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Cover. Cross-section sketch of typical groundwater-flow system showing hydrostratigraphic layers,
water levels in wells, and discharge to streams. Groundwater flows from high to low elevation and
discharges to water bodies. Wells can be drilled in confined (pressurized) or unconfined aquifers.
Sketch is shown with large vertical exaggeration for illustration purposes.
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Preface

This is the second of two reports in a multichapter volume characterizing groundwater resources
near the southeastern part of Puget Sound, Washington. Chapters A, B, and C (Welch and
others, 2024) provide an overall introduction to the multichapter volume (Chapter A), the
conceptual hydrogeologic framework (Chapter B), and the groundwater budget (Chapter C).
Chapters D and E (this report) describe numerical groundwater-flow model construction and
calibration (Chapter D) and the numerical model results (Chapter E). Collectively, these two
reports present a characterization and simulation tool for groundwater resources near the
southeastern part of Puget Sound, Washington.
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Datums and Coordinate System

Vertical coordinate information is referenced to the North American Vertical Datum of 1988

(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Altitude, as used in this report, refers to distance above the vertical datum.

Following is the reference coordinate system used for the development of the hydrogeologic

framework and numerical model:

Category

Description

Coordinate system
Study Projection
Linear unit

False easting
False northing
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Standard parallel 1
Standard parallel 2
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Well-Numbering System

Wells in the State of Washington are assigned a local well number that identifies each well
based on its location in a township, range, section, and 40-acre tract. For example, local well
number 20N/04E-14B01 indicates that the well is in township 20 north of the Willamette Base
Line, and range 4 east of the Willamette Meridian. The numbers immediately following the
hyphen indicate the section (14) in the township. Most range-townships in Washington are
divided into 36 equal sections of 1 square mile (640 acres) numbered from 1 to 36. However,
the Washington Territory Donation Land Claims of 1852-55 predate the Public Lands Survey
and appear on maps as irregularly sized and shaped sections with assigned section numbers
greater than 36. The letter following the section (B) gives the 40-acre tract of the section. The
two-digit sequence number (01) following the letter is used to distinguish individual wells in
the same 40-acre tract. A “D” following the sequence number indicates a well that has been
deepened. In the plates of this report, wells are identified using only the section and 40-acre
tract, such as 14B01; the township and range are shown on the map borders.
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Numerical Model of the Groundwater-Flow System Near
the Southeastern Part of Puget Sound, Washington

Edited by Andrew J. Long

Executive Summary

Groundwater flow in the active model area (AMA) was
simulated using a groundwater-flow model. A steady-state
model version of the model simulates equilibrium conditions,
and a transient model version simulates monthly variability.
The model corresponds to the physical and temporal
dimensions of the conceptual model and groundwater budget.
The steady-state model version represents average conditions
for an 11-year period (January 1, 2005—December 31, 2015),
and the transient model represents monthly hydrologic
variability within that period. The 13-layer model was
constructed using MODFLOW-NWT with a uniformly spaced
grid consisting of 416 rows, 433 columns, and cells with a
horizontal dimension of 500 feet (ft) on a side.

The model was calibrated to measured values of water
levels in wells and lakes and estimated base flow for selected
streamflow measurement stations, commonly referred to as
streamgages. Model calibration was accomplished using a
combination of manual and automatic methods, including
the Model-Independent Parameter Estimation (PEST)
program that adjusted model input parameters with the
aim of minimizing the difference between estimated and
model-simulated values of hydraulic head and base flow.

Model boundary conditions consist of all simulated
groundwater inflow to and outflow from the AMA. For
example, a stream reach that simulates a gain from or loss
to groundwater is a boundary condition that allows water to
exit or enter, respectively, the groundwater system. Other
boundary conditions include springs, seeps, precipitation
recharge, groundwater exchange with lakes and Puget Sound,
and groundwater pumping. A comparison of the estimated
groundwater budget to that simulated by the steady-state
model version indicates that the relative percentages of total
inflow or total outflow for six major categories of boundary
conditions are similar for the two budgets.

The model was used to simulate three suites of scenarios
of potential drought and water-use changes. Scenario 1
suite consisted of the steady-state model version that was
run with 0, 15, 20, and 25 percent reduction of precipitation

recharge to assess the corresponding reductions in base

flow with decreasing recharge. The last simulation for the
scenario | suite consisted of the transient model version
simulating 3 years of consecutive seasonal drought, defined
by the months of May through September, to assess the
corresponding base-flow reductions. Scenario 2 suite
consisted of the steady-state model version with all simulated
groundwater use removed, compared with a simulation

that includes current groundwater use to evaluate changes

to potentiometric surfaces and base flows. Scenario 3 suite
consisted of a transient model version of the model that
simulated pumping increases for four different categories

of water-supply wells (compared to no pumping increases)
to evaluate resulting reductions in base flow. Although,

these scenarios provide examples of model applications and
useful insights, many other scenarios could be simulated. A
description of how to download the model is described in the
body of this report.

Uncertainty is associated with most model inputs.
Groundwater levels, lake levels, and land-surface altitudes
are relatively certain; other model inputs are far less certain,
including precipitation recharge, base flow, hydraulic
properties, water use, and the three-dimensional structure of
subsurface hydrogeologic units. Models are useful not because
of high levels of accuracy of all model inputs, but because
they combine the best information and estimates available,
thereby providing the best predictions available related to
physical processes.

The model described in this report simulates groundwater
flow on a regional scale, which has inherent limitations
for simulating hydrologic scenarios at local scales. Model
structures and inputs were generalized to be consistent with
this regional scale. For example, the actual groundwater
system has much greater heterogeneity of hydraulic
conductivity than is possible within the model’s degrees of
freedom. Variations in hydraulic gradients over distances less
than 500 ft cannot be simulated. The distances between model
features, such as a pumping well and a stream, must be placed
at 500-ft intervals and are co-located if both features are
within the same model cell.
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Introduction to Chapters D and E

Chapter A of Welch and others (2024) provides an
extensive introduction to this multichapter volume of reports,
consisting of the purpose and scope of the volume; previous
investigations; and a description of the study area, including
physiography, drainage features, land use, climate, population,
and geologic setting. Construction of the numerical
groundwater flow model described in this report draws upon
the extensive work described in Welch and others (2024).

Glossary

active model area (AMA) The part (887 square miles) of
the study area that includes the conceptual hydrogeologic
framework, estimated water-budget, and numerical
groundwater-flow model.

base flow The component of streamflow that results from
groundwater inflow to the stream.

conceptual hydrogeologic framework A spatially
continuous, three-dimensional representation of hydrogeologic
units, maps of the extents and thicknesses of major
water-bearing units, groundwater levels, potentiometric
surfaces, groundwater flow directions, and generalized
groundwater/surface-water interactions.

discharge Flow rate, as a volume per time.

hydraulic conductivity Rate of groundwater flow per unit
area under a unit hydraulic gradient (unit: length/time).

large spring A spring that has been identified and generally
named and has larger discharge than a seep.

potentiometric surface A surface representing the static
head of groundwater in tightly cased wells that tap a
water-bearing rock unit (aquifer) or, in the case of unconfined
aquifers, the water table (see https://doi.org/10.3133/wsp1988).

precipitation recharge Groundwater recharge from
precipitation on the land surface.

reach Defined for numerical modeling as the stream segment
within one model cell.

rejected recharge Potential groundwater infiltration of
precipitation recharge that does not infiltrate because of
saturated soil conditions.

seep Small spring located along the bluffs of river valleys
and Puget Sound with less discharge than a large spring.

segment Defined for numerical modeling as a group of
connected reaches.

station A location at which data are collected, such as
streamflow.

stream Rivers, their tributaries, and other streams
and creeks.

streamgage Station at which hydrologic data are collected.


https://doi.org/10.3133/wsp1988

Chapter D. Numerical Model Construction and Calibration

By Andrew J. Long, Elise E. Wright, Leland T. Fuhrig, and Valerie A.L. Bright

Introduction

The open-source software used to build the model
was MODFLOW-NWT (Niswonger and others, 2011),

a three-dimensional, finite-difference modeling code for
simulating groundwater flow. Two versions of a numerical
groundwater-flow model (model) were constructed:
steady-state and transient model versions. The purpose of

the model was to (1) test and refine the assumptions and
estimates developed for the conceptual hydrogeologic
framework (Chapter B of Welch and others, 2024; hereinafter
referred to as “Chapter B”) and estimated groundwater budget
components (Chapter C of Welch and others, 2024; hereinafter
referred to as “Chapter C”), (2) simulate hydrologic scenarios
of potential interest to water-resources managers, and

(3) provide a tool that can be adapted for additional hydrologic
scenarios and research endeavors.

The steady-state model version was constructed to
simulate the groundwater-flow system for average conditions
for 2005—15, with the assumption that all inflows and outflows
occur at steady rates. This model version serves two purposes.
First, the steady-state model version provides the ability to
calibrate hundreds of parameters because of its quick run time.
Second, the steady-state model version provides a means to
quickly simulate simple scenarios of long-term (equilibrium)
responses to changes in recharge or pumping rates. For
example, reducing the recharge input to the steady-state model
version can be used to simulate a scenario of a long-term
decrease in average recharge for a new equilibrium condition.
This simulation would result in lowered hydraulic-head values
and decreased base flows in comparison to the calibrated
steady-state model. The difference in the groundwater budget
between the scenario simulation (new equilibrium) and the
calibrated model (current conditions) would provide the
long-term change in groundwater storage for this scenario.

The steady-state model version was then modified to
a transient model version that simulates monthly temporal
variability for 2005—15. The transient model version
represents monthly hydrologic variability within that period
(132 monthly stress periods) and is applicable for more
complex scenarios where temporal variability is of interest.

Both model versions correspond to the physical and
temporal dimensions of the framework and water budget.

The active model area (AMA) (fig. D1) is the area simulated

and also the area corresponding to the estimated groundwater
budget described in Chapter C. Additional datasets used in
model construction to define conditions during this period
are described in appendix | (app. 1, tables 1.1-1.14). Table
DI includes base-flow values averaged from the monthly
values from (McLean and others, 2024), with the exception
of the three seasonal streamflow measurement stations

(see comments column of the table). Model input, output,
executable application, and source code for the model,
including additional simulations of hydrologic scenarios, are
available from Wright and others (2023).

Design and Construction

Horizontal Discretization and Vertical Layering

In the horizontal plane, the model grid is aligned with the
Washington State Plane coordinate system (fig. D1) and has
uniformly spaced cells that are 500-by-500 feet (ft) wide. The
grid is 433-cells wide in the east-west direction and 416-cells
wide in the north-south direction (416 rows and 433 columns).
The AMA is defined as the area within the rectangular model
grid that contains active model cells (fig. D2). All model
cells outside this area are inactive, and some cells within this
area are inactive. The three-dimensional grid has 13 layers
of variable thickness and continuity that correspond to the 14
units of the hydrogeologic framework, as described in Chapter
B. Layers 1—12 each represent a single hydrogeologic unit
(HGU), and layer 13 represents two HGUs (table D2). Within
layer 13, HGU G is present in the northwestern 63 percent of
the AMA (Chapter B, fig. B12), and HGU Bedrock occupies
the eastern part of layer 13. All model inputs and outputs are
in consistent units of feet and days.

Table D2 describes each HGU as an aquifer, a confining
unit, or undifferentiated deposits. In this report, individual
HGU:s are referred by the HGU name only. For example, the
first and second HGUs in table D2 are referred to as “HGU
MFLU” and “HGU ALI,” respectively.

All model cells outside the AMA were set to inactive,
leaving 879,476 active cells. Model cells with altitudes above
the land surface are inactive. For example, layer 1 has active
cells only where HGU MFLU is present, with the remainder
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Areal extent and selected features for the numerical groundwater-flow model, near the southeastern part of Puget Sound,
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Table D2. Description of model layers, near the southeastern part of Puget Sound, Washington.

[See figure D1 for the outcrop locations of hydrogeologic units. Layer type: A convertible layer indicates variable transmissivity that is dependent on the
simulated saturated thickness. A confined layer indicates a constant transmissivity as though the layer is fully saturated at all times.]

Model layer Hydrogeologic unit name Description Layer type
1 MFLU Upland mudflow confining unit Convertible
2 ALl Upper alluvial aquifer Convertible
3 MFLV Valley-fill mudflow confining unit Convertible
4 AL2 Lower alluvial aquifer Convertible
5 Al Aquifer Convertible
6 A2 Confining unit Convertible
7 A3 Aquifer Convertible
8 B Confining unit Convertible
9 C Aquifer Convertible
10 D Confining unit Convertible
11 E Aquifer Confined
12 F Confining unit Confined
13 G (northwestern part) Undifferentiated deposits Confined
13 Bedrock (eastern part) Confining unit Confined

being inactive cells above the uppermost active model cells.
The same is true for layers 2—5 in regard to HGU AL1, MFLYV,
AL2, and A1, respectively.

Within the AMA, HGUs are discontinuous, as described
in Chapter B. Except for layer 13, each model layer represents
a single HGU. When constructing a groundwater-flow model
using MODFLOW-NWT, cells within model layers where
HGU s are absent must remain active if vertical flow is to pass
through each layer. For example, layer 8 represents HGU B,
which is absent in parts of the Clover Creek area, and cells
in this area were made active to allow hydraulic connection
between the overlying and underlying layers (HGUs A3 and
C in layers 7 and 9, respectively). Model layers 2—12 each
contain some of these active cells whose only purpose is to
allow vertical flow to pass through. These cells were given
a small thickness of 0.2 ft (so that the volume in the model
would be negligible) and were assigned a uniform vertical
hydraulic conductivity of 2,000 feet per day (ft/d) to allow for
unimpeded vertical flow. Horizontal hydraulic conductivity
had a value of 200 ft/d.

Model Boundary Conditions

Boundary conditions of the model include all simulated
groundwater inflow to and outflow from the AMA; these
are categorized as flow boundaries. For example, a gaining
stream is a boundary condition that allows groundwater to
exit the AMA. No-flow boundaries are those that do not
allow flow to cross. Horizontal no-flow boundaries consist of
model cells along the outer boundaries of the AMA that do
not allow horizontal flow into or out of this area. The bottom

of the lowest model layer (layer 13) is a vertical no-flow
boundary because vertical flow cannot enter or exit the AMA
through this boundary. A conceptual overview of hydrologic
and hydrogeologic features associated with flow boundaries
(streams, springs, seeps, lakes, Puget Sound, and precipitation
recharge) and their connections to specific HGUs is described
in Chapters B and C.

Precipitation Recharge

Precipitation recharge (R,) is groundwater recharge
originating from precipitation on the land surface that
infiltrates below the soil zone. An estimate of R, was obtained
from the application of the Soil-Water-Balance (SWB) model
(Westenbroek and others, 2010) described in Chapter C. The
SWB Model accounts for daily storage change within the
soil zone, with outputs that include R, evapotranspiration,
interception, surface runoff. SWB Model output, including the
sum of daily infiltration by month and the overall average for
the 11-year model period, is available from Gendaszek (2023).

The SWB Model estimate of R, was used as input for the
Recharge Package (Harbaugh, 2005) in MODFLOW-NWT
to simulate R, for the steady-state and transient model
versions. Recharge was applied to all cells in the model that
represent the land surface. The Recharge Package applies
recharge directly to the saturated component of groundwater;
therefore, storage of groundwater below the soil zone and
above the groundwater table is neglected in the temporal
sense. Consequently, the lag time resulting from this storage
is assumed to be zero in the transient model version. The
Recharge Package is a specified-flux boundary condition
because the recharge rate is specified in the model input.



The SWB Model simulates varying degrees of soil
saturation, and infiltration continues until the soil is fully
saturated. The SWB Model assumes that the groundwater table
is below the soil zone and does not interfere with infiltration.
However, if the water table rises to the land surface, which
saturates the soil and prevents further infiltration, the
infiltration estimated by the SWB Model should not be used as
groundwater recharge but instead should be accounted for as
surface runoff. This incongruity between infiltration estimated
by the SWB Model and R, in MODFLOW was adjusted for
by imposing other boundary conditions that simulate runoff
during the wettest months, as described in the next section,
“Rejected Recharge, Small Springs, and Seeps.”

As described in Chapter C, 10 lakes were determined
to have no outlet stream and were classified as internally
drained (table D3). Water enters these lakes through direct
precipitation and is removed by evaporation, as simulated
by the SWB Model (Chapter C). If precipitation exceeds
evaporation, then groundwater recharge is positive, and the
model simulates the lake recharging groundwater; if the
opposite occurs, then recharge is negative, and the model
simulates groundwater flow into the lake that is removed by
evaporation. Therefore, the Recharge Package was used to
account for groundwater flow to or from these lakes and is
referred to as the “lake-recharge estimation method.”

Rejected Recharge, Small Springs, and Seeps

The Drain Package (Harbaugh, 2005) was used to
simulate runoff when the simulated water table rises to the
land surface, particularly in areas of low permeability such as
till. We use the term, “rejected recharge,” to describe runoff
simulated in this way. The Drain Package commonly is used
to simulate springs or agricultural drains. When the simulated
hydraulic head in a drain cell exceeds the specified drain
altitude, the Drain Package simulates a groundwater flux
out of the cell that is calculated by Darcian flow. The flow
rate is dependent on the difference between the groundwater
hydraulic head and the drain altitude and the conductance
of the intervening porous medium (Harbaugh, 2005). The
Drain Package is a head-dependent boundary type that allows
outflow from the groundwater system. To simulate rejected
recharge, drain cells were assigned to all outcrop areas of
HGUs A2 and MFLU (layers 1 and 6; figure D2). Drain
cells also were applied to HGU ALI (layer 2) to simulate
rejected recharge for some areas of the Puyallup River valley
floodplain, primarily to account for urban drainage channels
(fig. D2). Drain altitudes for layers 1, 2, and 6 were set to the
average land-surface altitude for each drain cell, also equal
to the top of the cell. These drains flow only in areas where
hydraulic head exceeds the land surface and were assumed to
contribute to runoff.

Chapter D. Numerical Model Construction and Calibration D9

As described in Chapter B, small springs and seeps flow
from outcrops of HGUs A3 and C (layers 7 and 9) along the
bluffs sloping toward river valleys and Puget Sound (fig. D2).
These were simulated with the Drain Package. Altitudes of
these drains were set to the midpoint between the top and
bottom of the model cell because these cells represent HGUs
that were cut into by sloping bluffs, with springflow exiting
horizontally from these HGUs. Flow from these features was
assumed to be small in comparison to large springs that are
described in section, “Streams and Large Springs.” During
summer, groundwater discharge from all drain cells in the
model was assumed to be taken up by evapotranspiration.
During winter, when evapotranspiration is small, discharge
might flow into streams, contributing to stream base flow.
Because we assume that this discharge is small and seasonal,
it was not used for purposes of accounting for simulated
base flow.

Streams and Large Springs

The interaction of groundwater with streams and large
springs was simulated with the Streamflow-Routing (SFR)
Package. This package simulates a head-dependent boundary
condition in which groundwater flow into or out of the stream
is determined by the hydraulic head in the model cell, the
stream stage, and the conductance of the streambed material
(Prudic and others, 2004). The SFR Package also simulates
downstream surface-water flow within the channel, which is
available as model output for any point in the stream network,
such as at the location of a station. The stream stage is a
function of flow in the channel.

The SFR Package was used to simulate the interaction
of groundwater with streams and was applied to simulate the
base-flow component of streamflow only. The package was
applied to all model cells that intersect the stream network
shown on figure D1. The term “stream” in this report includes
rivers, creeks, and their tributaries. The SFR Package also
was used to simulate about 200 large springs. As described
in Chapter B, these springs are referred to as large springs
because they have been specifically identified and often
named (documented springs in McLean and others, 2024) and
because this term distinguishes them from small springs and
seeps, which have not been individually identified as points
of groundwater discharge. However, like small springs and
seeps, large springs are common along the bluffs that slope
toward river valleys or Puget Sound. Large springs commonly
are located at stream headwaters or other points along stream
channels and contribute base flow directly to streams (fig. D1).
Therefore, these springs were simulated by the SFR Package
as part of the stream network. If the spring is located at the
headwater of the stream, no upstream flow is available to
enter the HGU.
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Table D3. Lakes and Puget Sound simulated in numerical modeling , near the southeastern part of Puget Sound, Washington.

