is the primary contributor to streamflow. Variables that
affect flood magnitude for a given watershed include
rainfall intensity and duration, antecedent soil moisture,
soil permeability, depth to the water table, and available
surface-depression storage (Ivancic and Shaw, 2015; Wasko
and Sharma, 2017; Wasko and Nathan, 2019). Huang
and others (2021) examined annual maxima from paired
streamgages and rainfall gages in the same or similar
watersheds in Hawai‘i during 1970-2005 and found that the
streamflow and rainfall maxima rarely occurred on the same
dates, reinforcing the concept that daily rainfall totals are
not the only factor governing flood magnitude (Sharma and
others, 2018).

Floods can occur during any time of the year in Hawai‘i
but are most common during the rainy season (October—
April) when atypical storms and wind patterns replace the
predominant northeasterly trade winds. Streams on the
leeward sides of mountain ridges may be dry for most of
the year, only to be punctuated by a few floods from large
storms. Streams on the windward sides of mountain ridges
may flow perennially because of persistent tradewind-driven
rainfall and groundwater discharge as base flow. Seasonal
differences in streamflow are most pronounced for the
leeward-facing streams.

Streams in Hawai‘i tend to be flashy—that is, they
respond quickly to rainfall and have short-lived discharge
peaks—because of small and steep drainage basins and
high-intensity rainfall from storms (Wong, 1994). Flood
hydrographs generally have a characteristic steep triangular
shape, indicating a rapid rise and fall in discharge (Wu, 1969).
Stream stage will commonly rise and fall several feet over
a few hours in response to intense rainfall. In some floods,
stream discharge can change by a factor of 60 in 15 minutes
(Tomlinson and De Carlo, 2003).
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Land Cover

Land cover in Hawai‘i—representing the physical
condition of the land, rather than how the land is used—varies
temporally and spatially. The general trend from the early
1900s to 2020 was an increase in population and urbanization
and a decrease in large-scale agriculture. The population
of the State of Hawai‘i increased from 154,001 in 1900 to
1,455,271 in 2020 (U.S. Census Bureau, 2021). Agriculture—
mostly pineapple and sugar cane—was the dominant industry
in Hawai‘i during the early 1900s, peaked in the 1920s
with about 391 square miles of cropland for the islands in
the study area, and began to decline in the 1950s (Water
Resource Associates, 2003; Suryanata, 2009). In nominal 2011
conditions, crops covered no more than 10 percent of the land
on any island in the study area, for a total of about 190 square
miles: Maui had the highest percent of cropland (9.6 percent),
and Moloka‘i had the lowest percent of cropland (1.8 percent)
(National Oceanic and Atmospheric Administration, 2014).
Nominal 2011 land-cover data for Hawai‘i are separated into
18 classes and are available at a 2.4-meter resolution (National
Oceanic and Atmospheric Administration, 2014).

As population increased and large-scale agriculture
decreased, the degree of urbanization increased. Urbanization
tends to increase flood magnitude because built, impervious
surfaces prevent water from infiltrating the soil, resulting in
a greater fraction of rainfall that contributes to overland flow
and stream discharge (Hollis, 1975; Schueler, 1994; Konrad,
2003). The percentage of impervious land cover is a common
metric of urbanization that can be easily and accurately
quantified with remote sensing (Weng, 2012; National Oceanic
and Atmospheric Administration, 2014). Impervious surfaces
associated with urbanization include roofs, paved roads, and
parking lots. The relative effects of impervious surfaces on
flood magnitude generally decrease as the flood magnitude
increases; that is, the magnitude of floods with high AEPs
(small floods) is affected more by changes in impervious land
cover in the drainage basin than is the magnitude of floods
with low AEPs (large floods) (Hollis, 1975; Terstriep and
others, 1976; Dudley and others, 2001). The islands in the
study area have the following percentage of their land cover
classified as impervious: Kaua‘i, 2.8 percent; O‘ahu, 14.5
percent; Moloka‘i, 1.1 percent; Maui, 3.3 percent; Hawai‘i, 1.2
percent (National Oceanic and Atmospheric Administration,
2014). Beyond the direct effects of impervious surfaces,
urbanization can affect flood magnitude and frequency
by compacting soils and decreasing infiltration capacity,
fragmenting and draining wetlands, reducing floodplain sizes,
and channelizing stream reaches (Murabayashi and Fok, 1979;
Dudley and others, 2001; Shuster and others, 2005).

Data Collection and Compilation

Auvailable peak-flow data from USGS streamgages in
Hawai‘i were screened for suitability in flood-frequency
analysis. Selection considerations included record length,
the effects of regulations or diversions, and the amount of
impervious land cover in the drainage basin. Peak-flow
data from the selected sites were then reviewed to ensure
data quality and evaluated for the presence of trends. After
selecting the streamgages and reviewing the peak-flow data, a
suite of basin and climatic characteristics was determined for
each streamgage and associated drainage basin for use in the
development of regression equations.

Streamgage Selection and Peak-Flow Data

Peak-flow data for streamgages with at least 10 years
of record were downloaded from the USGS National Water
Information System (NWIS; https://waterdata.usgs.gov/nwis)
database (U.S. Geological Survey, 2021); flood-frequency
analyses at a streamgage with less than 10 years of record
are generally unreliable (England and others, 2019, p. 36).
Data through water year 2020 were used at all streamgages
where available. At the time of analysis, USGS streamgages
16103000 (Hanalei River near Hanalei, Kaua‘i) and
16325000 (Kamananui Stream at Pupukea Mil Road O‘ahu)
did not have approved 2020 peaks. Additionally, 2021
peaks for USGS streamgages 16345000 (Opaeula Stream
near Wahiawa, O‘ahu) and 16587000 (Honopou Stream
near Huelo, Maui) were included in the analysis because
they were the largest floods on record for each streamgage.
Streamgages in Hawai‘i typically are either continuous-record
gages or crest-stage gages. Continuous-record gages record
the stage (height) of streamflow at short intervals (for
example, every 15 minutes, although the recording interval
may be automatically decreased during times of rapidly
changing flow at higher stages), whereas crest-stage gages
record only the maximum stage of floods above a certain
threshold. Discharge is computed from stage measurements at
streamgages using a site-specific stage-discharge relation or
indirect-measurement methods.

Initially, 268 active and discontinued streamgages
were identified as potential streamgages to include in the
flood-frequency analysis. The number of usable streamgages
was reduced to 238 after reviewing the data (figs. 2—6;
table 1.1, app. 1). Streamgages with fewer than 10 years
of usable peak-flow data were excluded (including some
streamgages where peaks were removed in a low-outlier
screening that will be described in section, “Low Outliers
Identified with the Multiple Grubbs-Beck Test”). Five
streamgages with regulated or diverted flow (NWIS
qualification code 6) were excluded (table 1.2, app. 1).
Streamgages where discharge was affected to an unknown
degree by regulation or diversion (NWIS qualification
code 5) were retained except for USGS streamgage 16210500
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(Kaukonahua Stream at Waialua, O‘ahu), which was
excluded because peak flows may have been substantially
affected by regulation. Streamgages with drainage basins
that had impervious surfaces covering more than 20 percent
of the land were excluded because of the potential effects
of impervious surfaces and urbanization on peak flows (see
section, “Land Cover”). (The exclusion criterion for urbanized
streamgages in the current study—greater than 20 percent
impervious surface in the drainage basin—is about equal to
the exclusion criterion used by Oki and others (2010) for the
238 streamgages in the current study: greater than 20 percent
combined medium- and high-intensity development in the
drainage basin.) Additionally, data from 18 streamgages were
excluded because of possibly inaccurate rating curves or
other potential issues (R.A. Fontaine, U.S. Geological Survey,
written commun., 2020). Streamgages and data excluded from
the analysis are available in appendix 1 (table 1.2).

From the 238 streamgages used in the study, the average
number of available annual peaks for each streamgage is
40. The longest available record, 109 annual peaks, is from
Honopou Stream on Maui (USGS streamgage 16587000).
The number of available annual peaks for this study reached a
maximum of 169 peaks in 1967-68 and has steadily decreased
since (fig. 7). About 81 percent of annual peak used in this
study with known dates occurred during the wet season from
October to April (fig. 8).

This study includes 18 streamgages that were not used by
Oki and others (2010)—the most recent flood-frequency study
for Hawai‘i—and excludes 15 streamgages that were used by
Oki and others (2010) (tables 1.2 and 1.3, app. 1). Most of the
newly included streamgages had fewer than 10 usable annual
peaks in 2010; most of the newly excluded streamgages were
omitted because they had fewer than 10 usable annual peaks
after screening for low outliers.

Trends in Peak Flows

The Bulletin 17C methods for flood-frequency analysis
(England and others, 2019) used in this study assume that (1)
the peak-flow data are a random, independent, and identically
distributed sample that is representative of the population
of floods, and (2) the parameters describing the statistical
distribution of floods will not change in the future (that is, the
distribution is stationary). These assumptions may be violated
by deterministic trends related to abrupt or gradual changes
in stream regulation, land cover and land use, or climate, or
a mixture of those sources (Milly and others, 2008; Vogel
and others, 2011). Stationarity can be difficult to detect in
hydrologic time series, however, because natural processes
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often exhibit low-frequency deviations that persist for decades
or centuries (Cohn and Lins, 2005; Villarini and others,

2009; Lins and Cohn, 2011). To evaluate the assumptions

of the Bulletin 17C methods, peak-flow data were tested for
monotonic trends and step trends. Trends were considered
statistically significant for probability values (p-values) less
than or equal to 0.05—this is the probability that an observed
trend is due to random chance.

Methods for Trend Analyses

To prepare the peak-flow data for trend testing, the
censored values—peaks reported as below or above a
threshold, rather than a discrete peak—were temporarily
modified. Failure to account for censored data when
conducting statistical analyses can result in inaccurate
conclusions because censored data (for example, less than [<]
80 ft3/s) represent different information than discrete data (for
example, 80 ft3/s). The peak-flow data in the current study
contain 274 left-censored peaks (about 3 percent of the total
peaks), which indicate that the annual peak flood was below
a certain discharge, and only two right-censored peaks (about
0.02 percent of the total peaks), which indicate that the annual
peak flood was above a certain discharge. Left-censored
peaks occur when all flood flows during a year are below the
minimum recordable discharge at a streamgage and the exact
peak discharge is unknown. For the 57 streamgages with at
least 1 left-censored peak, each peak less than the largest
left-censored peak was replaced with the largest left-censored
peak (Helsel, 2012, p. 14; Helsel and others, 2020, p. 357).
For example, if the record for a streamgage contains annual
peak discharges of <400, 300, 600, <100, and 700 ft}/s, then
the record would be recoded to <400, <400, 600, <400, and
700 ft3/s. Although recoding the values results in a loss of
information, significant trends found with the recoded data are
more believable (Helsel and others, 2020, p. 357). The records
containing recoded values were only used for trend analyses
and the unaltered records were used for the remainder of the
flood-frequency analysis. The two right-censored peaks (at
USGS streamgages 16502900 [Kawaipapa Gulch at Hana,
Maui] and 16604500 [Wailuku River at Kepaniwai Park,
Maui]) were not modified and were treated as discrete peaks.

Monotonic trends in peak-flow data, representing a
unidirectional change over time, were evaluated using the
nonparametric Mann-Kendall test (Helsel and others, 2020, p.
332). Three versions of the Mann-Kendall test with different
dependence assumptions were applied using scripts written
in the R coding language (R Core Team, 2021) by Dudley
and others (2018). The dependence assumptions relate to
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Figure 7. Total number of annual peak discharges used for each year in this study, State of Hawai‘i, 1911-2021.
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Figure 8. Percentage of annual peak discharges by month for this study, State of Hawai‘i, 1911-2021. The number
of annual peak discharges (n) in each month is shown on the top of each bar. Annual peak discharges with
unknown months are excluded.



autocorrelation (also known as “serial correlation”), which
describes the tendency for years with high peak flows to be
followed by years with high peak flows and for years with
low peak flows to be followed by years with low peak flows
(Helsel and others, 2020, p. 5). The first version, the standard
Mann-Kendall test, assumes the annual peaks are independent
of each other with time. The second version, adapted from
Hamed and Rao (1998), assumes that the annual peaks have
short-term persistence (STP; or lag-one autocorrelation);

that is, the autocorrelation decays exponentially or faster

as the time lag increases. The third version, adapted from
Hamed (2008), assumes that the annual peaks have long-term
persistence (LTP); that is, the autocorrelation decays slower
than exponentially as the time lag increases (Koutsoyiannis
and Montanari, 2007). LTP is characterized by quasi-periodic
excursions in the central tendency of a variable (Helsel

and others, 2020, p. 359) and is likely present in most

natural hydroclimatological systems (Koutsoyiannis and
Montanari, 2007; Lins and Cohn, 2011). In many cases, LTP
is indistinguishable from a deterministic trend because a
trend may simply be one limb of an LTP-driven oscillation,
particularly for data with relatively short records (Villarini and
others, 2009). The presence of persistence (either STP or LTP)
does not inherently violate the assumption of stationarity;
however, persistence may result in an overestimation of the
significance of trends determined from tests that assume
independence of the data (Cohn and Lins, 2005; Helsel and
others, 2020, p. 359). The use of a modified trend test that
accounts for persistence results in only a very small loss of
power, even if the data possess no persistence (Cohn and
Lins, 2005).

Step trends, also called “change points,” are abrupt
shifts in the statistical properties of time-series data (Reeves
and others, 2007; Helsel and others, 2020, p. 352). For
peak-flow data, step trends may be related to changes in flood
regulation, climate, land use, or land cover. Change points in
the peak-flow data were analyzed using the Pettitt test (Pettitt,
1979)—a derivative of the nonparametric Mann-Whitney
two-sample test—to determine the optimum point to split
each time series into two (Ryberg and others, 2020). Although
multiple change points may exist in a record, the Pettitt test
is limited to identifying a single change point. The Pettitt
test does not account for temporal gaps in the record and
assumes that all data are equally spaced. The accuracy of
results from the Pettitt test may be affected by autocorrelation
and monotonic trends (Busuioc and Storch, 1996); however,
a change-point test that accounts for autocorrelation was
unavailable. Differentiating between step trends and
monotonic trends can be difficult, especially for short
records—the two trend types should be analyzed together to
develop a more complete understanding of the data (McCabe
and Wolock, 2002; Sharma and others, 2016).
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Peak-Flow Trend Results

Statistically significant monotonic trends were detected
at 51 of the 238 streamgages used in this study for at least
one of the Mann-Kendall trend-test versions (app. 2).

Under the independence assumption, 29 streamgages had
decreasing trends and 18 streamgages had increasing trends;
under the STP assumption, 26 streamgages had decreasing
trends and 16 streamgages had increasing trends; and under
the LTP assumption, 6 streamgages had decreasing trends
and 4 streamgages had increasing trends. Of the 90 active
streamgages (those with annual peaks reported for water
year 2020), 24 have significant trends: 16 decreasing and 8
increasing. Of the streamgages with significant monotonic
trends, streamgages on Kaua‘i, O‘ahu, and the Island of
Hawai‘i had predominantly decreasing trends, whereas
streamgages on Maui and Moloka‘i had mixed results. The
magnitude of the trend during the record period at each
streamgage was estimated using the Theil slope (also known
as the Kendall-Theil robust line) (Helsel and others, 2020, p.
332) (app. 2).

The results from trend testing should be reviewed in the
context of spatial and temporal data availability. Test results
depend considerably upon the time period analyzed: the
available peak-flow data sometimes represent neither long nor
concurrent record periods (fig. 9).

In some cases, short-term trends related to natural
climate variability can be superimposed on long-term
deterministic trends. A flag plot was created by applying the
Mann-Kendall trend test (with the independence assumption)
to all possible pairs of starting and ending years (minimum
10 annual peak discharges) for each streamgage to determine
the percentage of streamgages with statistically significant
increasing and decreasing trends for various periods (fig. 10).
Record periods ending before about 1980 had predominantly
increasing trends; record periods ending after about 1980 had
predominantly decreasing trends. Additionally, decadal trends
in peak flows were analyzed by applying the Mann-Kendall
trend test (with the independence assumption) to each
record subperiod spanning 10 years (for example, 1975-84)
and containing at least eight annual peaks. The results are
shown in figure 11, where the values represent percentages
of streamgages with increasing or decreasing trends for the
decade, plotted on the mid-decade year (for example, for
1975-84, the mid-decade year would be 1979). Increasing
peak-flow trends were common during the decades centered
around 194648, 1963-64, 1987-88, 2001-03, and 2013-14.
Decreasing peak-flow trends were common during the decades
centered around 1968—73 and 1993-96.

Significant step trends in peak-flow data were found
at 44 streamgages (fig. 12; app. 2). Twenty-six streamgages
with significant step trends had peak-flow magnitudes
that decreased after the change point; 18 streamgages
had peak-flow magnitudes that increased after the change
point. Decreasing step trends most commonly have change
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Figure 9. Temporal availability of peak-flow data for each region and island in the study area, State of Hawai'i, 1911-2021.
Streamgages are grouped into regions and sorted by the first year of usable peak-flow data. The color for each water year
represents the magnitude of the peak discharge, in standard deviations away from the mean at each streamgage. Symbols: >,
greater than; >, greater than or equal to; <, less than or equal to; <, less than.
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Figure 11.

Percentage of streamgages with statistically significant decadal trends in annual peak discharge, State

of Hawai'i, 1915-2015. The percentage of significant trends is plotted on the mid-decade water year (for example, for
1975-84, the mid-decade year would be 1979). Significant trends were determined using the Mann-Kendall trend test
under the independence assumption with a probability value (p-value) of 0.05.

points clustered from the 1970s to the early 2000s, whereas
increasing step trends have a broad distribution of change
points spanning the 1930s to 2000s. As with monotonic
trends, comparisons of step trends and change points

between streamgages should be made with caution because

of sometimes inconsistent record periods available for
analysis (fig. 9). One of the clearest patterns is that, of the 20
streamgages with statistically significant step trends on O‘ahu,
11 have change points during 1968-76.

Time-series data can possess both monotonic trends
and step trends, or one type of trend may mask the other.
Thirty-four streamgages had a significant monotonic trend
(using the independence assumption) and a significant step
trend. Further evaluations of trends in the peak-flow data may
consider analyzing the time periods before and after significant
change points separately and (or) applying adjustments to the
data to account for autocorrelation before using the Pettitt test
for step trends.

In summary, trend analyses of the peak-flow data used
in this study suggest that decreasing trends are more common
than increasing trends. For monotonic trends, the number of
significant trends decreases when STP and LTP are accounted

for. Monotonic and step trend tests suggest that peak-flow
magnitude has generally decreased since about 1980, although
the number of streamgages with significant trends may be
overestimated by the presence of natural hydroclimatologic
fluctuations related to LTP.

Stationarity should be the default assumption for
flood-frequency analyses, unless the nonstationarity
assumption can be justified based on a clear understanding
of the physical processes of trends (Lins and Cohn, 2011;
Serinaldi and Kilsby, 2015; Salas and others, 2018; England
and others, 2019; Ryberg and others, 2020). Although this
study presents a cursory summary of peak-flow trends at
streamgages, an exhaustive investigation of trends and the
potential causes of trends is beyond the scope of this report.
If additional data and more comprehensive analyses discover
relations not discussed here, future flood-frequency analyses
may consider incorporating trends and nonstationarities
and (or) excluding stations with definitive nonstationarities
related to deterministic trends. In the absence of clear
relations between trends and hydroclimatological forcings, the
assumptions in Bulletin 17C (England and others, 2019) are
presumed to be valid and are retained for this study.
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Figure 12. Results of the Pettitt test for step trends applied to peak-flow data from streamgages used in this study,
State of Hawai'‘i, 1911-2020. Only streamgages with statistically significant trends (probability-values < 0.05) are shown.
Streamgages are grouped into islands and sorted by the first year of usable peak-flow data. The first year following the
step change is indicated by a triangle.
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Physical and Climatic Basin Characteristics

Drainage basins for each streamgage used in the study
were delineated using geographic information system (GIS)
methods. Physical and climatic basin characteristics for each
streamgage were estimated using available datasets. Accurate
basin delineations and basin characteristics are critical for
the regional regression analysis relating basin characteristics
to flood discharges. The source data used to determine the
basin delineations and basin characteristics were incorporated
into the USGS StreamStats application for Hawai‘i (Rosa
and Oki, 2010). StreamStats allows users to select any point
along a stream and automatically delineate a drainage basin
and compute selected basin and climatic characteristics for
the watershed upstream from that point (U.S. Geological
Survey, 2019).

