a

USGS

science for a changing world

Critical Minerals in Subduction-related

Magmatic-Hydrothermal Systems of the United States

(: M‘SH
g
eSS Po
Sg\ rnetancg [ [ MO
‘°°Ffr{4 \ o N. DAK.
&b *
‘. QH‘L:?::O "EL.‘:"a
-EURB "
Mourre
“5000' Sgy
i L S. DAk
o,
Car,
e,
VREKA
*4)‘!

GoLpey @
&95”\'5“

""SI\LID.Q

SERkELEY
KANS.

FRANEISCQ
TRacy

A
BOULDER ¢y RIZ,

o

OKLA,
TEX
AMARILLO

LOS aNGELps

*‘ FHOENIX

Hrucson B oening

Legend :

MINING BRANGH, W.P.B.

REGIONAL OFFICES W.P.B
SUB-REGIONAL OFFICES W.P.A.
BUREAU OF MINES

CORPORATION
STATIONS AND

RECOHSTRUCTION FINANGE
METALS RESERVE GO. PURGHASE

%> xgQe

SAN ANTOHNIA

MInNT

Ml

Ou:.m.& 5

KANSAS

BARTLESYILLE 'i

OXALAHOMA CITY

VA

paLLas CF
&

AGENGIES

Scientific Investigations Report 2023-5082

U.S. Department of the Interior
U.S. Geological Survey

Map to show location of War Produetion Board offices orsbuying depots and Reconstruction Finance Corporation offices.



Cover. Western half of map of buying depots and offices of the War Production Board in 1942 (War
Production Board, 1942), one of numerous agencies that controlled, by price guarantees, workforce
assignments, and other forms of subsidization, domestic production of tungsten, manganese, antimony,
and numerous other mineral commodities during the World War Il and Cold War eras (1930s—1990s).



Critical Minerals in Subduction-related
Magmatic-Hydrothermal Systems of the
United States

By Peter Vikre, David John, Niki E. Wintzer, Fleetwood Koutz, Frederick Graybeal,
Chris Dail, and David C. Annis

Scientific Investigations Report 20235082

U.S. Department of the Interior
U.S. Geological Survey



U.S. Geological Survey, Reston, Virginia: 2023

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources,
natural hazards, and the environment—visit https://www.usgs.gov or call 1-888-392-8545.

For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/
or contact the store at 1-888-275-8747.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials
as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Vikre, P, John, D., Wintzer, N.E., Koutz, F., Graybeal, F., Dail, C., and Annis, D.C., 2023, Critical minerals in
subduction-related magmatic-hydrothermal systems of the United States: U.S. Geological Survey Scientific
Investigations Report 2023-5082, 110 p., https://doi.org/10.3133/sir20235082.

ISSN 2328-0328 (online)


https://www.usgs.gov
https://store.usgs.gov/
https://doi.org/10.3133/sir20235082

Acknowledgments

Numerous individuals provided information and insight on critical minerals in
magmatic-hydrothermal, intrusion-related districts and deposits in Western States: Herb Duerr
(Sunnyside, Arizona), Shaun Dykes (CuMo, Idaho), Bill Howald (Tonopah, Nevada), Buster
Hunsaker and Mark Barton (McCullough Butte, Nevada), Hamish Martin (Resolution, Arizona),
Eric Seedorff (copper-{(molybdenum) deposits in Arizona), Ralph Stegen (Mo deposits), and
Roger Steininger (Mo deposits). Drill hole analyses of the Pebble porphyry Cu-Mo deposit,
Alaska, were provided by James Lang and Karen Kelley. Exploration and mining company
websites and annual reports, 43-101 and technical reports, and archived records provided
description of deposits and resources and, in some reports, quantification of critical minerals in
them. Reviewers Jamie Brainard, Bob Seal, and Al Hofstra offered many relevant suggestions
regarding content and presentation, most of which have been incorporated in some form.



Contents
ACKNOWIBAGMENTS ..ottt ettt nens iii
A 0 - OO 1
L) (0 LT T ] 3 PO 2
Brief History of Critical MINETalS ..ottt sssssessssesssssssssssssssssssssssssssssssssssssssanes 15
Limitations and Assumptions
Chapter A. Primary Product and Coproduct Production of Critical Minerals.........cccccoeeveecevcrncrnnee. 55
Mineral System—Porphyry CU-IMO-AU......cccoeueurinreeieiecnessissssse s ssssssssssssssens 56
Deposit type—Polymetallic Sulfide Skarn, Replacement, Vein.......ccccoceveveveeerenecrnennne 56
ATSEINIC (AS) coreeeeeteteee ettt bbb b st 56
BISMULN (B) 1ottt ettt s s es st en s 56
T a o FTaT=T= T 1, U 56
VANAIUM (V)b bbbt s 57
Deposit type—Skarn-Replacement-Vein (S-R-V) TUNGSIEN ....ccovuvvvrerverercrireivereeeesseene 57
TUNGSTEN (W)t t ettt s st ss st s s st assas st 57
Deposit type—LithoCap AlUNILE .....c.cccveeceeeeeeteeeeeeeeee e sanees 58
Aluminum (Al) and Potash (KCI, K;SO,, KNOg)......ovvereererireernreeeeisreereseneesseeseseeseenes 58
Mineral System—Porphyry Tin (Granite Related)........cccocvveeeeeecereeeereeeeesteersee s eessessenees 59
Deposit Type—Porphyry/SKarn ...t enaes 59
LT ) 1) OO 59
Unclassified Magmatic-Hydrothermal Deposits .......cccveeveeeerrereereeceee et 59
Antimony (Sb), Arsenic (As), and TUNGSteN (W) c....cuueeeeereieeeeeeeeeeeeeeeeeee e 59
BerYHIUM (BB) oottt sttt bbbt enaes 60
L TT 0Ty (O | IO 60
Germanium (Ge) and Gallium (Ga) .......ocueeeeeeeereereeteeeceeeeee et 61
Chapter B. Byproduct Production of Critical Min€rals.......cc.ccveveenerreiieenseneensinssesssssssssssssessssssssnsens 62
Mineral System—Porphyry CU-MO-AU.......c.ccouerreerereeeeeeeeee et besees 63
Deposit type—Porphyry/skarn COPPEr ...t enans 63
Antimony (Sb), Bismuth (Bi), Nickel (Ni), Platinum-Group Elements (PGE),
Rhenium (Re), and TellUrium (T@) ....ueeeeeeeeeeeee e 63
Deposit type—Polymetallic Sulfide Skarn, Replacement, Vein.......ccccoeveeeveecenecrnennns 64
ANTMONY (SD) oottt st 64
ATSEIIC (AS) ettt ettt s et ee e st s s et ee et se s s aseseeesesen s s seesesnanas 64
BISMULN (Bi) c.uvcveeeeeecveeteetee ettt sss s e b st bbbt s 64
Gallium (Ga), Indium (In), Nickel (Ni), Palladium (Pd), Platinum (Pt), Tin
(Sn), and Vanadium (V) ...ttt saessessensan 64
MaNGANESE (IMIN) w...eueeeceece ettt ettt bbbt 64
TEHUFUM (TE) wvereetetiee ettt s 64
TUNGSTEN (W)t teteet e etes s b sbas 64
Chapter C. Inventories, Reserves, and Resources of Critical Minerals in Porphyry
Copper-Molybdenum-Gold and Other Mineral SYStEMS ......c.ccccouveverrerneensineiserseensenssssennns 65
Concentrations and Inventories of Critical Minerals in Porphyry Cu-Mo Deposits
Systems Based on Drill Holes and Mineral Zones .........ccvveeeecneeneneeneceeensresseenans 66
Mineral System—Porphyry Cu-MO-AU.........ccoueeeeeeeeeeeeeeee e sesans 66

Deposit type—Porphyry/SKarn COPPET ...t ssssesesssssssssssssssessesseses 66



Antimony (Sb), Arsenic (As), Bismuth (Bi), Germanium (Ge), Indium
(In), Platinum-Group Elements (PGE), Rhenium (Re), Tin (Sn),

Tellurium (Te), and Tungsten (W) ... 66
Comparisons Among Critical Mineral Concentrations and Inventories
in Porphyry Cu-Mo DepoSItS .....cccueerrereerereerreneenessessesessesessssessesssssssssnnnes 78
Forms of Sh, As, Bi, Ge, In, Re, Te, and Sn in Porphyry Cu-Mo Deposits........79
Deposit Type—Porphyry/Skarn-Replacement-Vein Bismuth (Bi), Fluorite,

Indium (In), and TUNGSLEN (W) ...ouvreeeeeeeeeeeee ettt 80
TUNGSTEN (W)t t ettt et sttt sensenanen 80
BISMULN (Bi) couvvevvereereeriseesssiesiestse sttt ssssssssss st ssssssssss s ssssssssssssssssnssnsens 81
FIUOTIEE (CAF)) cvereveveeeeritetrieie ettt ss et 81
INATUM (TN ettt ettt e st eee et s e e s eeeeneee e s e e e neneneanennens 81
MaNGaNES (IMIN) ..ottt se bbbt aes bt 81

Deposit Type—Lith0Cap AIUNITE........oveerereereereeeretreeee ettt 82
Aluminum (Al), Potash (KCI, K,SO,, KNOg) ..occoureeirireeireirecieereceseeereeseseenneenes 82

Unclassified Magmatic-Hydrothermal Deposits .......ccccvceevervencneicencncseeee e 82
ANEMONY (SD) oottt bbb 82
Antimony (Sb), Arsenic (As), Bismuth (Bi), and Tungsten (W) .......ccccccevernncce. 83
FIUOTILE (CAF)) cevreerreeereeerecteeeiecereeeeet ettt sees sttt

Gallium (Ga) and Germanium (Ge)
Inventories of Critical Minerals in Unmined Porphyry Cu-Mo Deposits Based on

AN 0 Tu =T 00T o0 T TSR 83
Metallurgical Accounting of Critical Minerals During Copper Recovery .........cccoceeuuee.. 84
Calculated Critical Mineral Inventories Based on Concentrations in Anode

CoPPEr aNd SHMES ...cuceceeereeeeeectsesse sttt 85
Semi- and Unquantified Inventories of Critical Minerals in Porphyry Cu-Mo and

Other Deposit Types, and in Mill TIlINGS ....cvveeerveeneeeierrneesesessseesesesessesesesessssssesssees 86

Mineral System—Porphyry Cu-MOo-AU........ccceeereesessse e sesaees 86

Deposit type—Porphyry/SKarn COPPET ...ttt ssssessssssssssssssessssessssens 86
Antimony (Sb), Arsenic (As), Bismuth (Bi), Cobalt (Co), Indium (In),

Nickel (Ni), PGE, Tellurium (Te), Tin (Sn), and Vanadium (V) ............... 86

THANIUM (i) eeveeererererene ettt st s s e 87

Deposit Type—Porphyry/SKarn-TUNGSIEN .......cc.ceurerverrereeeeeennrseesesessssssssssssssessessenens 87

TUNGSTEN (W)t t ettt et sttt sensenanen 87

Deposit Type—Lithocap AlUNITE.....c.ccceieereeeesrereeree e 87

Aluminum (Al) and Potash (KCI, K,SO,, KNOg)......ovveevrrrerirerecrnceireereseennennes 87

Mineral System—Porphyry Tin (granite-related)........ccccveverveeereerseieceseseese e 87

Deposit Type—Porphyry/SKarn Tin........cceecsecese et sesssssenans 87

B LA ) 1) OO OO 87

Mineral System—AIKalic POrPRYIY oot enaes 88

Deposit Type—Low Sulfidation ..o sesssssenaes 88

Tellurium (Te) and Vanadium (V) ... e 88

Deposit Type—High Sulfidation ........ccceerirererrsreeeess s esnesnsennes 88
Antimony (Sh), Arsenic (As), Bismuth (Bi), Germanium (Ge), Indium

(In), Tellurium (Te), Tin (Sn), and Vanadium (V).....c.cceeverrrrnrrrnrerneernnene 88

Unclassified Magmatic DEPOSIES ..ot ssssseseeaes 89

Aluminum (Al), Rare Earth Elements (REE), Titanium (Ti), Zircon (ZrSiQ,),
AN TIN (SN ettt et e e et es e e s eee st s s e e e eeneae e s e neanenenearannens 89



Vi

Mineral System—Reduced Intrusion-Related ..........cccvveverreeernenesersesssss e 89

Chapter D. Critical Minerals in Archival Specimens and Collection Samples .......cccocoveveeverrereernenes 90
Specimen and Sample Representativeness ...t ssssssseens 91
Critical Minerals Enriched in Porphyry Cu-Mo Deposits .......cccouvriernreneinerrsrsesnsessissssesssenseneens 91
Critical Minerals Unenriched or Depleted in Porphyry Cu-Mo Deposits ......cccooveveeecennereenes 93

Critical Minerals Enriched in High-Sulfidation and Low-Sulfidation Gold-Silver Veins.......... 94
CONCIUSIONS. ...ttt ettt s ettt st b s st b s s s bt sesae s bt s st en s s aneas
References Cited

Figures

1. Maps showing locations of deposits and resources of critical minerals in

VVBSTEIN STALES....cuiiiecriecteectece ettt e bbb bbb bt 3
2. Schematic diagram showing spatial relationships of deposit types broadly

associated with porphyry copper-molybdenum-gold mineral systems and

critical minerals that have been produced or occur in reserves and resources............ 14
3. Bar chart of domestic tungsten supplies during World War Il and pre- and
post-war years derived from U.S. mines and imports ......cccoeveemeneinerneincnsinsessiseisensennens 16

4. Plots of average concentrations of primary products, coproducts, and
byproducts and selected critical minerals in groups of domestic porphyry
copper-molybdenum deposits and resources, based on averages of drill core

intervals and mineral domains, compared to crustal abundances.........ccccoovrverrneenennes 67
5. Plots of inventories, consumption, and concentrations of critical minerals in
porphyry copper-molybdenum depOSItS ...t sssseesaens 68

6. Plots of concentrations of critical minerals in anode copper in operating and
shuttered or demolished refineries and in tank house slimes and partitioning of

critical minerals during COPPEr ProOCESSING ..c.ocurererureereerereereereereeeseeseeseeeesesseseeessesseseeaees 70
7. Plots of predicted and unrecovered inventories of critical minerals in refineries
AN TESOUICES ..eveeceeieieteec ettt et et bbb s bbb s st b e bbbt ss bt b b et es st s e b taen 72

8. Average concentrations of primary products, coproducts, and selected
critical minerals in domestic copper-(molybdenum) deposits and associated
replacement and vein deposits, based on average concentrations of archival

specimens and collection samples, compared to crustal abundances.........c.cccceeveunnee. 73
9. Concentrations of minerals relative to crustal abundances in
carbonate-replacement and Vein dEPOSILS .......oceerureureeeeneereereesereeseesee e seeseesenes 92

Tables

1. Production of critical minerals in districts and deposits of Western States

that are related to subduction magmatism, and possible resources of critical

minerals where quantified, semi-quantified, or quantifiable ..........ccceoeveveieeccvevccnecciens 6
2. Characteristics of the largest tungsten deposits and resources in Western States......10
3. Element concentrations averaged from multi-element geochemical analyses

of drill hole intervals in the Sunnyside porphyry copper-(molybdenum-silver)

system, Santa Cruz CoUNtY, AFiZONA ...ttt 18
4. Multi-element analyses of drill hole and surface samples for preparation

of standards and bulk metallurgical test samples, Hardshell-Alta-Hermosa

silver-manganese-lead-zinc replacement deposit, Santa Cruz County, Arizona............. 20



10.
1.

20.

21.

22,

Concentrations of primary commodities and critical minerals in approximately

7,520 intervals of diamond drill holes in the Pebble porphyry copper

AEPOSIE, AlASKA ...vieieciicteece ettt en
Average concentrations of primary commodities and critical minerals in
approximately 10,930 intervals of ~66 diamond drill holes and rotary drill

holes in the CuMo porphyry copper-molybdenum deposit; sorted for copper
concentrations of 1,000 PPM OF MOFE ...c.veeueeeerrereeeeereessreesessesssseeessessssesesssssssssssssssssssssessees
Average concentrations of antimony, arsenic, bismuth, and tungsten in drill

hole intervals in and below gold-silver-antimony resources in the Yellow Pine
district, Valley County, Idaho, composited for metallurgical recovery testing.................

Rotary, hammer, reverse-circulation, core, blast, drill holes and bulk, grab and
cut surface and underground samples in the Cripple Creek gold district, Teller
CoUNLY, COlOTAUD.....ceeeeecteeeeetc ettt ettt ettt s ettt es s

Compositions of anode copper from domestic copper smelters, 1986-2018....................
Compositions of tank house slimes from domestic copper refineries, 1986-2018...........

Copper and minor element concentrations in matte and blister copper and

tank house slimes of domestic copper refineries, 1897—-1973.......oorrcnnrererenens
Critical mineral concentrations in porphyry copper-(molybdenum) deposits

based on average concentrations in drill hole intervals, deposit domains,
mineralogical investigations, and resource and reserve toNNages........ccouveeveerrereereees
Critical mineral inventories in porphyry copper-(molybdenum) deposits

based on average concentrations in drill hole intervals, deposit domains,
mineralogical investigations, and resource/reserve tonNNages .........cocvveeuveerveseneseeenes

Critical mineral inventories of porphyry copper-(molybdenum) deposits based

on concentrations in anode copper and reserve t0NNAQES ......coceecveeveeeeeereeeeseesseeess
Estimated annual masses of critical minerals predicted in anode copper at
operating copper refineries and not recovered during production of anode

copper at shuttered or demolished copper refineries, based on concentrations

in anode copper, reserve tonnages, and MINE life .......coeoerrneerrenrneeneieese s

Average concentrations of produced commodities and some critical minerals

in archival specimens of porphyry copper-(molybdenum) deposits and

associated polymetallic skarn, carbonate-replacement, and vein deposits, and
crustal abundances of critical MINEralS ...t

Average concentrations of produced commodities and some critical minerals

in mineralized samples from mine dumps of carbonate-replacement deposits

and vein deposits in Nevada and Idaho, and crustal abundances of critical

ITHNETAIS ...ttt et bbb bbbt et ae b b ee s s et es bbbt et n b s st aen

Average concentrations of produced commodities and some critical minerals

in mineralized samples from mine dumps in the Goldfield district, Nevada, and
crustal abundances of BIEMENTS.......ccccvveeirrrirrree e
Average concentrations of produced commodities and some critical minerals

in mineralized samples from mine dumps in the Tonopah district, Nevada, and
crustal abundances of BIEMENTS.......cc.orrnirr s
Minerals containing and comprising critical minerals in subduction-related
magmatic-hydrothermal dePOSITS ..ot
Apparent annual domestic consumption and import reliance of critical mineral
commodities described in this FEPOMt.......ccccvreeerererre et eenees
Significant domestic reserves and resources, exclusive of porphyry
copper-molybdenum deposits, of some critical minerals that comprise 2 years

or more of recent (2016-2020) apparent annual domestic consumption.........ccccceuvnnne.

vii



viii

Conversion Factors

U.S. customary units to International System of Units

Multiply By To obtain

Length

inch (in.) 2.54 centimeter (cm)

inch (in.) 25.4 millimeter (mm)

foot (ft) 0.3048 meter (m)
Mass

ounce, troy 31.10 gram (g)

pound, avoirdupois (Ib) 0.4536 kilogram (kg)

ton, short (2,000 1b) 0.9072 metric ton (t)

Concentration

troy ounce per short ton 34.285 gram per metric ton (g/t)

International System of Units to U.S. customary units

Multiply By To obtain

Length

centimeter (cm) 0.3937 inch (in.)

millimeter (mm) 0.03937 inch (in.)

meter (m) 3.281 foot (ft)

kilometer (km) 0.6214 mile (mi)

meter (m) 1.094 yard (yd)
Mass

gram (g) 0.03527 ounce, avoirdupois (0z)

gram (g) 0.03215 ounce, troy

metric ton (t) 1.102 ton, short [2,000 1b]

metric ton (t) 0.9842 ton, long [2,240 1b]

Concentration
gram per metric ton (g/t) 0.02917  troy ounce per short ton

Datum

Vertical coordinate information is referenced to the North American Vertical Datum of 1988
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).



Abbreviations

Gt billion metric tons

Gst billion short tons

DDH diamond drill hole

g/t grams per metric ton

IS intermediate sulfidation

Ma mega-annum

Mt million metric tons

Mst million short tons

MRDS Mineral Resources Data System
ppb parts per billion

ppm parts per million

PGE platinum-group elements

REE rare earth elements

RIRG reduced intrusion-related gold
S-R-V skarn-replacement-vein

opt troy ounces per short ton
USBM U.S. Bureau of Mines

USGS U.S. Geological Survey

USMIN project  U.S. Mineral Deposit Database

wt %

weight percent



Chemical Symbols

Al
Sh
As
Ba
Be
Bi
Cd
Ca
C
Ce
Cs
Cr
Co
Cu
Ga
Ge
Au
Hf

aluminum
antimony
arsenic
barium
beryllium
bismuth
cadmium
calcium
carbon
cerium
cesium
chromium
cobalt
copper
gallium
germanium
gold
hafnium
indium
iridium

iron

lead
lanthanum
lithium
magnesium
manganese
mercury
molybdenum

nickel

Nb
Os

Pd

Pt

Re
Rh
Rb
Ru
Sc
Se
Ag
Na
Sr

Ta
Te
Tl
Th
Sn
Ti

[

Zn
Zr

niobium
osmium
oxygen
palladium
phosphorus
platinum
potassium
rhenium
rhodium
rubidium
ruthenium
scandium
selenium
silver
sodium
strontium
sulfur
tantalum
tellurium
thallium
thorium
tin
titanium
tungsten
uranium
vanadium
zinc

zirconium



Critical Minerals in Subduction-related
Magmatic-Hydrothermal Systems of the United States

By Peter Vikre,' David John,! Niki E. Wintzer,' Fleetwood Koutz,2 Frederick Graybeal,2 Chris Dail,® and David

C. Annis*

Abstract

During the World War and Cold War eras (1910s—1990s),
domestic consumption of numerous mineral commodities
relied increasingly on imported supplies. Consumption
reliance has since expanded to include 50 “critical minerals”
(elements and mineral commodities) that are mostly to entirely
imported and subject to curtailment by suppliers or supply
chain disruption. New domestic supplies of critical minerals
are being pursued by mining companies and by several federal
departments and agencies. Information on domestic deposits
and resources of critical minerals is being compiled by the
U.S. Geological Survey Mineral Resources Program, which
has organized investigations by mineral system, deposit type,
and commodity.

Production, reserves, resources, and inventories of
21 critical minerals in domestic magmatic-hydrothermal
deposits related to subduction-generated magmatism, and in
tailings, slag, slimes, and electrolyte from copper concentrators,
smelters, and refineries that processed some deposits, are
largely restricted to Western States and Alaska. The critical
mineral commodities Al, Sb, As, Bi, Co, fluorite, Ga, Ge,

In, Mn, Ni, Nb, Pd, Pt, potash, Re, Ta, Te, Sn, W, and V are
variably concentrated in porphyry/skarn copper-(molybdenum),
skarn-replacement-vein (S-R-V) tungsten, polymetallic

sulfide S-R-V intermediate sulfidation (IS), high-sulfidation
gold-silver, low-sulfidation gold-silver, and lithocap alunite
deposit types. These deposit types occur in porphyry
copper-molybdenum-gold, alkalic porphyry, porphyry tin
(granite related), and reduced intrusion-related mineral systems.

Production, reserves, and resources of Co, Ni, Nb, Pd, Pt,
Ta, Sn, and V in subduction-related deposits in Western States
are insignificant to small, mostly equivalent to months to a few
years of recent annual domestic consumption (2016-2020).
Significant inventories, equivalent to 2 or more years of
consumption of aluminum, antimony, potash, and tungsten in
unmined S-R-V tungsten, polymetallic sulfide S-R-V-IS, and

'U.S. Geological Survey.
2Consultant.
3Perpetua Resources.

4U.S. Forest Service.

lithocap alunite deposits vary from approximately 2 to 8 years.
Several decades of consumption of arsenic, bismuth, fluorite,
gallium, germanium, and indium exist in some polymetallic
sulfide S-R-V-IS and lithocap alunite deposit types.

Based on concentrations of critical minerals in reserves,
resources, drill holes, and deposit domains (ore types), and
in captive refinery records, the largest domestic inventories
of Sb, As, Bi, Re, and Te, and possibly Ga, Ge, In, Sn, and
W, are in porphyry copper-molybdenum (Cu-Mo) deposits
in Alaska, Idaho, Utah, and Arizona, and in interim products
of processing porphyry Cu-Mo deposit ores for recovery of
copper and molybdenum. Concentrations of critical minerals
in archival specimens and sample collections, although
somewhat biased by collection and conservation decisions and
categorization, are broadly proportionate to those in reserves,
resources, and drill holes. These concentrations imply
significant inventories of some critical minerals in deposits
for which production, resources, and refinery records are
unavailable or incomplete.

Because of the large masses of ores mined and processed
annually (hundreds of millions of metric tons) and in reserves
and resources (hundreds of millions of metric tons to billions
of metric tons), calculated inventories of critical minerals
in porphyry Cu-Mo deposits are equivalent to decades and
centuries of recent consumption. However, these inventories
should not be considered consumable supplies without reserve
definition and development of economically viable mining
plans and recovery techniques. An expeditious strategy for
elimination or reduction of import reliance is recovery, and
improved recovery efficiency, of Sb, As, Bi, Re, and Te, and
possibly Ga, Ge, In, Ni, Sn, Ti, and W; during concentration
and refining of copper and molybdenum minerals in ores
of operating porphyry Cu-Mo mines; and in unmined
porphyry Cu-Mo resources. These chalcophile, siderophile,
and lithophile critical minerals, often undetectable in ore,
are concentrated (hundreds of parts per million to percents)
in slimes and electrolyte during copper electrorefining or
could be recovered, in part, during sulfide concentration and
smelting. Other than rhenium (recovered during molybdenum
refining) and tellurium, all have been routinely discarded.

Subsidization (for example, commodity price guarantees,
tax credits, recovery technology development), political
initiative, and (or) sustained market favorability could
support new production of critical mineral commodities
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from subduction-related magmatic-hydrothermal deposits
in Western States. In addition, insufficient domestic refining
capacity could relegate the large inventories of critical
minerals in porphyry Cu-Mo reserves and resources (for
example, Pebble, Alaska; Resolution and Copper World
[Rosemont], Arizona) to exportation in concentrates and
importation insecurity, fortifying their present status.

Introduction

Critical minerals are mineral commodities “essential
to the economic and national security of the United States”
for which “the supply chain...is vulnerable to disruption”
(Executive Office of the President, 2017; U.S. Department
of Commerce, 2019). The term “critical minerals” refers
to elements and minerals that are predominantly imported
from various countries, some of which may discontinue
exports to the United States because of political disputes
or restricted availability of supplies. Presidential Executive
Order No. 13817 (Executive Office of the President, 2017)
and Secretarial Order No. 3359 (U.S. Department of the
Interior, 2017) requested the U.S. Geological Survey (USGS)
to determine possible domestic sources of critical minerals
that could offset or eliminate import reliance. In 2018 a list
of 35 critical minerals was released by the U.S. Department
of the Interior (2018) (Fortier and others, 2018); 31 were
designated import-reliant because imports provide more than
50 percent of annual domestic consumption. In 2021, zinc and
nickel were added to the list, platinum group elements (PGE)
and rare earth elements (REE) were individually listed, and
several commodities were delisted (Nassar and Fortier, 2021),
bringing the current list to 50 critical minerals. In response
to the administration orders and first critical minerals list the
USGS initiated and reorganized several projects, including the
Earth Mineral Resources Initiative; the U.S. Mineral Deposit
Database (USMIN) project; and the Systems Approach to
Critical Minerals Inventory, Research, and Assessment project,
to address domestic critical mineral supplies.

Domestic critical minerals covered in this report have
been concentrated into deposits by magmatic and hydrothermal
processes associated with plate subduction at convergent
and transform plate margins of the Western United States.
Subduction-related magmatism has been episodically
active since the Early Triassic and is represented by granitic
intrusions and volcanic fields in Arizona, California, Colorado,
Idaho, Montana, Nevada, New Mexico, Oregon, Utah, and
Washington. These igneous rocks mostly reflect partial melting
of the mantle wedge by devolatilization of subducted oceanic
crust and lesser pelagic sediments during convergent plate
subduction. Basalt magmas generated by partial melting of
mantle rocks intruded and partially melted lower and middle
crust to form hybridized magmas. Hybridized magmas
differentiated, buoyantly ascended, and erupted as andesites and
felsic volcanic rocks or crystallized as granitic and porphyritic
rocks in the upper crust. Production, resources, and inventories
of metals and critical mineral commodities in the Western States
were largely derived from, or occur in, deposits in granitic

and porphyritic intrusions, in sedimentary rocks adjacent to
intrusions, and in volcanic fields thought to overlie intrusions.
Most deposits formed during the Late Cretaceous and Cenozoic.
Those in westernmost States formed near the subduction
zone during high-angle subduction and slab rollback whereas
deposits in the Rocky Mountains States (Colorado, Montana,
Wyoming, New Mexico, and parts of Utah) are thought to
have formed when oceanic crust was subducted at low angles,
thereby heating, and melting by devolatilization lithospheric
mantle and lower crust hundreds of kilometers east of the
subduction zone. This “flat slab” magmatism generally did not
extend further east than the longitude of the Colorado Front
Range, thus limiting critical minerals covered in this report to
Western States (fig. 1; tables 1, 2).