[Abbreviations: GHB, General-Head Boundary; K, horizontal hydraulic conductivity; NA, not applicable]

Name of surface- Area Model Description of Inflow and Model layer with
boundary ..
water feature (acres) ... boundary condition outflow category GHB cells
condition
Puget Sound NA GHB Package Chapter D Stream inflow 2,8-13
Lake Tapps 2,444 GHB Package Chapter D Stream inflow and outflow 6
American Lake 1,092 GHB Package Chapter D Stream inflow and outflow 6,7
Lake Youngs 685.2  GHB Package Chapter D Stream inflow and outflow 6
Lake Kapowsin 496.5  GHB Package Chapter D Stream inflow and outflow 2
Steilacoom Lake 306.1  GHB Package Chapter D Stream inflow and outflow 6
Spanaway Lake 248.6  GHB Package Chapter D Stream inflow and outflow 5
Lake Meridian 149.5  GHB Package Chapter D Stream inflow and outflow 6
Gravelly Lake 147.5  Lake-recharge Chapters C Internally drained Lake water represented
estimation and D by layer 6
method; high-K
pass-through
method
Lake Louise 38.1  Lake-recharge Chapter C Internally drained NA
estimation
method
Fivemile Lake 35.4  Lake-recharge Chapter C Internally drained NA
estimation
method
Waughop Lake 30.1  Lake-recharge Chapter C Internally drained NA
estimation
method
Little Wapato Lake 26.5  Lake-recharge Chapter C Internally drained NA
estimation
method
Mirror Lake 17.7  Lake-recharge Chapter C Internally drained NA
estimation
method
Wright Marsh 16.2  Lake-recharge Chapter C Internally drained NA
estimation
method
Old Fort Lake 15.4  Lake-recharge Chapter C Internally drained NA
estimation
method
Hyde Lake 7.8  Lake-recharge Chapter C Internally drained NA
estimation
method
Mud Lake' 2.7  Lake-recharge Chapter C Internally drained NA
estimation
method

Located 6 miles northwest of Lake Tapps.
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The term “reach” is defined in the SFR Package as the
reach of stream contained within one model cell. In the SFR
Package, streambed conductance (C) is a term defined for
each reach as

C = (K,wL)/m (D1)
where

is the vertical hydraulic conductivity of the
streambed, in units of length per time;

w is the width of a stream reach, in units
of length;

L is the length of a stream reach, in units of
length; and

m is the thickness of streambed deposits in a
stream reach, in units of length.

Equation D1 is calculated internally in the SFR Package,
and K, w, L, and m are specified as model inputs. Model
specifications for the SFR Package are detailed in appendix 1
(table 1.1).

The term “segment” is defined in the SFR Package as
a group of connected reaches, and flow is routed from each
reach to the next downstream reach and from each segment to
the next downstream segment (app. 1, table 1.1). The width
of each SFR segment was assumed to be uniform. This was
estimated by a method developed by Magirl and Olsen (2009)
for Washington State that relates the width at the top of the
wetted channel (/) to mean annual discharge (Q):

W, = 4.850%% (D2)

Stream widths were calculated for each SFR segment
from equation D2 and used as the stream width in equation
DI1. Mean annual discharge (Q) was available from the
National Hydrography Dataset Plus (NHDPlus) version 2
(U.S. Environmental Protection Agency, 2020). The widths
of SFR stream segments were limited to a minimum of 5 ft
because the statistical relation developed by Magirl and Olsen
(2009) was not well constrained for small streams.

The vertical hydraulic conductivity of the streambed
in equation D1 was estimated through model calibration, as
described in the section, “Model Calibration and Sensitivity”
(app. 1, table 1.1). The reach length (L) was determined by
overlaying the model grid with the linear trace of the stream
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network and calculating the length of stream within a model
cell. Because the thickness of all streambeds within the
model would be difficult to determine, m was specified as
1.0 ft for all reaches, which is assumed to be much less than
actual streambed thicknesses in many cases. Therefore, the
calibrated values of K, do not represent the actual properties
of the streambed. If the streambed thicknesses were known,
better estimates of K, could be obtained by multiplying the
calibrated values of K, by bed thicknesses.

Streambed altitudes were estimated by first obtaining
water-surface altitudes from the Puget Sound Lidar
Supermosaic (Puget Sound Lidar Consortium, 2011) for many
points along streams. Water-surface altitudes were assigned
to each SFR reach by means of linear interpolation between
points, and streambed altitudes then were determined by
estimating stream depths (app. 1, table 1.1). The water depth
(D) of each SFR segment was estimated as function of the
mean annual discharge (Q) by the method of Magirl and Olsen
(2009), as described by

D = 0.230%%7 (D3)

The SFR Package can be set to allow for variable water
depths calculated on the basis of simulated stream discharges
and channel geometries, or the depths can be specified as
constant values. For the steady-state model, constant depths
were applied to all streams because nothing varies in steady
state. For the transient model, constant depths were applied to
the three major rivers: the Green, White, and Puyallup Rivers,
which are perennial. These rivers are surrounded by steep
groundwater gradients, and the height of groundwater levels
surrounding the major rivers is much greater than the potential
variability in river stage. Therefore, the effects of variations
in the stages of major rivers on the surrounding groundwater
gradients are negligible.

All other streams, many of which are either intermittent
or ephemeral, were set to calculate variable depths. Variable
depth for ephemeral streams improves model stability during
transitions between a flowing stream and a dry channel. The
variable depth allows smooth transitions from flowing to dry
because, by design of the model code, the calculated stream
depth asymptotically approaches zero as the stream becomes
dry; the transition from dry to flowing also is smooth for
similar reasons. The MODFLOW-NWT variable, ICALC,
can be set to 0 or 1 to specify the stream depth as constant or
variable, respectively (app. 1, table 1.1). All stream segments
were specified to have rectangular channels.
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Streams Entering the Active Model Area (AMA)

Many streams in the model accumulate base flow
before entering the AMA. Stream base flow that accumulates
outside the AMA enters the model at 10 points of inflow
(fig. D1), for which base flow must be specified as model
input in the SFR Package. Downstream from these locations,
simulated base flow is increased, and in some cases reduced,
because of groundwater interaction. Most of these points of
inflow are on the eastern model boundary, where streams
originate from the Cascade Range (fig. D1). Average
monthly base-flow estimates at the points of inflow for Coal,
Boise, and Scatter Creeks were assumed to be equivalent
to precipitation recharge rates for these three watersheds,
which were estimated by Gendaszek (2023). These base-flow
rates were applied to the steady-state and transient model
versions (app. 1, table 1.2). Average monthly base-flow rates
for the other seven points of inflow (Green, White, Carbon,
and Puyallup Rivers and Big Soos, South Prairie, and Voight
Creeks) were estimated by methods described in appendix
2 and are available in appendix 1, table 1.3. The description
in appendix 2 is lengthy and detailed and, therefore, was
separated from this section to avoid detracting from an
otherwise concise description of boundary conditions. The
averages of the monthly base-flow values from appendix 1,
tables 1.2 and 1.3, are combined in table D4, which were
applied to the steady-state model version as specified flow
rates for the SFR Package.

Stream Diversions

Flow entering Lake Tapps was estimated using station
12098920, which measures the discharge diverted at the
Buckley Diversion from the White River into a canal that
discharges into Lake Tapps (fig. D1; table D4). This station
has daily data for August 2010-December 2015, and
monthly averages were calculated from the daily data (app.

1, table 1.3). To estimate the flows prior to August 2010,

the mean daily flows were calculated to get a long-term
average for each day of the year. Monthly averages were then
calculated from the mean daily values and used as the monthly
estimates for the period of missing data (app. 1, table 1.3).
Simulated streamflow in the White River as large as the value
specified in table 1.3 for each stress period was diverted into
the canal.

Flow exiting Lake Tapps discharges into the White River
and was estimated using U.S. Geological Survey (USGS)
station 12101100 (fig. D1; table D4). Daily streamflow data
were available for May 2005—-December 2015 for this station,
and monthly averages were calculated from the daily data. To
estimate the flow data for the missing period, the same method
as that used for the lake inflow was applied (app. 1, table 1.3).
These diversion rates were applied as specified flows in the
SFR Package.

Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

Spanaway Lake empties into Spanaway Creek, where
about 13 percent of the streamflow is diverted into Morey
Creek to the west (fig. D1; table D4; Pierce County, 2017), and
the SFR Package was set accordingly. Outflow from the west
end of Sequalitchew Lake flows into Sequalitchew Creek,
where it is partly is diverted into the Sequalitchew diversion
canal to the north. Measurements taken at the diversion
canal weir indicate a diversion rate of about 67 ft3/s (Aspect
Consulting, LLC, 2009). The SFR Package was set to divert
all flow from Sequalitchew Creek by as much as 6.5 ft3/s into
the diversion canal.

Externally Drained Lakes

Groundwater interaction with eight lakes that drain
into streams (as described in Chapter B) was simulated as
head-dependent boundaries by applying the General-Head
Boundary (GHB) Package (Harbaugh, 2005). This package
was applied to Lake Tapps, American Lake, Lake Youngs,
Lake Kapowsin, Steilacoom Lake, Spanaway Lake, Lake
Meridian, and Puget Sound (fig. D1; table D3). All these lakes
have inflow and outflow streams that influence lake levels. The
GHB Package simulates Darcian flow into or out of a model
cell, calculated from the difference between the hydraulic
head for the model cell and the water level in a conceptual
external storage tank that is connected by an intervening
porous medium. The conductance term for the GHB Package
is identical to that described in equation D1, except that
the streambed dimensions are generalized to represent the
intervening porous medium of the GHB cell, in this case the
lakebed or seafloor sediments. The GHB Package was applied
to cells that directly underlay lakes and Puget Sound, with
the conceptual external tank representing the lake or sound.
Groundwater flow to or from a lake changes the flow rate in
a stream that drains the lake. Therefore, simulated flow from
groundwater into a lake or from a lake into groundwater was
accounted for by adding or subtracting, respectively, this
groundwater flow to or from the base flow simulated by the
SFR Package downstream from the lake. This adjustment was
applied by post-processing model output and, therefore, did
not affect the computed stream stage downstream from lakes.

Detailed information describing outflow structures and
controls for lakes was not available, and the GHB Package
was suitable because this information is not required for its
application. Monthly average lake-surface altitudes used
in modeling were obtained or estimated for January 2005—
December 2015 for Lake Tapps and American, Gravelly,
Steilacoom, and Spanaway Lakes (app. 1, table 1.4). The
remainder of this section describes the methods used to
calculate or estimate these monthly values. Data for USGS
hydrologic stations were obtained from the USGS National
Water Information System (NWIS) database (U.S. Geological
Survey, 2020).
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Lake-surface altitude for Lake Tapps is monitored at
station 12101000. Daily station height data were averaged to
monthly values and converted from National Geodetic Vertical
Datum of 1929 (NGVD 1929) to North American Vertical
Datum of 1988 (NAVD 88) using a datum shift of 3.547 ft.

Beginning in May 2000, volunteers measured
lake-surface altitudes for American and Gravelly Lakes once
or twice per month from May through October and again
in December (inconsistently) as part of the Lakewood Lake
Monitoring Program through the Pierce Conservation District
(app. 1, table 1.5). Linear interpolation was used to estimate
daily lake-surface altitude values from monthly observations
for the study period. Monthly average values were calculated
from these daily values for January 2005-December 2015.
The mean water-level altitude for the study period was
231.75 ft above NAVD 88 for American Lake and 211.75 ft
above NAVD 88 for Gravelly Lake. Seasonal variability
in lake-surface altitude across the model area for the study
period was derived by calculating the amount of monthly
variation from the average water level for American and
Gravelly Lakes.

No lake-surface altitude observations were available
for Steilacoom Lake. To estimate lake-surface altitude, a
remote water elevation measurement for Steilacoom Lake
was obtained from lidar elevation data. Lidar data over
Steilacoom Lake were collected on December 8 and 10,
2010, and on January 2 and 4, 2011, and compiled data were
downloaded from the Washington Lidar Portal (2011). The
remote water level was assigned as the mean monthly value
for December 2010, and the seasonal variability derived
from American and Gravelly Lakes then was applied to the
remaining months in the study period to estimate the monthly
lake-surface altitude record.

Lake-surface altitudes for Spanaway Lake were estimated
using a combination of continuous lake-surface observations
(app. 1, table 1.5) where available and seasonal groundwater
fluctuations in a nearby shallow well to derive the remaining
values. The Pierce Conservation District provided continuous
lake-stage altitude levels measured at the Enchanted Island
meteorological station with an electronic data logger from
July 2014 to December 2015 (Brown and Caldwell, 2016).
Continuous measurements were averaged to create daily
average values, and then monthly average values.

To estimate lake-surface altitude for the remainder of
the study period for Spanaway Lake, nearby shallow wells
with groundwater altitude measurements were identified.
One shallow well within 0.5 mile (mi) of Spanaway Lake
(station 470721122275101) had recorded monthly water-level
measurements for March 2007—September 2008 and
April 2010-August 2015. Dates and values for the highest
and lowest available water levels for each year were averaged
separately to fill gaps in the groundwater-level record for
2005, 2006, 2009, and 2015. Linear regression was applied
to relate lake-surfaces altitude to groundwater level for dates
where a groundwater observation and lake-level altitude

D15

observation existed, resulting in the following regression
equation: Lake level = 0.3018 x groundwater level + 236.79 ft
(coefficient of determination [R2] = 0.905). This correlation

is evidence for hydraulic connection between the lake and
shallow groundwater and indicates that the groundwater level
can be used to estimate lake levels for periods of missing

data. The regression equation was applied to the monthly
groundwater levels to estimate monthly lake stage for the
period of missing data (March 2004—October 2016). Daily
values then were estimated by applying linear interpolation
between the monthly values, and monthly average values were
calculated from the daily values.

Internally Drained Lakes

Ten lakes are classified as internally drained lakes
(table D3). The GHB Package was not applied to these
lakes because (1) water-level records were not available
as GHB Package input and (2) the groundwater exchange
could be estimated by other means and applied to the model
by the Recharge Package. Because these lakes have no
outflow stream, water is removed only by evaporation or by
infiltration to groundwater. Both of these possible flows were
accounted for by the “lake-recharge estimation method” and
simulated by the Recharge Package, as described in section,
“Precipitation Recharge.” Gravelly Lake is the largest of
the internally drained lakes and, therefore, may have a large
component of horizontal groundwater interaction, which is
not simulated by the lake-recharge estimation method. This
interaction was simulated by what is referred to herein as
the “high-K pass-through method” (table D3) in which the
water-body volume was represented by model cells with an
exceedingly large value of horizontal hydraulic conductivity to
approximate flow of open water that fills the lake volume. The
lake overlies HGU A3 (layer 7), with horizontal connection to
HGU A2 (layer 6). In the area of the lake, model cells in layer
6 were assigned this high-K value, which allowed horizontal
connection to HGU A2 and vertical connection to HGU
A3. Because of the high-K value, these lake cells resulted
in a nearly flat simulated potentiometric surface, which
approximates the lake surface.

Puget Sound

Submarine groundwater discharge to Puget Sound is
represented by the GHB Package (fig. D1). Model cells
directly underlying the sound were set as GHB cells.
Seawater is denser than fresh water and, therefore, exerts
greater hydrostatic pressure at the sea floor than fresh
water. To compensate for this density difference, specified
hydraulic-head values for the GHB cells were set higher than
sea level according to assumptions described by van Heeswijk
and Smith (2002), which are described by equation D4.
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h'y = hy+ H(0.023) (D4)
where
h',  1isthe adjusted sea-level altitude above
North American Vertical Datum of 1988
(NAVD 88) to compensate for the density
difference,
is altitude of sea level above NAVD 88, and

sl

H  is the height of the vertical column of
seawater above the three-dimensional
centroid of the model cell at the sea floor.

H is multiplied by 0.023, which is the difference in
specific gravity between saline water in Puget Sound and
fresh water (van Heeswijk and Smith, 2002). The mean sea
level for a tide station at Tacoma, Washington, is 6.84 ft above
the mean lower-low water level, or 4.45 ft above NAVD 88
(National Oceanic and Atmospheric Administration, 2021). A
constant sea-level altitude of 4.45 ft above NAVD 88 was used
as &, in equation D4, and the adjusted sea-level altitude (%'
was applied to all Puget Sound GHB cells.

Groundwater Use and Return Flow

Human use of groundwater, including return flows to
the groundwater system (such as domestic septic systems and
leaking distribution pipes) is described in Chapter C, with
estimated values available in McLean and others (2024). The
Well Package (Harbaugh, 2005) was used to simulate pumping
wells and return flows. The Well Package also was used to
simulate water withdrawn from large springs for public supply,
as described in Chapter C and in McLean and others (2024).
Use of the well package for these springs allowed for known
flow rates to be specified for these springs and separated from
other springflow that is assumed to contribute to stream base
flow. Head-dependent boundary conditions (SFR and Drain
Packages) also are present at the locations of these springs
to simulate any additional springflow that occurs when
groundwater levels exceed land-surface altitudes.

Near the southeastern model boundary where HGU
Bedrock was not included in the model, pumping wells
withdrawing from bedrock (as estimated by McLean and
others, 2024) were not simulated. This omission resulted in a
reduction of a total estimated groundwater use of 0.05 percent
for the steady-state model version.

MODFLOW-NWT reduces the pumping rate for any
simulated well if the saturated thickness of the model cell is
less than a set threshold (Niswonger and others, 2011), which
was set as 10 percent of the layer thickness. The purpose of
simulated pumping reductions is to simulate decreases in
well yields that would be expected under these conditions.
Therefore, the simulated rate of groundwater use may be less
than that estimated. Details and results of these simulated
pumping reductions are described in section, “Calibration
Constraints.”

Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

Alluvial Valley Margins

At some locations along the margins of alluvial valleys,
HGUs A1, A3, C, and E are in horizontal contact with
valley fill aquifers (HGUs AL1 and AL2), which have cut
downward into the older deposits. Because HGUs A1, A3,
C, and E are represented by model layers 5, 7,9, and 11, a
horizontal connection to HGU AL1 (layer 2) is not possible
in MODFLOW-NWT. At these locations, HGU MFLYV also
limits vertical flow into HGU AL1 from below. To address this
issue, model cell thickness and HGU representations in cells
were adjusted near these locations to allow better connection
between HGU ALT1 and other HGUs that contact HGU AL1
along its margins.

An example of this situation in alluvial valleys is
shown in figure D34, where HGU C should be hydraulically
connected horizontally to HGU AL1 at the interface
between columns 229 and 230, which is not possible in
MODFLOW-NWT because these are in different model layers.
The same problem does not occur for HGU AL2, however,
because this HGU is below the confining unit (HGU MFLV)
and is vertically connected to HGU C.

To mitigate this issue for HGU ALI1, adjustments
were made to model cells, which consisted of adjusting cell
thicknesses and vertical hydraulic conductivity (Kv) values.
To assign Kv values, the model uses the ratio of horizontal
to vertical hydraulic conductivity (Kh/Kv). Adjustments
are illustrated in figure D3B, where HGUs MFLV and AL2
were effectively eliminated to allow direct vertical contact
between HGUs C and AL1 in column 230. HGUs MFLV and
AL2 were eliminated in column 230 by making the cells thin
(0.2 ft) and assigning a Kh/Kv value of 0.1 (Kv = 2,000 ft/d)
to allow groundwater to pass through freely. Therefore, these
cells are not visible in figure D3B. The cell in layer 2 and
column 230 in figure D3B was assigned a Kh/Kv value of 1
(Kv =200 ft/d) to enhance the vertical connection into layer 2.
These adjustments are hereinafter referred to as the “mudflow
bypass method.”