Basin Delineations

Data used to delineate drainage basins for this study
were primarily derived from (1) the 1/3 arc-second digital
elevation models (DEM) from the USGS National Elevation
Dataset (U.S. Geological Survey, 2013) and (2) the USGS
National Hydrography Dataset (NHD) (U.S. Geological
Survey, 2020). The basin-delineation method used tools
developed by Barnhart and others (2020) and generally
followed the methods described by Rea and Skinner (2012).
A hydrologically conditioned DEM, commonly referred to as
a “hydroDEM,” was developed by lowering the elevation of
known stream channels in the DEM to ensure that the final
drainage patterns agreed with the stream-channel network
from the NHD. Drainage basins were iteratively reviewed
and updated by modifying the digital stream-channel network
to match stream channels visible in available aerial imagery.
Geospatial data used to delineate drainage basins are available
as a USGS data release (Mitchell, 2022a).

Drainage areas determined for streamgages used in this
study differ from those used by Oki and others (2010) in some
areas. Of the 220 streamgages used in both the current study
and Oki and others (2010), 44 streamgages had changes in
drainage area greater than 5 percent and 28 streamgages had
changes in drainage area greater than 10 percent. Twenty-five
(25) of the 28 basins with drainage-area changes greater
than 10 percent were located on Maui and the Island of
Hawai‘i. Most of the changes in drainage area are related
to (1) minor changes in the input DEM and (2) additional

flowlines incorporated into the hydroDEM which crossed
previous drainage boundaries determined from DEMs, based
on comparisons with available aerial imagery. The two largest
percent changes in drainage area for basins larger than 1
square mile were on the Island of Hawai‘i: USGS streamgages
16701800 (38.4-128.2 mi?, 234 percent; Wailuku River near
Kaumana, Island of Hawai‘i) and 16701300 (36.3-99.3 mi?,
174 percent; Waiakea Stream at Hilo, Island of Hawai‘1).

It is critical to have accurate basin delineations for
flood-frequency analysis because the delineations affect the
computation of all basin characteristics used as explanatory
variables in the regression equations. The basin delineations
in this study may be improved in the future by using
higher-resolution DEMs (for example, DEMs derived from
light detection and ranging [lidar] data), particularly in
areas with gently sloping topography and areas with poorly
defined stream channels. Additionally, the incorporation
of storm-drainage GIS data for O‘ahu, the most urbanized
island in the study area, may alter basin delineations for urban
areas because storm drains may divert flow in directions
not apparent based solely on the DEMs. The absence of
storm-drainage GIS data in the basin delineations for the
current study, however, is unlikely to have a large effect on
the flood-frequency results because basins with more than
20 percent impervious land cover were excluded. The effects
of storm-drainage systems on flood estimates may be larger
for urban basins not used in this study or for user-defined
delineation points in the USGS StreamStats application.

Basin Characteristics

Annual peak flows at a point in a stream typically vary
as a function of drainage area and other physical and climatic
characteristics of the drainage basin. For this study, 58 basin
characteristics were determined for each streamgage using
automated GIS methods and tested as potential explanatory
variables in the regression equations (table 3). The basin
characteristics can be broadly grouped into morphometric,
soil permeability, land-cover type, and rainfall categories.
The basin characteristics were chosen based on their potential
theoretical relation to peak flows in Hawai‘i and the results
of previous flood-frequency studies. The geospatial data
used to determine the basin characteristics for drainage
basins in Hawai‘i are available as a USGS data release
(Mitchell, 2022b).
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Table 3. Selected drainage-basin characteristics evaluated in regional regression analysis for this study, State of Hawaii.

[Abbreviations: DEM, digital elevation model; WGS 84, World Geodetic System of 1984; 3D, three-dimensional]

21

Abbreviated drainage

basin characteristics Description Units Source
Morphometric

BASINPERIM Perimeter of the drainage basin Miles Computed from 10-meter DEM

BSLDEM10M Area-weighted mean slope of the drainage basin Percentage Computed from 10-meter DEM

CENTROIDX Latitude of the basin centroid Decimal degrees, Computed from 10-meter DEM

WGS 84
CENTROIDY Longitude of the basin centroid Decimal degrees, Computed from 10-meter DEM
WGS 84

COMPRAT A measure of basin shape related to basin perimeter Dimensionless Computed from 10-meter DEM
and drainage area of the drainage basin [(Basin
Perimeter) / 2 x (3.14159 x Drainage Area)-]

CSL10 85 Change in elevation divided by length between points ~ Feet per mile Computed from 10-meter DEM
10 and 85 percent of distance along the longest flow
path

DRNAREA Total upstream area of the streamgage that drains to Square miles Computed from 10-meter DEM
that point on the stream

ELEV Area-weighted mean elevation of the drainage basin Feet Computed from 10-meter DEM

ELEVI10FT Elevation at 10 percent from outlet along longest flow  Feet Computed from 10-meter DEM
path slope using DEM

ELEV10FT3D Elevation at 10 percent from outlet along longest flow  Feet Computed from 10-meter DEM
path slope using 3D line

ELEVS8SFT Elevation at 85 percent from outlet along longest flow  Feet Computed from 10-meter DEM
path slope using DEM

ELEV8SFT3D Elevation at 85 percent from outlet along longest flow  Feet Computed from 10-meter DEM
path slope using 3D line

ELEVMAX Maximum elevation of the drainage basin Feet Computed from 10-meter DEM

LFPLENGTH Length of longest flow path in the drainage basin Miles Computed from 10-meter DEM

MINBELEV Minimum elevation of the drainage basin Feet Computed from 10-meter DEM

RELIEF Maximum minus the minimum elevation of the Feet Computed from 10-meter DEM
drainage basin

RELRELF Basin relief divided by basin perimeter Feet per mile Computed from 10-meter DEM

SLOP30_10M Percentage of the drainage basin where the slope is Percentage Computed from 10-meter DEM
greater than 30 percent

SLPFM3D Slope of the longest flow path using 3D line Feet per mile Computed from 10-meter DEM

Soil

PERM12IN Area-weighted average soil permeability for top 12 Inches per hour U.S. Department of Agriculture
inches of soil (2020)

PERM24IN Area-weighted average soil permeability for top 24 Inches per hour U.S. Department of Agriculture
inches of soil (2020)

Land cover
LC11BARE Percentage of barren land cover of the drainage basin ~ Percentage National Oceanic and Atmospheric
Administration (2014)

LC11CROP Percentage of cultivated crops land cover of the Percentage National Oceanic and Atmospheric
drainage basin Administration (2014)

LC11DVOPN Percentage of developed (open space) land cover of Percentage National Oceanic and Atmospheric

the drainage basin

Administration (2014)
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Table 3. Selected drainage-basin characteristics evaluated in regional regression analysis for this study, State of Hawai‘i.—Continued

[Abbreviations: DEM, digital elevation model; WGS 84, World Geodetic System of 1984; 3D, three-dimensional]

Abbreviated drainage

basin characteristics Description Units Source

Land cover—Continued

LC11FOREST Percentage of evergreen forest land cover of the Percentage National Oceanic and Atmospheric
drainage basin Administration (2014)

LCI11GRASS Percentage of grassland land cover of the drainage Percentage National Oceanic and Atmospheric
basin Administration (2014)

LCI1IMP Percentage of impervious land cover of the drainage Percentage National Oceanic and Atmospheric
basin Administration (2014)

LC11PAST Percentage of pasture land cover of the drainage basin  Percentage National Oceanic and Atmospheric
Administration (2014)

LC11SHRUB Percentage of scrub land cover of the drainage basin Percentage National Oceanic and Atmospheric
Administration (2014)

Rainfall

I60M2Y Area-weighted maximum 60-minute precipitation that Inches Perica and others (2009)

Occurs on average once in2 years

160MS5Y Area-weighted maximum 60-minute precipitation that Inches Perica and others (2009)
occurs on average once in 5 years

160M10Y Area-weighted maximum 60-minute precipitation that Inches Perica and others (2009)
occurs on average once in 10 years

160M25Y Area-weighted maximum 60-minute precipitation that Inches Perica and others (2009)
occurs on average once in 25 years

160M50Y Area-weighted maximum 60-minute precipitation that Inches Perica and others (2009)
occurs on average once in 50 years

160M100Y Area-weighted maximum 60-minute precipitation that  Inches Perica and others (2009)
occurs on average once in 100 years

160M500Y Area-weighted maximum 60-minute precipitation that Inches Perica and others (2009)
occurs on average once in 500 years

106H2Y Area-weighted maximum 6-hour precipitation that Inches Perica and others (2009)
occurs on average once in 2 years

106HSY Area-weighted maximum 6-hour precipitation that Inches Perica and others (2009)
occurs on average once in 5 years

106H10Y Area-weighted maximum 6-hour precipitation that Inches Perica and others (2009)
occurs on average once in 10 years

106H25Y Area-weighted maximum 6-hour precipitation that Inches Perica and others (2009)
occurs on average once in 25 years

106H50Y Area-weighted maximum 6-hour precipitation that Inches Perica and others (2009)
occurs on average once in 50 years

106H100Y Area-weighted maximum 6-hour precipitation that Inches Perica and others (2009)
occurs on average once in 100 years

106H500Y Area-weighted maximum 6-hour precipitation that Inches Perica and others (2009)
occurs on average once in 500 years

124H2Y Area-weighted maximum 24-hour precipitation that Inches Perica and others (2009)
occurs on average once in 2 years

124H5Y Area-weighted maximum 24-hour precipitation that Inches Perica and others (2009)
occurs on average once in 5 years

124H10Y Area-weighted maximum 24-hour precipitation that Inches Perica and others (2009)
occurs on average once in 10 years
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Table 3. Selected drainage-basin characteristics evaluated in regional regression analysis for this study, State of Hawai‘i.—Continued

[Abbreviations: DEM, digital elevation model; WGS 84, World Geodetic System of 1984; 3D, three-dimensional]

Abbreviated drainage

basin characteristics Description Units Source
Rainfall—Continued

124H25Y Area-weighted maximum 24-hour precipitation that Inches Perica and others (2009)
occurs on average once in 25 years

124H50Y Area-weighted maximum 24-hour precipitation that Inches Perica and others (2009)
occurs on average once in 50 years

124H100Y Area-weighted maximum 24-hour precipitation that Inches Perica and others (2009)
occurs on average once in 100 years

124H500Y Area-weighted maximum 24-hour precipitation that Inches Perica and others (2009)
occurs on average once in 500 years

148H2Y Area-weighted maximum 48-hour precipitation that Inches Perica and others (2009)
occurs on average once in 2 years

148HS5Y Area-weighted maximum 48-hour precipitation that Inches Perica and others (2009)
occurs on average once in 5 years

148H10Y Area-weighted maximum 48-hour precipitation that Inches Perica and others (2009)
occurs on average once in 10 years

148H25Y Area-weighted maximum 48-hour precipitation that Inches Perica and others (2009)
occurs on average once in 25 years

[148H50Y Area-weighted maximum 48-hour precipitation that Inches Perica and others (2009)
occurs on average once in 50 years

148H100Y Area-weighted maximum 48-hour precipitation that Inches Perica and others (2009)
occurs on average once in 100 years

148H500Y Area-weighted maximum 48-hour precipitation that Inches Perica and others (2009)
occurs on average once in 500 years

PRECIP Area-weighted mean annual precipitation Inches Giambelluca and others (2013)

Magnitude and Frequency of Floods at
Gaged Sites

Flood-frequency analysis is a set of statistical techniques
that uses records of past floods to estimate the magnitude
of a flood that is expected to be equaled or exceeded for a
specified probability for any given year. The USGS computer
program PeakFQ version 7.3 (Flynn and others, 2006;
Veilleux and others, 2014) was used to compute flood statistics
at streamgages. PeakFQ follows Bulletin 17C guidelines
(England and others, 2019) and incorporates the expected
moments algorithm (EMA) and the Multiple Grubbs-Beck
Test (MGBT). Input to PeakFQ for each streamgage includes
peak-flow data, specifications defining perception thresholds
and flow intervals, and a regional skew coefficient. Output
from PeakFQ for each streamgage includes parameter
estimates for the statistical distribution, discharge estimates for
various AEPs, confidence intervals for the discharge estimates,
and a graph of the fitted frequency curve. Selected input and
output files for PeakFQ used in this study are available as a
USGS data release (Mitchell and Wagner, 2022).

In PeakFQ, peak-flow data are fit to a known statistical
distribution—the Log-Pearson Type I1I (LP-III) distribution—
in the form of a frequency curve (for example graph of fitted
frequency curve, see fig. 13). To fit the log-transformed
peak-flow data to the LP-III distribution, three statistical
moments are calculated from the data: the mean, standard
deviation, and skew coefficient. The basic equation for fitting
the LP-III distribution to the peak-flow data is:

logQy = 1+ 5K;, (1)
where
Op is the P-percent AEP discharge, in cubic feet

per second;

o is the mean of the logarithms of the annual
peak flows;

o is the standard deviation of the logarithms of
the annual peak flows; and

K;, is a factor based on the skew coefficient and

the given percentage of annual exceedance
probability, which can be obtained

from available algorithms (Kirby, 1972;
Stedinger and others, 1993).
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Figure 13.

Example of output from flood-frequency software PeakFQ version 7.3 for U.S. Geological Survey station

16247000 Palolo Stream near Honolulu, 0‘ahu, Hawai'i, using expected moments algorithm (EMA) with Multiple
Grubbs-Beck Test and station skew only and data through water year 2020.

The mean describes the central tendency of the data. The
standard deviation describes the spread or variability of the
data. The skew describes the asymmetry of the distribution
of data around the mean, as shown by the thicknesses of the
tails of the distribution. For flood-frequency analysis, skew
is generally the most uncertain variable because relatively
short peak-flow records (less than 30 years) can lead to biased
estimates of skew (Stedinger and others, 1993; England and
others, 2019, p. 18). To help overcome the limitations with
using short records to estimate skew, Bulletin 17C (England
and others, 2019) recommends using a weighted skew
computed from the streamgage-specific skew (at-site or station
skew) and a generalized skew (regional skew) developed using
data from many streamgages in a nearby area.

Regional Skew Coefficient

This section presents a general overview of the regional
skew coefficient and criteria used for selection of sites in
the regional skew analysis. More details about the regional
skew regression analysis, including the methodology and
calculations, are located in appendix 3.

To help improve estimates of annual peak discharges
corresponding to various AEPs—particularly for streamgages
with short annual peak-flow records (that is, streamgages with
fewer than about 30 annual peaks)—current guidance for
flood-frequency analysis by Federal agencies (Bulletin 17C;
England and others, 2019) recommends using a weighted
average of the at-site and regional skews. Previous guidance
(Bulletin 17B; Interagency Advisory Committee on Water

Data, 1982) supplied a national map of regional skew but
encouraged hydrologists to develop more localized models
when appropriate.

Because of complications introduced using EMA and
MGBT (Cohn and others, 1997) and large cross-correlations
between annual peak discharges at pairs of streamgages,

a Bayesian weighted least-squares/Bayesian generalized
least-squares (B—WLS/B-GLS) regression framework was
developed to provide stable and defensible results for regional
skew (Veilleux, 2011; Veilleux and others, 2011; Lamontagne
and others, 2012; Veilleux and others, 2012). B-WLS/B—
GLS uses ordinary least-squares (OLS) regression to fit an
initial model of regional skew that is used to generate a stable
estimate of regional skew for each streamgage. This estimate
is the basis for computing the variance of each estimate of
at-site skew used in the B-WLS analysis. B-WLS is then used
to generate estimators of the regional skew model parameters.
Finally, B-GLS is used to estimate the precision of those
estimators, the model error variance and its precision, and
compute various diagnostic statistics.

In this study, EMA with MGBT was used to estimate
the at-site skew, G, and its mean squared error, MSE ;. EMA
with MGBT allows for the censoring of low floods as well as
the use of flow intervals to describe missing, censored, and
historical data. EMA with MGBT complicates the calculations
of effective record length (and effective concurrent record
length) used to describe the precision of skew estimates
because the annual peak discharges are no longer represented
by single values. To properly account for these complications,
the B-WLS/B-GLS procedure was used.



A total of 124 streamgages that were not redundant (see
section, “Elimination of Redundant Sites”) and had a pseudo
effective record length (P, ) of 36 years or greater were
used to develop the final regional skew model for Hawai‘i
(table 3.1, app. 3; for more information on pseudo effective
record length, see app. 3). To explain the variability in skew,
a windward/leeward split of flood regions and 17 basin
characteristics were tested, but this approach failed to provide
sufficient predictive power. Therefore, a constant regional
skew (Gy) of —0.157 was selected for the State of Hawai‘i
(app. 3). The average variance of prediction (4VP,,,), 0.212,
is equivalent to the mean square error of the regional skew
(MSE}) and corresponds to an effective record length of 36
years. These values supersede G (—0.05), MSE, (0.302),
and effective record length of 17 years associated with the
generalized skew map in Bulletin 17B (Interagency Advisory
Committee on Water Data, 1982), which was used in the
previous study (Oki and others, 2010).

Because of the relatively large uncertainty in the at-site
skew for short to modest record lengths, the at-site skew and
its MSE can be weighted with the regional skew and its MSE
to generate a better, weighted estimate of skew for a given
streamgage basin (Tasker, 1978; England and others, 2019,
app. 7). Large deviations between the at-site and regional
skew may indicate that the flood frequency characteristics
of the basin of the streamgage of interest differ from those
used to estimate the regional skew. If the at-site and regional
skews differ by more than 0.5, it is considered reasonable to
use the at-site skew instead of the weighted skew in the EMA
(England and others, 2019, p. 25-26). The weighted skew was
used within PeakFQ at all except the following streamgages,
where the at-site skew was used: USGS streamgages
16400000 (Halawa Stream near Halawa, Moloka‘i), 16501200
(Oheo Gulch at dam near Kipahulu, Maui), 16502000
(Hahalawe Gulch near Kipahulu, Maui), 16557000 (Alo
Stream near Huelo, Maui), 16565000 (Kaaiea Gulch near
Huelo, Maui), 16638500 (Kahoma Stream at Lahaina, Maui),
and 16717600 (Alia Stream near Hilo, Island of Hawai‘i).

Expected Moments Algorithm Frequency
Analysis

The guidelines in Bulletin 17C (England and others,
2019) suggest using the expected moments algorithm (EMA)
to analyze the available flood data. EMA improves upon the
methods provided in the previous flood-frequency guidelines,
Bulletin 17B (Interagency Advisory Committee on Water
Data, 1982), by cohesively incorporating all available
flood-related data, including historical flood information, zero
flows, low outliers, flow intervals, and perception thresholds
(Lane and Cohn, 1996; Cohn and others, 1997; England and
others, 2019).

