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Magnitude and Frequency of Floods on Kauaʻi, Oʻahu, 
Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi, Based on 
Data through Water Year 2020

By Jackson N. Mitchell, Daniel M. Wagner, and Andrea G. Veilleux

Abstract
Accurate estimates of flood magnitude and frequency 

are needed to (1) optimize the design and location of 
infrastructure, including dams, culverts, bridges, industrial 
buildings, and highways, and (2) inform flood-zoning and 
flood-insurance studies. The U.S. Geological Survey (USGS), 
in cooperation with the State of Hawaiʻi Department of 
Transportation, estimated flood magnitudes for the 50-, 
20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance 
probabilities (AEP) for unregulated streamgages in Kauaʻi, 
Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi, 
using data through water year 2020. Regression equations 
were developed to estimate flood magnitude and associated 
frequency at ungaged streams. This study improves upon 
a previous USGS flood-frequency report (Oki and others, 
2010) by including more peak-flow data, implementing 
new statistical methods in flood-frequency analysis, and 
using updated techniques to estimate the regional-skewness 
coefficient (regional skew).

Flood magnitude and frequency at 238 streamgages 
were estimated—following national guidelines established in 
Bulletin 17C (England and others, 2019)—by fitting annual 
peak-flow data to the Log-Pearson Type III distribution 
using the expected moments algorithm and the PeakFQ 
flood-frequency software. Potentially influential low outliers 
in the data were identified and removed using the Multiple 
Grubbs-Beck Test. An updated regional skew for Hawaiʻi was 
estimated using the Bayesian weighted least squares/Bayesian 
generalized least squares method. The updated regional skew 
employs a constant model for the five islands in the study area 
and has a value of −0.157 (mean square error of 0.212).

Multiple linear regression techniques were used to 
develop regression equations that relate basin and climatic 
characteristics to peak flows at streamgages. The regression 
equations can be applied to estimate flood magnitude and 
frequency at ungaged sites. The study area was split into 
10 regions—2 regions per island, generally following 
a leeward/windward division—containing from 9 to 49 
streamgages each. The final regression equations for each 

region were determined with generalized least-squares analysis 
using the USGS weighted-multiple-linear regression (WREG) 
program. The standard error of prediction at the 1-percent AEP 
for the regression equations ranged from 18 to 164 percent; 
the pseudo coefficient of determination (pseudo-R2) at the 
1-percent AEP ranged from 46 to 100 percent. The regression 
equations performed well for all regions except leeward 
Molokaʻi and southern Island of Hawaiʻi; for all other regions, 
the pseudo-R2 values ranged from about 75 to 100 percent. 
Compared to the regression equations developed by Oki and 
others (2010), the regression equations in this study generally 
showed modest improvements, although the magnitude of 
differences varied for each region.

Peak-flow estimates at the 238 streamgages included 
in this study are improved by weighting the at-site statistics 
computed with PeakFQ and the predicted flows based on the 
regression equations. Results of this study—including the final 
peak-flow estimates at streamgages and the regional regression 
equations—are implemented in the USGS StreamStats web 
application (U.S. Geological Survey, 2023, StreamStats:  
https://s​treamstats​.usgs.gov/​ss/​). StreamStats provides 
a consistent approach for obtaining peak-flow estimates 
at streamgages and for applying the regional regression 
equations for estimating peak flows at ungaged locations.

Introduction
Flooding in Hawaiʻi routinely causes considerable 

property damage and fatality (Paulson and others, 1991, 
p. 250; Fontaine and Hill, 2002; National Oceanic and 
Atmospheric Administration, 2018). To minimize the 
negative consequences of flooding, accurate estimates of 
flood magnitude and frequency are needed to (1) optimize the 
design and location of infrastructure, including dams, culverts, 
bridges, industrial buildings, and highways, and (2) inform 
flood-zoning and flood-insurance studies. Overestimations of 
flood magnitude may result in excessive infrastructure design 
and cost, whereas underestimations of flood magnitude may 
result in preventable property damage and deaths.

https://streamstats.usgs.gov/ss/
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Flood-frequency analysis is a set of statistical techniques 
that uses records of past floods to estimate the magnitude and 
frequency of future floods. Annual maximum instantaneous 
discharge data (hereinafter referred to as “peak-flow data”) 
from streamflow-gaging stations (hereinafter referred to as 
“streamgages”) provide the foundation for flood-frequency 
analysis. At streamgages with sufficiently long records 
(generally about 10 years), peak-flow data can be used 
directly to compute flood statistics. At ungaged locations 
or streamgages with short records, regional regression 
equations—developed using basin and climatic characteristics 
and flood statistics at streamgages in a hydrologically similar 
region—can be used to estimate flood statistics.

One of the most commonly used flood statistics is the 
annual exceedance probability (AEP), which describes the 
likelihood that a given flood magnitude will be equaled or 
exceeded during any year. For example, if a flood discharge 
of 500 cubic feet per second (ft3/s) has an AEP of 0.01 at a 
location along a stream, there is a 1-percent chance a flood 
discharge that equals or exceeds 500 ft3/s will take place at 
that location in any given year. The AEP is used to describe 
flood frequency in this report instead of the recurrence 
interval (for example, “100-year flood”) because recurrence 
intervals are often misunderstood. For example, the term 
“100-year flood” may be falsely interpreted to mean that a 
given flood magnitude will occur only once during a given 
100-year period. In reality, a 100-year flood has a 1-percent 
probability of occurring in any given year. The occurrence 
of a 1-percent-AEP flood in a given year has no effect on the 
probability of an equally large flood occurring in the following 
year (Holmes and Dinicola, 2010). AEPs are the inverse of 
recurrence intervals (table 1).

Flood-frequency analyses for a study area are updated 
periodically to incorporate new streamflow information, 
improved statistical techniques, and improved computations 

of basin and climatic characteristics for use in regression 
equations. The previous U.S. Geological Survey (USGS) 
flood-frequency study in Hawaiʻi (Oki and others, 2010) 
followed Bulletin 17B guidelines (Interagency Advisory 
Committee on Water Data, 1982) and used data from USGS 
streamgages from water years1 1911 through 2008. New 
national guidelines for flood-frequency analysis were released 
in Bulletin 17C (England and others, 2019). Bulletin 17C 
describes improved statistical techniques, including (1) a 
generalized representation of flood data, called the expected 
moments algorithm (EMA), which accommodates censored 
and interval data types, (2) improved methods for computing 
confidence intervals, (3) the Multiple Grubbs-Beck Test to 
identify potentially influential low floods in the dataset, and 
(4) improved techniques to estimate the regional-skewness 
coefficient (hereinafter referred to as “regional skew”). 
Given the availability of additional data since 2008 and 
the recent release of new flood-frequency guidelines, the 
USGS—in cooperation with the State of Hawaiʻi Department 
of Transportation—undertook a study to update estimates 
of flood magnitude and frequency for gaged and ungaged 
streams in Hawaiʻi (fig. 1). The study incorporates data 
through water year 2020. At two streamgages (USGS 
streamgages 16345000 [Opaeula Stream near Wahiawa, 
Oʻahu] and 16587000 [Honopou Stream near Huelo, Maui]), 
data through water year 2021 were included because the 
2021 peak flows were exceptional and the largest on record 
for each streamgage. Throughout the report, streamgages are 
identified by their 8-digit USGS streamgage number. The 
locations of streamgages can be found in figures 2–6, and each 
streamgage’s use is described in table 1.1 (app. 1).

1A water year is the 12-month period beginning on October 1 and ending on 
September 30 and is designated by the ending year.

Table 1.  Annual exceedance probabilities and corresponding recurrence intervals for 
frequency of floods on Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi.

Annual exceedance 
probability

Annual exceedance 
probability (percentage)

Recurrence 
interval (years)

Probability of occurrence 
in any given year

0.5 50.0 2 1 in 2
0.2 20.0 5 1 in 5
0.1 10.0 10 1 in 10
0.04 4.0 25 1 in 25
0.02 2.0 50 1 in 50
0.01 1.0 100 1 in 100
0.005 0.5 200 1 in 200
0.002 0.2 500 1 in 500
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Figure 6.  Streamgages with at least 10 years of usable peak-flow data, Island of Hawai‘i, State of Hawai‘i, 1911–2020.
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Purpose and Scope

The purpose of this report is to present methods and 
results for estimating the magnitude and frequency of floods 
for unregulated streams on five of the main Hawaiian Islands: 
Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. (Unregulated 
streams are those for which peak flows are not altered to a 
large extent by upstream reservoirs, dams, diversions, or other 
structures.) The report describes (1) updated flood flows at 
selected streamgages for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 
0.2-percent AEPs using peak-flow data through water year 
2020, (2) regional-skew estimates for Hawaiʻi, (3) regression 
equations for relating basin and climatic characteristics to 
flood flows at ungaged stream sites for the 50-, 20-, 10-, 
4-, 2-, 1-, 0.5-, and 0.2-percent AEPs, and (4) the accuracy 
and limitations of the regression equations. The regression 
equations developed were incorporated in the web-based 
USGS StreamStats application for Hawaiʻi (Rosa and Oki, 
2010). This report supersedes previous flood-frequency reports 
in Hawaiʻi (the most recent being Oki and others, 2010) by 
including more recent peak-flow data through water year 
2020 (table 2) and by implementing advances in statistical 
techniques developed after previous reports were published.

Previous Studies

The USGS began collecting streamflow data in Hawaiʻi 
in 1909 (Yamanaga, 1972, p. 1). The number of active 
streamgages increased until the late 1960s and decreased 
steadily since that time. In water year 2020, the USGS had 
137 active streamgages in Hawaiʻi (the number of active 
streamgages includes streamgages that are not included in the 
present study).

Previous flood studies in Hawaiʻi include descriptive 
and quantitative investigations related to storm-drainage 
standards, peak-flow statistics, and (or) regional regression 
equations at spatial scales ranging from individual floods to 
statewide studies. For a detailed list and descriptions of past 
studies related to floods in Hawaiʻi, see Oki and others (2010, 

app. A). Prior to the study described in this report, the most 
recent estimates of peak-flow statistics for streams in Hawaiʻi 
were published in 2010 (Oki and others), using data from 
streamgages on Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi 
through water year 2008. Oki and others (2010) applied the 
methods described in Bulletin 17B (Interagency Advisory 
Committee on Water Data, 1982) to estimate AEP flows at 
235 streamgages and developed regression equations to relate 
flood flows to basin characteristics at ungaged locations. 
Peak-flow estimates from Oki and others (2010) are compared 
to those generated by this study in the “Comparison of Results 
with Previous Studies” section.

Description of Study Area

The eight main islands in the State of Hawaiʻi, located in 
the north Pacific Ocean, trend northwest to southeast and have 
a total land area of 6,420 square miles (mi2). The majority of 
each island was formed by shield-stage volcanic eruptions, 
and the southeastern islands are geologically the youngest. 
The area considered for flood-frequency analysis in this study 
(hereinafter referred to as “study area”) includes the five 
islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, which 
have a total land area of 5,904 mi2. The maximum altitudes 
for the islands in the study area are 5,246 feet (ft) for Kauaʻi; 
4,046 ft for Oʻahu; 4,948 ft for Molokaʻi; 10,016 ft for Maui; 
and 13,781 ft for Hawaiʻi (U.S. Geological Survey, 2013). The 
individual islands in the study area are commonly divided into 
two physiographic zones, windward and leeward, based on 
their exposure to the predominant northeasterly winds.

Drainage basins in the study area are characterized by 
relatively small sizes, amphitheater-shaped valley heads, steep 
walls, and gently sloping floors (Wong, 1994). In geologically 
older areas (for example, northern Kauaʻi) with abundant 
rainfall, erosion and mass wasting have created large valleys 
and well-defined stream channels; in geologically younger 
areas (for example, southern Island of Hawaiʻi), valleys are 
smaller and well-defined stream channels are uncommon 
because high-permeability soils and rocks at the surface allow 

Table 2.  Comparison of annual peak-flow data used in this study through water year 2020 relative to data used in a previous  
U.S. Geological Survey flood-frequency study (Oki and others, 2010), State of Hawaiʻi.

Location

Number of streamgages

10 or more years of annual peak-flow 
data used

25 or more years of annual peak-flow 
data used

50 or more years of annual peak-flow 
data used

Oki and others 
(through water 

year 2008)

This study 
(through water 

year 2020)

Oki and others 
(through water 

year 2008)

This study 
(through water 

year 2020)

Oki and others 
(through water 

year 2008)

This study 
(through water 

year 2020)

Kauaʻi 37 37 27 27 13 19
Oʻahu 71 78 54 55 17 27
Molokaʻi 22 22 21 20 3 3
Maui 58 58 46 49 10 14
Hawaiʻi 47 43 21 22 3 7
State total 235 238 169 173 46 70
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rainwater to infiltrate before eroding the land. The topography 
of Hawaiian shield volcanoes leads to a radial drainage pattern 
where streams tend to flow away from each other (Oki and 
others, 2010).

Climate
The climate of Hawaiʻi is characterized by mild 

temperatures, moderate humidity, prevailing northeasterly 
winds, a dry summer season from May through September, 
and a wet winter season from October through April 
(Sanderson, 1993). Hawaiʻi lies to the southwest of the 
North Pacific anticyclone—a semi-permanent, high-pressure 
atmospheric system that is responsible for the prevailing 
northeasterly winds, known locally as “trade winds” (Wyrtki 
and Meyers, 1976). The North Pacific anticyclone and other 
migratory weather systems are the dominant controls on 
Hawaiʻi’s climate (Schroeder, 1981; Lyons, 1982; Chu and 
others, 1993). During the dry season, the trade winds blow 
85 to 95 percent of the time (Sanderson, 1993; Garza and 
others, 2012). During the wet season, the trade winds diminish 
(only blowing 50–80 percent of the time), which allows more 
migratory storm systems to influence the islands’ weather.

Rainfall
Rainfall in Hawaiʻi has extreme spatial gradients 

related to altitude and the orientation of the topography 
relative to the northeasterly trade winds (Giambelluca and 
others, 1986; Sanderson, 1993) (fig. 6). As moist air from 
the northeast encounters the windward slopes of the islands, 
the air rises, cools, and condenses to form precipitation 
known as “orographic rainfall.” The air that passes over the 
windward slopes loses moisture, resulting in substantially 
less rainfall for the areas on the leeward (southwest) side 
of mountain barriers—this is known as the “rain-shadow 
effect” (Giambelluca and others, 1986). In some places, mean 
annual rainfall can vary by as much as 100 inches per mile 
(Giambelluca and others, 2013). Rainfall maxima for the 
islands in the study area are 393 inches per year (in/yr) for 
Kauaʻi, 279 in/yr for Oʻahu, 168 in/yr for Molokaʻi, 404 in/yr 
for Maui, and 300 in/yr for Hawaiʻi (Giambelluca and others, 
2013). Rainfall maxima for each island generally occur on 
the windward slopes between altitudes of 2,000 and 6,000 ft 
(Giambelluca and others, 2013). Precipitation decreases above 
altitudes of 6,000 ft because of a trade wind inversion, where 
moist air is prevented from continuing to rise up the mountain 
because air temperatures increase with altitude between about 
6,000 and 8,000 ft (Giambelluca and Nullet, 1991; Chen and 
Feng, 1995; Cao and others, 2007).

Rain gages across Hawaiʻi hold many of the United 
States records for extreme rainfall, including the 24-hour 
record set in 2018 when 49.7 inches of rain fell at 
Waipā Garden near Hanalei, Kauaʻi (National Oceanic 
and Atmospheric Administration, 2018). Although 

trade-wind-driven orographic rainfall contributes the majority 
of the annual rainfall for most areas, rainfall associated with 
atmospheric disturbances may be responsible for most of the 
high-intensity rainfall events (Longman and others, 2021). 
Intense rainfall in Hawaiʻi is usually related to one of the 
following four types of atmospheric disturbances:

(1) cold fronts;

(2) subtropical cyclones (Kona lows);

(3) upper-tropospheric disturbances (upper-level 
lows); and

(4) tropical cyclones (Kodama and Barnes, 1997; Caruso 
and Businger, 2006; Perica and others, 2009; Longman 
and others, 2021).

El Niño-Southern Oscillation, Pacific Decadal 
Oscillation, and the Pacific North American

Three natural teleconnections (related climate anomalies 
that are separated by large distances) exert strong influences 
on the climate of Hawaiʻi: El Niño–Southern Oscillation 
(ENSO), Pacific Decadal Oscillation (PDO), and the Pacific 
North American (PNA). These teleconnections, which operate 
on different time scales, are not independent and in some cases 
can modulate the effects of each other (Chu and Chen, 2005; 
Yu and Zwiers, 2007; Frazier and others, 2018).

One of the primary drivers behind interannual climate 
variability for Hawaiʻi is ENSO (Lyons, 1982; Chu, 1995; 
Chu and Chen, 2005; Elison Timm and others, 2011), which 
characterizes the combined effects of sea-surface-temperature 
and atmospheric-pressure anomalies in the tropical Pacific 
Ocean (Rasmusson and Carpenter, 1982; Trenberth, 1997). 
The ENSO cycle is commonly divided into three phases 
based on sea-surface-temperature anomalies in the central 
and eastern tropical Pacific Ocean: El Niño (warm ocean 
water), La Niña (cold ocean water), and neutral. ENSO phases 
generally last 6–18 months and can have wide-ranging effects 
on rainfall, surface-air temperatures, and global-circulation 
patterns (Trenberth and Hurrell, 1994; Kestin and others, 
1998; Kim and others, 2003). Generally, El Niño phases 
result in below-average rainfall and La Niña phases result in 
above-average rainfall for Hawaiʻi (Ropelewski and Halpert, 
1987; Chu, 1995; Chu and Chen, 2005; Giambelluca and 
others, 2013); however, rainfall during La Niña phases may 
have started to decrease in the early 1980s (O’Connor and 
others, 2015). In addition to the generally positive correlation 
between La Niña phases and annual rainfall, extreme rainfall 
events may be more likely during La Niña phases than El Niño 
phases (Chu and others, 2010; Chen and Chu, 2014).