Other smaller volume magmatism indirectly linked to
plate tectonism includes partial melting of (1) lower crust
rocks in the central and eastern Great Basin thickened by
contraction and in part heated by oceanic crust during flat-slab
subduction, (2) depressurized mantle in slab windows of the
southern Cascades magmatic arc that were created by late
Cenozoic impingement of the Pacific spreading center on the
long-lived convergent subduction zone, and (3) depressurized
mantle beneath crust in the Great Basin thinned by extension
during the late Cenozoic. The small to moderately sized
magmatic-hydrothermal deposits (less than 1 to several million
metric tons [Mt]) formed during partial melting of tectonically
thickened crust contain small masses of critical minerals.
None of the deposits in the mostly small-volume volcanic
fields of andesite, dacite, and rhyolite, and lesser basalt that
represent magmatism of slab windows and extension younger
than 17 mega-annum (Ma) contains appreciable quantities of
critical minerals relative to recent domestic consumption.

Known and suspected subduction-related
magmatic-hydrothermal deposits that contain critical minerals
can be classified under four mineral systems and seven
deposit types distinguished largely by characteristics of
associated igneous rocks, hydrothermal mineral associations,
and proportions of mineral commodities (table 1; Hofstra
and Kreiner, 2020). Mineral systems evaluated in this report
include porphyry copper-molybdenum-gold (Cu-Mo-Au),
alkalic porphyry, porphyry tin (granite related), and reduced
intrusion-related. Within these mineral systems deposit types
represented include porphyry/skarn copper-gold (Cu-Au),
skarn-replacement-vein (S-R-V) tungsten, polymetallic
sulfide S-R-V intermediate sulfidation (IS), high-sulfidation
gold-silver, low-sulfidation gold-silver, and lithocap alunite
(aluminum, potash). Assignment of some deposits containing
critical minerals to mineral systems and deposit types is
problematic because of incomplete descriptions of deposits,
especially small deposits, no known spatial or temporal
association of deposits with subduction-related igneous
rocks, and (or) deposit characteristics that do not easily fit the
classification scheme but contain mineral commodities thought
to have been concentrated by subduction-related magmatism.
Some deposits containing critical minerals are therefore
described in the “Unclassified Magmatic-Hydrothermal
Deposits” sections.
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(primary product; byproduct), reserves, and resources (including unmined deposits; mine, mill, and copper refinery
interim products) of Sh, As, Bi, fluorite, Ga, Ge, In, Mn, potash, Te, Sn, Ti, and V in Western States (table 1). B, Porphyry
copper-(molybdenum) (Cu-(Mo)) deposits in Western States. C, Porphyry Cu-Mo deposits and districts in Arizona and New

Mexico. D, Porphyry Cu-Mo deposits and districts in Nevada. E, Tungsten deposits and resources in Western States and

Alaska described in text and tabulated (open black diamonds; table 2)
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Porphyry Cu-Mo-Au mineral systems consist of
numerous deposit types including Cu-Mo-Au deposits in
intrusions (often porphyritic and mostly calc-alkaline) and
polymetallic sulfide S-R-V deposits and lithocap alunite
deposits in adjacent and overlying sedimentary and volcanic
rocks; some include high- and intermediate-sulfidation
deposits (Hofstra and Kreiner, 2020). Porphyry Cu-Mo-Au

systems occur within Phanerozoic magmatic arcs adjacent to
subduction zones, and supply more than one-half of copper
consumed annually worldwide. Critical minerals in porphyry
Cu-Mo-Au systems in the Western United States include Al,
Sb, As, Bi, Ga, Ge, In, Mn, Ni (designated a critical mineral
in 2021), potash (KCI, K,SO, salts; a critical mineral prior

to 2021), Re (a critical mineral prior to 2021), Te, Ti, W,
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10 Critical Minerals in Subduction-related Magmatic-Hydrothermal Systems of the United States

Table 2. Characteristics of the largest tungsten deposits and resources in Western States.

[Latitude and longitude in decimal degrees north and west. S-R-V, skarn-replacement-vein; t, metric ton, Mt, million metric tons; Mst, million short tons; opt, troy
ounces per short ton; ft, feet; USGS, U.S. Geological Survey.]

Deposit name Alternate name State Latitude Longitude Owner Production Resour(?e/reserve
estimate
Andrew Andrew Curtis Calif. 34.258 117.685  Curtis Tungsten, Inc. 7.55t WO, Reserves: 6,000 t W
Curtis Mine, Andrew concentrate measured; 17,000 t
Group, Alron #1, (21-50%) W indicated;
Alron #2, Tiffany- from 1974 to 216,000 t W inferred
Andrew Group, 1982 (Unruh and Graber,
4 Hi #1, Curtis 1982)
Claims, Cattle
Canyon Placers
Pilot Desert Scheelite, Nev. 38.379 117.871  Thor Mining PLC Nominal; “R.C. 18,600 t W indicated,
Mountain Aurora district Armstrong 8,600 t W inferred
shipped (Thor Mining PLC,
tungsten 2018a, b).
ore from
the Desert
Scheelite
mine to a
custom mill”
(Maurer and
Wallace,
1956).
Centennial Mount Hamilton Nev. 39.247 115.558  Mount Hamilton 1997, 7.72 Mst  Reserve: 18,200 t W
mine, Northeast Mining Company at 0.035 opt from a pre-1978
Seligman mine, Au non-43-101
Treasure Hill compliant source and
mine unverified data (SRK
Consulting, 2009a).
Indian Gambel Ranch or Nev. 41.622 114.251  Utah International, Inc.; Past producer Resource: 10,900 t W
Springs Ludwig Tunnel Azl Resources Inc.; indicated, 9,900 t W
and Norman Ludwig inferred (Moran and
Stryhas, 2007)
Browns Lake Ivanhoe, Lost Creek, Mont. 45.521 112.836  American Alloy Metals, From 1953 to 14,400 t contained W
Lentung, Red Inc and Garrand 1958, 567,477 (Werner and others,
Button mine Corp. short tons at 2014)
0.35 per-
cent WO;;
1953-58,
19,200 short
tons at 0.18
percent WO,
(Werner and

others, 2014)
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Table 2. Characteristics of the largest tungsten deposits and resources in Western States.—Continued

[Latitude and longitude in decimal degrees north and west. S-R-V, skarn-replacement-vein; t, metric ton, Mt, million metric tons; Mst, million short tons; opt, troy
ounces per short ton; ft, feet; USGS, U.S. Geological Survey.]

Basis of CM domestic .
. Elements . . CM inventory
resource/ . Ore minerals . CMin consumption .
Deposit type in besides W References
reserve present deposit resource threshold (metric tons)
estimate (2019)

“Extensive W skarn Scheelite, barite W, Ba W, Ba >2 years at No Ba Evans and others (1977);
mapping, (S-R-V; 27,600 t W inventory Raney (1982); Unruh and
sampling scheelite available Graber (1982); USGS
and mill concen- (2010a); Carroll and oth-
recovery trated ers (2018)
tests” in shear
(Unruh and zones)

Graber,
1982)

Drillcore, W skarn Scheelite, W, Cu, W >] year at None Maurer and Wallace (1956);
historic and (S-R-V) chalcopyrite, Ag, 13,800 t W Cowie (1985); Stager and
recent azurite An, Tingley (1988); Carroll

Au and others (2018); Thor
Mining PLC (2018a, b)
Drill core W skarn Scheelite; chal- Cu, Mo, W, Sb >2 years at No Sb USGS (2007); Moran and
(S-R-V) copyrite; free W, Au, 27,600 t inventory others (2009); SRK
gold; sphal- Ag, W but available; Consulting (2009a, 2012,
erite; galena; and uncertain Sb classified 2014); Carroll and others
pyrite; covel- Sb reliability as a tertiary (2018)
lite; bornite; of resource commodity
chalcopyrite; estimates
bournonite;
jamesonite
Drill core W skarn Scheelite, W, Mo, \'% >] year at None Slack (1972); Moran and
(S-R-V) powellite, Cu 13,800t W Stryhas (2007); USGS
molybdenite, (2010b); Carroll and oth-
tetrahedrite, ers (2018)
chalcopyrite,
Unspecified W skarn Chalcopyrite, W, Cu, Y >] year at None USGS (1992); Werner and
(S-R-V) powellite, Mo 13,800 t W others (2014); Carroll and
scheelite, others (2018)
bornite,
covellite,
malachite,

pyrrhotite
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Table 2. Characteristics of the largest tungsten deposits and resources in Western States.—Continued

[Latitude and longitude in decimal degrees north and west. S-R-V, skarn-replacement-vein; t, metric ton, Mt, million metric tons; Mst, million short tons; opt, troy
ounces per short ton; ft, feet; USGS, U.S. Geological Survey.]

Deposit name Alternate name State Latitude Longitude Owner Production Resour(fe/reserve
estimate
Pine Creek Black Monster, Calif. 37.362 118.704  Pine Creek Tungsten >10,000 short Resource: 10,000 t W
Snow Queen, Mining Llc, Avocet tons; mine (Werner and others,
Union Carbide Ventures Inc., and closed in 2014);
mine U.S. Tungsten Corp. 1986 (Werner
as of 1995 and others,
2014)
Springer Stank Hill, Mill Nev. 40.782 118.133  Americas Bullion ~10,800 t 1,400 t W indicated and
City, Nevada Royalty Corp. 6,900 t W inferred
Massachusetts (McCandlish and
Odell, 2012; SRK
Consulting, 2009b)
Atolia - Calif. 35.315 117.609 - ~828,339 units “a few thousand tons
WO, (6,568 t of 2% ore is in
W); 94% sight in the veins;”
from veins mill tailings were
and 6% from being retreated
placers; ~54% in 1940. Placer
of total pro- deposits contain an
duction came estimated 280,000
from Union units WO; (2,200 t
mine (devel- W) and small
oped to depth but unquantified
of 1,021 ft) amounts of Au.
Margerie Leo Mark Anthony,  Alaska 59.025 137.091  National Wilderness None Resource: 14,500 t W
Glacier Moneta Porcupine inferred (Brew and
mines, Tarr Inlet others, 1978)
CuMo CuMo; CuMo Idaho  44.034 115.783  American CuMo None Resource: 72,000 t W
Project Mining Corporation; indicated; 42,000 t
Mosquito W inferred (Jones
Consolidated Gold and others, 2011b)
Mines Ltd as of 2010;

Amax Exploration,
Inc. as of 1974 also

listed in MRDS

Sunrise Brenmac Wash.  48.008 121.5045 1952: W.E. Oldfield; None 31,730 t W in 64.5 Mt
1976: Ren Mac grading 0.319% Cu,
Mines, Ltd. 0.071% Mo, 0.062%

W, 0.002 opt Au,
0.049-0.088 opt Ag




Table 2. Characteristics of the largest tungsten deposits and resources in Western States.—Continued
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[Latitude and longitude in decimal degrees north and west. S-R-V, skarn-replacement-vein; t, metric ton, Mt, million metric tons; Mst, million short tons; opt, troy
ounces per short ton; ft, feet; USGS, U.S. Geological Survey.]

Basis of CM domestic .
. Elements . . CM inventory
resource/ . Ore minerals . CMin consumption .
Deposit type in besides W References
reserve present deposit resource threshold (metric tons)
estimate (2019)
Drill core W skarn Scheelite, W, Cu, w >1 year at None Newberry (1982); USGS
(S-R-V) bornite, Au, 13,300 t W (1996); Kurtak (1998);
chalcocite, Mo, Werner and others (2014);
chalcopyrite, Ag Carroll and others (2018)
covellite,
molybdenite,
powellite
Drill core W skarn (S-  Scheelite, W, Mo, W <1 year at None Johnson (1977); McCandlish
R-V) molybdenite, Cu 13,800t W and Odell (2012);
chalcopyrite, Americas Bullion Royalty
sphalerite Corp (2014); Carroll and
others (2018)
Geologic W veinand  Scheelite W, Au W <1 year at None Lemmon and Dorr (1940);
estimation W-Au 13,800t W U.S. Bureau of Mines
placer (1943)
Unspecified Porphyry Chalcopyrite, Cu, W, w >] year at None Brew and others (1978);
Cu pyrrhotite, Mo, 13,800 t W USGS (1988); Carroll and
powellite, Ag, others (2018)
scheelite, Au
molybdenite,
arsenopyrite,
sphalerite
Diamond Porphyry Molybdenite, Cu, Mo, W,Re, Ga >2 years at Re has re- USGS (2009); Jones and
drilling Cut+Mo chalcopyrite, Ag, 27,600 t W ported con- others (2011a, b); Giroux
and schee- W, Re, centrations and others (2015);
lite, perhaps Ga, from 0.01 Carroll and others (2018);
microscopic Pb, to 0.03 ppm Hilscher and Dykes
gallite (Cu- and in drill core (2018)
Ga8,) Zn intervals
Drill coreand ~ W-Cu-Mo Scheelite, W, Cu, W;Bi,Rein  >2 years of none Derkey and others (1990);
underground breccia chalcopyrite, Mo, concentrate recent Lasmanis (1995); USGS
workings molybdenite Au, domestic (1997)

Ag consumption
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] Figure 2. Schematic diagram
Sh, As, Bi, Ga, Ge, In, Sn, Te, V . . . .
P T e A Lithocap alunite showing spatial relationships
High-sulfidation 71 A Al Ga, potash of deposit types (black labels)
disseminated Au-(Ag) R broadly associated with, in part,
: porphyry copper-molybdenum-gold
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critical minerals that have been
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and resources (red labels). PGE,
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Te
k earth elements.
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of continental crust to form peraluminous magmas. Deposit
types represented in Western States are mostly Precambrian

and Zn (designated a critical mineral in 2021) that occur in
pegmatite deposits that have been mined for beryllium,

several deposit types. Critical minerals in other deposit types

associated subduction-related magmatism include Al, Sb, Be,

Bi, fluorite (CaF,), Li, potash, Ta, Te and Sn in polymetallic lithium, niobium, REE, tantalum, and tin (table 1). They are

sulfide S-R-V-IS deposits, high-sulfidation gold-silver not clearly related to subduction magmatism, contain minor
amounts of critical minerals relative to recent domestic

deposits, low-sulfidation gold-silver deposits, lithocap alunite
deposits, and in deposits with unclear association with consumption, and are not covered in this report.
Reduced intrusion-related mineral systems

subduction-related magmatism (fig. 2).

Alkalic porphyry mineral systems include Cu-Mo-Au form in continental magmatic arcs in and adjacent to
deposits and other deposit types that form in alkalic intrusions that assimilated sedimentary strata containing
intrusions, in adjacent sedimentary and volcanic rocks, hydrocarbons and pyrite. Deposit types include gold, skarn
and in veins in intrusions and in adjacent rocks; they also copper-molybdenum-tungsten (Cu-Mo-W), polymetallic sulfide
occur within Phanerozoic magmatic arcs and continental S-R-V-IS, disseminated gold-silver, intermediate sulfidation,
rifts. Deposit types of this system in Western States include and graphite. In Western States, few unequivocal reduced

low-sulfidation gold deposits that are mined for gold and intrusion-related deposits are known; several have been
silver and enriched in tellurium, bismuth, and vanadium and mined and explored for gold and lesser silver. Critical mineral
fluorspar deposits (table 1). concentrations and forms in them are largely unquantified.
Porphyry tin (granite-related) mineral systems include The 35 critical minerals initially listed by the Department
deposits that contain the critical minerals beryllium, lithium, of the Interior, and the recent additions zinc and nickel, are
niobium, tin, and tantalum. These deposits occur in or near mineral commodities that are produced and marketed as
elements (for example, Al, In, Ni, Te, and Zn), compounds

granitic rocks and in pegmatites that reflect partial melting



and alloys (for example, GaAs, Si,_,Ge,, SbPb, InSb, WC,
FeV, and FeMn), oxides and carbonates (for example, SbO,,
GeO,, Li,CO;, and WO,), and minerals (for example, barite,
fluorite, and potash). Critical minerals in Western States

that have been produced as primary products, coproducts,
and byproducts, and that are known to occur in elevated
concentrations in unmined deposits, in interim products of
copper concentrators, smelters, and refineries (tailings, slags,
slimes, and electrolyte), and in mine dumps, include Al, Sb,
As, Be, Bi, fluorite, Ga, Ge, In, Li, Mn, Ni, Nb, Pd, Pt, potash,
Re, Ta, Te, Sn, W, V, and Zn.

Descriptions of deposits and resources of the former
critical mineral commodities potash and rhenium were
completed prior to their delisting and are retained in this
report. More recently listed zinc is not covered because of the
anticipated time required for evaluation of the large amount
of information available. Nickel occurrences in Western
States are uncommon, insignificant relative to consumption,
and (although in part related to subduction) not related to
subduction magmatism. However, nickel in interim products of
processing streams of porphyry Cu-Mo-Au ores is potentially
recoverable in significant quantities and is correspondingly
included where processing information is available.

Elevated concentrations of Al, Sb, As, Bi, Be, Ga, Ge,
Mn, potash, and W in some deposits in Western States enabled
their production as primary products and coproducts, although
most production was small relative to domestic consumption,
short lived, and subsidized. Deposits in which critical
minerals are primary products are often not distinguishable
from coproduct critical minerals because invariably there
is insufficient published information to separate them,
fluctuating commodity prices can change the relative values
of commodities in ore and redefine ore tonnages and grades,
and some production was subsidized by guaranteed prices
and other federal government policies (for example, War
Production Board, 1942; cover image). As used herein, a
primary product is a mineral commodity that is essential to
the economic viability of a mine (profitability), the basis
for exploration, development, and sustained production. A
coproduct is one or more mineral commodities produced with
other mineral commodities because their combined value
is essential for profitable mining. A byproduct is a mineral
commodity that is recovered because it adds production value
but is not essential to mine profitability.

Production of the primary commodities Cu, Mo, Pb,

Zn, Au, and Ag in Western States enabled recovery of most
critical minerals, including Sb, As, Bi, Mn, Nb, Pd, Pt, Re,
Ta, Te, Sn, W, and V, mostly as byproducts, and in a few
deposits as coproducts and primary products. However, many
critical minerals in mined deposits occur in low concentrations
and small quantities and were never recovered because

of unprofitability, and in some cases, no world markets.

The porphyry copper-molybdenum (Cu-Mo) deposits in
Arizona, New Mexico, Utah, Montana, and Nevada contain
small concentrations of critical minerals in ores; however,
processing of large tonnages of ore annually for copper and
molybdenum recovery concentrates some chalcophile and
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siderophile critical minerals (Sb, As, Ge, In, Ni, Re, and Te),
several of which are episodically recovered and marketed
(Re and Te). Unmined porphyry Cu-Mo resources in Alaska,
Idaho, and Arizona similarly contain large inventories of these
and other chalcophile and lithophile critical minerals (for
example, Al, Ti, and Zr) that theoretically could be recovered
during ore processing for copper and molybdenum recovery.

In this report, deposits containing critical minerals are
grouped by mined deposits in which critical minerals were
primary products and coproducts (chap. A) and byproducts
(chap. B), by unmined deposits and interim products of copper
production with large critical mineral inventories relative
to recent domestic consumption (chap. C), and by deposits
with elevated concentrations of critical minerals (greater than
crustal abundances) in archival specimens and collection
samples (chap. D). Within each chapter, deposits, unmined
resources, interim products, and specimens and samples are
organized by mineral system and deposit type.

With the exception of the Pebble porphyry Cu-Mo
and Margerie Glacier tungsten deposits in Alaska, all
critical mineral occurrences described in this report are in
conterminous Western States. Locations and descriptions
of deposits and resources in Alaska that contain critical
minerals are available at the USMIN web site (https://mrdata
.usgs.gov/deposit/). Deposits and resources containing the
critical minerals Be, Li, Nb, PGE, REE, Sn, and Ta as primary
products and coproducts, although mostly related to intrusions
(for example, Elk Creek niobium, Nebraska; Mountain Pass
REE, Calif.; Round Top REE, Tex.; Stillwater Mountains
PGE, Mont.; Be-Li-Nb-Sn-Ta pegmatites, N. Mex. and S.
Dak.) (USGS and others, 1965, 1975; Bellora and others,
2019; Karl and others, 2021), include deposits in Midwestern
States that are not clearly subduction-related and therefore not
described below.

This report (1) provides a historical perspective
of critical minerals produced from subduction-related
magmatic-hydrothermal systems in the Western United States,
(2) describes significant inventories of critical minerals in
unmined deposits and mine reserves, and (3) tracks critical
minerals in interim products of copper refineries where
they comprise significant inventories but mostly are not
recovered. The report is intended to inform policy makers
of the approximate masses of domestic critical minerals
that conceivably could become supplies for consumption
if economic incentives for their mining and recovery
are enabled.

Brief History of Critical Minerals

The concept of critical minerals arose in the early
20th century with the expanded application of alloys
and compounds of C, Cr, Fe, Mn, Ni, and W that greatly
improved metal durability, machining efficacy, and
armament effectiveness (Lovering, 1944; Andrews, 1955;
Limbaugh, 2006, 2010; Schmidt, 2012). These ferroalloys
and compounds became essential to national defense and
industrial competitiveness. Their components, variously
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Tungsten, in short tons

16 Critical Minerals in Subduction-related Magmatic-Hydrothermal Systems of the United States

termed critical or strategic minerals, faced supply uncertainty
because domestic production since World War I has been
insufficient for consumption. Concerns over importation
security of tungsten and other commodities crucial for
machining and armaments escalated in the 1930s and during
World War II. Price guarantees (for example, Sb, As, Mn, and
W) (War Production Board, 1942; cover image) and other
forms of subsidization by the federal government increased
domestic production prior to and during World War II and the
Korean War; they were episodically extended into the 1960s
through much of the Cold War era. However, peak tungsten
production, for example, from domestic mines never exceeded
50 percent of required World War II supplies (approximately
equivalent to consumption) (fig. 3; Morgan, 1983); then, as
now, importation with trade route protection, as required,
secured necessary imports.

Domestic critical mineral deposits, reserves, resources,
and inventories described in this report attest to small
low-grade deposits and resources of tungsten and other critical
minerals, non-recovery of critical minerals at operating
and shuttered or demolished refineries, and disincentives
to explore for and produce critical minerals in the United
States. Many of the largest and highest-grade domestic metal
deposits were discovered and mined in the 19th and 20th

15,000 |— EXPLANATION _
I Imports
1 U.S. mine production
10,000 — —
5,000 — H k H H —
1938 1939 1940 1941 1942 1943 1944 1945 1946
Year

Figure 3. Bar chart of domestic tungsten supplies during
World War Il and pre- and post-war years derived from U.S.
mines and imports (Morgan, 1983).

centuries when there were no or small world markets for
commodities subsequently deemed critical or strategic
minerals. Comprehensive descriptions of these major deposits
and districts (for example, Ridge, 1968) seldom include
critical mineral commodities because they had no bearing on
production economics and there was no to small demand for
many. Imported supplies were generally deemed secure until
the vulnerability of oceanic shipping was revealed by World
Wars I and I1.

Before, during, and after World War II and during the
Cold War era, numerous investigations of domestic sources
of critical mineral commodities were conducted by the U.S.
Bureau of Mines (USBM) and USGS to address wartime
shortages and importation vulnerability (USBM, 1941a;
Moon, 1950; Foster, 1988). Several “underground stockpiles”
of unmined, marginal “ore” were blocked out (measured,
indicated, and inferred reserves) by drill holes, surface
excavations, underground development, and metallurgical
test work. These marginal ores were assumed recoverable,
if needed, whereas price guarantees were used to encourage
domestic critical mineral production by the mining industry.
Some cumulative tonnages of marginal ores defined by
USBM investigations are likely too small or scattered or
have grades that are too low to mine profitably today without
subsidization; for example, 1.380 million short tons (Mst)
(1.25 Mt) grading 33 to 53.5 percent fluorite are distributed
among 36 deposits, approximately 18 Mst (16.4 Mt) grading 9
to 23.2 percent manganese are distributed among 39 deposits,
and 10.6 Mst (9.6 Mt) of alunite in two deposits grading 21 to
31 percent AL, O; (table 1 in Moon, 1950).

Occurrences of many critical minerals associated with
subduction-related igneous rocks in Western States are vari-
ably described in War Mineral Reports (USBM, 1942—1945),
in collaborative reports by the USGS and state geological
surveys (for example, USGS and Montana Bureau of Mines
and Geology, 1963; USGS and Nevada Bureau of Mines,
1964; USGS and others, 1964, 1965, 1966a, 1969, 1975), and
in topical publications by the USGS, most of which stem from
World War II and Cold War era supply concerns.

Limitations and Assumptions

Evaluation of critical minerals in this report was
conditioned by the quality of published concentrations and
brevity of deposit descriptions, by incomplete access to
unpublished drill hole records and reserves of mined and
unmined deposits, and by general disinterest in critical
mineral exploration and recovery. These limitations lead to
uncertainty in classification of some deposits and necessitated
application of a mass threshold to distinguish significant
domestic inventories of critical minerals based on their current
consumption.

Quantification of critical minerals is limited by accuracy
of published concentrations, especially low concentrations
reported in pre-2000 publications. Recovery (free market and
subsidized) of some chalcophile, siderophile, and lithophile



critical mineral commodities was usually enabled by average
grades and grade ranges of percents to tens of percents (for
example, Sb, fluorite, Mn, and W). Production at these grades
obtained from published sources is therefore considered
reasonably accurate. However, multi-element analyses of
critical minerals and other commodities in ores and rocks used
in mineral deposit investigations before approximately 2000
had insufficient precision and detection limits to accurately
quantify chalcophile and siderophile critical minerals that
mostly occur in low concentrations (less than 1 percent;

for example, Bi, PGE, and Te) in deposits described in this
report. Over the past two decades multi-element analyses

with lower detection limits have been increasingly used in
mineral deposit exploration programs and reserve delineation
of unmined deposits. Concentrations of critical minerals in
exploration and deposit delineation drill holes that represent
large masses of mineralized rocks are used in this report,

as available, to evaluate critical mineral resources and
inventories in unmined deposits and resources, in addition to
those inventories determined from production and refining
records (tables 3—15). Multi-element analyses of archival
specimens and collection samples of mineralized rocks also
reveal elevated concentrations of critical minerals that portend
possibly significant inventories in numerous mining districts in
Western States (tables 16—19). Known and suspected sites of
critical minerals in deposits, resources, and interim recovery
products are listed in table 20 and described in the text.

A subjective threshold is applied in this report to distin-
guish deposits with relatively large production of a critical
mineral, equivalent to 2 years of recent domestic consumption
(tabulated in USGS, 2021; table 21), from the myriad of small
occurrences that will never materially add to consumable
domestic supplies. Deposit descriptions are therefore limited
to the largest producers, and for some critical minerals, the
only producers of a critical mineral commodity. Descriptions
of resources and inventories likewise include only those that
contain, or are suspected to contain, substantial proportions
of annual domestic consumption. If production, resource, or
inventory is equivalent to two or more years of consumption,
then it is termed significant (table 22).

Some magmatic-hydrothermal deposits clearly represent
deposit types of mineral systems (Hofstra and Kreiner, 2020)
whereas others are not closely linked to ore deposit models.
Further, some deposits have no known spatial or temporal
association with subduction-related intrusions. Some of the
unassociated deposits are in Cenozoic sedimentary rocks and
Mesozoic granitic rocks (for example, antimony mines in
the Coyote [Antimony] district, Utah; gold-silver-antimony-
tungsten deposits in the Stibnite-Yellow Pine district, Idaho;
fluorite deposits in numerous Western States), whereas other
deposits in Paleozoic and Mesozoic sedimentary rocks (for
example, Apex germanium-gallium mine, Utah; White Caps
gold-antimony-arsenic mine, Nev.) have characteristics of
intrusion-related carbonate-replacement deposits but no clear
spatial association with igneous rocks. However, the location
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and forms of deposits and mineral commodities recovered
from these unclassified deposits provisionally associate them
with subduction magmatism.