Flood-frequency data generally come from two types
of sources: systematic and historical data. Systematic data
are the primary source of flood-frequency data for Hawai‘i
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and consist of peak-flow data collected at regular intervals
from either continuous-record gages or crest-stage gages.
Systematic data are usually collected in consecutive years,
although records sometimes contain data gaps between years
(for example, see fig. 9). Historical data consist of major
floods that exceeded a perception threshold and occurred
outside the period of routine streamgaging, independent
of how recently the flood occurred. Historical floods are
valuable because they can be used to extend records with
the knowledge that if a particular discharge was exceeded,
it would have been recorded in some way. For example,
at Kalihi Stream (USGS streamgage 16229300), historical
data indicate that the flood on May 14, 1960, was the largest
flood since at least 1937; with this information, the EMA can
incorporate the period 1937-59 into the analysis by indicating
that all annual peaks during this period were less than the peak
discharge on May 14, 1960: 6,350 ft/s.

Some peaks in the peak-flow record are classified
as “opportunistic.” Opportunistic peaks occurred outside
the period of systematic streamgaging and were measured
because of operational decisions other than the exceedance
of a perception threshold. Because the statistical sampling
properties of opportunistic peaks are unknown, opportunistic
peaks were excluded from flood-frequency analysis.

Flow Intervals and Perception Thresholds

Flow interval and perception thresholds must be defined
in the PeakFQ program for every year with peak-flow
data (table 4). The flow interval—represented by (Oy /e
Oypper)—describes the annual-peak discharge which occurred.
A flow interval can be (1) a discrete value, where a single
peak is provided, or (2) a range, where the peak has some
uncertainty (for example, less than, greater than, or between
certain discharges). The perception threshold—represented by
(Tyiowers Tyupper)—describes the range of discharges that would
have been recorded had they occurred. The perceptible range
is independent of the actual peak discharges that occurred. At
streamgages with gaps in the systematic record, the perception
threshold was set to (—/00, infinity), and the flow interval was
set to (0, infinity), which signifies to PeakFQ that the data are
unavailable.

Continuous-Record Gages

At continuous-record gages, the peaks are usually
discrete values known with confidence, and the flow intervals
are represented as (Q,, O,). In a few cases, where the peak
discharge was estimated from historical information, a
20-percent uncertainty interval was applied to the estimated
discharge. For example, an uncertain peak discharge listed
as 100 ft3/s would be given a flow interval of (80, 120).

Most continuous-record gages can record the full range of
discharges; thus, the perception threshold for peaks from a
continuous-record gage typically is (0, infinity).
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Table 4. General perception-threshold and flow-interval settings applied to peak-flow data in the expected moments algorithm
analysis to estimate peak-flow statistics at streamgages, State of Hawaii.

Peak-flow type or scenario

Perception thresholds

Flow intervals

Minimum Maximum Minimum Maximum
Continuous-record gage, peak known with confidence 0 Infinity Peak Peak
Continuous-record gage, peak greater than stated value 0 Peak Peak Infinity
Crest-stage gage, peak known with confidence Minimum recordable Infinity Peak Peak
discharge
Crest-stage gage, peak greater than stated value Minimum recordable Peak Peak Infinity
discharge
Crest-stage gage, peak less than minimum recordable Minimum recordable Infinity 0 Minimum recordable
discharge or peak less than stated value discharge discharge
Historical peak Historical peak Infinity Historical peak Historical peak
Gaps in systematic record, no other available —100 Infinity 0 Infinity
information
Gaps in systematic record, additional information Historical peak Infinity 0 Historical peak
available from historical peak
Opportunistic peak -100 Infinity 0 Infinity

Crest-Stage Gages

Crest-stage gages are simple devices designed to measure
only the highest water stage over a given time period; flows
below the bottom of the crest-stage gage—the gage base—
are not recorded. The elevation of the gage base, which can
change through time based on operational needs, is used
to define the minimum recordable discharge (MRD) for a
crest-stage gage at any given year. Consequently, crest-stage
gages typically are given perception thresholds of (MRD,
infinity). If the annual peak discharge did not exceed the
MRD, the peak is recorded as a left-censored peak (“less
than MRD”) and the flow interval is set as (0, MRD). If the
annual peak discharge exceeded the MRD (uncensored peaks),
the flow interval is set as (Qy, Q). To estimate the MRDs
for peaks determined from crest-stage gages, historical data
were reviewed. If historical data were insufficient to estimate
a MRD for a given year, the MRD was set to an estimated
MRD from an adjacent record period; if a MRD could not be
reasonably estimated for a crest-stage gage, the MRD was
set to the lowest uncensored peak. Estimates of MRDs may
be uncertain because (1) historical data sometimes lack the
necessary information to estimate an MRD and (2) low flows
at crest-stage gages are typically less important and the lower
end of the stage-discharge relation is often poorly defined.

Low Outliers Identified with the Multiple
Grubbs-Beck Test

Peak-flow records commonly contain low-magnitude
outliers that deviate considerably from the rest of the peak
population. Low outliers often have a disproportionately
large influence on the fit of the frequency curve, at the
expense of the fit at the high-discharge end of the curve
(Cohn and others, 2013). Because most applications of

flood-frequency analysis (for example, infrastructure design
and flood protection) focus on the lower AEPs (larger peak
flows), low outliers are removed when fitting the frequency
curve. Bulletin 17C guidelines (England and others, 2019)
recommend the Multiple Grubbs-Beck Test (MGBT) to detect
and remove the potentially influential low floods (PILF)
during flood-frequency analysis. The MGBT improves upon
the Grubbs-Beck test (Grubbs and Beck, 1972) recommended
in Bulletin 17B by accommodating the possibility that several
low floods are potentially influential (Cohn and others,

2013; Lamontagne and others, 2016). The PeakFQ program,
version 7.3, automatically applies the MGBT when computing
flood statistics. For a few streamgages, a threshold for PILF
detection and removal was manually set to improve the fit at
the upper end of the frequency curve. For an example of a
fitted frequency curve where PILFs have been removed, see
figure 14.

Flood-Frequency Estimates at Gaged Sites

Flood-frequency estimates for 238 streamgages in
Hawai‘i were calculated using EMA and MGBT techniques
and the new regional skew coefficient (see section, “Regional
Skew Coefficient”). The magnitude of peak flows for the
50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs are
listed in appendix 4. Three estimates of peak flows for the
select AEPs are provided: the at-site estimate (EMA), the
regression-equation estimate (regression), and a weighted
average of the other two estimates (weighted). The weighted
estimate is generally preferred for most situations because it
combines information from the independent at-station and
regression-equation estimates (England and others, 2019, p.
33). The regression and weighted estimates will be discussed
in subsequent sections.
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100,000

[ [ [
PeakFQ v 7.3 run 2/1/2022 11:58:44 AM
EMA using station skew option
-0.332 = skew (G)
0.111 = mean square error (MSE sub G)
0 zeroes not displayed
13 peaks below PILF threshold
Multiple Grubbs-Beck Test

10,000

Annual peak discharge, in cubic feet per second

1000 | | | |

EXPLANATION
Fitted frequency curve

Confidence limits: 5 percent lower,
95 percent upper

Potentially influential low flood
(PILF) threshold

Gaged peak discharge _

O  Potentially influential low flood

99.5 98 95 90 75 60 40 20 10 5 1 0.2
Annual exceedance probability, in percent
Figure 14. Example of output from flood-frequency software PeakFQ version 7.3 containing potentially influential

low floods (PILF) for U.S. Geological Survey station 16103000 Hanalei River nr Hanalei, Kaua‘i, HI, using expected
moments algorithm (EMA) with Multiple Grubbs-Beck Test and station skew only and data through water year 2020.

Magnitude and Frequency of Floods at
Ungaged Sites

Regression equations were developed to estimate
peak-flow statistics at ungaged locations (the response
variable) using basin characteristics (explanatory variables)
determined for the ungaged location. The regression equations
relate the AEP discharges determined from the EMA analysis
to basin characteristics for streamgages in the study. The
multiple-linear regression techniques used here follow the
standard USGS methods outlined by Farmer and others
(2019). Ordinary least-squares (OLS) regression was used in
an exploratory data analysis to select the basin characteristics
suitable for further evaluation. Generalized least-squares
(GLS) regression was used to develop the final regression
equations. The general form of the multiple-linear regression
model is provided in the following equation:

Y, = bytb X, +hX,+ . +h X te ()
where
Y,  is the response variable (estimate of the
streamflow magnitude) for site ;
b,to b,  are the coefficients developed from the
regression analysis;
X,toX,  are the k explanatory variables (basin

characteristics); and

e, 1isthe residual error (difference between
the observed and predicted values of the
response variable) for site i.

The basic assumptions for multiple linear regression are
(1) the model adequately describes the relation between the
response variable and the explanatory variables, (2) variance
of the residuals (e;) is constant (homoscedastic), (3) the
residuals (e,) are independent of the explanatory variables
(X)), (4) the residuals (e,) are normally distributed, and (5)
the residuals (e;) are independent of each other (Helsel and
others, 2020, p. 228). The final assumption—residuals are
independent of each other—is not satisfied by OLS regression
because streamflow data generally are correlated in space
and time, whereas GLS regression techniques account for
spatial and temporal correlation. The OLS and GLS regression
techniques are described in the following sections.

To improve the fit of the regression model,
flood-frequency analyses commonly divide streamgages into
spatial regions with similar hydrologic characteristics and
develop independent models for each region. To evaluate
possible regions for the current study, two statewide (based
on data from Kaua‘i, O‘ahu, Moloka‘i, Maui, and the Island
of Hawai‘i) OLS regression equations were developed using
drainage area as the only explanatory variable and the
0.10- and 0.01-AEP discharges as the response variables. The
residuals for each streamgage—representing the difference
between the peak discharge predicted from the OLS regression
equations and the peak discharge obtained from the frequency
curve for a streamgage using the EMA—were plotted on
a map and the spatial patterns of residuals, along with
topographic divides and hydrologic features, were evaluated
to determine the final regional boundaries. Each of the five
islands in the study area were split into two regions, resulting
in 10 total regions (figs. 2—6). The regions used for Kaua‘i,
O¢ahu, Moloka‘i, and the Island of Hawai‘i match those used
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in the most recent USGS flood-frequency study for Hawai‘i
(Oki and others, 2010). For Maui, the regional boundary in the
southeast was modified relative to Oki and others (2010) based
on the spatial patterns of residuals in the OLS regression.

The only streamgage in this study affected by the change in
regional boundaries is USGS streamgage 16500100 (Kepuni
Gulch near Kahikinui House, Maui), which switched from
region 8 to 7.

Alternative regions were considered by testing
combinations of streamgages on different islands with similar
characteristics. For example, regions 5 (leeward Moloka‘i)
and 7 (central-southwestern Maui) were combined and tested.
Although the alternate regions did not result in improvements
in performance metrics relative to the final regions used
in this study, alternatives should be considered in future
flood-frequency studies as a way to increase the sample size
for areas with relatively few streamgages.

Elimination of Redundant Sites

Streamgages on the same stream and with similar
size drainage basins may contain redundant hydrologic
information. Redundant streamgages generally have
similar basin characteristics and hydrologic responses to a
given storm; thus, they provide only one unique statistical
observation, rather than two independent observations.
Including redundant streamgages in a regression analysis
can negatively affect the results because the data are not
independent (Farmer and others, 2019). To determine if two
streamgages should be classified as redundant, three types
of information are reviewed: (1) whether the streamgages
have nested drainage basins, meaning that one drainage
basin is entirely contained within the other, (2) whether the
streamgages have drainage basins of similar size, and (3)
whether the streamgages have temporal overlap in their
peak-flow data.

To evaluate the likelihood that the streamgages have
nested drainage basins, the standardized distance was
computed. The standardized distance (SD) between two basin
centroids is defined as:

D,
SD, =

i T e A3)
/ «/O.S(DA,.JrDAj)
where
D, is the distance between centroids of basin i
and basin j, in miles;
is the drainage area at streamgage 7, in square
miles; and
is the drainage area at streamgage j, in
square miles.

DA,

A drainage area ratio was used to determine if the two
streamgages had similarly sized drainage areas. The drainage
area ratio (DAR) is defined as:

DA,
DAR = ¢tos(p)) @)
where
DA; s the drainage area at site 7, in square
miles; and
DA;  is the drainage area at site /, in square miles.

A script written in the R programming language (R
Core Team, 2021) was used to provide an initial screening
of potentially redundant streamgages on the basis of the
standardized distance and drainage area ratio. Screening
thresholds for the standardized distance and drainage area ratio
were set to 0.5 and 5, respectively. All possible combinations
of streamgage pairs from the 238 streamgages were considered
in the redundancy analysis. The script identified 50 potentially
redundant pairs of streamgages (some streamgages were
identified as potentially redundant to more than one other
streamgage); 9 of the streamgage pairs identified were not
nested or did not have temporal overlaps in their data and
therefore were not considered redundant. For streamgage
pairs that had nested basins and drainage area ratios less than
five, one of the streamgages was classified as redundant and
removed from the regression analysis. Generally, streamgages
with longer periods of record were prioritized and retained.
Additional considerations include (1) whether the streamgage
is active and (2) how the streamgage’s basin characteristics
fit into the distribution of basin characteristics for the
streamgages in the region. For example, the streamgage with
the largest drainage basin in the region may be prioritized,
all other factors being equal, because it expands the range of
values used to develop the regression equations (as will be
discussed later, the regression equations should not be used
with values for the explanatory variables that are not within
the range of values used to develop the regression equations).
Of the 238 streamgages considered for the regression
analysis, 23 streamgages (about 10 percent) were classified
as redundant and removed from the analysis (table 1.1,
app. 1). Redundant streamgages were not included in either
the regression or skew analyses, although station-specific
flood statistics for redundant streamgages were still computed
(table 1.1, app. 1).

Exploratory Data Analysis

An exploratory data analysis was completed to evaluate
the best combinations of basin characteristics to use as
explanatory variables in the regional regression equations.
Scatter plots of each pair of response variable (flood discharge
associated with an AEP) and explanatory variable (basin
characteristic) were created to visually evaluate the pattern
and linear relation between variables. Because multiple-linear
regression seeks to quantify linear relations between the
response and explanatory variables, data transformations were
tested to improve the linearity of the relation. Logarithmic
transformations (base 10) of both response and explanatory
variables resulted in the best linear relations and the most



constant variance (homoscedasticity) about the regression line.
Prior to log transformation, a constant of 1 was added to the
explanatory variables expressed as a percentage (for example,
percentage impervious land cover) because some values for
these basin characteristics are 0, and the logarithm of 0 is
undefined. When logarithmic transformations are applied to
the data to improve linearity, equation 2, which describes the
general form of the regression model, becomes:

Y, =10" X)X . X +e (5)
where
Y, is the response variable (estimate of the
streamflow magnitude) for site i;
b,to b,  are the coefficients developed from the
regression analysis;
X,toX,  are the k explanatory variables (basin

characteristics) for site i; and

e,  1isthe residual error (difference between
the observed and predicted values of the
response variable) for site i.

OLS regression analysis was performed using the
R programming language (R Core Team, 2021) and the
“smwrStats” statistical package (U.S. Geological Survey,
2017). An “all-possible subsets” regression was used to
determine the best combinations of explanatory variables
for models with 1-3 variables. Generally, the regression
equations were limited to 1 variable per 10 streamgages in
the region (Farmer and others, 2019). Model diagnostics for
regression equations were reviewed for adequacy; selection
criteria for explanatory variables included: (1) maximize the
adjusted coefficient of determination, (2) minimize Mallow’s
C, statistic, and (3) minimize the predicted residual sum
of squares (PRESS) statistic. Basin characteristics and the
magnitude and sign of their coefficients in the regression
equations were reviewed to ensure hydrologic plausibility.
Multicollinearity, where two explanatory variables have a
strong linear dependency, was evaluated using the variance
inflation factor (VIF)—no variables in the final OLS
regression models had a VIF greater than 5, indicating that
multicollinearity is unlikely.

Regional Regression Equations

GLS multiple-linear regression (Stedinger and Tasker,
1985; Tasker and Stedinger, 1989; Farmer and others,
2019) was used to determine the final coefficients and
performance metrics for each regional regression equation.
GLS regression techniques are generally preferred for
flood-frequency analysis because they improve estimates
of AEP discharges and estimates of the accuracy of the
regression model by accounting for (1) unequal record lengths
from streamgages and (2) cross-correlation of streamflow
statistics from streamgages (England and others, 2019, p.
30-31). Streamgages with shorter records are given less
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weight than streamgages with longer records. Additionally,
less weight is given to streamgages where concurrent peak
flows are correlated with nearby streamgages. Based on
results from the OLS analysis, all explanatory and response
variables were log-transformed prior to use in the GLS
regression analysis. The USGS weighted-multiple-linear
regression (WREG) program version 2.02 (https://github.com/
USGS-R/WREG)—written in the R programming language
(R Core Team, 2021)—was used to compute the final GLS
equations and model performance metrics. Default values of
the correlation-smoothing function in WREG (alpha, a, 0.002;
and theta, 0, 0.98) were adjusted for each regional regression
equation to improve model fit.

The final regression equations for estimating AEP
discharges from basin characteristics for ungaged streams
in Hawai‘i are shown in table 5. Within each region, the
explanatory variables were constrained to be identical for all
regression equations; this ensures that predicted discharges
uniformly increase as the AEP decreases. All explanatory
variables used in the regression equations were statistically
significant at the 95-percent confidence level (p-value less than
or equal to 0.05) for at least one AEP in each region. Ranges
of the explanatory variables used to develop the regression
equations are presented in table 6.

Drainage area is the most common explanatory variable
and appears in all equations except for those representing
southern Island of Hawai‘i (region 10). Other explanatory
variables used in the regression equations include mean annual
precipitation, precipitation-frequency statistics (for example,
the maximum 48-hour rainfall that occurs on average once
in 500 years, or [48H500Y), and soil permeability. The only
region containing more than 1 explanatory variable per 10
streamgages was leeward Kaua‘i (region 1); here, a second
explanatory variable—mean annual precipitation—was
justified for the 17 streamgages in the region because of its
clear hydrologic relation to flood magnitude and the notable
improvement in performance metrics of the regression
model, relative to a one-variable (drainage area) equation. All
explanatory variables used in the regression equations except
for soil permeability had positive coefficients, indicating that
as the value of explanatory variable increases, the predicted
flood discharge also increases.

Soil permeability was used as an explanatory variable
in the leeward O‘ahu regression equations (region 3). The
negative coefficient of the variable in all equations indicates
that, as soil permeability increases, the predicted peak
discharge decreases; this is intuitive because more permeable
soils allow more water to infiltrate and reduce the volume
of overland runoff than can contribute to flood peaks. The
statistical significance of soil permeability decreases at the
low-AEP floods and the p-value for soil permeability as a
variable exceeds 0.05 at an AEP of 0.002. The importance
of soil permeability is expected to be lower for the low-AEP
floods because most soils become fully saturated during large
flooding events; thus, the spatial variability of permeability
will have a smaller influence on the flood magnitude above a
certain threshold (Hollis, 1975; Konrad, 2003).
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Southern Island of Hawai‘i (region 10) is the only region
where drainage area was not used as an explanatory variable.
This may reflect the lack of well-defined stream channels
in this area and the high permeabilities of soils and rocks at
the surface (Oki and others, 2010). Because rainfall tends to
infiltrate the surface quickly, drainage area likely does not play
a large role in governing flood magnitudes for most AEPs in
region 10.

Leverage and influence statistics computed by WREG
were reviewed to evaluate how each streamgage affected
the regression results. Leverage is a measure of how far
away the values from one streamgage are from the values
at all other streamgages in the regression model and is
used to identify unusual observations (Farmer and others,
2019). Streamgages with high leverage have the potential
to exert a strong influence on the regression parameters
(Helsel and others, 2020, p. 238). The influence metric is
a measure of how much influence a particular streamgage
has on the regression parameters. Streamgages with
leverage and influence values that exceeded the thresholds
calculated by WREG were reviewed for potential errors
in the peak-flow data (for example, poor computation of
discharge from stage or inaccurate data representation in
NWIS) and basin-characteristic data (for example, inaccurate
basin delineations) or other issues that would make the
streamgage ineligible for the regression model. Although
several streamgages had both high leverage and influence, no
errors were identified in the associated data and a reasonable
hydrologic justification for removing the streamgages from the
regression analysis could not be found.