At these locations, the mudflow bypass method was
applied if the side of a HGU AL cell was more than
50 percent in contact with a horizontally adjacent cell that also
was in a lower layer. For example, in figure D34, the left side
of the HGU ALI cell in column 230 is 100 percent in contact
with the HGU C cell in column 229; therefore, the mudflow
bypass method was applied. To implement this method, the
bottom altitude of the AL1 cell was moved to the midpoint
between the top of the AL1 cell and the bottom of the AL2
cell. The top altitude of the AL1 cell remained the same. All
cells below the AL1 cell and the HGU C cell then were made
thin (0.2 ft).

The mudflow bypass method is an imperfect solution
to simulating flow across the interface between valley
fill and adjacent HGUs. An alternative solution would be
the application of an unstructured grid that allows direct
horizontal connections between any two cells in the model
(Langevin and others, 2017), which also would be an
imperfect solution. Unlike the model representation of this
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A B
West East West East

MFLV (3)

AL2(4)

Column 229 Column 230 Column 231

Vertical hydraulic conductivity (Kv)
is equal to 200 feet per day

Column 230 Column 231

Column 229

Figure D3. Example of model cell adjustment for the mudflow bypass method showing (A) a profile of the original hydrogeologic
framework at the margin of the White River valley (row 137) and (B) the same profile after adjustments. Hydrogeologic units are
labeled, with model layers in parentheses. Arrows show how flow is able to move from cell to cell. Very thin model layers are not

visible and model cells are shown with large vertical exaggeration.

interface, which is vertical because model cells are vertical
(fig. D34), the actual interface is sloping. Groundwater

flow across a sloping interface would be controlled by a
combination of horizontal and vertical hydraulic conductivities
and gradients. An unstructured grid would allow horizontal
flow directly across this interface by connecting cells in two
different layers but would neglect the vertical flow component.
Furthermore, the unstructured grid approach implies a higher
level of certainty in the geometry of the interface than the
subsurface data support. An advantage of the mudflow

bypass method is that it allows flow across the interface but
also is applicable in this simpler structured grid required for
MODFLOW-NWT.

Boundary of Active Model Area (AMA)

Boundary conditions at the boundary of the AMA
consist of those that simulate Puget Sound, streams, and
lakes (fig. D1). The eastern model boundary that is adjacent
to mountainous terrain is a no-flow boundary, except where
streams are present. At the farthest northern boundary,
groundwater was assumed to flow parallel to the boundary,
either easterly or westerly toward streams, Puget Sound, or
Lake Youngs. Therefore, this is a no-flow boundary, except
where surface-water features are present. Puget Sound
is represented by the GHB Package (fig. D2). All other
boundaries are parallel to streams that are represented by the
SFR Package. These streams consist of the Green River and
Big and Little Soos Creeks along the northeastern boundary
and the Nisqually River and Tanwax Creek along the southern
boundary (fig. D1). Stream boundaries also were assumed to
be converging groundwater divides; therefore, model cells in
layers below SFR cells along these boundaries are no-flow
boundaries.

Initial Conditions

Model output for the calibrated steady-state model
version was used for the initial hydraulic-head condition
for that version. Because model output was used as initial
conditions for the same model, generating initial conditions
was an iterative process during model calibration. Although
the initial conditions do not affect the final conditions in the
steady-state model version, these initial conditions allow the
numerical solution to close quickly. For the transient model
version, hydraulic-head output for December 2008 was used as
the initial condition for January 2005 (the first stress period).
The reason for this is because the total estimated recharge
for the AMA for December 2008 was most similar to that of
December 2004 (Chapter C). Like with the steady-state model
version, generating initial conditions was an iterative process.

Hydraulic Properties

The model was separated into zones (within which
hydraulic conductivity was defined for model calibration)
that are referred to as K-zones. Each model layer has one
or more K-zones that represent the HGU within that layer
(table D5). Layer 13 represents HGU G and bedrock, which
are represented by K-zones 13 and 15, respectively. K-zones
14, 18, and 21 represent thin cells whose purpose is to
allow vertical flow to pass through, as described in section,
“Horizontal Discretization and Vertical Layering.” K-zone 19
consists of cells that implement the mudflow bypass method,
and Gravelly Lake is represented by K-zone 20. K-zones
22-29 were added where needed to allow adequate flow to
large production wells and springs. Details on the distribution
of K-zones are available in Wright and others (2023). Model
calibrated values for Kh and Kh/Kv by hydraulic conductivity
zone (K-zone) are summarized in table D6.
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Table D5. Hydraulic conductivity zones near the southeastern part of Puget Sound, Washington.

[See figure D1 for the location of hydrogeologic units. Abbreviations: HGU, hydrogeologic unit; Kh, horizontal hydraulic conductivity; Kv, vertical hydraulic
conductivity; NA, not applicable]

Model layer Hydr_aflllc HGU Description Calibration method
conductivity zone
1 1 MFLU Upland mudflow Pilot points
2 2 ALl Upper alluvial aquifer, western area Pilot points
2 16 ALl Upper alluvial aquifer, eastern area Pilot points
3 3 MFLV Valley-fill mudflow Pilot points
4 4 AL2 Alluvial aquifer Pilot points
5 5 Al Aquifer Pilot points
6 6 A2 Semiconfining unit Pilot points
7 7 A3 Aquifer Pilot points
7 17 A3 Aquifer, larger Kh than elsewhere in A3 Pilot points
8 8 B Semiconfining unit Pilot points
9 9 C Aquifer Pilot points
10 10 D Semiconfining unit Pilot points
11 11 E Aquifer Pilot points
12 12 F Semiconfining unit Pilot points
13 13 G Undifferentiated deposits Pilot points
13 15 Bedrock Semiconfining unit Pilot points
2-12 14 NA Thin cells that allow vertical Uniform fixed value
pass-through flow!
9-10 18 NA Thin cells that allow vertical Uniform fixed value
pass-through flow!
5 21 NA Thin cells that allow vertical Uniform fixed value
pass-through flow!
19 NA Mudflow bypass method? Uniform fixed value
20 NA Gravelly Lake? Uniform fixed value
22 B Parameters adjusted to mitigate Uniform fixed value
pumping reductions
2,7,8,9 23 ALI,A3,B,C Parameters adjusted to mitigate Uniform fixed value
pumping reductions
9 24 C Parameters adjusted to mitigate Uniform fixed value
pumping reductions
7,9, 11 25 A3,C,E Parameters adjusted to mitigate Uniform fixed value
pumping reductions
6,9 26 A2,C Parameters adjusted to mitigate Uniform fixed value
pumping reductions
8 27 B Parameters adjusted to mitigate Uniform fixed value
pumping reductions
8 28 B Parameters adjusted to mitigate Uniform fixed value
pumping reductions
5,7 29 Al,A3 Parameters adjusted to mitigate Uniform fixed value

pumping reductions

I'Thin model cells have a high Kv value in areas where the HGU is not present in that layer.

2This method allows lateral flow into alluvial valley fill from adjacent HGUs.

3Model cells that represent the volume occupied by Gravelly Lake water.
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To allow for spatially variable values of Kh and Kh/Kyv,
parameter values were assigned to pilot points, which are
point locations for model parameters (Doherty, 2018). Pilot
points were applied to all K-zones that represent HGUs; all
other zones contained a uniform parameter value (table D5).
Further details on pilot points are described in the section,
“Model Calibration and Sensitivity.” Kriging was applied to
interpolate between pilot points within each K-zone and was
applied separately to each K-zone. The storage parameters,
specific yield (Sy) and specific storage (Ss), are summarized
in table D7 by HGU. As many as 13 parameter zones (S-zone)
are present within a model layer. Storage parameters are
spatially uniform within each S-zone and, therefore, pilot
points were not used. Details on the distribution of S-zones are
available in Wright and others (2023).

Model Calibration and Sensitivity

Calibration Targets

The model was calibrated to measured values of water
levels in wells and lakes and estimated base flow for the
streamflow stations listed in table D1. These measured
and estimated values are referred to as calibration targets.
Hydraulic head-calibration targets for the transient and
steady-state model versions are available in appendix 1, tables
1.6 and 1.7, respectively. Monthly base-flow values (app. 1,
table 1.8) were estimated by methods described in Chapter C
and were used as calibration targets for the transient model
version, the averages of which were used as steady-state
calibration targets for each station app. 1 (table 1.9).

Average monthly hydraulic-head values (2005-15) were
calculated for 273 wells; these values were used in calibration
of the transient model version (U.S. Geological Survey, 2020)
(app. 1, table 1.6). The average of the monthly values for
each well was used as a calibration target for the steady-state
model version.

Hydraulic-head values for an additional 3,719 wells
were used as calibration targets for the steady-state model
version, for a total of 3,992 steady-state targets. Many of
these 3,719 wells had multiple hydraulic-head measurements,
and the average value for each of these wells (2005—15) was
calculated according to methods described in Chapter B
(app. 1, table 1.7). As described in Chapter B, for wells with
time-series records, anomalously low or high water levels
could have been the result of pumping the well, measurement
errors, or data errors; these values were removed from
transient calibration data.

Simulated hydraulic head for the model cells representing
the water volume of Gravelly Lake were calibrated to
monthly average lake-level measurements for the transient
model version (app. 1, table 1.4). The average of monthly
values for Gravelly Lake were used as a calibration target
for the steady-state model version. The Observation Process
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(Harbaugh and Hill, 2009) was used to obtain simulated
values from the transient model version for comparison to
measured values.

The model also was calibrated to vertical hydraulic
gradients. The difference in hydraulic head between two
HGUs was estimated for selected locations. Locations were
selected where a hydraulic-head target was available for
each of two different HGUs in the same general horizontal
location, but not the necessarily the exact location. Therefore,
to estimate a hydraulic-head difference in the exact vertical
direction, one of the two targets was selected as one
vertical end point, and the other end point was taken from
the estimated potentiometric surface (Chapter B) for that
location. These vertical hydraulic-head differences were used
as calibration targets that are available in app. 1, table 1.10,
which consists of 616 targets, including the difference value,
location, and upper and lower model layers.

Simulated groundwater flooding occurs when unconfined
areas of the model simulate hydraulic heads above the land
surface. Some areas of the model were prone to groundwater
flooding during preliminary model testing. In these areas,
hydraulic-head targets equal to the land-surface altitude were
added to help prevent groundwater flooding in the calibrated
model (app. 1, table 1.11).

Simulated base-flow values consist of base flow
simulated by the SFR Package and estimated base flow
entering the AMA. Base-flow gain within the AMA consists
only of that simulated by the SFR Package, which was the
effective target of calibration because the latter component
has fixed values, remaining constant when parameters are
adjusted. These simulated values were calibrated in the
steady-state and transient model versions to data for 25
stations (table D1). Four additional stations were not used
in calibration, as described in table D1 (“Used in model
calibration” column). Hydrograph separation, as described in
Chapter C, was used to estimate monthly base-flow values that
were used as transient calibration targets (McLean and others,
2024). The averages of monthly values for each station were
used as steady-state calibration targets, with the exception of
three seasonal stations (table D1).

The seasonal stations, two on the Puyallup River (stations
12096505 and 12101470) and one on Swan Creek (station
12102190), were not measured during May—September;
therefore, the averages of the measured periods would be
seasonally biased. The two stations on the Puyallup River also
were not measured prior to 2010. To estimate the steady-state
calibration target for station 12096505, the average daily
base-flow gain between this station and the next upstream
station (12096500) was calculated as 64.1 ft3/s, which was
then added to the steady-state target for the upstream station
as a surrogate for the steady-state target for station 12096505.
A similar approach was taken to estimate the steady-state
target for station 12101470, which had an average daily
gain of 63.4 {t¥/s from this station to the next downstream
station (12101500), which then was subtracted from the
downstream station.
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The only data available to estimate base flow were daily
streamflow records; therefore, the only option available to
estimate base flow was hydrograph separation. As described
in Chapter C, the method selected was the automated
hydrograph separation program HYSEP (Sloto and Crouse,
1996). Hydrograph separation is not an accurate method for
base-flow estimation because it completely relies on the shape
of the hydrograph of total streamflow to determine the daily
proportions of base flow and runoff. Additionally, shallow
groundwater in the unsaturated zone that flows downslope
toward streams, known as interflow, is not explicitly separated
by HYSEP or similar methods. We assume that base flow
estimated by HYSEP includes interflow, a flow component
that MODFLOW does not simulate. On this basis, base flow
simulated by MODFLOW is expected to be less than that
estimated by HY SEP because MODFLOW simulates only
fully saturated groundwater flow to streams.

The accuracy of hydrograph separation may vary by
season, as well as other factors. For summer periods of low
streamflow, as much as 100 percent of streamflow is base
flow for streams not fed by glaciers. Summer base-flow
estimates for these streams are much more accurate than for
winter because the runoff component is very small or absent.
However, large uncertainty is associated with base-flow
estimates for streams fed by glaciers, and in all cases, large
uncertainty is associated with winter high-flow periods in this
study area.

Base-flow calibration targets were adjusted for two
stations on the Green River (12113000 and 12113344)
because part of the watershed upstream from these locations
is outside the model area. The adjustment was necessary to
include these two stations in model calibration. This watershed
area is on the north side of the Green River, where the river
coincides with the boundary of the AMA, which is not
accounted for by specified inflows for the SFR Package (fig.
D1). This area is 32 percent of the watershed area upstream
from station 12113000 (Green River) and downstream from
12112600 (Big Soos Creek) and 12106700 (Green River at
the model inflow point). Watershed areas were determined by
StreamStats v4.4.0 (U.S. Geological Survey, 2021). Therefore,
the base-flow gain within this area was multiplied by 0.32
and subtracted from the base flow for stations 12113000 and
12113344. McLean and others (2024) contained the estimated
monthly base flow for these stations and also the adjusted
values used for calibration of the transient model version.

The station on the Nisqually River (station 12089500;
figure D1) was not included in model calibration for several
reasons. Like the Green River, this river is a model boundary,
and the flow contribution from outside the model would need

Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

to be estimated. To do this, an estimate of base flow at the
location where the river enters the AMA would be necessary,
which would be difficult because a continuous station is

not located at or near this model inflow point (southern tip

of model), as is the case for the other large rivers. Next,

the watershed area outside the AMA that contributes to the
river reach between this inflow point and the station would

be needed, which would depend on an accurate estimate of
streamflow at the inflow point. Finally, because of the location
of the station, calibrating the model to the station would affect
only a small area at the southern tip of the model. Given these
disadvantages, calibrating to this station would not add enough
value to justify its inclusion.

Calibration Parameters for Steady State

Model calibration consisted of adjusting model
parameters with the aim of reducing the differences,
or residuals, between calibration targets and simulated
values. The steady-state model version was calibrated by a
combination of automatic and manual calibration through
numerous trials during the calibration process. Preliminary
manual calibration was applied prior to adding pilot points
by adjusting uniform values Kh and Kh/Kv values to each
layer. After pilot points were added, preliminary automatic
calibration with Model-Independent Parameter Estimation
(PEST) (Doherty, 2018) was applied. PEST calibration
is an iterative process that aims to minimize an objective
function: the sum of the squared and weighted residuals
(Doherty, 2015). Additional pilot points and other parameters
were added as needed. For example, zones of streambed
hydraulic conductivity were added as needed to allow
more heterogeneity of streambed material. Once the model
was adequately parameterized, automatic calibration was
re-applied for final calibration.

The steady-state model version contains 1,444 calibrated
parameters, consisting of 6 parameters for the Drain Package,
5 for the GHB Package, 1 for the Recharge Package, 1,024
for the SFR Package, and 408 pilot points. Each of the 1,448
parameters was assigned to 1 of 73 groups for purposes of
discussion or to treat a group of parameters as one element
during model calibration. The group name, description, and
number of parameters in each group is shown in table DS.
Appendix 1, table 1.12 lists each parameter individually, along
with calibration settings for each parameter. Each parameter
represents a property that is applied to a model cell or zone.
For example, the parameter, ghcl, is the vertical conductance
for all cells that represent the lakebed for American Lake.
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Drain and GHB Package parameters represent the
vertical conductance of a spring or lakebed material. The
recharge parameter (rm0) is a single multiplier applied to
all steady-state and transient recharge arrays generated
by the SWB Model. The multiplier was used to adjust for
potential error in the SWB Model estimates and was allowed
to adjust by plus or minus () 25 percent during calibration.
SFR Package parameters represent the vertical hydraulic
conductivity of the streambed, with one parameter assigned
to each of the 1,024 SFR segments. Each SFR parameter was
assigned to 1 of 35 groups, according to general location in
the model area (table D8). There are 208 pilot points for Kh
and 200 for Kh/Kv (408 total). Each model layer has one
or more K-zones; some zones were parameterized by pilot
points and Kriging, whereas others consist of uniform values
(table D5). All pilot points were assigned to a parameter group
according to model layer (table D8); this group designation
is for descriptive purposes only and does not apply to model
calibration.

Of the 1,448 parameters for the steady-state model
version, 458 were adjusted by automatic calibration (app. 1,
table 1.12). Adjustable parameters are those that are specified
as “log” for the category “Transformation for calibration
(PARTRANS)” in table 1.12, as described by (Doherty, 2018).
The adjustable parameters include all parameters for the Drain
and Recharge Packages and four of the five parameters for
the GHB Package. The fifth parameter for the GHB Package
(Lake Tapps) was adjusted manually and set as a fixed value
during automatic calibration to constrain the lake’s loss to
groundwater to the range estimated by Pacific Groundwater
Group (1999). Parameters for the SFR Package were assigned
to 35 groups by tying parameters in each group to one
parameter in that group. Tied parameters have values that
vary together in accordance with one adjustable parameter,
which is a way to group multiple parameters that act as a

single parameter during automatic calibration (Doherty, 2018).

All 412 pilot points were adjustable and, therefore, set to log
transformation (app. 1, table 1.12).

Calibration Target Weights

Each calibration target for the steady-state model version
was assigned a weight that was applied by PEST to the
corresponding residual to compute the value of the objective
function. Calibration targets were assigned to calibration
groups, and weights were assigned to individual targets within
each group (table D9). The collective contribution to the
objective function from each group was quantified (table D9)
to check that a single group did not dominate the calibration
and that each group’s influence on the calibration was
proportional to its data quality. Steady-state target values are
provided for groups Head1-Head5 (app. 1, table 1.7), Head6
(app. 1, table 1.10), Head7 (app. 1, table 1.11), and Flux (base
flow, table D1).

Groups Head1-Head5 are measured water levels in
wells and have weights that range from 1 to 10 (table D9).
For wells with multiple measurements, the average of all
values was used as the target value for that well, as described
in Chapter B. Wells with many measurements provide the
best representation of the average value for steady-state
calibration. Most of the wells with at least 20 measurements
were the same wells that were originally selected for the
monthly measurement network and have accurate and
reliable associated data, including locations, land-surface
altitudes, geologic logs, and depths. Therefore, as the number
of measurements for a well decreases, the target weight
decreases.

Most of the wells in the NWIS database include
an initial reported water level measured by the drilling
company after well installation. These reported values
were found to be inconsistent with the range of values for
repeated measurements and, therefore, were not included in
the calculation of average water levels for groups Head1—
Head4. Group Head5 has the lowest weight because these
wells have only one measurement that was reported by the
drilling company.