Regarding production and recovery disincentives, many
critical minerals in subduction-related magmatic-hydrothermal
deposits in Western States are mid- to small-market
commodities in which annual domestic consumption is
metric tons (t) to several tens of thousands of metric tons
(USGS, 2021; table 22). Known domestic deposits of
critical minerals are mostly too small to affect cash flows
of large mining companies and have not been the focus of
exploration programs or recovery technology. Complex and
likely expensive recovery processes would be required for
recovery or improved recovery efficiency of most small- to
mid-market critical mineral commodities. Since curtailment
of government price supports and depletion of domestic
stockpiles, world market dominance of many critical minerals
by China and other exporters with large and (or) high-grade
deposits has stifled global competition, which may limit
exploration and development of deposits of many critical
minerals. Although small exploration and mining companies
have identified significant inventories of some critical minerals
in recent years, many have minimal cash flows, rely on stock
sales for funds, and may be unable to internally fund deposit
development costs of deposits, including those containing
critical minerals.

Although large inventories of chalcophile and siderophile
critical minerals, including Sb, As, Ge, In, Re, and Sn, exist
in porphyry Cu-Mo deposits, few have been profitable to
recover. In addition to Cu and Mo, Re, Te, and small amounts
of Ni and PGE have been episodically recovered from
domestic copper refineries since the late 1800s (for example
Ely, Nev.; Inspiration, Ariz.) (Hose and others 1976; Phillips,
1980). Other chalcophile, siderophile, and lithophile critical
minerals in porphyry Cu-Mo deposits lacked demand and have
routinely not been recovered for more than a century. All but
three of 20 refineries operating in 1977 (U.S. Environmental
Protection Agency, 1977) have been shuttered or demolished;
the remaining refineries in El Paso, Tex. (Freeport-McMoRan,
Inc., 2020); Amarillo, Tex. (ASARCO); and Magna, Utah (Rio
Tinto), occasionally produce tellurium (and rhenium from
molybdenite concentrates processed offsite). Because tens of
billions of metric tons of Cu-Mo ores have been processed
since the early 20th century, substantial masses of chalcophile
and some siderophile and lithophile critical minerals, relative
to domestic consumption, exist in concentrator tailings and
refinery slimes. Concentrations of some of them are tracked in
refineries for quality control of cathode copper, the marketed
product, and are used in this report to estimate inventories in
reserves and unmined domestic porphyry Cu-Mo deposits.
The large deposit sizes (up to billions of metric tons) and
ore processing rates (tens of thousands of short tons per day)
indicate that these inventories could cover annual domestic
consumption or lessen import reliance for Sb, As, Ge, In, Re,
Te, and Sn supplies if recovery is subsidized.
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Table 3.

copper-(molybdenum-silver) system, Santa Cruz County, Arizona.

Element concentrations averaged from multi-element geochemical analyses of drill hole intervals in the Sunnyside porphyry

[Data from Granitto and others (2021). ppb, parts per billion; ppm, parts per million; wt %, weight percent; n/a, not available; DDH, diamond drill hole.]

. Depth (ft) Au Ag As Be Bi Cu Mn Mo Ph
Drill hole Samples
rom to (ppb) (ppm)
Ridge north of Volcano mine
BU-1 32 785 8 30.5 22 6114 <5 5.1 3,058.4 -- 59.3 156.9
Bucket breccia
BB-2 40 140 10 46.1 4.4 207.0 -- 178.0 4,652.3 19.5 7.0 296.8
BB-3 14 90 8 18.1 4.8 98.1 -- 58.8 2,781.6 35.6 12.7 38.5
BB-3 600 720 12 51.9 32 157.5 - 10.0 3,369.3 19.2 18.8 24.0
BB-4 12.6 200 19 43.5 3.6 411.3 -- 15.3 4,026.3 21.3 8.9 13.4
BB-6 20 120 10 23.2 8.6 476.0 -- 108.0 3,595.0 30.0 10.0 31.2
BB-6 300 490 19 49.9 12.8 1,568.4 - 27.9 4,409.1 25.0 25.1 26.2
BB-2 to BB-6 average 78 38.8 6.2 4864 <5 66.3 3,805.6 25.1 13.8 71.7
Upper Alum Canyon at waterfall
T™M38 176 5,417 19 71.5 6.3 2300 <5 48.5 3,150.1 -- 68.5 90.6
Ridgetop near Volcano mine
TRI10 665 5,448 20 22.0 49 1850 <5 2.2 3,118.2 -- 80.4 67.4
T™M-13 3,900 4,040 14 239 8.5 102.5 0.5 11.4 585.3 3,677.5 97.6 1,197.2
T™M-13 190 4,050 45 <104 1.5 7.1 <3 2.1 267.7 1,678.0 10.7  28,308.0
T™M-14 540 4,580 95 21.6 0.9 423 -- -- 105.4 18.6 12.4 14.7
T™M-14 n/a n/a n/a 17.6 0.9 31.0 -- 5.8 149.3 22.1 13.0 13.1
T™-14 n/a n/a n/a 16.7 1.8 64.2 -- 7.5 578.0 15.8 18.0 11.7
T™M-14 n/a n/a n/a 12.6 0.7 103.9 -- 7.5 381.9 13.2 29.4 8.3
T™M-14 n/a n/a n/a 14.4 1.6 32.0 -- 7.5 802.6 375 12.4 62.6
T™-14 4,400 4,580 19 8.3 2.1 63.1 -- 17.6 1,132.7 36.9 6.7 61.9
T™M-14 540 4,580 114 15.2 1.3 56.1 <5 9.2 525.0 24.0 15.3 28.7
Near Trench mine mill tailings
TCH-2 4,030 4,050 39 69.3 231.1 213 <3 652.4 54642  11,235.1 10.7  18,708.4
4653 4,949 - - - - - - - - - -
TCH-2 4,109 5,300 61 <59 40.1 237 <9 225.1 2,587.9 10,828.9 68.9 7,826.7
TCH-2A 4,100 4,390 9 10.5 1.7 13.8 0.5 10.0 148.3 4,376.3 253 118.8
SU breccia, Flux Canyon
SuU-2 241 802 3 29.7 40 1,2967 <5 43  12,010.0 -- 138.0 321.7
Ventura breccia, Ventura Canyon
4 DDH 180 2,735 11 76.7 345 2100 <5 110.9 2,808.7 -- 19,841.7 887.2
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Table 3. Element concentrations averaged from multi-element geochemical analyses of drill hole intervals in the Sunnyside porphyry
copper-(molybdenum-silver) system, Santa Cruz County, Arizona.—Continued

[Data from Granitto and others (2021). ppb, parts per billion; ppm, parts per million; wt %, weight percent; n/a, not available; DDH, diamond drill hole.]

S Sh v w Ga Ge In Li Ni Pd Pt Sn Re Te Zn
(wt %) (ppm) (ppb) (ppm)  (ppb) (ppm)

Ridge north of Volcano mine

4.1 88.1 49.3 455 203 3.6 0.5 <10 64.8 1.0 1.2 15.8 -- -- --

Bucket breccia

4.1 28.0 1.9 - - - - - -- - -- -- -- - --

3.8 12.5 1.4 -- -- -- - - -- - -- -- -- -- --

25 5.0 28 - - - - - - - - - - - -

3.0 26.4 2.2 -- - -- -- - -- -- -- -- -- -- --

4.7 87.5 1.9 - - -- -- -- -- -- -- -- -- -- --

5.0 92.4 1.9 - - - - - - - - - - - -

3.8 42.0 20 <30 - -- -- -- - - - -- -- -- --

Upper Alum Canyon at waterfall

6.5 22.4 39.0 54.8 17.3 2.3 32 20.0 11.0 1.0 0.9 9.3 -- -- --
Ridgetop near Volcano mine

7.7 9.9 57.0 55.5 11.8 2.3 0.4 620 213 1.8 1.5 8.0 -- -- --

4.5 104.5 98.6 65.4 -- - - - -- - -- -- -- -- --

1.9 52 59.1 13.9 18.5 1 0.2 248 226 - -- 3.6 36.2 0.7 556.1

3.9 7.5 3.9 -- -- -- -- - -- - -- -- -- -- --

5.5 9.4 2.2 -- - -- -- -- -- -- -- -- -- -- --

3.8 22.5 1.5 - - -- -- -- -- -- -- - -- -- -

4.9 20.4 2.7 - - -- -- -- -- -- -- -- -- - --

3.7 11.1 3.1 - - -- - -- -- -- - -- -- -- --

42 12.7 3.7 - - - - -- -- -- - -- -- -- --

43 13.9 28 <20 -- - - -- -- - -- -- -- -- --
Near Trench mine mill tailings

5.9 5.4 335 61.5 5.4 3.7 5.6 229 114 - -- 52 19.4 29.8  96,282.5

1.4 9.9 2439 0.4 8.7 1.8 1.5 456 19.0 - -- 3.0 43.8 32 9,867.0

4.5 5.0 8.8 <30 -- -- -- -- -- -- -- -- -- -- --

SU breccia, Flux Canyon
17.6 161.3 80.3 61.3 12.0 2.0 <02 <10 18.7 1.0 2.0 13.7 -- -- --
Ventura breccia, Ventura Canyon
10.4 21.1 87.4 123.4 17.9 3.7 2.2 <50 15.3 2.8 12.1 11.9 - -- -
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Table 11.
1897-1973.

[Concentrations of copper and minor elements in copper at several stages of refining (matte, blister, anode) and in electrolytic cell residue (slime, anode mud) and
electrolyte, are determined for quantification of precious metals and control of deleterious and beneficial elements. wt %, weight percent; ppm, parts per million;

opt, troy ounces per short ton.]

Copper and minor element concentrations in matte and blister copper and tank house slimes of domestic copper refineries,

Year Sample source Refinery Sample analyzed Cu Au Au Au Ag Ag Ag  AutAg
location (wt %) (wt %) (ppm) (opt) (wt%) (ppm) (opt)  (ppm)

1897 Not provided Not provided  Blister Cu! - -- 0.68- -- - 2,480- -- --

[Subsample: 10.9- 6,410-
bottom-center- 0.89 4,540
top of “ingot
block™]
1899 Copper Queen mine, Douglas, Ariz.? Matte Cu? 50.5-98.9 -- - -- -- -- -- --
Bisbee district, Ariz.
1911  Copper Queen mine, Douglas, Ariz.? Matte Cu? -- 0.0035 35 -- 0.02 200 -- --
Bisbee district, Ariz.
Butte district, Mont.  Great Falls re- Matte Cu - 0.0003 0.3 - 0.05 500 - -
duction plant,
Mont. Anode mud - 0.05-1 500- -- 23 230,000 -- --
10,000
1914 Mostly Bingham, Garfield, Utah 5,000 short tons -- -- -- 2.88 -- -- 34.80 --
Utah, Cu ore blister Cu3
Ely, Nev., Cu ore Ely (Steptoe), 3,000 short tons - -- -- 1.69 - -- 5.50 --
Nev. blister Cu3
Cu-Pb mattes from Omaha, Nebr. 800 short tons - - - 3.50 - - 230.90 -
several Pb-Ag blister Cu?
refineries
Not provided Mountain, Calif. 150 short tons - - - 14.18 - - 109.90 -
blister Cu3
Pacific coast and Tacoma, Wash. 800 short tons - - - 21.67 - - 67.10 -
Alaska Cu ores blister Cu?

1914 Butte, primarily; in Great Falls re-  Anode Cu* 99.13 - - - - - - 1,380

1926 mid-1950s ~30,000 duction plant, Apode Cu# 99.28 - - - - - - 2,410

1929 short tons per year Mont. Anode Cu# 99 30 - - - - - - 2,130

cement Cu from

1957 Yerington, Nev., Anode Cu* 99.55 -- - -- -- -- -- 960

were refined; small

amounts of matte Cu

and speiss received

from International

Smelting and

Refining at Tooele,

Utah; increased Se

(1957) from Tooele

products; Sb varied

with converter used

1934 Not provided Raritan Copper Raw slime 18.10 -- - 101.52 -- -- 5,131 --

Works, Perth  Treated slime’ 1.74 o= = 146.2 = o= 7,684 o=
Amboy, N.J.

1954 Baltimore, Md. Baltimore, Md. -- 99.43 -- 1.41 -- -- 18.7 -- --
Raritan, N.J. Perth-Amboy, N.J. - 99+ - 1.5 - - 55 - -
Tacoma, Wash. Tacoma, Wash. - 98.08 - 3.59 - -- 90.2 - -
Anaconda, Mont. Great Falls, Mont. -- 99.45 -- 0.32 -- -- 46.72 -- --

1973  Bingham, Utah, Cu Magna, Utah Anode mud 30 -- - 290 - -- 2,900 --

ore

IBlister Cu (~98%) is produced from matte by air oxidation of Cu and Fe sulfide minerals and separation from Fe oxide slag; it has characteristic nodular surfaces

from quenched SO, bubbles.

2Matte Cu (30-70%) is produced by initial melting of concentrate and gravitational removal of silicate slag.
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Table 11. Copper and minor element concentrations in matte and blister copper and tank house slimes of domestic copper refineries,
1897-1973.—Continued

[Concentrations of copper and minor elements in copper at several stages of refining (matte, blister, anode) and in electrolytic cell residue (slime, anode mud) and
electrolyte, are determined for quantification of precious metals and control of deleterious and beneficial elements. wt %, weight percent; ppm, parts per million; opt,
troy ounces per short ton.]

Pt Pd Te Te Se Se Se+Te Bi Bi As As Sh Sh

Source
(opt) (opt) (Wwt%)  (ppm) (wt%) (ppm) (ppm) (Wwt%)  (ppm) (wt%) (ppm) (wt%) (ppm)
o= o= o= 50- o= o= o= o= 50- o= 340- o= 480- Keller, 1897
270- 550- 1,080- 1,570-
190 240 740 990
- - - - - - 150-500 - - - 140-500 -~ 100-330 Douglas,
1899
- - 0.0088 88 0.0113 - - 0.0044 44 - - - - Sharwood,
1911
- - 0.001-  10-100 0.001- - - 0.03—  300-500  -- - - -
0.01 0.01 0.05
- - 2-3 20,000 2-3 - - 2-3 20,000  -- - - -
30,000 30,000
0.0034 0.0118  0.0028 2.8 0.028 = = 0.0031 31 = = = - Eiler, 1913
0.0102  0.044 0 0 0.0551 o= o= 0.0002 2 o= o= o= o=
0.0133 0.0649 0.0336  33.6 0.0133 = = 0.0094 94 = = = =
0.0132  0.0061 0.0017 1.7 0.018 = = 0.0137 137 = = = =
0.0071  0.0333 0 0 0.021 = = 0.0029 29 = = = =
- - - 170 - 90 - - 38 - 1,180 - 530  Lapee, 1962
- - - 1,030 - 110 - - 25 - 810 - 420
- - - 840 - 120 - - 57 - 880 - 730
- - - 230 - 200 . . 33 - 640 - 220
- = 5.14 = 5.31 = = = = - 56300 -- 46,600 Mosher,
= = 3.49 = 451 = = = = = 36,000 - 139,700 1934
- - 0.045 - 0.061 - - 0.008 - 0.064 - 0.031 -~ Schloen and
- - 0.02 -- 0.07 -- -- 0.002 - 0.06 - 0.1 - Elkin,
1954
- - - - 0.051 - - 0.007 - 0.06 - 0.198 -
- - 0.024 - 0.012 - - 0.003 - 0.059 -- 0.027 --
0.2 2.3 3 = 12 = = = = 2 = 0.5 - Leigh, 1973

3Element concentrations calculated from tabulated bulk analyses.
4Anode Cu (99%) is produced by removing remaining S, Fe, and O from blister Cu; it is cast into sheets for further purification (to cathode Cu) by electrolysis.
SBoiled, washed, and filtered.
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Table 12. Critical mineral concentrations in porphyry copper-(molybdenum) deposits based on average concentrations in drill hole

intervals, deposit domains, mineralogical investigations, and resource and reserve tonnages.

[Cu-(Mo), copper-(molybdenum); Mt, million metric tons; wt %, weight percent; ppm, parts per million; gd, granodiorite; cpy, chalcopyrite; bn, bornite; cc,
chalcocite; en, enargite; tn, tennantite; NR, not reported; est., estimated; USGS, U.S. Geological Survey.]

Porphyry Cu-
(Mo) system

Pebble, Alaska

CuMo, Idaho

(>0.1 wt % Cu)

Red Mountain,
Ariz.

Sunnyside, Ariz.

Hardshell-Alta-
Hermosa,
Ariz.

Ventura, Ariz.

Bingham, Utah

Yerington, Nev.

Deposit domain

Cu-Mo-Ag-Au-
mineralized gd

Cu-Mo-Ag-
mineralized rocks

Deep cpy-bn
porphyry

Near surface cc-en

Deep cpy porphyry

Near-surface cc-
en-tn

Deep polymetallic
replacement

Polymetallic
replacement

Clark deposit
Mo-Cu breccia pipe

Cu-Mo porphyry

Cu-Mo porphyry

North Rim skarn

Cu-Mo ore

Mo core

Barren core

Ore stockpile

Ann Mason Cu
porphyry

MacArthur Cu
porphyry

Resource
(Mt)

7,510

~2,270

385

100-150
1,500

800

NR

33
3.6

285

159

Reserve
(Mt)

Number
of
analyses

7,520
10,930

300

95
97
100

15

1,000

Concentrations of primary, coproduct, and byproduct commodities

Cu Mo Pb Zn Au Ag Mn
(wt %) (ppm) (wt %)
0.41 0.024 0.002 NR 0.33 1.3 -
0.16 0.03 - - - 5.7 -
0.58 0.009 - - 0.004 0.12 -
0.31 0.02 - - - - -
0.33 0.011 - - <0.002 0.16 -
0.175 <0.01 - - <0.07 0.23 -
0.4 <0.01 13.3 5.3 0.07 136.5 0.44
0.12 0.05 0.12 0.03 <0.26 347 4.84
- - - 2.31 - 78 9.08
24 24 0.89 NR 0.080 35 -
0.44 0.031 - -- 0.16 2.11 -
0.38 0.017 - - 0.2 1.79 -
3.65 - - - 1.62 20.95 -
0.69 0.106 - -- 0.41 4.9 -
0.14 0.096 - - 0.13 0.9 -
0.06 0.012 - - 0.14 0.6 -
0.29  Est. 0.007 - - - 0.66 -
0.21 - - - - - -
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Table 12. Critical mineral concentrations in porphyry copper-(molybdenum) deposits based on average concentrations in drill hole
intervals, deposit domains, mineralogical investigations, and resource and reserve tonnages.—Continued

[Cu-(Mo), copper-(molybdenum); Mt, million metric tons; wt %, weight percent; ppm, parts per million; gd, granodiorite; cpy, chalcopyrite; bn, bornite; cc,
chalcocite; en, enargite; tn, tennantite; NR, not reported; est., estimated; USGS, U.S. Geological Survey.]

Concentrations of critical minerals (value used for inventory in table 13)!

Sh As Bi Ge In PGE Re Sn Te w Data source; references
(ppm)
4 41 1 <1 <1 <0.02 <1 2 <1 13 Table 5; USGS (2013a)
1 6 3 <1 <1 NR <1 7 <1 61 Table 6; SRK Consulting
(2020)
12 27 <10 NR NR NR NR 2 34 9 Table 7; Vikre and others

(2014), Chaffee (2019)

14-105 17-183  2-11(6) 1-2(1.5) <1 <0.002 36 4-8 <1 14-65  Table 3; Vikre and others
(60) (100) 6) (40) (2014)
22-88 230-611 5-66 24(3) 1-3(Q) 0.001 NR 9-16 NR 46-55 --
(55) (420) (35) (13) (50)
7.7 22.5 438.8 2.8 3.6 NR 31.6 41 165 31 --
1,082 914 1 0.2 0.1 NR 0 2 4 10 Table 4; South32 Limited
(2020)
-- -- -- -- -- -- -- -- - -- South32 Limited (2020)
21 210 111 4 2 <0.012 NR 12 NR 123 Table 3; Vikre and others
(2014)
-- -- <54 -- 0.07 0.014  0.04-0.27 6.9 034438 -- Table 4
1.8 8.7 5.4 <1 <1 NR 0.55 6.9 4.8 21 Austin and Ballantyne (2010)
3.7 10.7 0.9 <1 <1 NR 0.09 1.3 <1 12 --
6.6 8.8 0.7 <1 NR NR NR 05 <1 1 --
20.4 1,579 -- -- -- -- -- -- -- - Gunter and Austin (1997)
<1 5.2 <1 -- <1 -- <1 1.5 <1 2.9  Cohen (2011), Hudbay

Minerals, Inc. (2021);
J. Dilles, Oregon State
University, written
commun., 2021

-- -- -- -- -- -- -- -- 2.4 -- Table 12; Lori (2010)

Values in parentheses are average concentrations.
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Table 17. Average concentrations of produced commodities (Cu, Au, Ag, Pb, Zn) and some critical minerals (Sb, As, Bi, In, Pd, Pt, Te,
Sn, Zn) in mineralized samples from mine dumps of carbonate-replacement deposits and vein deposits in Nevada and ldaho, and crustal
abundances of critical minerals.

[Data from Granitto and others (2020, 2021). Concentrations determined by FA (fire assay), ICPAES (inductively coupled plasma atomic emission
spectroscopy), and NIS-FA-INAA-PGE (nickel sulfide-fire assay-instrumental neutron activation analysis-platinum group elements). ppm, parts per million;

ppb, parts per billion.]

Au Ag Cu Pb Zn Pd Pt Ir 0s Rh Ru As
b
District Number of  (ppb) (ppm) (ppb) (ppb)
analyses C-Au-Pi
_Pd FA C-ICPAES-MS-42 C-Au-Pt-Pd FA C-NIS-FA-INAA-PGE

Eureka, Nev. I 9 3,100 200 822 11,283 4,376 <6 0.011 -- -- -- - 1,880
Eureka, Nev. II 14 6,720 1,525 1,095 35,692 15,187 2 -- -- -- -- -- 26,480
Pioche, Nev. I 4 2,590 272 902 35,750 47,800 <6 0.011 -- -- -- -- 999
Pioche, Nev. II 16 1,147 583 5,710 56,685 99,176 1.9 -- -- -- -- -- 846
Goodsprings, 12 520 145 5490 11,443 4,931 <6 <5 -- -- -- - 496

Nev. 1
Goodsprings, 20 1,575 545 2,804 30,171 34,294 1.9 0.0 -- -- -- -- 6,140

Nev. 11
Goodsprings, 5 8,644 34 36,109 364 601 3,719.2 1,195.2 958 123 235 94 249

Nev. 111
Merrimac. Nev. 9 60 70 5,596 175 9,237 <6 <19 -- -- -- -- 859
Rochester, Nev. 5 400 346 4,982 13,678 2,453 <6 <18 -- -- -- - 236
Monitor, Calif. 7 33,500 134 1,998 6,795 4,093 <6 <17 -- -- -- -- 1,439
Silver City, 3 3,300 163 187 <180 81 <6 <3 -- -- -- - 59

Idaho
Crustal abundance 1.2 0.075 60 14 70 - - - - - - 1.8

Table 18. Average concentrations of produced commodities (Cu, Au, Ag, Pb, Zn) and some critical minerals (Sb, As, Bi, In, Pd, Pt, Te, Sn,
Zn) in mineralized samples from mine dumps in the Goldfield district, Nevada, and crustal abundances of elements.

[Data from Granitto and others (2020, 2021). Concentrations determined by NIS-FA-INAA- PGE (nickel sulfide-fire assay-instri mental neutron activation
analysis-platinum group element), ICPOES (inductively coupled plasma optical emission spect ‘oscopy), FA (fire assay), CVAAS -HG, (cold vapor atomic emission
spectroscopy-mercury). ppb, parts per billion; ppm, parts per million.]

Au Ag Cu Pd Pt Ir Os Ru As Bi In
Dataset Numberof (ppb)  (ppm)  (ppm) (ppb) (ppb) (ppb) (ppm)
analyses c_N|S-FA-INAA- C-ICPOES- C-NIS-FA- C-Au-Pd- C-ICPOES- C-CVAAS-
PGE MS-49  INAA-PGE  PtFA C-NIS-FA-INAA-PGE MS-49 HG
I; samples 33 9,897 53 6,733 <2 <8 <3 <10 <0.01 <98 1,659 121 2
analyzed
2011-2020
IT; samples 15 21,915 114 32,937 4 5 - - 4 7,125 2,243 4
analyzed
2011-2020
III; samples 63 4,401 73 857 - - - - - 1,735 226 -
analyzed
1987-1994
Crustal abundance 1.2 0.075 60 - - - - - 1.8 0.0085 0.25
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Table 17. Average concentrations of produced commaodities (Cu, Au, Ag, Pb, Zn) and some critical minerals (Sh, As, Bi, In, Pd, Pt, Te,
Sn, Zn) in mineralized samples from mine dumps of carbonate-replacement deposits and vein deposits in Nevada and Idaho, and crustal
abundances of critical minerals.—Continued

[Data from Granitto and others (2020, 2021). Concentrations determined by FA (fire assay), ICPAES (inductively coupled plasma atomic emission
spectroscopy), and NIS-FA-INAA-PGE (nickel sulfide-fire assay-instrumental neutron activation analysis-platinum group elements). ppm, parts per million;
ppb, parts per billion.]

Bi In Sh Sn Te w Be Ce Co Cr Ga Li Nb Ni Sc Sr v

(ppm)

C-ICPAES-MS-42

73 7 1,719 163 19 24 <03 7 3 <20 8 <9 <27 <5 <1.6 46 8
219 2 5,467 207 47 137 1 15 41 10 6 4 6 6 2 71 14
2 19 584 43 <0.6 161 <0.4 4 1 8 8 3 0 <33 1 17 <15
23 40 596 79 16 54 1 9 28 9 58 6 1 4 2 211 32
69 2 199 2 <0.3 4 <31 10 116 11 10 <25 <15 39 2 136 43
77 14 1,713 99 28 76 1 9 38 10 18 4 2 16 2 96 24
155 14 109 10 0 2 13 1 50 14 512 3 32 79 15 26 23
152 <6 199 36 <18 5 <15 25 5 14 5 20 4 11 4 138 36
2 0 383 4 <0.1 4 1 46 3 6 12 7 3 <11 3 13 17
12 0 1,777 33 55 4 1 34 9 37 12 31 1 <59 1 758 42
21 <0.05 33 1 3 2 1 9 1 7 5 61 1 <0.6 1 72 5

0.0085 0.25 0.2 23 0001 125 2.8 665 25 102 19 20 20 84 22 370 120

Table 18. Average concentrations of produced commaodities (Cu, Au, Ag, Pb, Zn) and some critical minerals (Sh, As, Bi, In, Pd, Pt, Te,
Sn, Zn) in mineralized samples from mine dumps in the Goldfield district, Nevada, and crustal abundances of elements.—Continued

[Data from Granitto and others (2020, 2021). Concentrations determined by NIS-FA-INAA- PGE (nickel sulfide-fire assay-instrumental neutron activation
analysis-platinum group element), ICPOES (inductively coupled plasma optical emission spectroscopy), FA (fire assay), CVAAS-HG, (cold vapor atomic emis-
sion spectroscopy-mercury). ppb, parts per billion; ppm, parts per million.]

Sh Sn Te Be Ce Co Cr Ga Li Nb Ni Rb Sc Sr v w Zn Mo Pb
(ppm)

C-ICPOES-MS-49

1,418 119 60 <3 50 6 23 15 13 8§ <11 14 3 677 74 5 38 -- 378

5,163 667 385 0 30 12 16 20 26 3 25 6 2 646 62 3 8,429 7 486

1L617 377 187  — e e e e e - - — 511

0.2 23 0001 28 665 25 102 19 20 20 84 -- 22 370 120 1.25 70 1.2 14
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Chapter A

7@~ WESTERN
SCHEELITE

MILLED BY

LOVELOCK, NEVADA

Rare Metals Corporation broadside advertisement for tungsten concentrates mined and milled under
1940s-1950s price supports near Lovelock, Nevada.
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Chapter A. Primary Product and
Coproduct Production of Critical
Minerals

In this chapter, the largest, subduction-related deposits
from which the critical minerals Al, Sb, As, Be, Bi, fluorite,
Ga, Ge, Mn, Sn, W, and V were produced as primary products
and coproducts are described (fig. 14, E; tables 1, 2) and
production compared to recent domestic consumption
(tables 21, 22). Deposits described are mostly those with
production ranging from percents to tens of percents or more
of recent consumption. There are numerous small deposits
of tungsten, antimony, fluorite, and manganese in Western
States in which these critical minerals were primary products.
For example, there are approximately 285 tungsten deposits
and production sites in Western States (Kerr, 1946) and 184
antimony deposits in Nevada alone (Lawrence, 1963), many
of which produced tens to several hundred metric tons of
tungsten and antimony as primary products under war-era

price supports (Limbaugh, 2006, 2010; Karl and others, 2020).

These and other primary commodity deposits that individually
represent very small proportions of recent consumption are
not described. However, descriptions of several small critical
mineral deposits are included below if they represent the few
or only primary production sites (for example, Al, Bi, potash,
Sn, and V).