The PDO has similar characteristics to ENSO but 
operates on an interdecadal time scale: PDO phases last about 
20–30 years (Mantua and others, 1997; Minobe and Mantua, 
1999). The PDO index, the most common metric of the PDO, 
is the leading principal component of an empirical orthogonal 
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function analysis of sea-surface-temperature anomalies over 
the North Pacific Ocean (poleward of 20°N) (Mantua and 
Hare, 2002). Positive phases of the PDO index are associated 
with cooler water in the interior of the North Pacific Ocean 
and warmer water along the Pacific coast of North America; 
the opposite pattern occurs during the negative phase (Mantua 
and others, 1997). Rainfall in Hawaiʻi is negatively correlated 
with the PDO index (Mantua and others, 1997; Chu and Chen, 
2005; Diaz and Giambelluca, 2012), and positive PDO phases 
may strengthen the effects of ENSO variability on rainfall 
(Chu and Chen, 2005; Verdon and Franks, 2006; Elison Timm 
and others, 2020). The PDO index shifted from a positive 
phase into a predominantly neutral or negative phase during 
the 1990s and returned to a positive phase in about 2014 
(National Oceanic and Atmospheric Administration, 2021).

The PNA teleconnection relates the atmospheric 
circulation pattern over the North Pacific with the pattern 
over North America (Wallace and Gutzler, 1981; Leathers 
and others, 1991). The PNA—which has both a positive 
and negative phase—is quasi-periodic and has a recurrence 
interval ranging from a few years to a few decades (Wallace 
and Gutzler, 1981; Trouet and Taylor, 2010). During the 
positive phase, Hawaiʻi tends to receive less rainfall; during 
the negative phase, Hawaiʻi tends to receive more rainfall 
(Chu and others, 1993). Jayawardena and Chen (2016) found 
that a negative PNA phase was associated with three unusually 
prolonged heavy-rainfall periods in 1951, 1979, and 2006. In 
a multiple-linear regression analysis using ENSO, PDO, and 
PNA to model rainfall in Hawaiʻi, Frazier and others (2018) 
determined that PNA best describes the interannual variability 
in wet-season rainfall, whereas ENSO best describes the 
interannual variability in dry-season rainfall. (Frazier and 
others [2018] defined the wet season and dry season as 
November–April and May–October, respectively.)

Trends in Extreme Rainfall
Global climate change and cyclical changes in regional 

climate may influence the frequency and intensity of heavy 
rainfall events in Hawaiʻi. Studies of past rainfall extremes—
using daily rainfall data, annual maximum daily rainfall data, 
and climate-change indices—have found generally decreasing 
trends for Oʻahu, Maui, and Kauaʻi (Kruk and Levinson, 
2008; Perica and others, 2009; Chu and others, 2010; Elison 
Timm and others, 2011; Chen and Chu, 2014; Huang and 
others, 2021). For most measures of extreme rainfall, the 
Island of Hawaiʻi was the only island in the study area that 
had some evidence of increasing trends (Chu and others, 
2010; Chen and Chu, 2014); however, Huang and others 
(2021) reviewed daily rainfall maxima during 1970–2005 
and found no evidence of consistent increases on the Island 
of Hawaiʻi. Analyses of extreme rainfall trends on Molokaʻi 
are inconclusive due to limited historical data. Causes for the 
generally decreasing trends are uncertain but may be related 
to a poleward shift in the Pacific storm track (Yin, 2005), the 
increasing frequency and decreasing altitude of the trade-wind 
inversion (Cao and others, 2007; Longman and others, 2015), 
or decreasing in trade-wind frequency (Garza and others, 

2012). The factors affecting rainfall climatology in Hawaiʻi 
are complex, and estimates of future trends in extreme rainfall 
remain inconclusive (Elison Timm and others, 2011; Norton 
and others, 2011; Elison Timm and others, 2020; Xue and 
others, 2020).

Flood Characteristics
Streamflow in Hawaiʻi consists of the following:
(1) direct runoff of rainfall, in the form of overland 

flow and subsurface stormflow that rapidly returns 
infiltrated water to the stream;

(2) groundwater discharge, in the form of base flow, 
where the stream intersects the water table;

(3) water returned from stream-bank storage;

(4) rain that falls directly on streams; and

(5) any additional water, including excess irrigation water 
discharged to the stream by humans (Oki, 2003).

In heavy rainfall leading to most floods, direct runoff 
is the primary contributor to streamflow. Variables that 
affect flood magnitude for a given watershed include 
rainfall intensity and duration, antecedent soil moisture, 
soil permeability, depth to the water table, and available 
surface-depression storage (Ivancic and Shaw, 2015; Wasko 
and Sharma, 2017; Wasko and Nathan, 2019). Huang 
and others (2021) examined annual maxima from paired 
streamgages and rainfall gages in the same or similar 
watersheds in Hawaiʻi during 1970–2005 and found that the 
streamflow and rainfall maxima rarely occurred on the same 
dates, reinforcing the concept that daily rainfall totals are 
not the only factor governing flood magnitude (Sharma and 
others, 2018).

Floods can occur during any time of the year in Hawaiʻi 
but are most common during the rainy season (October–
April) when atypical storms and wind patterns replace the 
predominant northeasterly trade winds. Streams on the 
leeward sides of mountain ridges may be dry for most of 
the year, only to be punctuated by a few floods from large 
storms. Streams on the windward sides of mountain ridges 
may flow perennially because of persistent tradewind-driven 
rainfall and groundwater discharge as base flow. Seasonal 
differences in streamflow are most pronounced for the 
leeward-facing streams.

Streams in Hawaiʻi tend to be flashy—that is, they 
respond quickly to rainfall and have short-lived discharge 
peaks—because of small and steep drainage basins and 
high-intensity rainfall from storms (Wong, 1994). Flood 
hydrographs generally have a characteristic steep triangular 
shape, indicating a rapid rise and fall in discharge (Wu, 1969). 
Stream stage will commonly rise and fall several feet over 
a few hours in response to intense rainfall. In some floods, 
stream discharge can change by a factor of 60 in 15 minutes 
(Tomlinson and De Carlo, 2003).
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Land Cover
Land cover in Hawaiʻi—representing the physical 

condition of the land, rather than how the land is used—varies 
temporally and spatially. The general trend from the early 
1900s to 2020 was an increase in population and urbanization 
and a decrease in large-scale agriculture. The population 
of the State of Hawaiʻi increased from 154,001 in 1900 to 
1,455,271 in 2020 (U.S. Census Bureau, 2021). Agriculture—
mostly pineapple and sugar cane—was the dominant industry 
in Hawaiʻi during the early 1900s, peaked in the 1920s 
with about 391 square miles of cropland for the islands in 
the study area, and began to decline in the 1950s (Water 
Resource Associates, 2003; Suryanata, 2009). In nominal 2011 
conditions, crops covered no more than 10 percent of the land 
on any island in the study area, for a total of about 190 square 
miles: Maui had the highest percent of cropland (9.6 percent), 
and Molokaʻi had the lowest percent of cropland (1.8 percent) 
(National Oceanic and Atmospheric Administration, 2014). 
Nominal 2011 land-cover data for Hawaiʻi are separated into 
18 classes and are available at a 2.4-meter resolution (National 
Oceanic and Atmospheric Administration, 2014).

As population increased and large-scale agriculture 
decreased, the degree of urbanization increased. Urbanization 
tends to increase flood magnitude because built, impervious 
surfaces prevent water from infiltrating the soil, resulting in 
a greater fraction of rainfall that contributes to overland flow 
and stream discharge (Hollis, 1975; Schueler, 1994; Konrad, 
2003). The percentage of impervious land cover is a common 
metric of urbanization that can be easily and accurately 
quantified with remote sensing (Weng, 2012; National Oceanic 
and Atmospheric Administration, 2014). Impervious surfaces 
associated with urbanization include roofs, paved roads, and 
parking lots. The relative effects of impervious surfaces on 
flood magnitude generally decrease as the flood magnitude 
increases; that is, the magnitude of floods with high AEPs 
(small floods) is affected more by changes in impervious land 
cover in the drainage basin than is the magnitude of floods 
with low AEPs (large floods) (Hollis, 1975; Terstriep and 
others, 1976; Dudley and others, 2001). The islands in the 
study area have the following percentage of their land cover 
classified as impervious: Kauaʻi, 2.8 percent; Oʻahu, 14.5 
percent; Molokaʻi, 1.1 percent; Maui, 3.3 percent; Hawaiʻi, 1.2 
percent (National Oceanic and Atmospheric Administration, 
2014). Beyond the direct effects of impervious surfaces, 
urbanization can affect flood magnitude and frequency 
by compacting soils and decreasing infiltration capacity, 
fragmenting and draining wetlands, reducing floodplain sizes, 
and channelizing stream reaches (Murabayashi and Fok, 1979; 
Dudley and others, 2001; Shuster and others, 2005).

Data Collection and Compilation
Available peak-flow data from USGS streamgages in 

Hawaiʻi were screened for suitability in flood-frequency 
analysis. Selection considerations included record length, 
the effects of regulations or diversions, and the amount of 
impervious land cover in the drainage basin. Peak-flow 
data from the selected sites were then reviewed to ensure 
data quality and evaluated for the presence of trends. After 
selecting the streamgages and reviewing the peak-flow data, a 
suite of basin and climatic characteristics was determined for 
each streamgage and associated drainage basin for use in the 
development of regression equations.

Streamgage Selection and Peak-Flow Data

Peak-flow data for streamgages with at least 10 years 
of record were downloaded from the USGS National Water 
Information System (NWIS; https:/​/waterdata​.usgs.gov/​nwis) 
database (U.S. Geological Survey, 2021); flood-frequency 
analyses at a streamgage with less than 10 years of record 
are generally unreliable (England and others, 2019, p. 36). 
Data through water year 2020 were used at all streamgages 
where available. At the time of analysis, USGS streamgages 
16103000 (Hanalei River near Hanalei, Kauaʻi) and 
16325000 (Kamananui Stream at Pupukea Mil Road Oʻahu) 
did not have approved 2020 peaks. Additionally, 2021 
peaks for USGS streamgages 16345000 (Opaeula Stream 
near Wahiawa, Oʻahu) and 16587000 (Honopou Stream 
near Huelo, Maui) were included in the analysis because 
they were the largest floods on record for each streamgage. 
Streamgages in Hawaiʻi typically are either continuous-record 
gages or crest-stage gages. Continuous-record gages record 
the stage (height) of streamflow at short intervals (for 
example, every 15 minutes, although the recording interval 
may be automatically decreased during times of rapidly 
changing flow at higher stages), whereas crest-stage gages 
record only the maximum stage of floods above a certain 
threshold. Discharge is computed from stage measurements at 
streamgages using a site-specific stage-discharge relation or 
indirect-measurement methods.

Initially, 268 active and discontinued streamgages 
were identified as potential streamgages to include in the 
flood-frequency analysis. The number of usable streamgages 
was reduced to 238 after reviewing the data (figs. 2–6; 
table 1.1, app. 1). Streamgages with fewer than 10 years 
of usable peak-flow data were excluded (including some 
streamgages where peaks were removed in a low-outlier 
screening that will be described in section, “Low Outliers 
Identified with the Multiple Grubbs-Beck Test”). Five 
streamgages with regulated or diverted flow (NWIS 
qualification code 6) were excluded (table 1.2, app. 1). 
Streamgages where discharge was affected to an unknown 
degree by regulation or diversion (NWIS qualification 
code 5) were retained except for USGS streamgage 16210500 

https://waterdata.usgs.gov/nwis
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(Kaukonahua Stream at Waialua, Oʻahu), which was 
excluded because peak flows may have been substantially 
affected by regulation. Streamgages with drainage basins 
that had impervious surfaces covering more than 20 percent 
of the land were excluded because of the potential effects 
of impervious surfaces and urbanization on peak flows (see 
section, “Land Cover”). (The exclusion criterion for urbanized 
streamgages in the current study—greater than 20 percent 
impervious surface in the drainage basin—is about equal to 
the exclusion criterion used by Oki and others (2010) for the 
238 streamgages in the current study: greater than 20 percent 
combined medium- and high-intensity development in the 
drainage basin.) Additionally, data from 18 streamgages were 
excluded because of possibly inaccurate rating curves or 
other potential issues (R.A. Fontaine, U.S. Geological Survey, 
written commun., 2020). Streamgages and data excluded from 
the analysis are available in appendix 1 (table 1.2).

From the 238 streamgages used in the study, the average 
number of available annual peaks for each streamgage is 
40. The longest available record, 109 annual peaks, is from 
Honopou Stream on Maui (USGS streamgage 16587000). 
The number of available annual peaks for this study reached a 
maximum of 169 peaks in 1967–68 and has steadily decreased 
since (fig. 7). About 81 percent of annual peak used in this 
study with known dates occurred during the wet season from 
October to April (fig. 8).

This study includes 18 streamgages that were not used by 
Oki and others (2010)—the most recent flood-frequency study 
for Hawaiʻi—and excludes 15 streamgages that were used by 
Oki and others (2010) (tables 1.2 and 1.3, app. 1). Most of the 
newly included streamgages had fewer than 10 usable annual 
peaks in 2010; most of the newly excluded streamgages were 
omitted because they had fewer than 10 usable annual peaks 
after screening for low outliers.

Trends in Peak Flows

The Bulletin 17C methods for flood-frequency analysis 
(England and others, 2019) used in this study assume that (1) 
the peak-flow data are a random, independent, and identically 
distributed sample that is representative of the population 
of floods, and (2) the parameters describing the statistical 
distribution of floods will not change in the future (that is, the 
distribution is stationary). These assumptions may be violated 
by deterministic trends related to abrupt or gradual changes 
in stream regulation, land cover and land use, or climate, or 
a mixture of those sources (Milly and others, 2008; Vogel 
and others, 2011). Stationarity can be difficult to detect in 
hydrologic time series, however, because natural processes 

often exhibit low-frequency deviations that persist for decades 
or centuries (Cohn and Lins, 2005; Villarini and others, 
2009; Lins and Cohn, 2011). To evaluate the assumptions 
of the Bulletin 17C methods, peak-flow data were tested for 
monotonic trends and step trends. Trends were considered 
statistically significant for probability values (p-values) less 
than or equal to 0.05—this is the probability that an observed 
trend is due to random chance.

Methods for Trend Analyses
To prepare the peak-flow data for trend testing, the 

censored values—peaks reported as below or above a 
threshold, rather than a discrete peak—were temporarily 
modified. Failure to account for censored data when 
conducting statistical analyses can result in inaccurate 
conclusions because censored data (for example, less than [<] 
80 ft3/s) represent different information than discrete data (for 
example, 80 ft3/s). The peak-flow data in the current study 
contain 274 left-censored peaks (about 3 percent of the total 
peaks), which indicate that the annual peak flood was below 
a certain discharge, and only two right-censored peaks (about 
0.02 percent of the total peaks), which indicate that the annual 
peak flood was above a certain discharge. Left-censored 
peaks occur when all flood flows during a year are below the 
minimum recordable discharge at a streamgage and the exact 
peak discharge is unknown. For the 57 streamgages with at 
least 1 left-censored peak, each peak less than the largest 
left-censored peak was replaced with the largest left-censored 
peak (Helsel, 2012, p. 14; Helsel and others, 2020, p. 357). 
For example, if the record for a streamgage contains annual 
peak discharges of <400, 300, 600, <100, and 700 ft3/s, then 
the record would be recoded to <400, <400, 600, <400, and 
700 ft3/s. Although recoding the values results in a loss of 
information, significant trends found with the recoded data are 
more believable (Helsel and others, 2020, p. 357). The records 
containing recoded values were only used for trend analyses 
and the unaltered records were used for the remainder of the 
flood-frequency analysis. The two right-censored peaks (at 
USGS streamgages 16502900 [Kawaipapa Gulch at Hana, 
Maui] and 16604500 [Wailuku River at Kepaniwai Park, 
Maui]) were not modified and were treated as discrete peaks.

Monotonic trends in peak-flow data, representing a 
unidirectional change over time, were evaluated using the 
nonparametric Mann-Kendall test (Helsel and others, 2020, p. 
332). Three versions of the Mann-Kendall test with different 
dependence assumptions were applied using scripts written 
in the R coding language (R Core Team, 2021) by Dudley 
and others (2018). The dependence assumptions relate to 
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Figure 7.  Total number of annual peak discharges used for each year in this study, State of Hawaiʻi, 1911–2021.
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autocorrelation (also known as “serial correlation”), which 
describes the tendency for years with high peak flows to be 
followed by years with high peak flows and for years with 
low peak flows to be followed by years with low peak flows 
(Helsel and others, 2020, p. 5). The first version, the standard 
Mann-Kendall test, assumes the annual peaks are independent 
of each other with time. The second version, adapted from 
Hamed and Rao (1998), assumes that the annual peaks have 
short-term persistence (STP; or lag-one autocorrelation); 
that is, the autocorrelation decays exponentially or faster 
as the time lag increases. The third version, adapted from 
Hamed (2008), assumes that the annual peaks have long-term 
persistence (LTP); that is, the autocorrelation decays slower 
than exponentially as the time lag increases (Koutsoyiannis 
and Montanari, 2007). LTP is characterized by quasi-periodic 
excursions in the central tendency of a variable (Helsel 
and others, 2020, p. 359) and is likely present in most 
natural hydroclimatological systems (Koutsoyiannis and 
Montanari, 2007; Lins and Cohn, 2011). In many cases, LTP 
is indistinguishable from a deterministic trend because a 
trend may simply be one limb of an LTP-driven oscillation, 
particularly for data with relatively short records (Villarini and 
others, 2009). The presence of persistence (either STP or LTP) 
does not inherently violate the assumption of stationarity; 
however, persistence may result in an overestimation of the 
significance of trends determined from tests that assume 
independence of the data (Cohn and Lins, 2005; Helsel and 
others, 2020, p. 359). The use of a modified trend test that 
accounts for persistence results in only a very small loss of 
power, even if the data possess no persistence (Cohn and 
Lins, 2005).

Step trends, also called “change points,” are abrupt 
shifts in the statistical properties of time-series data (Reeves 
and others, 2007; Helsel and others, 2020, p. 352). For 
peak-flow data, step trends may be related to changes in flood 
regulation, climate, land use, or land cover. Change points in 
the peak-flow data were analyzed using the Pettitt test (Pettitt, 
1979)—a derivative of the nonparametric Mann-Whitney 
two-sample test—to determine the optimum point to split 
each time series into two (Ryberg and others, 2020). Although 
multiple change points may exist in a record, the Pettitt test 
is limited to identifying a single change point. The Pettitt 
test does not account for temporal gaps in the record and 
assumes that all data are equally spaced. The accuracy of 
results from the Pettitt test may be affected by autocorrelation 
and monotonic trends (Busuioc and Storch, 1996); however, 
a change-point test that accounts for autocorrelation was 
unavailable. Differentiating between step trends and 
monotonic trends can be difficult, especially for short 
records—the two trend types should be analyzed together to 
develop a more complete understanding of the data (McCabe 
and Wolock, 2002; Sharma and others, 2016).