Example Using a Peak-Flow Regression Equation

Example 1. Calculate the 0.01-AEP peak flow using the
regional regression equations (Q,,,) for USGS streamgage
16010000 on Kawaikoi Stream near Waimea, Kaua‘i, State of
Hawai‘i, at latitude 22°7°58.1” N and longitude 159°37°11.8”
W. Streamgage 16010000 has a drainage area (DRNAREA)
of 3.82 mi? and a mean annual precipitation (PRECIP) of
133 inches.

1. From figure 2 and the latitude and longitude,
streamgage 16010000 is in region 1.

2.From table 5, the regional regression equation for the
0.01-AEP peak flow in region 1 is:

O = 10'$4DRNARE A39)(PRECI PO732)

3. Substitution of the basin characteristics into the
equation produces:

O = 101834(3,820:809)(1330.732)

Q = 17,240 ft3/s (rounded to three significant figures)

Assessment of Fit

To assess the fit of the regression models, peak discharges
predicted using the regression equations can be compared
to the peak discharges determined from fitting the observed
peak-flow data to the LP-III frequency curve (fig. 15).
Comparisons of the observed and predicted peak discharges
suggest that the regression models fit the observed data
well. Additionally, plots of residuals (the difference between
predicted and observed discharges) were examined to test the
validity of the assumptions related to the regression models
(fig. 16). The plots show that the residuals do not follow any
trend and are equally distributed around zero and indicate that
no model assumptions were violated.

Accuracy and Limitations of Regional
Regression Equations

Several performance metrics from the WREG program
can be used to evaluate the accuracy of the regression
equations. Performance metrics for the final regression
equations are presented in table 5 and include the model error
variance (MEV), the standard model error variance (SMEV),
the root mean squared error (RMSE), the pseudo coefficient of
determination (pseudo-R?), the average variance of prediction
(AVP), and the average standard error of prediction (SEP,,).
The MEV and SMEYV describe the portion of the total error
that can be attributed to having an imperfect model, in log
units and percent, respectively. The RMSE and pseudo-R?
are measures of model accuracy for streamgages used in
the model development. RMSE describes how much the
predicted peak discharges deviate from the observed peak
discharges. The pseudo-R? is a measure of the predictive
strength of the regression model and describes the variability
of the response variable that is explained by the explanatory
variables, after accounting for the effect of time-sampling
error. The pseudo-R? is similar to the standard coefficient
of determination (R?), where the closer the value is to 1.0
(or 100 percent), the greater the amount of variance that is
explained by the regression. The AVP and SEP,, are measures
of how well the regression model performs at predicting peak
discharges for ungaged sites not used to develop the regression
equations—lower values indicate greater predictive power.
Generally, pseudo-R? and AVP were the most important
metrics for selecting the final regression equations. Equations
for calculating these performance metrics are available in
England and others (2009).

The pseudo-R? values for the final regression equations
ranged from 11.9 percent (region 7; 0.5 AEP) to 100.0 percent
(region 6; 0.002—0.02 AEPs) for all regions and AEPs, and
ranged from 46.2 percent (region 5) to 100.0 percent (region
6) for the 0.01-AEP discharges. The AVP values for the final
regression equations ranged from 0.0046 (region 6; 0.02
AEP) to 0.3400 (region 5; 0.5 AEP) for all regions and AEPs,
and ranged from 0.0062 (region 6) to 0.2455 (region 10)
for the 0.01-AEP discharges. Overall, the final regression
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Figure 15. Comparisons between the 0.01 annual exceedance probability peak discharges estimated from the
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models performed well for all regions except regions 5 and
10. The large errors associated with the regression equations
for regions 5 (leeward Moloka‘i) and 10 (southern Island

of Hawai‘i) reflect the relatively few sites and short records
available and the poor understanding of flood-producing
mechanisms in these areas. Collection of additional peak-flow
data and consideration of basin characteristics that better
characterize flood conditions may improve the accuracy of
regression equations used to predict peak flows at ungaged
sites in these regions.

The accuracy of the regression equations may be affected
by issues associated with the explanatory and response
variables. The basin characteristics used as explanatory
variables rely on accurate basin delineations—any change
to the basin delineations will affect the computed values for
each basin characteristic, even if the source data for the basin
characteristics remain unchanged. Future analyses that use
higher-resolution DEMs (for example, DEMs derived from
light detection and ranging [lidar] data) to delineate basins
will result in improved accuracy for basin characteristics
used in the regression analyses. Potential errors associated
with the peak-flow statistics used as response variables in
the regression equations include non-representative data
from streamgages with short records and errors computing
discharge from stream stage (Turnipseed and Sauer, 2010).

The explanatory variables (basin characteristics) should
be representative of basin conditions during the period
of record that was used to derive the response variables
(peak-flow statistics) (Farmer and others, 2019). The historical
periods used to determine the mean annual precipitation,
precipitation-frequency statistics, and soil permeability
used in the final regression equations were 1978-2007,
1899-2005, and 2001-19, respectively. The peak-flow
statistics used as response variables were determined from
peak-flow data collected during 1911-2021; however, the
temporal availability of peak-flow data for each region varies
substantially (for example, see fig. 9). If a streamgage used
in the regression analysis only has peak-flow data collected
during a particularly wet period (for example, the 1960s),
it may not accurately characterize the expected long-term
relation between basin characteristics and peak-flow statistics
in the region.

The regression equations are only applicable to ungaged
locations with basin characteristics within the range of
values used to develop the regression equations (table 6).

If the regression equations are used beyond these limits,

the accuracy of the estimated peak-flow statistics would be
unknown. Additionally, basin characteristics at ungaged sites
should be computed using the same datasets and methods

as were used in this study. The USGS StreamStats web
application provides the same datasets and methods as were
used in this study and therefore provides the most consistent
way to estimate peak-flow statistics at ungaged sites (see
section, “Estimating Flow Statistics Using StreamStats”).
The regression equations developed in this study apply to
stream sites that are unregulated and have less than 20 percent
impervious land cover; however, StreamStats is unable to
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warn users or prevent them from selecting regulated stream
sites because identifying all stream sites in the study area that
are substantially affected by regulations is challenging.

Uncertainty of Individual Estimates Computed
Using the Regression Equations

When applying the regression equations at ungaged
sites not used in the development of the regression equations,
it is important to understand the accuracy and uncertainty
associated with the estimated discharge. Two commonly
used metrics for the accuracy of an estimated discharge at
a particular site are the variance of prediction (VP) and the
standard error of prediction (SEP). For a site 7, the variance
of prediction is the sum of the model error variance and
the sampling error variance. The variance of prediction for
each streamgage used in the development of the regression
equations is computed in WREG. To compute the variance
of prediction for estimated discharges using the regression

equations (V' P,

<o) the following equation can be applied:

VP, = o5 +a; (6)
where
VP, is the variance of prediction for site 7, in
log units;

o} s the model error variance (see table 5 for
values), in log units; and
o? is the sampling error variance for site 7, in

log units.

The sampling error variance is computed as follows:
o) = x;(XTAT' X)) x] (7

where

x;  is arow vector of the regressor (basin
characteristic) variables associated with
site 7, augmented by a value of 1.0 in the
first column;

X  isthe (1 x p) matrix consisting of 1 row and
the p-1 regressor variables augmented by a
column of ones in the first column;

A is the (n by n) covariance matrix used

for weighting sample data in the GLS
regression;

is the covariance matrix for the regression

coefficients (Mitchell and Wagner, 2023),
are the superscripts indicating the transpose
and inverse of the matrices, respectively;

n is the number of streamgages used in the
regression analysis; and

p is the number of basin characteristics in the
regression equation plus 1.

XTA71 X!

Tand™!
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The SEP for site 7, expressed in log units, can be
computed as:

SEP, = (VP)0s (3

where
SEP, is the standard error of prediction for
site i; and

VP,  is the variance of prediction for site i.

To understand the uncertainty of an individual discharge
estimate when using the regression equations at an ungaged
site, prediction intervals can be computed. Prediction intervals
combine the uncertainty of the regression parameters and
placement of the regression line—typically described by
confidence intervals—with the uncertainty associated with
the residuals (Farmer and others, 2019). Prediction intervals
describe the range of values within a specific confidence
interval, within which the true value exists (Helsel and others,
2020). The following equations can be used to compute
the 95-percent prediction intervals for peak-flow estimates
obtained using the regression equations for ungaged locations:

ol -] ©)

3
I

L= (10)
where
PI,;, P1, are the upper and lower prediction intervals,
respectively, for a given AEP at site i;
0.,  isthe predicted discharge for a given AEP at

site 7, in log units;

t(%qn,p) is Student’s t with a specified alpha (a) level
and n—p degrees of freedom, where n is
the number of sites used in the regression
equation and p is the number of regressor
variables plus 1 (values for each regression
region are listed in table 5); and

VP is the variance of prediction for a given AEP

reg;
at site 7, in log units, computed using

equations 6 and 7.

For sites not used in the development of the regression
equations, the average variance of prediction (AVP), available
in table 5, should be substituted for the site-specific variance

of prediction (V'P,,) in equations 9 and 10.

Application of Methods

The techniques for estimating peak discharges described
in this report can be applied to three different situations:

1. A gaged location with at least 10 usable annual peaks.

2. An ungaged location or a gaged location with less
than 10 usable annual peaks located near a streamgage
for which peak-flow statistics have been or can be
computed.

3. An ungaged location or a gaged location with less than
10 usable annual peaks not located near a streamgage
for which peak-flow statistics have been or can be
computed.

The methods for the first two situations are described
below. For the third situation, the appropriate regression
equation in table 5 should be applied directly to estimate peak
discharges (see section, “Estimating Flow Statistics Using
StreamStats™).



Weighting Flood-Frequency Estimates at
Gaged Sites

An improved estimate of peak discharge can be obtained
for gaged sites by combining information from the at-site
flood-frequency curve (that is, EMA) with information from
the regional regression equations (England and others, 2019).
The two estimates of peak discharge can be considered
independent if the regression equations were developed
with a large number of sites. The combined peak-flow
estimate is weighted based on the inverse of the variance
of prediction for each independent estimate. The weighting
procedure only applies to unregulated streams with minimal
basin urbanization. The weighted discharges are available in
appendix 4 (and can be accessed using StreamStats) and were
computed with the following equation:

(V[Jreg‘- )(logQEMA, )*(VPEMA,- )(lUgQregi )
VB, eq: +VPeua;

0 —10 (1)
wid;

where

Oa is the weighted-discharge estimate for a given
AEDP at site 7, in cubic feet per second;

VP is the variance of prediction at the streamgage

reg;
for a given AEP at site , in log units,
derived from the applicable regional
regression equation;

Opyy 1s the EMA-discharge estimate for a given

AERP at site 7, in cubic feet per second;

VPpy,  1s the variance of prediction at the streamgage

for a given AEP at site , in log units,
derived from the EMA analysis; and
O,  Is the regression-discharge estimate for
a given AEP at site 7, in cubic feet
per second.

The variance of prediction for the weighted-discharge
estimate (V'P,,,) can be computed as follows:

(VPEMA,)( VPreg,)

VPWtd‘ - VP EMA + VPreg.

(12)

Once Q,,, and V'P,,, have been determined, the upper

and lower prediction intervals for the weighted-discharge
estimate can be computed as follows:

|:me‘- +(l(5 N (VRurd; )05 :|
PIU, = 10 : (13)

[ [’1"7,_
PI :10[ (5]

Lt

(14)
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are the upper and lower prediction intervals,

respectively, for a given AEP at site i;
is the weighted-discharge estimate for a given

AEP at site i;
is Student’s t with a specified alpha (a) level

and n—p degrees of freedom, where 7 is
the number of sites used in the regression
equation and p is the number of regressor
variables plus 1 (values are listed in
table 5); and
VP,  1sthe variance of prediction of the
weighted-discharge estimate for a given
AEP at site 7, in log units.

Example of Weighting a Peak-Flow Estimate with
Observed and Predicted Values

Example 2. Calculate the 0.01-AEP (or 1.0-percent
AEP) weighted peak flow (Q,,,,) for USGS streamgage
16010000 on Kawaikoi Stream near Waimea, Kaua‘i, State of
Hawai‘i, at latitude 22°7°58.1" N and longitude 159°37'11.8"
W. Streamgage 16010000 has a drainage area (DRNAREA)
of 3.82 mi? and a mean annual precipitation (PRECIP) of
133 inches.

1. From example 1 and appendix 4, a predicted 0.01-AEP
peak-flow estimate (Q,,,) of 7,240 {t¥/s (converted
to 3.860 ft3/s log units) was computed using the
appropriate regression equation for region 1 (table 5).

2. From appendix 4, the variance of prediction for the
regression estimate (V'P,,,) is reported as 0.0230
log units.

3. From appendix 4, the observed 0.01-AEP peak-flow
estimate (Qp,,,) and corresponding at-site variance of

prediction (VP,,,) are reported as 11,600 {t¥/s (con-

verted to 4.064 ft3/s log units) and 0.0031 log units,

respectively.

4. Using equation 11, a weighted peak-flow estimate
(O,,) can be computed as follows:

(VPreg, )(lOgQEMA, )"‘(VPEMA,- )(logQrL‘g, )
VB o0 +VPry,

thd = 10

(0.0230)(4.064)+(0.0031)(3.860)
0.0230+0.0031

thd =10

0,...= 11,000 ft¥/s (rounded to three significant figures)
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Weighting Flood-Frequency Estimates at
Ungaged Sites with Data from a Nearby Gage

Peak-flow estimates determined using the regional
regression equations for ungaged sites can be improved if
the ungaged site is located near a gaged site on the same
unregulated stream. This approach combines information from
the regression equations at the ungaged site with information
from the discharge estimates at a nearby gaged site by, in part,
relating the drainage areas of the two sites. The weight of the
regression-derived discharge estimate for the ungaged site
increases relative to the weight of the discharge estimates from
the gaged site as the drainage-area ratio increases (that is, as
the distance between the two sites increases). To apply this
weighting method, the gaged site must have at least 10 years
of peak-flow data, and the ungaged site must have a drainage
area within 50 percent of the drainage area of the gaged site
(the drainage-area ratio is more than 0.5 and less than 1.5) and
must be located on the same stream (Ries, 2007; Feaster and
others, 2009). The following equation can be used to compute
the weighted-discharge estimate at the ungaged site:

o= |3 (-2 (o) e a9

where

Oy

wid

is the weighted-discharge estimate at the

ungaged site for a given AEP, in cubic feet
per second;

44 is absolute value of the difference between the
drainage areas of the gaged and ungaged
sites, in square miles;

Ag  1is the drainage area for the gaged site, in
square miles;

Qg isthe weighted-discharge estimate at the
gaged site for a given AEP, in cubic feet
per second;

oF is the discharge estimate computed using the

applicable regional regression equation at
the gaged site for a given AEP, in cubic
feet per second; and

oy is the discharge estimate computed using the
applicable regional regression equation at
the ungaged site for a given AEP, in cubic
feet per second.

Comparison of Results with Previous
Studies

The weighted peak-flow estimates and regression
equations were compared to the results from the most recent
USGS flood-frequency analysis in Hawai‘i (Oki and others,
2010). For most of the 220 streamgages included in both this
study and Oki and others (2010), the weighted peak-flow
estimates for the 0.01 AEP were similar (fig. 17). The median
relative difference for weighted peak-flow estimates in
each region ranged from —4 to 0 percent, indicating a slight
decrease in peak-flow estimates. Generally, larger relative
differences in the estimated peak flows are observed for
the smaller AEPs (largest floods) than for the larger AEPs
(smallest floods) (fig. 18).

The regional regression equations in this study provide
more accurate estimates for some regions and similarly
accurate estimates in other regions, compared to the equations
developed by Oki and others (2010). Performance metrics for
the regression equations indicate improvements in regions 1,
3,4,7,8, and 10, and similar metrics in regions 2, 5, 6, and
9 (table 7). Improvements in model performance for regions
1, 3, 4, and 8 can be partly attributed to the addition of a new
variable that was not used in Oki and others (2010).

Differences in the weighted peak-flow estimates and
regression performance metrics in this study relative to
Oki and others (2010) may be explained by several factors,
including variable selection for the regression equations,
data availability, streamgage selection, regional skew, and
flood-frequency techniques. This study used data through
water year 2020, whereas Oki and others (2010) used data
through water year 2008; the additional 12 years of peak-flow
data have greater potential to influence estimated flood
statistics at streamgages with short records compared to
those with long records. In addition to data availability, the
criteria used to select streamgages—including the removal
of redundant streamgages from the development of the
regression equations—differed between the two studies. The
regional skew for this study (—0.157 and a MSE 0f 0.212) was
developed following updated national guidelines (Bulletin
17C; England and others, 2019) and B-WLS/B—GLS methods;
the regional skew used by Oki and others (2010) (—0.05 and
a MSE of 0.302) was computed as the arithmetic mean of
at-site skews from 30 streamgages with data through water
year 1973 (Bulletin 17B; Interagency Advisory Committee on
Water Data, 1982). Lastly, the use of EMA with MGBT for
this study likely improved at-site estimates of peak discharge
for streamgages with censored, interval, or historical data
types, relative to the at-site estimates from Oki and others
(2010), which were computed using techniques described in
Bulletin 17B.
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Relative percentage difference between weighted peak discharge estimates in this study and Oki and others (2010)
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Figure 18. Comparisons between the annual exceedance probability (AEP) peak discharges from
this study—using data through water year 2020—and the previously published estimates from Oki
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Oki and others (2010) and is not included here. The relative percentage differences for streamgage
number 164118000 in region 5 are not shown because they would limit the ability to view the other
data in this region; at an AEP of 0.5, this study estimated a weighted discharge of 26 cubic feet per
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Estimating Flow Statistics Using
StreamStats

The USGS StreamStats program (U.S. Geological
Survey, 2019, http://streamstats.usgs.gov) is a web-based
GIS application that provides users with several analytical
tools for water-resources planning and management (Rosa
and Oki, 2010; Ries and others, 2017). One of the core
capabilities of StreamStats is that it allows users to select
an ungaged location on a stream network to delineate a
drainage basin, compute basin characteristics, and calculate
selected streamflow statistics (for example, peak-flow,
low-flow, and flow-duration statistics). StreamStats provides
a faster, more accurate, and more consistent approach for
estimating streamflow statistics at ungaged locations than
manual methods.

The basin characteristics (table 3) and regional regression
equations (table 5) described in this study have been integrated
into the USGS StreamStats program for Hawai‘i. If users
select an ungaged location in StreamStats, they will be
able to delineate a drainage basin, compute selected basin
characteristics, and estimate selected flow statistics—including
the AEP discharges reported in this study. If the ungaged
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location selected by the user has basin characteristics within
the range of those used to develop the applicable regression
equations, StreamStats will provide available accuracy metrics
and prediction intervals for the peak-flow estimates (described
in section, “Accuracy and Limitations of Regional Regression
Equations”). StreamStats currently does not have the ability
to weight the peak-flow estimate at an ungaged location

with the peak-flow estimates from a nearby gaged location
(described in section, “Weighting Flood-Frequency Estimates
at Ungaged Sites with Data from a Nearby Gage”)—these
computations will need to be completed manually using

the regression-derived discharge estimate at the ungaged

site and the discharge estimates provided by StreamStats

for the nearby gaged site. If a user selects a gaged location

in StreamStats, they can obtain the full suite of available
basin characteristics and flow statistics, including those not
reported in this study (for example, low-flow statistics, if
available). Additionally, published basin characteristics and
flow statistics at streamgages can be accessed on StreamStats
directly at https://streamstatsags.cr.usgs.gov/gagepages/
html/00000000.htm (U.S. Geological Survey, 2019), where
00000000 is substituted with the station number for the
streamgage.


http://streamstats.usgs.gov
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Summary

The U.S. Geological Survey (USGS), in cooperation
with the State of Hawai‘i Department of Transportation,
updated flood estimates for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-,
and 0.2-percent annual exceedance probabilities (AEP) for
unregulated streamgages in Kaua‘i, O‘ahu, Moloka‘i, Maui,
and Hawai‘i, State of Hawai‘i. Regression equations which
can be used to estimate flood magnitude and associated
frequency at ungaged streams were developed. This study uses
data through water year 2020 and supersedes the previous
USGS flood-frequency report, Oki and others (2010), which
used data through water year 2008.