Mineral System—Porphyry Cu-Mo-Au

Deposit type—Polymetallic Sulfide Skarn,
Replacement, Vein

Arsenic (As)

Arsenic was produced for short periods during the World
Wars (mostly 1918-1919 and 1943—-1945) from arsenopyrite
in vein and replacement deposits in the Gold Hill district,
Tooele County, Utah. Production estimates vary from 24,000
to 100,000 short tons (21,820 to 90,910 metric tons [t]) of
arsenic (Huntoon, 1919; EI-Shatoury and Whelan, 1970;
Robinson and others, 1993; Robinson, 2006; Mills and Rupke,
2020). Small amounts of arsenic (approximately 1,504 short
tons [1,367 t]) were recovered from realgar and orpiment in
carbonate-replacement ores mined intermittently for gold,
antimony, and arsenic at the White Caps mine, Nye County,
Nev. (Williams, 1932; Kleinhampl and Ziony, 1984). An
unquantified amount of arsenic was produced from quartz
veins in Paleozoic strata in the Battle Mountain district,
Lander County, Nev. (Stewart and others, 1977). Small
but unquantified amounts of arsenic were recovered from
speiss, a product of smelting lead-zinc-silver-gold carbonate-
replacement and vein deposits in the Eureka district, Eureka
County, Nev. (Roberts and others, 1967).

Annual domestic consumption of arsenic from 2016 to
2020 varied from 6,120 to 10,500 t and net imports provided
100 percent of consumption (table 21; U.S. Geological
Survey [USGS], 2021). Total recorded production of

arsenic from subduction-related deposits in Western States
was equivalent to approximately 2.2 to 15 years of recent
domestic consumption.

Bismuth (Bi)

Bismuth has been recovered mostly as a byproduct in
numerous vein, skarn, and carbonate-replacement deposits in
Western States that were mined primarily for Cu, Pb, Zn, Ag,
and Au (USGS and Montana Bureau of Mines and Geology,
1963; USGS and Nevada Bureau of Mines, 1964; USGS
and others, 1964, 1965, 1969). In a few deposits bismuth
apparently was a coproduct, although production statistics that
include bismuth concentrations in ores are seldom available,
and the economics of mining are infrequently described.
Tonnages and years of production are sporadically listed in
annual reports of mining companies. In the Leadville district,
Lake County, Colo., carbonate and oxide ores containing 5 to
16 weight percent bismuth and approximately 1 troy ounce
per short ton (31.1 grams per metric ton [g/t]) of gold were
episodically mined on Breece Hill from deposits in the Lilian,
Ballard, Big Six, Penn, and other mines (Henderson, 1926;
Emmons and others, 1927; Tweto, 1968); bismuth may have
been the primary commodity during some years of mine
operation. An estimated 1,000 short tons (909 t) of bismuth
carbonate minerals were shipped in 1901 for bismuth recovery,
apparently to St. Louis, Missouri, and Liverpool, England. An
unquantified amount of bismuth was recovered at the Arkansas
Valley smelter that processed Leadville-district ores.

In the Tintic and Little and Big Cottonwood districts,
Utah County and Salt Lake County, respectively, Utah,
small amounts of bismuth recovered from polymetallic
carbonate-replacement deposits may have been a coproduct
in some ores (Hess, 1919; Kasteler and Hild, 1948; Krahulec
and Briggs, 2006). At Tintic, approximately 6.24 short tons
(5.67 t) of bismuth were produced from the Iron Blossom
mine prior to 1938 acquisition of the mine by the Tintic
Standard Mining Company (Tintic Standard Mining Company,
1938). In the Little and Big Cottonwood districts, small
amounts of copper-silver-gold ore produced in 1936 contained
approximately 3 percent bismuth (Alta United Mines
Company, 1936).

Annual domestic consumption of bismuth from 2016 to
2020 varied from 1,400 to 2,530 t and net imports provided 94
to 96 percent of consumption (table 21; USGS, 2021). Total
primary and coproduct production of bismuth from subduction-
related deposits in Western States is unknown but likely repre-
sents a few years at most of recent domestic consumption.

Manganese (Mn)

Production of manganese in the Butte district, Silver
Bow County, Mont., began in 1917 and by 1973 consti-
tuted approximately 1.85 million short tons (Mst) (1.68 Mt);
manganese was largely recovered from rhodochrosite in
Cu-Au-Ag-Pb-Zn vein deposits (Anaconda Copper Mining
Company, 1915-1955; Meyer and others, 1968; Miller, 1973)
and shipped to steel mills. In the Bisbee district, Cochise
County, Ariz., manganese oxides were produced during World
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War I (1916-1918), from 1925 to 1930, during World War 11
(1941-1943) (4,545 t of manganese) and in subsequent years
under price supports (Farnham and others, 1961; Graeme,
1981). Production of manganese ore and concentrate con-
taining approximately 40 percent manganese is estimated

at 35,000 short tons (31,818 t) (Farnham and others, 1961).
The vein-like and fissure-filling deposits occur in Paleozoic
carbonate rocks (Jones and Ransome, 1920). Manganese
oxide minerals were derived from weathering of rhodochro-
site and rhodochrosite (Schumer, 2017). In the Globe district,
Gila County, Ariz., more than 25,000 t of manganese ore and
concentrate containing less than 25 to more than 38 percent
manganese were produced from mines in the vicinity of the
town of Globe. The manganese-oxide deposits, many contain-
ing recoverable silver, occur in faults and fracture zones in
Paleozoic quartzite and diabase adjacent to Cretaceous felsic
intrusions (Jones and Ransome, 1920; Farnham and others,
1961). In the adjacent Superior district, Pinal County, Ariz.,
approximately 35,000 t of manganese-oxide ore and concen-
trate containing approximately 28 percent manganese were
mined from faults and replacement deposits in Paleozoic
limestone and quartzite, mostly under wartime and 1950s price
supports (Farnham and others, 1961). At Tombstone, Cochise
County, Ariz., small tonnages of manganese-silver oxide ore
were mined from near-surface, pipe-like deposits in Paleozoic
and Mesozoic carbonate rocks adjacent to Cretaceous felsic
intrusions (Jones and Ransome, 1920; Butler and others,
1938). Production, mostly during wartime and enabled in
part by silver content, was approximately 13,000 short tons
(11,818 t) grading approximately 35 percent manganese
(Farnham and others, 1961).

In the Leadville district, Colo., approximately 3.2 Mt of
metallurgical and flux grade (approximately 15-45 percent
manganese) manganese-oxide ore and larger tonnages of
lower grade manganese-iron-silver-silica (SiO,) oxide
ore were mined from oxidized zones of Pb-Zn-Cu-Au-Ag
replacement and vein deposits in Paleozoic carbonate rocks,
in part under wartime price guarantees. These oxide ores were
used locally for smelting low-grade lead-silver ores and in
steel manufacturing in Pueblo, Colo., and eastern facilities
(Emmons and others, 1927; Hedges, 1940; Tweto, 1968). In
the Gilman district, Eagle County, Colo., 0.21 Mst (0.19 t)
of manganese-oxide ore averaging 15 percent manganese
were mined from the oxidized zones of Cu-Ag-Zn-Pb-Au
manto and chimney replacement deposits in Paleozoic
carbonate rocks (Radabaugh and others, 1968). More than
1.1 Mst (1 Mt) of manganese-oxide ore were produced from
Pb-Zn-Cu-Ag-Au replacement, vein, and pipe-like deposits
in Paleozoic sedimentary rocks in the Pioche, Bristol, and
Jackrabbit districts, Lincoln County, Nev. (Tschanz and
Pampeyan, 1970). In the Tintic district, Utah, approximately
735 short tons (668 t) of manganese were produced in
1931 (Chief Consolidated Mining Company, 1931), with
manganese production likely in previous and subsequent
years. Manganese oxide was reportedly shipped to steel
mills from Tintic mines (James, 1984; Krahulec and Briggs,
2006); tonnages and years are intermittently listed in annual

reports of Tintic mining companies. At Leadville, Gilman,
and Pioche the manganese-oxide ores consist primarily

of manganosiderite or were derived from weathering of
manganosiderite; some manganese ores contained small

to significant amounts of Ag, Au, Zn, Pb, Cu, and Bi. At
Leadville, manganosiderite comprised “haloes” around
lead-zinc sulfide deposits (Hedges, 1940). Most manganese
oxides were produced in these districts under price guarantees
during World War II.

Annual domestic consumption of manganese from 2016
to 2020 varied from 530,000 to 794,000 t and net imports
provided 100 percent of consumption (table 21; USGS,
2021). The estimated total primary and coproduct production
of manganese from subduction-related deposits in Western
States, for the same time period, is approximately equivalent
to 20 years of recent domestic consumption, although total
mined tonnages of manganese cannot be precisely calculated
because some production is reported as manganese-oxide ores
with unquantified or a range of manganese grades.

Vanadium (V)

At the St. Anthony mine, Mammoth district, Pinal
County, Ariz., Pb, Zn, Au, V, and lesser Cu, Mo, and Ag
were recovered from vein deposits in Laramide(?)-age
quartz monzonite and Cenozoic rhyolite. Approximately
710 short tons (645 t) of vanadium (2,540,842 pounds of
vanadium oxide) were produced from 1934 to 1944 possibly
as a coproduct; vanadium occurred primarily in vanadinite.
In 1938, mill concentrate contained 0.4-0.5 percent WO,;
tungsten is contained in wulfenite and vanadinite (Creasey,
1950; Creasey and Pelletier, 1965). Mill tailings analyzed
during World War II contained approximately 560 parts per
million (ppm) vanadium (Kaiser and others, 1954), indicating
that elevated concentrations of tungsten and vanadium
may remain in tailings. Small amounts of vanadium in
vanadate minerals were produced as byproducts from several
porphyry Cu-Mo and polymetallic carbonate-replacement
deposits in Arizona, New Mexico, Nevada, and California
(Fischer, 1975).

Annual domestic consumption of vanadium from 2016
to 2020 varied from 4,800 to 9,980 t and net imports provided
94 to 100 percent of consumption (table 21; USGS, 2021).
Coproduct vanadium production from the St. Anthony mine
represents less than 1 year of recent domestic consumption.

Deposit type—Skarn-Replacement-Vein (S-R-V)
Tungsten

Tungsten (W)

The tungsten-skarn deposits near Bishop, Inyo County,
Calif., were the largest domestic source of tungsten with
production of 24,878 t of tungsten, 7,760 t of molybdenum,
and 8,910 t of copper from 1916 to 1965 (Gray and others,
1968; Werner and others, 2014; table 1). Most of the
approximately 6 Mt processed were produced by the Pine
Creek mine where ore was extracted from five irregular
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bodies that averaged 0.7 percent WO, (Dixon, 1979) and

less than 1 percent molybdenum and copper. Oxide and
sulfide minerals in ore included scheelite bornite, chalcocite,
chalcopyrite, covellite, molybdenite, powellite, and small
amounts of bismuthinite which were variably concentrated

in skarn consisting of garnet, pyroxene, and lesser quartz,
calcite, orthoclase, idocrase, and plagioclase. Tactites formed
along the contact between Early Cambrian to Late Triassic
metasedimentary rocks and sills of middle Cretaceous Morgan
Creek quartz monzonite (Bateman, 1956; Gray and others,
1968; Newberry, 1982; Karl and others, 2020). Scheelite was
later remobilized during hydrosilicate alteration during which
wollastonite and idocrase were replaced by calcite-quart
z-epidote-chlorite-fluorite assemblages (Newberry, 1982).
Additional attributes of the Pine Creek tungsten deposits, other
tungsten deposits with relatively large production described
below, and deposits with significant tungsten resources
described in chapter C, are compiled in table 2.

The Springer mine (also known as
Nevada-Massachusetts), Pershing County, Nev., and nearby
mines produced approximately 10,810 t of tungsten from
deposits in Late Triassic marine sedimentary rocks adjacent
to Cretaceous granodiorite of the Springer, Uncle Sam, and
Olsen stocks (Johnson, 1977; Associated Geosciences, Ltd.,
2012). Average grade during production years (1918—-1958)
was 0.875 percent WO;. Production was episodic because of
high wartime demand and intervening periods of unsupported
tungsten prices. Tailings were reprocessed several times
during periods of guaranteed prices. Ore occurs in masses
of skarn hundreds to more than 1,000 feet (ft) (330 meters
[m]) in lateral dimension and 3 to 6 ft (1-2 m) wide that
consist of quartz, garnet, epidote and scheelite from which
tungsten was recovered (Johnson, 1977). Later remobilization
formed coarse-grained scheelite aggregates and fine- to
medium-grained euhedral scheelite crystals (Associated
Geosciences, Ltd., 2012). In addition to tungsten in scheelite,
ore contained molybdenum and copper in molybdenite and
chalcopyrite, respectively, that apparently were not recovered
(McCandlish and Odell, 2012).

In the Atolia district, San Bernardino and Kern Counties,
Calif,, relatively high-grade, steeply dipping, scheelite-quartz-
carbonate veins (3.5 to 8.5 weight percent WO;) were mined in
and adjacent to the Cretaceous Atolia Quartz Monzonite intru-
sion. At least 6,568 t of tungsten were produced from vein ores
and lesser placer deposits (Lemmon and Dorr, 1940; USBM,
1943; Bateman and Irwin, 1954; Gavryliv, 2020). Production,
which included tailings reprocessing, spanned 1905-1950 and
was episodic, as at other domestic tungsten mines, because of
fluctuating demand and sporadic price supports.

The tungsten-skarn deposit at Browns Lake, Beaverhead
County, Mont., produced 567,477 t grading 0.35 percent
WO; from 1953 to 1958 (approximately 1,432 t of tungsten)
(Werner and others, 2014), and 19,200 short tons (17,455 t)

grading 0.18 percent WO, were mined from 1952 to 1956.
From 1970 to 1975, approximately 12,500 short tons
(11,364 t) were mined that yielded about 14 units WO,
(Stager and Tingley, 1988). The deposit is enriched in copper
and molybdenum (Pattee, 1960; Karl and others, 2020), but
apparently neither was recovered. Rocks that host ore are the
Pennsylvanian Amsden Formation (Geach, 1972) and quartz
monzonite of the Late Cretaceous to Paleocene Mount Torrey
batholith (Peters, 1971). Primary oxide and sulfide minerals
are scheelite, chalcopyrite, bornite, covellite, and powellite
(Pattee, 1960; Karl and others, 2020), and skarn minerals
include garnet, limonite, specular hematite, and epidote
(Peters, 1971).

Although annual domestic production and consumption
of tungsten from 2016 to 2020 have not been quantified,
imports for consumption varied from 11,000 to 14,450 t, and
net imports provided more than 25 percent of consumption
(table 21; USGS, 2021). If imports for consumption
approximate consumption, then tungsten production from
deposits at Pine Creek, Springer, Atolia, and Browns Lake
is each equivalent to approximately 2 to less than 1 year of
recent domestic consumption.

Deposit type—Lithocap Alunite
Aluminum (Al) and Potash (KCl, K,SO,, KNO,)

In Utah, small amounts of high-grade alunite
(approximately 0.31 Mst) were mined from vein and lesser
replacement deposits in Cenozoic volcanic rocks near
Marysvale (Piute, Sevier, and Beaver Counties) and at
Blawn Mountain (Beaver County) where it was processed
for aluminum and potash fertilizer during World Wars I and
II (Thoenen, 1941; Hild, 1946; USGS and others, 1964;

Hall, 1978; Lowe and others, 1985; Mills and Rupke, 2020;
SOPerior Fertilizer Corp., 2021). In Nevada, three “carloads”
of alunite were shipped from a lens of impure alunite in
Cenozoic volcanic rocks near Boyd, Lincoln County, Nev.,
for use as fertilizer (Tschanz and Pampeyan, 1970; Lowe
and others, 1985). At Sulfur, Humboldt County, Nev., an
estimated 500 short tons (455 t) of alunite were mined from
several high-angle veins (Vanderburg, 1938); small alunite
resources may exist in resistant quartz-alunite knobs and
ridges to the west of Sulfur. Other explored alunite deposits
in Arizona, Colorado, Nevada, and Utah have small to no
recorded production.

Annual domestic consumption of aluminum from 2016 to
2020 varied from 2.87 to 5.68 Mt and net imports provided 13
to 59 percent of consumption (table 21; USGS, 2021). Annual
domestic consumption of potash from 2016 to 2020 varied
from 5.1 to 6.2 Mt and net imports provided 88 to 92 percent of
consumption (table 21; USGS, 2021). Production of aluminum
and potash from subduction-related alunite deposits in Western
States was miniscule relative to recent consumption.



Chapter A. Primary Product and Coproduct Production of Critical Minerals 59

Mineral System—Porphyry Tin (Granite Related)
Deposit Type—Porphyry/Skarn
Tin (Sn)

In California, approximately 130 t of tin were recovered
from quartz-tourmaline-cassiterite veins and pipes in the
Temescal district (Riverside County) (Bedford and Johnson,
1946; USGS and others, 1966a). Veins are in Cretaceous
hornblende-biotite quartz monzonite.

The Majuba Hill copper-(tin, silver, gold) deposit
(Pershing County, Nev.) consists of breccias and veins in nested
and juxtaposed Oligocene rhyolite domes and sub-volcanic
intrusions with varietal textures and compositions. The rhyolites
intruded Mesozoic argillite and siltstone. From 1906 to 1951,
Majuba Hill area mines produced approximately 1,100 short
tons (1,000 t) of copper; 184,000 troy ounces (5.7 t) of silver;
440 short tons (400 t) of lead; less than 5,253 troy ounces
(0.16 t) of gold, minor zinc, and approximately 10 to 15 short
tons (9.1-13.6 t) of tin. Production was primarily based on
copper concentrations (chalcopyrite). Recovery of tin, which
occurred in a separate deposit of cassiterite, was apparently
feasible because of mine development for copper extraction
(Smith and Gianella, 1942; Trites and Thurston, 1958;
Wenrich and others, 1986; Bookstrom and MacKenzie, 1978;
Holmwood and others, 2021), and was likely a short-lived
coproduct. Elevated tin and copper concentrations of up to
95.4 and 31,800 ppm, respectively, occur among 994 soil
samples adjacent to the rhyolite intrusions to the south and west,
although concentrations in part may reflect windblown tailings
from a dismantled recovery plant (Morris, 2017).

Minor tin deposits, with very small production relative
to recent annual domestic consumption, occur in the Taylor
Creek district, N. Mex., and in the Thomas Range and Wah
Wah Range, Utah (Volin and others, 1947; USGS and others,
1965; Eggleston and Norman, 1986; Maxwell and others,
1986; Duffield and others, 1990, 1995).

Annual domestic consumption of tin from 2016
to 2020 varied from 32,000 to 36,800 t and net imports
provided 75 to 77 percent of consumption (table 21; USGS,
2021). Total primary and coproduct production of tin from
subduction-related deposits in Western States was miniscule
relative to recent consumption.

Unclassified Magmatic-Hydrothermal Deposits
Antimony (Sh), Arsenic (As), and Tungsten (W)

Deposits mined for antimony are widespread in Western
States (USGS and Montana Bureau of Mines and Geology,
1963; USGS and Nevada Bureau of Mines, 1964; USGS and
others, 1964, 1965, 1969). The few deposits with relatively
large production (more than 100 short tons [91 t] of antimony)
are mostly in Idaho, Nevada, and Utah. Numerous smaller
antimony deposits were mined primarily during World War II
under government price support programs.

In the Stibnite-Yellow Pine district, Valley County, Idaho,
approximately 44,000 short tons (40,000 t) of antimony,
approximately 1 million troy ounces (31.1 t) of gold,

2.1 million troy ounces (65.3 t) of silver, and 0.86 million
units of tungsten (approximately 6,200 t) were produced
from two fault zones (tens of meters wide) in Cretaceous
granitic plutons of the Idaho batholith and in a pendant of
late Proterozoic—early Paleozoic siliciclastic and carbonate
strata. Largely cospatial and juxtaposed deposits of gold,
silver, antimony, and tungsten in the Meadow Creek fault
zone represent several hydrothermal events in which stibnite,
the source of recovered antimony, is among the youngest
epigenetic minerals. Stibnite and other recovered commodities
(gold and silver minerals, scheelite) occur with quartz,
potassium-feldspar, muscovite, and carbonate minerals in
breccia fragments, breccia matrices, and veins that comprise
the Meadow Creek fault zone (Perpetua Resources, 2021;
Vikre and others, in press).

In Nevada, the fifteen deposits which each produced
100 or more short tons (91 or more t) of antimony (reported
production varies somewhat by source) are mostly in the
Humboldt, South Humboldt, Trinity, and Clan Alpine ranges
in Pershing, Churchill, and Lander Counties. The deposits
occur in Mesozoic limestone, calcareous shale, and lesser
siliciclastic and volcanic rocks; some are in or adjacent to
Cretaceous granitic intrusions (Lawrence, 1963; Johnson,
1977; Vikre, 1977). The antimony-only vein deposits of the
Humboldt Range and South Humboldt Range include the
Bloody Canyon mine which produced approximately 1,200
short tons (1,090 t) of antimony (Lawrence, 1963) (100 short
tons [91 t] according to Lowe and others, 1985). Mined veins
were up to 10 ft (3 m) wide, consist primarily of quartz,
stibnite, and lesser pyrite, and occur in Early Triassic rhyolites
of the Koipato Group (Vikre, 1977, 2014). Several hundred to
more than 1,000 short tons of antimony recovered from other
vein deposits in these ranges occur in Triassic and Jurassic
carbonate and siliciclastic strata (Lowe and others, 1985).

The largest of these deposits, the Sutherland mine, produced
1,542 short tons (1,402 t) of antimony (Lowe and others,
1985). The broadly elliptical distribution and ages of antimony,
mercury, tungsten, and gold deposits in the Humboldt Range
have been attributed to thermal zoning around Cretaceous
intrusions (Vikre and McKee, 1985; Vikre, 2014). Antimony
was likely a coproduct in contact deposits adjacent to

granitic intrusions (for example, Arabia district) from which
appreciable silver and lead were recovered. The cluster of
quartz-stibnite-sulfide vein deposits mined for antimony in the
Bernice Canyon area (Churchill County), with production of
tens to more than 100 short tons (91 t) of antimony, are also in
Mesozoic sedimentary rocks, some near highly altered dikes.
The Bray-Beulah and Antimony King mines in the Toiyabe
Range (Lander County) produced more than 908 and 450
short tons (825 and 409 t) of antimony, respectively, from
quartz-stibnite veins in Paleozoic siliciclastic rocks (Lawrence,
1963; Lowe and others, 1985). In all deposits antimony was
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recovered mostly from stibnite and antimony-oxide minerals
formed by weathering; minor amounts of antimony were
recovered from Pb-Sb-Fe-Ag-S minerals.

In the Coyote (Antimony) district, Piute County, Utah,
antimony was recovered from horizontal lenses consisting
of fractured sandstone, veins, and small masses of stibnite
and antimony oxides within a sequence of Paleocene
conglomerate, sandstone, and shale exposed in Antimony
Canyon (Traver, 1949; USGS and others, 1964; Callaghan,
1973; Mills and Rupke, 2020). The extent of stopes and mine
dumps implies modest production, but tonnages have not been
published. Using an estimated value of production ($100,000)
(Traver, 1949) and an average price of antimony from 1900
to 1920 ($0.115 per pound [Ib]) (Carlin, 2013), approximately
395 t of antimony were produced.

At the White Caps mine, Nye County, Nev., gold,
antimony, and arsenic were recovered from pipe-like and
stratiform replacement deposits consisting of quartz, calcite,
fine-grained gold, stibnite, realgar, orpiment, and other sulfide
minerals; deposits are mostly in the Cambrian White Caps
Limestone Member of the Gold Hill Formation (Kral, 1951;
Lawrence, 1963; Kleinhampl and Ziony, 1984). Apparently, no
igneous rocks occur in the immediate vicinity of the deposits.
Gold, antimony, and arsenic were produced both simultaneously
and separately from approximately 1912 through at least
1967. Simultaneous production from 1931 to 1940 was
approximately 34,000 short tons (30,909 t) with estimated
average gold grade between | and 2 troy ounces per short
ton (32 and 54 g/t), antimony between | and 2 weight percent,
and arsenic between 2 and 3 weight percent (Williams, 1932).
An earlier shipment (circa 1920) of arsenic-gold ore contained
approximately 335 short tons (305 t) of arsenic (Kral, 1951).
Small amounts of ore cumulatively containing several tens of
short tons antimony were shipped to smelters and processing
facilities until 1958 (Lawrence, 1963). Total ore production to
1967 was approximately 152,000 short tons (138,182 t) and
included approximately 142 short tons (129 t) of antimony and
approximately 1,504 short tons (1,367 t) of arsenic, presumably
all produced from the White Caps mine (Williams, 1932; Couch
and Carpenter, 1943; Kleinhampl and Ziony, 1984).

Annual domestic consumption of antimony from 2016 to
2020 varied from 22,000 to 27,700 t and net imports provided
81 to 84 percent of consumption (table 21; USGS, 2021).
Total primary and coproduct production of antimony from the
largest deposits in Western States relative to recent domestic
consumption cannot be calculated because of incomplete
records but may be approximately equivalent to 2 to 5 years
of recent annual consumption (table 22). Tungsten produced
in the Yellow Pine district during World War II, and arsenic
produced from the White Caps mine, represent about one half
year and several months, respectively, of recent consumption.

Beryllium (Be)

At the Spor Mountain mine, Juab County, Utah, beryllium
occurs in Paleozoic carbonate clasts (~25 mega-annum [Mal);
the clasts have been replaced by bertrandite (Be,Si,O,(OH),),
fluorite, calcite, and silica. Beryllium is thought to have

been sourced by hydrothermal leaching of volcanic glass

in overlying topaz rhyolite. Pegmatite and non-pegmatite
beryllium deposits occur near and west of the Spor Mountain
mine (Mills and Rupke, 2020). Annual production of beryllium
since 1970 has varied from approximately 65 to 260 short

tons (59 to 236 t) (Mills and Rupke, 2020). Annual domestic
consumption of beryllium from 2016 to 2020 varied from

179 to 202 t and net imports provided 4 to 18 percent of
consumption (table 21; USGS, 2021). The annual beryllium
production of the Spor Mountain mine is broadly equivalent to
annual domestic consumption.

Fluorite (CaF,)

Fluorite has been mined in numerous Western States from
widely distributed vein, breccia, and carbonate-replacement
deposits (USGS and Montana Bureau of Mines and Geology,
1963; USGS and Nevada Bureau of Mines, 1964; USGS and
others, 1964, 1965, 1969). Most deposits produced hundreds
to several tens of thousands of short tons of fluorite ore in
three grades (acid [more than 97 percent fluorite], flux, and
metallurgical [60-85 percent fluorite]); a few had larger
production. Some deposits contained small amounts of
beryllium and REE.

In Nevada, fluorite was recovered from many vein,
breccia, and replacement deposits, two of which produced
more than 100,000 short tons (90,909 t) of fluorite. At the
Daisy mine (Nye County) approximately 200,000 short tons
(181,818 t) of fluorite were produced from replacement
deposits in low-calcium dolomite with no megascopic
alteration. Minor montmorillonite occurred with fluorite,
most of which was hand-sorted to acid-grade (<1.5 weight
percent silica and other impurities). At the Baxter mine
(Mineral County) approximately 182,000 short tons
(165,455 t) of fluorite were produced from veins and a fault
zone in Cenozoic andesite and tuff weakly altered to quartz,
montmorillonite, and lesser sericite (Papke, 1979).

In Utah, approximately 350,000 short tons (319,182
t) of 60- to 90-percent fluorite ore, some containing beryl-
lium, have been produced in the Spor Mountain district from
breccia pipes and lesser vein and disseminated deposits in
Paleozoic dolomites. The largest single producer at approxi-
mately 110,000 short tons (100,000 t) is the Lost Sheep
mine where fluorite was mined from pipe-like replacement
deposits; new production commenced in 2018 (Bullock,
1976, 1981; Mills and Rupke, 2020; Ares Strategic Mining,
Inc., 2021).

In New Mexico, fluorite was mined from many vein,
breccia, and replacement deposits in Cenozoic igneous and
eruptive rocks, in Precambrian granitic rocks, and in Paleozoic
sedimentary rocks. Deposits in Precambrian rocks are spatially
associated with Cretaceous and Tertiary intrusions. Production
of nearly all individual deposits is tens to tens of thousands of
short tons. Deposits in the Zuni Mountains (Valencia County)
produced approximately 182,000 short tons (165,455 t) of
“crude fluorspar ore,” most of which was recovered from
vein deposits in Precambrian granitic rocks (No. 21 and No.
27 mines; McAnulty, 1978).
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In Colorado, approximately 190,000 short tons
(172,727 t) of fluorite were produced from the Wagon Wheel
Gap mine (Mineral County) from 1913 to 1948 (Steven, 1968;
Steven and Lipman, 1973). The deposit consists of veins and
fluorite-filled fractures in Cenozoic volcanic rocks of the
Creede caldera and also contains pyrite, quartz, barite, calcite,
and halloysite.