The contribution to the objective function by target
group is determined by each target’s weight and the number
of targets in the group. This group contribution determines
the relative influence that a target group has on the calibration
process. Groups Headl-Head5 contributed 70.9 percent to the
objective function value (table D9), which means that these
targets had a combined relative influence of 70.9 percent on
automatic calibration at the end of the calibration process.
Target groups Head6, Head7, and Flux represent target
categories other than water-level measurements. For these
groups, weights were assigned that resulted in a total group
contribution that is balanced against groups Head1-Head5
so that all groups are adequately represented in automatic
calibration. Target groups Head6, Head7, and Flux contributed
14.6, 3.2, and 11.2 percent, respectively, to the objective
function value (table D9). Head6 consists of the vertical
hydraulic-head differences, and Head7 consists of the
targets to prevent groundwater flooding. The Flux group
consists of the base-flow targets, which were given weights
that collectively would provide a 30 percent contribution
to the objective function for the start of the calibration. As
the residuals decreased during model calibration, the group
contribution also decreased. Because the magnitudes of base
flow in cubic feet per day are orders of magnitude larger
than water levels in feet, the weight given to each target in
this group was four orders of magnitude smaller than those
of the other groups to adjust the total group contribution to
the objective function (table D9). The group with the largest
influence on the objective function was Headl, accounting
for a 42.9 percent contribution to the objective function. The
approach of assigning target weights with the aim of balancing
the group influence on calibration is described in more detail
in Anderson and others (2015).
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Calibration Constraints

Calibration is a compromise between reducing target
residuals and other constraints that must be imposed so that
the model overall is as close to reality as possible and thus is
useful as a simulation tool. In addition to balancing the relative
influences of the different target groups, other constraints were
imposed on model parameters. One constraint was that upper
and lower parameter bounds were set to limit calibrated values
to realistic ranges (app. 1, table 1.12). Additionally, to prevent
unnecessary spatial variability and over calibration of pilot
points, Tikhonov regularization (Doherty, 2015, 2018) was
used to constrain the variability of pilot point values within
each K-zone.

Another constraint was related to well pumping
reductions that result when the simulated saturated thickness
becomes thin (Niswonger and others, 2011), which was
set as 10 percent of the layer thickness for this model. To
prevent these pumping reductions, K-zones were added in
areas where large production wells caused enough HGU
drawdown to reduce simulated pumping (table D5). Hydraulic
conductivities were assigned to these K-zones that were large
enough to reduce drawdown and prevent pumping reductions.
These Kh values were manually adjusted prior to final
automatic calibration to prevent pumping reductions and were
set as fixed values during final automatic calibration.

Minor adjustments were made to some of the pumping
wells to minimize pumping reductions. The Well Package
simulates water taken from a group of three large springs
that are located west of Lake Tapps along the river bluff.
Groundwater use for this group of springs is represented
by six pumping wells, which are named as follows in
McLean and others (2024): (1) WgpADom00114 and (2)
WgpAOther00114 for the north spring, (3) WgpADom00186
and (4) WgpAOther00186 for the south spring, and (5)
WgpADom00185 and (6) WgpAOther00185 for the central
spring. The north and south springs are separated by 0.6 mi.
These names also are used in model input files for the Well
Package (Wright and others, 2023) and precise locations are
given in McLean and others (2024). To prevent pumping
reductions occurring for the northernmost and central
springs, part of the simulated pumping for these springs was
transferred to the southernmost spring, where no pumping
reduction occurred. Additionally, the locations of two
production wells also were placed about 500 ft (one model
cell) from the original locations specified in McLean and
others (2024) to mitigate pumping reductions. After final
automatic calibration, the overall reduction in pumping was
3.5 percent for the steady-state model version. Because of
many uncertainties in groundwater-use estimates, as described
in Chapter C, this pumping reduction is within the potential
error of those estimates.

Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

Transient Calibration

All calibrated parameter values from the steady-state
model version were transferred into the transient model
version. Additional parameters needed for the transient model
version are Ss and Sy, which were distributed spatially by
applying multiple zones within each model layer, with each
zone containing a uniform value of Ss and Sy. Zones were
added as needed for optimum calibration, and the number of
zones for each model layer varied from 1 to 13 (table D7).
The Ss and Sy zones are spatially identical. PEST was not
used to calibrate the transient model version because of long
model run times. The transient model version was calibrated
by manual adjustment of the Ss and Sy values to match the
time-series records for hydraulic head in wells and base
flow at streamflow stations (app. 3, figs. 3.1 and 3.2). Equal
preference was given to hydraulic head and base flow for
calibration. In many cases, improving calibration to hydraulic
head resulted in poorer calibration to base flow, and vice versa.
Therefore, compromises were made between calibration to
hydraulic head and base flow. Calibrated values for Ss and
Sy are summarized by HGU in table D7. Simulated values
and calibration targets for hydraulic head and base flow for
the transient model version are in appendix 1, table 1.6 and
McLean and others (2024).

Assessment of Model Fit

Simulated and measured hydraulic-head values from
appendix 1, table 1.7, for the steady-state model version are
plotted for comparison (fig. D4A4). The steady-state model
version also was calibrated to the estimated differences in
hydraulic-head values between different HGUs in the vertical
direction (fig. D44, D4B; app. 1, table 1.10). A histogram
provides additional detail on the distribution of hydraulic-head
residuals for the steady-state model version (fig. D5), for
which 75 percent of residuals were within +31.6 ft. The
potentiometric surface for HGU A3 generated from the
steady-state model version output is shown in figure D6 and
is comparable to that constructed from measured groundwater
levels, as described in Chapter B (fig. B20). Additional
simulated potentiometric surface maps are available in Wright
and others (2023).

Bar graphs provide a comparison of estimated and
simulated base-flow values for station locations. Figure D74
shows total base flow, which includes the estimated base flow
that enters from outside the AMA. Figure D758 is the same
as figure D74, except that estimated base flow entering from
outside the model was subtracted to show base-flow gain or
loss simulated within the AMA only. Plotted data are shown in
appendix 1, table 1.9.
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Figure D5. Hydraulic-head residuals for the steady-state model version, near the southeastern part of Puget Sound, Washington.

Calibration fitting metrics quantify the comparison of
simulated values to target values (table D10). The mean of
residuals indicates model bias (eq. D5), where a positive mean
indicates that target values are higher than simulated values.
The mean of residuals was slightly positive for the hydraulic
head and base flow for the steady-state and transient model
versions.

The mean absolute error is the average of the absolute
values of all residuals (eq. D6). The root mean square error
(RMSE, eq. D7) is a common metric that weights large
residuals and generally is larger than the mean absolute error
(Legates and McCabe, 1999). A useful way to evaluate the
magnitudes of residuals in comparison to other models is
by comparing the residuals to the overall range of targets,
which is shown visually in figure D44 by the general scatter
of residuals surrounding the 1:1 line. The range and mean
of residuals generally are proportional to the range of target
values. For example, a model simulating steep hydraulic
gradients and a large range of target values likely will result
in large residuals compared to a model with a small range
of target values. Therefore, one way to evaluate residuals
is to calculate the mean absolute error as a fraction of the
target range (table D10), which preferably is less than about

5 percent. A similar comparison was made by Long and
Putnam (2010). This metric does not exceed 2.0 percent
for hydraulic-head residuals and is less than 1.0 percent for
base-flow residuals.

tar sim

mean of residuals = 7 (D5)
_ ‘ tar hsim|
mean absolute error = ——5—— (D6)
RMSE — [( tar Slm) :| (D7)
where
h,,  is the calibration target value,
hg, 1sthe simulated value,
n is the number of targets, and
RMSE is oot mean square error.
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scale). [See table D1 for full station names.]
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The steady-state model version simulated dry cells in
2.4 percent of the cells containing hydraulic-head targets. Most
of these cells are in areas where the simulated potentiometric
surface is steep and difficult to calibrate to, such as along
the river bluffs. Improved understanding of hydrogeologic
properties, structure, heterogeneity, and connectivity along
steep river bluffs, which most certainly is simplified in this
model, would result in a better model for these areas. Other
factors include the model’s simplified representation of the
complex interconnection of HGUs below these bluffs, where
valley-fill materials are in contact with other HGUs.

Overcalibration of a model occurs when little or no
constraints on parameter values are applied, which can
result in unnecessary and unrealistic heterogeneity of HGU
properties. Heterogeneity of hydraulic conductivity was
limited by the density of pilot points. The model included
a total of 216 and 192 pilot points for Kh and Kh/Ky,
respectively. Limiting the number of pilot points serves two
purposes: (1) limiting heterogeneity and helping prevent
overcalibration and (2) reducing calibration run times. The
result is that calibration targets are not matched as well as
would be possible with a greater density of pilot points, but
this compromise was considered appropriate.

Calibration results for the transient model version are
shown in appendix 3 as hydrographs of simulated values and
calibration targets for hydraulic head (fig. 3.1). The simulated

temporal changes in hydraulic head generally matched
measured values well, even when the overall differences were
large. Four of the 273 wells used in calibration of the transient
model version (1.4 percent) were in areas of the model with
dry cells and, therefore, were not plotted (047, 049, 071, 074).
Simulated and estimated base flow for each station
location consists of the base-flow gain that occurs within the
AMA plus any additional base flow that enters streams from
outside this area total base flow; fig. 3.2). This total base
flow is plotted for all stations. For stations that include base
flow from outside the AMA, a second plot was generated that
shows only the base-flow gain occurring within the AMA.
Many of the latter plots show that simulated flows do not
track with the temporal changes in estimated flows as well
those shown in the plots of total base flow. Not only is the
base-flow-estimation method not accurate, as described in
section, “Calibration Targets.” but estimating base flow at
locations entering the AMA is even less accurate because most
of these locations do not have stations. The base-flow gain
was determined by subtracting the upstream base flow from
base flow at the station, compounding both sources of error.
Therefore, it is unclear whether the estimated or simulated
values provide better estimates of the base-flow gain in
many cases.
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Table D10. Model-calibration fitting metrics, near the southeastern part of Puget Sound, Washington.

[Description: RMSE, root mean square error. Units: ft, foot; ft¥/s, cubic foot per second; NA, not applicable]

Description Category Value Units
Steady-state model hydraulic-head targets
Mean absolute error Hydraulic head 25.0 ft
Mean of residuals! Hydraulic head 24 ft
RMSE Hydraulic head 38.6 ft
Minimum target value Hydraulic head 2.7 ft
Maximum target value Hydraulic head 1,359 ft
Number of targets Hydraulic head 3,992 NA
Number of wells with targets Hydraulic head 3,992 NA
Mean absolute error as a fraction of the range Hydraulic head 1.8 Percentage
Transient model hydraulic-head targets
Mean absolute error Hydraulic head 20.2 ft
Mean of residuals’ Hydraulic head 4.0 ft
RMSE Hydraulic head 31.0 ft
Minimum value of targets Hydraulic head -5.1 ft
Maximum value of targets Hydraulic head 1,114 ft
Number of targets Hydraulic head 10,047 NA
Number of wells with targets Hydraulic head 273 NA
Mean absolute error as a fraction of the range Hydraulic head 1.8 Percentage
Steady-state model base-flow targets?
Mean absolute error Base flow 15.1 ft¥/s
Mean of residuals' Base flow 3.5 ft’/s
RMSE Base flow 234 ft3/s
Minimum target value Base flow 2.0 ft3/s
Maximum target value Base flow 2,681 ft¥/s
Number of targets Base flow 25 NA
Mean absolute error as a fraction of the range Base flow 0.6 Percentage
Transient model base-flow targets?

Mean absolute error Base flow 42.8 ft’/s
Mean of residuals! Base flow 9.2 ft3/s
RMSE Base flow 107.0 ft’/s
Minimum target value Base flow 0.0 ft’/s
Maximum target value Base flow 5,937 ft’/s
Number of targets Base flow 2,746 NA
Mean absolute error as a fraction of the range Base flow 0.7 Percentage

IThe residual is equal to the target (observed or estimated) value minus the simulated value.

2Excludes stations not used in calibration: two that coincide with specified inflows for the Green and White Rivers (stations 12106700 and 12097850) and the

Nisqually River (station 12089500).
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Sensitivity Analysis

A sensitivity analysis was applied to groups of parameters
for the steady-state model version, in which parameters were
varied by group, and a sensitivity metric (r) was calculated for
each parameter group, as described by
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represents an observed value from the
simulation with no parameter value
change, and

Obase, i

represents an observed value from the
simulation with a varied parameter value.

varied,i

The value of 7 was plotted for each parameter group
described in table D8 to summarize the relative sensitivities
of target residuals to each parameter group (fig. D8). To
assess the sensitivity of a parameter group, all parameters
in that group were increased by 1 percent, and the outcome
was compared with the outcome with no change in
parameter values.

The highest sensitivity is for the recharge multiplier
(rm0) because this parameter affects the recharge rate in every
part of the model and, therefore, every calibration target. Other
highly sensitive parameter groups (r greater than 10) are those
containing Kh and Kh/Kv parameters (fig. D8). Overall, Kh is
more sensitive than Kh/Kv. Sensitivities for Kh in layers 5-13

=[S~ _
T \/Zi:ofs [W(Obase,i Ovaried,i)] 2 (DS)
where
7 is the dimensionless sensitivity metric,
> is a summation over the number of
observations,
N, 1is the number of observations,
W represents the observation weights,
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Figure D8. Model sensitivity for the steady-state model version by parameter group (see table D8), as represented by the sensitivity
metric, T (eq. D8), near the southeastern part of Puget Sound, Washington.
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are all greater than 7z = 10. Parameter groups for Kh/Kv in
layers 6, 8, 10, and 12 (confining units in layers 6 and below)
also have values of 7 greater than 10, with markedly higher
sensitivity than for all HGU layers, indicating the importance
of vertical hydraulic conductivity of confining layers in model
function.

The highest drain-conductance sensitivities are for
parameter groups drl and dr2 (River bluffs in HGUs A3 and
C, respectively; fig. D8; table D8). For streambed hydraulic
conductivity, the highest sensitivities are for parameter
groups st1024, st820, st815, and st1 (Diversion to Lake
Tapps, Green River Auburn, Newaukum Creek at Black
Diamond, and Southern model area, respectively). For GHB
parameter groups, the highest sensitivities are for ghc5 and
ghc6 (bed conductance for Lake Tapps and Puget Sound,
respectively). For further discussion of parameter sensitivities
and interpretation thereof, see Chapter E, section, “Model
Limitations and Potential Refinements.”
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Chapter E. Numerical Model Results

By Andrew J. Long, Leland T. Fuhrig, Valerie A.L. Bright, Elise E. Wright, and Andrew S. Gendaszek

Introduction

This chapter summarizes model output for groundwater
budgets and the results of several hydrologic scenarios.
Although only selected model outputs are presented in tables
and figures in this chapter, detailed output files are available in
Wright and others (2023).

Groundwater Budgets

The steady-state simulated groundwater budget is
summarized by flow rate and the percentage of total inflow or
outflow for each category (table E1). Precipitation recharge

Table E1.

accounts for 97.8 percent of total simulated inflow. Some of
the water removed from the groundwater system for human
use is returned to groundwater through leaking distribution
pipes, sewer pipes, and septic systems. These groundwater
return flows account for 1.0 percent of total inflows. The water
level in Lake Tapps is higher than the underlying groundwater
hydraulic head because of controlled inflows from the Buckley
Diversion (table D4), resulting in groundwater recharge from
the lake. This simulated recharge accounts for 1.1 percent of
inflows. Streams and large springs, small springs and seeps,
and submarine groundwater discharge to Puget Sound account
for 67.3, 10.0, and 15.1 percent of total outflows, respectively.
Groundwater use accounts for 5.7 percent of outflow, but the
net, or consumptive, groundwater use when return flows are

Simulated groundwater budget for the steady-state model version, near the southeastern part of Puget Sound, Washington.

[MODFLOW package: NA, not applicable. Simulated flow rate: acre-ft/yr, acre-feet per year; ft¥/d, cubic foot per day; ft3/s, cubic foot per second]

Simulated flow rate Percentage of

Categor MODFLOW package
gory P 9 ft3/d acre-ft/yr ft3/s total
Inflows
Precipitation recharge Recharge Package 154,802,528 1,298,017 1,791.7 97.8
Groundwater return flows Well Package 1,624,784 13,624 18.8 1.0
Lake Tapps seepage General-Head Boundary 1,706,900 14,312 19.8 1.1
Package
Seepage from other lakes! General-Head Boundary 144,125 1,208 1.7 0.1
Package
Total inflow NA 158,278,337 1,327,162 1,831.9 100
Outflows
Streams and large springs (net Streamflow-Routing 106,483,948 892,866 1,232.5 67.3
outflow) Package
Small springs and seeps Drain Package 15,774,770 132,271 182.6 10.0
Submarine groundwater discharge General-Head Boundary 23,843,300 199,926 276.0 15.1
to Puget Sound (net outflow) Package
Seepage to lakes! General-Head Boundary 3,220,556 27,004 37.3 2.0
Package
Groundwater use Well Package 8,967,444 75,192 103.8 5.7
Total outflow NA 158,290,018 1,327,260 1,832.1 100
Outflows minus inflows NA 11,681 97.9 0.1 0.0

'American Lake, Lake Youngs, Lake Kapowsin, Steilacoom Lake, Spanaway Lake, and Lake Meridian.
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subtracted is 4.7 percent of outflow. The simulated monthly
groundwater budget for the transient model version is shown
in appendix 1, table 1.13.

Groundwater discharges to Puget Sound directly as
submarine groundwater discharge and indirectly as base flow
to rivers and streams that empty into the sound. All rivers
and streams in the active model area (AMA) empty into
Puget Sound. Therefore, the total simulated groundwater
contribution to Puget Sound through rivers and streams is
1,233 cubic feet per second (ft?/s), which is more than four
times larger than submarine groundwater discharge (276.0
ft3/s; table E1).

The average groundwater budget for 200515 for the
AMA was estimated by Welch and others (2024, Chapter
C, table C6). A comparison of the estimated groundwater
budget to that of the steady-state model version shows that
the percentages of total inflow or total outflow by category are
similar for the two budgets (table E2). The largest difference
is for well withdrawals: 7.3 percent of total outflow for the
estimated budget compared with 5.7 percent for the simulated
budget, as a result of simulated pumping reductions described
in Chapter D (section, “Groundwater Use and Return Flow”).

The farthest right column of table E2 shows the percent
difference in flow by category between the two budgets. All
simulated inflow categories have higher values than estimated,
including precipitation recharge, which is 25 percent higher
than estimated because the calibrated recharge multiplier

is 1.25. The recharge multiplier allowed for as much as 25
percent error in the SWB recharge estimate, as described in
Chapter D. Lake Tapps simulated seepage is 52 percent higher
than the estimated value of 9,418 acre-feet per year (acre-ft/
yr), which is about the mid-point between the upper and lower
estimates of 16,228 and 2,680 acre-ft/yr reported by Pacific
Groundwater Group (1999). The simulated value of 14,312 is
within this range.

Total simulated outflow is 25 percent higher than
estimated, which matches total simulated inflow (table E2).
Net discharges to streams, springs, lakes, and Puget Sound
were combined in table E2 so that a direct comparison could
be made between the estimated and simulated budgets. These
simulated combined discharges are 27 percent higher than
those estimated, which is consistent with the increase in
simulated inflows.

Scenario Simulations

Ten hydrologic scenarios, grouped into three suites,
simulate variations of potential drought and water-use
changes. Although useful insights may be gained from
these scenarios, many other scenarios could be simulated by
modifying model inputs that are available from Wright and
others (2023).

Table E2. Estimated groundwater budget from Welch and others (2024, Chapter C, table C6) compared to that for the steady-state
model version, near the southeastern part of Puget Sound, Washington.