Peak-Flow Trend Results
Statistically significant monotonic trends were detected 

at 51 of the 238 streamgages used in this study for at least 
one of the Mann-Kendall trend-test versions (app. 2). 
Under the independence assumption, 29 streamgages had 
decreasing trends and 18 streamgages had increasing trends; 
under the STP assumption, 26 streamgages had decreasing 
trends and 16 streamgages had increasing trends; and under 
the LTP assumption, 6 streamgages had decreasing trends 
and 4 streamgages had increasing trends. Of the 90 active 
streamgages (those with annual peaks reported for water 
year 2020), 24 have significant trends: 16 decreasing and 8 
increasing. Of the streamgages with significant monotonic 
trends, streamgages on Kauaʻi, Oʻahu, and the Island of 
Hawaiʻi had predominantly decreasing trends, whereas 
streamgages on Maui and Molokaʻi had mixed results. The 
magnitude of the trend during the record period at each 
streamgage was estimated using the Theil slope (also known 
as the Kendall-Theil robust line) (Helsel and others, 2020, p. 
332) (app. 2).

The results from trend testing should be reviewed in the 
context of spatial and temporal data availability. Test results 
depend considerably upon the time period analyzed: the 
available peak-flow data sometimes represent neither long nor 
concurrent record periods (fig. 9).

In some cases, short-term trends related to natural 
climate variability can be superimposed on long-term 
deterministic trends. A flag plot was created by applying the 
Mann-Kendall trend test (with the independence assumption) 
to all possible pairs of starting and ending years (minimum 
10 annual peak discharges) for each streamgage to determine 
the percentage of streamgages with statistically significant 
increasing and decreasing trends for various periods (fig. 10). 
Record periods ending before about 1980 had predominantly 
increasing trends; record periods ending after about 1980 had 
predominantly decreasing trends. Additionally, decadal trends 
in peak flows were analyzed by applying the Mann-Kendall 
trend test (with the independence assumption) to each 
record subperiod spanning 10 years (for example, 1975–84) 
and containing at least eight annual peaks. The results are 
shown in figure 11, where the values represent percentages 
of streamgages with increasing or decreasing trends for the 
decade, plotted on the mid-decade year (for example, for 
1975–84, the mid-decade year would be 1979). Increasing 
peak-flow trends were common during the decades centered 
around 1946–48, 1963–64, 1987–88, 2001–03, and 2013–14. 
Decreasing peak-flow trends were common during the decades 
centered around 1968–73 and 1993–96.

Significant step trends in peak-flow data were found 
at 44 streamgages (fig. 12; app. 2). Twenty-six streamgages 
with significant step trends had peak-flow magnitudes 
that decreased after the change point; 18 streamgages 
had peak-flow magnitudes that increased after the change 
point. Decreasing step trends most commonly have change 
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Figure 9.  Temporal availability of peak-flow data for each region and island in the study area, State of Hawaiʻi, 1911–2021. 
Streamgages are grouped into regions and sorted by the first year of usable peak-flow data. The color for each water year 
represents the magnitude of the peak discharge, in standard deviations away from the mean at each streamgage. Symbols: >, 
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Figure 10.  The number of annual peaks used for each year in the study (A) and a flag plot showing the percentage of streamgages 
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Significant trends were determined using the Mann-Kendall trend test under the independence assumption with a probability value 
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Figure 11.  Percentage of streamgages with statistically significant decadal trends in annual peak discharge, State 
of Hawaiʻi, 1915–2015. The percentage of significant trends is plotted on the mid-decade water year (for example, for 
1975–84, the mid-decade year would be 1979). Significant trends were determined using the Mann-Kendall trend test 
under the independence assumption with a probability value (p-value) of 0.05.

points clustered from the 1970s to the early 2000s, whereas 
increasing step trends have a broad distribution of change 
points spanning the 1930s to 2000s. As with monotonic 
trends, comparisons of step trends and change points 
between streamgages should be made with caution because 
of sometimes inconsistent record periods available for 
analysis (fig. 9). One of the clearest patterns is that, of the 20 
streamgages with statistically significant step trends on Oʻahu, 
11 have change points during 1968–76.

Time-series data can possess both monotonic trends 
and step trends, or one type of trend may mask the other. 
Thirty-four streamgages had a significant monotonic trend 
(using the independence assumption) and a significant step 
trend. Further evaluations of trends in the peak-flow data may 
consider analyzing the time periods before and after significant 
change points separately and (or) applying adjustments to the 
data to account for autocorrelation before using the Pettitt test 
for step trends.

In summary, trend analyses of the peak-flow data used 
in this study suggest that decreasing trends are more common 
than increasing trends. For monotonic trends, the number of 
significant trends decreases when STP and LTP are accounted 

for. Monotonic and step trend tests suggest that peak-flow 
magnitude has generally decreased since about 1980, although 
the number of streamgages with significant trends may be 
overestimated by the presence of natural hydroclimatologic 
fluctuations related to LTP.

Stationarity should be the default assumption for 
flood-frequency analyses, unless the nonstationarity 
assumption can be justified based on a clear understanding 
of the physical processes of trends (Lins and Cohn, 2011; 
Serinaldi and Kilsby, 2015; Salas and others, 2018; England 
and others, 2019; Ryberg and others, 2020). Although this 
study presents a cursory summary of peak-flow trends at 
streamgages, an exhaustive investigation of trends and the 
potential causes of trends is beyond the scope of this report. 
If additional data and more comprehensive analyses discover 
relations not discussed here, future flood-frequency analyses 
may consider incorporating trends and nonstationarities 
and (or) excluding stations with definitive nonstationarities 
related to deterministic trends. In the absence of clear 
relations between trends and hydroclimatological forcings, the 
assumptions in Bulletin 17C (England and others, 2019) are 
presumed to be valid and are retained for this study.
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Physical and Climatic Basin Characteristics

Drainage basins for each streamgage used in the study 
were delineated using geographic information system (GIS) 
methods. Physical and climatic basin characteristics for each 
streamgage were estimated using available datasets. Accurate 
basin delineations and basin characteristics are critical for 
the regional regression analysis relating basin characteristics 
to flood discharges. The source data used to determine the 
basin delineations and basin characteristics were incorporated 
into the USGS StreamStats application for Hawaiʻi (Rosa 
and Oki, 2010). StreamStats allows users to select any point 
along a stream and automatically delineate a drainage basin 
and compute selected basin and climatic characteristics for 
the watershed upstream from that point (U.S. Geological 
Survey, 2019).

Basin Delineations
Data used to delineate drainage basins for this study 

were primarily derived from (1) the 1/3 arc-second digital 
elevation models (DEM) from the USGS National Elevation 
Dataset (U.S. Geological Survey, 2013) and (2) the USGS 
National Hydrography Dataset (NHD) (U.S. Geological 
Survey, 2020). The basin-delineation method used tools 
developed by Barnhart and others (2020) and generally 
followed the methods described by Rea and Skinner (2012). 
A hydrologically conditioned DEM, commonly referred to as 
a “hydroDEM,” was developed by lowering the elevation of 
known stream channels in the DEM to ensure that the final 
drainage patterns agreed with the stream-channel network 
from the NHD. Drainage basins were iteratively reviewed 
and updated by modifying the digital stream-channel network 
to match stream channels visible in available aerial imagery. 
Geospatial data used to delineate drainage basins are available 
as a USGS data release (Mitchell, 2022a).

Drainage areas determined for streamgages used in this 
study differ from those used by Oki and others (2010) in some 
areas. Of the 220 streamgages used in both the current study 
and Oki and others (2010), 44 streamgages had changes in 
drainage area greater than 5 percent and 28 streamgages had 
changes in drainage area greater than 10 percent. Twenty-five 
(25) of the 28 basins with drainage-area changes greater 
than 10 percent were located on Maui and the Island of 
Hawaiʻi. Most of the changes in drainage area are related 
to (1) minor changes in the input DEM and (2) additional 

flowlines incorporated into the hydroDEM which crossed 
previous drainage boundaries determined from DEMs, based 
on comparisons with available aerial imagery. The two largest 
percent changes in drainage area for basins larger than 1 
square mile were on the Island of Hawaiʻi: USGS streamgages 
16701800 (38.4–128.2 mi2, 234 percent; Wailuku River near 
Kaumana, Island of Hawaiʻi) and 16701300 (36.3–99.3 mi2, 
174 percent; Waiakea Stream at Hilo, Island of Hawaiʻi).

It is critical to have accurate basin delineations for 
flood-frequency analysis because the delineations affect the 
computation of all basin characteristics used as explanatory 
variables in the regression equations. The basin delineations 
in this study may be improved in the future by using 
higher-resolution DEMs (for example, DEMs derived from 
light detection and ranging [lidar] data), particularly in 
areas with gently sloping topography and areas with poorly 
defined stream channels. Additionally, the incorporation 
of storm-drainage GIS data for Oʻahu, the most urbanized 
island in the study area, may alter basin delineations for urban 
areas because storm drains may divert flow in directions 
not apparent based solely on the DEMs. The absence of 
storm-drainage GIS data in the basin delineations for the 
current study, however, is unlikely to have a large effect on 
the flood-frequency results because basins with more than 
20 percent impervious land cover were excluded. The effects 
of storm-drainage systems on flood estimates may be larger 
for urban basins not used in this study or for user-defined 
delineation points in the USGS StreamStats application.

Basin Characteristics
Annual peak flows at a point in a stream typically vary 

as a function of drainage area and other physical and climatic 
characteristics of the drainage basin. For this study, 58 basin 
characteristics were determined for each streamgage using 
automated GIS methods and tested as potential explanatory 
variables in the regression equations (table 3). The basin 
characteristics can be broadly grouped into morphometric, 
soil permeability, land-cover type, and rainfall categories. 
The basin characteristics were chosen based on their potential 
theoretical relation to peak flows in Hawaiʻi and the results 
of previous flood-frequency studies. The geospatial data 
used to determine the basin characteristics for drainage 
basins in Hawaiʻi are available as a USGS data release 
(Mitchell, 2022b).
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Table 3.  Selected drainage-basin characteristics evaluated in regional regression analysis for this study, State of Hawaiʻi.

[Abbreviations: DEM, digital elevation model; WGS 84, World Geodetic System of 1984; 3D, three-dimensional]

Abbreviated drainage 
basin characteristics

Description Units Source

  Morphometric

BASINPERIM Perimeter of the drainage basin Miles Computed from 10-meter DEM
BSLDEM10M Area-weighted mean slope of the drainage basin Percentage Computed from 10-meter DEM
CENTROIDX Latitude of the basin centroid Decimal degrees, 

WGS 84
Computed from 10-meter DEM

CENTROIDY Longitude of the basin centroid Decimal degrees, 
WGS 84

Computed from 10-meter DEM

COMPRAT A measure of basin shape related to basin perimeter 
and drainage area of the drainage basin [(Basin 
Perimeter) / 2 × (3.14159 × Drainage Area)0.5]

Dimensionless Computed from 10-meter DEM

CSL10_85 Change in elevation divided by length between points 
10 and 85 percent of distance along the longest flow 
path

Feet per mile Computed from 10-meter DEM

DRNAREA Total upstream area of the streamgage that drains to 
that point on the stream

Square miles Computed from 10-meter DEM

ELEV Area-weighted mean elevation of the drainage basin Feet Computed from 10-meter DEM
ELEV10FT Elevation at 10 percent from outlet along longest flow 

path slope using DEM
Feet Computed from 10-meter DEM

ELEV10FT3D Elevation at 10 percent from outlet along longest flow 
path slope using 3D line

Feet Computed from 10-meter DEM

ELEV85FT Elevation at 85 percent from outlet along longest flow 
path slope using DEM

Feet Computed from 10-meter DEM

ELEV85FT3D Elevation at 85 percent from outlet along longest flow 
path slope using 3D line

Feet Computed from 10-meter DEM

ELEVMAX Maximum elevation of the drainage basin Feet Computed from 10-meter DEM
LFPLENGTH Length of longest flow path in the drainage basin Miles Computed from 10-meter DEM
MINBELEV Minimum elevation of the drainage basin Feet Computed from 10-meter DEM
RELIEF Maximum minus the minimum elevation of the 

drainage basin
Feet Computed from 10-meter DEM

RELRELF Basin relief divided by basin perimeter Feet per mile Computed from 10-meter DEM
SLOP30_10M Percentage of the drainage basin where the slope is 

greater than 30 percent
Percentage Computed from 10-meter DEM

SLPFM3D Slope of the longest flow path using 3D line Feet per mile Computed from 10-meter DEM
  Soil

PERM12IN Area-weighted average soil permeability for top 12 
inches of soil

Inches per hour U.S. Department of Agriculture 
(2020)

PERM24IN Area-weighted average soil permeability for top 24 
inches of soil

Inches per hour U.S. Department of Agriculture 
(2020)

  Land cover

LC11BARE Percentage of barren land cover of the drainage basin Percentage National Oceanic and Atmospheric 
Administration (2014)

LC11CROP Percentage of cultivated crops land cover of the 
drainage basin

Percentage National Oceanic and Atmospheric 
Administration (2014)

LC11DVOPN Percentage of developed (open space) land cover of 
the drainage basin

Percentage National Oceanic and Atmospheric 
Administration (2014)
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Table 3.  Selected drainage-basin characteristics evaluated in regional regression analysis for this study, State of Hawaiʻi.—Continued

[Abbreviations: DEM, digital elevation model; WGS 84, World Geodetic System of 1984; 3D, three-dimensional]

Abbreviated drainage 
basin characteristics

Description Units Source

  Land cover—Continued

LC11FOREST Percentage of evergreen forest land cover of the 
drainage basin

Percentage National Oceanic and Atmospheric 
Administration (2014)

LC11GRASS Percentage of grassland land cover of the drainage 
basin

Percentage National Oceanic and Atmospheric 
Administration (2014)

LC11IMP Percentage of impervious land cover of the drainage 
basin

Percentage National Oceanic and Atmospheric 
Administration (2014)

LC11PAST Percentage of pasture land cover of the drainage basin Percentage National Oceanic and Atmospheric 
Administration (2014)

LC11SHRUB Percentage of scrub land cover of the drainage basin Percentage National Oceanic and Atmospheric 
Administration (2014)

  Rainfall

I60M2Y Area-weighted maximum 60-minute precipitation that 
occurs on average once in 2 years

Inches Perica and others (2009)

I60M5Y Area-weighted maximum 60-minute precipitation that 
occurs on average once in 5 years

Inches Perica and others (2009)

I60M10Y Area-weighted maximum 60-minute precipitation that 
occurs on average once in 10 years

Inches Perica and others (2009)

I60M25Y Area-weighted maximum 60-minute precipitation that 
occurs on average once in 25 years

Inches Perica and others (2009)

I60M50Y Area-weighted maximum 60-minute precipitation that 
occurs on average once in 50 years

Inches Perica and others (2009)

I60M100Y Area-weighted maximum 60-minute precipitation that 
occurs on average once in 100 years

Inches Perica and others (2009)

I60M500Y Area-weighted maximum 60-minute precipitation that 
occurs on average once in 500 years

Inches Perica and others (2009)

I06H2Y Area-weighted maximum 6-hour precipitation that 
occurs on average once in 2 years

Inches Perica and others (2009)

I06H5Y Area-weighted maximum 6-hour precipitation that 
occurs on average once in 5 years

Inches Perica and others (2009)

I06H10Y Area-weighted maximum 6-hour precipitation that 
occurs on average once in 10 years

Inches Perica and others (2009)

I06H25Y Area-weighted maximum 6-hour precipitation that 
occurs on average once in 25 years

Inches Perica and others (2009)

I06H50Y Area-weighted maximum 6-hour precipitation that 
occurs on average once in 50 years

Inches Perica and others (2009)

I06H100Y Area-weighted maximum 6-hour precipitation that 
occurs on average once in 100 years

Inches Perica and others (2009)

I06H500Y Area-weighted maximum 6-hour precipitation that 
occurs on average once in 500 years

Inches Perica and others (2009)

I24H2Y Area-weighted maximum 24-hour precipitation that 
occurs on average once in 2 years

Inches Perica and others (2009)

I24H5Y Area-weighted maximum 24-hour precipitation that 
occurs on average once in 5 years

Inches Perica and others (2009)

I24H10Y Area-weighted maximum 24-hour precipitation that 
occurs on average once in 10 years

Inches Perica and others (2009)
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Magnitude and Frequency of Floods at 
Gaged Sites

Flood-frequency analysis is a set of statistical techniques 
that uses records of past floods to estimate the magnitude 
of a flood that is expected to be equaled or exceeded for a 
specified probability for any given year. The USGS computer 
program PeakFQ version 7.3 (Flynn and others, 2006; 
Veilleux and others, 2014) was used to compute flood statistics 
at streamgages. PeakFQ follows Bulletin 17C guidelines 
(England and others, 2019) and incorporates the expected 
moments algorithm (EMA) and the Multiple Grubbs-Beck 
Test (MGBT). Input to PeakFQ for each streamgage includes 
peak-flow data, specifications defining perception thresholds 
and flow intervals, and a regional skew coefficient. Output 
from PeakFQ for each streamgage includes parameter 
estimates for the statistical distribution, discharge estimates for 
various AEPs, confidence intervals for the discharge estimates, 
and a graph of the fitted frequency curve. Selected input and 
output files for PeakFQ used in this study are available as a 
USGS data release (Mitchell and Wagner, 2022).

In PeakFQ, peak-flow data are fit to a known statistical 
distribution—the Log-Pearson Type III (LP-III) distribution—
in the form of a frequency curve (for example graph of fitted 
frequency curve, see fig. 13). To fit the log-transformed 
peak-flow data to the LP-III distribution, three statistical 
moments are calculated from the data: the mean, standard 
deviation, and skew coefficient. The basic equation for fitting 
the LP-III distribution to the peak-flow data is:

	​ log ​Q​ P​​ ​ = ​    μ ​ + ​   σ ​ ​K​ ​   y ​,p ​​  ​� (1)

where
	 QP	 is the P-percent AEP discharge, in cubic feet 

per second;
	​​    μ ​​	 is the mean of the logarithms of the annual 

peak flows;
	​​    σ ​​	 is the standard deviation of the logarithms of 

the annual peak flows; and
	​​ K​ ​   y ​,p​​​	 is a factor based on the skew coefficient and 

the given percentage of annual exceedance 
probability, which can be obtained 
from available algorithms (Kirby, 1972; 
Stedinger and others, 1993).