Annual domestic consumption of fluorite from 2016 to
2020 varied from 368,000 to 450,000 t, and imports provided
100 percent of consumption (table 21; USGS, 2021). Total
primary production of fluorite from fluorite deposits in
Western States cannot be precisely calculated because some
production is reported as fluorspar ore with unquantified
grades. Recorded production is apparently equivalent to a few
years at most of annual domestic consumption.

Germanium (Ge) and Gallium (Ga)

The Apex mine, Washington County, Utah, produced
approximately 7,000 t of copper, 400 t of lead, 180,000 troy
ounces (5.6 t) of silver, and minor zinc and gold (Bernstein,
1986; Foster, 1991) under two operators between 1884 and
1992. From 1985 through the early 1990s, the mine also
produced germanium and gallium which occur at grades of

0.5 to 0.7 weight percent in aggregates of iron and copper
oxide, carbonate, and sulfate minerals. Most germanium
was recovered from goethite and most gallium from jarosite.
The germanium-gallium ore remained from earlier mining
of copper-lead-silver-oxide minerals in chimney-like
deposits within subparallel fault zones in Pennsylvanian
Callville Limestone (Bernstein, 1986). Remnant pyrite,
galena, sphalerite, and chalcopyrite suggest germanium and
gallium were enriched by weathering of these and possibly
other sulfide minerals. Deposit characteristics (host rock,
form, and mineralogy) are similar to intrusion-related
carbonate-replacement deposits, although nearby igneous
rocks have not been described. Alternatively, the deposit has
been interpreted as a solution-collapse breccia pipe (Wenrich
and Verbeek, 2014).

Annual domestic consumption of germanium from 2016
to 2020 is estimated at 30 t, and imports provided more than
50 percent of consumption (table 21; USGS, 2021). Annual
domestic consumption of gallium from 2016 to 2020 varied
from 14.9 to 17.9 t, and imports provided 100 percent of
consumption (table 21; USGS, 2021). Because germanium and
gallium production from the Apex mine has not been reported,
it cannot be compared to annual domestic consumption.
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Photograph showing marketed forms of high-purity critical minerals bismuth, zinc, and tin.



Chapter B. Byproduct Production of
Critical Minerals

Deposits in which the critical minerals Sb, As, Bi,
fluorite, Mn, Ni, Nb, platinum-group elements (PGE [Pd,
Pt]), Re, Ta, Te, Sn, W, and V were produced as byproducts
are listed on table 1 and shown on figure 14. Most have
been recovered where economically feasible from deposits
in which Cu, Pb, Zn, Au, and Ag were the primary and
coproduct commodities. Byproduct commodity recovery was
enabled by (1) elevated concentrations in Cu-Pb-Zn-Au-Ag
ores, (2) available recovery techniques, (3) existing world
markets, and (4) processing capacity. Processes that recover
copper and molybdenum from the large masses of porphyry
copper-molybdenum (Cu-Mo) deposit ores mined daily (tens
of thousands of metric tons [t]) simultaneously concentrate
by factors of 103 or more some chalcophile and siderophile
elements (including Sb, As, Bi, Ni, PGE, Re, and Te) with
very low concentrations in ores.

Mineral System—Porphyry Cu-Mo-Au

Deposit type—Porphyry/skarn Copper

Antimony (Sb), Bismuth (Bi), Nickel (Ni), Platinum-Group
Elements (PGE), Rhenium (Re), and Tellurium (Te)

Small but mostly unquantified amounts of Sb, Bi, In,
Ni, PGE, Re, and Te have been recovered during refining
of ores from porphyry Cu-Mo deposits in Nevada, Utah,
Arizona, and other Western States (Eiler, 1913; Hess, 1919;
Hose and others, 1976; Parker, 1978; Phillips, 1980; Foster,
1991; Peterson, 1993; chap. C). The critical minerals Sb,
Bi, In, Ni, PGE, and Te have been episodically recovered
at copper refineries in Amarillo and El Paso, Texas; Magna,
Utah; Miami, Arizona; and Great Falls, Montana (Foster,
1991). Rhenium is currently recovered at molybdenum
processing facilities in Arizona and other locations. Tellurium
has been recently sold by the copper refinery in Amarillo
(ASARCO, 2021), and annual tellurium recovery of 20 t is
planned for Magna (Rio Tinto, 2021a). Tellurium and other
critical minerals (Sb, As, Bi, Co, Ge, In, Ni, and Sn) also
have been episodically recovered at lead and zinc refineries
in numerous States (including Utah, Washington, Idaho,
Montana, Nebraska, Missouri, Texas, and Tennessee); nearly
all the refineries that were in operation in the 1970s and 1980s
(Parker, 1979; Foster, 1991) are shuttered or demolished.

In addition to the large production of copper,
molybdenum, gold, and silver from deposits that comprise
the Bingham Canyon porphyry Cu-Mo deposit, PGE (Pd,

Pt), rhenium, and tellurium have been episodically produced
(John and Taylor, 2016; Nexhip, 2016; Krahulec, 2018; Rio
Tinto, 2021b). These byproducts were recovered at the nearby
refinery in Magna, Salt Lake County, Utah, other earlier
facilities (Garfield copper refinery), and offsite, although
production data for PGE, rhenium, and tellurium have not
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been routinely published. The Bingham porphyry Cu-Mo
deposits include the Bingham porphyry Cu-Mo deposit
(Bingham Canyon mine), Ag-Pb-Zn carbonate replacement
deposits (Lark and U.S. mines), Cu-Au skarn deposits
(Highland Boy and Carr Fork mines and North Rim skarn)
(Cameron and Garmoe, 1987), copper-rich massive sulfide,
manto-like siliceous replacement deposits, polymetallic
(Pb-Zn-Cu-Ag-Au) veins (Tomlinson and others, 2021), and
distal disseminated silver deposits (Barneys Canyon and
Melco mines) (Presnell and Parry, 1996; Gunter and Austin,
1997). PGE, rhenium, and tellurium, recovered in recent
decades as world markets developed and expanded, were
apparently derived from the porphyry Cu-Mo deposit as the
carbonate-replacement, skarn, vein, and distal disseminated
deposits have not been mined since 2001. At Magna, these
critical minerals are mostly concentrated in electrorefining
slimes. Approximately 1 short ton per year rhenium is
recovered from smelter gases (Nexhip, 2016).

Compared to other porphyry Cu-Mo deposits, the
sites, distribution, and concentrations of PGE, rhenium,
and tellurium in the Bingham porphyry Cu-Mo deposit are
relatively well-documented. Whole-rock samples, including
those with more than 2,000 parts per million (ppm) copper
and 0.13 to 0.14 grams per metric ton (g/t) gold, average 8
to 12 parts per billion (ppb) palladium and 2 ppb platinum
(Kocher, 2017; Sinclair and Jonasson, 2020), concentrations
that are comparable to the palladium-platinum contents
of unaltered mafic alkaline rocks in the Bingham district
(Maughan and others, 2002). PGE are recovered from
tellurides in refinery slimes (Nexhip, 2016).

Tellurium contents of copper-iron (Cu-Fe) sulfide
minerals analyzed by laser ablation-inductively coupled
plasma-mass spectroscopy are mostly less than 10 ppm
(Brodbeck and others, 2020). Whole-rock tellurium
concentrations averaging 4.8 ppm in Cu-Mo ore and
0.1 ppm in molybdenum-only ore are reported by Austin
and Ballantyne (2010). Tellurium mostly occurs in telluride
inclusions in, or intergrown with, sulfide minerals (Ballantyne
and others, 1997; Kocher, 2017; Brodbeck and others, 2020).
Telluride minerals in Cu-Mo ores include, in addition to
hessite (Ag,Te), wehrlite (Bi;Te,) in Cu-Fe sulfide minerals
and merenskyite (Pd,Te) in molybdenite.

Rhenium concentrations in molybdenite in porphyry
Cu-Mo ore, which range from less than 10 to 2,000 ppm
(Giles and Schilling, 1972; John and Taylor, 2016; Kocher,
2017), correlate with the abundance and type of molybdenite
(Austin and Ballantyne, 2010; Kocher, 2017). Disseminated
molybdenite and molybdenite in early, deep, and more
centrally located quartz veins generally have lower rhenium
contents than molybdenite in later, shallower, and more distal
quartz veins (Kocher, 2017).

Production of byproduct nickel, PGE, rhenium,
and tellurium from Bingham and other porphyry Cu-Mo
deposits has not been routinely published and only compiled
occasionally in refinery surveys (for example, Foster, 1991;
Wang, 2011). Inventories of nickel, PGE, rhenium, tellurium,
and other critical minerals in the Bingham and other porphyry
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Cu-Mo systems, determined from drill holes, mineral domains
in mines, and compositions of anode copper in refineries, are
described and compared in chapter C.

Deposit type—Polymetallic Sulfide Skarn,
Replacement, Vein

Antimony (Sh)

In the Tintic district, Utah, an unquantified amount of anti-
mony was reportedly recovered during processing of complex
Pb-Zn-Cu-Au-Ag carbonate-replacement ores (James, 1984).

Arsenic (As)

In the Butte district, Mont., approximately 150,117 short
tons (136,470 t) of arsenic compounds were recovered mostly
from vein ores mined from 1880 to 1964 for Cu, Au, Ag,

Pb, Zn, and Mn (primary and coproducts; Anaconda Copper
Mining Company, 1915-1955; Meyer and others, 1968).
Arsenic production at Butte, which began in 1921, represents
approximately 14 to 25 years of recent annual domestic
consumption (2016-2020) (table 21).

Bismuth (Bi)

Bismuth has been recovered as a byproduct in
numerous skarn, replacement, and vein deposits in Montana,
Idaho, Utah, and Nevada that were mined primarily for
Cu-Pb-Zn-Au-Ag (USGS and Montana Bureau of Mines and
Geology, 1963; USGS and Nevada Bureau of Mines, 1964;
USGS and others, 1964, 1965, 1969; table 1).

In the Butte district, Mont. approximately 2,021 short tons
(1,887 t) of bismuth were recovered from vein ores mined for
Cu, Au, Ag, Pb, Zn, and Mn (Meyer and others, 1968; Miller,
1973); bismuth recovery apparently began during World War
II (Anaconda Copper Mining Company, 1915-1955). At the
Victoria mine, Elko County, Nev., approximately 8,000 short
tons (4,545 t) of copper and approximately 40,000 troy ounces
(1.2 t) of silver were produced between 1975 and 1981 from
a breccia pipe in Permian limestone and sandstone adjacent
to a Late Jurassic quartz monzonite intrusion (Atkinson and
others, 1982; Lowe and others, 1985; Lapointe, and others,
1991). The initial reserve of 3.45 million short tons (Mst) (3.14
Mt) grading 2.45 weight percent copper and approximately
0.6 troy ounces of silver per short ton (19.2 g/t), also contained
0.05 weight percent bismuth. Based on largely cospatial
elevated concentrations of copper (chalcopyrite) and bismuth
(bismuthinite) (figs. 14, 15 in Atkinson and others, 1982),
copper concentrates may have contained 1,725 short tons
(1,568 t) of bismuth. This bismuth could have been recovered
at the Kennecott copper refinery in McGill, Nev., and (or) the
Anaconda copper refinery in Great Falls, Mont. (both since
demolished), or remain in tailings, slag, and slimes discarded at
those sites. At Victoria, bismuth sulfide minerals (bismuthinite;
wittichenite [Cu,BiS,]) are present in dump rocks.

Byproduct production of bismuth from Butte district
mines, the Victoria mine, and other domestic deposits is
incompletely known. Combined primary, coproduct (chap. A),

and byproduct production of bismuth in Western States
apparently represents at most a few years of recent domestic
consumption (table 21).

Gallium (Ga), Indium (In), Nickel (Ni), Palladium (Pd),
Platinum (Pt), Tin (Sn), and Vanadium (V)

Unquantified amounts of Ga, In, Ni (Ni sulfate), PGE,
Sn, and V, in addition to As, Bi, Mn, and Te, were episodically
produced during the vein mining era in the Butte district,
Mont. The earliest reported recovery of these critical mineral
commodities was 1926, with annual recovery reported during
and after World War II (1941-1951) (Anaconda Copper
Mining Company, 1915-1955). It is unknown if these
commodities were derived from Butte district ores, tolled
ores and concentrate, or both, as 15 percent or more of copper
produced from 1915 to 1955 was derived from external
sources. The large nickel-sulfate production (for example,
200,600 short tons [182,364 t] in 1932 and 145,935 short tons
[132,668 t] in 1937) and chromium and vanadium production
during World War II (Anaconda Copper Mining Company,
1915-1955) suggest nickel, chromium, and other critical
minerals were recovered from external ores (outside of the
Butte district), in part because of wartime demand.

Manganese (Mn)

The relatively large carbonate-replacement and vein
deposits that produced thousands to more than 1 million short
tons (909,090 t) of manganese as primary and coproducts
(Butte, Mont.; Bisbee, Ariz.; Leadville and Gilman, Colo.;
Pioche, Nev.; and Tintic, Utah, districts) are described above
in chapter A. Lesser amounts of manganese (relative to annual
domestic consumption) have been recovered from numerous
smaller Cu-Pb-Zn-Au-Ag replacement and vein deposits
as byproducts (Butler and others, 1938; USGS and Nevada
Bureau of Mines, 1964; USGS and others, 1964, 1965, 1966a;
Mills and Rupke, 2020). In many magmatic-hydrothermal
deposits, manganese, a historically low-unit-value commodity,
was produced where it had been enriched by weathering of
carbonate minerals or under wartime price supports.

Tellurium (Te)

In the Butte district, Mont., approximately 119 short tons
(108 t) of tellurium were recovered from vein ores mined for
Cu, Au, Ag, Pb, Zn, and Mn (Meyer and others, 1968; Miller,
1973). This production represents approximately 1.2 years of
recent consumption (table 21).

Tungsten (W)

Some skarn, replacement, and vein deposits mined for
Cu-Pb-Zn-Au-Ag contained enough tungsten, as scheelite and
wolframite, for recovery. This coproduct and byproduct tung-
sten production was invariably smaller than production from
deposits in which tungsten was the principal commodity, the
largest of which are described in chapter A (USGS and Nevada
Bureau of Mines, 1964; USGS and others, 1964, 1965, 1966a;
Mills and Rupke, 2020).
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Photograph showing a souvenir copper cathode, ASARCO Copper Refinery, Amarillo, Texas.
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Chapter C. Inventories, Reserves, and
Resources of Critical Minerals in
Porphyry Copper-Molybdenum-Gold
(Cu-Mo-Au) and Other Mineral Systems

In this chapter, mine reserves and unmined resources
in porphyry copper-molybdenum (Cu-Mo) deposits and in
deposits of other mineral systems that could contain significant
resources of Al, Sb, As, Bi, Co, fluorite, Ge, In, Mn, Ni, Nb,
platinum-group elements (PGE [Pd, Pt]), potash, Re, Ta, Te,
Sn, W, and V are described. Inventories are quantified where
critical mineral concentrations and reserve and resource
tonnages have been measured or estimated, mainly from drill
holes, and semi-quantified from mine site and exploration drill
hole analyses and copper refinery records (fig. 14—E; tables
3—15). Some chalcophile and siderophile critical minerals
have been episodically recovered as byproducts from refinery
slimes and electrolyte (Cu,SO, and H,SO,) generated during
processing of copper ores from large tonnage (hundreds to
more than 1 billion short tons [Gst] or 0.91 billion metric
tons [Gt]) porphyry Cu-Mo deposits (for example, Sb, Bi, In,
Ni, PGE, Re, and Te; described in chap. B); these and other
critical minerals also have been historically discarded because
of low to no demand or unprofitable recovery. During copper
refining Sb, As, Bi, Ni, PGE, Te, and possibly other critical
minerals are concentrated in tank house slimes that remain
from electrorefining copper anodes to copper cathodes, the
marketable form of copper. Concentrations of these elements
are monitored for quality control of cathodes and marketability
(tables 9—11). Calculated inventories of critical minerals in
reserves and resources based on concentrations in processing
streams of copper refineries are also described below.

For other deposit types, including skarn-replacement-vein
tungsten, lithocap alunite, and unclassified
magmatic-hydrothermal deposits, inventories of critical
minerals are based on analyses of drill hole intervals and
mine and metallurgical samples (figs. 4-06; tables 3—8). Many
critical mineral concentrations are included in multi-element
analyses, determined within the past two decades, for
exploration and mine-expansion drill holes, in part from
conserved cores of holes drilled prior to 2000. Some critical
mineral concentrations have been published; others are, or
were, available on websites, as referenced. Small known and
suspected resources, including mine dumps and mill tailings,
are described for several mineral commodities that occur in
few domestic deposits as primary products and coproducts or
are heavily imported (for example, Bi, Te, and Sn).

Concentrations and Inventories of Critical
Minerals in Porphyry Cu-Mo Deposits Systems
Based on Drill Holes and Mineral Zones

Mineral System—Porphyry Cu-Mo-Au
Deposit type—Porphyry/Skarn Copper

Drill holes used to define reserves and resources of
large tonnage, unmined porphyry Cu-Mo deposits and
associated replacement, skarn, vein, and breccia deposits
in Alaska, Arizona, and Idaho, have been analyzed for
numerous elements in addition to the primary, coproduct,
and byproduct commodities copper, molybdenum, gold, and
silver. Analyses of approximately 19,000 core hole intervals
in the Pebble, Alaska; Red Mountain and Sunnyside, Ariz.;
and CuMo, Idaho, porphyry deposits, and in the Ventura
molybdenum-copper (Mo-Cu) breccia deposit, Ariz., were
obtained from websites and provided by coauthors and
associates (tables 3—8). Inventories of critical minerals in these
deposits were calculated using reserve and resource tonnages,
where published or estimated, and average concentrations in
drill holes. The calculated inventories (critical mineral metric
tons) were obtained by multiplying reserve and resource
tonnages by critical mineral concentrations. Concentrations
of critical minerals in mineral zones of the porphyry Cu-Mo
deposit at Bingham, Utah, were used to estimate inventories
in reserves and resources for which tonnages have been
publicized. Analyses of drill hole and mine samples from the
Yerington, Nevada, copper district are relatively limited in
number and provide qualified inventories of several critical
minerals (figs. 6-8; tables 3-8, 12—15).

Antimony (Sb), Arsenic (As), Bismuth (Bi), Germanium (Ge),
Indium (In), Platinum-Group Elements (PGE), Rhenium (Re), Tin
(Sn), Tellurium (Te), and Tungsten (W)

Concentrations of critical minerals in the unmined
Pebble, Alaska, porphyry Cu-Mo deposit are included in
multi-element analyses of drill holes used to define a reserve
(figs. 44-D, 6; table 5; Granitto and others, 2020, 2021).
The Pebble deposit consists of 7.51 Gt grading 0.416 weight
percent copper, 0.024 weight percent molybdenum, and
0.33 grams per metric ton (g/t) gold that comprise the coeval
West and East zones. The near-surface West zone (0—-500 m
depth) consists of mineralized approximately 90 mega-annum
(Ma) granodiorite, sedimentary rocks, and other igneous
intrusions and breccias. The deeper and higher-grade East
zone extends to 1,700-m depth. Deposits are associated with
numerous alteration types including sodic-calcic, potassic,
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Figure 5. Plots of inventories, consumption, and concentrations of critical minerals in porphyry copper-molybdenum (Cu-Mo)
deposits. Inventories of Sb, As, Bi, Sn, Te, and W (A) and Ge, In, and Re (B) in porphyry Cu-Mo deposits (porphyry, breccia, and
replacement tonnages and domains) in Alaska, Idaho, Arizona, Utah, and Nevada based on drill holes (tables 3-8) and published
sources, compared to average annual domestic consumption of recent years (2016-2020). C, Element concentrations in drill hole
intervals used to define the CuMo Cu-Mo resource (tables 3-8), Idaho, relative to crustal abundances. D, Comparison of molybdenum
concentrations and rhenium concentrations in intervals of drill holes in the CuMo resource (tables 3-8). Limitations of calculated
inventories are described in the text.
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A. Critical mineral inventories based on anode copper in copper refineries
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B. Critical mineral inventories in resources and reserves
predicted from mineral domains and anode copper at Bingham, Utah
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Figure 7. Plots of predicted
and unrecovered inventories
of critical minerals in refineries
and resources. A, Annual
predicted inventories of Sb,
As, Bi, Ni, Sn, and Te in anode
copper in copper refineries
(1986-2018) (tables 9-15)

and recent annual domestic
consumption (2016-2020). B,
Comparison of predicted Sb,
As, Ni, and Te inventories

in resources and reserves

of the Bingham porphyry
copper-molybdenum (Cu-Mo)
deposit, calculated from
concentrations in mineral
domains to inventories in
anode copper of the captive
Magna copper refinery
(tables 9-15).
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sodic-potassic, illitic, advanced argillic, quartz-sericite-pyrite,
and propylitic. Ore minerals include chalcocite/digenite/
covellite, chalcopyrite, molybdenite, and gold (Lang and
others, 2013; U.S. Geological Survey [USGS], 2013a).
Inventories of thousands to more than 300,000 metric tons (t)
of Sb, As, Bi, Sn, and W occur in the deposit based on bulk
analysis of drill hole intervals and the reserve tonnage (figs. 4,
6; table 5). Concentrations of other critical minerals in ores
and some sulfide minerals have been determined. Combined
concentrations of palladium and platinum (Pd+Pt) in ore of
approximately 7 ppb are reported by Sinclair and Jonasson
(2014, 2020). Pyrite in propylitically altered rocks contains up
to 3 parts per million (ppm) palladium. The average rhenium
concentration in molybdenite is 906 ppm (Lang and others,
2013; USGS, 2013a).

Resources of the unmined Red Mountain porphyry
Cu-Mo deposits, Santa Cruz County, Ariz. (figs. 1, 44-D, 5, 6;
tables 3, 12—15), include 100 to 150 million short tons (Mst)
(90.9—-136.4 million metric tons [Mt]) grading 0.31 weight
percent copper and 0.02 weight percent molybdenum that
comprise a near-surface chalcocite-enargite deposit, and
approximately 435 Mst (395 Mt) grading more than 0.6 weight
percent copper, 0.01 weight percent molybdenum, and
more than 0.1 troy ounce per ton silver that comprise a deep
chalcopyrite-bornite deposit. Mineralized rocks of the deposits
are centered on 62 Ma granodiorite and include 73 to 68 Ma
volcanic rocks (rhyolite, trachyandesite, and biotite latite;
Vikre and others, 2014). Elevated concentrations of tellurium
(up to 3 ppm) and arsenic (several hundred ppm), and slightly
elevated concentrations of tungsten (tens of ppm) occur in and
above the deep chalcopyrite-bornite deposit, based on analyses
of drill hole and surface rock and soil samples (Chaffee,
2019). The greatest tellurium and some of the greatest arsenic
concentrations correspond spatially to a near-surface zone
of quartz-alunite-kaolinite-pyrophyllite-altered rocks that
includes the chalcocite-enargite deposit. Other elevated
arsenic concentrations are partly cospatial with the deep
chalcopyrite-bornite deposit. Most concentrations were
determined by semi-quantitative emission spectrography
and reflect generalized distributions of elements. However,
because of the large deposit tonnage, elevated concentrations
of arsenic, tellurium, tungsten, and other critical minerals
present in low concentrations that spatially coincide with
ore-grade copper concentrations comprise large inventories
that are possibly recoverable if the deposits are mined for
copper (fig. 44-D). Inventories of thousands to more than
10,000 t of antimony, arsenic, tellurium, and tungsten in the
entire deposit (near-surface chalcocite-enargite and deep
chalcopyrite-bornite) were calculated from drill hole intervals
and published resources (figs. 4, 6; tables 3, 12—15).

Elevated concentrations of bismuth, germanium,
indium, and tellurium occur with calc-silicate and
copper-lead-zinc-silver sulfide minerals in Paleozoic and
Mesozoic carbonate rocks adjacent to the unmined Sunnyside
porphyry Cu-Mo deposits (Santa Cruz County, Ariz.; figs. 1,
44-D, 5, 6; tables 3, 12—15; Granitto and others, 2021),

approximately 4 km (2.5 mi) south of the Red Mountain
porphyry Cu-Mo deposit. Much lower concentrations,

but large inventories of these and other critical minerals
occur in two 61 to 59 Ma porphyry deposits. Resources in
porphyry deposits include approximately 800 Mst (727 Mt)
grading 0.175 weight percent copper, 0.011 weight percent
molybdenum, 0.23 troy ounces of silver per short ton, and
small amounts of lead and zinc that comprise a near-surface
chalcocite-enargite-tennantite deposit, and approximately
1.5 Gst (1.4 Gt) grading 0.33 weight percent copper,

0.011 weight percent molybdenum, and 0.16 troy ounces of
silver per short ton that comprise a deep chalcopyrite deposit
(Turner, 2012, 2017; Vikre and others, 2014). A resource for
the zinc-lead-silver-copper sulfide deposit in carbonate rocks
has not been determined. Vertical thicknesses of mineralized
drill hole intercepts (up to 300 ft [91 m]; table 3) imply

tens of millions of short tons. Drill hole intercepts average
1.9 weight percent Pb, 9.6 weight percent Zn, 231 ppm Ag,
0.55 weight percent Cu, 624 ppm Bi, 3.7 ppm Ge, 5.6 ppm
In, and 29.8 ppm Te. Significant inventories of bismuth,
germanium, indium, and tellurium may reside in this skarn/
replacement deposit. A zinc-lead-silver-manganese resource
in the same strata east of Sunnyside has been identified

by drill holes in the vicinity of the Hardshell, Alta, and
Hermosa mines (South32 Limited, 2021). This resource,
approximately 33 Mt grading 2.3 to 3.4 weight percent zinc,
3.7 weight percent lead, 69 to 78 g/t silver, and 9.1 weight
percent manganese, contains elevated concentrations of
arsenic and antimony (table 4) that may be recoverable.
Calculated inventories of critical minerals in the Sunnyside
and Hardshell-Alta-Hermosa resources (figs. 4, 6; tables 3,
4, 12—15) largely correlate in mass with tonnage estimates
of the resources. Inventories of more than 1,000 to more
than 100,000 t of Sb, As, Bi, Ge, In, Re, Sn, and W were
calculated for the near-surface chalcocite-enargite-tennantite
and deep chalcopyrite deposits from drill hole intervals.
Inventories of Sb, As, Bi, Ge, In, Re, Te, Sn, and W (mostly
tens to a few thousand metric tons) were calculated from
drill holes in the sulfide deposit in carbonate rocks and for
the Hardshell-Alta-Hermosa resource. The relatively small
inventories of critical minerals in carbonate rocks correlate
with estimated deposit sizes of 20 and 33 Mt, respectively
(figs. 4, 6; tables 3, 4, 12—15).

The unmined Ventura Mo-Cu breccia deposit,
approximately 1.6 km (1 mi) west of the Sunnyside deposits
(figs. 1,44-D, 5, 6; tables 4, 12—15; Granitto and others,
2021), consists of approximately 3.6 Mst (3.3 Mt) grading
0.24 weight percent molybdenum and 0.24 weight percent
copper. Mineralized rocks include fragments of Jurassic
granite and lesser Mesozoic volcanic and sedimentary rocks
cemented by coarse-grained matrices of quartz, biotite,
muscovite, molybdenite, chalcopyrite, and kaolinite (Vikre
and others, 2014). Inventories of tens to hundreds of metric
tons of Sb, As, Bi, Ge, In, Sn, and W, calculated from
drill hole intervals, are relatively small because of small
deposit tonnage.
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Concentrations of numerous critical minerals in the
CuMo porphyry Cu-Mo deposit, Boise County, Idaho (figs. 1,
44-D, 5, 6; tables 6, 7), are included in multi-element
analyses of drill holes used to define resources. Measured and
indicated resources are 2.27 Gst (2.06 Gt; at $5 copper value
cutoff) grading 0.08 weight percent copper, approximately
0.045 weight percent molybdenum, and 0.07 troy ounces of
silver per short ton (approximately 2.4 ppm) (SRK Consulting,
2020). The deposit consists of copper-molybdenum-silver
mineralized veins, fractures, and stockwork veins, ranging
from millimeters to tens of centimeters wide, in Cenozoic
quartz monzonite and rhyolite porphyry that intruded granitic
rocks of the Idaho batholith (~95 to 70 Ma). Copper occurs
primarily in chalcopyrite, molybdenum in molybdenite,
and the critical minerals rhenium in molybdenite,
tungsten in scheelite, and gallium in gallite (CuGaS,)
(Hilscher and Dykes, 2018). Hydrothermal biotite and
chlorite-epidote-magnetite-(pyrite) alteration assemblages are
associated with earlier and shallower chalcopyrite, whereas
mostly deeper molybdenite and scheelite are associated
with potassium-feldspar alteration (potassium-feldspar and
hydrothermal biotite). Late chlorite-smectite-calcite-(kaolinite)
alteration is distributed throughout the deposit. Scheelite
is largely cospatial with molybdenite. Somewhat elevated
concentrations of tungsten, rhenium (average grade 0.021
ppm), and gallium exist in the resources (fig. 5). Indicated
and inferred resources are approximately 125,000 short tons
(approximately 113,000 t) of tungsten and 79.7 t of thenium
at $5 recovered metal values with molybdenum oxide at $10
per pound, copper at $3 per pound, and silver at $12.50 per
troy ounce (SRK Consulting, 2020; Hilscher and Dykes, 2018;
table 6). A gallium resource has not been reported. In addition
to publicized tungsten and rhenium inventories, inventories of
thousands to more than 10,000 t of antimony, arsenic, bismuth,
and tin were calculated from drill hole intervals (figs. 4, 6;
table 6). The somewhat larger calculated tungsten inventory
(138,470 t; table 6) may reflect different copper grade
restrictions applied.