Flood magnitude and frequency at 238 streamgages
were estimated—following national guidelines established in
Bulletin 17C (England and others, 2019)—by fitting annual
peak-flow data to the Log-Pearson Type III distribution using
the expected moments algorithm (EMA) and the USGS
PeakFQ flood-frequency software. Potentially influential low
outliers in the data were identified and removed using the
Multiple Grubbs-Beck Test. An updated regional skewness
coefficient (regional skew) for Hawai‘i was estimated using
the Bayesian weighted least squares/Bayesian generalized
least squares (B-WLS/B-GLS) method. The B-WLS/B—
GLS method for determining regional skew accounts for
complexities introduced by EMA and the cross-correlation of
annual peak flows at pairs of streamgages, resulting in a more
accurate estimate of regional skew and a better understanding
of uncertainty. The updated regional skew employs a constant
model for the five islands in the study area and has a value of
—0.157 (mean square error of 0.212).

Trends in the peak-flow data were evaluated to test
the statistical assumptions for flood-frequency analysis
described in Bulletin 17C. Monotonic trends, representing
a unidirectional change over time, were evaluated using
three versions of the nonparametric Mann-Kendall test. Step
trends, representing abrupt shifts in the statistical properties of
time-series data, were evaluated using the Pettitt test. About 21
percent of streamgages had a significant monotonic trend with
at least one version of the Mann-Kendall test; streamgages on
Kaua‘i, O‘ahu, and the Island of Hawai‘i had predominantly
decreasing trends, whereas streamgages on Maui and Moloka‘i
had mixed results. About 18 percent of streamgages had a
significant step trend; 26 streamgages with significant step
trends had peak-flow magnitudes that decreased after the
change point and 18 streamgages had peak-flow magnitudes
that increased after the change point. Although this study
only represents a cursory trend analysis, the observed
trends do not have clear deterministic relations with known
hydroclimatological or land-use changes. Consequently,
no streamgages were removed from the analysis and the
statistical assumptions were presumed to be valid. Trends

should continue to be evaluated in future flood-frequency
analyses, particularly if techniques capable of adjusting data
for definitive nonstationarities become readily available.

Multiple-linear regression techniques were used to
relate basin characteristics to peak flows at streamgages
for the purposes of estimating peak flows at ungaged sites.
The study area was split into 10 regions—two regions per
island, generally following a leeward/windward split—
containing from 9 to 49 streamgages each. Fifty-eight
basin characteristics, representing physical or climatic
attributes that may relate to flood statistics, were computed
for each streamgage. Ordinary least squares regression
methods were used in an exploratory data analysis to select
candidate explanatory variables (basin characteristics). The
final regression equations for each region were determined
with generalized least squares methods using the USGS
weighted-multiple-linear regression (WREG) program. The
standard error of prediction at the 0.01 AEP for the regression
equations ranged from 18 to 164 percent; the pseudo
coefficient of determination (pseudo-R?) at the 1-percent
AEP ranged from 46 to 100 percent. The regression equations
performed well for all regions except leeward Moloka‘i
and southern Island of Hawai‘i; for all other regions, the
pseudo-R? ranged from about 75 to 100 percent. Compared
to the regression equations developed by Oki and others
(2010), the regression equations in this study generally had
greater accuracy and predictive power, although the degree of
improvement varied for each region. The regression equations
are only applicable to locations with basin characteristics
within the range of values used to develop the regression
equations.

At streamgages with data analyzed in this study, final
peak-flow estimates are weighted using the at-site statistics
computed with PeakFQ and the predicted flows from the
regression equations. Results of this study—including the
final peak-flow estimates at streamgages and the regression
equations—are implemented in the USGS StreamStats web
application (U.S. Geological Survey, 2019). StreamStats
provides the most consistent approach for obtaining peak-flow
estimates at streamgages and for applying the regional
regression equations for estimating peak flows at ungaged
locations.

Acknowledgments

The authors thank the following U.S. Geological Survey
personnel: Wyatt E. Barrs, Richard A. Fontaine, Rylen K.
Nakama, and Kolja Rotzoll for reviewing data; Heather A.
Jeppesen for helping with data management; and Delwyn S.
Oki for providing project guidance.



References Cited

Barnhart, T.B., Smith, M., Rea, A., Kolb, K., Steeves,
P., and McCarthy, P., 2020, StreamStats data
preparation tools, version 4: U.S. Geological Survey
software release, accessed October 5, 2022, at
https://doi.org/10.5066/POUM2NUL.

Busuioc, A., and Storch, H.V., 1996, Changes in winter
precipitation in Romania and its relation to large-scale
circulation: Tellus A—Dynamic Meteorology and
Oceanography, v. 48, no. 4, p. 538-552.

Cao, G., Giambelluca, T.W., Stevens, D.E., and Schroeder,
T.A., 2007, Inversion variability in the Hawaiian trade
wind regime: American Meteorological Society, v. 20, no.
7, p. 1145-1160, accessed May 17, 2021, at https://doi.
org/10.1175/JCLI4033.1.

Caruso, S.J., and Businger, S., 2006, Subtropical cyclogenesis
over the central North Pacific: Weather and Forecasting, v.
21, no. 2, p. 193-205, accessed June 3, 2021, at
https://doi.org/10.1175/WAF914.1.

Chen, Y.R., and Chu, P.-S., 2014, Trends in precipitation
extremes and return levels in the Hawaiian Islands under a
changing climate: International Journal of Climatology, v.
34, no. 15, p. 3913-3925, accessed April 6, 2021, at
https://doi.org/10.1002/joc.3950.

Chen, Y.-L., and Feng, J., 1995, The influences of inversion
height on precipitation and airflow over the Island of
Hawaii: Monthly Weather Review, v. 123, no. 6, p.
16601676, accessed June 4, 2021, at https://doi.org/10.117
5/1520-0493(1995)123%3C1660:TIOIHO%3E2.0.CO;2.

Chu, P.-S., 1995, Hawaii rainfall anomalies and El Nifio:
American Meteorological Society, v. 8, no. 6, p. 1697-1673,
accessed June 3, 2021, at https://doi.org/10.1175/1520-0442
(1995)008%3C1697:HRAAEN%3E2.0.CO;2.

Chu, P.-S., and Chen, H., 2005, Interannual and interdecadal
rainfall variations in the Hawaiian Islands: Journal of
Climate, v. 18, no. 22, p. 47964813, accessed April 29,
2021, at https://doi.org/10.1175/JCLI3578.1.

Chu, P.-S., Chen, Y.R., and Schroeder, T.A., 2010, Changes
in precipitation extremes in the Hawaiian Islands in a
warming climate: American Meteorological Society, v. 23,
no. 18, p. 4881-4900, accessed April 6, 2021, at https://doi.
org/10.1175/2010JCLI13484.1.

Chu, P.-S., Nash, A.J., and Porter, F.-Y., 1993, Diagnostic
studies of two contrasting rainfall episodes in Hawaii—Dry
1981 and wet 1982: American Meteorological Society, v. 6,
no. 7, p. 1457-1462, accessed May 18, 2021, at https://doi.
org/10.1175/1520-0442(1993)006%3C1457:DSOTCR%
3E2.0.CO;2.

References Cited 47

Cohn, T.A., England, J.F., Berenbrock, C.E., Mason, R.R.,
Stedinger, J.R., and Lamontagne, J.R., 2013, A generalized
Grubbs-Beck test statistic for detecting multiple potentially
influential low outliers in flood series: Water Resources
Research, v. 49, no. 8, p. 5047-5058, accessed March 5,
2020, at https://doi.org/10.1002/wrcr.20392.

Cohn, T.A., Lane, W.L., and Baier, W.G., 1997, An algorithm
for computing moments-based flood quantile estimates
when historical flood information is available: Water
Resources Research, v. 33, p. 2089-2096, accessed
March 5, 2020, at https://doi.org/10.1029/97WR01640.

Cohn, T.A., and Lins, H.F., 2005, Nature’s style—
Naturally trendy: Geophysical Research Letters,
v. 32, no, 23, 5 p, accessed May 5, 2020, at
https://doi.org/10.1029/2005GL024476.

Diaz, H.F., and Giambelluca, T.W., 2012, Changes in
atmospheric circulation patterns associated with high
and low rainfall regimes in the Hawaiian Islands region
on multiple time scales: Global and Planetary Change, v.
98-99, p. 97-108, accessed June 4, 2021, at
https://doi.org/10.1016/j.gloplacha.2012.08.011.

Dudley, R.W., Archfield, S.A., Hodgkins, G.A., Renard,
B., and Ryberg, K.R., 2018, Peak-streamflow
trends and change-points and basin characteristics
for 2,683 U.S. Geological Survey streamgages in
the conterminous U.S. (ver. 3.0, April 2019): U.S.
Geological Survey data release, accessed June 4, 2021, at
https://doi.org/10.5066/PO9AEGXY0.

Dudley, R., Hodgkins, G., Mann, A., and Chisholm, J.,
2001, Evaluation of the effects of development on
peak-flow hydrographs for Collyer Brook, Maine: U.S.
Geological Survey Water-Resources Investigations
Report 01-4156, 11 p., accessed June 9, 2021, at
https://doi.org/10.3133/wri20014156.

Elison Timm, O., Diaz, H.F., Giambelluca, T.W., and
Takahashi, M., 2011, Projection of changes in the
frequency of heavy rain events over Hawaii based on
leading Pacific climate modes: Journal of Geophysical
Research, v. 116, no. D4, 12 p., accessed May 5, 2021, at
https://doi.org/10.1029/2010JD014923.

Elison Timm, O., Li, S., Liu, J., and Beilman, D.W., 2020,
On the changing relationship between North Pacific
climate variability and synoptic activity over the Hawaiian
Islands: International Journal of Climatology, v. 41, no.
S1, p. E1566—E1582, accessed May 5, 2021, at https://doi.
org/10.1002/joc.6789.

Eng, K., Chen, Y.-Y., and Kiang, J.E., 2009, User’s guide to
the weighted-multiple-linear regression program (WREG
version 1.0): U.S. Geological Survey Techniques and
Methods, book 4, chap. A8, 21 p., accessed April 1, 2020, at
https://doi.org/10.3133/tm4AS.


https://doi.org/10.5066/P9UM2NUL
https://doi.org/10.1175/JCLI4033.1
https://doi.org/10.1175/JCLI4033.1
https://doi.org/10.1175/WAF914.1
https://doi.org/10.1002/joc.3950
https://doi.org/10.1175/1520-0493(1995)123%3C1660:TIOIHO%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123%3C1660:TIOIHO%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008%3C1697:HRAAEN%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008%3C1697:HRAAEN%3E2.0.CO;2
https://doi.org/10.1175/JCLI3578.1
https://doi.org/10.1175/2010JCLI3484.1
https://doi.org/10.1175/2010JCLI3484.1
https://doi.org/10.1175/1520-0442(1993)006%3C1457:DSOTCR%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1993)006%3C1457:DSOTCR%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1993)006%3C1457:DSOTCR%3E2.0.CO;2
https://doi.org/10.1002/wrcr.20392
https://doi.org/10.1029/97WR01640
https://doi.org/10.1029/2005GL024476
https://doi.org/10.1016/j.gloplacha.2012.08.011
https://doi.org/10.5066/P9AEGXY0
https://doi.org/10.3133/wri20014156
https://doi.org/10.1029/2010JD014923
https://doi.org/10.1002/joc.6789
https://doi.org/10.1002/joc.6789
https://doi.org/10.3133/tm4A8

48 Magnitude and Frequency of Floods on Kaua'i, 0°ahu, Moloka'i, Maui, and Hawai'i, State of Hawai'i

England, J.F., Jr., Cohn, T.A., Faber, B.A., Stedinger,
J.R., Thomas, W.O., Jr., Veilleux, A.G., Kiang, J.E.,
and Mason, R.R., Jr., 2019, Guidelines for determining
flood flow frequency—DBulletin 17C (ver. 1.1, May
2019): U.S. Geological Survey Techniques and Methods,
book 4, chap. BS, 148 p., accessed April 1, 2020, at
https://doi.org/10.3133/tm4BS5.

Farmer, W.H., Kiang, J.E., Feaster, T.D., and Eng, K., 2019,
Regionalization of surface-water statistics using multiple
linear regression (ver. 1.1, February 2021): U.S. Geological
Survey Techniques and Methods, book 4, chap. A12, 40 p.,
accessed May 3, 2021, at https://doi.org/10.3133/tm4A12.

Feaster, T.D., Gotvald, A.J., and Weaver, J.C., 2009,
Magnitude and frequency of rural floods in the Southeastern
United States, 2006; Volume 3, South Carolina: U.S.
Geological Survey Scientific Investigations Report
2009-5156, 226 p., accessed February 23, 2022, at
https://doi.org/10.3133/sir20095156.

Flynn, K.M., Kirby, W.H., and Hummel, P.R., 2006, User’s
manual for program PeakFQ, annual flood-frequency
analysis using Bulletin 17B guidelines: U.S. Geological
Survey, Techniques and Methods Book 4, Chapter B4, 42
p., accessed May 3, 2021, at https://doi.org/10.3133/tm4B4.

Fontaine, R.A., and Hill, B.R., 2002, Streamflow and
erosion response to prolonged intense rainfall of
November 1-2, 2000, Island of Hawaii, Hawaii: U.S.
Geological Survey Water-Resources Investigations
Report 02—4117, 32 p., accessed May 14, 2021, at
https://doi.org/10.3133/wri20024117.

Frazier, A.G., Elison Timm, O., Giambelluca, T.W., and Diaz,
H.F., 2018, The influence of ENSO, PDO, and PNA on
secular rainfall variations in Hawai‘i: Climate Dynamics, v.
51, p. 2127-2140, accessed June 3, 2021, at
https://doi.org/10.1007/s00382-017-4003-4.

Garza, J.A., Chu, P.-S., Norton, C.W., and Schroeder, T.A.,
2012, Changes of the prevailing trade winds over the islands
of Hawaii and the North Pacific: Journal of Geophysical
Research, v. 117, no. D11, 18 p., accessed May 17, 2021, at
https://doi.org/10.1029/2011JD016888.

Giambelluca, T.W., Chen, Q., Frazier, A.G., Price, J.P.,
Chen, Y.-L., Chu, P.-S., Eischeid, J.K., and Delparte,
D.M., 2013, Online rainfall atlas of Hawai‘i: Bulletin
of the American Meteorological Society, v. 94, no. 3, p.
313-316, accessed April 8, 2020, at https://doi.org/10.1175/
BAMS-D-11-00228.1.

Giambelluca, T.W., and Nullet, D., 1991, Influence of the
trade-wind inversion on the climate of a leeward mountain
slope in Hawaii: Climate Research, v. 1, no. 3, p. 207-216,
accessed May 17, 2021, at https://www.jstor.org/stable/
24863349.

Giambelluca, T.W., Nullet, M.A., and Schroeder, T.A., 1986,
Rainfall atlas of Hawai‘i: State of Hawaii, Department of
Land and Natural Resources, Report R76, 267 p.

Griffis, V.W., and Stedinger, J.R., 2007, Evolution of
flood frequency analysis with Bulletin 17: Journal
of Hydrologic Engineering, v. 12, no. 3, p. 283-297,
accessed February 1, 2022, at https://doi.org/10.1061/
(ASCE)1084-0699(2007)12:3(283).

Grubbs, F.E., and Beck, G., 1972, Extension of sample
sizes and percentage points for significance tests of
outlying observations: Technometrics, v. 14, no. 4, p.
847854, accessed December 1, 2021, at https://doi.
org/10.2307/1267134.

Hamed, K.H., 2008, Trend detection in hydrologic data—The
Mann-Kendall trend test under the scaling hypothesis:
Journal of Hydrology, v. 349, no. 3—4, p. 350-363,
accessed April 7, 2021, at https://doi.org/10.1016/j.
jhydrol.2007.11.009.

Hamed, K.H., and Rao, A.R., 1998, A modified Mann-Kendall
trend test for autocorrelated data: Journal of Hydrology, v.
204, no. 1-4, p. 182—-196, accessed April 7, 2021, at
https://doi.org/10.1016/S0022-1694(97)00125-X.

Helsel, D.R., 2012, Statistics for censored environmental data
using Minitab and R (2nd ed.): Hoboken, N.J., John Wiley
and Sons, 324 p. [The first edition was published in 2005
under the title Nondetects and Data Analysis: Statistics for
Censored Environmental Data.]

Helsel, D.R., Hirsch, R.M., Ryberg, K.R., Archfield, S.A.,
and Gilroy, E.J., 2020, Statistical methods in water
resources: U.S. Geological Survey Techniques and
Methods, book 4, chap. A3, 458 p., accessed March 22,
2021, at https://doi.org/10.3133/tm4a3. [Supersedes USGS
Techniques of Water-Resources Investigations, book 4,
chap. A3, version 1.1.]

Hollis, G.E., 1975, The effect of urbanization on floods of
different recurrence interval: Water Resources Research, v.
11, no. 3, p. 431-435, accessed December 1, 2021, at
https://doi.org/10.1029/WR0111003p00431.

Holmes, R.R., Jr., Dinicola, K., 2010, 100-year flood—It's all
about chance: U.S. Geological Survey General Information
Product 106, 1 p., accessed December 15, 2021, at
https://doi.org/10.3133/gip106.


https://doi.org/10.3133/tm4B5
https://doi.org/10.3133/tm4A12
https://doi.org/10.3133/sir20095156
https://doi.org/10.3133/tm4B4
https://doi.org/10.3133/wri20024117
https://doi.org/10.1007/s00382-017-4003-4
https://doi.org/10.1029/2011JD016888
https://doi.org/10.1175/BAMS-D-11-00228.1
https://doi.org/10.1175/BAMS-D-11-00228.1
https://www.jstor.org/stable/24863349
https://www.jstor.org/stable/24863349
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:3(283)
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:3(283)
https://doi.org/10.2307/1267134
https://doi.org/10.2307/1267134
https://doi.org/10.1016/j.jhydrol.2007.11.009
https://doi.org/10.1016/j.jhydrol.2007.11.009
https://doi.org/10.1016/S0022-1694(97)00125-X
https://doi.org/10.3133/tm4a3
https://doi.org/10.1029/WR011i003p00431
https://doi.org/10.3133/gip106

Huang, Y.-F., Tsang, Y., Strauch, A.M., and Clilverd,
H.M., 2021, Shifting magnitude and timing of
streamflow extremes and the relationship with
rainfall across the Hawaiian Islands: Journal of
Hydrology, v. 600, 13 p., accessed June 11, 2021, at
https://doi.org/10.1016/j.jhydrol.2021.126424.

Interagency Advisory Committee on Water Data, 1982,
Guidelines for determining flood flow frequency, Bulletin
17B: Interagency Committee on Water Data, Hydrology
Subcommittee, Technical Report, 28 p. plus app. 1-14.

Ivancic, T.J., and Shaw, S.B., 2015, Examining why trends
in heavy precipitation should not be mistaken for trends in
high river discharge: Climatic Change, v. 133, p. 681-693,
accessed June 11, 2021, at https://doi.org/10.1007/
s10584-015-1476-1.