Table 3.  Selected drainage-basin characteristics evaluated in regional regression analysis for this study, State of Hawaiʻi.—Continued

[Abbreviations: DEM, digital elevation model; WGS 84, World Geodetic System of 1984; 3D, three-dimensional]

Abbreviated drainage 
basin characteristics

Description Units Source

  Rainfall—Continued

I24H25Y Area-weighted maximum 24-hour precipitation that 
occurs on average once in 25 years

Inches Perica and others (2009)

I24H50Y Area-weighted maximum 24-hour precipitation that 
occurs on average once in 50 years

Inches Perica and others (2009)

I24H100Y Area-weighted maximum 24-hour precipitation that 
occurs on average once in 100 years

Inches Perica and others (2009)

I24H500Y Area-weighted maximum 24-hour precipitation that 
occurs on average once in 500 years

Inches Perica and others (2009)

I48H2Y Area-weighted maximum 48-hour precipitation that 
occurs on average once in 2 years

Inches Perica and others (2009)

I48H5Y Area-weighted maximum 48-hour precipitation that 
occurs on average once in 5 years

Inches Perica and others (2009)

I48H10Y Area-weighted maximum 48-hour precipitation that 
occurs on average once in 10 years

Inches Perica and others (2009)

I48H25Y Area-weighted maximum 48-hour precipitation that 
occurs on average once in 25 years

Inches Perica and others (2009)

I48H50Y Area-weighted maximum 48-hour precipitation that 
occurs on average once in 50 years

Inches Perica and others (2009)

I48H100Y Area-weighted maximum 48-hour precipitation that 
occurs on average once in 100 years

Inches Perica and others (2009)

I48H500Y Area-weighted maximum 48-hour precipitation that 
occurs on average once in 500 years

Inches Perica and others (2009)

PRECIP Area-weighted mean annual precipitation Inches Giambelluca and others (2013)
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Figure 13.  Example of output from flood-frequency software PeakFQ version 7.3 for U.S. Geological Survey station 
16247000 Palolo Stream near Honolulu, Oʻahu, Hawaiʻi, using expected moments algorithm (EMA) with Multiple 
Grubbs-Beck Test and station skew only and data through water year 2020.

The mean describes the central tendency of the data. The 
standard deviation describes the spread or variability of the 
data. The skew describes the asymmetry of the distribution 
of data around the mean, as shown by the thicknesses of the 
tails of the distribution. For flood-frequency analysis, skew 
is generally the most uncertain variable because relatively 
short peak-flow records (less than 30 years) can lead to biased 
estimates of skew (Stedinger and others, 1993; England and 
others, 2019, p. 18). To help overcome the limitations with 
using short records to estimate skew, Bulletin 17C (England 
and others, 2019) recommends using a weighted skew 
computed from the streamgage-specific skew (at-site or station 
skew) and a generalized skew (regional skew) developed using 
data from many streamgages in a nearby area.

Regional Skew Coefficient

This section presents a general overview of the regional 
skew coefficient and criteria used for selection of sites in 
the regional skew analysis. More details about the regional 
skew regression analysis, including the methodology and 
calculations, are located in appendix 3.

To help improve estimates of annual peak discharges 
corresponding to various AEPs—particularly for streamgages 
with short annual peak-flow records (that is, streamgages with 
fewer than about 30 annual peaks)—current guidance for 
flood-frequency analysis by Federal agencies (Bulletin 17C; 
England and others, 2019) recommends using a weighted 
average of the at-site and regional skews. Previous guidance 
(Bulletin 17B; Interagency Advisory Committee on Water 

Data, 1982) supplied a national map of regional skew but 
encouraged hydrologists to develop more localized models 
when appropriate.

Because of complications introduced using EMA and 
MGBT (Cohn and others, 1997) and large cross-correlations 
between annual peak discharges at pairs of streamgages, 
a Bayesian weighted least-squares/Bayesian generalized 
least-squares (B–WLS/B–GLS) regression framework was 
developed to provide stable and defensible results for regional 
skew (Veilleux, 2011; Veilleux and others, 2011; Lamontagne 
and others, 2012; Veilleux and others, 2012). B–WLS/B–
GLS uses ordinary least-squares (OLS) regression to fit an 
initial model of regional skew that is used to generate a stable 
estimate of regional skew for each streamgage. This estimate 
is the basis for computing the variance of each estimate of 
at-site skew used in the B–WLS analysis. B–WLS is then used 
to generate estimators of the regional skew model parameters. 
Finally, B–GLS is used to estimate the precision of those 
estimators, the model error variance and its precision, and 
compute various diagnostic statistics.

In this study, EMA with MGBT was used to estimate 
the at-site skew, G, and its mean squared error, MSEG. EMA 
with MGBT allows for the censoring of low floods as well as 
the use of flow intervals to describe missing, censored, and 
historical data. EMA with MGBT complicates the calculations 
of effective record length (and effective concurrent record 
length) used to describe the precision of skew estimates 
because the annual peak discharges are no longer represented 
by single values. To properly account for these complications, 
the B–WLS/B–GLS procedure was used.
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A total of 124 streamgages that were not redundant (see 
section, “Elimination of Redundant Sites”) and had a pseudo 
effective record length (PRL) of 36 years or greater were 
used to develop the final regional skew model for Hawaiʻi 
(table 3.1, app. 3; for more information on pseudo effective 
record length, see app. 3). To explain the variability in skew, 
a windward/leeward split of flood regions and 17 basin 
characteristics were tested, but this approach failed to provide 
sufficient predictive power. Therefore, a constant regional 
skew (GR) of −0.157 was selected for the State of Hawaiʻi 
(app. 3). The average variance of prediction (AVPnew), 0.212, 
is equivalent to the mean square error of the regional skew 
(MSER) and corresponds to an effective record length of 36 
years. These values supersede GR (−0.05), MSER (0.302), 
and effective record length of 17 years associated with the 
generalized skew map in Bulletin 17B (Interagency Advisory 
Committee on Water Data, 1982), which was used in the 
previous study (Oki and others, 2010).

Because of the relatively large uncertainty in the at-site 
skew for short to modest record lengths, the at-site skew and 
its MSE can be weighted with the regional skew and its MSE 
to generate a better, weighted estimate of skew for a given 
streamgage basin (Tasker, 1978; England and others, 2019, 
app. 7). Large deviations between the at-site and regional 
skew may indicate that the flood frequency characteristics 
of the basin of the streamgage of interest differ from those 
used to estimate the regional skew. If the at-site and regional 
skews differ by more than 0.5, it is considered reasonable to 
use the at-site skew instead of the weighted skew in the EMA 
(England and others, 2019, p. 25–26). The weighted skew was 
used within PeakFQ at all except the following streamgages, 
where the at-site skew was used: USGS streamgages 
16400000 (Halawa Stream near Halawa, Molokaʻi), 16501200 
(Oheo Gulch at dam near Kipahulu, Maui), 16502000 
(Hahalawe Gulch near Kipahulu, Maui), 16557000 (Alo 
Stream near Huelo, Maui), 16565000 (Kaaiea Gulch near 
Huelo, Maui), 16638500 (Kahoma Stream at Lahaina, Maui), 
and 16717600 (Alia Stream near Hilo, Island of Hawaiʻi).

Expected Moments Algorithm Frequency 
Analysis

The guidelines in Bulletin 17C (England and others, 
2019) suggest using the expected moments algorithm (EMA) 
to analyze the available flood data. EMA improves upon the 
methods provided in the previous flood-frequency guidelines, 
Bulletin 17B (Interagency Advisory Committee on Water 
Data, 1982), by cohesively incorporating all available 
flood-related data, including historical flood information, zero 
flows, low outliers, flow intervals, and perception thresholds 
(Lane and Cohn, 1996; Cohn and others, 1997; England and 
others, 2019).

Flood-frequency data generally come from two types 
of sources: systematic and historical data. Systematic data 
are the primary source of flood-frequency data for Hawaiʻi 

and consist of peak-flow data collected at regular intervals 
from either continuous-record gages or crest-stage gages. 
Systematic data are usually collected in consecutive years, 
although records sometimes contain data gaps between years 
(for example, see fig. 9). Historical data consist of major 
floods that exceeded a perception threshold and occurred 
outside the period of routine streamgaging, independent 
of how recently the flood occurred. Historical floods are 
valuable because they can be used to extend records with 
the knowledge that if a particular discharge was exceeded, 
it would have been recorded in some way. For example, 
at Kalihi Stream (USGS streamgage 16229300), historical 
data indicate that the flood on May 14, 1960, was the largest 
flood since at least 1937; with this information, the EMA can 
incorporate the period 1937–59 into the analysis by indicating 
that all annual peaks during this period were less than the peak 
discharge on May 14, 1960: 6,350 ft3/s.

Some peaks in the peak-flow record are classified 
as “opportunistic.” Opportunistic peaks occurred outside 
the period of systematic streamgaging and were measured 
because of operational decisions other than the exceedance 
of a perception threshold. Because the statistical sampling 
properties of opportunistic peaks are unknown, opportunistic 
peaks were excluded from flood-frequency analysis.

Flow Intervals and Perception Thresholds
Flow interval and perception thresholds must be defined 

in the PeakFQ program for every year with peak-flow 
data (table 4). The flow interval—represented by (QY,lower, 
QY,upper)—describes the annual-peak discharge which occurred. 
A flow interval can be (1) a discrete value, where a single 
peak is provided, or (2) a range, where the peak has some 
uncertainty (for example, less than, greater than, or between 
certain discharges). The perception threshold—represented by 
(TY,lower, TY,upper)—describes the range of discharges that would 
have been recorded had they occurred. The perceptible range 
is independent of the actual peak discharges that occurred. At 
streamgages with gaps in the systematic record, the perception 
threshold was set to (–100, infinity), and the flow interval was 
set to (0, infinity), which signifies to PeakFQ that the data are 
unavailable.

Continuous-Record Gages
At continuous-record gages, the peaks are usually 

discrete values known with confidence, and the flow intervals 
are represented as (QY, QY). In a few cases, where the peak 
discharge was estimated from historical information, a 
20-percent uncertainty interval was applied to the estimated 
discharge. For example, an uncertain peak discharge listed 
as 100 ft3/s would be given a flow interval of (80, 120). 
Most continuous-record gages can record the full range of 
discharges; thus, the perception threshold for peaks from a 
continuous-record gage typically is (0, infinity).
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Table 4.  General perception-threshold and flow-interval settings applied to peak-flow data in the expected moments algorithm 
analysis to estimate peak-flow statistics at streamgages, State of Hawaiʻi.

Peak-flow type or scenario
Perception thresholds Flow intervals

Minimum Maximum Minimum Maximum

Continuous-record gage, peak known with confidence 0 Infinity Peak Peak
Continuous-record gage, peak greater than stated value 0 Peak Peak Infinity
Crest-stage gage, peak known with confidence Minimum recordable 

discharge
Infinity Peak Peak

Crest-stage gage, peak greater than stated value Minimum recordable 
discharge

Peak Peak Infinity

Crest-stage gage, peak less than minimum recordable 
discharge or peak less than stated value

Minimum recordable 
discharge

Infinity 0 Minimum recordable 
discharge

Historical peak Historical peak Infinity Historical peak Historical peak
Gaps in systematic record, no other available 

information
–100 Infinity 0 Infinity

Gaps in systematic record, additional information 
available from historical peak

Historical peak Infinity 0 Historical peak

Opportunistic peak –100 Infinity 0 Infinity

Crest-Stage Gages
Crest-stage gages are simple devices designed to measure 

only the highest water stage over a given time period; flows 
below the bottom of the crest-stage gage—the gage base—
are not recorded. The elevation of the gage base, which can 
change through time based on operational needs, is used 
to define the minimum recordable discharge (MRD) for a 
crest-stage gage at any given year. Consequently, crest-stage 
gages typically are given perception thresholds of (MRD, 
infinity). If the annual peak discharge did not exceed the 
MRD, the peak is recorded as a left-censored peak (“less 
than MRD”) and the flow interval is set as (0, MRD). If the 
annual peak discharge exceeded the MRD (uncensored peaks), 
the flow interval is set as (QY, QY). To estimate the MRDs 
for peaks determined from crest-stage gages, historical data 
were reviewed. If historical data were insufficient to estimate 
a MRD for a given year, the MRD was set to an estimated 
MRD from an adjacent record period; if a MRD could not be 
reasonably estimated for a crest-stage gage, the MRD was 
set to the lowest uncensored peak. Estimates of MRDs may 
be uncertain because (1) historical data sometimes lack the 
necessary information to estimate an MRD and (2) low flows 
at crest-stage gages are typically less important and the lower 
end of the stage-discharge relation is often poorly defined.

Low Outliers Identified with the Multiple 
Grubbs-Beck Test

Peak-flow records commonly contain low-magnitude 
outliers that deviate considerably from the rest of the peak 
population. Low outliers often have a disproportionately 
large influence on the fit of the frequency curve, at the 
expense of the fit at the high-discharge end of the curve 
(Cohn and others, 2013). Because most applications of 

flood-frequency analysis (for example, infrastructure design 
and flood protection) focus on the lower AEPs (larger peak 
flows), low outliers are removed when fitting the frequency 
curve. Bulletin 17C guidelines (England and others, 2019) 
recommend the Multiple Grubbs-Beck Test (MGBT) to detect 
and remove the potentially influential low floods (PILF) 
during flood-frequency analysis. The MGBT improves upon 
the Grubbs-Beck test (Grubbs and Beck, 1972) recommended 
in Bulletin 17B by accommodating the possibility that several 
low floods are potentially influential (Cohn and others, 
2013; Lamontagne and others, 2016). The PeakFQ program, 
version 7.3, automatically applies the MGBT when computing 
flood statistics. For a few streamgages, a threshold for PILF 
detection and removal was manually set to improve the fit at 
the upper end of the frequency curve. For an example of a 
fitted frequency curve where PILFs have been removed, see 
figure 14.

Flood-Frequency Estimates at Gaged Sites

Flood-frequency estimates for 238 streamgages in 
Hawaiʻi were calculated using EMA and MGBT techniques 
and the new regional skew coefficient (see section, “Regional 
Skew Coefficient”). The magnitude of peak flows for the 
50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs are 
listed in appendix 4. Three estimates of peak flows for the 
select AEPs are provided: the at-site estimate (EMA), the 
regression-equation estimate (regression), and a weighted 
average of the other two estimates (weighted). The weighted 
estimate is generally preferred for most situations because it 
combines information from the independent at-station and 
regression-equation estimates (England and others, 2019, p. 
33). The regression and weighted estimates will be discussed 
in subsequent sections.
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PeakFQ v 7.3 run 2/1/2022 11:58:44 AM
EMA using station skew option
−0.332 = skew (G)
0.111 = mean square error (MSE sub G)
0 zeroes not displayed 
13 peaks below PILF threshold
Multiple Grubbs-Beck Test 
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Figure 14.  Example of output from flood-frequency software PeakFQ version 7.3 containing potentially influential 
low floods (PILF) for U.S. Geological Survey station 16103000 Hanalei River nr Hanalei, Kauaʻi, HI, using expected 
moments algorithm (EMA) with Multiple Grubbs-Beck Test and station skew only and data through water year 2020.

Magnitude and Frequency of Floods at 
Ungaged Sites

Regression equations were developed to estimate 
peak-flow statistics at ungaged locations (the response 
variable) using basin characteristics (explanatory variables) 
determined for the ungaged location. The regression equations 
relate the AEP discharges determined from the EMA analysis 
to basin characteristics for streamgages in the study. The 
multiple-linear regression techniques used here follow the 
standard USGS methods outlined by Farmer and others 
(2019). Ordinary least-squares (OLS) regression was used in 
an exploratory data analysis to select the basin characteristics 
suitable for further evaluation. Generalized least-squares 
(GLS) regression was used to develop the final regression 
equations. The general form of the multiple-linear regression 
model is provided in the following equation:

	​​ Y​ i​​ ​ =   ​ b​ 0​​ + ​b​ 1​​ ​X​ 1​​ + ​b​ 2​​ ​X​ 2​​ + … + ​b​ k​​ ​X​ k​​ + ​e​ i​​​� (2)

where
	 Yi	 is the response variable (estimate of the 

streamflow magnitude) for site i;
	 b0 to bk	 are the coefficients developed from the 

regression analysis;
	 X1 to Xk	 are the k explanatory variables (basin 

characteristics); and
	 ei	 is the residual error (difference between 

the observed and predicted values of the 
response variable) for site i.

The basic assumptions for multiple linear regression are 
(1) the model adequately describes the relation between the 
response variable and the explanatory variables, (2) variance 
of the residuals (ei) is constant (homoscedastic), (3) the 
residuals (ei) are independent of the explanatory variables 
(Xk), (4) the residuals (ei) are normally distributed, and (5) 
the residuals (ei) are independent of each other (Helsel and 
others, 2020, p. 228). The final assumption—residuals are 
independent of each other—is not satisfied by OLS regression 
because streamflow data generally are correlated in space 
and time, whereas GLS regression techniques account for 
spatial and temporal correlation. The OLS and GLS regression 
techniques are described in the following sections.

To improve the fit of the regression model, 
flood-frequency analyses commonly divide streamgages into 
spatial regions with similar hydrologic characteristics and 
develop independent models for each region. To evaluate 
possible regions for the current study, two statewide (based 
on data from Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island 
of Hawaiʻi) OLS regression equations were developed using 
drainage area as the only explanatory variable and the  
0.10- and 0.01-AEP discharges as the response variables. The 
residuals for each streamgage—representing the difference 
between the peak discharge predicted from the OLS regression 
equations and the peak discharge obtained from the frequency 
curve for a streamgage using the EMA—were plotted on 
a map and the spatial patterns of residuals, along with 
topographic divides and hydrologic features, were evaluated 
to determine the final regional boundaries. Each of the five 
islands in the study area were split into two regions, resulting 
in 10 total regions (figs. 2–6). The regions used for Kauaʻi, 
Oʻahu, Molokaʻi, and the Island of Hawaiʻi match those used 
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in the most recent USGS flood-frequency study for Hawaiʻi 
(Oki and others, 2010). For Maui, the regional boundary in the 
southeast was modified relative to Oki and others (2010) based 
on the spatial patterns of residuals in the OLS regression. 
The only streamgage in this study affected by the change in 
regional boundaries is USGS streamgage 16500100 (Kepuni 
Gulch near Kahikinui House, Maui), which switched from 
region 8 to 7.