[Estimated budget: Estimated groundwater budget from Welch and others (2024, Chapter C, table C6). Abbreviations: acre-ft/yr, acre-feet per year; NA, not

available]

Estimated budget

Simulated budget

Percentage of

Percent difference
Percentage of

Category Flow rate, in ; Flow rate, in X for simulated and
acre-ft/yr total inflow or acre-ft/yr total inflow or estimated
outflow outflow
Inflows
Precipitation recharge 1,037,717 97.8 1,298,017 97.8 25
Groundwater return flows 13,631 13,624 1.0 —0.1
Lake Tapps seepage’ 9,418 0.9 14,312 1.1 52
Seepage from other lakes? NA NA 1,208 0.1 NA
Total inflow 1,060,766 100 1,327,162 100 25
Outflows
Net discharge to streams, springs, 982,837 92.7 1,252,068 94.3 27
lakes, and Puget Sound
Withdrawals from wells 77,929 75,192 5.7 -3.5
Total outflow 1,060,766 100 1,327,260 100 25

ISeepage from other lakes is combined with net discharge outflows.

2American Lake, Lake Youngs, Lake Kapowsin, Steilacoom Lake, Spanaway Lake, and Lake Meridian.



Scenario 1 Suite—Drought

Scenarios l1a—1c simulate three different intensities of
drought for long-term equilibrium conditions. The steady-state
model version was run with 15-, 20-, and 25-percent reduction
of precipitation recharge, which correspond to scenarios
la, 1b, and lc, respectively. Change in recharge for these
scenarios ranged from —286.8 to —447.9 {t¥/s, corresponding to
changes in base flow ranging from —207.7 to —352.9 ft3/s (table
E3). The change in base flow as a percentage of the change the
recharge was 77.3, 78.5, and 78.8 percent for scenarios la, 1b,
andlc, respectively (table E3).

Scenario 1d simulated variable conditions with extended
seasonal drought. The calibrated transient model version was
modified to simulate 3 years of consecutive seasonal drought,
defined by the months of May—September. This period was
selected because this is when stream base flow is sensitive
to low precipitation recharge. The estimated recharge for
this 5-month period was lowest during 2007 (6.5 ft3/s on
average, or about 0.05 inches total) and was 0.42 percent of all
May—September periods for 200515 (app. 1, table 1.13). By
contrast, the driest year for 200515 was 2013, when recharge
was 70 percent of average. Therefore, because the historical
record indicates that the May—September period had a drought
far more severe than the overall drought for the entire year
and because May—September is a period characterized by
low streamflows, these were the months selected to represent
severe drought that could most affect streamflows.

The May—September period for 2007 was used as a proxy
for the seasonal drought and hydrologic conditions for this
period were inserted into the transient model version for the
same months applied during 2009—11, replacing the original
hydrologic conditions. The period 2009—-11 was selected
because this is a period with an average recharge rate of 1.83
ft3/s, which is similar to the average for 2005-15 (1.92 ft¥/s;
app. 1, table 1.13).

Chapter E. Numerical Model Results E3

This simulation was identical to the calibrated transient
model version, except that hydrologic conditions for May—
September 2009—11 were replaced with those of May—
September 2007. The new hydrologic conditions applied for
these months consisted of precipitation recharge, specified
streamflow, groundwater use, and lake levels (Recharge,
Streamflow-Routing [SFR], Well, and General-Head Boundary
[GHB] Packages). Differences between August base flow
simulated for scenario 1d and the calibrated transient model
version are shown in table E4, where negative numbers
indicate decreases for the scenario. Simulated base flow
for August was evaluated because this commonly is when
streamflow is at an annual minimum. Flow values in table
E4 include simulated base-flow gains within the model area
in addition to specified base flow entering from outside
the model.

The change in the total simulated base-flow gain within
the model area for August was compared to the change
in precipitation recharge for the seasonal drought (May—
September). The changes in recharge for 2009—11 ranged from
—98.7 to —99.5 percent, which correspond to changes in base
flow ranging from —1.8 to —13.3 ft3/s (table E5). The change
in August base flow as a percentage of the change in average
recharge for May—August ranged from 10.6 to 36.0 percent
for 2009—11. These flow percentages are much smaller than
those of the steady-state scenarios (1a—1c), partly because
high winter recharge rates provide much of the base flows
that are sustained throughout the dry summers. Also, many
streams are normally dry during August, which minimizes the
overall base-flow reduction simulated by the scenario because
simulated August flow did not change for these streams.
Furthermore, these flow percentages do not account for effects
of this simulated drought that continued into the post-drought
years—namely, the change in base flow ranged from —12.1 to
—103.1 ft¥/s for 200911 and from —4.2 to —15.7 ft*/s for the
post-drought period (2012—-15).

Table E3. Changes in simulated steady-state base flow in the active model area for scenarios 1a, 1b, and 1¢c compared to the
calibrated steady-state model version, near the southeastern part of Puget Sound, Washington.

[Negative numbers indicate a decrease for the scenario. Units: ft*/s, cubic foot per second]

- . Scenario
Description Units
1a 1b 1c

Percent change in recharge Percent -15.0 -20.0 -25.0
Percent change in average simulated base flow for all Percent -16.6 -22.5 -28.3

streams and springs!
Change in recharge ft3/s —268.8 —358.3 —447.9
Change in average simulated base flow for all streams i/ -207.7 -281.3 -352.9

and springs!
Change in base flow as a percentage of the change in Percent 77.3 78.5 78.8

recharge

IThe change in total base flow is equivalent to the change in model-area base flow for these scenarios.
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Scenario 2 Suite—Elimination of Groundwater
Use

The intent of scenario 2 was to estimate the overall
effects of current (2005—15) groundwater use on the
groundwater system. The calibrated steady-state model
version was used for this scenario, with the following change:
All simulated groundwater use was removed from the model,
which consisted of withdrawal from public-supply systems,
domestic self-supply wells, and self-supply agricultural wells
and return flow from septic system returns, pipeline leakage,
and domestic and agricultural irrigation. This scenario
addresses the differences between current land use and land
use prior to the beginning of groundwater withdrawals. The
purpose and scope of this scenario is to estimate the total
effects of current groundwater withdrawals under current
conditions of land use, land cover, and climate.

Output from scenario 2 was compared to output from the
calibrated steady-state model version and showed an increase
in altitude of the simulated potentiometric surface of HGU
A3. The increase was less than 10 feet (ft) throughout most of
the HGU’s extent but ranged from 10 to more than 100 ft in
several concentrated areas (fig. E1). Areas with 10-100 ft of
change represent the effects pumping on the HGU.

The simulated change in base flow for station locations
was more than 15 ft3/s for the Puyallup River and Chambers
Creek, more than 8 ft3/s for the White River, and more than
4 ft3/s for the Clover and Clarks Creeks (table E6). The total
change in simulated base flow was 64.1 ft3/s compared with
a change in groundwater use of 85 ft3/s; therefore, the change
in base flow as a percentage of the change in groundwater use
was 75.4 percent (table E7).

Scenario 3 Suite—Cyclic Equilibrium with
Increased Groundwater Use

This scenario suite includes five variations of
groundwater use (scenarios 3a—3e), all of which use the
same base hydrologic conditions that repeat year after
year. The purpose was to test different groundwater-use
scenarios occurring during a typical annual cycle of changing
monthly hydrologic conditions and assess the effects on the
interaction of groundwater and surface water. All hydrologic

conditions, other than groundwater use, were identical for
scenarios 3a—3e. The base hydrologic conditions consist

of a 4-year period (48 stress periods), in which each of the
annual cycles are identical, to achieve cyclic equilibrium.
Hydrologic conditions for each annual cycle of 12 months
were determined by calculating mean monthly values of model
inputs for the calibrated transient model version (2005-15);
these inputs consist of precipitation recharge, specified

flows for the SFR Package, and lake levels specified for the
GHB Package.

Scenario 3a is the baseline scenario to which the
other four scenarios are compared. Water-use rates from
the calibrated transient model version for 2014 were used
primarily because 2014 was the most recent non-anomalous
year for 2005—15 (McLean and others, 2024). Exceptions
to those rates consisted of groundwater use for the City of
Sumner and the Spanaway Water Company, which provided
current groundwater-use rates for their water supplies (app.

1, table 1.14). These rates were assumed to be more accurate
than the 2014 estimated values for representing current
groundwater use and, therefore, provided a more accurate
baseline for comparison to scenarios 3d and 3e, which
simulated increased pumping from these wells. Scenario
3a was simulated several times, each time using the output
hydraulic-head values from the previous run as initial
conditions for the next run to achieve equilibrium. Station
12113344 (Green River at 200th Street at Kent, WA) was
removed from the analysis because its location is 0.5 mile
from a no-flow boundary, which interferes with accurate
simulation of small changes in flow to SFR cells.

Except for agricultural areas, scenarios of increased
water use imply increases in demand that might result from
population growth. In many parts of the AMA, population
growth would be associated with forest clearing. Although
it could be argued that clearing forests might decrease
evapotranspiration, leading to increased precipitation recharge
and base flow, this relation is not well understood. For
example, Perry and Jones (2017) reported that in the Pacific
Northwest, streamflow in 34- to 43-year-old forest plantations
was 50 percent lower than streamflow in 150- to 500-year-old
forests. Therefore, an attempt to adjust for land-use and forest
changes and the associated changes to recharge that might
result from population growth would be a complex endeavor
and is beyond the scope of these scenarios.
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Figure E1. Change in simulated hydraulic head for hydrogeologic unit A3 resulting from scenario 2 (elimination of all human
groundwater use), near the southeastern part of Puget Sound, Washington. Map shows the difference between the simulated
potentiometric surface for scenario 2 and that of the calibrated steady-state model version.
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Table E6. Changes in simulated steady-state hase flow for station locations for scenario 2 (elimination of groundwater use) compared
to the calibrated steady-state model, near the southeastern part of Puget Sound, Washington.

[Positive numbers indicate an increase for the scenario. Station name: Station 12113344 (GREEN RIVER AT 200TH STREET AT KENT, WA) is not shown
because model boundary conditions influenced results. Change in simulated base flow: Change in total base flow is equivalent to the change in model-area
base flow for this scenario. Abbreviations: BL, below; CR, Creek; E, East; ID, identifier; LK, Lake; NR, near; ST, Street; WA, Washington; ft3/s, cubic foot per

second]

Calibration C_hange in

Station ID target Station name simulated

name base flow
(ft3/s)
12090400 04681 NORTH FORK CLOVER CREEK NEAR PARKLAND, WA 0.0
12090452 04688 SPANAWAY CR AT SPANAWAY LK OUTLET NR SPANAWAY, WA 1.5
12090500 04670 CLOVER CREEK NEAR TILLICUM, WA 6.7
12091100 04671 FLETT CREEK AT TACOMA, WA 1.8
12091200 04675 LEACH CREEK NEAR FIRCREST, WA 0.3
12091300 04676 LEACH CREEK NEAR STEILACOOM, WA 0.5
12091500 04668 CHAMBERS CREEK BL LEACH CREEK NEAR STEILACOOM, WA 15.2
12102075 04669 CLARKS CREEK AT TACOMA ROAD NEAR PUYALLUP, WA 4.6
12102190 04689 SWAN CREEK AT 80TH ST EAST NEAR TACOMA, WA 0.0
12095000 04687 SOUTH PRAIRIE CREEK AT SOUTH PRAIRIE, WA 0.2
12093500 04686 PUYALLUP RIVER NEAR ORTING, WA 0.0
12096500 04683 PUYALLUP RIVER AT ALDERTON, WA 4.1
12096505 04684 PUYALLUP RIVER AT E MAIN BRIDGE AT PUYALLUP, WA 4.2
12101470 04682 PUYALLUP RIVER AT 5TH ST BRIDGE AT PUYALLUP, WA 15.1
12101500 04685 PUYALLUP RIVER AT PUYALLUP, WA 15.1
12099600 04667 BOISE CREEK AT BUCKLEY, WA 0.9
12097850 04692 WHITE RIVER BELOW CLEARWATER RIVER NR BUCKLEY, WA 0.0
12099200 04690 WHITE RIVER ABOVE BOISE CREEK AT BUCKLEY, WA 0.2
12100490 04691 WHITE RIVER AT R STREET NEAR AUBURN, WA 8.2
12100496 04703 WHITE RIVER NEAR AUBURN, WA 8.2
12108500 04679 NEWAUKUM CREEK NEAR BLACK DIAMOND, WA 1.0
12112600 04666 BIG SOOS CREEK ABOVE HATCHERY NEAR AUBURN, WA -0.4
12106700 04673 GREEN RIVER AT PURIFICATION PLANT NEAR PALMER, WA 0.0
12113000 04674 GREEN RIVER NEAR AUBURN, WA 0.8
12113347 04677 MILL CREEK AT EARTHWORKS PARK AT KENT, WA 0.2
12113349 04678 MILL CREEK NEAR MOUTH AT ORILLIA, WA 0.2

Scenario 3b (increased public-supply groundwater use)
was the same as scenario 3a with the following changes:
Groundwater use (pumping) and return flows associated
with Groups A and B public-supply wells were increased by
15 percent uniformly for each of these simulated features
(pumping well or point of return flow) in the model. These
changes resulted in an average net increase of 12.8 ft3/s
specified as model input; however, the actual simulated
increase was only 10.3 ft?/s because of simulated pumping
reductions. Return flows consisted of recharge from pipeline
leakage, lawn irrigation, public-supplied agricultural
irrigation, large-onsite septic systems, and Group B septic

systems. Simulated base flow for scenario 3b was compared
to that of scenario 3a, where negative numbers indicate
decreases for the scenario (table E8). Decreases in simulated
base flow for station locations (shown as negative values in
table E8) were as large as 2.5 ft3/s for Chambers Creek during
March and 1.5 ft3/s for the Puyallup River during March and
April, with the smallest changes occurring during summer and
autumn for most locations (table E8). Stations on Clarks and
Big Soos Creeks and the Green River resulted in simulated
base-flow increases of 0.1-0.2 ft3/s for some months, possibly
resulting from simulated pumping reductions occurring for
some wells because of increased pumping in other wells



Table E7.
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Change in simulated steady-state base flow in the active model area for scenario 2 (elimination of groundwater use)

compared to the calibrated steady-state model, near the southeastern part of Puget Sound, Washington.

[Positive numbers indicate an increase in base flow. Units: ft3/s, cubic foot per second]

Steady-
Description Units state Comments
results
Percent change in average simulated base flow for all streams Percent 5.14 Base flow increased
and springs!
Percent change in average consumptive water use Percent —-100.0 Consumptive water use decreased
Change in average simulated base flow for all streams and ft’/s 64.1 Base flow increased
springs!
Change in average consumptive water use ft3/s -85.0 Consumptive water use decreased
Change in base flow as a percentage of the change in Percent 75.4 Base flow increased

consumptive water use

IChange in total base flow is equivalent to the change in model-area base flow for this scenario.

that resulted in reduced saturated thickness, or because of
increased return flows. Base flow entering from outside the
active model is the same for scenarios 3a—3e; therefore, the
values in table E8 are independent of these flows and represent
changes for base flow within the AMA only.

Scenario 3c (increased self-supply groundwater use)
was the same as scenario 3a, with the following changes:
Groundwater use (pumping) for domestic and agricultural
self-supply wells was increased by 15 percent, and recharge
from septic systems and self-supplied agricultural irrigation
was increased by the same amount. This resulted in an average
net increase of 0.2 ft3/s specified as model input overall.

The actual simulated increase also was 0.2 ft3/s because no
simulated pumping reductions occurred. These changes were
applied in the same way as for scenario 3b. Simulated base
flow for this scenario was compared to that of scenario 3a.
Decreases in simulated base flow for station locations were

as large as 0.2 ft3/s for the Puyallup River and South Prairie
Creek (table E9). Clarks Creek resulted in base flow increases
of 0.1 ft3/s for some months for similar reasons to those of
scenario 3b.

Scenario 3d was focused on Spanaway, which is an
unincorporated, census-designated place near Spanaway
Lake. This scenario was same as scenario 3a, except that
groundwater use (pumping) for the Spanaway Water
Company was increased overall by 67 percent (from scenario
3a), with increases applied to 10 water-supply wells. The
model-specified pumping rate increased from 5.0 to 8.4 {t3/s
on average, an increase of 3.4 ft*/s. The actual simulated
increase was slightly less (3.3 ft3/s) because of simulated
pumping reductions. The percent increases varied spatially
(by well) and temporally for scenarios 3a, 3d, and 3e, as

shown in appendix 1, table 1.14. Simulated base flow for
scenario 3d was compared to that of scenario 3a. Changes

in simulated base flow for station locations were as much as
—2.4,-2.1, and —0.8 ft3/s for Chambers, Clover, and Spanaway
Creeks, respectively (table E10). The smallest changes
occurred during summer, which was when the smallest
groundwater-use changes occurred (app. 1, table 1.14);
however, a month-by-month correlation is not evident because
the effects of pumping on streamflows are spread over time.
Chambers Creek resulted in a base flow increase of 0.6 ft3/s
for October for similar reasons to those of previous scenarios.
Other increases (Puyallup River and South Prairie Creek) did
not exceed 0.2 ft3/s.

Scenario 3e was the same as scenario 3a, except that
groundwater use for the City of Sumner was increased overall
by 103 percent (from scenario 3a), with variable increases
applied to five water-supply wells (app. 1, table 1.14). The
model-specified pumping rate increased from 2.4 to 4.9 {t¥/s
on average, an increase of 2.5 ft¥/s. The actual simulated
increase was only 2.3 ft3/s because of simulated pumping
reductions. Simulated base flow for this scenario was
compared to that of scenario 3a. Changes in simulated base
flow for station locations were as much as —2.0 ft3/s for the
Puyallup River (app. 1, table E11). Scenario 3e differed from
the previous scenarios in that the largest changes in base flow
occurred during summer, corresponding to larger pumping rate
changes during summer (app. 1, table 1.14). Like scenario 3d,
a month-by-month correlation for scenario 3e is not evident
because of antecedent effects. Chambers and Clarks Creeks
and the Puyallup and White Rivers resulted in increases in
base flow of 0.1-0.2 ft3/s, each for 1 month out of the year.