Concentrations of critical minerals in the Bingham
porphyry Cu-Mo deposit (figs. 1, 4, 6; tables 12—15) are
included in multi-element analyses of mineral domains and
other sources described in chapter B. Reserves at the end
0f 2020 were 552 Mt containing 0.44 percent copper, 0.031
percent molybdenum, 0.16 ppm gold, and 2.11 ppm silver;
resources comprise 285 Mt containing 0.38 percent copper,
0.017 percent molybdenum, 0.20 ppm gold, and 1.79 ppm
silver (Rio Tinto, 2021b). A resource of approximately 20 Mt
grading 3.65 percent copper, 1.62 ppm gold, and 20.95 ppm
silver has been determined for the North Rim skarn deposit.
Inventories of Sb, As, Bi, PGE, Re, Te, Sn, and W calculated
from element concentrations in mineral domains and reserve
and resource tonnages vary mostly from tens to thousands of
metric tons (figs. 4, 6; tables 12—15).

Concentrations of PGE, rhenium, and tellurium
at Bingham have been determined by mineralogical
investigations (chap. B). Using an average concentration of

14 ppb Pd+Pt and 837 Mt of reserves and resources, porphyry
ores contain about 12 t of Pd+Pt. If the North Rim skarn
deposit has similar Pd+Pt concentrations, then it contains
approximately 3.8 to 20 t of Pd+Pt. Somewhat greater Pd+Pt
concentrations of 0.006 to 0.034 troy ounces per short ton
(approximately 0.19 to 1 ppm), are reported in gold-rich skarn
at the Carr Fork mine (Cameron and Garmoe, 1987). In copper
ore from unspecified sites but possibly skarn/replacement ores
mined prior to open-pit mining of porphyry ore, calculated
platinum and palladium concentrations are approximately
2 and 6 ppm, respectively, according to analyses of blister
copper in the Garfield copper refinery (predecessor to the
Magna copper refinery) (Eiler, 1913). If these analyses and
assumptions are correct, then skarn resources could contain
tens of metric tons or more of PGE. Using an average
molybdenite rhenium concentration of 100 ppm (Kocher,
2017) and average molybdenum grade, approximately 36 t of
rhenium are contained in the porphyry Cu-Mo deposit reserves
and resources. Tellurium inventories in the porphyry Cu-Mo
deposit, calculated from averages of Cu-Mo-rich whole-rock
samples, range from 285 to 4,000 t (tables 12—15).
Concentrations of critical minerals in the Yerington
porphyry Cu-Mo district, Lyon County, Nev. (figs. 1, 44-D,
5, 6), are incompletely known as only a few are published for
the Mason (formerly Ann Mason) and MacArthur deposits
(Lori, 2010; Cohen, 2011; Aird and others, 2021; Hudbay
Minerals, Inc., 2021; Independent Mining Consultants, Inc.,
2022; John Dilles, Oregon State University, written commun.,
2021; tables 12—15). The Yerington district includes four
porphyry copper deposits and small iron-oxide-copper-gold
skarn deposits in Jurassic granitic and volcanic rocks
altered to garnet-pyroxene hornfels and endoskarn, and later
copper-andradite skarn (Dilles and others, 2000). Although
the concentrations of critical minerals in copper-mineralized
samples are a few parts per million or less, as in most
porphyry Cu-Mo deposits, the combined reserve tonnage of
the Mason and MacArthur deposits (approximately 2.24 Gt)
portends large inventories that could conceivably be recovered
(figs. 1, 4, 6; tables 12—15). Qualified inventories of thousands
to more than 10,000 t of arsenic, tin, and tungsten were
calculated from available analyses.

Comparisons Among Critical Mineral Concentrations and
Inventories in Porphyry Cu-Mo Deposits

Concentrations of primary commodities in porphyry
Cu-Mo and breccia Mo-Cu deposit reserves that dictate
exploration, development, and production (Cu and Mo), and of
coproduct, and byproduct commodities (Au, Ag, Re, and Te)
that can increase profitability, are mostly one to approximately
three orders of magnitude greater than crustal abundances
in the deposits investigated (fig. 44). Concentrations of the
critical minerals Sb, As, Bi, Te, and W are one to more than
two orders of magnitude greater than crustal abundances
(Haynes, 2016); tellurium and bismuth concentrations
are as much as 4.5 orders of magnitude greater (fig. 4B).
Concentrations of the critical minerals germanium, indium,
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and tin vary considerably. They are slightly to markedly
elevated relative to crustal abundance in some reserves and
resources and relatively depleted (less than one order of
magnitude) or approximately equal to crustal abundance

in others (fig. 4C). Concentrations of the critical minerals
gallium, nickel, manganese, and vanadium are mostly lower
than or approximately equal to crust (fig. 4B), with the
exception of the Sunnyside and Hardshell-Alta-Hermosa
replacement deposits in which manganese concentrations
are greater than 10 times crustal abundance. Small amounts
of manganese were recovered in conjunction with lead and
silver in more distal replacement and vein deposits of the
Sunnyside porphyry copper system, including the Hardshell,
Mowry, and Trench mines (Farnham and others, 1961; Koutz,
1984; Vikre and others, 2014). In these mines manganese
occurs in manganese oxide minerals and lesser alabandite,
rhodochrosite, and rhodonite-group minerals.

Concentrations of primary, coproduct, and byproduct
commodities, and of critical minerals, vary somewhat geo-
graphically among deposits (fig. 44—D). Molybdenum and
gold concentrations in Arizona deposits, except for Mo in
the Ventura Mo-Cu breccia deposit, are distinctly lower than
in other deposits, whereas silver concentrations in Arizona
deposits are the same as or greater than in other deposits.
Concentrations of the critical minerals Sb, As, Bi, Ge, In, and
Te also are generally greater in Arizona deposits than in other
deposits. Consequently, porphyry Cu-Mo deposits in Arizona,
and in Alaska and Idaho, have somewhat larger inventories
(per reserve and resources tonnages) of Sb, As, Bi, Sn, and
possibly Re than Bingham deposits in Utah (figs. 44, B, 6),
although some critical minerals (Ge, In, Re, and Te) are not
reported for all deposits.

Inventories of critical minerals in reserves and resources
of porphyry Cu-Mo deposits, including porphyry, breccia,
and polymetallic replacement deposits, broadly correspond
to deposit size with the largest deposits containing the largest
inventories of critical minerals (fig. 44, B). Relatively small
tonnage polymetallic replacement and breccia deposits (r and
b, respectively, in fig. 54, B) have much smaller inventories,
although higher concentrations, of most critical minerals.

Relative to recent annual domestic consumption
(table 21), Sb, As, Bi, Te, and W inventories in Alaska, Idaho,
and Arizona porphyry Cu-Mo deposits are less than 1 to
several orders of magnitude greater than consumption whereas
tin inventories are lower than consumption. Inventories of
Sb, As, Bi, and Sn in Bingham deposits are lower than those
of other porphyry deposits. Although inventories of Ge,

In, and Re are incompletely known, they are up to several
orders of magnitude greater than consumption in Arizona

and Bingham deposits (fig. 6B8). Conceivably, simultaneous
or sequential recovery of Sb, As, Bi, W, and possibly Ge,

In, and PGE during recovery of primary, coproduct, and
byproduct commodities (Cu, Mo, Au, Ag, Re, and Te) when
these reserves and resources are mined could supply domestic
consumption for years to many decades. Staged recovery
from staggered development of unmined deposits would

provide lower proportions of annual consumption. These new
prospective supplies would likely require subsidization such as
sustained price guarantees and tax reductions, and assistance
in development of recovery processes. The relatively small
inventories of Sn, relative to consumption, would not provide
appreciable long-term supplies but could lessen importation
reliance. The recovery of rutile and zircon in igneous rocks

in porphyry Cu-Mo deposits would hinge on a marketable
product form, and costs of concentrator modifications and
operation at mines and copper refineries.

Forms of Sh, As, Bi, Ge, In, Re, Te, and Sn in Porphyry Cu-Mo
Deposits

Chalcophile critical minerals in porphyry Cu-Mo
deposits, including Sb, As, Bi, Ge, In, Re, Te, and Sn, are
often undetectable in bulk ore. The highest concentrations
of Sb, As, and Mn occur in sulfide and carbonate minerals
(tetrahedrite-tennantite [(Cu,Fe),,Sb,S,;—(Cu,Fe),,As,S 5],
arsenopyrite [FeAs S], and rhodochrosite [(Mn,Fe,Mg,Ca)
CO;]) (table 20) that are relatively abundant in some deposit
types (skarn, replacement, and vein) with higher total sulfide
concentrations than porphyry Cu-Mo ores, whereas these
and other critical minerals also occur in cryptic forms or in
relatively uncommon minerals mostly observed in skarn,
replacement, and vein deposits (tables 3—19). Minerals that
contain critical minerals have been identified in some districts
and deposits.

In replacement deposits in the Bisbee district, Ariz., Sb,

As, Bi, Mn, Sn, W, and V occur in many minerals including
tetrahedrite ((Cu,Fe),,Sb,S,;—(Cu,Fe),,As,S,;)), wittichenite
(Cu;BiS,;), colusite (Cuy,_ 3 V(As,Sb,Sn,Ge);S,4), stannite
(Cu,FeSnS,), mawsonite (CusFe,SnSy), and numerous rare
Cu-Bi-Ag-Pb-Sb-In-Sn-W-S minerals; tellurium occurs in
goldfieldite (Cu,,(Te,Sb,As),S,;), and lesser hessite (Ag,Te),
and petzite (Ag;AuTe,) (Bryant and Metz, 1966; Graeme,
1993; Schumer, 2017). At the Magma mine, Superior district,
a large polymetallic vein and replacement deposit in Arizona,
Sb, As, Bi, Te, Sn, W, and V occur in tetrahedrite-tennantite,
enargite (Cu,AsS,), wulfenite (PbMoS,), cassiterite (SnO,),
telluride minerals, colusite, and wittichenite (Gustafson,
1962; Hammer and Peterson, 1968; Frichauf, 1998). At Butte,
Montana, bismuth, manganese (wittichenite, rhodochrosite,
hodonite [MnSiO;]), and tungsten (scheelite and hubnerite
[MnWO,]) occurred in mined veins, along with uncommon
copper-vanadium-sulfur minerals (Meyer and others,
1968; Czehura, 2006). Wittichenite is at least one source of
recovered bismuth, and rhodochrosite and rhodonite, along
with manganese-oxide minerals, were sources of recovered
manganese (described in chaps. A, B).

At Bingham, Utah, the critical minerals rhenium,
palladium, platinum, and tellurium have been episodically
produced (Krahulec, 2018). Rhenium occurs in molybdenite
and tellurium occurs in hessite and other telluride minerals
and a gold-bismuth tellurite (Ballantyne and others, 1997),
but palladium and platinum have not been linked to specific
minerals. In the Ely (Robinson) district, White Pine County,
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Nev., ores mined for copper contained unquantified amounts
of Bi, Ni, PGE, Te, and W (scheelite) in unknown forms that
were mostly not recovered (Hose and others, 1976; Gott and
McCarthy, 1966; Watterson and others, 1977). In the Copper
Canyon district, Lander County, Nev., elevated concentrations
of tellurium are widely distributed in rocks (Theodore and
Blake, 1975), but tellurium was not recovered during mining
operations and forms of tellurium in deposits have not been
determined. In the carbonate-replacement and vein deposits of
the Tintic district, Utah, Sb, As, Bi, Mn, Zn, and other elements
in ores were either not recovered or recovered from weathered
deposits and slag only, in part because of complex mineralogy
(James, 1984). Non-contiguous drill hole intervals in the center
of the southwest porphyry copper system at Tintic contain
approximately 1 to more than 2 ppm tellurium (Krahulec,
1996) in unreported sites. Skarn, replacement, and vein ores
mined in other porphyry copper districts apparently contained
variably elevated concentrations of chalcophile critical
minerals according to analyses of archival specimens and
samples from collections (tables 16—19), as described below.

Deposit Type—Porphyry/Skarn-Replacement-Vein
Bismuth (Bi), Fluorite, Indium (In), and Tungsten (W)

Tungsten (W)

Unmined tungsten resources in California, Nevada, and
Montana with inventories that approach or exceed 2 years
of recent annual domestic consumption, the threshold for
significant inventories used herein, are mostly in the vicinity
of small tungsten skarn deposits. Several are adjacent to
relatively large, mined deposits that have been described in
chapter A (table 2).

The tungsten deposit known as Andrew Curtis, Los
Angeles County, Calif., consists of scheelite-quartz veins and
stockwork veins in shear zones, and alluvial and placer schee-
lite and lesser barite deposits that originated from the veins
(Evans and others, 1977; USGS, 2010a; Unruh and Graber,
1982; Annis, 2020a; table 2). Small amounts of tungsten have
been produced from the deposits including several metric tons
of scheelite concentrate shipped from 1978 to 1982 (USGS,
2010a). Two of the veins are 1 to 10 inches wide and traceable
for a slope distance of up to 300 ft (Unruh and Graber, 1982).
Veins are in layered gneiss of the Proterozoic Tujunga ter-
rane, quartz monzonite of the Triassic Mount Lowe intrusive
suite, and Cretaceous Mount San Antonio hornblende-biotite
quartz diorite (Annis, 2020a). The “west vein” is the principal
vein deposit in Cattle Canyon where the Andrew Curtis mine
claims were staked and intermittently worked until forfeited
in 2018. The “west vein” complex contains an indicated
resource of approximately 3,200 t grading 0.75 percent WO,
or approximately 19 t of tungsten (Annis, 2020b). The Cattle
Canyon alluvial deposit was the focus of a Forest Service
Validity Examination in 2020 that determined a measured
resource of 3.9 million cubic yards with an average grade of
0.0023 percent WO, or 67.34 cubic meters of tungsten (90 t
of tungsten) (Annis, 2020b). Earlier, unverified resource

estimates of all deposit types include approximately 6,000 t
of tungsten measured, approximately 17,000 t of tungsten indi-
cated, and 215,000 t of tungsten inferred (Unruh and Graber,
1982; Ridenour and others, 1982).

The Centennial (also known as Mount Hamilton)
tungsten-gold-silver deposit, White Pine County, Nev.,
consists of scheelite, gold, and sulfide minerals in hornfels
and skarn (diopside-quartz-potassium feldspar-biotite) that
selectively replaced thin-bedded Cambrian Secret Canyon
Shale and overlying dolomite and shale of the Dunderberg
Shale. The large masses of mineralized hornfels and skarn are
adjacent to the Cretaceous (~105 Ma) Seligman hornblende-
biotite granodiorite stocks (Myers, and others, 1991; SRK
Consulting, 2009a, 2014; table 2). There is no recorded
tungsten production. Exploration over the past several decades
has identified resources that contain, in addition to W in
scheelite, Sb (stibnite; bournonite; and jamesonite), Au and
Ag (electrum), Cu (chalcopyrite; covellite; bornite), and Mo
(molybdenite; USGS, 2007; SRK Consulting, 2012, 2014).
Tungsten resources based on 100,000 ft of drilling by Phillips
Petroleum Company from 1968 to 1982 are 4.2 Mst (3.8 Mt)
grading 0.42 percent WO, and 6.2 Mst (5.6 Mt) grading
0.37 percent WO, (SRK Consulting, 2012), or approximately
32,200 t of tungsten. A gold-silver resource that contained
an estimated 0.55 million troy ounces (17.1 t) of gold and
4.5 million troy ounces (140 t) of silver (proven and probable;
SRK Consulting, 2014) was partially mined (NE Seligman
mine) from 1994 to 1997 with production of 0.124 million
troy ounces (3.9 t) of gold and 0.31 million troy ounces (9.6 t)
of silver (SRK Consulting, 2014).

The Sunrise copper-molybdenum-tungsten deposit,
Snohomish County, Washington, is in a steeply plunging pipe-
like breccia that consists of multi-generational, hornfelsed
quartz diorite fragments cemented by matrices containing
chalcopyrite and molybdenite (table 2). These sulfide minerals
are also disseminated in breccia fragments and fill fractures
in Jurassic greenstone and siliciclastic strata that enclose the
deposit. Diorite fragments in the pipe increase in abundance
with depths and may be related to nearby Oligocene intru-
sions. The deposit contains a resource (measured, indicated,
and inferred) of 64.5 Mt grading 0.319 percent copper, 0.071
percent MoS,, 0.062 percent WO, (approximately 31,730 t of
tungsten), 0.002 to 0.006 troy ounces of gold per short ton,
and 0.049 to 0.088 troy ounces of silver per short ton (Derkey
and others, 1990; Lasmanis, 1995; USGS, 1997).

At Pilot Mountain, Mineral County, Nev., minor
amounts of tungsten in scheelite were recovered from skarn,
replacement, and vein deposits (Maurer and Wallace, 1956;
Nash and others, 1985; Cowie, 1985; table 2). The Pilot
Mountain group of deposits (Desert Scheelite, Gun Metal,
Garnet, and Good Hope) also contain copper (chalcopyrite,
azurite), silver, and zinc (sphalerite; Karl and others, 2020)
but there is no recorded production of metals other than
tungsten. The deposits occur in carbonate beds of the lower
to middle members and the upper carbonate member of the
Triassic Luning Formation adjacent to a Cretaceous biotite
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quartz monzonite intrusion (Godfrey, 2018). Drill-defined
resources (indicated and [or] inferred) include 9.01 Mt grading
0.26 weight percent WO, (Desert Scheelite) and 1.83 Mt
grading 0.36 weight percent WO, (garnet) (Thor Mining PLC,
2018a, b), or 27,200 t of tungsten. Copper (16,000 t), silver
(approximately 0.67 million troy ounces [20.8 t]), and zinc
(40,300 t) may be recovered (coproducts or byproducts) if the
tungsten resources are mined. Based on recent exploration
and a scoping study, an open pit mine with a 12-year mine

life and annual production of 1,000 t of scheelite concentrate
is proposed. Copper, silver, and zinc also may be recovered
(Thor Mining PLC, 2018a, b).

The tungsten skarn deposit at Indian Springs, Elko
County, Nev., consists of scheelite-quartz-sulfide veins in
calcareous feldspathic medium-grained sandstone of the
Permian Pequop Formation and in the Early Cretaceous
(~135 Ma) Indian Springs stock (Slack, 1972; SRK Consulting,
2007; table 2). Three of the four generations of hydrothermal
activity produced scheelite-bearing veins: (1) (oldest)
pneumatolytic scheelite-powellite-quartz vein stockworks; (2)
pyrite and molybdenite in quartz veins and disseminations;
and (3) chalcopyrite-tetrahedrite-quartz veins. Argillization,
sericitization, and silicification are associated with tungsten
mineralization (Slack, 1972; SRK Consulting, 2007). A minor
amount of tungsten (12,500 short tons [11,364 t] of tungsten
grading 0.25 weight percent WO, yielding 14 units of WO;)
was produced in 1974 and 1975 by Union Carbide (USGS,
2010b). The deposit contains estimated resources of 10.7 Mt
of WO, grading 0.171 percent (indicated), and 8.2 Mt grading
0.167 percent WO; (inferred; Moran and Stryhas, 2007), or
approximately 20,800 t of tungsten.

The Browns Lake tungsten skarn deposit, Beaverhead
County, Mont. (described in chap. A; table 2), contains an
estimated resource of 14,400 t of tungsten (Werner and others,
2014). The Pine Creek tungsten skarn mine, Inyo County,
Calif. (described in chap. A; table 2), contains a resource
estimated to exceed 10,000 short tons (9,090 t) of tungsten.
The Springer (also known as Nevada-Massachusetts) tungsten
skarn mine, Humboldt County, Nev. (described in chap. A;
table 2), contains indicated and inferred resources in three
deposits of 1,400 and 6,900 t of tungsten, respectively (8,300 t
of tungsten combined). Placer deposits in the Atolia district,
San Bernardino and Kern Counties, Calif. (described in chap.
A; table 2) contain an estimated 280,000 units WO, (2,200 t of
tungsten) and small but unquantified amounts of gold.

Tungsten resources at Andrew Curtis, Centennial,
Sunrise, Pilot Mountain, and Indian Springs are each
equivalent to approximately 2 to 4 years of recent annual
consumption. Those at Browns Lake, Pine Creek, and
Springer are each equivalent to approximately 1 year or less of
consumption (described in chap. A; tables 2, 21, 22)

Bismuth (Bi)

A resource of 20,000 short tons (18,182 t) grading
0.84 percent bismuth (approximately 1,680 short tons
[1,527 t]) and 0.26 percent tungsten (approximately 520 short

tons [473 t]) was identified in the Little Cottonwood district,
Salt Lake County, Utah (Kasteler and Hild, 1948; Moon,
1950). At the Victoria mine, Elko County, Nev., reserves
remaining after 1981 were 1.4 Mst (1.27 Mt) grading

2.15 weight percent copper and 0.35 troy ounces of silver
per short ton, according to Lapointe and others (1991) and
1.49 Mst (1.35 Mt) grading 2.34 weight percent copper
according to Lowe and others (1985). If the reserve of
Lapointe and others (1991) has the same bismuth grade

as ore, then the bismuth resource at the Victoria mine

is approximately 700 short tons (636 t). These bismuth
resources are equivalent to less than 1 year of recent domestic
consumption (tables 21, 22).

Fluorite (CaF,)

At McCullough Butte, Eureka County, Nev., a resource
of more than 80 Mt grading approximately 11 percent fluorite
(more than 8 Mt fluorite) has been estimated from drill holes
(Tertiary Minerals PLC, 2020). In addition, elevated but
unquantified concentrations of Be, Mo, Sn, W, and Zn are
distributed in the fluorite resource. The resource occurs in
porphyry felsite dikes (~84 Ma) and aplite, and Paleozoic
limestone, dolomite, and quartzite altered to greisen/
quartz veins, tremolite, phlogopite, and calcite. Six vein
types in the resource contain variable amounts of quartz,
feldspar, garnet, epidote, feldspar, fluorite, pyrite, muscovite,
sphalerite, molybdenite, zoisite, beryl, barite, and antimony
sulfosalts (Barton 1982, 1987). Minor amounts of fluorite and
beryllium were produced at the nearby Reese and Berry mine
(Roberts and others, 1967). Based on recent annual domestic
consumption of fluorite (table 21), a large-market commodity,
the fluorite resource at McCullough Butte is approximately
equivalent to 18 to 22 years of consumption (table 22).
However, the fluorite grade at McCullough Butte is much
lower than grades of imported fluorite.

Indium (In)

In the Fish Springs district, Juab County, Utah, a
drill-defined resource (indicated and inferred) of approximately
67 Mt grading 5 to 6 percent zinc, 0.2 percent copper, and
22 to 31 ppm indium occurs in magnetite-sphalerite skarn
deposits that formed in Paleozoic carbonate and siliciclastic
rocks adjacent to Eocene felsic intrusions (Dyer and others,
2014). The indium inventory is 1,474 to 2,077 t. Based on
recent annual domestic consumption of indium (table 21), a
small-market commodity, the indium resource at Fish Springs
is equivalent to approximately 9 to 22 years of recent domestic
consumption (table 22).

Manganese (Mn)

The Hardshell-Alta-Hermosa zinc-lead-silver-manganese
resource, Santa Cruz County, Ariz., includes approximately
5 Mt of manganese in the Taylor deposit (South32 Limited,
2021) that may be recovered as a coproduct with zinc, lead,
and silver. Based on recent annual domestic consumption of
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manganese, a large market commodity, the Taylor manganese
resource is equivalent to approximately 6.6 years of recent
domestic consumption (table 22).

Deposit Type—Lithocap Alunite
Aluminum (Al), Potash (KCI, K,S0,, KNO,)

Large tonnage alunite resources exist in Utah, Arizona,
Nevada, and Colorado. Some were encountered in holes
drilled for Cu-Mo resources; several are potentially minable
for aluminum and potash. At Blawn Mountain (Wah Wah
Range, Beaver County, Utah), where small tonnages of alunite
were processed during World War II for aluminum and potash
(fertilizer; described in chap. A), the SOPerior Fertilizer
Corporation (formerly Potash Ridge) is developing a reserve
of approximately 10.6 Mst (9.6 Mt) of potassium sulfate
that is within an indicated resource of approximately 32
Mst (29 Mt). Assuming alunite contains 19.5 weight percent
aluminum, 76 weight percent K,SO,, 4.5 weight percent H,O
and no sodium or calcium, the aluminum resource in the
potash reserve at Blawn Mountain is approximately 2.56 Mst
(2.33 Mt). Vein reserves at Marysvale, Utah, were estimated
in 1941 at approximately 1.4 to 3 Mst (1.3 to 2.7 Mt) grading
87 percent or more alunite; replacement deposit resources
comprise a much larger aggregate tonnage, but deposits
are lower grade (Thoenen, 1941). Other alunite vein and
replacement deposits in southwestern Utah (Beaver, Piute,
Siever, and Iron Counties) constitute possible aluminum and
potash resources (Mills and Rupke, 2020). In 1941, estimated
resources in Utah varied from hundreds of thousands to 6 Mst
(hundreds of thousands to 5.5 Mt) containing 6 to more than
55 percent alunite (Thoenen, 1941).

At Red Mountain, Santa Cruz County, Ariz., quartz-
alunite-kaolinite-pyrophyllite-altered rocks overlie two
copper-(molybdenum-silver) resources that constitute the Red
Mountain porphyry copper deposit (Lecumberri-Sanchez and
others, 2013; Vikre and others, 2014). Holes drilled in the 1970s
outlined a prospective resource of more than 300 Mst (273 Mt)
grading 30 percent alunite (91 Mst [83 Mst] of alunite; North
American Potash Developments, Inc., 2012). Assuming alunite
contains 19.5 weight percent aluminum, 76 weight percent
K,SO,, 4.5 weight percent H,0O, and no sodium or calcium, the
aluminum and potash resources at Red Mountain are approxi-
mately 18 and 42 Mst (16 and 38 Mt), respectively.

At Sunnyside, Santa Cruz County, Ariz., quartz-alunit
e-kaolinite-pyrophyllite-topaz-zunyite-altered rocks overlie
two copper-(molybdenum-silver) resources that constitute
the Sunnyside porphyry copper deposit and extend northwest
to the 3R mine and south to the Thunder mine (Berger and
others, 2003; Vikre and others, 2014). An estimated mass of
180 Mst (164 Mt) grading 20 percent alunite (includes internal
waste; approximately 36 Mst [33 Mt] alunite) from the surface
to a depth of 500 ft (152 m) occurs in the vicinity of these
resources and mines. This mass could contain approximately
7 Mst (6.4 Mt) aluminum and approximately 27 Mst
(24.5 Mt) potash.

Numerous alunite deposits occur in quartz-alunite-altered
Cenozoic andesite and andesite tuffs in Pierce County, Wash.
They comprise a resource estimated at 1 to 2 Mst (0.91 to
1.82 Mt) grading 20 to 30 or more weight percent alunite
(USGS and others, 1966b). In King County, Wash., resources
of approximately 1.2 Mst (1.1 Mt) grading approximately 30
to 80 percent alunite occur in quartz-alunite-altered volcanic
rocks (Thoenen, 1941). Although no alunite production is
reported, high-purity silica in or near some alunite resources
has been mined for flux and wall-board products (John and
others, 2003). A reportedly large but incompletely quantified
and described alunite resource (estimated at more than 70
Mt) occurs in dacite intrusions and breccias (~23 Ma) on Red
Mountain near Lake City, Colo. (Bove and Hon, 1990).

Based on recent annual domestic consumption of
aluminum (table 21), a very large market commodity, the
aluminum resources at Blawn Mountain, Red Mountain, and
Sunnyside are equivalent to approximately 1 to 6 years of
the lowest consumption (2.87 Mt) and approximately 0.5 to
3 years of the highest consumption (5.68 Mt; table 22). Based
on recent annual domestic consumption of potash (table 21), a
very large-market commodity, the potash resources at Blawn
Mountain, Red Mountain, and Sunnyside are equivalent to
approximately 5 to 8 years of the lowest consumption (5.2 Mt)
and approximately 4 to 7 years of the highest consumption
(6.2 Mt; table 22).