Alternative regions were considered by testing 
combinations of streamgages on different islands with similar 
characteristics. For example, regions 5 (leeward Molokaʻi) 
and 7 (central-southwestern Maui) were combined and tested. 
Although the alternate regions did not result in improvements 
in performance metrics relative to the final regions used 
in this study, alternatives should be considered in future 
flood-frequency studies as a way to increase the sample size 
for areas with relatively few streamgages.

Elimination of Redundant Sites

Streamgages on the same stream and with similar 
size drainage basins may contain redundant hydrologic 
information. Redundant streamgages generally have 
similar basin characteristics and hydrologic responses to a 
given storm; thus, they provide only one unique statistical 
observation, rather than two independent observations. 
Including redundant streamgages in a regression analysis 
can negatively affect the results because the data are not 
independent (Farmer and others, 2019). To determine if two 
streamgages should be classified as redundant, three types 
of information are reviewed: (1) whether the streamgages 
have nested drainage basins, meaning that one drainage 
basin is entirely contained within the other, (2) whether the 
streamgages have drainage basins of similar size, and (3) 
whether the streamgages have temporal overlap in their 
peak-flow data.

To evaluate the likelihood that the streamgages have 
nested drainage basins, the standardized distance was 
computed. The standardized distance (SD) between two basin 
centroids is defined as:

	​ S ​D​ ij​​ ​ = ​  
​D​ ij​​
 ______________  

​√ 
_____________

  0.5​(D ​A​ i​​ + D ​A​ j​​)​ ​
​​� (3)

where
	 Dij 	 is the distance between centroids of basin i 

and basin j, in miles;
	 DAi	 is the drainage area at streamgage i, in square 

miles; and
	 DAj	 is the drainage area at streamgage j, in 

square miles.

A drainage area ratio was used to determine if the two 
streamgages had similarly sized drainage areas. The drainage 
area ratio (DAR) is defined as:

	​ DAR ​ = ​ e​​ (log​(​
D​A​ i​​ _ D​A​ j​​

 ​)​)​​� (4)

where
	 DAi	 is the drainage area at site i, in square 

miles; and
	 DAj	 is the drainage area at site j, in square miles.

A script written in the R programming language (R 
Core Team, 2021) was used to provide an initial screening 
of potentially redundant streamgages on the basis of the 
standardized distance and drainage area ratio. Screening 
thresholds for the standardized distance and drainage area ratio 
were set to 0.5 and 5, respectively. All possible combinations 
of streamgage pairs from the 238 streamgages were considered 
in the redundancy analysis. The script identified 50 potentially 
redundant pairs of streamgages (some streamgages were 
identified as potentially redundant to more than one other 
streamgage); 9 of the streamgage pairs identified were not 
nested or did not have temporal overlaps in their data and 
therefore were not considered redundant. For streamgage 
pairs that had nested basins and drainage area ratios less than 
five, one of the streamgages was classified as redundant and 
removed from the regression analysis. Generally, streamgages 
with longer periods of record were prioritized and retained. 
Additional considerations include (1) whether the streamgage 
is active and (2) how the streamgage’s basin characteristics 
fit into the distribution of basin characteristics for the 
streamgages in the region. For example, the streamgage with 
the largest drainage basin in the region may be prioritized, 
all other factors being equal, because it expands the range of 
values used to develop the regression equations (as will be 
discussed later, the regression equations should not be used 
with values for the explanatory variables that are not within 
the range of values used to develop the regression equations). 
Of the 238 streamgages considered for the regression 
analysis, 23 streamgages (about 10 percent) were classified 
as redundant and removed from the analysis (table 1.1, 
app. 1). Redundant streamgages were not included in either 
the regression or skew analyses, although station-specific 
flood statistics for redundant streamgages were still computed 
(table 1.1, app. 1).

Exploratory Data Analysis

An exploratory data analysis was completed to evaluate 
the best combinations of basin characteristics to use as 
explanatory variables in the regional regression equations. 
Scatter plots of each pair of response variable (flood discharge 
associated with an AEP) and explanatory variable (basin 
characteristic) were created to visually evaluate the pattern 
and linear relation between variables. Because multiple-linear 
regression seeks to quantify linear relations between the 
response and explanatory variables, data transformations were 
tested to improve the linearity of the relation. Logarithmic 
transformations (base 10) of both response and explanatory 
variables resulted in the best linear relations and the most 
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constant variance (homoscedasticity) about the regression line. 
Prior to log transformation, a constant of 1 was added to the 
explanatory variables expressed as a percentage (for example, 
percentage impervious land cover) because some values for 
these basin characteristics are 0, and the logarithm of 0 is 
undefined. When logarithmic transformations are applied to 
the data to improve linearity, equation 2, which describes the 
general form of the regression model, becomes:

	 0 1 2
1 210 kb bb b

i k iY X X X e= … + � (5)

where
	 Yi	 is the response variable (estimate of the 

streamflow magnitude) for site i;
	 b0 to bk	 are the coefficients developed from the 

regression analysis;
	 X1 to Xk	 are the k explanatory variables (basin 

characteristics) for site i; and
	 ei	 is the residual error (difference between 

the observed and predicted values of the 
response variable) for site i.

OLS regression analysis was performed using the 
R programming language (R Core Team, 2021) and the 
“smwrStats” statistical package (U.S. Geological Survey, 
2017). An “all-possible subsets” regression was used to 
determine the best combinations of explanatory variables 
for models with 1–3 variables. Generally, the regression 
equations were limited to 1 variable per 10 streamgages in 
the region (Farmer and others, 2019). Model diagnostics for 
regression equations were reviewed for adequacy; selection 
criteria for explanatory variables included: (1) maximize the 
adjusted coefficient of determination, (2) minimize Mallow’s 
Cp statistic, and (3) minimize the predicted residual sum 
of squares (PRESS) statistic. Basin characteristics and the 
magnitude and sign of their coefficients in the regression 
equations were reviewed to ensure hydrologic plausibility. 
Multicollinearity, where two explanatory variables have a 
strong linear dependency, was evaluated using the variance 
inflation factor (VIF)—no variables in the final OLS 
regression models had a VIF greater than 5, indicating that 
multicollinearity is unlikely.

Regional Regression Equations

GLS multiple-linear regression (Stedinger and Tasker, 
1985; Tasker and Stedinger, 1989; Farmer and others, 
2019) was used to determine the final coefficients and 
performance metrics for each regional regression equation. 
GLS regression techniques are generally preferred for 
flood-frequency analysis because they improve estimates 
of AEP discharges and estimates of the accuracy of the 
regression model by accounting for (1) unequal record lengths 
from streamgages and (2) cross-correlation of streamflow 
statistics from streamgages (England and others, 2019, p. 
30–31). Streamgages with shorter records are given less 

weight than streamgages with longer records. Additionally, 
less weight is given to streamgages where concurrent peak 
flows are correlated with nearby streamgages. Based on 
results from the OLS analysis, all explanatory and response 
variables were log-transformed prior to use in the GLS 
regression analysis. The USGS weighted-multiple-linear 
regression (WREG) program version 2.02 (https://github.com/​
USGS-​R/​WREG)—written in the R programming language 
(R Core Team, 2021)—was used to compute the final GLS 
equations and model performance metrics. Default values of 
the correlation-smoothing function in WREG (alpha, α, 0.002; 
and theta, θ, 0.98) were adjusted for each regional regression 
equation to improve model fit.

The final regression equations for estimating AEP 
discharges from basin characteristics for ungaged streams 
in Hawaiʻi are shown in table 5. Within each region, the 
explanatory variables were constrained to be identical for all 
regression equations; this ensures that predicted discharges 
uniformly increase as the AEP decreases. All explanatory 
variables used in the regression equations were statistically 
significant at the 95-percent confidence level (p-value less than 
or equal to 0.05) for at least one AEP in each region. Ranges 
of the explanatory variables used to develop the regression 
equations are presented in table 6.

Drainage area is the most common explanatory variable 
and appears in all equations except for those representing 
southern Island of Hawaiʻi (region 10). Other explanatory 
variables used in the regression equations include mean annual 
precipitation, precipitation-frequency statistics (for example, 
the maximum 48-hour rainfall that occurs on average once 
in 500 years, or I48H500Y), and soil permeability. The only 
region containing more than 1 explanatory variable per 10 
streamgages was leeward Kauaʻi (region 1); here, a second 
explanatory variable—mean annual precipitation—was 
justified for the 17 streamgages in the region because of its 
clear hydrologic relation to flood magnitude and the notable 
improvement in performance metrics of the regression 
model, relative to a one-variable (drainage area) equation. All 
explanatory variables used in the regression equations except 
for soil permeability had positive coefficients, indicating that 
as the value of explanatory variable increases, the predicted 
flood discharge also increases.

Soil permeability was used as an explanatory variable 
in the leeward Oʻahu regression equations (region 3). The 
negative coefficient of the variable in all equations indicates 
that, as soil permeability increases, the predicted peak 
discharge decreases; this is intuitive because more permeable 
soils allow more water to infiltrate and reduce the volume 
of overland runoff than can contribute to flood peaks. The 
statistical significance of soil permeability decreases at the 
low-AEP floods and the p-value for soil permeability as a 
variable exceeds 0.05 at an AEP of 0.002. The importance 
of soil permeability is expected to be lower for the low-AEP 
floods because most soils become fully saturated during large 
flooding events; thus, the spatial variability of permeability 
will have a smaller influence on the flood magnitude above a 
certain threshold (Hollis, 1975; Konrad, 2003).

https://github.com/USGS-R/WREG
https://github.com/USGS-R/WREG
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Southern Island of Hawaiʻi (region 10) is the only region 
where drainage area was not used as an explanatory variable. 
This may reflect the lack of well-defined stream channels 
in this area and the high permeabilities of soils and rocks at 
the surface (Oki and others, 2010). Because rainfall tends to 
infiltrate the surface quickly, drainage area likely does not play 
a large role in governing flood magnitudes for most AEPs in 
region 10.

Leverage and influence statistics computed by WREG 
were reviewed to evaluate how each streamgage affected 
the regression results. Leverage is a measure of how far 
away the values from one streamgage are from the values 
at all other streamgages in the regression model and is 
used to identify unusual observations (Farmer and others, 
2019). Streamgages with high leverage have the potential 
to exert a strong influence on the regression parameters 
(Helsel and others, 2020, p. 238). The influence metric is 
a measure of how much influence a particular streamgage 
has on the regression parameters. Streamgages with 
leverage and influence values that exceeded the thresholds 
calculated by WREG were reviewed for potential errors 
in the peak-flow data (for example, poor computation of 
discharge from stage or inaccurate data representation in 
NWIS) and basin-characteristic data (for example, inaccurate 
basin delineations) or other issues that would make the 
streamgage ineligible for the regression model. Although 
several streamgages had both high leverage and influence, no 
errors were identified in the associated data and a reasonable 
hydrologic justification for removing the streamgages from the 
regression analysis could not be found.

Example Using a Peak-Flow Regression Equation
Example 1. Calculate the 0.01-AEP peak flow using the 

regional regression equations (Qreg) for USGS streamgage 
16010000 on Kawaikoi Stream near Waimea, Kauaʻi, State of 
Hawaiʻi, at latitude 22°7’58.1” N and longitude 159°37’11.8” 
W. Streamgage 16010000 has a drainage area (DRNAREA) 
of 3.82 mi2 and a mean annual precipitation (PRECIP) of 
133 inches.

1.	From figure 2 and the latitude and longitude, 
streamgage 16010000 is in region 1.

2.	From table 5, the regional regression equation for the 
0.01-AEP peak flow in region 1 is:

	​ Q ​ = ​ 10​​ 1.834​​(DRNARE ​A​​ 0.809​)​(PRECI ​P​​ 0.732​​)

3.	Substitution of the basin characteristics into the 
equation produces:

​Q ​ = ​ 10​​ 1.834​​(​3.82​​ 0.809​)​(​133​​ 0.732​​)

	 Q = 7,240 ft3/s (rounded to three significant figures)

Assessment of Fit

To assess the fit of the regression models, peak discharges 
predicted using the regression equations can be compared 
to the peak discharges determined from fitting the observed 
peak-flow data to the LP-III frequency curve (fig. 15). 
Comparisons of the observed and predicted peak discharges 
suggest that the regression models fit the observed data 
well. Additionally, plots of residuals (the difference between 
predicted and observed discharges) were examined to test the 
validity of the assumptions related to the regression models 
(fig. 16). The plots show that the residuals do not follow any 
trend and are equally distributed around zero and indicate that 
no model assumptions were violated.

Accuracy and Limitations of Regional 
Regression Equations

Several performance metrics from the WREG program 
can be used to evaluate the accuracy of the regression 
equations. Performance metrics for the final regression 
equations are presented in table 5 and include the model error 
variance (MEV), the standard model error variance (SMEV), 
the root mean squared error (RMSE), the pseudo coefficient of 
determination (pseudo-R2), the average variance of prediction 
(AVP), and the average standard error of prediction (SEPavg). 
The MEV and SMEV describe the portion of the total error 
that can be attributed to having an imperfect model, in log 
units and percent, respectively. The RMSE and pseudo-R2 
are measures of model accuracy for streamgages used in 
the model development. RMSE describes how much the 
predicted peak discharges deviate from the observed peak 
discharges. The pseudo-R2 is a measure of the predictive 
strength of the regression model and describes the variability 
of the response variable that is explained by the explanatory 
variables, after accounting for the effect of time-sampling 
error. The pseudo-R2 is similar to the standard coefficient 
of determination (R2), where the closer the value is to 1.0 
(or 100 percent), the greater the amount of variance that is 
explained by the regression. The AVP and SEPavg are measures 
of how well the regression model performs at predicting peak 
discharges for ungaged sites not used to develop the regression 
equations—lower values indicate greater predictive power. 
Generally, pseudo-R2 and AVP were the most important 
metrics for selecting the final regression equations. Equations 
for calculating these performance metrics are available in 
England and others (2009).

The pseudo-R2 values for the final regression equations 
ranged from 11.9 percent (region 7; 0.5 AEP) to 100.0 percent 
(region 6; 0.002–0.02 AEPs) for all regions and AEPs, and 
ranged from 46.2 percent (region 5) to 100.0 percent (region 
6) for the 0.01-AEP discharges. The AVP values for the final 
regression equations ranged from 0.0046 (region 6; 0.02 
AEP) to 0.3400 (region 5; 0.5 AEP) for all regions and AEPs, 
and ranged from 0.0062 (region 6) to 0.2455 (region 10) 
for the 0.01-AEP discharges. Overall, the final regression 
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Log-Pearson Type III estimate of 0.01 annual exceedance probability peak discharge,
in cubic feet per second
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Figure 15.  Comparisons between the 0.01 annual exceedance probability peak discharges estimated from the 
Log-Pearson Type III frequency curve and the regional regression equations, State of Hawaiʻi, using data through 
water year 2020.
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probability peak discharges, State of Hawaiʻi, using data through water year 2020.
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models performed well for all regions except regions 5 and 
10. The large errors associated with the regression equations 
for regions 5 (leeward Molokaʻi) and 10 (southern Island 
of Hawaiʻi) reflect the relatively few sites and short records 
available and the poor understanding of flood-producing 
mechanisms in these areas. Collection of additional peak-flow 
data and consideration of basin characteristics that better 
characterize flood conditions may improve the accuracy of 
regression equations used to predict peak flows at ungaged 
sites in these regions.

The accuracy of the regression equations may be affected 
by issues associated with the explanatory and response 
variables. The basin characteristics used as explanatory 
variables rely on accurate basin delineations—any change 
to the basin delineations will affect the computed values for 
each basin characteristic, even if the source data for the basin 
characteristics remain unchanged. Future analyses that use 
higher-resolution DEMs (for example, DEMs derived from 
light detection and ranging [lidar] data) to delineate basins 
will result in improved accuracy for basin characteristics 
used in the regression analyses. Potential errors associated 
with the peak-flow statistics used as response variables in 
the regression equations include non-representative data 
from streamgages with short records and errors computing 
discharge from stream stage (Turnipseed and Sauer, 2010).

The explanatory variables (basin characteristics) should 
be representative of basin conditions during the period 
of record that was used to derive the response variables 
(peak-flow statistics) (Farmer and others, 2019). The historical 
periods used to determine the mean annual precipitation, 
precipitation-frequency statistics, and soil permeability 
used in the final regression equations were 1978–2007, 
1899–2005, and 2001–19, respectively. The peak-flow 
statistics used as response variables were determined from 
peak-flow data collected during 1911–2021; however, the 
temporal availability of peak-flow data for each region varies 
substantially (for example, see fig. 9). If a streamgage used 
in the regression analysis only has peak-flow data collected 
during a particularly wet period (for example, the 1960s), 
it may not accurately characterize the expected long-term 
relation between basin characteristics and peak-flow statistics 
in the region.

The regression equations are only applicable to ungaged 
locations with basin characteristics within the range of 
values used to develop the regression equations (table 6). 
If the regression equations are used beyond these limits, 
the accuracy of the estimated peak-flow statistics would be 
unknown. Additionally, basin characteristics at ungaged sites 
should be computed using the same datasets and methods 
as were used in this study. The USGS StreamStats web 
application provides the same datasets and methods as were 
used in this study and therefore provides the most consistent 
way to estimate peak-flow statistics at ungaged sites (see 
section, “Estimating Flow Statistics Using StreamStats”). 
The regression equations developed in this study apply to 
stream sites that are unregulated and have less than 20 percent 
impervious land cover; however, StreamStats is unable to 

warn users or prevent them from selecting regulated stream 
sites because identifying all stream sites in the study area that 
are substantially affected by regulations is challenging.