VA ‘NOIYAA TV

€0- S0 S0 v'0- v'0- v0- v0- ¥0- €0~ €0- €0- ¥0— ¥0— S0- IV IHAII dNTIVAND  €89%0  005960CI
VA ‘DONILIO YVAN

00 00 00 00 00 00 00 00 00 00 00 00 00 00 YIATI dOTIVAND  989%0  00S€60CI

VA A1V Ad
HLNOS LV HddD
00 c0- c0- 00 00 00 00 00 00 00 10— 10— 10— c0- dIAIVEd HLNOS  L89%0  000560CI
VM ‘VINODVL
AVAN LSVH LS
00 00 00 00 00 00 00 00 00 00 00 00 00 00 HLO8 LV AdHYD NVMS  689%0  061C0ICI

VM
dNTIVANd ¥VAN
avod VINOOVL

0 90~ 0 ¥0- €0~ S0- 90~ 90— S0- €0~ €0~ TO- TO- 00 IV IETID SSAVID 69940 SL0T01CI
VM
NOODVIIALS VAN
SIHTID HOVAT 14

01— ST I'e- 61— r- o1 o1 < L= 0 v St €T €T SATID SYHIINVHD 89940  00S160TT
VM ‘NOODVTIALS

00 10— 10— 10—~ 00 00 00 00 00 00 10— 10— 10— 10— AVAN HTID HOVAT  9L9%0  00€160TI
VA LSTIDYIL

00 10— 00 10— 00 00 00 00 00 00 00 00 00 00 AVAN JFTID HOVAT  SL9¥0  00Z160T1

VM ‘VINOOVL

co- ¥o- £0- c0- c0- c0- c0- €0- €0~ €0- ¥0- ¥0- ¥0- ¥0- LIV IHED LLATd [L9Y0 001160C1
VA NNDITTLL

00 80— 80— L0~ S0- 00 00 S0- S0- 90— L0~ L0~ L0~ L0—  AVANJIITID JHAOTD  0L9¥0 005060C1
VM AVMVNVAS
AVAN LHTLNO
HAVTAVMVNVIS

10— c0- (A ro- o- o- o- o- o- 10— c0- [0 c0- c0- LV AHTED AVMVNVIS 88910 ¢Ss1060CI
VA ANV TV
AVEAN AHHID

00 00 00 00 00 00 00 00 00 00 00 00 00 00 YIAOTO AYOd HIION 18940 00t060C1

anjea anjea 99q  'hoN 00 deg  bny  Amp eunp  Aepy 1dy ey 9834 ‘uep aweu uonels aweu
wnwixey  wnwiuly (S/c4) Moy} aseq pajejnuwis uj abueyy ) yabse]

aj uohels

Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

E12

[puodas 1ad 100} 21qND “S/()J UOITUIYSBAN VAN 199118 ‘LS ‘roquuaydag “1dag (10q030(0) <190 (1eau YN IOQUISAON “AON ‘YOIRJA “IRJA ‘AI1enue[ “ue[ Idynuapl ‘([ A1eniqdq “qog

gseq ‘g oquuaod(J “99( ‘mo[aq “Iqg 9sndny “Iny {udy “1dy :suoneiasiqqy ‘sodexoed Arepunog pedaH-[eIouon) pue ‘urel ‘Surnoy-mogueans oy} Wolj SMOJ JO S)SISU0D MO 9Seq [B)0], "SOLIBUIIS dS}
10J MOJJ 9SBQq BAIR-[dpOW Ul dFUBYD Y} 0) JUI[BAINDI ST MO 9Seq [10) Ul 9FURY)) :MOJJ dSBQ PAIR[NWIS Ul 9FULYY) SINSAI PAOUINPUI SUONIPUOD AIBPUNO] [9POW dSNBIAQ UMOYS JoU ST (VA ‘LN IV LATILS
HLO0Z LV YAATY NATYD) $#HEE11C1 uonels :oweu uonel§ "uonedo] uorje)s Y 10j MO} aSeq Ul 3SLAIOIP © SUIBIIPUI SIOQUINU JABIIU )M ‘BE PUB (¢ SOLIBUDIS UIMIIQ QDUIIYIP A} SB UMOYS dIB S} NSIY |

‘uoibuiysepn ‘punog 18bng jo ped uialseayinos ayl eau ‘(asn yajempunolb Ajddns-o1jgnd paseasoul) qg oleuads wody Buynsas moyy aseq Ajyiuow pajenwis ul sabueyy ‘g3 ajqer



E13

Chapter E. Numerical Model Results

VM ANTVd
AVAN LNVI1d
NOILVOIAI-Nd
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LV IHATI NHIED  €L9¥0 00L901¢CI

VA ‘NINENY VAN
AYdHDLIVH HA049V
1’0 00 00 00 1’0 1’0 1’0 1’0 ['0 00 00 00 00 00 AHIID SOOS DI 9990 009CI1CI

VA ‘ANOIWVIA
2OVId VAN

00 1o- 1'o— o- 1o- 00 00 00 1o- 10— 10— 10— 'o— 'o— ATTID WNNANVMEN - 6L9Y0 00S801CI
VA ‘NINdNv

€0— 60— 90— S0— vo- €0- ¥o- S0— 80— 60— 60— 60— 80— L0~ VAN YA HLIHM ~ €0L¥O 961001¢Cl
VM ‘NINdNv
AVAN LIFELS ¥

€0— 60— 90— S0- vo- €0- v0- S0- 80— 60— 60— 60— 80— L0~ IV IIATd HLIHM 16910 067001CI
VM AGTIONE
LV IO dS1049

00 00 00 00 00 00 00 00 00 00 00 00 00 00 HAOLV YHAId HLIHM 06910 00¢660¢CI

VM
AATIONG IN AT
AHIVAAVETO
00 00 00 00 00 00 00 00 00 00 00 00 00 00 MOTHE JHATI HLIHM  T69%0  0S8L60TI

VM AGTIONd

00 c0- c0- o- 00 00 00 00 Io- 10— 10— 10— o— o— LV AHIYED 48109 L9910 009660¢CI
VA dNTTIVANd

60— Sl- vi- l- 60~ 60~ 60~ 01— €l- vi- S 9 V- V- IV ITARI dNTIVAND  $89%0 00ST01CI
VM dNTTVANd
LvdDdldd LS HLS

60— S V- = 60— 60— 60— 01- 1= vi- Sl- Sl= V- Vi- LV YA dNTIVANd 8910 0LYI01CI
VA dNTIVANd
1V dDdrdd NIVIN 4

€0- S0 S0 v'0- v v0- v0- ¥0- €0~ €0~ Y0— ¥0— ¥0— S0 IV IIARI INTIVAND  $89%0 S05960C1

anjea anjea eq  'noN 00 des  bny  Amnp eunp  Aepy 1dy e 934 ‘uep — aweu
wnwixel  wnwiuly (/i) Moy} aseq pajejnuwis ui abueyy ) Jabise]

aj uonels

[puooas 1ad 300J o1qNd ‘s/)J UOIBUIYSBAN “YA\ 10918 ‘LS 1oquaydag “1dog 1090100 100 {1BaU YN IOQUISAON “AON <YOIRA “IRJA ‘Alenue[ “uef {IOUNUIPI ‘(] ‘Areniqo, “qo]

gseq ‘g 1oquieod(J “09(J (Mofeq ‘g “sndny “Iny qudy “1dy :suoneiadiqqy 'sesesded Arepunog pedH-[eIoudn) pue ‘urel(] ‘Sunnoy-Mmopguweans Yy} Wolj SMO[ JO SISISU0D MO} dSeq [BIO], "SOLIBUIIS 9SAY)
10J MO} 9SBQq BAIR-[dpOW Ul d3UBYD Y} 0) JUI[BAINDI SI MO seq [10) Ul dFURY)) :MOJJ dSBQ PAJR[NWIS Ul 9FULY)) ‘SINSAI PAOUINJUI SUONIPUOD AIBPUNO] [9POW SNBIQ UMOYS Jou ST (WA ‘LNAY LV LATILS
HLO0Z LV YAATY NATYD) +HEE11 1 UORIS :9WeU UOE)S "UOIEOO0] UOIIR)S AU} J0J MO 9SBq Ul 9SBAIOdP € SUNEdIPUT SIOqUINU 9ANEIIU [JIM ‘B¢ PUR ¢ SOLIBUIOS UOIMIIQ IIUIIQYIP O} SB UMOUS AJe S)Nsy]

panunuo)
—uo3buiysepn ‘punog 1abnd jo ped uiaiseayinos ayl eau ‘(asn 1ayempunolB Ajddns-a1jgnd paseasoaul) ¢ onieuads woly Buiynsal moyy aseq Ajyiuow pajenwis ui sabueyy ‘g3 ajqer



Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

E14

VM
‘VITINIO IV HLNOW
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AVAN AFTID TN 8L9VO  6PECTIC
VA LN LV
AAVd STIOMHLIVA
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LV HTEO TITIN - LL9YO LYECTITI
VM ‘NINdNV
10 10— 10— 00 00 00 10 10 00 00 00 00 00 00 AVAN YHARI NHHID  #L9%0  000€11CI
anjea anjea eq  'noN 00 des  bny  Amnp eunp  Aepy 1dy e 934 ‘uep aweu
aweu uopels @l uonels
wnwixel  wnwiuly (/i) Moy} aseq pajejnuwis ui abueyy Jabse]

[puooas 1ad 300J 21qNd ‘s/)J UOIBUIYSBAN “YA\ 10918 ‘LS (1oquaydag “1dog 1090100 100 {1BaU YN IOQUISAON “AON SYOIRA “IRJA ‘Alenue[ “ue[ {IOUNUIPI ‘(] ‘Areniqo, “qo.

gseq ‘g 10quieod(J “09(J (mofeq ‘g “sndny “Iny qudy “1dy :suoneiadiqqy 'sesesded Arepunog pedH-[eIoudn) pue ‘urel(] ‘Sunnoy-Mmopguweans Yyl Wolj SMO[ JO SISISU0D MO} dSeq [BIO], "SOLIBUIIS 9SAY)
10J MO} 9SBQq BaIR-[dpOW Ul d3UBYD Y} 0) JUI[BAINDI S1 MO seq [10) Ul dFURY)) :MOJJ dSBQ PAIR[NWIS Ul 9FULY)) ‘SINSAI PAOUINJUI SUONIPUOD AIBPUNO] [9POW SNBIQ UMOYS Jou ST (WA ‘LNAY LV LATILS
HLO0Z LV YAATY NATYD) +HEE11 1 UONRIS :9WeU UOIE)S "UOIBIO0] UOIIR)S AU} J0J MO 9SBq Ul 9SBAIOdP € SUNEdIPUl SIOqUINU 9ANE3OU )M ‘B¢ PUR ¢ SOLIBUIOS U0IMIIQ IIUIQYIP O} SB UMOUS AIe S)NsAy]

panupuo)
—uo3buiysepn ‘punos 1abny jo ped uiaiseayinos ayl eau ‘(asn 1ayempunolB Ajddns-a1jgnd paseasoaul) g olleuads woly buiynsal moyy aseq Ajyuow pajenwis ui sabueyy ‘g3 ajqer



E15

Chapter E. Numerical Model Results

VM
‘VINODVL dVAN
LSVd LS HLO8
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LV AIIID NVMS 68970 061C01CI

VM dNTTVANd
AVAN AVOd
VINODVL IV
o 00 o 00 00 00 00 00 00 00 00 00 o o AHHED SAIVIO - 69970 SLOTOICI

VA
‘WOODVTIALS
AVAN TID
HOVH114d
00 00 00 00 00 00 00 00 00 00 00 00 00 00  MATID SYHINVHD 89940  00S160Z1

VM
‘WOO0DVTIALS
AVAN

00 00 00 00 00 00 00 00 00 00 00 00 00 00 MATID HOVAT  9L9%0  00€160T1

VM
LSHIDYI AVAN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AHTID HOVHT  SL9v0  00T160TI

VA VINODVL
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LIV AHEYD LI T4 1L9%0 00116021

VM
NNDITIIL VAN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AHTID JHAOTO  0L9%0  00S060TI

VM ‘AVMVNVAS
AVAN
LHTLNO V1
AVMVNVCS IV
00 00 00 00 00 00 00 00 00 00 00 00 00 00 IO AVMVNVIS 88910 S060C1

VA ANV TV
AVAN A
YIAOTO
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AJOd HLION  189%0  001060CI1

anjea anjen 09q noN e  wes  Bny  Anp eunp  Aey udy  uely 'gay  cuer B— aweu
wnwixep wnwiulin (s/cl) mojy aseq pajejnuis ui afiueyn ’ Jabie]

aj uoneis

[puooas 1od 300J o1qN0 ‘s/)F ‘UOIBUIYSEAN “YA\ 10918 ‘LS 1oquardog “1dog 1090100 <100 (1eou YN ‘JOqUISAON “AON ‘UOJeIA IRy ‘ATenuel “ue[ {IOUNUIPI ‘(] ‘ATeniqof

“qQo 9seq ‘g 1oquuada( o9 Mo[aq ‘g ‘sndny “Sny ‘{udy “1dy :suoneiadaqqy ‘sodexoed Arepunog peoH-[eIoudn) pue ‘urel( ‘Sunnoy-mopueans ay) Wolj SMOJ JO SISISU0d MOY 9Seq [8}0], 'SOLIBUIIS
952U} 10} MO} 9SBq BaIB-[opOoW Ul 9FUueyd ) 0} Jud[eAINba SI MO}J 9seq €10} Ul A3UBY)) MO ISB( PIIL[NWIS Ul AFUBY)) "S}NSAI PIOUINPUI SUONIPUOI AIBPUNOQ [9POW SNBIAQ UMOYS J0U ST (VA ‘NI 1V
LATIYLS 11002 IV JIATI NATIYD) #EET1C] UONEIS :dureu uone)S Moy 9seq paje[nuis Ul 9SeaIoop € SunesIpul SI9quint 9ANESoU IM ‘B¢ PUL O¢ SOLIBUIIS USOM)Oq OJUIYIP AU} SB UMOYS oIk S}NSoy]

‘uoibulysepp ‘punog 1abng jo 1ed uisiseayinos ay}Jeau ‘(asn yazempunolb Ajddns-jas pasealoul) ag oueuads woly Buiynsas moyy aseq Ajyiuow paje|nwis ui sabueyy '3 ajqeL



Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

E16

VA AFTION
LV HHdD
451049 4A049V
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AT HLIHM - 06970 0026601

vm AT TIONd
AN YA
YILVAIVATO
MOT44
00 00 00 00 00 00 00 00 00 00 00 00 00 00 YA HLIHM  T69¥0 068L60C1

VM AGTI0Nd
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LIV IHIED 45109 L99%0  009660C1

VM
dNTIVANd 1V

00 0- 1'o- 00 00 00 'o— 00 00 00 00 o- Io— ¢o0- YIATI dNTIVANd  S89%0 00s10ICI
VA dNTTVANd
LIV 34Ddrdd
LS HLS LV

00 0- 10— 00 00 00 'o— 00 00 00 00 o- ['0—  CT0- YIATI dNTIVANd  T89YO 0L¥101CI
VA dNTTVANd
Lv abdrdd
NIVIN A LV

00 0~ (A 00 00 00 ['0— 00 00 00 00 1'0— ['0—  <T0— HIAI dNTIVAND #8910 §05960C1
VM
‘NOLYAATV LV

00 00— 00— 00 00 ['0— ['0— 00 00 00 00 1'0— ['0—  <T0— HIATI dNTIVAND  €8910 0059601
VM
‘ONILLIO IVAN

00 00 00 00 00 00 00 00 00 00 00 00 00 00 HIATI dNTIVAND 98910 005€60C1

VM
‘ArIVdd HLNOS
LV AHTED
00 0- (a0 00 00 00 00 00 00 00 00 o- o— ¢0- dIIVId HLNOS  L89%0  000S60CI

anjea anjea ‘93@  'AON 790 deg By Anp aunp  Aepy ady ey q34 ‘uer owe UonElS aweu
wnwixel wnwiuiiy (S/g}) moyy aseq pajenuiis ui abueys ) yebie]

aj uoneis

[puooas 1ad 3003 o1qN0 ‘s/)F UOISUIYSEBAN YA\ 1091S ‘LS 10quardog “1dog £19q0100) 190 (Ieau YN JOqUISAON “AON £10q030() 100 ‘YOIBIA “JR]N ‘ATenuel “ue[ {IOYIUIPI ‘(] ‘ATeniqo]

©qoy 9seq ‘g 1oquuadd(J 29 ‘mo[aq ‘I Isndny “3ny (qudy “Idy :suoneiadaqqy ‘sosexoed Arepunog peoH-[eIousn) pue ‘ureld ‘Surnoy-Mmogueans o) Woly SMO[ JO S)SISU0D MO 9Seq [B}0], "SOLIBUIOS
9S3Y) 10J MO dSBQ BAIR-[OPOW UI dFULYD 9Y) 0} JUS[BAINDS ST MOJJ 9SBQ [B10) UI dFURY)) :MOJJ ISB(Q PIIB[NWIS Ul IZUBY)) "SI[NSII PIJUINJUI SUOTIIPUOI AIBPUNO] [POUT SNBIIG UMOYS 10U ST (WA ‘LNAY LV
LATILS 11002 IV JIATI NITID) #EE11Z] UONEIS :dued uone)S MO 9Seq paje[NuIs Ul ISLAIO0P B SunNedIpul SIOqUINU 9ANRIOU YIIM ‘B¢ PUL O¢ SOLIBUIIS UIOM]Oq OIUAIYIP AU} SB UMOYS oIk S}HNSoY]

panuiuo)—uoiBulyseppn
‘punog 186n4 Jo Led ulaiseayinos ayy Jeau ‘(asn JarempunolB Ajddns-jas paseaioul) og oLIeUBDS WOJy Bunsal mojy aseq Ajyiuow pale|nwis ul sabueyy g3 ajqer



E17

Chapter E. Numerical Model Results

VM ‘VITIIO
IV HLNOW
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AVAN AHHID TIIN - 8L9YO 6veCTICI

VM
LNAY LV ¥ Vd
SHTIOMHILIVH
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LV FTED TIIN - LL9YO LyEETICl

VM
‘NININV VAN
00 'o- 10— 00 00 00 00 00 00 00 00 00 00 00 HHATI NAHED  L9Y0 000€T1CI
VA JANTVd
AVIN INV1d
NOILVOIA™INd
00 00 00 00 00 00 00 00 00 00 00 00 00 00 IV YA NHHEED  €L9%0 00L901¢I

VM
‘NININV VAN
AYAHDIVH
JA04V AHTID
00 00 00 00 00 00 00 00 00 00 00 00 00 00 SOOS DI 999t0 009CIICI

VM ‘ONOINVIA
2ADVI1d
VAN AHTID
00 o- 10— 00 00 00 00 00 00 00 00 00 00 00 INMNVMAN - 64970 00S801¢CI
VM
‘NINANV AVAN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 YIATI HLIHM  €0L¥0  96¥001CI

VA ‘NINEINv
AVAN LHHYLS
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LV YA ALIHM 1690 06¥001CI

anjea anjea ‘93@  'AON 790 deg By Anp aunp  Aepy ady ey q34 ‘uer owe UonElS aweu
wnwixel wnwiuiiy (S/g}) moyy aseq pajenuiis ui abueys ) yebie]

ai uohels

[puooas 1ad 3003 01qN0 ‘s/)F UOISUIYSEBAN YA\ 10918 ‘LS 10quardog “1dog 1990100 100 (1eau YN JOqUISAON “AON £10q030() 100 ‘UYOIBIA “Je]N ‘ATenuel “ue[ {IOYIUIPI ‘(] ‘ATeniqo]

©qoy 9seq ‘g 1oquuadd(J 29 ‘mo[aq ‘I Isndny “3ny (udy “Idy :suoneiadaqqy ‘soSexoed Arepunog peoH-[eIousn) pue ‘urel ‘Surnoy-MmOogueans o) Woly SMO[ JO S)SISU0D MO 9Seq [B}0], "SOLIBUIOS
9S3Y) 10J MO[J dSBQ BIIR-[OPOW UI dFULYD 9Y) 0} JUS[BAINDS ST MOJJ 9SBQ [B10) UI dFURY)) :MOJ ISB(Q PIIB[NWIS Ul IZUBY)) "SI[NSII PIJUINJUI SUOTIIPUOI AIBPUNO] [POUT SNBIIG UMOYS 10U ST (WA ‘LNAY LV
LATILS 11002 IV JIATI NITID) #EE11Z] UONEIS 9wl Uuone)S "MO[j 9Seq PAje[NuIs Ul ISLAIOOP B SUNedIpul SIOqUINU 9ANRIOU YIIM ‘B¢ PUR O¢ SOLIBUIIS UIOM]Oq OIUAIQYIP A} SB UMOYS dIe S}NSoY]

panuiuo)—uoiBulyseppn
‘punog 186n4 Jo Led ulaiseayinos ayy Jeau ‘(asn JarempunolB Ajddns-jas paseaiour) og oLIeUBDS WOy Bunsal mojy aseq Ajyiuow palejnwis ul sabueyy g3 ajqer



Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

E18

VM dNTIVANd
AVAN AVOY
VINOOVL IV
00 10— I'0- 00 00 00 00 00 00 00 I'o- 10- 00 10—  SAZID SSNAVID  699+0 $L0Z01TI
VM
‘WOODVIIALS
AVAN LI
HOVAT
14 AT
90 v Yo €T 90 vo- ¥0- 80~ €I ¢SI- 8- 0 0T €T SYIIAVHD 89940 00516021
VA
‘OO0DVTIALS
AVAN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 SATID HOVAT  9L9+0 00€1602I1

VA LSTIDAIA
AVHN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AHTID HOVAT  SL9YO 001601