Unclassified Magmatic-Hydrothermal Deposits

Antimony (Sh)

No production figures for the Coyote (Antimony)
district, Utah (described in chap. A), have been published
but a significant resource may remain in the district. Lateral
and vertical dimensions of unmined lenses or stratiform
masses of stockwork veins and small masses of stibnite
and antimony oxides are up to several hundreds of ft in
length and several tens of ft thick (Traver, 1949; Callaghan,
1973). Based on these and other dimensions of mineralized
zones, and on distribution of mined deposits, a resource
of 1.5 Mst (1.3 Mt) grading 6 to 7 percent antimony, or
approximately 90,000 to 105,000 short tons (81,818-95,455
t) of antimony, was estimated in 1941 (Palladine, 1941).
Callaghan (1973) estimated lower grades of unmined lenses,
0.5 to less than 3 weight percent antimony, but provided no
resource tonnage. According to Mills and Rupke (2020),
105,000 short tons (95,455 t) of antimony may remain in the
district, an estimate identical to and perhaps derived from
Palladine (1941). However, this tonnage is inordinately
large relative to production estimated from antimony value
during mining (approximately 395 t). Based on recent annual
domestic consumption of antimony (table 21), a mid-market
commodity, a 105,000-short-ton antimony resource in the
Coyote district is equivalent to approximately 4.8 years of the
lowest consumption (22,000 t) and approximately 3.8 years of
the highest consumption (27,700 t; table 22).
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Antimony (Sb), Arsenic (As), Bismuth (Bi), and Tungsten (W)

In the Yellow Pine district, Valley County, Idaho
(described in chap. A), composited analyses of diamond drill
holes (DDH) used to define the Yellow Pine, Hangar Flats, and
West End gold-silver-(antimony) resources include markedly
elevated concentrations of As, Bi, and W in addition to Au,
Ag, and Sb (table 7). The resources contain approximately
5.63 million troy ounces (175 t) of gold, 8.68 million troy
ounces (270 t) of silver, and approximately 74,000 t of
antimony (Huss and others, 2014; Becker and others, 2019;
NS Energy, 2021) which represents the largest unmined
domestic antimony reserve. Using a total resource tonnage
of 104 Mt and composited analyses from 19 DDH (table 7),
approximately 59,082 t of antimony, 209,673 t of arsenic,
38,989 t of bismuth, and 1,560 t of tungsten occur in the
currently defined reserve. The conflicting antimony tonnages
suggest the DDH composites do not accurately represent the
established reserve; however, the DDH composites indicate
that there is substantial bismuth in the reserve.

Based on recent annual domestic consumption of
antimony, arsenic, bismuth, and tungsten (table 21), mid- and
small-market commodities, and the DDH composites, the
estimated antimony resources at Yellow Pine are equivalent
to approximately 3 to 5 years of the lowest consumption
(22,000 t) and approximately 0.5 to 4 years of the highest
consumption (27,700 t; table 22). The estimated arsenic
resource is equivalent to approximately 34 years of the
lowest consumption (6,120 t) and approximately 20 years of
the highest consumption (10,500 t; table 22). The estimated
bismuth resource is equivalent to approximately 27.8 years
of the lowest consumption (1,400 t) and approximately
15.4 years of the highest recent consumption (2,530 t;
table 22). The tungsten resource is very small relative to
recent annual domestic consumption and comprises less than

1 year supply.

Fluorite (CaF,)

Modest tonnage deposits of relatively low-grade fluorite
exist in New Mexico, Utah, and Nevada. Estimated fluorite
resources in New Mexico are estimated at 1.4 Mst (1.3 Mt)
grading 35 weight percent or more fluorite (USGS and others,
1965). Large but incompletely quantified resources of fluorite
also occur in and near the Spor Mountain, Utah, beryllium
deposits (Bullock, 1976, 1981); these deposits have not been
successfully marketed because of the low grade and fine grain
size of fluorite and other factors.

Gallium (Ga) and Germanium (Ge)

At the Apex mine, Washington County, Utah (described
in chap. A), a resource of 850 short tons (773 t) of germanium,
330 short tons (300 t) of gallium, and 18,000 short tons
(16,364 t) of copper remains in the reclaimed mine (Dutrizac
and others, 1986; Mills and Rupke, 2020). Based on recent
annual domestic consumption of gallium and germanium

(table 21), both very small market commodities, the gallium
resource at the Apex mine is equivalent to approximately

20 years of the lowest consumption and approximately

17 years of the highest consumption (table 22); the germanium
resource is equivalent to approximately 26 years of
consumption (estimated 30 t; table 22).

Inventories of Critical Minerals in Unmined
Porphyry Cu-Mo Deposits Based on Anode
Copper

Concentrations of Cu, Mo, Au, Ag, Sb, As, Bi, Fe,

Pb, Ni, O, PGE, Re, Se, S, Te, and Sn have been variably
tracked during processing of ores from porphyry copper-
(molybdenum) (Cu-(Mo)) and other deposits for recovery of
copper and molybdenum (tables 9—11). In the three operating
domestic copper refineries and allied facilities, Cu and Mo
are concentrated to marketable purity, and Au, Ag, Re, and
Te are recovered when profitable. These primary products
and byproducts were also concentrated in numerous other
copper refineries since shuttered or demolished. In addition
to the critical minerals Re and Te, small amounts of other
critical minerals, including Sb, Bi, Ni, and PGE have

been episodically recovered at operating and shuttered or
demolished copper refineries that processed porphyry Cu-Mo
deposit ores (described in chap. B and previously in chap. C).
Whereas Cu and Mo production is quantified and recorded
annually, quantification of Sb, Bi, Ni, PGE, and other critical
minerals, including As, In, Sn and often Re and Te, is seldom
reported even when recovered (for example, Anaconda Copper
Mining Company, 1915-1955; ASARCO, 2021).

Apparently, most critical minerals have been routinely
discarded in tailings, slags, slimes, and electrolyte or disposed
of in storage sites. Owing to the large scale of mining of
porphyry Cu-Mo deposits (tens of thousands of metric tons
of ore per day) and episodic recovery of critical minerals,
slimes and electrolyte at operating copper refineries and allied
facilities (and stored at shuttered or demolished refineries
or other sites) could contain large inventories of Sb, As, Bi,
Ni, Te, and Sn and possibly other critical minerals (fig. 6D),
and concentrator tailings could contain large inventories of
Al, Ti, W, and Zr. The concentrations of critical minerals in
concentrator tailings have not been published and tailings
inventories cannot be calculated. However, concentrations of
critical minerals in anode copper, a partially refined form of
copper, have been episodically compiled and can be used to
semi-quantify inventories of critical minerals in (1) refinery
slimes, and (2) unmined resources and mine reserves and
resources. The following evaluation is concerned only with
critical mineral inventories of unmined resources and mine
reserves and resources.

Refining of Cu-Mo ores to marketable copper and
molybdenum involves three stages: (1) concentration of
copper and molybdenum sulfide minerals by separation
from valueless silicate, carbonate, oxide, and other sulfide
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minerals; molybdenum sulfide minerals (nearly exclusively
molybdenite) are then sent to separate allied facilities for
molybdenum recovery, (2) smelting of copper sulfide mineral
concentrate to remove iron, sulfur, and oxygen and silicate
impurities, and (3) electrorefining of smelted copper with 1

to 2 percent remaining impurities, known as anode copper,

to cathode copper containing a few tens of parts per million
or less of impurities (fig. 6D). During electrorefining, anode
copper is dissolved in electrolyte, transferred to cathodes
where it precipitates as 99.9 weight percent or more copper,
and cast into fabricator products (ingots, wirebar) (for
example, Anaconda Copper Mining Company, 1937). The very
fine grained impurities in anode copper settle in electrolyte
tanks and are known as slimes or tank house slimes. Slimes
contain elevated concentrations of gold, silver, and other
chalcophile critical minerals (Sb, As, Bi, Te, and Sn), whereas
electrolyte contains elevated concentrations of the siderophile
critical minerals Co, Ni, and Zn.

In operating (and shuttered or demolished) copper
refineries, Cu, Au, Ag, Sb, As, Bi, Fe, Pb, Ni, O, Se, S, Te, and
Sn are monitored (tables 9, 10) because (1) some elements,
including the critical minerals Sb and As, affect electrical
conductivity, malleability, and ductility, the properties
essential to copper fabricators (Lane and others, 2016; Moats
and others, 2012, 2014a, b, 2016; Artzer and others, 2018),
(2) recovery of copper and the marketable critical mineral
tellurium can be increased by recycling slag and effluent
(dusts; gases), (3) some elements can be profitably recovered
as byproducts (Au, Ag, and Te), and (4) many elements are
subject to emission control regulations (for example, As,

Pb, Se, S; fig. 6D). Concentrations of some critical minerals
in porphyry Cu-Mo ores (for example, PGE, Re, and Te)

are very low, often below detection limits, and measurable
only in concentrates (Tarkian and Stribrny, 1999), interim
products (slags, dusts, and gases) (Tylecote and others, 1977;
Schwitzgebel and others, 1978; Mauser, 1982; Foster, 1991;
Wong and others, 2006), anode copper, and electrorefining
slimes (table 12—15). However, because thousands to tens

of thousands of metric tons of ore are processed daily for
copper, molybdenym, and byproduct recovery, concentrations
of critical minerals and other monitored elements in anode
copper are often tens to hundreds of parts per million and in
slimes and electrolyte several weight percent (tables 9—15;
Anaconda Copper Mining Company, 1937; Broadhurst and
others, 2007; Hait and others, 2009; Dupont and others, 2016).
Cathode copper, the marketable form, typically contains less
than 1 to several tens of parts per million Au, Ag, Sb, As,

Bi, Te, and Sn (Anaconda Copper Mining Company, 1937;
Parker, 1978; Ramachandran and Wildman, 1987; Moats and
others, 2013), indicating that chalcophile and siderophile
critical minerals in anode copper are largely partitioned to
slimes during electrorefining. Sb, As, and Bi in anodes and
slimes occur in various oxide minerals whereas Te and PGE
apparently occur in gold-silver tellurides (Parker, 1978; Chen
and Dutrizac, 2005; Hait and others, 2009) and likely in
copper and other telluride minerals.

Metallurgical Accounting of Critical Minerals
During Copper Recovery

Metallurgical accounting of critical minerals in
copper refineries, operating and shuttered or demolished,
is notoriously difficult to balance. The quantities of critical
minerals not recovered during concentration of copper and
molybdenum minerals (concentrator tailings; [1] above), and
during smelting of copper minerals (slags, dusts, and gases;
no. 2 above) (fig. 6D) are seldom published (Miller and others,
1976; Mauser, 1982; Foster, 1991; Goonan, 2004; Chen and
others, 2012; Xiao and others, 2012; Avarmaa and others,
2016). Partitioning of critical minerals and other elements
between impure forms of copper (matte, blister, anode) and
interim products (concentrator tailings, slags/speiss, and
dusts) also have been infrequently reported, in part because
concentrates and slimes have been processed at different
facilities or exported and are difficult to track (Parker, 1978;
Foster, 1991). In addition, although Sb, Bi, Ni, PGE, and
Te episodically recovered at copper refineries were derived
predominantly from captive porphyry Cu-Mo deposits,
smelters, and refineries regularly to periodically processed
tolled concentrates and ores, some imported, from other
deposit types and scrap.

The variable concentrations of critical minerals in anode
copper, slimes, and electrolyte (fig. 74, B) also reflect deposit
zoning, as ore depths increased over time, and processing
refinements (for example, Foster, 1991; Newman and others,
1999). Prior to 1990, at least, interim products at some
refineries contained tens of weight percent, Au, Ag, As, Se,
and Te that in part correlated with ore type and processing
techniques (for example, Foster, 1991). Interim products
are now mostly recycled (reprocessed) to lessen marketable
commodity loss (Cu, Au, Ag, and Te) and comply with
regulatory emission requirements (fig. 6D; see Arthur D.
Little, Inc., 1974; Malcolm Pirnie, Inc, 2010; Nexhip, 2016).

Other uncertainties in metallurgical accounting arise from
exported copper concentrate and unquantified deportment
of critical minerals in low-grade porphyry copper ores that
are processed by heap leaching, pressure leaching, and other
hydrometallurgical techniques. Regarding hydrometallurgy,
since 2001 copper production at Morenci, Ariz., which
approaches 400,000 t annually, largely derives from leaching
and electrowinning (Dresher, 2001) during which critical
minerals are apparently not tracked or recovered. In addition,
domestic copper mine production has occasionally exceeded
refinery capacity, necessitating shipment of concentrates to
refineries abroad. New production from mines in Nevada
(for example, Pumpkin Hollow) and Arizona (Copper World
[Rosemont]; Resolution) will further tax domestic copper
refinery capacity (DeMull and others, 2018), making tracking
of critical minerals in domestic porphyry Cu-Mo deposits
more difficult.

Low-grade stockpiles and dumps not included in
reserves or resources that are processed for copper recovery
(leaching and milling, when profitable) can further imbalance
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critical mineral accounting. The small amounts of primary
commodities and critical minerals that remain in mine dumps
and mill tailings, and their recovery, are the subjects of recent
investigations and operations (for example, Bian and others,
2012; Reck and Graedel, 2012; Zhang and others, 2020;
Tabelin and others, 2021). For example, a heap leach facility
at the Sacaton copper mine, Ariz., is being permitted and
developed to recover copper from dumps from earlier mining
operations (1970s—90s) (Sexauer and others, 2021; Arizona
Sonoran Copper Company, 2021). However, the deportment of
critical minerals during reprocessing at Sacaton has apparently
not been addressed.

Critical mineral concentrations in anode copper,
compiled from records than span decades, are used with
reserve and resource tonnages, to calculate inventories in
the following section. Based on the caveats and forecasts
described above, these inventories may not accurately reflect
concentrations in ores of captive mines. However, the masses
of Sb, As, Bi, Te, Sn, and other critical minerals (Ni, PGE)
that are transferred from anode copper to slimes during
electrorefining represent significant inventories that have been
mostly sent offsite for disposal and additional processing or
exported. They are potentially recoverable or more effectively
recovered in operating domestic copper refineries (for
example, tellurium) (fig. 5; Wang, 2011; Dupont and others,
2016; Rio Tinto, 2021a). The production of approximately
1,100 short tons per year (1,000 t per year) of antimony from
anode slimes between 1978 and 1986 at ASARCO’s El Paso
refinery (shuttered in 1999) (Yuan, 2007; ASARCO, 2021),
or approximately 5 percent of recent domestic consumption
(table 21), attests to the masses of critical minerals in
slimes that are largely unrecovered in operating refineries
(table 12-15).

Calculated Critical Mineral Inventories Based on
Concentrations in Anode Copper and Slimes

Concentrations of the critical minerals monitored in
domestic copper refineries have been episodically compiled
since 1978, and with regularity from 1986 to 2018 (Parker,
1978; fig. 74, B; tables 9—11). In the 1970s there were
approximately 20 operating copper smelters and refineries; in
1995 seven remained (Parker, 1978; Eastern Research Group,
Inc., 1998). As of 2022, there are three operating domestic
refineries. The Rio Tinto refinery in Magna, Utah, processes
Cu-Mo ores from the nearby Bingham district mines; the
ASARCO smelter in Hayden, Ariz., and refinery in Amarillo,
Tex., process Cu-Mo ores primarily from the Ray, Mission,
and Silver Bell mines, Ariz.; and the Freeport-McMoRan
smelter in Miami, Ariz., and refinery in El Paso, Tex., process
ores, steadily to episodically, from the Morenci, Bagdad,
Safford, Miami, and Sierrita mines, Ariz., and Chino and
Tyrone mines, N. Mex. (fig. 74). Shuttered or demolished
domestic copper refineries for which anode copper and slime
concentrations have been published include those at San
Manuel and Miami, Ariz. (fig. 7B; tables 9-11).

The concentrations of Sb, As, Bi, Te, and Sn in anode
copper and slimes can be used to semi-quantify inventories in
operating porphyry Cu-(Mo) mine reserves and in unmined
Cu-(Mo) reserves and resources (fig. 84; tables 12—15).
Predicted and annual inventories of Sb, As, Bi, Ni, Te, and Sn
have been estimated from reserve and resource tonnages for
mines that feed or fed operating and shuttered or demolished
domestic copper refineries, concentrations of critical minerals
in anode copper, and terms (years) of refinery operation
(estimated in part) and (or) refinery records (fig. 84; tables
12—15). Annual inventories were calculated by multiplying
metric tons of ore processed by 0.5 weight percent copper
(assumed average grade), then by 200 (concentration
factor of critical minerals in anode copper), and then by the
concentration of critical minerals (in parts per million or
weight percent) in anode copper. Mine reserve inventories and
inventories in unmined reserves and resources were obtained
by multiplying annual inventories by mine life (years of
reserves), or by using total reserve and resource tonnages.

In operating refineries, the annual inventories of critical
minerals that are mostly in disposal sites, but which could
constitute domestic supplies if recovered, are both larger and
smaller than recent annual domestic consumption of these
commodities. The range of arsenic, bismuth, and tellurium
inventories per refinery (in metric tons per year) spans or
exceeds annual consumption (fig. 84); combined inventories
exceed consumption. Tin has been too infrequently tracked
for trend recognition, but the small annual inventories of tin
potentially available are unlikely to comprise a significant
proportion of annual consumption. This prediction is
also supported by the relatively small inventories of tin
in porphyry Cu-Mo deposits estimated from drill holes
and mineral zones, described previously in chapter C.
Likewise, annual nickel inventories per refinery are lower
than consumption; however, combined inventories could
conceivably approach consumption.

From estimated production tonnages of mines that fed
two shuttered or demolished domestic copper refineries, and
estimated terms (in years) of refinery operation, calculated
inventories of Sb, As, Bi, Ni, and Te are considerably lower
than for operating refineries (fig. 84; tables 12—15). Because
of imprecise production records and mine consolidation in
the Globe-Miami district, Ariz., production tonnages, and
critical mineral inventories calculated from them may not be
accurately separated by mine production, production years,
and assigned critical mineral concentrations in anode copper.

The two methods of critical mineral inventory
estimation—one based on reserve and resource tonnages and
concentrations in drill holes and mineral zones, and the second
based on reserve and resource tonnages and concentrations in
anode copper—can be compared for the Bingham porphyry
Cu-Mo deposit where both methods were applied (fig. 85).
At Bingham, the calculated ranges of inventories of antimony,
bismuth, nickel, and tellurium in anode copper are within,
all or in part, inventories in Cu-Mo ore and other mineral
zones (fig. 7B). The calculated inventory range (reserve and
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resource) of arsenic in anode copper is considerably greater
than that of Cu-Mo ore and mineral zones (for unknown
reasons). However, the close correspondence of most
comparable critical mineral inventories (Sb, Bi, Ni, and Te)
implies that inventories determined by both methods are
broadly valid.

It should be cautioned that the concentrations and
calculated inventories of critical minerals in porphyry Cu-Mo
reserves and resources, based on concentrations in drill holes,
mineral zones, and anode copper (figs. 4-8; tables 3—15), are
estimates only and should not be considered domestic supply
forecasts for these critical minerals. The calculated inventories
are conditioned by numerous limitations:

* Published concentrations of critical minerals in anode
copper vary considerably over time, and reserve
and resource tonnages from which critical mineral
inventories were calculated also vary by published
source. In addition, reserve tonnage and mine life may
change with fluctuation in copper prices and by reserve
expansion through exploration at mine sites.

» Most critical mineral concentrations in drill holes
used to calculate inventories are averages, and
concentrations in actual reserves and resources may
or may not be fully represented by the drill holes or
averaging. Further, the number and spatial distribution
of drill holes and intervals analyzed are unknown for
some deposits, reserves, and resources.

» Elevated concentrations of critical minerals may not
correspond spatially to those of principal commodities
for which mine plans are developed (for example,
copper and molybdenum), and that will condition
reserve definition and new deposit development.
Critical mineral recovery from mined Cu-Mo ore may
be smaller or larger than deposit inventories calculated
from drill holes, mineral domains, and anode copper.

* Inventories calculated by the copper anode method
assume that critical minerals were largely to entirely
sourced from captive mines and smelters (mines and
processing facilities owned by the same company;
for example, Anaconda Copper Mining Company,
1915-1955). Average concentrations and tonnages used
in inventory calculations disguise the variable critical
mineral concentrations in (A) anode copper (resulting
from changes in processing techniques), (B) ores
from different mineral zones in deposits, and (C) ores
from different deposits. Anode copper compositions
may also reflect tolled concentrates and processed
scrap. Further, some copper is recovered by leaching
and electrowinning, as at Morenci, Ariz., rather than
by smelting and electrorefining. The partitioning
of critical minerals during leaching-electrowinning
and other hydrometallurgical processes is unknown.
However, copper produced by hydrometallurgy is
included in total copper production used in inventory

calculations, whereas unknown critical mineral
concentrations in leach lixiviant and waste are not
used, thereby potentially inflating inventories.

» During copper concentration, smelting, and
electrorefining, variable amounts of critical minerals are
partitioned to interim products (concentrator tailings,
flue dusts, and slags) (for example, Parker, 1978).
Although recycling of these interim products to improve
recovery and comply with emissions regulations has
increasingly characterized refinery performance over the
past several decades, large quantities of some lithophile
critical minerals (Al, Ti, W, and Zr) could remain in
concentrator tailings, and small unquantified amounts
of chalcophile critical minerals (Sb, As, Bi, Ge, Te, and
Sn; fig. 6D) could remain in interim products that are
eventually discarded.

* Predicted inventories are not necessarily recoverable
supplies as techniques for recovery of Sb, As, Bi, Ni,
and Sn may not have been developed and recovery
efficiencies are therefore unknown. Recovery of
critical minerals may require subsidization, especially
for low concentrations (tens of parts per million or
less) and for some high concentrations.

» New and (or) increased recovery of small- (for example,
Ge, In, Re, and Te) and mid-market (for example, Sb,
As, and Sn) commodities (table 22) at copper refineries,
without commensurate increase in demand, would
undoubtedly lower market prices and necessitate
adjustment of production subsidies and scheduling.

Semi- and Unquantified Inventories of Critical
Minerals in Porphyry Cu-Mo and Other Deposit
Types, and in Mill Tailings

Deposits and mill tailings with potential for significant
inventories of critical minerals that have not been quantified,
or are semi-quantified, are represented by several deposit
types (porphyry Cu-Mo-Au, lithocap alunite, porphyry/skarn
tin, low sulfidation, and high sulfidation). Critical mineral
concentrations are based on elevated concentrations with
variable analytical precision, and more precise analyses are
needed to assess inventory significance.

Mineral System—Porphyry Cu-Mo-Au

Deposit type—Porphyry/Skarn Copper

Antimony (Sb), Arsenic (As), Bismuth (Bi), Cobalt (Co), Indium
(In), Nickel (Ni), PGE, Tellurium (Te), Tin (Sn), and Vanadium (V)

Variably elevated concentrations (tens to more than
100 ppm) of Sb, As, Bi, Co, In, Ni, PGE, Te, Sn, and V
occur in rocks in and near copper and gold deposits in the
Battle Mountain district, Lander County, Nev. (Theodore
and Blake, 1975; Page and others, 1978), in sphalerite in
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Au-Ag-Pb-Zn-Cu-U deposits of the Central City district,
Colo. (Sims and others, 1961), in sphalerite and chalcopyrite
in polymetallic skarn, replacement and vein deposits of

the Central district, N. Mex. (Rose, 1967; Briskey, 2005),
and in several minerals in replacement deposits at Darwin,
California (Carlisle and others, 1954; Czamanske and Hall,
1975; Foord and Shawe, 1989; Dunning and others, 2006).
Deposits in the Battle Mountain and Central districts are
spatially and temporally associated with Cu-Mo-mineralized
intrusions, whereas deposits in the Central City and Darwin
districts have unknown association with mineralized
porphyritic intrusions. Critical mineral concentrations in
these deposits were determined mostly by semi-quantitative
spectrographic methods with relatively low precision and
high detection limits, but elevated concentrations may be
semi-quantitatively valid.

Elevated PGE and tellurium concentrations occur in
other deposits in Nevada that are in or related to intrusions.
Lechler (1988) reported elevated concentration of Pt (up to
53.4 troy ounces per short ton), Pd, Rh, Ru, Ir, and Os+Ir in
selected samples from a vein deposit in a Mesozoic granitic
intrusion on Crescent Peak, Clark County, Nev.; the samples
also contained up to 10 troy ounces of gold per short ton and
54 troy ounces of silver per short ton. Elevated concentrations
of tellurium occur in jasperoid and gossan in the Ely
(Robinson) district, Nev. (Gott and McCarthy, 1966; Watterson
and others, 1977), and at Tintic and Bingham, Utah (Lovering
and others, 1966). Elevated concentrations of tellurium occur
in gold- and silver-mineralized rocks that comprise the Gold
Jackpot project, Elko County, Nev. (CAT Strategic Metals
Corp., 2021).

Titanium (Ti)

Approximately 4 Mt of rutile are contained in igneous
rocks of the Bagdad, San Manuel, and Ajo porphyry copper
deposits, Ariz., and 4 Mt of rutile are contained in igneous
rocks of the Bingham porphyry copper deposit, Utah
(Czamanske and others, 1981; Chaffee, 1982; Force and Lynd,
1984). Annual domestic consumption of TiO, from 2016 to
2020 averaged more than 1 Mt and varied by product form
with most TiO, consumption for pigment applications (USGS,
2021). Porphyry Cu-Mo deposits could theoretically provide
several years of annual domestic consumption if a marketable
form of titanium could be produced.

Deposit Type—Porphyry/Skarn-Tungsten
Tungsten (W)

Margerie Glacier is a porphyry Cu-Mo deposit in
southeastern Alaska about 100 mi (167 km) northwest of
Juneau, Alaska (table 2). It contains elevated concentrations of
tungsten, molybdenum, gold, and silver attributed, at least in
part, to quartz-chalcopyrite-arsenopyrite-scheelite-powellite
veins up to 1.7 ft (0.5 m) wide in Tertiary porphyry quartz
monzodiorite and sedimentary and marine volcanic rocks
(Brew and others, 1978; Kurtak, 1985; Carroll and others,

2018). Plagioclase and potassium feldspar that comprise
much of the quartz monzodiorite have been altered to sericite,
and biotite has been altered to chlorite. Brew and others
(1978) report a tungsten resource of 145 Mt grading 0.01
percent tungsten (14,500 t). This resource is equivalent to
approximately 1 year or more of recent annual domestic
consumption (tables 21, 22).

Deposit Type—Lithocap Alunite

Aluminum (Al) and Potash (KCI, K,S0,, KNO,)

The upper part of the Resolution porphyry copper deposit
near Superior, Ariz., consists of a large mass of rock altered
to dickite (Al,S1,0,0Hy), topaz (Al,Si0,(F,0H),), quartz, and
lesser pyrite, alunite, zunyite (Al;;Si;0,,), and woodhouseite
(CaAlL,PO,SO,0OHy) that is within and overlying a 1.66-Gst
(1.51 Gt) Cu-Mo inferred resource (Troutman, 2001; Martin,
2019; Cooke and others, 2020). The mass was identified in
holes drilled for Cu-Mo resources, but no alunite resource has
been published. Other unquantified alunite resources occur in
altered rocks overlying and adjacent to gold-silver-(copper)
deposits in the Goldfield and National districts, Nev. (Vikre,
2007), in quartz-alunite alteration cells in the Walker Lane,
Nev. and Calif. (Vikre and Henry, 2011), in Pliocene volcanic
rocks in the Sweetwater Mountains, Calif. and Nev. (Balogh
and others, 2021), and in the western San Juan Mountains,
Colo. (Hall, 1978; Lowe and others, 1985). A low-grade
alunite deposit (estimated 3.5 percent) at Sugarloaf Butte,
Yuma County, Ariz., consisting of veins in schistose porphyry
dacite and sericite schist, comprises at least 10 Mt (USGS
and others, 1969); the relationship of this occurrence relative
to subduction-related intrusions is unknown. The suspected
low quality and (or) small size of these alunite occurrences
portends relatively small inventories of aluminum and potash
relative to recent annual domestic consumption.

Mineral System—Porphyry Tin (granite-related)

Deposit Type—Porphyry/Skarn Tin
Tin (Sn)

At Taylor Creek, Catron and Sierra Counties, N. Mex.,
estimated tin reserves in 1941 were approximately 7,603 t in
a five-acre area of altered rhyolite, and approximately 49 t in
derivative placer deposits (U.S. Bureau of Mines, 1941b). It
is unknown if these reserves were verified and mined. They
comprise approximately 22 percent of recent annual domestic
consumption (table 21).