Jayawardena, LM.S., and Chen, Y.-L., 2016, A comparison of
three prolonged periods of heavy rainfall over the Hawaiian
Islands: Journal of Applied Meteorology and Climatology,
v. 51, no. 4, p. 722744, accessed June 4, 2021, at
https://doi.org/10.1175/JAMC-D-11-0133.1.

Kestin, T.S., Karoly, D.J., Yano, J.-1., and Rayner, N.A.,
1998, Time-frequency variability of ENSO and stochastic
simulations: Journal of Climate, v. 11, no. 9, p. 2258-2272,
accessed August 5, 2019, at https://doi.org/10.1175/152
0-0442(1998)011%3C2258: TFVOEA%3E2.0.CO;2.

Kim, K.-Y., O’Brien, J.J., and Barcilon, A.I., 2003, The
principal physical modes of variability over the tropical
Pacific: Earth Interactions, v. 7, no. 3, p. 1-32, accessed
August 5, 2019, at https://doi.org/10.1175/1087-3562(2003)
007%3C0001:TPPMOV%3E2.0.CO;2.

Kirby, W., 1972, Computer-oriented Wilson-Hilferty
transformation that preserves the first three moments
and the lower bound of the Pearson type 3 distribution:
Water Resources Research, v. 8, no. 5, p. 1251-1254,
accessed August 5, 2020, at https://doi.org/10.1029/
WRO008i005p01251.

Kodama, K., and Barnes, G.M., 1997, Heavy rain events over
the south-facing slopes of Hawaii—Attendant conditions:
Weather and Forecasting, v. 12, no. 2, p. 347-367, accessed
June 7, 2021, at https://doi.org/10.1175/1520-0434(1997)01
2%3C0347:HREOTS%3E2.0.CO;2.

Konrad, C.P., 2003, Effects of urban development on floods:
U.S. Geological Survey Fact Sheet 076-03, 4 p., accessed
June 9, 2021, at https://pubs.usgs.gov/fs/fs07603/.

Koutsoyiannis, D., and Montanari, A., 2007,
Statistical analysis of hydroclimatic time series—
Uncertainty and insights: Water Resources Research,
v. 43, no. 5, 9 p., accessed June 15, 2021, at
https://doi.org/10.1029/2006 WR005592.

References Cited 49

Kruk, M.C., and Levinson, D.H., 2008, Evaluating the impacts
of climate change on rainfall extremes for Hawaii and
coastal Alaska, in Proceedings of the 24th Conference on
Severe Local Storms, October 27-31, 2008: Savannah,
Georgia, American Meteorological Society.

Lamontagne, J.R., Stedinger, J.R., Berenbrock, C., Veilleux,
A.G., Ferris, J.C., and Knifong, D.L., 2012, Development of
regional skews for selected flood durations for the Central
Valley Region, California, based on data through water
year 2008: U.S. Geological Survey Scientific Investigations
Report 20125130, 60 p., accessed June 15, 2021, at
https://doi.org/10.3133/sir20125130.

Lamontagne, J.R., Stedinger, J.R., Yu, X., Whealton, C.A.,
and Xu, Z., 2016, Robust flood frequency analysis—
Performance of EMA with multiple Grubbs-Beck
outlier tests: Water Resources Research, v. 52, no. 4,

p- 3068-3084, accessed July 7, 2021, at https://doi.
org/10.1002/2015WR018093.

Lane, W.L., and Cohn, T.A., 1996, Expected moments
alogrithms for flood frequency analysis, in North American
Waterand Environment Congress & Destructive Water:
American Society of Civil Engineers, p. 2185-2190.

Leathers, D.J., Yarnal, B., and Palecki, M.A., 1991, The
Pacific/North American teleconnection pattern and
United States Climate, Part —Regional temperature
and precipitation associations: American Meteorological
Society, v. 4, no. 5, p. 517-528, accessed June 4, 2021, at
https://doi.org/10.1175/1520-0442(1991)004%3C0517: TPA
TPA%3E2.0.CO:;2.

Lins, H.F., and Cohn, T.A., 2011, Stationarity—Wanted
dead or alive: Journal of the American Water Resources
Association, v. 47, no. 3, p. 475480, accessed May 5,
2021, at https://doi.org/10.1111/j.1752-1688.2011.00542.x.

Lombard, P.J., and Hodgkins, G.A., 2020, Estimating flood
magnitude and frequency on gaged and ungaged streams
in Maine: U.S. Geological Survey Scientific Investigations
Report 2020-5092, 56 p., accessed December 11, 2020, at
https://doi.org/10.3133/sir20205092.

Longman, R.J., Diaz, H.F., and Giambelluca, T.W.,
2015, Sustained increases in lower-tropospheric
subsidence over the central tropical North Pacific drive
a decline in high-elevation rainfall in Hawaii: American
Meteorological Society, v. 28, no. 22, p. 8743—8759,
accessed November 30, 2021, at https://doi.org/10.1175/
JCLI-D-15-0006.1.

Longman, R.J., Elison Timm, O., Giambelluca, T.W., and
Kaiser, L., 2021, A 20-year analysis of disturbance-driven
rainfall on O‘ahu, Hawai‘i: American Meteorological
Society, v. 149, no. 6, p. 1767-1783, accessed June 3, 2021,
at https://doi.org/10.1175/MWR-D-20-0287.1.


https://doi.org/10.1016/j.jhydrol.2021.126424
https://doi.org/10.1007/s10584-015-1476-1
https://doi.org/10.1007/s10584-015-1476-1
https://doi.org/10.1175/JAMC-D-11-0133.1
https://doi.org/10.1175/1520-0442(1998)011%3C2258:TFVOEA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011%3C2258:TFVOEA%3E2.0.CO;2
https://doi.org/10.1175/1087-3562(2003)007%3C0001:TPPMOV%3E2.0.CO;2
https://doi.org/10.1175/1087-3562(2003)007%3C0001:TPPMOV%3E2.0.CO;2
https://doi.org/10.1029/WR008i005p01251
https://doi.org/10.1029/WR008i005p01251
https://doi.org/10.1175/1520-0434(1997)012%3C0347:HREOTS%3E2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012%3C0347:HREOTS%3E2.0.CO;2
https://pubs.usgs.gov/fs/fs07603/
https://doi.org/10.1029/2006WR005592
https://doi.org/10.3133/sir20125130
https://doi.org/10.1002/2015WR018093
https://doi.org/10.1002/2015WR018093
https://doi.org/10.1175/1520-0442(1991)004%3C0517:TPATPA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1991)004%3C0517:TPATPA%3E2.0.CO;2
https://doi.org/10.1111/j.1752-1688.2011.00542.x
https://doi.org/10.3133/sir20205092
https://doi.org/10.1175/JCLI-D-15-0006.1
https://doi.org/10.1175/JCLI-D-15-0006.1
https://doi.org/10.1175/MWR-D-20-0287.1

50 Magnitude and Frequency of Floods on Kaua'i, 0°ahu, Moloka'i, Maui, and Hawai'i, State of Hawai'i

Lyons, S.W., 1982, Empirical orthogonal function analysis of
Hawaiian rainfall: American Meteorological Society, v. 21,
no. 11, p. 1713-1729, accessed June 4, 2021, at
https://doi. org/10.1175/1520-0450(1982)021%3C1713:EO
FAOH%3E2.0.CO;2.

Mantua, N.J., and Hare, S.R., 2002, The Pacific
decadal oscillation: Journal of Oceanography, v. 58,
p. 3544, accessed June 4, 2021, at https://doi.
org/10.1023/A:1015820616384.

Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and
Francis, R.C., 1997, A Pacific interdecadal climate
oscillation with impacts on salmon production: Bulletin
of the American Meteorological Society, v. 78, no. 6, p.
1069-1080, accessed June 3, 2021, at https://doi.org/10.117
5/1520-0477(1997)078%3C1069: APICOW%3E2.0.CO;2.

McCabe, G.J., and Wolock, D.M., 2002, A step increase in
streamflow in the conterminous United States: Geophysical
Research Letters, v. 29, no. 24, p. 38-1-38-4, accessed
June 21, 2021, at https://doi.org/10.1029/2002GL015999.

Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M.,
Kundzewicz, Z.W., Lettenmaier, D.P., and Stouffer, R.J.,
2008, Stationarity is dead—Whither water management?:
Science, v. 319, no. 5863, p. 573-574, accessed June 15,
2021, at https://doi.org/10.1126/science.1151915.

Minobe, S., and Mantua, N., 1999, Interdecadal modulation
of interannual atmospheric and oceanic variability over the
North Pacific: Progress in Oceanography, v. 43, no. 2-4, p.
163-192, accessed June 3, 2021, at https://doi.org/10.1016/
S0079-6611(99)00008-7.

Mitchell, J.N., 2022a, Geospatial datasets for watershed
delineation used in the update of Hawaii StreamStats,
2021: U.S. Geological Survey data release,
https://doi.org/10.5066/PON61WJ7.

Mitchell, J.N., 2022b, Basin characteristics rasters for Hawaii
StreamStats, 2021: U.S. Geological Survey data release,
https://doi.org/10.5066/P9TOQANM.

Mitchell, J.N., and Wagner, D.M., 2023, Data in support
of flood-frequency report—Magnitude and Frequency
of Floods on Kaua‘i, O‘ahu, Moloka‘i, Maui, and
Hawai‘i, State of Hawai‘i, Based on Data through
Water Year 2020: U.S. Geological Survey data release,
https://doi.org/10.5066/P9GGPPVS5.

Murabayashi, E.T., and Fok, Y.-S., 1979, Urbanization-induced
impacts on infiltration capacity and on rainfall-runoff
relation in an Hawaiian urban area: University of Hawaii

Water Resources Research Center Technical Report, No.
127, 48 p.

National Oceanic and Atmospheric Administration, 2014,
C-CAP high-resolution land cover and change: National
Oceanic and Atmospheric Administration Office for Coastal
Management, accessed April 8, 2020, at
https://coast.noaa.gov/digitalcoast/data/ccaphighres.html.

National Oceanic and Atmospheric Administration, 2018,
Storm events database: National Oceanic and Atmospheric
Administration National Centers for Environmental
Information, accessed July 21, 2021, at https://www.ncdc
.noaa.gov/stormevents/eventdetails.jsp?id=741670.

National Oceanic and Atmospheric Administration,
2021, Climate monitoring data: National Oceanic and
Atmospheric Administration National Centers for
Environmental Administration, Pacific Decadal Oscillation,
accessed July 21, 2021, at https://www.ncei.noaa.gov/
access/monitoring/pdo.

Norton, C.W., Chu, P.-S., and Schroeder, T.A., 2011,
Projecting changes in future heavy rainfall events for Oahu,
Hawaii—A statistical downscaling approach: Journal of
Geophysical Research, v. 116, no. D17, 9 p., accessed
April 6, 2021, at https://doi.org/10.1029/2011JD015641.

O’Connor, C.F., Chu, P.-S., Hsu, P.-C., and Kodama, K., 2015,
Variability of Hawaiian winter rainfall during La Nifa
events since 1956: American Meteorological Society, v. 28,
no. 19, p. 7809-7823, accessed May 5, 2021, at https://doi.
org/10.1175/JCLI-D-14-00638.1.

Oki, D.S., 2003, Surface water in Hawaii: U.S. Geological
Survey Fact Sheet 045-03, 6 p., accessed November 30,
2021, at https://doi.org/10.3133/f504503.

Oki, D.S., Rosa, S.N., and Yeung, C.W., 2010,
Flood-frequency estimates for streams on Kaua‘i, O‘ahu,
Moloka‘i, Maui, and Hawai‘i, State of Hawai‘i: U.S.
Geological Survey Scientific Investigations Report
2010-5035, 121 p., accessed February 10, 2020, at
https://doi.org/10.3133/sir20105035.

Paulson, R.W., Chase, E.B., Roberts, R.S., and Woody, D.W.,
1991, National water summary 1988—89—Hydrologic
events and floods and droughts: U.S. Geological Survey
Water-Supply Paper 2375, 591 p., accessed May 14, 2021,
at https://doi.org/10.3133/wsp2375.

Perica, S., Martin, D., Lin, B., Parzybok, T., Riley, D., Yekta,
M., Hiner, L., Chen, L.-C., Brewer, D., Yan, F., Maitaria, K.,
Trypaluk, C., and Bonnin, G., 2009, Precipitation-frequency
atlas of the United States, Hawaiian Islands (ver. 3, 2011):
Silver Spring, Maryland, National Oceanic and Atmospheric
Administration, National Weather Service, Atlas 14, v. 4.

Pettitt, A.N., 1979, A non-parametric approach to the
change-point problem: Journal of the Royal Statistical
Society. Series A (General), v. 28, no. 2, p. 126-135,
accessed April 2, 2021, at https://doi.org/10.2307/2346729.


https://doi.org/10.1175/1520-0450(1982)021%3C1713:EOFAOH%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1982)021%3C1713:EOFAOH%3E2.0.CO;2
https://doi.org/10.1023/A:1015820616384
https://doi.org/10.1023/A:1015820616384
https://doi.org/10.1175/1520-0477(1997)078%3C1069:APICOW%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078%3C1069:APICOW%3E2.0.CO;2
https://doi.org/10.1029/2002GL015999
https://doi.org/10.1126/science.1151915
https://doi.org/10.1016/S0079-6611(99)00008-7
https://doi.org/10.1016/S0079-6611(99)00008-7
https://doi.org/10.5066/P9N61WJ7
https://doi.org/10.5066/P9TOQANM
https://doi.org/10.5066/P9GGPPV5
https://coast.noaa.gov/digitalcoast/data/ccaphighres.html
https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=741670
https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=741670
https://www.ncei.noaa.gov/access/monitoring/pdo
https://www.ncei.noaa.gov/access/monitoring/pdo
https://doi.org/10.1029/2011JD015641
https://doi.org/10.1175/JCLI-D-14-00638.1
https://doi.org/10.1175/JCLI-D-14-00638.1
https://doi.org/10.3133/fs04503
https://doi.org/10.3133/sir20105035
https://doi.org/10.3133/wsp2375
https://doi.org/10.2307/2346729

R Core Team, 2021, R—A language and environment for
statistical computing (version 4.1.1): Vienna, Austria, R
Foundation for Statistical Computing, accessed October 8§,
2021, at https://www.r-project.org/.

Rasmusson, E.M., and Carpenter, T.H., 1982, Variations in
tropical sea surface temperature and surface wind fields
associated with the Southern Oscillation/El Nifio: Monthly
Weather Review, v. 110, no. 5, p. 354-384, accessed June 3,
2021, at https://doi.org/10.1175/1520-0493(1982)110%3C0
354:VITSST%3E2.0.CO;2.

Rea, A., and Skinner, K.D., 2012, Geopatial datasets for
watershed delineation and characterization used in the
Hawaii StreamStats web application: U.S. Geological
Survey Data Series 680, 12 p., accessed April 10, 2020, at
https://doi.org/10.3133/ds680.

Reeves, J., Chen, J., Wang, X.L., Lund, R., and Lu, Q.,
2007, A review and comparison of changepoint detection
techniques for climate data: Journal of Applied Meteorology
and Climatology, v. 46, no. 6, p. 900-915, accessed May 10,
2021, at https://doi.org/10.1175/JAM2493.1.

Ries, I1I, K.G., 2007, The national streamflow statistics
program—A computer program for estimating
streamflow statistics for ungaged sites: U.S. Geological
Survey Techniques and Methods 4-A6, 37 p., accessed
February 23, 2022, at https://doi.org/10.3133/tm4A6.

Ries, K.G., III, Newson J.K., Smith, M.J., Guthrie, J.D.,
Steeves, P.A., Haluska, T.L., Kolb, K.R., Thompson, R.F.,
Santoro, R.D., and Vraga, H.W., 2017, StreamStats (version
4): U.S. Geological Survey Fact 2017-3046, 4 p., accessed
February 24, 2022, at https://doi.org/10.3133/fs20173046.
[Supersedes USGS Fact Sheet 2008-3067.]

Ropelewski, C.F., and Halper, M.S., 1987, Global and regional
scale precipitation patterns associated with the El Nifio/
Southern Oscillation: Monthly Weather Review, v. 115, no.
8, p. 1606—1626, accessed August 5, 2019, at https://doi.
org/10.1175/1520-0493(1987)115%3C1606:GARSPP%
3E2.0.CO;2.

Rosa, S.N, and Oki, D.S, 2010, Hawaii StreamStats—A web
application for defining drainage-basin characteristics and
estimating peak-streamflow statistics: U.S. Geological
Survey Fact Sheet 2010-3052, 4 p., accessed November 30,
2021, at https://doi.org/10.3133/FS20103052.

Ryberg, K.R., Hodgkins, G.A., and Dudley, R.W., 2020,
Change points in annual peak streamflows—Method
comparisons and historical change points in the United
States: Journal of Hydrology, v. 583, 13 p., accessed April 5,
2021, at https://doi.org/10.1016/j.jhydrol.2019.124307.

References Cited 51

Salas, J.D., Obeysekera, J., and Vogel, R.M., 2018, Techniques
for assessing water infrastructure for nonstationary extreme
events—A review: Hydrological Sciences Journal, v. 63, no.
3, p. 325-352, accessed June 23, 2021, at https://doi.org/10.
1080/02626667.2018.1426858.

Sanderson, M., 1993, Prevailing trade winds, weather and
climate in Hawai‘i: Honolulu, University of Hawai‘i
Press, 126 p.

Schroeder, T.A., 1981, Characteristics of local winds in
northwest Hawaii: American Meteorological Society, v. 20,
no. 8, p. 874-881, accessed May 17, 2021, at https://doi.
org/10.1175/1520-0450(1981)020%3C0874:COLWIN%
3E2.0.CO;2.

Schueler, T.R., 1994, The importance of imperviousness:
Watershed Protection Techniques, v. 1, no. 3, p. 100-111.

Serinaldi, F., and Kilsby, C.G., 2015, Stationarity is
undead—Uncertainty dominates the distribution of
extremes: Advances in Water Resources, v. 77, p. 17-36,
accessed June 23, 2021, at https://doi.org/10.1016/j.
advwatres.2014.12.013.

Sharma, S., Swayne, D.A., and Obimbo, C., 2016, Trend
analysis and change point techniques—A survey:
Energy, Ecology & Environment, v. 1, no. 3, p. 123-130,
accessed April 6, 2021, at https://doi.org/10.1007/
s40974-016-0011-1.

Sharma, A., Wasko, C., and Lettenmaier, D.P., 2018,
If precipitation extremes are increasing, why aren’t
floods?: Water Resources Research, v. 54, no. 11,

p. 8545-8551, accessed June 11, 2021, at https://doi.
org/10.1029/2018WR023749.

Shuster, W.D., Bonta, J., Thurston, H., Warnemuende, E.,
and Smith, D.R., 2005, Impacts of impervious surface on
watershed hydrology—A review: Urban Water Journal, v.
2,n0. 4, p. 263-275, accessed June 9, 2021, at https://doi.
org/10.1080/15730620500386529.

Stedinger, J.R., and Tasker, G.D., 1985, Regional hydrologic
analysis—1. ordinary, weighted, and generalized least
squares compared: Water Resources Research, v. 21, no.
9, p. 1421-1432, accessed March 5, 2020, at https://doi.
org/10.1029/WR021i009p01421.

Stedinger, J.R., Vogel, R.M., and Foufoula-Georgiou, Efi,
1993, Frequency analysis of extreme events, in Maidment,
D.R., ed., Handbook of hydrology: Washington, D.C.,
McGraw Hill, Inc., p. 18.1-18.66.