VM ‘VINODVL
00 o- 10— o- 10— ro- 'o— o— 00 00 00 00 00 1'0—  IVIHIYEO LIdTd  [L9%O 001160CT
VA INNDITILL
AVAN AH9¥D
00 I'e- I'e=  6'1- el= 00 00 [ el=  vi- 91= 8=  8I= 0T HHAOTO  0L9%O 00S060C1
VM ‘AVMVNVAS
AVIN
IHTLNO I3V1
AVMVNVAS
LV AHTED
€0~ 80~ L0~ S0~ €0 €0 €0—  ¥0- vOo- S0— 90— 80— L0- 80— AVMVNVIS  889%0 s060T1
VM
‘ANVTIYIVd
VAN AHTID
YAAOTO
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AJOd HLION 18910 001060CI1

anjea anjea 09q oy 00 wes By Ajp eunp Aey udy ey cga4 cuer - aweu
wnwixely  wnwiuip (s/cl}) Moy aseq pajejnuis ui afiueyn ’ 1afise]

aj uoneis

[puooas 1od 300J o1qN0 ‘s/)F ‘UOIBUIYSEAN “YA\ 10918 ‘LS 1oquardog “1dog 1090100 <100 (1eou YN ‘JOqUISAON “AON ‘UOJeIA IRy ‘ATenuel “ue[ {IOUNUIPI ‘(] ‘ATeniqof

“qQo 9seq ‘g 1oquuada( o9 Mo[aq ‘g ‘sndny “Sny ‘{udy “1dy :suoneiadaqqy ‘sodexoed Arepunog peoH-[eIoudn) pue ‘urel( ‘Sunnoy-mopueans ay) Wolj SMOJ JO SISISU0d MOY 9Seq [8}0], 'SOLIBUIIS
952U} 10} MO} 9SBq BaIB-[opOoW Ul 9FUueyd ) 0} Jud[eAINba SI MO}J 9seq €10} Ul A3UBY)) MO ISB( PIIL[NWIS Ul AFUBY)) "S}NSAI PIOUINPUI SUONIPUOI AIBPUNOQ [9POW SNBIAQ UMOYS J0U ST (VA ‘NI 1V
LATILS HLO0Z LV YAATI NATYD) #HEE117] Uone)S :duweu Uuone)§ "MO[ 9seq POJe[NWIs Ul 9SedI03p & SUIRIIPUI SIOqUINU JAIESAU )IM ‘B PUB PE SOLIBUIIS USOM]OQ 9OUIYIP AU} SB UMOYS oIk S}NSoy|

‘uolbuiysepp
‘punog 18bnd jo ped uislseayinos ayl.aeau ‘(asn Jazempunolb Auedwo? usiepy Aemeuedg) pg oLieuadas wody Bunnsal mojy aseq Ajyiuow palejnwis ur sabueyy gLy ajqep



E19

Chapter E. Numerical Model Results

VM AGTIONd
AN AT
HALVMIVATD
MOTd4
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AHATI HLIHM  T6910 068L60C1

VM AT TI0Nd
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LV AHHID 45109 L9910 009660C1

VM dNTTVANd
IV IdAd
40 10— 00 00 00 00 00 00 00 00 o- 10— 1o <0 dOTIVANd  S89%0 00S10ICI
VM dNTTVANd
Iv daDdrdd LS
HLS LV 49ATd
4 o- 00 00 00 00 00 00 00 00 1'o- o- 1o 0 dOTIVANd  T89Y0 O0LV101CI
VM
dNTIVANd IV
DAY d NIVIN
d 1V ddAd
40 c0- 00 00 00 00 00 00 00 00 o- 0~ o 0 dNTIVANd  +¥89%0 §05960C1
VM
‘NOINAATY
LIV ddATd
40 (A 00 00 00 00 00 00 00 00 o- (A 1o 0 dNTIVANd ~ €89%0 00596021
VA ‘DNILIO
AVAN dIATI
00 00 00 00 00 00 00 00 00 00 00 00 00 00 dNTIVANd  989%0 005€60C1

VA ARV Ad
HLNOS LV
AHTID
40 0- 00 00 00 00 00 00 00 00 I'0— T0- 1'0 0 dIAIVId HLNOS L8910 000560C1
VM ‘VINODVL
AVAN LSVH
LS HLO8 LV
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AHTID NVMS 68910 06120I¢CI

anjea anjea REl(] ‘NoN 70 des  bny  Anp aunp  Aepy ady ey q84 ‘uep owew uoneIg aweu
wnwixel wnwiuiiy (S/g}) mojy aseq pajejnuuis ui abueys ) jabie]

ai uonels

[puooas 1ad 3003 o1qN0 ‘s/)F UOIBUIYSBAN YA\ 10918 ‘LS 1oquiardog “1dog £10q010(0) 100 {1eou YN JOqUISAON “AON <UOIBIA “JR]N ‘ATenue[ “ue[ LIOUIUIPI ‘(] ‘ATeniqof

©qoy 9seq ‘g 1oquuadd(J 29 ‘mo[aq ‘I Isndny “3ny (udy “Idy :suoneiadaqqy ‘soSexoed Arepunog peoH-[eIousn) pue ‘urel ‘Surnoy-MmOogueans o) Woly SMO[ JO S)SISU0D MO 9Seq [B}0], "SOLIBUIOS
9S3Y) 10J MO[J dSBQ BIIR-[OPOW UI dFULYD 9Y) 0} JUS[BAINDS ST MOJJ 9SBQ [B10) UI dFURY)) :MOJ ISB(Q PIIB[NWIS Ul IZUBY)) "SI[NSII PIJUINJUI SUOTIIPUOI AIBPUNO] [POUT SNBIIG UMOYS 10U ST (WA ‘LNAY LV
LATILS HLO0Z IV YIAR NITID) HHEE117] UONRIS :dWed Uone)S ‘MOo[ 95eq PAJR[NWIS Ul 95BAI0dP & FUNBIIPUI SIOqUINU JANEIIU [)IM ‘B¢ PUB PE SOLIBUIDS UIIM]IQ IOUIIYIP O} SB UMOYS dIe S)NSY]

panunuoj)—uoibuiysepp
‘punog 18bnd jo yed uialseayinos ayj Jeau ‘(asn tayzempunolb Auedwos) sarep) Aemeueds) pg oueuaas wody Buinsas mojy aseq Ajyiuow pajejnwis ur sabueyy gLy ajqer



Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

E20

VA ‘NINEINv
AVAN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 HHATI NHFID  ¥L9YO 000€TICI

VA YINTVd
AVAN INVId
NOILVOIATINd
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LV YA NHIED €910 00L901¢1

VA ‘NININV
AVAN
AYHHDIVH
HAOGV JHHED
00 00 00 00 00 00 00 00 00 00 00 00 00 00 SOO0S DIF 99910 009CI1CI

VM ‘ONOINVIA
2AOVId
AVAN AT
00 00 00 00 00 00 00 00 00 00 00 00 00 00 IWMNVMEN  6L9Y0 0088012l

VA ‘NINENy
AVAN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 YIATI HLIHM  €0L10 961001¢CI

VA ‘NINENy
AVAN
LHHYLS ¥ LV
00 00 00 00 00 00 00 00 00 00 00 00 00 00 YIATI HLIHM 16910 061001CI

VM AGTIONd
LV AHHED
48109 4A049V
00 00 00 00 00 00 00 00 00 00 00 00 00 00 YIATI HLIHM 06910 002660CI1

anjea anjea REl(] ‘NoN 70 des  bny  Anp aunp  Aepy ady ey q84 ‘uep owew uoneIg aweu
wnwixel wnwiuiiy (S/g}) mojy aseq pajejnuuis ui abueys ) jabie]

aj uoneis

[puooas 1ad 3003 o1qN0 ‘s/)F UOIBUIYSBAN YA\ 10918 ‘LS 1oquiardog “1dog £10q010(0) 100 {1eou YN JOqUISAON “AON <UOIBIA “JR]N ‘ATenue[ “ue[ LIOUIUIPI ‘(] ‘ATeniqof

©qoy 9seq ‘g 1oquuadd(J 29 ‘mo[aq ‘I Isndny “3ny (qudy “Idy :suoneiadaqqy ‘sosexoed Arepunog peoH-[eIousn) pue ‘ureld ‘Surnoy-Mmogueans o) Woly SMO[ JO S)SISU0D MO 9Seq [B}0], "SOLIBUIOS
9S3Y) 10J MO dSBQ BAIR-[OPOW UI dFULYD 9Y) 0} JUS[BAINDS ST MOJJ 9SBQ [B10) UI dFURY)) :MOJJ ISB(Q PIIB[NWIS Ul IZUBY)) "SI[NSII PIJUINJUI SUOTIIPUOI AIBPUNO] [POUT SNBIIG UMOYS 10U ST (WA ‘LNAY LV
LATILS HLO0Z IV YIAR NITID) HHEE11Z] UONRIS :dWed Uone)S ‘MOo[ 95eq PAJB[NIWIS Ul 95BAI0dP B FUNBIIPUI SIOqUINU JANEIIU [)IM ‘BE PUB PE SOLIBUIDS UOIM]IQ IDUIIYIP O} SB UMOYS dIe S)NSY]

panunuoj)—uoibuiysepp
‘punog 18bnd jo yed ulalseayinos ayj Jeau ‘(asn 1ayjempunolb Auedwos) sarep) Aemeueds) pg oueuaas wody Buinsas mojy aseq Ajyiuow pajejnwis ur sabueyy gLy ajqer



E21

Chapter E. Numerical Model Results

VM
VITINNO 1V
HLNOW dViN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 AHTID TTIN - 8L9YO 6vECTICI

VM
LN LV Y vd
STIOMHLIVH
00 00 00 00 00 00 00 00 00 00 00 00 00 00 IV AHIED TN LL9VO LYEETITI

anjea anjea REl(] ‘NoN 70 des  bny  Anp aunp  Aepy ady ey q84 ‘uep owew uoneIg aweu
wnwixel wnwiuiiy (S/g}) mojy aseq pajejnuuis ui abueys ) jabie]

ai uonels

[puooas 1ad 3003 o1qN0 ‘s/)F UOIBUIYSBAN YA\ 10918 ‘LS 1oquiardog “1dog £10q010(0) 100 {1eou YN JOqUISAON “AON <UOIBIA “JR]N ‘ATenue[ “ue[ LIOUIUIPI ‘(] ‘ATeniqof

©qoy 9seq ‘g 1oquuadd(J 29 ‘mo[aq ‘I Isndny “3ny (udy “Idy :suoneiadaqqy ‘soSexoed Arepunog peoH-[eIousn) pue ‘urel ‘Surnoy-MmOogueans o) Woly SMO[ JO S)SISU0D MO 9Seq [B}0], "SOLIBUIOS
9S3Y) 10J MO[J dSBQ BIIR-[OPOW UI dFULYD 9Y) 0} JUS[BAINDS ST MOJJ 9SBQ [B10) UI dFURY)) :MOJ ISB(Q PIIB[NWIS Ul IZUBY)) "SI[NSII PIJUINJUI SUOTIIPUOI AIBPUNO] [POUT SNBIIG UMOYS 10U ST (WA ‘LNAY LV
LATILS HLO0Z IV YIAR NITID) HHEE117] UONRIS :dWed Uone)S ‘MOo[ 95eq PAJR[NWIS Ul 95BAI0dP & FUNBIIPUI SIOqUINU JANEIIU [)IM ‘B¢ PUB PE SOLIBUIDS UIIM]IQ IOUIIYIP O} SB UMOYS dIe S)NSY]

panunuoj)—uoibuiysepp
‘punog 18bnd jo yed uialseayinos ayj Jeau ‘(asn tayzempunolb Auedwos) sarep) Aemeueds) pg oueuaas wody Buinsas mojy aseq Ajyiuow pajejnwis ur sabueyy gLy ajqer



Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

E22

00

o

1o

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1o

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1o

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

AZ\

‘VINODVL dVAN

LSV LS HLO8
LV HHED NVMS

VA

dNTIVANd IVAN

avod VINOOVL
IV ATID SSVTID

VA
‘NOO0DVIIALS
AVAN JTID
HOVH11d

MATID SYHINVHD

AZ\
‘NOODVTIELS
AVIN

AHIID HOVH'T

AZ\
LSTADUIA VAN
AHIID HOVH'T

VA ‘VINODVL
LV IHFED LL914

AZ\
NNDITTLL AVAN
AHTID JHAOTO

VM AVMVNVAS
AVAN LATLNO
VT AVMVNVAS
LV IO
AVMVNVAS

VM ‘ONV TV
AVAN AHHIAD
YIAOTO

AIOd HLION

68910

69910

89910

9L9t0

SL9YO

[L9%0

0L9t0

88910

189%0

06120ICI

SLOTOICI

00S160CI1

00€160CI1

002160CI

00116021

005060C1

Ss1060C1

00%060C1

anjea
wnwixep

anjea
wnwiuip

"29(

U

190

ydag

‘Bny

Apnp

aunp

Aepy

ady

ey

434

‘uep

(S/c}}) moyy aseq pajejnuuis ui abueys

aweu uonels

aweu
1obae]

aj uoneis

‘uoiburysepp ‘punog 1abng jo ued uisiseayinos ayl.aeau ‘(asn Jazempunolb sauwng jo Aug) ag olieuadas wouy buninsal mojy aseq Ajyiuow palejnwis ui sabueyy

[puooas 1od 300J o1qN0 ‘s/)F ‘UOIBUIYSEAN “YA\ 10918 ‘LS 1oquardog “1dog 1090100 <100 (1eou YN ‘JOqUISAON “AON ‘UOJeIA IRy ‘ATenuel “ue[ {IOUNUIPI ‘(] ‘ATeniqof
“qQo 9sed ‘g 1oquuada( o9 Mo[aq ‘g ‘sndny “Sny ‘{udy “1dy :suoneiadaqqy ‘sodexoed Arepunog peoH-[eIoudn) pue ‘urel( ‘Sunnoy-mopueans oy} Wolj SMOJ JO SISISU0d MOY 9Seq [8}0], 'SOLIBUIIS

952U} 10} MO} 9SBq BaIB-[opOoW Ul 9FUueyd ) 0} Jud[eAINba SI MO}J 9seq €10} Ul A3UBY)) MO ISB( PIIL[NWIS Ul AFUBY)) "S}NSAI PIOUINPUI SUONIPUOI AIBPUNOQ [9POW SNBIAQ UMOYS J0U ST (VA ‘NI 1V
LATILS HL00Z LV YAATI NATYD) +HEE11Z] Uone)S :ouweu uone)s ‘Mo 9seq POJe[NWIS Ul 9SedI0dp & SUBIIPUI SIOqUINU JANESIU )IM ‘B¢ PUB O¢ SOLIBUSIS USIMIOQ SOUIIJIP AU} SB UMOYS I SINSY ]

‘L3 9lqeL



E23

Chapter E. Numerical Model Results

VA AGTIONd
LV A0
dS1049 HA049V
1o 00 00 00 00 00 00 00 1o 00 00 00 00 00 YIATI HLIHM  069%° 002660C1

VA AGTIONd
AN YA
AHIVAIVETO
MOTdd
00 00 00 00 00 00 00 00 00 00 00 00 00 00 YIATI HLIHM  T69Y0 0$8L60C1

VM AGTIONG
00 00 00 00 00 00 00 00 00 00 00 00 00 00 LV AHIYO 4S109d L9910 009660C1

VM
dNTIVANd 1V

vo— 0 60— = 9= 0T 61— 8'1- 1= [ go—  vo0- 90— L0~ YHATI INTIVAND  $8910 00S101CI
VA dNTTVANd
Lv abdndd
LS HLS LV

v o— 0 60— cl= 9= 0T 61— 8'1= 1= = So—  vo0- 90— L0~ YIATI dNTIVAND  T89YO 0L¥101CI
VM dNTTVANd
Lv aDdrdd
NIVIN A LV

(40 o- 'o— 10— 10— 1o- o- o- 'o— I'o— 00 0 00 00 HHATI INTIVANdD - ¥8910 S05960C1
VM
‘NOLYAATV 1V

(4 ro- 00 10— 10— o- o- o- 'o— I'o— 00 (4 00 00 YHATI INTIVAND  €8910 005960C1
VM
‘DNILIO YVAN

00 00 00 00 00 00 00 00 00 00 00 00 00 00 YHATI INTIVAND - 98910 005€60C1

VM ARIVad
HLNOS LV Ad9dD
0 00 00 00 00 00 00 00 00 00 1’0 0 1o 1o dIAIVId HLNOS L8910 0005601

anjea anjea REI(] ‘AON 70 deg  Bny  App eunp  Aepy ady ey 434 ‘uep sWEY UONEIS aweu
wnwixep  wnwiuiy (S/cl}) moyy aseq pajejnuuis ui abueys ) yebie]

aj uoneis

[puooas 1ad 3003 o1qN0 ‘s/)F UOIBUIYSBAN YA\ 10918 ‘LS 1oquiardog “1dog £10q010(0) 100 {1eou YN JOqUISAON “AON <UOIBIA “JR]N ‘ATenue[ “ue[ LIOUIUIPI ‘(] ‘ATeniqof

©qoy 9seq ‘g 1oquuadd(J 29 ‘mo[aq ‘I Isndny “3ny (udy “Idy :suoneiadaqqy ‘soSexoed Arepunog peoH-[eIousn) pue ‘urel ‘Surnoy-MmOogueans o) Woly SMO[ JO S)SISU0D MO 9Seq [B}0], "SOLIBUIOS
9S3Y) 10J MO[J dSBQ BIIR-[OPOW UI dFULYD 9Y) 0} JUS[BAINDS ST MOJJ 9SBQ [B10) UI dFURY)) :MOJ ISB(Q PIIB[NWIS Ul IZUBY)) "SI[NSII PIJUINJUI SUOTIIPUOI AIBPUNO] [POUT SNBIIG UMOYS 10U ST (WA ‘LNAY LV
LATILS HLO0Z IV JIAR NITID) HHEE11Z] UONEIS :dWed Uone)S "MOo[ 9seq PB[NIS Ul 95BAI09P B FUNBIIPUI SIOqUINU JANEIAU [)IM ‘BE PUB A€ SOLIBUIIS UIMIO] dIUIIYIP JY) SB UMOUS IR SINSIY]

panunuoy
—u01BuIysepn ‘punog 186n4 Jo Led ulaiseaynos ay} Jeau ‘(asn Jayempunolb Jauwing jo A1g) ag oLieuads woly buninsas mojy aseq Ajyiuow palejnwis ui sabueyy 113 ajqeL



Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

E24

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

VM VITIRO
LV HLNOW
AVAN 9D TTIN

AZ\

LNAY LV SVd

SHIOMHLIVH
LV AHIED TTIN

AZ\
‘NININV AVAN
YIATI NHTID

VM dINTVd

VAN LNVId
NOILVOIAT-INd
LV YA NIIID

VA ‘NINGNY

AVAN AYdHOLVH

HAOLYV AdHID
SOOS DId

VA ‘ANOIVIA

2ADVvI1d

AVAN AHHED
INOINVMEN

VM
‘NININV VAN
YA HLIHM

VA ‘NININv
AVAN LHHYLS ¥
LV YA ALIHM

8L910

LL9YO

YLOYO

€L9YO

99910

6L9t0

€0LYO

169%0

6vECTICI

LYEETICTI

000€TICI

00L901CI

009CIICI

00S801¢CI

961001CI

06¥001CI

anjea
winwixepy

anjen
wnwiup

"2a(

"AON

100

Jdag

‘Bny

Apnp

aunp

Repy

ady

gL

934

‘uep

(S/33) Moy aseq paje|nwis ui abueyq

aweu uonels

aweu
1obie]

aj uoneis

—u01BuIysepn ‘punos 196n4 Jo Led ulalseayinos ayy Jeau ‘(asn Jazempunolb Jauwng jo Alg) ag oLieudds Woly Bunnsals mojy aseq Ajyuow palenwis ul sabueyn

[puooas 1ad 3003 o1qN0 ‘s/)F UOIBUIYSBAN YA\ 10918 ‘LS 1oquiardog “1dog £10q010(0) 100 {1eou YN JOqUISAON “AON <UOIBIA “JR]N ‘ATenue[ “ue[ LIOUIUIPI ‘(] ‘ATeniqof
©qoy 9seq ‘g 1oquuadd(J 29 ‘mo[aq ‘I Isndny “3ny (qudy “Idy :suoneiadaqqy ‘sosexoed Arepunog peoH-[eIousn) pue ‘ureld ‘Surnoy-Mmogueans o) Woly SMO[ JO S)SISU0D MO 9Seq [B}0], "SOLIBUIOS

9S3Y) 10J MO dSBQ BAIR-[OPOW UI dFULYD 9Y) 0} JUS[BAINDS ST MOJJ 9SBQ [B10) UI dFURY)) :MOJJ ISB(Q PIIB[NWIS Ul IZUBY)) "SI[NSII PIJUINJUI SUOTIIPUOI AIBPUNO] [POUT SNBIIG UMOYS 10U ST (WA ‘LNAY LV
LATILS HLO0Z 1V JIAR NITID) tHEE11Z] UONEIS :dWed Uone)S “MOo[ 9seq PAJB[NIIS Ul 9SBAI09P B FUNBIIPUI SIOqUINU JANEIAU [)IM ‘B¢ PUB 9¢ SOLIBUIIS UIMIO] dIUIIYIP JY) SB UMOUS IR SINSIY]

panunuoy
‘Li3 8lqeL



For scenarios 3b—3e, the change in the total simulated
base flow within the model area was compared to the change
in groundwater use (app. 1, table E12). For example, scenario
3b consisted of a 13.0 percent total increase in groundwater
use (10.3 ft3/s), which resulted in a 0.48 percent reduction
in total base flow (6.8 ft3/s). For scenarios 3b, 3d, and 3e,
the reductions in base flow as a percentage of the change
in groundwater use were 65.3, 73.8, and 80.8 percent,
respectively (app. 1, table E12). Scenario 3¢ consisted of
a small increase in groundwater use (0.21 percent), which
resulted in a larger change in base flow than groundwater
use (—0.3 and 0.2 ft3/s, respectively). This result is owing to
model error for scenarios with very small changes such as in
this example because the model cannot simulate the effects of
these small changes to the degree of accuracy required for an
analysis like this.