Several areas in Nevada contain small tin deposits
(Majuba Hill, described in chap. A) and widespread tin
occurrences. Tin occurs in the Trinity silver mine and in
altered rhyolites in the Trinity Range south of Majuba Hill.
Small amounts of cassiterite, scheelite, and cinnabar were
recovered with gold from placer deposits intermittently
mined from the 1870s to the 1940s in the Kamma Mountains
north and northwest of Majuba Hill (Rabbit Hole district;
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Rosebud Canyon) (Vanderburg, 1936; Smith and Gianella,
1942; Trites and Thurston, 1958; Stevens, 1971; MacKenzie
and Bookstrom, 1976; Johnson, 1977; Wenrich and others,
1986; Castor and Ferdock, 2003; Whateley and others, 2006;
Coolbaugh, 2014). Minor amounts of “wood tin” occur

in Miocene volcanic rocks northwest of Battle Mountain
(Fries, 1942). Small amounts of tin (in stannite) occur with
numerous Cu-Mo-Au-Bi-Pb-Zn-Ag minerals in contact zones
of Eocene intrusions and Paleozoic siliciclastic strata in the
Tenabo district and with carbonate-replacement deposits
mined for lead in the Delano district (Kelson and others, 2008;
Mankins and Muntean, 2021; Hewitt, 1968; Lapointe and
others, 1991). Tin is reported in the McCullough Butte fluorite
deposit (described previously in chap. C). Like tin deposits

in felsic rocks elsewhere, the tin deposits and occurrences

in Nevada may be associated with reduced, peraluminous
intrusions (Holmwood and others, 2021). Relative to recent
consumption, none of the tin deposits and occurrences in
Nevada are likely to comprise significant inventories.

Mineral System—Alkalic porphyry
Deposit Type—Low Sulfidation

Tellurium (Te) and Vanadium (V)

Approximately 1,700 analyses of mineralized samples
from drill holes, mine workings, and surface exposures in the
Cripple Creek district, Teller County, Colo., average more
than 1 ppm gold and approximately 4.8 ppm tellurium in
oxide minerals (table 8). These analyses imply a large in situ
inventory of tellurium that could be recovered if ores were
treated by milling rather than heap leaching which does not
recover tellurium from oxide minerals. Mill tailings from
recovery of gold mined at much higher grades from 1891 to
1944—the period of most district production (approximately
18.5 million troy ounces [575 t] of silver; 2.1 million troy
ounces [65 t] of gold) (Vanderwilt, 1947)—could constitute a
second large tellurium inventory; tailings reside at numerous
mill sites in the vicinity of Colorado Springs, Old Colorado
City, Florence, and Pueblo. If gold was recovered primarily
from the gold-silver-tellurium minerals calaverite (AuTe,) and
sylvanite ((Au, Ag)Te,), then approximately 0.6 ounces per
short ton of tellurium, or approximately 345 t of tellurium,
may reside in tailings. In addition, elevated concentrations
of vanadium (approximately 560-3,360 ppm) occur in
concentrate and slag of the Golden Cycle mill at Cripple Creek
(Kaiser and others, 1954). However, some gold-silver telluride
ores were roasted prior to cyanidation to eliminate tellurium,
some ores contained tellurium oxide minerals, and some mill
tailings have been moved and repurposed. Significant masses
of tellurium and vanadium may exist in mine and processing
tailings and in unmined gold resources (approximately
270 Mst [245 Mt]) (Newmont Corporation, 2019), although at
widely separated sites.

Based on production of gold and silver from the telluride
vein deposits of Boulder County, Colo., less than 60 short
tons (55 t) of tellurium are estimated to have been mined

(Kelly and Goddard, 1969), but there is no record of tellurium
production. Other districts in Colorado in which appreciable
amounts of telluride minerals were processed for gold and
silver but not tellurium recovery include La Plata and Lake
City (Henderson, 1926; Eckel and others, 1949; Werle and
others, 1984).

In the Tonopah district, Nye County, Nev., elevated
concentrations of tellurium (average 30 and 36 ppm by
different analytical techniques) in selected mineralized
samples from mine dumps (table 19) represent an improbable
source of tellurium because dumps, although large (aggregate
of several million short tons) and undisturbed, are mostly
unmineralized wall rocks. About 8.1 Mst (7.4 Mt) of vein
ore were produced from 1901 to 1950 and milled at several
sites in and near Tonopah (Carpenter and others, 1953;
Bonham and Garside, 1979). Concentrations of tellurium
and other critical minerals in Slime Wash, the largest mass
of mill tailings, and at Millers, the site of numerous mills
approximately 13 mi northwest of Tonopah, have not been
quantified. The concentrations of gold, silver, and other
elements in mill tailings may warrant recovery if additional
vein resources are developed (W. Howald, Blackrock Silver,
oral commun., 2021).

Deposit Type—High Sulfidation

Antimony (Sb), Arsenic (As), Bismuth (Bi), Germanium (Ge),
Indium (In), Tellurium (Te), Tin (Sn), and Vanadium (V)

Sb, As, Bi, Ge, In, Te, Sn, and V are major to minor
components of chalcogenide minerals that comprise some ores
in the Goldfield district, Esmeralda County, Nev. (Granitto
and others 2020, 2021; Vikre and others, in press). Elevated
concentrations but small masses of these critical minerals
reside in mine dumps (table 18) in the main district and may
reside in tailings adjacent to foundations of the demolished
Goldfield Consolidated Mining Company mill. Since the
1990s, most mine dumps have been moved, all or in part,
to heap leach pads for gold recovery. Mill tailings were
reprocessed, all or in part, from 1920 to 1929 and from 1970
to 1995 for gold recovery. The masses of critical minerals,
relative to annual domestic consumption, may be significant,
but the low concentration of gold remaining in tailings and
mine dumps (estimated <1 ppm), could preclude recovery of
Sb, As, Bi, Ge, In, Te, Sn, and V unless subsidized. Elevated
concentrations of these critical minerals are also likely in
unmined gold resources (Gemfield, McMahon Ridge, and
Goldfield main) (Centerra Gold, 2022) but have not been
quantified and may not be recoverable if gold is recovered by
heap-leaching and cyanidation.

At the Paradise Peak mine, Mineral County, Nev., tailings
generated from recovery of 1.6 million troy ounces (49.8 t) of
gold may be enriched in antimony and bismuth. Three vertical
pre-mine drill holes in the deposit averaged 331, 1,269, and
1,500 ppm antimony and 244, 469, and 1,009 ppm bismuth,
over 80, 88, and 128 m, respectively, (John and others, 1991;
Sillitoe and Lorson, 1994); antimony and bismuth were not
recovered from the 8.1 Mt of ore processed. If tailings contain
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200 ppm each antimony and bismuth, then approximately
1,620 t of each may remain. Gallium in rocks altered to alunite
that overlay the gold-silver deposit averaged 30 to 35 ppm
over 25 m in two drill holes through the center of the deposit
(Rytuba and others, 2003). Remaining gold in dumps and
tailings may enable simultaneous recovery of these critical
minerals. However, the apparent small masses of antimony
and bismuth relative to annual domestic consumption and low
gallium concentrations (near crustal abundance) may preclude
their recovery or require subsidized recovery.

At Washington Hill, Storey County, Nev., large but
unquantified masses of Miocene volcanic rocks have been
pervasively altered to quartz, alunite, pyrite, and other
epigenetic minerals. Surface samples and numerous drill hole
intervals contain tens to hundreds of parts per million Sb, As,
Bi, Te, and Sn (Albino, 1991; Diner, 1989) which conceivably
could be recovered if minable quantities of other commodities
such as copper and molybdenum are identified.

Based on elevated concentrations in mineralized rocks,
tellurium and other critical minerals may exist in mine
dumps and mill tailings in the Battle Mountain district,

Nev., (Theodore and Blake, 1975), in gold-silver districts

in the Walker Lane in addition to those described above

(for example, Ramsey district, Nev.; Bodie Hills districts,
Calif. and Nev.) (Vikre and Henry, 2011; Vikre and others,
2015; Balogh and others, 2021), and in precious metal and
polymetallic districts in Colorado, Montana, and New Mexico
(Henderson, 1926; Rose, 1967; Briskey, 2005). Masses of
critical minerals in mine dumps and mill tailings of these and
other districts in Western States may be too small to warrant
recovery, even with subsidization, but apparently no attempt
has been made to quantify them.

Unclassified Magmatic Deposits

Aluminum (Al), Rare Earth Elements (REE), Titanium (Ti),
Zircon (ZrSi0,), and Tin (Sn)

Anorthosite in the San Gabriel Mountains, Los Angeles
and San Bernardino Counties, Calif., has been evaluated for
aluminum resources and mined on a small scale for clay for
cement manufacturing. The anorthosite comprises a partially
quantified “enormous reserve” of approximately 27 weight
percent Al,O, (USGS and others, 1966a; Carter, 1982).
Ilmenite-magnetite-apatite-rich cumulate in the anorthosite also
constitutes a low-grade REE resource of approximately 2 Mst
(1.8 Mt) grading 0.17 weight percent RE,0,, (approximately
16 percent of which is yttrium), and a larger titanium resource
(approximately 1.2 Gst [1.1 Gt] grading 6.2 weight percent
TiO,) (Carter, 1982). Other felsic intrusions in Arizona,
California, and Wyoming contain modest to large inventories of
titanium (mostly in rutile) and zirconium (in zircon) (Force and
Lynd, 1984; Osterwald and others, 1966). Titanium, zirconium,
and tin minerals (cassiterite) have been recovered in small
quantities from placer deposits generated by weathering of the
San Gabriel Mountains anorthosite and other granitic intrusions,
mostly anorthosites. Although the San Gabriel Mountains and
other anorthosites are Precambrian and external to the scope

of this report, they exemplify the potentially large inventories
of titanium, zirconium, and possibly tin contained in felsic
intrusions related to subduction and in derivative colluvial and
alluvial deposits. Some felsic intrusions are being mined for
copper and molybdenum (porphyry Cu-Mo deposits) and large
dumps (tens to hundreds of millions of metric tons) consisting
of felsic granitic rocks exist at operating and shuttered mines.
Since Cu-Mo ores are finely crushed for separation of copper
and molybdenum minerals, rutile and zircon could conceivably
be recovered from heretofore valueless silicate minerals
discarded as concentrator tailings (fig. 6D).

Mineral System—Reduced Intrusion-Related

One operating gold mine and several gold resources in
Nevada have characteristics of reduced intrusion-related gold
(RIRG) deposits. These deposits largely consist of several to
numerous closely spaced vein sets and skarns that are or may
be bulk minable for gold. Critical mineral concentrations in
the gold mine and resources are incompletely known.

Critical mineral concentrations in drill holes in the
Bald Mountain gold mine, White Pine County, Nev., have
been geochemically correlated (Pace, 2009) but absolute
concentrations are not available (Dan Pace, written commun.,
2021). However, the reserve of 204.5 Mt grading 0.016 troy
ounces of gold per short ton (measured and indicated)
(Kinross Gold Corporation, 2020) is large enough to contain
significant inventories of some critical minerals. At Spring
Valley, Pershing County, critical mineral concentrations (Co,
Ga, Ni, Nb, Ta, Sn, W, and V) in 10 samples representative of
alteration zones within the gold resource (202.4 Mt grading
0.019 troy ounces of gold per short ton) are mostly at or below
crustal abundances (Crosby, 2012; Muntean and others, 2020),
implying low potential for critical mineral recovery if gold
is mined. At Buffalo Canyon, Nye County, critical mineral
concentrations (Sb, As, Bi, Co, Ga, Ge, In, Ni, Nb, Re, Ta, Te,
Sn, W, and Zn) in 120 samples of vein types that comprise
the gold resource (23.1 Mt grading 0.0125 troy ounces of
gold per short ton) are mostly at or below crustal abundances
(Quillen, 2017; Orogen, 2021). Some Sb, As, Bi, Te, and Sn
concentrations slightly to greatly exceed crustal abundance in
vein types on which the gold resource is based, but the small
masses conceivably present may not warrant recovery. At
Robertson, Lander County (Bullion district), Au is associated
with elevated concentrations of As, Bi, Te, and Sn which occur
in arsenopyrite, loellingite, bismuth tellurides, and bismuth
(Kelson and others, 2008; Mankins and Muntean, 2021;
Mankins and others, 2022). No resource has been publicized
and arsenic, bismuth, tellurium, and tin inventories cannot be
estimated. The nearby McCoy and Cove gold-silver deposits
and resources, Lander County, Nev., also have characteristics
of RIRG deposits (Johnson, 2003; Bonner, 2019), but critical
minerals have not been quantified. Although tonnages of
several RIRG resources are moderately large, average
concentrations of critical minerals are mostly at or below
crustal abundances, and likely constitute small inventories that
portend costly recovery.
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Goldfield district, Nevada.
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Chapter D. Critical Minerals in
Archival Specimens and Collection
Samples

Element concentrations in archival specimens from
museums and samples from collections of authors and
associates have been obtained or collected and analyzed over
several decades by several methods (Granitto and others, 2020,
2021; tables 16—19). The specimens and samples summarized
in this chapter are from domestic porphyry copper-molybdenum
(Cu-Mo) and precious metal districts; deposit types represented
are porphyry/skarn copper, polymetallic sulfide skar
n-replacement-vein-intermediate sulfidation, high-sulfidation
gold-silver, and low-sulfidation gold-silver. Mineralized
specimens from porphyry Cu-Mo districts and deposits for
which critical mineral and other element concentrations were
determined are: Mineral Park, Bisbee, Ajo, Christmas, Morenci,
Bagdad, Globe-Miami, Ray, Sierrita, San Manuel, Silver Bell,
and Vekol Hills, Arizona; Yerington, Nevada; and Bingham,
Utah. Mineralized specimens of skarn, replacement and vein
deposits associated with mineralized porphyry deposits,
where separable, for which critical mineral and other element
concentrations were determined are Bisbee, Johnson Camp,
Mission-Pima-San Xavier, Twin Buttes, and Superior (Magma
mine polymetallic veins) districts, Ariz.; the Butte district,
Montana; the Bingham district, Utah; and the Central district,
New Mexico (figs. 14, 84—H; tables 16, 17). Deposit types
represented by collection samples are polymetallic sulfide
skarn-replacement-vein (S-R-V) intermediate sulfidation (IS),
high-sulfidation gold-silver, and low-sulfidation gold-silver.
Districts and deposits for which critical minerals and other
elements were analyzed are Eureka, Pioche, Goodsprings,
Goldfield, Tonopah, Paradise Peak, Merrimac, and Pyramid,
Nev.; Monitor, California; and Silver City, Idaho (figs. 14,

94, B; tables 18, 19).

Primary products of the deposits from which the analyzed
archival specimens and collection samples were derived
include Cu, Au, Ag, Pb, and Zn. In some deposits, gold,
silver, and molybdenum were coproducts that influenced
production decisions. Critical minerals were produced from
some deposits (or districts in which production is aggregated
or generalized), and in porphyry Cu-Mo resources comprise
significant inventories because of the large scales of mining
and processing, as described in chapters A—C.

Specimen and Sample Representativeness

The average and range of critical mineral concentrations
in archival specimens and collection samples summarized
below (figs. 74, B, 84—H, tables 44—D) are organized by
the deposit type in the source datasets (Granitto and others,
2020, 2021). However, average concentrations of porphyry/
skarn Cu-Mo deposit type specimens and polymetallic sulfide
S-R-V-IS deposits type specimens may include mixtures of
deposit types where deposit type designations are unclear

or incorrect. In general, S-R-V deposits have higher copper,
lead, and zinc concentrations than associated porphyry Cu-Mo
deposits; average copper, lead, and zinc concentrations
that exceed 1 weight percent could reflect mixtures of
deposit types.

In addition, there is a wide range of concentrations of
individual critical minerals within deposits and districts,
and concentrations of primary commodities are often
considerably greater than crustal abundances. Many to most
archival specimens were apparently collected for appearance
and weight. Thus, while averaging concentrations may
deemphasize high-grade specimens and collected samples,
average concentrations of primary product and coproduct
commodities (Cu, Pb, Zn, Au, Ag, and Mo; fig. 84, B) often
exceed production grades. Therefore, average concentrations
of critical minerals in specimens and samples are not
necessarily representative of resources or inventories.

Another consequence of preferential high-grade specimen
and sample conservation is that very high concentrations could
not be quantified by the analytical method used, thus lowering
average concentrations that include analytical maximum
concentrations. Similarly, concentrations below detection,
when included in averages, inflate the averages, disqualifying
their use for resource and inventorying calculation.

Aside from limitations imposed by high-grade and
appearance selectivity of specimens and samples, and
by analytical techniques, some deductions can be made
regarding the concentrations of critical minerals relative to
crust concentrations and relative to primary and coproduct
commodity concentrations. Concentrations and proportions
of critical minerals in deposits and resources will influence
the processes and costs of recovering them as coproducts or
byproducts. Specimen and sample concentrations provide
default guidance to critical mineral potential in the absence of
more representative quantification.

Critical Minerals Enriched in Porphyry Cu-Mo
Deposits

Average concentrations of some critical minerals
in both deposit types (porphyry and S-R-V deposits),
including Sb, As, Bi, Te, and W, are routinely greater than
crustal abundances (fig. 8C, D). Germanium, indium, and
tin concentrations also exceed crustal abundances in some
deposits of both types (fig. 8E, F), although averaging of
most of these critical minerals is hindered by concentrations
below detection in many specimens and samples. Based on
elevated concentrations of these critical minerals in large drill
hole datasets (described in chap. C; tables 3—8), the average
concentrations in the specimen and sample datasets, although
equivocal, broadly show enrichment of these critical minerals
relative to their average concentrations in crust.

Antimony concentrations in both deposit types are highly
variable and few averages can be calculated because many
concentrations are below detection. Numerous concentrations
of individual specimens and samples exceed crustal abundance
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(0.2 parts per million [ppm]), with the highest concentrations,
some more than 100 ppm, in polymetallic sulfide S-R-V-IS
deposits. Average arsenic and bismuth concentrations in
both deposit types, also variable, exceed crustal abundances
of 1.8 ppm and 0.0085 ppm, respectively, and are generally
higher in replacement and vein deposits than in porphyry
deposits. Average bismuth concentrations in many deposits
are 3 to more than 4 orders of magnitude greater than crustal
abundance (fig. 8C, D); bismuth, silver, and tellurium are the
most highly enriched elements in both deposit types based
on specimens and samples analyzed. However, antimony,
arsenic, and bismuth are concentrated during copper refining,
and porphyry deposits contain significant inventories of these
critical minerals (figs. 4-6).

Few average tellurium concentrations are calculable
because of the small number of analyses reported.

All reported concentrations exceed crustal abundance
(0.001 ppm) and some tellurium concentrations in
polymetallic sulfide S-R-V-IS deposits exceed 100 ppm.
However, tellurium, like antimony and tin, is concentrated
during copper electrorefining, and significant inventories
of tellurium exist in reserves and resources of both deposit
types because of the scales of mining (tens of thousands to
millions of metric tons of ore per year). Tellurium has been
episodically recovered at the copper refineries at Magna,
Utah (Rio Tinto), and at Amarillo, Texas (ASARCO).

Average tungsten concentrations in porphyry/skarn cop-
per deposits, where calculable, are mostly several tens of parts
per million. Average tungsten concentrations in associated
polymetallic sulfide S-R-V-IS deposits are tens to hundreds
of parts per million. Tungsten concentrations in both deposit
types are greater than crustal abundance (1.25 ppm). Large
inventories of tungsten exist in these deposit types (figs. 4-0)
but tungsten has not been recovered from any of them.

Average germanium concentrations are the same
as to approximately two times greater than crustal
abundance (1.5 ppm) in porphyry/skarn copper deposits,
and approximately three to four times greater than crustal
abundance in polymetallic sulfide S-R-V-IS deposits. There
are very few elevated concentrations (tens to more than
100 ppm). However, germanium is concentrated during
zinc refining, and possibly during copper refining, and these
deposits represent potentially significant inventories of
germanium because of large tonnages of ore that are mined
and processed annually, large-tonnage unmined resources,
and the very small market volume of germanium.

Average indium concentrations in most specimens from
porphyry copper deposits are below detection, with few
concentrations exceeding crustal abundance (0.25 ppm). In
polymetallic sulfide S-R-V-IS deposits, indium concentrations
are considerably higher with numerous specimens more than
10 ppm. While average indium concentrations cannot be
calculated because many concentrations are below detection,
indium may be concentrated during copper and zinc

refining, and significant inventories of indium could exist in
unmined large-tonnage polymetallic sulfide S-R-V-IS deposits
associated with porphyry Cu-Mo deposits (for example,
Bingham, Utah; Sunnyside, Ariz.), several of which are
currently mined (Mission and Twin Buttes mines, Ariz.).
Average tin concentrations in porphyry/skarn copper
deposits are generally several times greater than crustal
abundance (2.3 ppm) and ten times or more crustal abundance
in polymetallic sulfide S-R-V-IS deposits. Tin, like other
chalcophile and siderophile critical minerals, is potentially
recoverable during processing of large tonnage deposits.
Concentrations of critical minerals in samples collected
by authors and associates in polymetallic sulfide S-R-V-IS
districts in Nevada (Eureka, Pioche, and Goodsprings
districts; table 18) were analyzed at different times (circa
1990-2021) by different techniques for a large array of
element concentrations. Deposits in these districts were
mined for Pb, Zn, and Ag, with lesser production of Cu, Au,
Pt, and Pd (Vikre 1998; Vikre and Browne, 1999; Vikre and
others, 2011). In general, average Sb, As, Bi, In, Sn, and W
concentrations are mostly tens to thousands of times greater
than crustal abundances, whereas average Be, Ce, Cr, Co, Ga,
Li, Ni, Nb, Sc, Sr, and V concentrations are less than one half
crustal abundances. Unmined deposits and mine dumps and
tailings in these districts are much smaller masses (several
millions of short tons) than in porphyry Cu-Mo districts, and
unlikely to contain large inventories of critical minerals.

Critical Minerals Unenriched or Depleted in
Porphyry Cu-Mo Deposits

Concentrations of many critical minerals, including
Be, Ce, Cr, Co, Ga, Li, Ni, Nb, Rb, Sc, Ta, and V in
archival specimens and samples of porphyry/skarn copper-
(molybdenum) deposits and polymetallic sulfide S-R-V-IS
deposits are at or below crustal abundances. Regardless of
averaging discrepancies, these critical minerals have low
potential for recovery. Average concentrations of beryllium,
cerium, and chromium are entirely near and below crustal
abundances of 2.8, 66.5, and 102 ppm, respectively (tables 3,
16—19). Average rubidium concentrations vary from
approximately one half to twice crustal abundance (90 ppm)
in both deposit types; rubidium in some polymetallic sulfide
S-R-V-IS deposits is less than 10 ppm. Average scandium
concentrations in both deposit types are mostly below
detection. Average scandium concentrations in two porphyry/
skarn copper deposits are 18 and 10 ppm, approximately the
same as maximum concentrations in other porphyry/skarn
copper and polymetallic sulfide S-R-V-IS deposits and near
crustal abundance of 22 ppm. Separation of Be, Ce, Cr, Rb and
Sc from ores (and waste) of these deposit types is unlikely,
based on the highest concentrations that seldom exceed crustal
abundances and on the economics of Rb and Sc production
from other deposit types with much higher concentrations.
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Average cobalt and gallium concentrations are
near or below crustal abundance (66.5 ppm and 19 ppm,
respectively) in both deposit types. The very small number of
concentrations greater than crustal abundance do not portend
significant cobalt and gallium inventories in these deposit
types based on the specimen and collection datasets. Average
lithium concentrations in both deposit types are incalculable
because many concentrations are below detection. The
crustal abundance of lithium is 20 ppm, and there are few
deposits with concentrations more than 100 ppm. All lithium
concentrations are far lower than those of domestic hard
rock lithium resources (more than 3,000 ppm; for example,
Lithium Americas, 2021) being developed for production.
Average nickel, niobium, and tantalum concentrations, where
calculable, are below crustal abundances (84, 20, and 2 ppm,
respectively; fig. 8G, H) in specimens and samples from
all districts and deposits; many to most concentrations are
below detection and there are few concentrations that exceed
crustal abundances. Average vanadium concentrations in both
deposit types are mostly below crustal abundance (120 ppm;
fig. 8G, H); several are slightly greater than crustal abundance.
Separation of these critical minerals from ores (and waste)
of porphyry/skarn copper and polymetallic sulfide S-R-V-IS
deposits is considered infeasible, based the economics of
nickel, niobium, tantalum, and vanadium production from
other deposit types with much higher concentrations.

Critical Minerals Enriched in High-Sulfidation
and Low-Sulfidation Gold-Silver Veins

Relatively small multi-element geochemical datasets
were obtained from analysis of samples collected by authors
and associates in the Goldfield and Tonopah districts, Nev.;
districts in the Bodie Hills, Calif. and Nev. (Vikre and others,
2015); and at Paradise Peak, Nev. (John and others, 1991;
figs. 14, 9; tables 18, 19). Some critical minerals at Goldfield
and Paradise Peak are described by deposit type above
(chap. C). Deposits in these districts were mined for gold and
silver; and small amounts of copper and mercury were also
recovered. In general, average Be, Ce, Co, Cr, Ga, Li, Ni, Nb,
Sc, and V concentrations are approximately equal to or less
than one half crustal abundances; strontium is double crustal
abundance. In Goldfield district samples, average Sb, As, Bi,
In, Te, Sn, and W concentrations are mostly tens to tens of
thousands of times greater than crustal abundances; average
Sb, Bi, and Te concentrations exceed crustal abundances by
factors more than 10 In Tonopah district samples, average
Li concentrations are approximately three times crustal
abundance, whereas Sb, As, Bi, In, Sn, and W concentrations
are mostly less than ten times crustal abundances. Tellurium
concentrations vary highly from below detection to 127
ppm and are not closely correlated with silver and gold
concentrations. Unmined deposits and processed ore in these
districts are much smaller masses (several million short tons)
than in porphyry Cu-Mo districts, and unlikely to contain large
inventories of critical minerals.

Conclusions

1. In the western U.S., the critical mineral commodities
Al, Sb, As, Bi, Co, fluorite, Ga, Ge, In, Mn, Ni, Nb,
Pd, Pt, potash, Re, Ta, Te, Sn, W, and V are variably
concentrated in magmatic-hydrothermal deposits related
to subduction. These deposits include porphyry/skarn
copper-gold, skarn-replacement-vein (S-R-V) tungsten,
polymetallic sulfide S-R-V intermediate sulfidation,
high-sulfidation gold-silver, low-sulfidation gold-silver,
and lithocap alunite deposits, which occur in porphyry
copper-molybdenum-gold, alkalic porphyry, porphyry
tin (granite-related), and reduced intrusion-related
mineral systems.

2. Production of critical minerals in these deposit types
as primary products, coproducts, and byproducts varies
from none to mostly small relative to recent domestic
consumption, even with sustained to ephemeral
subsidization of antimony, manganese, and tungsten, and
numerous other mineral commodities during the World
War and Cold War decades of the 1910s to 1990s.

3. Reserves, resources, and significant inventories that
comprise 2 or more years of recent annual domestic
consumption exist for the mostly very small- to
mid-market commodities including Sb, As, Ga, Ge, In,
Re, Te, and W. Very large inventories, equivalent to
decades or more of consumption, of Sb, As, Re, and Te
cumulatively reside in porphyry copper-molybdenum
(Cu-Mo) deposits, commensurate with large tonnages
of those deposits, and are tracked for quality control
and episodic sale (Re and Te). Inventories in porphyry
Cu-Mo deposits, reserves, and resources may or may
not equate to consumable supplies because of recovery
economics and techniques, spatial relationships to
primary commodities (copper, molybdenum) on which
mine plans are based, and insufficient quantification.

4. Importation reliance for supplies of very small- to
large-market chalcophile and siderophile commodities,
including Sb, As, Bi, Ge, In, Ni, platinum-group
elements (PGE), Te, and Sn, could be reduced or
eliminated by recovery or more efficient recovery during
copper refining, and by production from porphyry
Cu-Mo reserves and resources (unmined deposits).

Mid- to large-market lithophile commodities, including
aluminum, titanium, tungsten, and zircon, conceivably
could be recovered at copper concentrators.

5. Significant inventories of large- and very large market
commodities, including aluminum, fluorite, potash, and
titanium, have been known for decades. Subsidization
or other regulatory policies could enable production, but
inventories will likely remain subeconomic at current
world market conditions because of low concentrations,
small masses, and (or) geographic location.



6. Broadly, new production of critical mineral commodities
from subduction-related magmatic-hydrothermal
deposits in Western States could be supported through
options such as subsidization (for example, commodity
price supports, lower taxation, recovery technique
development), political incentives, and (or) sustained
increases in demand. An impediment to production
of critical minerals from unmined porphyry Cu-Mo
deposits with known or suspected large critical mineral
inventories (Pebble, Alaska; Resolution, Copper World
[Rosemont], Red Mountain, and Sunnyside, Arizona)
is insufficient domestic refining capacity, subjecting
critical minerals exported in copper concentrates to the
importation insecurity that got them listed.
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