Uncertainty of Individual Estimates Computed 
Using the Regression Equations

When applying the regression equations at ungaged 
sites not used in the development of the regression equations, 
it is important to understand the accuracy and uncertainty 
associated with the estimated discharge. Two commonly 
used metrics for the accuracy of an estimated discharge at 
a particular site are the variance of prediction (VP) and the 
standard error of prediction (SEP). For a site i, the variance 
of prediction is the sum of the model error variance and 
the sampling error variance. The variance of prediction for 
each streamgage used in the development of the regression 
equations is computed in WREG. To compute the variance 
of prediction for estimated discharges using the regression 
equations (​V ​P​ reg​​​), the following equation can be applied:

	​ V ​P​ re​g​ i​​​​ ​ = ​ σ​ δ​ 2​ + ​σ​ ​s​ i​​​ 
2​​� (6)

where
	​ V ​P​ re​g​ i​​​​​ 	 is the variance of prediction for site i, in 

log units;
	​​ σ​ δ​ 2​​ 	 is the model error variance (see table 5 for 

values), in log units; and
	​​ σ​ ​s​ i​​​ 

2​​	 is the sampling error variance for site i, in 
log units.

The sampling error variance is computed as follows:

	​​ σ​ ​s​ i​​​ 
2​ ​ = ​ x​ i​​ ​(​X​​ T​ ​Λ​​ −1​ X)​​ −1​ ​x​ i​ T​​� (7)

where
	​​ x​ i​​​ 	 is a row vector of the regressor (basin 

characteristic) variables associated with 
site i, augmented by a value of 1.0 in the 
first column;

	​ X​ 	 is the (1 × p) matrix consisting of 1 row and 
the p-1 regressor variables augmented by a 
column of ones in the first column;

	​ Λ​ 	 is the (n by n) covariance matrix used 
for weighting sample data in the GLS 
regression;

	​​(​X​​ T​ ​Λ​​ −1​ X)​​ −1​​ 	 is the covariance matrix for the regression 
coefficients (Mitchell and Wagner, 2023);

	​​ ​​​ T​​and​​​​​ −1​​	 are the superscripts indicating the transpose 
and inverse of the matrices, respectively;

	​ n​	 is the number of streamgages used in the 
regression analysis; and

	​ p​	 is the number of basin characteristics in the 
regression equation plus 1.
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The SEP for site i, expressed in log units, can be 
computed as:

	​ SE ​P​ i​​ ​ = ​ (V ​P​ i​​)​​ 0.5​​� (8)

where
	 SEPi 	 is the standard error of prediction for 

site i; and
	 VPi	 is the variance of prediction for site i.

To understand the uncertainty of an individual discharge 
estimate when using the regression equations at an ungaged 
site, prediction intervals can be computed. Prediction intervals 
combine the uncertainty of the regression parameters and 
placement of the regression line—typically described by 
confidence intervals—with the uncertainty associated with 
the residuals (Farmer and others, 2019). Prediction intervals 
describe the range of values within a specific confidence 
interval, within which the true value exists (Helsel and others, 
2020). The following equations can be used to compute 
the 95-percent prediction intervals for peak-flow estimates 
obtained using the regression equations for ungaged locations:
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​� (9)
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Q t

LPI
α − 
 

  
  −
  

  = � (10)

where
	​ P ​I​ ​U​ i​​​​​, ​P ​I​ ​L​ i​​​​​	 are the upper and lower prediction intervals, 

respectively, for a given AEP at site i;
	​​ Q​ re​g​ i​​​​​	 is the predicted discharge for a given AEP at 

site i, in log units;

	​​ t​ ​(​α _ 2 ​,n−p)​​​​	 is Student’s t with a specified alpha (α) level 
and n−p degrees of freedom, where n is 
the number of sites used in the regression 
equation and p is the number of regressor 
variables plus 1 (values for each regression 
region are listed in table 5); and

	​ V ​P​ re​g​ i​​​​​	 is the variance of prediction for a given AEP 
at site i, in log units, computed using 
equations 6 and 7.

For sites not used in the development of the regression 
equations, the average variance of prediction (AVP), available 
in table 5, should be substituted for the site-specific variance 
of prediction (​V ​P​ re​g​ i​​​​​) in equations 9 and 10.

Application of Methods
The techniques for estimating peak discharges described 

in this report can be applied to three different situations:
1.	A gaged location with at least 10 usable annual peaks.

2.	An ungaged location or a gaged location with less 
than 10 usable annual peaks located near a streamgage 
for which peak-flow statistics have been or can be 
computed.

3.	An ungaged location or a gaged location with less than 
10 usable annual peaks not located near a streamgage 
for which peak-flow statistics have been or can be 
computed.

The methods for the first two situations are described 
below. For the third situation, the appropriate regression 
equation in table 5 should be applied directly to estimate peak 
discharges (see section, “Estimating Flow Statistics Using 
StreamStats”).
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Weighting Flood-Frequency Estimates at 
Gaged Sites

An improved estimate of peak discharge can be obtained 
for gaged sites by combining information from the at-site 
flood-frequency curve (that is, EMA) with information from 
the regional regression equations (England and others, 2019). 
The two estimates of peak discharge can be considered 
independent if the regression equations were developed 
with a large number of sites. The combined peak-flow 
estimate is weighted based on the inverse of the variance 
of prediction for each independent estimate. The weighting 
procedure only applies to unregulated streams with minimal 
basin urbanization. The weighted discharges are available in 
appendix 4 (and can be accessed using StreamStats) and were 
computed with the following equation:

	​​
( )( ) ( )( )

10
reg EMA EMA regi i i i

reg EMAi i

i

VP logQ VP logQ

VP VP
wtdQ

+

+=
� (11)

where
	​​ Q​ wt​d​ i​​​​​	 is the weighted-discharge estimate for a given 

AEP at site i, in cubic feet per second;
	​ V ​P​ re​g​ i​​​​​	 is the variance of prediction at the streamgage 

for a given AEP at site i, in log units, 
derived from the applicable regional 
regression equation;

	​​ Q​ EM​A​ i​​​​​	 is the EMA-discharge estimate for a given 
AEP at site i, in cubic feet per second;

	​ V ​P​ EM​A​ i​​​​​	 is the variance of prediction at the streamgage 
for a given AEP at site i, in log units, 
derived from the EMA analysis; and

	​​ Q​ re​g​ i​​​​​	 is the regression-discharge estimate for 
a given AEP at site i, in cubic feet 
per second.

The variance of prediction for the weighted-discharge 
estimate (​V ​P​ wt​d​ i​​​​​) can be computed as follows: 

		  ​V ​P​ wt​d​ i​​​​ ​ = ​
​(V ​P​ EM​A​ i​​​​)​​(V ​P​ re​g​ i​​​​)​  _____________  V ​P​ EM​A​ i​​​​ + V ​P​ re​g​ i​​​​

 ​​� (12)

Once ​​Q​ wt​d​ i​​​​​ and ​V ​P​ wt​d​ i​​​​​ have been determined, the upper 
and lower prediction intervals for the weighted-discharge 
estimate can be computed as follows:
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where
	​ P ​I​ ​U​ i​​​​​, ​P ​I​ ​L​ i​​​​​	 are the upper and lower prediction intervals, 

respectively, for a given AEP at site i;
	​​ Q​ wt​d​ i​​​​​	 is the weighted-discharge estimate for a given 

AEP at site i;
	​​ t​ ​(​α _ 2 ​,n−p)​​​​	 is Student’s t with a specified alpha (α) level 

and n−p degrees of freedom, where n is 
the number of sites used in the regression 
equation and p is the number of regressor 
variables plus 1 (values are listed in 
table 5); and

	​ V ​P​ wt​d​ i​​​​​	 is the variance of prediction of the 
weighted-discharge estimate for a given 
AEP at site i, in log units.

Example of Weighting a Peak-Flow Estimate with 
Observed and Predicted Values

Example 2. Calculate the 0.01-AEP (or 1.0-percent 
AEP) weighted peak flow (Qwtd) for USGS streamgage 
16010000 on Kawaikoi Stream near Waimea, Kauaʻi, State of 
Hawaiʻi, at latitude 22°7’58.1" N and longitude 159°37'11.8" 
W. Streamgage 16010000 has a drainage area (DRNAREA) 
of 3.82 mi2 and a mean annual precipitation (PRECIP) of 
133 inches.

1.	From example 1 and appendix 4, a predicted 0.01-AEP 
peak-flow estimate (Qreg) of 7,240 ft3/s (converted 
to 3.860 ft3/s log units) was computed using the 
appropriate regression equation for region 1 (table 5).

2.	From appendix 4, the variance of prediction for the 
regression estimate (VPreg) is reported as 0.0230 
log units.

3.	From appendix 4, the observed 0.01-AEP peak-flow 
estimate (QEMA) and corresponding at-site variance of 
prediction (VPreg) are reported as 11,600 ft3/s (con-
verted to 4.064 ft3/s log units) and 0.0031 log units, 
respectively.

4.	Using equation 11, a weighted peak-flow estimate 
(Qwtd) can be computed as follows:

( )( ) ( )( )
10

reg EMA EMA regi i i i

reg EMAi i

VP logQ VP logQ

VP VP
wtdQ

+

+=

​​Q​ wtd​​ ​ = ​ 10​​ ​
​(0.0230)​​(4.064)​+​(0.0031)​​(3.860)​   ___________________________  0.0230+0.0031 ​ ​​

	 Qwtd = 11,000 ft3/s (rounded to three significant figures)
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Weighting Flood-Frequency Estimates at 
Ungaged Sites with Data from a Nearby Gage

Peak-flow estimates determined using the regional 
regression equations for ungaged sites can be improved if 
the ungaged site is located near a gaged site on the same 
unregulated stream. This approach combines information from 
the regression equations at the ungaged site with information 
from the discharge estimates at a nearby gaged site by, in part, 
relating the drainage areas of the two sites. The weight of the 
regression-derived discharge estimate for the ungaged site 
increases relative to the weight of the discharge estimates from 
the gaged site as the drainage-area ratio increases (that is, as 
the distance between the two sites increases). To apply this 
weighting method, the gaged site must have at least 10 years 
of peak-flow data, and the ungaged site must have a drainage 
area within 50 percent of the drainage area of the gaged site 
(the drainage-area ratio is more than 0.5 and less than 1.5) and 
must be located on the same stream (Ries, 2007; Feaster and 
others, 2009). The following equation can be used to compute 
the weighted-discharge estimate at the ungaged site:

	​​ Q​ ​U​ wtd​​​​ ​ = ​ [​(​2ΔA _ ​A​ G​​ ​)​ + ​(1 − ​2ΔA _ ​A​ G​​ ​)​​(​
​Q​ ​G​ wtd​​​​ _ ​Q​ ​G​ reg​​​​

 ​)​]​ ​Q​ ​U​ reg​​​​​� (15)

where
	​​ Q​ ​U​ wtd​​​​​	 is the weighted-discharge estimate at the 

ungaged site for a given AEP, in cubic feet 
per second;

	​ ΔA​	 is absolute value of the difference between the 
drainage areas of the gaged and ungaged 
sites, in square miles;

	​​ A​ G​​​	 is the drainage area for the gaged site, in 
square miles;

	​​ Q​ ​G​ wtd​​​​​	 is the weighted-discharge estimate at the 
gaged site for a given AEP, in cubic feet 
per second;

	​​ Q​ ​G​ reg​​​​​	 is the discharge estimate computed using the 
applicable regional regression equation at 
the gaged site for a given AEP, in cubic 
feet per second; and

	​​ Q​ ​U​ reg​​​​​	 is the discharge estimate computed using the 
applicable regional regression equation at 
the ungaged site for a given AEP, in cubic 
feet per second.

Comparison of Results with Previous 
Studies

The weighted peak-flow estimates and regression 
equations were compared to the results from the most recent 
USGS flood-frequency analysis in Hawaiʻi (Oki and others, 
2010). For most of the 220 streamgages included in both this 
study and Oki and others (2010), the weighted peak-flow 
estimates for the 0.01 AEP were similar (fig. 17). The median 
relative difference for weighted peak-flow estimates in 
each region ranged from −4 to 0 percent, indicating a slight 
decrease in peak-flow estimates. Generally, larger relative 
differences in the estimated peak flows are observed for 
the smaller AEPs (largest floods) than for the larger AEPs 
(smallest floods) (fig. 18).

The regional regression equations in this study provide 
more accurate estimates for some regions and similarly 
accurate estimates in other regions, compared to the equations 
developed by Oki and others (2010). Performance metrics for 
the regression equations indicate improvements in regions 1, 
3, 4, 7, 8, and 10, and similar metrics in regions 2, 5, 6, and 
9 (table 7). Improvements in model performance for regions 
1, 3, 4, and 8 can be partly attributed to the addition of a new 
variable that was not used in Oki and others (2010).

Differences in the weighted peak-flow estimates and 
regression performance metrics in this study relative to 
Oki and others (2010) may be explained by several factors, 
including variable selection for the regression equations, 
data availability, streamgage selection, regional skew, and 
flood-frequency techniques. This study used data through 
water year 2020, whereas Oki and others (2010) used data 
through water year 2008; the additional 12 years of peak-flow 
data have greater potential to influence estimated flood 
statistics at streamgages with short records compared to 
those with long records. In addition to data availability, the 
criteria used to select streamgages—including the removal 
of redundant streamgages from the development of the 
regression equations—differed between the two studies. The 
regional skew for this study (−0.157 and a MSE of 0.212) was 
developed following updated national guidelines (Bulletin 
17C; England and others, 2019) and B–WLS/B–GLS methods; 
the regional skew used by Oki and others (2010) (−0.05 and 
a MSE of 0.302) was computed as the arithmetic mean of 
at-site skews from 30 streamgages with data through water 
year 1973 (Bulletin 17B; Interagency Advisory Committee on 
Water Data, 1982). Lastly, the use of EMA with MGBT for 
this study likely improved at-site estimates of peak discharge 
for streamgages with censored, interval, or historical data 
types, relative to the at-site estimates from Oki and others 
(2010), which were computed using techniques described in 
Bulletin 17B.
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Figure 17.  Comparisons between the 0.01 annual exceedance probability peak discharges from this study—
using data through water year 2020—with the previously published estimates from Oki and others (2010) for the 
220 streamgages included in both studies.
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Estimating Flow Statistics Using 
StreamStats

The USGS StreamStats program (U.S. Geological 
Survey, 2019, http://​streamstat​s.usgs.gov) is a web-based 
GIS application that provides users with several analytical 
tools for water-resources planning and management (Rosa 
and Oki, 2010; Ries and others, 2017). One of the core 
capabilities of StreamStats is that it allows users to select 
an ungaged location on a stream network to delineate a 
drainage basin, compute basin characteristics, and calculate 
selected streamflow statistics (for example, peak-flow, 
low-flow, and flow-duration statistics). StreamStats provides 
a faster, more accurate, and more consistent approach for 
estimating streamflow statistics at ungaged locations than 
manual methods.

The basin characteristics (table 3) and regional regression 
equations (table 5) described in this study have been integrated 
into the USGS StreamStats program for Hawaiʻi. If users 
select an ungaged location in StreamStats, they will be 
able to delineate a drainage basin, compute selected basin 
characteristics, and estimate selected flow statistics—including 
the AEP discharges reported in this study. If the ungaged 

location selected by the user has basin characteristics within 
the range of those used to develop the applicable regression 
equations, StreamStats will provide available accuracy metrics 
and prediction intervals for the peak-flow estimates (described 
in section, “Accuracy and Limitations of Regional Regression 
Equations”). StreamStats currently does not have the ability 
to weight the peak-flow estimate at an ungaged location 
with the peak-flow estimates from a nearby gaged location 
(described in section, “Weighting Flood-Frequency Estimates 
at Ungaged Sites with Data from a Nearby Gage”)—these 
computations will need to be completed manually using 
the regression-derived discharge estimate at the ungaged 
site and the discharge estimates provided by StreamStats 
for the nearby gaged site. If a user selects a gaged location 
in StreamStats, they can obtain the full suite of available 
basin characteristics and flow statistics, including those not 
reported in this study (for example, low-flow statistics, if 
available). Additionally, published basin characteristics and 
flow statistics at streamgages can be accessed on StreamStats 
directly at https​://streams​tatsags.cr​.usgs.gov/​gagepages/​
html/​00000000.htm (U.S. Geological Survey, 2019), where 
00000000 is substituted with the station number for the 
streamgage.

http://streamstats.usgs.gov
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Summary
The U.S. Geological Survey (USGS), in cooperation 

with the State of Hawaiʻi Department of Transportation, 
updated flood estimates for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, 
and 0.2-percent annual exceedance probabilities (AEP) for 
unregulated streamgages in Kauaʻi, Oʻahu, Molokaʻi, Maui, 
and Hawaiʻi, State of Hawaiʻi. Regression equations which 
can be used to estimate flood magnitude and associated 
frequency at ungaged streams were developed. This study uses 
data through water year 2020 and supersedes the previous 
USGS flood-frequency report, Oki and others (2010), which 
used data through water year 2008.

Flood magnitude and frequency at 238 streamgages 
were estimated—following national guidelines established in 
Bulletin 17C (England and others, 2019)—by fitting annual 
peak-flow data to the Log-Pearson Type III distribution using 
the expected moments algorithm (EMA) and the USGS 
PeakFQ flood-frequency software. Potentially influential low 
outliers in the data were identified and removed using the 
Multiple Grubbs-Beck Test. An updated regional skewness 
coefficient (regional skew) for Hawaiʻi was estimated using 
the Bayesian weighted least squares/Bayesian generalized 
least squares (B–WLS/B–GLS) method. The B–WLS/B–
GLS method for determining regional skew accounts for 
complexities introduced by EMA and the cross-correlation of 
annual peak flows at pairs of streamgages, resulting in a more 
accurate estimate of regional skew and a better understanding 
of uncertainty. The updated regional skew employs a constant 
model for the five islands in the study area and has a value of 
−0.157 (mean square error of 0.212).