Suryanata, K., 2009, Diversified agriculture, land use, and
agrofood networks in Hawaii: Economic Geography, v.
78, no. 1, p. 71-86, accessed June 8, 2021, at https://doi.
org/10.1111/§.1944-8287.2002.tb00176.x.


https://www.r-project.org/
https://doi.org/10.1175/1520-0493(1982)110%3C0354:VITSST%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1982)110%3C0354:VITSST%3E2.0.CO;2
https://doi.org/10.3133/ds680
https://doi.org/10.1175/JAM2493.1
https://doi.org/10.3133/tm4A6
https://doi.org/10.3133/fs20173046
https://doi.org/10.1175/1520-0493(1987)115%3C1606:GARSPP%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115%3C1606:GARSPP%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115%3C1606:GARSPP%3E2.0.CO;2
https://doi.org/10.3133/FS20103052
https://doi.org/10.1016/j.jhydrol.2019.124307
https://doi.org/10.1080/02626667.2018.1426858
https://doi.org/10.1080/02626667.2018.1426858
https://doi.org/10.1175/1520-0450(1981)020%3C0874:COLWIN%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1981)020%3C0874:COLWIN%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1981)020%3C0874:COLWIN%3E2.0.CO;2
https://doi.org/10.1016/j.advwatres.2014.12.013
https://doi.org/10.1016/j.advwatres.2014.12.013
https://doi.org/10.1007/s40974-016-0011-1
https://doi.org/10.1007/s40974-016-0011-1
https://doi.org/10.1029/2018WR023749
https://doi.org/10.1029/2018WR023749
https://doi.org/10.1080/15730620500386529
https://doi.org/10.1080/15730620500386529
https://doi.org/10.1029/WR021i009p01421
https://doi.org/10.1029/WR021i009p01421
https://doi.org/10.1111/j.1944-8287.2002.tb00176.x
https://doi.org/10.1111/j.1944-8287.2002.tb00176.x

52 Magnitude and Frequency of Floods on Kaua'i, 0°ahu, Moloka'i, Maui, and Hawai'i, State of Hawai'i

Tasker, G.D., 1978, Flood frequency analysis with a
generalized skew coefficient: Water Resources Research, v.
14, no. 2, p. 373-376, accessed December 1, 2021, at
https://doi.org/10.1029/WR0141002p00373.

Tasker, G.D., and Stedinger, J.R., 1989, An operational GLS
model for hydrologic regression: Journal of Hydrology, v.
111, no. 14, p. 361-375, accessed December 1, 2021, at
https://doi.org/10.1016/0022-1694(89)90268-0.

Terstriep, M.L., Voorhees, M.L., and Bender, G.M., 1976,
Conventional urbanization and its effect on storm runoff:
[llinois Department of Transportation, Division of Water
Resources, report CR-177, prepared by Illinois State Water
Survey, Urbana, Ill., 68 p., accessed June 9, 2021, at
http://hdl.handle.net/2142/55898.

Tomlinson, M.S., and De Carlo, E.H., 2003, The need for high
resolution time series data to characterize Hawaiian streams:
Journal of the American Water Resources Association, v. 39,
no. 1, p. 113—123, accessed November 30, 2021, at
https://doi.org/10.1111/j.1752-1688.2003.tb01565.x.

Trenberth, K.E., 1997, The definition of El Nifio: Bulletin
of the American Meteorological Society, v. 78, no. 12, p.
2271-2778, accessed August 6, 2019, at https://doi.org
/10.1175/1520-0477(1997)078%3C2771: TDOENO%
3E2.0.CO:;2.

Trenberth, K.E., and Hurrell, J.W., 1994, Decadal
atmosphere-ocean variations in the Pacific: Climate
Dynamics, v. 9, p. 303-319, accessed June 24, 2019, at
https://doi.org/10.1007/BF00204745.

Trouet, V., and Taylor, A.H., 2010, Multi-century variability
in the Pacific North American circulation pattern
reconstructed from tree rings: Climate Dynamics, v. 35, p.
953-963, accessed June 4, 2021, at https://doi.org/10.1007/
$00382-009-0605-9.

Turnipseed, D.P., and Sauer, V.B., 2010, Discharge
measurements at gaging stations: U.S. Geological Survey
Techniques and Methods book 3, chap. A8, 87 p. [Also
available at https://doi.org/10.3133/tm3A8.]

U.S. Census Bureau, 2021, Historical population change data
(1910-2020): U.S. Census Bureau, accessed November 1,
2021, at https://www.census.gov/data/tables/time-series/dec/
popchange-data-text.html.

U.S. Department of Agriculture, 2020, National SSURGO
data: Natural Resources Conservation Service, accessed
April 8, 2020, at https://www.nrcs.usda.gov/resources/data-
and-reports/soil-survey-geographic-database-ssurgo.

U.S. Geological Survey, 2013, USGS National Elevation
Dataset (NED) 1/3 arc-second grids 1 % 1 degree ArcGrid:
U.S. Geological Survey, National Geospatial Program,
accessed April 5, 2021, at https://www.usgs.gov/the-
national-map-data-delivery/gis-data-download.

U.S. Geological Survey, 2017, USGS-R Packages: U.S.
Geological Survey GitHub package repository, accessed
May 11, 2021, at https://github.com/USGS-R.

U.S. Geological Survey, 2019, StreamStats: U.S. Geological
Survey, web, accessed November 4, 2022, at
https://streamstats.usgs.gov/ss/.

U.S. Geological Survey, 2020, USGS National Hydrography
Dataset Plus High Resolution (NHDPlus HR): U.S.
Geological Survey, National Geospatial Program,
https://www.usgs.gov/core-science-systems/ngp/national-
hydrography/nhdplus-high-resolution.

U.S. Geological Survey, 2021, USGS water data for
the nation: U.S. Geological Survey National Water
Information System, web, accessed February 12, 2021, at
https://dx.doi.org/10.5066/F7PSSKIN.

Veilleux, A.G., 2011, Bayesian GLS regression, leverage, and
influence for regionalization of hydrologic statistics: Ithaca,
New York, Cornell University, Ph.D. dissertation, 184 p.

Veilleux, A.G., Cohn, T.A., Flynn, K.M., Mason, R.R., Jr., and
Hummel, P.R., 2014, Estimating magnitude and frequency
of floods using the PeakFQ 7.0 program, U.S. Geological
Survey Fact Sheet, p. 2013-3108., accessed June 9, 2021, at
https://doi.org/10.3133/s20133108.

Veilleux, A.G., Stedinger, J.R., and Eash, D.A., 2012,
Bayesian WLS/GLS regression for regional skewness
analysis for regions with large crest stage gage networks, in
Loucks, E.D., ed., Proceedings of the World Environmental
and Water Resources Congress 2012—Crossing boundaries,
Albuquerque, New Mexico, May 20-24, 2012: Reston,
Virginia, American Society of Civil Engineers, p.
2253-2263.

Veilleux, A.G., Stedinger, J.R., and Lamontagne, J.R., 2011,
Bayesian WLS/GLS regression for regional skewness
analysis for regions with large cross-correlations among
flood flows, in Beighley, R.E., I, and Killgore, M.W.,
eds., Proceedings of the World Environmental and Water
Resources Congress 2011—Bearing knowledge for
sustainability, Palm Springs, California, May 22-26, 2011:
Reston, Virginia, American Society of Civil Engineers,

p. 3103-3123.

Verdon, D.C., and Franks, S.W., 2006, Long-term behavior
of ENSO—Interactions with the PDO over the past 400
years inferred from paleoclimate records: Geophysical
Research Letters, v. 33, no. 6, 5 p., accessed June 4, 2021, at
https://doi.org/10.1029/2005GL025052.


https://doi.org/10.1029/WR014i002p00373
https://doi.org/10.1016/0022-1694(89)90268-0
http://hdl.handle.net/2142/55898
https://doi.org/10.1111/j.1752-1688.2003.tb01565.x
https://doi.org/10.1175/1520-0477(1997)078%3C2771:TDOENO%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078%3C2771:TDOENO%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078%3C2771:TDOENO%3E2.0.CO;2
https://doi.org/10.1007/BF00204745
https://doi.org/10.1007/s00382-009-0605-9
https://doi.org/10.1007/s00382-009-0605-9
https://doi.org/10.3133/tm3A8
https://www.census.gov/data/tables/time-series/dec/popchange-data-text.html
https://www.census.gov/data/tables/time-series/dec/popchange-data-text.html
https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-database-ssurgo
https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-database-ssurgo
https://www.usgs.gov/the-national-map-data-delivery/gis-data-download
https://www.usgs.gov/the-national-map-data-delivery/gis-data-download
https://github.com/USGS-R
https://streamstats.usgs.gov/ss/
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://dx.doi.org/10.5066/F7P55KJN
https://doi.org/10.3133/fs20133108
https://doi.org/10.1029/2005GL025052

Villarini, G., Smith, J.A., Serinaldi, F., Bales, J., Bates, P.D.,
and Krajewski, W.F., 2009, Flood frequency analysis for
nonstationary annual peak records in an urban drainage
basin: Advances in Water Resources, v. 32, no. 8, p.
1255-1266, accessed June 12, 2020, at
https://doi.org/10.1016/j.advwatres.2009.05.003.

Vogel, R.M., Yaindl, C., and Walter, M., 2011,
Nonstationarity—Flood magnification and recurrence
reduction factors in the United States: Journal of the
American Water Resources Association, v. 47, no. 3, p.
464-474, accessed June 15, 2021, at https://doi.org/10.1111/
j.1752-1688.2011.00541.x.

Wallace, .M., and Gutzler, D.S., 1981, Teleconnections in the
geopotential height field during the Northern Hemisphere
winter: Monthly Weather Review, v. 109, no. 4, p. 784-812,
accessed June 4, 2021, at https://doi.org/10.1175/1520-0493
(1981)109%3C0784:TITGHF%3E2.0.CO;2.

Wasko, C., and Nathan, R., 2019, Influence of changes in
rainfall and soil moisture on trends in flooding: Journal of
Hydrology, v. 575, p. 432441, accessed November 30,
2021, at https://doi.org/10.1016/j.jhydrol.2019.05.054.

Wasko, C., and Sharma, A., 2017, Global assessment of flood
and storm extremes with increased temperatures: Scientific
Reports, v. 7, no. 1, 8 p., accessed November 30, 2021, at
https://doi.org/10.1038/s41598-017-08481-1.

Water Resource Associates, 2003, Agriculture water use and
development plan: Department of Agriculture, State of
Hawai‘i, prepared by Water Resource Associates, Honolulu,
Hawai‘i, 145 p.

Weng, Q., 2012, Remote sensing of impervious surfaces in
urban areas—Requirements, methods, and trends: Remote
Sensing of Environment, v. 117, p. 34-49, accessed June 9,
2021, at https://doi.org/10.1016/j.rse.2011.02.030.

References Cited 53

Wong, M.F., 1994, Estimation of magnitude and frequency
of floods for streams on the island of Oahu, Hawaii:
U.S. Geological Survey Water-Resources Investigations
Report 94-4052, 37 p., accessed May 14, 2021, at
https://doi.org/10.3133/wri944052.

Wu, L.-P., 1969, Hydrological data and peak discharge
determination of small Hawaiian watersheds—Island of
Oahu: University of Hawai‘i Water Resources Research
Center Technical Report no. 15, 97 p.

Wyrtki, K., and Meyers, G., 1976, The trade wind field over
the Pacific Ocean: Journal of Applied Meteorology, v. 15,
no. 7, p. 678-704, accessed May 17, 2021, at
https://doi.org/10.1175/1520-0450(1976)015%3C0698:TT
WFOT%3E2.0.CO;2.

Xue, L., Wang, Y., Newman, A.J., Ikeda, K., Rasmussen,
R.M., Giambelluca, T.W., Longman, R.J., Monaghan, A.J.,
Clark, M.P., and Arnold, J.R., 2020, How will rainfall
change over Hawai‘i in the future? High-resolution
regional climate simulation of the Hawaiian Islands:
Bulletin of Atmospheric Science and Technology, v. 1, p.
459-490, accessed May 7, 2021, at https://doi.org/10.1007/
$42865-020-00022-5.

Yamanaga, G., 1972, Evaluation of the streamflow-data
program in Hawaii: U.S. Geological Survey Open-File
Report 72-453, 28 p., accessed May 14, 2021, at
https://doi.org/10.3133/0fr72453.

Yin, J.H., 2005, A consistent poleward shift of the storm
tracks in simulations of 21st century climate: Geophysical
Research Letters, v. 32, no. 18, 4 p., accessed June 7, 2021,
at https://doi.org/10.1029/2005GL023684.

Yu, B., and Zwiers, F.W., 2007, The impact of combined
ENSO and PDO on the PNA climate—A 1000-year
climate modeling study: Climate Dynamics, v. 29, p.
837851, accessed June 4, 2021, at https://doi.org/10.1007/
s00382-007-0267-4.


https://doi.org/10.1016/j.advwatres.2009.05.003
https://doi.org/10.1111/j.1752-1688.2011.00541.x
https://doi.org/10.1111/j.1752-1688.2011.00541.x
https://doi.org/10.1175/1520-0493(1981)109%3C0784:TITGHF%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1981)109%3C0784:TITGHF%3E2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2019.05.054
https://doi.org/10.1038/s41598-017-08481-1
https://doi.org/10.1016/j.rse.2011.02.030
https://doi.org/10.3133/wri944052
https://doi.org/10.1175/1520-0450(1976)015%3C0698:TTWFOT%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1976)015%3C0698:TTWFOT%3E2.0.CO;2
https://doi.org/10.1007/s42865-020-00022-5
https://doi.org/10.1007/s42865-020-00022-5
https://doi.org/10.3133/ofr72453
https://doi.org/10.1029/2005GL023684
https://doi.org/10.1007/s00382-007-0267-4
https://doi.org/10.1007/s00382-007-0267-4

54 Magnitude and Frequency of Floods on Kaua'i, 0°ahu, Moloka'i, Maui, and Hawai'i, State of Hawai'i

Appendix 1. Streamgages Considered for Flood-Frequency Analysis, State
of Hawai'i

The spreadsheets containing tables 1.1, 1.2, and 1.3 are available for download in .xlsx and .csv format at
https://doi.org/10.3133/sir20235014.

Table 1.1. Streamgages with peak-flow data used in this study, State of Hawai'i.

[Table 1.1 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]

Table 1.2. Available peak-flow data that were omitted from this study, State of Hawai‘i.

[Table 1.2 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]

Table 1.3. Streamgages with peak-flow data used in this study that were not used in the previous flood-frequency study, Oki and
others (2010), State of Hawai‘i.

[Table 1.3 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]


https://doi.org/10.3133/sir20235014
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Appendix 2

Appendix2. Summary of Mann-Kendall and Pettitt Trend-Test Results for the
Peak-Flow Data Used in this Study, State of Hawai‘i

The spreadsheet containing table 2.1 is available for download in .xIsx and .csv format at
https://doi.org/10.3133/sir20235014.

Table 2.1. Summary of Mann-Kendall and Pettitt trend-test results for the peak-flow data used in this study, State of Hawai'i.

[Table 2.1 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]
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Appendix 3. Regional Skew Regression Analysis for State of Hawai‘i

By Andrea G. Veilleux and Daniel M. Wagner

To improve estimates of peak-flow magnitude and
frequency—particularly for streamgages with short records
(that is, streamgages with fewer than about 25 annual
peaks)—current guidance for flood-frequency analysis by
Federal agencies (Bulletin 17C; England and others, 2019)
recommends using a weighted average of the at-site skewness
coefficient (at-site skew) and a regional skewness coefficient
(regional skew). Previous guidance (Bulletin 17B; Interagency
Advisory Committee on Water Data, 1982) supplied a national
map of regional skew but encouraged hydrologists to develop
models that are more localized. Since Bulletin 17B was
published, nearly 40 years of additional annual peak-flow data
have been collected, and better spatial estimation procedures
have been developed (Stedinger and Griffis, 2008).

Tasker and Stedinger (1986) developed a weighted
least-squares (WLS) procedure for estimating regional skew
based on at-site skew computed from the logarithms of annual
peak-flow data from streamgages. The procedure accounts
for the precision of at-site skew, which depends on the record
length and the accuracy of an ordinary least-squares (OLS)
mean regional skew. More recently, Reis and others (2005),
Gruber and others (2007), and Gruber and Stedinger (2008)
developed a Bayesian generalized least-squares (B—GLS)
regression model for regional skew analyses. The Bayesian
methodology allows for the computation of a posterior
distribution of both the regression parameters and the model
error variance. As shown in Reis and others (2005), for cases
in which the model error variance is small compared to the
sampling error of the at-site skew estimates, the Bayesian
posterior distribution provides a more reasonable description
of the model error variance than generalized least-squares
(GLS) method-of-moments and the maximum likelihood point
estimates (Veilleux, 2011). WLS regression accounts for the
precision of the regional model and the effect of record length
on the variance of skew estimators, but the GLS regression
model also considers the cross-correlation amongst the skew
estimators. In some studies, the cross-correlation had a large

Table 3.1.

effect on the precision of various parameter estimates (Feaster
and others, 2009; Gotvald and others, 2009; Weaver and
others, 2009; Parrett and others, 2011).

Because of complications introduced using the
expected moments algorithm (EMA) with the Multiple
Grubbs-Beck Test (MGBT) (Cohn and others, 1997) and large
cross-correlations between annual peak discharges at pairs of
streamgages, an alternate regression procedure was developed
to provide stable and defensible results for regional skew
(Veilleux, 2011; Lamontagne and others, 2012; Veilleux and
others, 2012). This procedure is referred to as the Bayesian
WLS/Bayesian GLS (B-WLS/B—GLS) regression framework
(Veilleux, 2011; Veilleux and others, 2011; Veilleux and
others, 2012). The B-WLS/B-GLS framework uses OLS
regression to fit an initial model of regional skew that is
used to generate a stable estimate of regional skew for each
streamgage. This estimate is the basis for computing the
variance of each estimate of at-site skew used in the B-WLS
analysis. B-WLS is then used to generate estimators of the
regional skew model parameters. Finally, B-GLS is used to
estimate the precision of those estimators, the model error
variance and its precision, and compute various diagnostic
statistics.

In this study, EMA with MGBT (see section, “Expected
Moments Algorithm Frequency Analysis” in the main body
of the report) was used to estimate the at-site skew, G, and
its mean squared error (MSE), MSE, for 238 streamgages
(table 3.1; see figs. 2—6 in the main body of the report).
Twenty-three streamgages were removed for redundancy (see
“Elimination of Redundant Sites” in the main body of the
report), leaving 215 streamgages for regional skew analysis.
Because EMA with MGBT allows for the censoring of low
floods as well as the use of flow intervals to describe missing,
censored, and historical data, it complicates the calculations of
effective record length (and effective concurrent record length)
used to describe the precision of skew estimates because the
annual peak discharges are no longer represented by single
values. To properly account for these complications, the B—
WLS/B-GLS procedure was used (Veilleux, 2011; Veilleux
and others, 2011; Veilleux and others, 2012).

Streamgages in Hawai'i that were considered for use in the regional skew analysis.

[Table 3.1 is available in .xIsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]
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Ordinary Least-Squares Analysis

The first step in the B-WLS/B-GLS regional skew
analysis is the estimation of a regional skew model using OLS

regression. The OLS regression yields coefficients (B,,5) and
a model that can be used to generate unbiased and relatively
stable estimates of regional skew for all streamgages:

Yors = XBows G3.1)
where
X is an (n % k) matrix of basin characteristics;
Yous  are the estimated regional skew values;
n is the number of streamgages; and
k is the number of basin characteristics,
including a column of ones to estimate the
constant.

The estimated at-site/regional skew values, ¥, ¢, are then
used to calculate unbiased at-site/regional skew variances
using the equations reported in Griffis and Stedinger (2009).
These at-site/regional skew variances are based on the OLS
estimator of the skew instead of the at-site skew, thus making
the weights in the subsequent steps relatively independent of
the at-site skew.