Trends in the peak-flow data were evaluated to test 
the statistical assumptions for flood-frequency analysis 
described in Bulletin 17C. Monotonic trends, representing 
a unidirectional change over time, were evaluated using 
three versions of the nonparametric Mann-Kendall test. Step 
trends, representing abrupt shifts in the statistical properties of 
time-series data, were evaluated using the Pettitt test. About 21 
percent of streamgages had a significant monotonic trend with 
at least one version of the Mann-Kendall test; streamgages on 
Kauaʻi, Oʻahu, and the Island of Hawaiʻi had predominantly 
decreasing trends, whereas streamgages on Maui and Molokaʻi 
had mixed results. About 18 percent of streamgages had a 
significant step trend; 26 streamgages with significant step 
trends had peak-flow magnitudes that decreased after the 
change point and 18 streamgages had peak-flow magnitudes 
that increased after the change point. Although this study 
only represents a cursory trend analysis, the observed 
trends do not have clear deterministic relations with known 
hydroclimatological or land-use changes. Consequently, 
no streamgages were removed from the analysis and the 
statistical assumptions were presumed to be valid. Trends 

should continue to be evaluated in future flood-frequency 
analyses, particularly if techniques capable of adjusting data 
for definitive nonstationarities become readily available.

Multiple-linear regression techniques were used to 
relate basin characteristics to peak flows at streamgages 
for the purposes of estimating peak flows at ungaged sites. 
The study area was split into 10 regions—two regions per 
island, generally following a leeward/windward split—
containing from 9 to 49 streamgages each. Fifty-eight 
basin characteristics, representing physical or climatic 
attributes that may relate to flood statistics, were computed 
for each streamgage. Ordinary least squares regression 
methods were used in an exploratory data analysis to select 
candidate explanatory variables (basin characteristics). The 
final regression equations for each region were determined 
with generalized least squares methods using the USGS 
weighted-multiple-linear regression (WREG) program. The 
standard error of prediction at the 0.01 AEP for the regression 
equations ranged from 18 to 164 percent; the pseudo 
coefficient of determination (pseudo-R2) at the 1-percent 
AEP ranged from 46 to 100 percent. The regression equations 
performed well for all regions except leeward Molokaʻi 
and southern Island of Hawaiʻi; for all other regions, the 
pseudo-R2 ranged from about 75 to 100 percent. Compared 
to the regression equations developed by Oki and others 
(2010), the regression equations in this study generally had 
greater accuracy and predictive power, although the degree of 
improvement varied for each region. The regression equations 
are only applicable to locations with basin characteristics 
within the range of values used to develop the regression 
equations.

At streamgages with data analyzed in this study, final 
peak-flow estimates are weighted using the at-site statistics 
computed with PeakFQ and the predicted flows from the 
regression equations. Results of this study—including the 
final peak-flow estimates at streamgages and the regression 
equations—are implemented in the USGS StreamStats web 
application (U.S. Geological Survey, 2019). StreamStats 
provides the most consistent approach for obtaining peak-flow 
estimates at streamgages and for applying the regional 
regression equations for estimating peak flows at ungaged 
locations.
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Appendix 1.  Streamgages Considered for Flood-Frequency Analysis, State 
of Hawaiʻi

The spreadsheets containing tables 1.1, 1.2, and 1.3 are available for download in .xlsx and .csv format at 
https://doi.org/10.3133/sir20235014.

Table 1.1.  Streamgages with peak-flow data used in this study, State of Hawaiʻi.

[Table 1.1 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]

Table 1.2.  Available peak-flow data that were omitted from this study, State of Hawaiʻi.

[Table 1.2 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]

Table 1.3.  Streamgages with peak-flow data used in this study that were not used in the previous flood-frequency study, Oki and 
others (2010), State of Hawaiʻi.

[Table 1.3 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]

https://doi.org/10.3133/sir20235014
https://doi.org/10.3133/sir20235014
https://doi.org/10.3133/sir20235014
https://doi.org/10.3133/sir20235014
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Appendix 2.  Summary of Mann-Kendall and Pettitt Trend-Test Results for the 
Peak-Flow Data Used in this Study, State of Hawaiʻi

The spreadsheet containing table 2.1 is available for download in .xlsx and .csv format at 
https://doi.org/10.3133/sir20235014.

Table 2.1.  Summary of Mann-Kendall and Pettitt trend-test results for the peak-flow data used in this study, State of Hawaiʻi.

[Table 2.1 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]

https://doi.org/10.3133/sir20235014
https://doi.org/10.3133/sir20235014


56    Magnitude and Frequency of Floods on Kaua‘i, O‘ahu, Moloka‘i, Maui, and Hawai‘i, State of Hawai‘i

Appendix 3.  Regional Skew Regression Analysis for State of Hawaiʻi 

By Andrea G. Veilleux and Daniel M. Wagner

To improve estimates of peak-flow magnitude and 
frequency—particularly for streamgages with short records 
(that is, streamgages with fewer than about 25 annual 
peaks)—current guidance for flood-frequency analysis by 
Federal agencies (Bulletin 17C; England and others, 2019) 
recommends using a weighted average of the at-site skewness 
coefficient (at-site skew) and a regional skewness coefficient 
(regional skew). Previous guidance (Bulletin 17B; Interagency 
Advisory Committee on Water Data, 1982) supplied a national 
map of regional skew but encouraged hydrologists to develop 
models that are more localized. Since Bulletin 17B was 
published, nearly 40 years of additional annual peak-flow data 
have been collected, and better spatial estimation procedures 
have been developed (Stedinger and Griffis, 2008).

Tasker and Stedinger (1986) developed a weighted 
least-squares (WLS) procedure for estimating regional skew 
based on at-site skew computed from the logarithms of annual 
peak-flow data from streamgages. The procedure accounts 
for the precision of at-site skew, which depends on the record 
length and the accuracy of an ordinary least-squares (OLS) 
mean regional skew. More recently, Reis and others (2005), 
Gruber and others (2007), and Gruber and Stedinger (2008) 
developed a Bayesian generalized least-squares (B–GLS) 
regression model for regional skew analyses. The Bayesian 
methodology allows for the computation of a posterior 
distribution of both the regression parameters and the model 
error variance. As shown in Reis and others (2005), for cases 
in which the model error variance is small compared to the 
sampling error of the at-site skew estimates, the Bayesian 
posterior distribution provides a more reasonable description 
of the model error variance than generalized least-squares 
(GLS) method-of-moments and the maximum likelihood point 
estimates (Veilleux, 2011). WLS regression accounts for the 
precision of the regional model and the effect of record length 
on the variance of skew estimators, but the GLS regression 
model also considers the cross-correlation amongst the skew 
estimators. In some studies, the cross-correlation had a large 

effect on the precision of various parameter estimates (Feaster 
and others, 2009; Gotvald and others, 2009; Weaver and 
others, 2009; Parrett and others, 2011).

Because of complications introduced using the 
expected moments algorithm (EMA) with the Multiple 
Grubbs-Beck Test (MGBT) (Cohn and others, 1997) and large 
cross-correlations between annual peak discharges at pairs of 
streamgages, an alternate regression procedure was developed 
to provide stable and defensible results for regional skew 
(Veilleux, 2011; Lamontagne and others, 2012; Veilleux and 
others, 2012). This procedure is referred to as the Bayesian 
WLS/Bayesian GLS (B–WLS/B–GLS) regression framework 
(Veilleux, 2011; Veilleux and others, 2011; Veilleux and 
others, 2012). The B–WLS/B–GLS framework uses OLS 
regression to fit an initial model of regional skew that is 
used to generate a stable estimate of regional skew for each 
streamgage. This estimate is the basis for computing the 
variance of each estimate of at-site skew used in the B–WLS 
analysis. B–WLS is then used to generate estimators of the 
regional skew model parameters. Finally, B–GLS is used to 
estimate the precision of those estimators, the model error 
variance and its precision, and compute various diagnostic 
statistics.

In this study, EMA with MGBT (see section, “Expected 
Moments Algorithm Frequency Analysis” in the main body 
of the report) was used to estimate the at-site skew, G, and 
its mean squared error (MSE), MSEG, for 238 streamgages 
(table 3.1; see figs. 2–6 in the main body of the report). 
Twenty-three streamgages were removed for redundancy (see 
“Elimination of Redundant Sites” in the main body of the 
report), leaving 215 streamgages for regional skew analysis. 
Because EMA with MGBT allows for the censoring of low 
floods as well as the use of flow intervals to describe missing, 
censored, and historical data, it complicates the calculations of 
effective record length (and effective concurrent record length) 
used to describe the precision of skew estimates because the 
annual peak discharges are no longer represented by single 
values. To properly account for these complications, the B–
WLS/B–GLS procedure was used (Veilleux, 2011; Veilleux 
and others, 2011; Veilleux and others, 2012).

Table 3.1.  Streamgages in Hawaiʻi that were considered for use in the regional skew analysis.

[Table 3.1 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]

https://doi.org/10.3133/sir20235014
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Ordinary Least-Squares Analysis
The first step in the B–WLS/B–GLS regional skew 

analysis is the estimation of a regional skew model using OLS 
regression. The OLS regression yields coefficients (​​​̂  𝛃​​ OLS​​​) and 
a model that can be used to generate unbiased and relatively 
stable estimates of regional skew for all streamgages:

	​​ ​   y​​ OLS​​ ​ =  X ​​̂  𝛃​​ OLS​​​� (3.1)

where
	 X	 is an (n × k) matrix of basin characteristics;
	​​​    y​​ OLS​​​	 are the estimated regional skew values;
	 n	 is the number of streamgages; and
	 k	 is the number of basin characteristics, 

including a column of ones to estimate the 
constant.

The estimated at-site/regional skew values, ​​​   y​​ OLS​​​, are then 
used to calculate unbiased at-site/regional skew variances 
using the equations reported in Griffis and Stedinger (2009). 
These at-site/regional skew variances are based on the OLS 
estimator of the skew instead of the at-site skew, thus making 
the weights in the subsequent steps relatively independent of 
the at-site skew.

Weighted Least-Squares Analysis

A B–WLS analysis is used to develop estimators of the 
regression coefficients for each regional skew model (Veilleux, 
2011; Veilleux and others, 2011). The B–WLS analysis 
explicitly reflects variations in record length but intentionally 
neglects cross-correlations, thereby avoiding problems 
experienced with GLS parameter estimators.

Generalized Least-Squares Analysis

After the regression coefficients (​​​̂  𝛃​​ WLS​​​) are determined 
using a B–WLS analysis, the precision of the fitted model 
and regression coefficients are estimated using a B–GLS 
analysis (Veilleux, 2011; Veilleux and others, 2011). Precision 
metrics include: (1) the standard error of the regression 
parameters, ​SE​(​​  𝛃​​ WLS​​)​​; (2) the model error variance, ​​σ​ δ,B−GLS​ 2  ​​; 
(3) the pseudo coefficient of determination, pseudo-​​R​ δ​ 2​​; and (4) 
the average variance of prediction for streamgages that were 
not used in the regional model, AVPnew.

Computing Pseudo Record Length

Annual peak-flow records of streamgages often include 
historical information and censored data—for example, 
knowledge that the annual peak discharge at a crest-stage 
streamgage did not exceed the minimum recordable 
discharge—that need to be accounted for when computing the 

precision of skew estimates. While historical information and 
censored peaks are valuable, they provide less information 
than an equal number of years of systematic peaks (Stedinger 
and Cohn, 1986). The following calculations yield a pseudo 
record length, PRL, which appropriately accounts for all types 
of data available for a streamgage.

The PRL is defined in terms of the number of years of 
systematic record that would be required to yield the same 
MSEG as the combination of historical and systematic record 
available at a streamgage; thus, the PRL of the skew is a 
ratio of MSEG when only the systematic record is analyzed 
(​MSE​(​​   G ​​ S​​)​​) to MSEG when the complete record, including 
historical and censored data, are analyzed (​MSE​(​​   G ​​ C​​)​​).

	​​ P​ RL​​ ​ = ​
​P​ s​​ *MSE​(​​   G ​​ S​​)​ 

  ____________ 
MSE​(​​   G ​​ C​​)​ 

  ​​� (3.2)

where
	 PRL	 is the pseudo record length for the entire 

period of record at the streamgage, 
in years;

	 Ps	 is the number of systematic peaks in 
the record;

	​ MSE​(​​   G ​​ S​​)​​	 is the estimated mean squared error of the 
at-site skew when only the systematic 
record is considered; and

	​ MSE​(​​   G ​​ C​​)​​	 is the estimated mean squared error of the 
at-site skew when the complete record, 
including historical and censored data, are 
considered.

As the ​​P​ RL​​ ​is an estimate, the following conditions must 
also be met to ensure a valid approximation: (1) the PRL must 
be nonnegative; if the PRL is greater than PH (the length of the 
historical period), then PRL should be set to equal PH; and (2) 
if the PRL is less than PS, then the PRL is set to PS. This ensures 
that the PRL will not be larger than PH or less than PS.

The estimate of at-site skew is sensitive to extreme 
events, and more accurate estimates can be obtained from 
longer records (England and others, 2019). Therefore, 
streamgages that have a PRL of less than 35 years are normally 
not used for regional skew analysis. This study used a 
minimum PRL of 36 years (the maximum available PRL was 
109 years), resulting in 91 of 215 non-redundant streamgages 
being removed and a final dataset of 124 streamgages for 
regional skew analysis (table 3.1).

Unbiasing the At-Site Skew

For the 124 streamgages considered for the regional 
skew analysis, the at-site skews were unbiased using the 
correction factor developed by Tasker and Stedinger (1986) 
and employed by Reis and others (2005). The unbiased at-site 
skew, computed using the PRL, can be determined using the 
following equation:	
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​                                   ​​   γ ​​ i​​ ​ = ​ [1 + ​  6 _ ​P​ RL,i​​
​]​ ​G​ i​​​� (3.3)

where
	​​​    γ ​​ i​​​ 	 is the unbiased at-site skew estimate for 

streamgage i;
	​​ P​ RL,i​​​	 is the pseudo record length, in years, 

for streamgage i, as calculated in 
equation 3.2; and

	 Gi	 is the biased estimate of at-site skew for 
streamgage i from the flood-frequency 
analysis.

The variance of the unbiased at-site skew includes the 
correction factor developed by Tasker and Stedinger (1986):

​                            Var​[​​   γ ​​ i​​]​ ​ = ​ ​[1 + ​  6 _ ​P​ RL,i​​
​]​​​ 

2
​ Var​[​G​ i​​]​​� (3.4)

The variance of the biased at-site skew, ​Var​[​G​ i​​]​​, is cal-
culated using the following equation from Griffis and 
Stedinger (2009):

​Var​(​G​ i​​)​ ​ = ​ [​  6 _ ​P​ RL​​​ + a​(​P​ RL​​)​]​*​[1 + ​(​9 _ 6​ + b​(​P​ RL​​)​)​ ​ 
 

                                      G​ i​​ ​​​​ 2​ + ​(​15 _ 48​ + c​(​P​ RL​​)​)​ ​G​ i​​ ​​​​ 4​]​​� (3.5)

where

	
​a​(​P​ RL​​)​ ​ =  − ​17.75 _ ​P​ RL​​ ​​​​ 2​ ​ + ​50.06 _ ​P​ RL​​ ​​​​ 3​ ​​;

​b​(​P​ RL​​)​ ​ = ​  3.92 _ ​P​ RL​​ ​​​​ 0.3​​ − ​ 31.10 _ ​P​ RL​​ ​​​​ 0.6​​ + ​ 34.86 _ ​P​ RL​​ ​​​​ 0.9​​​; and

	

​c​(​P​ RL​​)​ ​ =  − ​  7.31 _ ​P​ RL​​ ​​​​ 0.59​​ + ​ 45.90 _ ​P​ RL​​ ​​​​ 1.18​​ − ​ 86.50 _ ​P​ RL​​ ​​​​ 1.77​​.​

Estimating the Mean Squared Error of 
the Unbiased At-Site Skew

There are several possible ways to estimate the MSE 
of the unbiased at-site skew (MSEU). The approach used by 
EMA (see equation 55 in Cohn and others, 2001) generates a 
first-order estimate of the MSEU, which should perform well 
when interval data are present. Another option is to use the 
formula in equation 3.5 (the variance is equated to the MSE), 
employing either the length of the systematic record or the 

length of the historical period (Hp); however, this method does 
not account for censored data and can lead to an inaccurate 
and under-estimated MSEU. This issue has been addressed 
by using the PRL instead of Hp; the PRL reflects the impact of 
the censored data and the number of systematic peaks. Thus, 
MSEU, computed using the formula from Griffis and Stedinger 
(2009), was used in the regional skew model because it is 
more stable and relatively independent of the at-site skew. 
This methodology was used in previous regional skew studies 
(Veilleux and Wagner, 2019; Veilleux and Wagner, 2021).

Cross-Correlation Model

A critical step in a GLS analysis is estimation of the 
cross-correlation of the at-site skew estimates. Martins and 
Stedinger (2002) used Monte Carlo experiments to derive 
a relation between the cross-correlation of the at-site skew 
estimates at two streamgages, i and j, as a function of the 
cross-correlation of concurrent annual peak discharges, ρij: 	

	​​  ̂  ρ ​​(​​   γ ​​ i​​, ​​   γ ​​ j​​)​ ​ =  Sign​(​​   ρ ​​ ij​​)​c ​f​ ij​​ ​​|​​   ρ ​​ ij​​|​​​ k​​� (3.6)

where
	​​​    ρ ​​ ij​​​ 	 is the cross-correlation of concurrent annual 

peak discharges for two streamgages;
	​​​    γ ​​ i​​​ 	 is the unbiased at-site skew estimate for 

streamgage i;
	 κ 	 is a constant between 2.8 and 3.3; and
	 cfij 	 is a factor that accounts for the sample size 

difference between streamgages and their 
concurrent record length and is defined 
as follows:

	​ c ​f​ ij​​ ​ =  C ​Y​ ij​​ / ​√ 
_

 ​(​P​ RL,i​​)​​(​P​ RL,j​​)​ ​​� (3.7)

where
	 CYij 	 is the pseudo record length of the period of 

concurrent record; and
	​​P​ RL,i​​​, and ​​P​ RL,j​​​	 are the pseudo record lengths corresponding 

to streamgages i and j, respectively (see 
equation 3.2).

After calculating the PRL for each streamgage in the 
study, the pseudo concurrent record length between pairs 
of streamgages (CYij) can be calculated. Because of the 
use of censored data and historical data, calculation of the 
effective concurrent record length is more complex than 
determining in which years the two streamgages both have 
recorded systematic peaks. First, the number of years of 
historical period in common between the two streamgages are 
determined. Next, for the years in common, with beginning 
year YBij and ending year YEij, the following equation is used 
to calculate the concurrent years of record between site i 
and site j:
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	​ C ​Y​ ij​​ ​ = ​ (Y ​E​ ij​​ − Y ​B​ ij​​ + 1)​​(​
​P​ RL,i​​ _ ​H​ p,i​​

 ​)​​(​
​P​ RL,j​​

 _ ​H​ p,j​​
 ​)​​� (3.8)

The computed pseudo concurrent record length depends 
upon the years of historical period in common between the 
two streamgages, as well as the ratios of the PRL to the Hp for 
each of the streamgages.

To relate the concurrent annual peak discharges at two 
streamgages (ρij) to explanatory variables, a cross-correlation 
model using 42 streamgages with at least 60 years of 
concurrent systematic peaks (0 discharges not included) was 
considered. A logit model, termed the Fisher Z-Transformation 
(Z = log[(1+r)/(1−r)]), provided a convenient transformation 
of the sample correlations, rij, from the (−1, +1) range 
to the (−∞, +∞) range. The model used to estimate the 
cross-correlations of concurrent annual peak discharges at two 
streamgages, which incorporated the distance between basin 
centroids, Dij, as the only explanatory variable, is:

	 �ij
ij

ij

Z

Z
�

� � �
� � �

exp

exp

2 1

2 1
� (3.9)

where

​

0.58 1
0.47 0.054

0.58
ij

ij

D
Z exp

  −
= −       ​

An OLS regression analysis, based on 538 streamgage 
pairs from 42 sites, indicated that this model is as accurate as 
having 264 years of concurrent gaged peaks from which to 
calculate cross-correlation. Figure 3.1 shows the fitted relation 
between Z and distance between basin centroids and points 
representing the 538 streamgage pairs. Figure 3.2 shows the 
fitted relation between the un-transformed cross-correlation 
and distance between basin centroids and points representing 
the 538 streamgage pairs. The cross-correlation model was 
used to estimate cross-correlation of concurrent annual peak 
discharges for all streamgage pairs.

Regional Skew Model

Seventeen basin characteristics—BASINPERIM, 
BSLDEM10M, CENTROIDX, CENTROIDY, COMPRAT, 
CSL10_85, DRNAREA, ELEV, ELEVMAX, RELIEF, 
RELRELF, PERM24IN, LFPORNE, I60M2Y, I6H500Y, 
I48H500Y, and PRECIP—were tested as covariates in 
the B–WLS/B–GLS analysis of regional skew (see table 3 
in the main body of this report) (the “LFPORNE” basin 
characteristic—although not used in the body of the report 
or listed in table 3—describes the mean orientation of the 
longest flow path within the drainage basin, relative to the 
predominant trade winds from the northeast). Three candidate 
models were considered:

(1) a constant model using at-site skews from 
streamgages in all 10 flood regions in Hawaiʻi 
(table 1.1, app. 1; see also figs. 2–6 in the main body of 
this report);

(2) unique constant models for windward (2, 4, 6, and 8) 
and leeward (1, 3, 5, 7) regions; and

(3) a constant model for windward regions and a model 
incorporating the basin slope (BSLDEM10M) as a 
covariate for leeward regions.

The second and third options offered no treatment of 
regional skew for flood regions 9 and 10 (Island of Hawaiʻi), 
which did not have a clear windward/leeward orientation and 
had an insufficient number of streamgages from which to 
develop a unique constant model. Therefore, the first candidate 
model, a constant model of regional skew (GR) for all of 
Hawaiʻi, −0.157, was selected (table 3.2).

A good regional skew model will have the smallest 
possible model error variance, ​​σ​ δ​ 2​​, and largest possible 
pseudo-​​R​ δ​ 2​​. A constant model does not explain variability 
in the at-site skews, so the pseudo-​​R​ δ​ 2​​, which describes the 
estimated fraction of the variability in the at-site skews 
explained by the model (Gruber and others, 2007; Parrett and 
others, 2011), is zero. The posterior mean of the model error 
variance, ​​σ​ δ​ 2​​, is 0.194. The average sampling error variance, 
ASEV, is 0.0184 and represents the average error in the 
regional skew for the streamgages in the dataset. The average 
variance of prediction at a new site, AVPnew, is 0.212, which 
is equivalent to the MSE of the regional skew (MSER) and 
corresponds to an effective record length (ERL) of 36 years. 
The updated GR (−0.157) and MSER (0.212), and ERL are an 
improvement upon and supersede GR (−0.05), MSER (0.302), 
and ERL (17 years) from the generalized skew map in Bulletin 
17B (Interagency Advisory Committee on Water Data, 1982), 
which was used in the previous study (Oki and others, 2010).

Diagnostic Statistics for Bayesian Weighted 
Least Squares/Bayesian Generalized Least 
Squares Regression

To evaluate how well a regression model fits a regional 
hydrologic dataset, diagnostic statistics have been developed 
(Griffis, 2006; Gruber and others, 2007). A pseudo analysis 
of variance (pseudo ANOVA) was conducted for the constant 
model of regional skew in Hawaiʻi (table 3.3). The pseudo 
ANOVA shows how much of the variation in the observed 
skews can be explained by the regional model, and how 
much of the variation in residuals can be attributed to model 
error and sampling error, respectively. Difficulties arise in 
determining these quantities. The model errors cannot be 
resolved because the values of the sampling errors, ​​η​ i​​​, for 
each site, i, are not known. However, the total sampling error 

sum of squares can be described by its mean value, ​​∑ 
i=1

​ 
n
 ​Var [ ​​   γ ​​ i​​]​​. 
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Figure 3.1.  Relation between Fisher Z-transformed cross-correlation of logarithms of annual peak 
discharges and distance between basin centroids for streamgage pairs in the Hawaiʻi regional 
skew study, using data through water year 2020. Abbreviations: ≤, less than or equal to; Z, Fisher 
Z-transformation; exp, natural exponential function; D, distance between basin centroids, in miles.

Table 3.2.  Regional skew model for Hawaiʻi and model performance metrics.

[Standard deviations are in parentheses.​​σ​ δ​ 2​​is the model error variance. ASEV: Average sampling error variance. AVPnew: Average variance of prediction for a 
new site. Pseudo ​​R​ δ​ 2​​: Describes the fraction of the variability in the true skews explained by each model (Gruber and others, 2007).] 

Model Regression constant ​σ​ δ​ 2 ​ ASEV AVPnew
Pseudo

​​R​ δ​ 2​​

Constant -0.157 (0.136) 0.194 (0.039) 0.0184 0.212 0
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Figure 3.2.  Relation between un-transformed cross-correlation of logarithms of annual peak 
discharges and distance between basin centroids for streamgage pairs in the Hawaiʻi regional 
skew study, using data through water year 2020. Abbreviations: ≤, less than or equal to; r, sample 
correlations; exp, natural exponential function; Z, Fisher Z-transformation.
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Because there are n equations, the total variation because 
of the model error ​δ​ for a model with k parameters has a 
mean equal to​n ​σ​ δ​ 2​​(k)​​; thus, the residual variation attributed 

to the sampling error is​​∑ 
i=1

​ 
n
 ​Var [ ​​   γ ​​ i​​]​​, and the residual variation 

attributed to the model error is​n ​σ​ δ​ 2​​(k)​​. This division of 
the variation in the observations is referred to as a pseudo 
ANOVA because the contributions of the three sources 
of error are estimated or constructed, rather than being 
determined from the residuals and the model predictions, 
while also ignoring the effect of correlation among the 
sampling errors.

For a model with no parameters other than the 
mean (a constant skew model), the estimated model error 
variance, ​​σ​ δ​ 2​​(0)​​, describes all of the anticipated variation 
in ​​γ​ i​​  =  μ + ​δ​ i​​​, where ​μ​is the mean of the estimated station 
sample skews; thus, the total expected sum of squares 
variation because of model error, ​​δ​ i​​​, and because of sampling 
error, ​​η​ i​​  = ​ ​   γ ​​ i​​ − ​γ​ i​​,​ in expectation should equal ​n ​σ​ δ​ 2​​(0)​ + ​
∑ 
i=1

​ 
n
 ​Var​(​​   γ ​​ i​​)​​​. The expected sum of squares attributed to a regional 

skew model with k parameters should then equal ​n [ ​σ​ δ​ 2​(0 ) − ​
σ​ δ​ 2​(k ) ]​, because the sum of the model error variance ​n ​σ​ δ​ 2​(k)​ 

and the variance explained by the model must sum to​n ​σ​ δ​ 2​​(0)​​. 
The constant model does not have any explanatory variables, 
thus the variation attributed to the models is 0 and k = 0.

The ratio of the average sampling error variance to the 
model error variance is called the error variance ratio (EVR) 
and is a diagnostic statistic used to evaluate if a simple OLS 
regression is sufficient or if a more sophisticated WLS or GLS 
analysis is appropriate. Generally, an EVR greater than 0.20 
indicates that the sampling variance is not negligible when 
compared to the model error variance, suggesting the need for 
a WLS or GLS regression analysis. The EVR is calculated as:

	​ EVR ​ = ​
SS​(sampling error)​

  ________________  SS​(model error)​  ​ ​ = ​
​∑​ i=1​ n  ​ Var​(​​   γ ​​ i​​)​ _ n ​σ​ δ​ 2​​(k)​  ​​� (3.10)

The EVR for the constant model is 0.7. The sampling 
variability in the at-site skew was larger than the error in the 
regional model; thus, an OLS model that neglects sampling 
error in the at-site skew might not provide a statistically 
reliable analysis of the data. Given the variation of record 
lengths among streamgages, it was important to use a WLS 
or GLS analysis to evaluate the final precision of the model, 
rather than a simpler OLS analysis.

Table 3.3.  Pseudo analysis of variance (ANOVA) table for the regional skew model of Hawaiʻi.

[Abbreviations: k, number of estimated regression parameters not including the constant; n, number of observations (streamgages) used in 
regression; 2 (0)δσ , model error variance of a constant model; 2 ( )kδσ , model error variance of a model with k regression parameters and a constant; 
NA, not applicable;         , variance of the estimated sample skew at site i; EVR, error variance ratio; MBV*, misrepresentation of the beta 
variance; pseudo 2Rδ , fraction of variability in the true skews explained by each model (Gruber and others, 2007); %, percent; 0

WLSb , regression 
constant from WLS analysis; WLS, weighted least squares; GLS, generalized least squares; WT, the transformation of W; Λ, covariance matrix; 
W, the (k×n) matrix of weights determined by WLS analysis; v, the (n×1) vector of 1s;  

                

]

Source Degrees of freedom Equations Sum of squares Result

Model k=0 2 2[ (0) – ( )]n kδ δσ σ 0 NA

Model error n–k–1=123 2[ ( )]n kδσ 24.0 NA

Sampling error n=124

 
1

ˆ( )n
ii

Var γ
=∑ 17.7 NA

Total 2n–1=247 ( ) ( )2
1

ˆn
ii

n k Varδσ γ
=

  +  ∑ 41.7 NA

EVR NA
1

2

ˆ( )
[ ( )]

n

i
iVar

n kδ

γ
σ
=∑ NA 0.7

MBV* NA
0

0

[ | ]
[ | ]

WLS T

WLS T

Var b GLS analysis W W
Var b WLS analysis W v

Λ
=

NA 6.9

Pseudo 2Rδ
NA 2

2

( )1–
(0)
kδ

δ

σ
σ

NA 0%

1
i

ii

w =
Λ

ˆ( )iVar γ



The misrepresentation of the beta variance (MBV) is a 
diagnostic statistic that is used to determine whether a WLS 
regression is sufficient or a GLS regression is appropriate to 
determine the precision of the estimated regression parameters 
(Griffis, 2006; Veilleux, 2011). The MBV describes the error 
produced by a WLS regression analysis in its evaluation 
of the precision of ​​b​ 0​ WLS​​, which is the estimator of the 
constant ​​β​ 0​ WLS​​, because the covariance among the estimated 
at-site skews, ​​​   γ ​​ i​​​, generally has its greatest impact on the 
precision of the constant term (Stedinger and Tasker, 1985). 
If the MBV is substantially greater than 1, then a GLS error 
analysis should be employed. The MBV is calculated as

	​ MBV ​ = ​  
Var​[​b​ 0​ WLS​​|​​GLS analysis]​

  ____________________  
Var​[​b​ 0​ WLS​​|​​WLS analysis]​

​ ​ = ​  ​w​​ T​ Λw _ ​∑​ i=1​ n  ​ ​w​ i​​
​​,� (3.11)

where

	​​ w​ i​​ ​ = ​   1 _ 
​√ 
_

 ​Λ​ ii​​ ​
​​ .	

MBV for the constant model was 6.9. This is a large 
value, indicating that the cross-correlation among the at-site 
skew estimates affected the precision with which the regional 
skew could be estimated. If a WLS analysis were used to 
estimate the precision of the constant, the variance would be 
underestimated by a factor of 6.9; moreover, a WLS model 
would underestimate the variance of prediction, given that the 
sampling error in the constant term was sufficiently large to 
make an appreciable contribution to the average variance of 
prediction.

Leverage and Influence

Leverage and influence diagnostics statistics can be used 
to identify rogue observations and to effectively address lack 
of fit when estimating skew coefficients. Leverage identifies 
those streamgages in the analysis where the observed 
values have a large effect on the fitted (or predicted) values 
(Hoaglin and Welsch, 1978). Generally, leverage takes 
into consideration whether an observation, or explanatory 
variable, is unusual, and thus likely to have a large effect on 
the estimated regression coefficients and predictions. Unlike 
leverage, which highlights points that have the ability or 
potential to affect the fit of the regression, influence attempts 
to describe those points that have an unusual impact on the 
regression analysis (Belsley and others, 1980; Cook and 
Weisberg, 1982; Tasker and Stedinger, 1989). An influential 
observation is one with an unusually large residual that has 
a disproportionate effect on the fitted regression. Influential 
observations often have high leverage. Detailed descriptions 
of the equations used to determine leverage and influence for a 
B–WLS/B–GLS analysis can be found in Veilleux (2011) and 
Veilleux and others (2011).

No streamgages in the regional skew analysis exhibited 
high leverage (greater than 0.016). The differences in leverage 
values for the constant model reflect the variation in record 
lengths among streamgages. Four streamgages exhibited 
high influence (Cook’s D greater than 0.032) and thus had an 
unusual impact on the fitted regression (table 3.4).
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Table 3.4.  Streamgages with high influence on the regional skew model for Hawaiʻi.

[High influence is defined as Cook's D values greater than 4/n (or 4/124=0.032). Each of the 124 streamgages in the regional skew study was assigned a ranking 
value from 1 to 124, signifying its relative rank, where a rank of 1 corresponds to the largest positive value in each category. The table is sorted from largest to 
smallest influence (Cook's D). Abbreviations: USGS, U.S. Geological Survey; PRL, pseudo effective record length; MSE, mean squared error]

USGS 
streamgage

Cook's D Leverage
PRL, in years Unbiased at-site skew

Unbiased MSE of 
at-site skew

Residuals

Value Rank Value Rank Value Rank Value Rank

16400000 0.1453 0.0100 95 12 1.5565 1 0.3539 3 1.7135 1
16620000 0.0509 0.0102 102 6 0.8439 6 0.1108 99 1.0010 11
16638500 0.0442 0.0081 53 63 1.1633 3 0.2987 10 1.3204 3
16700000 0.0393 0.0088 65 29 −1.2572 122 0.2404 23 −1.1002 8
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Appendix 4.  Magnitude, Variance, and Prediction Intervals of Annual 
Exceedance Probability Floods for Selected Streamgages in the State of Hawaiʻi

The spreadsheet containing table 4.1 is available for download in .xlsx and .csv format at 
https://doi.org/10.3133/sir20235014.

Table 4.1.  Magnitude, variance, and prediction intervals of annual exceedance probability discharges for selected streamgages in 
Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi.

[Table 4.1 is available in .xlsx and .cvs file formats at https://doi.org/10.3133/sir20235014.]

https://doi.org/10.3133/sir20235014
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For more information concerning the research in this report, contact
Director, Pacific Islands Science Center
U.S. Geological Survey
1845 Wasp Blvd., B176
Honolulu, HI 96818
https://www.usgs.gov/centers/pacific-islands-water-science-center

Manuscript approved on February 7, 2023

Publishing support provided by the U.S. Geological Survey
Science Publishing Network, Tacoma Publishing Service Center

Edited by Jeff Suwak
Layout and design by Yanis X. Castillo
Illustration support by Luis Menoyo

https://www.usgs.gov/centers/pacific-islands-water-science-center


M
itchell and others—

M
agnitude and Frequency of Floods on Kauaʻi, Oʻahu, M

olokaʻi, M
aui, and H

aw
aiʻi, State of H

aw
aiʻi—

SIR 2023–5014

ISSN 2328-0328 (online)
https://doi.org/ 10.3133/ sir20235014


	Abstract
	Introduction
	Purpose and Scope
	Previous Studies
	Description of Study Area
	Climate
	Rainfall
	El Nino-Southern Oscillation, Pacific Decadal Oscillation, and the Pacific North American
	Trends in Extreme Rainfall
	Flood Characteristics
	Land Cover


	Data Collection and Compilation
	Streamgage Selection and Peak-Flow Data
	Trends in Peak Flows
	Methods for Trend Analyses
	Peak-Flow Trend Results

	Physical and Climatic Basin Characteristics
	Basin Delineations
	Basin Characteristics


	Magnitude and Frequency of Floods at Gaged Sites
	Regional Skew Coefficient
	Expected Moments Algorithm Frequency Analysis
	Flow Intervals and Perception Thresholds
	Continuous-Record Gages
	Crest-Stage Gages
	Low Outliers Identified with the Multiple Grubbs-Beck Test

	Flood-Frequency Estimates at Gaged Sites

	Magnitude and Frequency of Floods at Ungaged Sites
	Elimination of Redundant Sites
	Exploratory Data Analysis
	Regional Regression Equations
	Example Using a Peak-flow Regression Equation

	Assessment of Fit
	Accuracy and Limitations of Regional Regression Equations
	Uncertainty of Individual Estimates Computed Using the Regression Equations

	Application of Methods
	Weighting Flood-Frequency Estimates at Gaged Sites
	Example of Weighting a Peak-flow Estimate with Observed and Predicted Values

	Weighting Flood-Frequency Estimates at Ungaged Sites with Data from a Nearby Gage

	Comparison of Results with Previous Studies
	Estimating Flow Statistics Using StreamStats
	Summary
	Acknowledgments
	References Cited
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4