Weighted Least-Squares Analysis

A B—WLS analysis is used to develop estimators of the
regression coefficients for each regional skew model (Veilleux,
2011; Veilleux and others, 2011). The B-WLS analysis
explicitly reflects variations in record length but intentionally
neglects cross-correlations, thereby avoiding problems
experienced with GLS parameter estimators.

Generalized Least-Squares Analysis

After the regression coefficients (G} wLs) are determined
using a B-WLS analysis, the precision of the fitted model
and regression coefficients are estimated using a B-GLS
analysis (Veilleux, 2011; Veilleux and others, 2011). Precision
metrics include: (1) the standard error of the regression

parameters, SE (ﬁ WLS); (2) the model error variance, 635 ¢/

(3) the pseudo coefficient of determination, pseudo-Ry; and (4)
the average variance of prediction for streamgages that were
not used in the regional model, AVP,

new*

Computing Pseudo Record Length

Annual peak-flow records of streamgages often include
historical information and censored data—for example,
knowledge that the annual peak discharge at a crest-stage
streamgage did not exceed the minimum recordable
discharge—that need to be accounted for when computing the
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precision of skew estimates. While historical information and
censored peaks are valuable, they provide less information
than an equal number of years of systematic peaks (Stedinger
and Cohn, 1986). The following calculations yield a pseudo
record length, P, , which appropriately accounts for all types
of data available for a streamgage.

The Py, is defined in terms of the number of years of
systematic record that would be required to yield the same
MSE ; as the combination of historical and systematic record
available at a streamgage; thus, the P, of the skew is a
ratio of MSE; when only the systematic record is analyzed

(MSE (/G\ S)) to MSE; when the complete record, including
historical and censored data, are analyzed (MSE (C’\ C)).

_ P*MSE(G )

Py = s 3.2
MSE(G ) G2

is the pseudo record length for the entire
period of record at the streamgage,
in years;

P is the number of systematic peaks in

the record;

is the estimated mean squared error of the
at-site skew when only the systematic
record is considered; and

is the estimated mean squared error of the
at-site skew when the complete record,
including historical and censored data, are
considered.

As the Py, is an estimate, the following conditions must
also be met to ensure a valid approximation: (1) the P,, must
be nonnegative; if the Py, is greater than P, (the length of the
historical period), then P, should be set to equal P; and (2)
if the Py, is less than Pg, then the Py, is set to Pg. This ensures
that the P,; will not be larger than P, or less than Pq.

The estimate of at-site skew is sensitive to extreme
events, and more accurate estimates can be obtained from
longer records (England and others, 2019). Therefore,
streamgages that have a Py, of less than 35 years are normally
not used for regional skew analysis. This study used a
minimum Py, of 36 years (the maximum available Py, was
109 years), resulting in 91 of 215 non-redundant streamgages
being removed and a final dataset of 124 streamgages for
regional skew analysis (table 3.1).

Unbiasing the At-Site Skew

For the 124 streamgages considered for the regional
skew analysis, the at-site skews were unbiased using the
correction factor developed by Tasker and Stedinger (1986)
and employed by Reis and others (2005). The unbiased at-site
skew, computed using the P, can be determined using the
following equation:
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5, = [1 +P§L ] G (3.3)

7, is the unbiased at-site skew estimate for
streamgage i;
is the pseudo record length, in years,
for streamgage i, as calculated in
equation 3.2; and
G, is the biased estimate of at-site skew for
streamgage i from the flood-frequency
analysis.

The variance of the unbiased at-site skew includes the
correction factor developed by Tasker and Stedinger (1986):

Var[5,] = [1+ 6 ]zVar[G,.] (3.4)

P RL,i

The variance of the biased at-site skew, Var|[G)], is cal-
culated using the following equation from Griffis and
Stedinger (2009):

Var(G)) = [% + a(PRL)] * [1 + <% + b(PRL)>

G+ (preen)6y 69

where

17.75 , 50.06
a(Pr;) = 7PRL2 * PRLS;

3.92

31.10 = 34.86
b(Py,) = JE - + ;

0.6 0.9’
PRL PRL

and

o(Pyy) = 7.31 4590  86.50
RL P 059 P, L8 p 17T

Estimating the Mean Squared Error of
the Unbiased At-Site Skew

There are several possible ways to estimate the MSE
of the unbiased at-site skew (MSE ). The approach used by
EMA (see equation 55 in Cohn and others, 2001) generates a
first-order estimate of the MSE,, which should perform well
when interval data are present. Another option is to use the
formula in equation 3.5 (the variance is equated to the MSE),
employing either the length of the systematic record or the

length of the historical period (H,); however, this method does
not account for censored data and can lead to an inaccurate
and under-estimated MSE ;. This issue has been addressed

by using the Py, instead of H; the P, reflects the impact of
the censored data and the number of systematic peaks. Thus,
MSE,, computed using the formula from Griffis and Stedinger
(2009), was used in the regional skew model because it is
more stable and relatively independent of the at-site skew.
This methodology was used in previous regional skew studies
(Veilleux and Wagner, 2019; Veilleux and Wagner, 2021).

Cross-Correlation Model

A critical step in a GLS analysis is estimation of the
cross-correlation of the at-site skew estimates. Martins and
Stedinger (2002) used Monte Carlo experiments to derive
a relation between the cross-correlation of the at-site skew
estimates at two streamgages, i and j, as a function of the
cross-correlation of concurrent annual peak discharges, p;;:

P(7:-7)) = Sign(py)efylpy|* (3.6)
where
py; s the cross-correlation of concurrent annual
peak discharges for two streamgages;
7, 1is the unbiased at-site skew estimate for
streamgage i;
K is a constant between 2.8 and 3.3; and
¢f; s afactor that accounts for the sample size
difference between streamgages and their
concurrent record length and is defined
as follows:

cfy = CYy/\(Prei)(Prey) (3.7
where
CY;  is the pseudo record length of the period of
concurrent record; and

Py and Pp,; ;. are the pseudo record lengths corresponding

to streamgages i and j, respectively (see
equation 3.2).

After calculating the P, for each streamgage in the
study, the pseudo concurrent record length between pairs
of streamgages (CY)) can be calculated. Because of the
use of censored data and historical data, calculation of the
effective concurrent record length is more complex than
determining in which years the two streamgages both have
recorded systematic peaks. First, the number of years of
historical period in common between the two streamgages are
determined. Next, for the years in common, with beginning
year YB;; and ending year YE;, the following equation is used
to calculate the concurrent years of record between site i
and site j:



PRL,i PRL,[
cy, = (YEU—YBI.].+1)<H ><H (3.8)

12 P

The computed pseudo concurrent record length depends
upon the years of historical period in common between the
two streamgages, as well as the ratios of the Py, to the H, for
each of the streamgages.

To relate the concurrent annual peak discharges at two
streamgages (p;) to explanatory variables, a cross-correlation
model using 42 streamgages with at least 60 years of
concurrent systematic peaks (0 discharges not included) was
considered. A logit model, termed the Fisher Z-Transformation
(Z = log[(1+r)/(1-r)]), provided a convenient transformation
of the sample correlations, Fip from the (—1, +1) range
to the (—o0, +o0) range. The model used to estimate the
cross-correlations of concurrent annual peak discharges at two
streamgages, which incorporated the distance between basin
centroids, D, as the only explanatory variable, is:

B exp(ZZ,.j)—l
1 exp(22,) 41

Z,=exp| 0.47-0.054| —
! 0.58

An OLS regression analysis, based on 538 streamgage
pairs from 42 sites, indicated that this model is as accurate as
having 264 years of concurrent gaged peaks from which to
calculate cross-correlation. Figure 3.1 shows the fitted relation
between Z and distance between basin centroids and points
representing the 538 streamgage pairs. Figure 3.2 shows the
fitted relation between the un-transformed cross-correlation
and distance between basin centroids and points representing
the 538 streamgage pairs. The cross-correlation model was
used to estimate cross-correlation of concurrent annual peak
discharges for all streamgage pairs.

(3.9)

where

Regional Skew Model

Seventeen basin characteristics—BASINPERIM,
BSLDEM10M, CENTROIDX, CENTROIDY, COMPRAT,
CSL10_85, DRNAREA, ELEV, ELEVMAX, RELIEF,
RELRELF, PERM24IN, LFPORNE, I60M2Y, I6H500Y,
148H500Y, and PRECIP—were tested as covariates in
the B-WLS/B—GLS analysis of regional skew (see table 3
in the main body of this report) (the “LFPORNE” basin
characteristic—although not used in the body of the report
or listed in table 3—describes the mean orientation of the
longest flow path within the drainage basin, relative to the
predominant trade winds from the northeast). Three candidate
models were considered:
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(1) a constant model using at-site skews from
streamgages in all 10 flood regions in Hawai‘i
(table 1.1, app. 1; see also figs. 2—6 in the main body of
this report);

(2) unique constant models for windward (2, 4, 6, and 8)
and leeward (1, 3, 5, 7) regions; and

(3) a constant model for windward regions and a model
incorporating the basin slope (BSLDEM10M) as a
covariate for leeward regions.

The second and third options offered no treatment of
regional skew for flood regions 9 and 10 (Island of Hawai‘i),
which did not have a clear windward/leeward orientation and
had an insufficient number of streamgages from which to
develop a unique constant model. Therefore, the first candidate
model, a constant model of regional skew (G,) for all of
Hawai‘i, —0.157, was selected (table 3.2).

A good regional skew model will have the smallest
possible model error variance, o3, and largest possible
pseudo-R3. A constant model does not explain variability
in the at-site skews, so the pseudo-RZ, which describes the
estimated fraction of the variability in the at-site skews
explained by the model (Gruber and others, 2007; Parrett and
others, 2011), is zero. The posterior mean of the model error
variance, o3, is 0.194. The average sampling error variance,
ASEYV, is 0.0184 and represents the average error in the
regional skew for the streamgages in the dataset. The average
variance of prediction at a new site, AVP,,,, is 0.212, which
is equivalent to the MSE of the regional skew (MSE}) and
corresponds to an effective record length (ERL) of 36 years.
The updated G, (—0.157) and MSE, (0.212), and ERL are an
improvement upon and supersede G, (—0.05), MSE, (0.302),
and ERL (17 years) from the generalized skew map in Bulletin
17B (Interagency Advisory Committee on Water Data, 1982),
which was used in the previous study (Oki and others, 2010).

Diagnostic Statistics for Bayesian Weighted
Least Squares/Bayesian Generalized Least
Squares Regression

To evaluate how well a regression model fits a regional
hydrologic dataset, diagnostic statistics have been developed
(Griffis, 2006; Gruber and others, 2007). A pseudo analysis
of variance (pseudo ANOVA) was conducted for the constant
model of regional skew in Hawai‘i (table 3.3). The pseudo
ANOVA shows how much of the variation in the observed
skews can be explained by the regional model, and how
much of the variation in residuals can be attributed to model
error and sampling error, respectively. Difficulties arise in
determining these quantities. The model errors cannot be
resolved because the values of the sampling errors, #,, for
each site, i, are not known. However, the total sampling error

sum of squares can be described by its mean value, Y Var[7,].
i=1
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Fisher Z-transformed cross-correlation of concurrent
annual peak discharges for streamgage pairs with < 60

Figure 3.1.
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Relation between Fisher Z-transformed cross-correlation of logarithms of annual peak

discharges and distance between basin centroids for streamgage pairs in the Hawai'‘i regional
skew study, using data through water year 2020. Abbreviations: <, less than or equal to; Z Fisher
Z-transformation; exp, natural exponential function; D, distance between basin centroids, in miles.

Table 3.2. Regional skew model for Hawai‘i and model performance metrics.

[Standard deviations are in parentheses.”g is the model error variance. ASEV: Average sampling error variance. AVP,,,: Average variance of prediction for a

new*

new site. Pseudo R3: Describes the fraction of the variability in the true skews explained by each model (Gruber and others, 2007).]

Model

Regression constant

2
SH

Pseudo
S

ASEV AVP

new

Constant

-0.157 (0.136)

0.194 (0.039)

0.0184 0.212 0
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Figure 3.2. Relation between un-transformed cross-correlation of logarithms of annual peak
discharges and distance between basin centroids for streamgage pairs in the Hawai'‘i regional
skew study, using data through water year 2020. Abbreviations: <, less than or equal to; r, sample
correlations; exp, natural exponential function; Z Fisher Z-transformation.
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Table 3.3.

Pseudo analysis of variance (ANOVA) table for the regional skew model of Hawai'i.

[Abbreviations: k, number of estimated regression parameters not including the constant; n, number of observations (streamgages) used in
regression; U; (0), model error variance of a constant model; o (k), model error variance of a model with k regression parameters and a constant;
NA, not applicable; Var(,), variance of the estimated sample skew at site i; EVR, error variance ratio, MBV*, misrepresentation of the beta
variance; pseudo R;, fraction of variability in the true skews explained by each model (Gruber and others, 2007); %, percent; b,**, regression
constant from WLS analysis; WLS, weighted least squares; GLS, generalized least squares; W7, the transformation of W; A, covariance matrix;
W, the (kxn) matrix of weights determined by WLS analysis; v, the (nx1) vector of 1s; W= 1]

i
ii

Source Degrees of freedom Equations Sum of squares Result
Model k=0 n[a2(0)— o (k)] 0 NA
Model error n-k-1=123 n[o; (k)] 24.0 NA
Sampling error n=124 Zil Var(y,) 17.7 NA
Total 2n—1=247 n[o-§ (k)J + z:’:lVar(;;i) 41.7 NA
EVR NA Z’il Var(pi) NA 0.7
nlo; (k)]
MBV* NA Var[by"* | GLS analysis] W' AW NA 6.9
Var[b)"* |WLS analysis] Wy
2
Pseudo R} NA 1— o;(k) NA 0%
2
a;(0)

Because there are n equations, the total variation because
of the model error ¢ for a model with & parameters has a
mean equal ton g3(k); thus, the residual variation attributed

n
to the sampling error is )’ Var|[ 4], and the residual variation
=1
attributed to the model error isn o3(k). This division of
the variation in the observations is referred to as a pseudo
ANOVA because the contributions of the three sources
of error are estimated or constructed, rather than being
determined from the residuals and the model predictions,
while also ignoring the effect of correlation among the
sampling errors.
For a model with no parameters other than the
mean (a constant skew model), the estimated model error
variance, 63(0), describes all of the anticipated variation
iny, = pu+ 9, where uis the mean of the estimated station
sample skews; thus, the total expected sum of squares
variation because of model error, J,, and because of sampling
efror, n; = §,—y,, in expectation should equal ng3(0) +
> Var(7,). The expected sum of squares attributed to a regional

=1
skew model with k parameters should then equal n[3(0)—
o3(k)], because the sum of the model error variance n o3(k)

and the variance explained by the model must sum ton ¢3(0).
The constant model does not have any explanatory variables,
thus the variation attributed to the models is 0 and £ = 0.

The ratio of the average sampling error variance to the
model error variance is called the error variance ratio (EVR)
and is a diagnostic statistic used to evaluate if a simple OLS
regression is sufficient or if a more sophisticated WLS or GLS
analysis is appropriate. Generally, an EVR greater than 0.20
indicates that the sampling variance is not negligible when
compared to the model error variance, suggesting the need for
a WLS or GLS regression analysis. The EVR is calculated as:

Ly Var(3,)
nai(k)

SS(sampling error
pyp - SS(sampling error)

SS(model error) (3.10)

The EVR for the constant model is 0.7. The sampling
variability in the at-site skew was larger than the error in the
regional model; thus, an OLS model that neglects sampling
error in the at-site skew might not provide a statistically
reliable analysis of the data. Given the variation of record
lengths among streamgages, it was important to use a WLS
or GLS analysis to evaluate the final precision of the model,
rather than a simpler OLS analysis.



The misrepresentation of the beta variance (MBV) is a
diagnostic statistic that is used to determine whether a WLS
regression is sufficient or a GLS regression is appropriate to
determine the precision of the estimated regression parameters
(Griffis, 2006; Veilleux, 2011). The MBV describes the error
produced by a WLS regression analysis in its evaluation
of the precision of b5, which is the estimator of the
constant S5, because the covariance among the estimated
at-site skews, 7, generally has its greatest impact on the
precision of the constant term (Stedinger and Tasker, 1985).
If the MBYV is substantially greater than 1, then a GLS error
analysis should be employed. The MBV is calculated as

Var [bg” L3|GLS analysis]

r
MBV = = wAw g
Var [bgVLS| WLS analysis] 2w
where
_ 1
w; = —.
A

ii

MBYV for the constant model was 6.9. This is a large
value, indicating that the cross-correlation among the at-site
skew estimates affected the precision with which the regional
skew could be estimated. If a WLS analysis were used to
estimate the precision of the constant, the variance would be
underestimated by a factor of 6.9; moreover, a WLS model
would underestimate the variance of prediction, given that the
sampling error in the constant term was sufficiently large to
make an appreciable contribution to the average variance of
prediction.
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Leverage and Influence

Leverage and influence diagnostics statistics can be used
to identify rogue observations and to effectively address lack
of fit when estimating skew coefficients. Leverage identifies
those streamgages in the analysis where the observed
values have a large effect on the fitted (or predicted) values
(Hoaglin and Welsch, 1978). Generally, leverage takes
into consideration whether an observation, or explanatory
variable, is unusual, and thus likely to have a large effect on
the estimated regression coefficients and predictions. Unlike
leverage, which highlights points that have the ability or
potential to affect the fit of the regression, influence attempts
to describe those points that have an unusual impact on the
regression analysis (Belsley and others, 1980; Cook and
Weisberg, 1982; Tasker and Stedinger, 1989). An influential
observation is one with an unusually large residual that has
a disproportionate effect on the fitted regression. Influential
observations often have high leverage. Detailed descriptions
of the equations used to determine leverage and influence for a
B-WLS/B—GLS analysis can be found in Veilleux (2011) and
Veilleux and others (2011).

No streamgages in the regional skew analysis exhibited
high leverage (greater than 0.016). The differences in leverage
values for the constant model reflect the variation in record
lengths among streamgages. Four streamgages exhibited
high influence (Cook’s D greater than 0.032) and thus had an
unusual impact on the fitted regression (table 3.4).

Table 3.4. Streamgages with high influence on the regional skew model for Hawai‘i.

[High influence is defined as Cook's D values greater than 4/n (or 4/124=0.032). Each of the 124 streamgages in the regional skew study was assigned a ranking
value from 1 to 124, signifying its relative rank, where a rank of 1 corresponds to the largest positive value in each category. The table is sorted from largest to
smallest influence (Cook's D). Abbreviations: USGS, U.S. Geological Survey; Py, pseudo effective record length; MSE, mean squared error]

. . . Unbiased MSE of .
P, in years Unbiased at-site skew X Residuals
USGS Cook'sD Leverage ar 1N Y at-site skew
streamgage
Value Rank Value Rank Value Rank Value Rank
16400000 0.1453 0.0100 95 12 1.5565 1 0.3539 3 1.7135 1
16620000 0.0509 0.0102 102 6 0.8439 6 0.1108 99 1.0010 11
16638500 0.0442 0.0081 53 63 1.1633 3 0.2987 10 1.3204 3
16700000 0.0393 0.0088 65 29 -1.2572 122 0.2404 23 -1.1002 8
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Appendix 4. Magnitude, Variance, and Prediction Intervals of Annual
Exceedance Probability Floods for Selected Streamgages in the State of Hawai'i

The spreadsheet containing table 4.1 is available for download in .xIsx and .csv format at
https://doi.org/10.3133/sir20235014.

Table 4.1. Magnitude, variance, and prediction intervals of annual exceedance probability discharges for selected streamgages in
Kaua‘i, 0‘ahu, Moloka‘i, Maui, and Hawai'i, State of Hawaii.

[Table 4.1 is available in .xIsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]
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