Model Limitations and Potential
Refinements

Uncertainty is associated with most model inputs.
Groundwater levels, lake levels, and land-surface altitudes
are relatively certain; other model inputs are far less certain,
including precipitation recharge, base flow, hydraulic
properties, groundwater use, and the three-dimensional
structure of subsurface HGUs. Little information was available
for aquicultural groundwater use, which, therefore, was not
accounted for; such use was assumed to be small as a fraction
of all groundwater use and negligible as a fraction of the
overall groundwater budget. Models are useful not because of
high levels of accuracy of all model inputs, but because they

Chapter E. Numerical Model Results E25

combine the best information and estimates available, thereby
providing the best predictions available related to physical
processes.

The model described in this report simulates groundwater
flow on a regional scale, which has inherent limitations
for simulating hydrologic scenarios at local scales. Model
structures and inputs were generalized to suit the scope
and purpose of this regional-scale model. For example, the
actual groundwater system has greater heterogeneity of
horizontal hydraulic conductivity (Kh) than is possible with
the model’s density of pilot points. Although a greater density
of pilot points would allow greater heterogeneity that would
improve model calibration, caution should be exercised to
limit over-calibration that could risk degrading the model’s
ability to simulate predictive scenarios well (Anderson and
others, 2015; Doherty, 2015, 2018). Additionally, an increase
in calibration run times should be expected if pilot-point
density is increased. Calibration is sensitive to the placement
of pilot points, which could be tested if further calibration
refinement is done.

The model has a grid cell spacing of 500 ft, which is
not a limitation for heterogeneity of hydraulic properties at
the overall scale of the model. However, hydraulic gradient
variations over distances less than 500 ft will be smoothed. A
pumping well located 250 ft from a stream might have been
placed either within the same model cell as the stream or in an
adjacent cell, depending on the location of the stream and well
in relation to the model grid. Two boundary conditions placed
in the same cell are co-located at the center of the cell, and if
these are placed in two adjacent cells, the distance between
them is 500 ft. The cell spacing also prevents accurate
simulation of drawdown from a pumped well at locations
closer than 750 ft from the well. For pumping scenarios in
which small distances are critical, any revised model version
should include grid refinement.

Table E12. Changes in August base flow resulting from scenarios 3b—3e (increased groundwater use) in the active model area, near

the southeastern part of Puget Sound, Washington.

[Results are shown as the change between each scenario and scenario 3a, with negative numbers indicating a decrease. Scenario 3b: Fifteen-percent increase
in groundwater use for Group A and Group B public-supply wells. Scenario 3c: Fifteen-percent increase in groundwater use self-supply wells. Scenario
3d: Increase in groundwater use to simulate the Spanaway pilot project. Scenario 3e: Increase in groundwater use to simulate the Sumner pilot project.

Abbreviations: ft¥/s, cubic foot per second; NA, not applicable]

Description Units Scenario3b  Scenario3c  Scenario3d  Scenario 3e
Percent change in average groundwater use Percent 13.0 0.21 4.09 2.93
Percent change in average simulated base flow for all streams Percent —0.48 -0.02 -0.17 -0.13
and springs!
Change in average groundwater use ft¥/s 10.3 0.2 33 23
Change in average simulated base flow for all streams and ft’/s -6.8 -0.3 2.4 -1.9
springs!
Change in base flow as percentage of the change in Percent —65.3 NA? -73.8 -80.8

groundwater use

IThe change in total base flow is equivalent to the change in model-area base flow for these scenarios.

2Model error resulted in a change in base flow that is larger than the change in consumptive water use.
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All simulated groundwater inflows and outflows were
larger than those estimated, except for withdrawals from wells
(table E2). This result occurred primarily for two reasons.
First, the simulated precipitation recharge was allowed to be
as much as 25 percent higher than estimated to allow for error
in the SWB model estimates, which are uncertain because of
the potential range of error in soil properties and precipitation
rates. Second, the simulated net discharge to streams, springs,
lakes, and Puget Sound (table E2) largely is the result of
calibration to estimated base flow for individual stations.
Because this base-flow calibration was a priority, no attempt
was made to match the estimated value in table E2, and the
goal of matching estimated base flow at stations resulted in the
need to increase precipitation recharge to balance inflows and
outflows.

Thin saturated thicknesses leading to simulated pumping
reductions caused pumping rates to be reduced overall by
3.5 percent for the steady-state model version. Because of
uncertainty of groundwater-use estimates, this pumping
reduction is assumed to be smaller than the potential error
of the estimates, accounting for only 0.3 percent of total
simulated outflow. A larger concern is the use of the model
to simulate groundwater pumping scenarios, which may be
affected by simulated pumping reductions. For example, if
the specified pumping rate for a simulated well is increased
from 1 to 2 ft¥/s, and the layer’s saturated thickness becomes
small, then the model would reduce the specified pumping
rate, and the increase in pumping would be less than expected.
In this case, the actual pumping rate can be obtained from
model output, and this value (not the specified rate) should be
used for comparison to the simulated effects on base-flow and
groundwater levels. In some cases, turning off surrounding
pumping wells might reduce or eliminate the pumping
reduction, and the scenario could proceed with the desired
pumping rate.

The model simulates only the base-flow component of
streamflow; therefore, variations in stream stage resulting from
runoff events cannot be simulated. Simulated stream stage
is constant for major rivers but varies with base flow for all
other streams.

Model scenarios presented in the report were used to
estimate changes in base flow that occur at stations. These
estimates were useful because the model’s accuracy can be
assessed at these locations, for which data are available.
However, base-flow changes can be simulated for any location
on any stream in the model, except with less certainty of
model accuracy if no streamflow data are available.

Model error is associated with changes in base flow
simulated by model scenarios. Simulated changes in base flow
less than about 0.5 ft3/s should not be considered accurate.
Changes in base flow are largest near the location of a change
in pumping and are smallest at farther distances. These
base-flow changes decrease asymptotically as the distance
from the pumping well increases, and the changes can be
simulated at tiny flow rates of as little 10-® ft3/s in this model.

Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

Although tiny changes such as this may be theoretically
possible, these model outputs are not meaningful in any
practical sense.

Additional calibration targets could be added as new
data become available, which would be particularly useful
for a detailed study of a local area. Additional calibration
targets for a local area would justify a greater density of
pilot points and storage property zones in that area. Although
this increase would add to the total number of parameters,
recalibration could be applied to parameters within and near
the local area, with parameters farther away having fixed
values. This application would result in the recalibration of
far fewer parameters than those included originally. Localized
grid refinement could be applied in addition but might not
be necessary, in many cases, to achieve a large benefit from
recalibration. The model simulated groundwater flooding in
some areas; that is, a water table above the land surface. These
simulated flooded areas were not calibrated to data, but if
this was done, the model could potentially be used to predict
groundwater flooding for periods of high precipitation.

Simulated pumping wells influenced model calibration
because hydraulic head declines resulting from pumping might
have degraded the model’s fit to calibration targets at the
beginning of automatic calibration. As calibration continued,
such degradation could have caused increases in Kh near these
wells. Because Kh must be large enough to accommodate
these pumping wells, simulating these wells helps to better
calibrate the model. Furthermore, these necessary increases in
Kh indicate that heterogeneity in the HGU may be greater than
what is represented in the model, particularly in areas void of
large pumping wells. If the model is used to simulate a new
pumping well that was not included during model calibration,
the simulated Kh surrounding that well might not be large
enough to accommodate the simulated pumping rate without
large drawdown. In these cases, recalibration of the model
with new data may be needed.

Some HGUs have wide ranges of Kh values, ranging by
five orders of magnitude for HGUs A1, A3, and B between
minimum and maximum values (table D6). HGUs A1 and A3
have minimum values of 0.011 and 0.003 ft/d, respectively,
indicating that although these HGUs are generally considered
to be aquifers, they are similar to confining units in some
areas. Although HGU B is considered a confining unit, a
maximum Kh value of 500 ft/d indicates that this HGU is
an aquifer in some places. The degree to which these values
represent reality is uncertain, and this uncertainty results partly
from simplifications and uncertainty of the hydrogeologic
framework described in Chapter B. Revisions to this model
could include additional sensitivity analysis and testing
whether large ranges of Kh values are critical to calibration.

Part of the reason for large ranges in Kh may have
resulted from the fact that Kh is tied to the ratio of horizontal
to vertical hydraulic conductivity (Kh/Kv). Limits were set for
the range of Kh/Kv so that Kv would not be many orders of
magnitude smaller than Kh. Therefore, if the calibration favors
a low Kv value in some areas, then Kh also may need to be



reduced, even if the model would be better calibrated with a
larger Kh value. Another option would be to calibrate Kv and
Kh independently, but this makes it more difficult to restrict
the range of Kh/Kv.

A sensitivity analysis is primarily important for
understanding the functionality of the model but does not
necessarily provide a quantitative assessment of the relative
confidence in parameters or their values. A parameter with
a high sensitivity does not necessarily mean that there is
higher confidence in that parameter value than for a parameter
with lower sensitivity. For example, the highest parameter
sensitivity is for the recharge multiplier (rm0) because rm0
affects the recharge rate in every part of the model and
because precipitation recharge accounts for 97.8 percent of
model inflow (table E1). As a comparison, the largest outflow
component is to streams and large springs (67.3 percent;
table E1). The individual sensitivities for each streambed Kh
parameter are much smaller than that of rm0 because each of
the streambed parameters affect only a small part of the model.
Therefore, although the sensitivity of a streambed parameter is
much lower than for rm0, the confidence in the two parameter
values is not necessarily proportional to their sensitivities.

Alternatively, comparing parameter sensitivities within
parameter groups may yield a useful assessment of parameter
confidence. For example, Kh pilot points will have the highest
sensitivities in areas where calibration targets are plentiful and
the lowest sensitivities in areas where targets are sparce. Areas
where Kh sensitivities are low indicate that the model could
be improved by adding calibration data. Therefore, the model
can be useful for planning new data-collection efforts, and new
data can be applied to the future refinements of the model.

HGU Al is an important water source for the area west
of the Puyallup River. The station at the outlet of Spanaway
Lake (station ID 12090452; fig. D1) is the only base-flow
calibration target to assist with calibration of HGU Al in
the area to the south of this location. On average, simulated
transient base-flow values are about 30 percent of the
estimated flows (app. 1, table 1.8); however, estimated base
flow is only available for the last 14 months of the model
period. Future revisions to the model would benefit from
current streamflow data for this station, as well as stations at
additional locations if they were to be installed.

Although useful insights may be gained from these
scenarios, many other scenarios could be simulated. For
example, scenarios la, 1b, and 1c simulate a long-term
drought at steady-state conditions, and 1d simulates 3
consecutive years of summer drought. Another useful scenario
would be one that simulates 3 or more years of year-long
drought or 3 years of winter drought. A comparison of the
effects of winter versus summer drought could help to plan
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for future changes in seasonal precipitation or air temperature.
Several scenarios related to groundwater use were described,
but numerous other scenarios of single or multiple pumping
wells could be simulated and used for water-supply planning.
Scenarios of climate change also can be applied. Changes

in air temperature, precipitation, or both can be applied to

the SWB model (Gendaszek, 2023) to simulate precipitation
recharge, which then can be applied to the groundwater-flow
model. The effects of sea level rise on groundwater and base
flow could be simulated by moving the Puget Sound boundary
condition inland.
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Appendix 1. Supplementary Tables

The following tables are available from the Wright and others (2023) data release. The tables linked to from here are
referred to throughout this report and are provided as individual sheets within a single Microsoft Excel® workbook and also as
separate text files with a “.csv” extension. Also included in the Wright and others (2023) data release is a ancillary.zip folder
with additional figures and other materials helpful for describing the model. Tables 1.1-1.14 are available for download as .csv
files and as tabs within an Excel file at https://doi.org/10.3133/s5ir20245026v2.

Table 1.1. Streamflow-Routing (SFR) Package specifications by reach (Prudic and others, 2004).

Table 1.2. Estimated monthly average base flow estimated for Coal, Boise, and Scatter Creeks where they enter the active model area,
near the southeastern part of Puget Sound, Washington, 2005-15.

Table 1.3. Estimated monthly average base flow estimated for selected streams where they enter the active model area, the Buckley
diversion (inflow to Lake Tapps), and outflow from Lake Tapps, near the southeastern part of Puget Sound, Washington, 2005-15.

Table 1.4. Monthly average water levels for American, Gravelly, Steilacoom, and Spanaway Lakes, and Lake Tapps, derived from
measured and estimated values, near the southeastern part of Puget Sound, Washington, 2005-15.

Table 1.5. Measured water levels for American, Gravelly, and Spanaway Lakes, near the southeastern part of Puget Sound,
Washington, 2000-18.

Table 1.6. Time-series records of measured and simulated hydraulic-head values (transient model version) for selected wells used,
near the southeastern part of Puget Sound, Washington, 2005-15.

Table 1.7. Averages of measured hydraulic-head values for selected wells and corresponding simulated steady-state values, near the
southeastern part of Puget Sound, Washington, 2005-15.

Table 1.8. Estimated and simulated monthly average base flow for selected stations, near the southeastern part of Puget Sound,
Washington, 2005-15.

Table 1.9. Estimated and simulated base-flow values for the steady-state model version for stations with continuous records, near the
southeastern part of Puget Sound, Washington, 2005-15.

Table 1.10. Estimated and simulated vertical hydraulic-head differences for the steady-state model version between an upper and
lower model layer for selected locations, near the southeastern part of Puget Sound, Washington, 2005-15.

Table 1.11.  Supplemental hydraulic-head targets for the steady-state model version set equal to the land surface to prevent
groundwater flooding and corresponding simulated values, near the southeastern part of Puget Sound, Washington.

Table 1.12. Model calibration parameters showing input to the control file for the Model-Independent Parameter Estimation (PEST)
program (Doherty, 2018).

Table 1.13.  Simulated groundwater budget for the calibrated transient model version, near the southeastern part of Puget Sound,
Washington, 2005-15

Table 1.14. Groundwater use applied to scenario 3 for the Spanaway Water Company and the City of Sumner, near the southeastern
part of Puget Sound, Washington.
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Appendix 2. Estimation of Base Flow for Points of Inflow to the Active Model

Area (AMA)

Streams enter the active model area (AMA) at 10 points
of inflow (fig. D1), and monthly base flow was estimated
at these locations for 2005—-15. Average monthly base-flow
estimates at the points of inflow for Coal, Boise, and Scatter
Creeks were described in Gendaszek (2023) and are available
in appendix 1, table 1.2. Average monthly base-flow rates for
the Green, White, Carbon, and Puyallup Rivers and for Big
Soos, South Prairie, and Voight Creeks were estimated by
methods described in this appendix and are available in appen-
dix 1, table 1.3. Data for stations used in these estimates were
obtained from the U.S. Geological Survey (USGS) National
Water Information System (U.S. Geological Survey, 2020).

Estimation Methods

Green and White Rivers

For the Green and White Rivers, stations with con-
tinuous streamflow data are located at the points of inflow
(fig. D1; stations 12106700 and 12097850). Daily stream-
flow data were available for the White River station for
October 2008—December 2015. To estimate monthly base
flow for January 2005—September 2008, a least squares linear
regression was applied to the estimated base flow for station
12097850 and a downstream station (USGS 12099200; app. 1,
table 1.8), with a coefficient of determination (R2) of 0.88. The
equation derived from the regression was applied to the base
flow for the White River inflow point for the missing period
(app. 1, table 1.2).

Big Soos Creek

Monthly inflows for Big Soos Creek were estimated on
the basis of Station 12112600 located 11 miles (mi) down-
stream from the point of inflow (fig. D1). The monthly speci-
fied inflow record was estimated by assuming that this would
be proportional to the monthly base flow for station 12112600
(app. 1, table 1.8), and the watershed areas for the two stream
locations were used to estimate this proportionality. The water-
shed area for the inflow point divided by that of the station is
0.72, as determined by StreamStats v4.4.0 (U.S. Geological
Survey, 2021). This ratio was multiplied by the monthly base-
flow values for the station and used as the specified inflow for
Big Soos Creek (app. 1, table 1.3). The average of monthly
values was used as the steady-state inflow value (table D4).
This inflow rate was assumed to include flow from a tributary
to Big Soos Creek that flows along the northeastern boundary
of the AMA, where it joins Big Soos Creek.

Carbon River

The approach taken for Big Soos Creek also was applied
to an estimated monthly inflow record for the Carbon River.
This record was assumed to be proportional to the estimated
monthly base flow for Station 12094000 (app. 1, table 1.8),
which is located 3 mi upstream from the point of inflow for the
Carbon River (fig. D1), resulting in a watershed ratio of 1.02.
Monthly and steady-state inflow values are shown in tables 1.3
and D4, respectively.

Voight Creek

Station 12095500 is located 1 mi downstream from the
point of inflow for Voight Creek (fig. D1). Because of the
proximity of the station to the inflow point, estimated base
flow for the station was used as the model specified inflow.
However, because daily streamflow data for the station were
available for only July—October 1949 (U.S. Geological Survey,
2020), hydrograph separation could not be used to estimate
monthly base flow for the 11-year model period. Therefore,
we assumed that monthly average streamflow for station
12095500 would be proportional to that of station 12095000
on South Prairie Creek (fig. D1), and least squares linear
regression was applied to the monthly streamflow for these
two stations for July—October 1949 (R2 = 0.87). We further
assumed that this relation for monthly streamflow would
be applicable to monthly base flow for the model period.
Therefore, the equation derived from the regression was
applied to monthly base flow for South Prairie Creek (sta-
tion 12095000, app. 1, table 1.8) to estimate base flow for the
Voight Creek station for the model period, and this was used
as the specified inflow for Voight Creek (app. 1, table 1.3).

Puyallup River and South Prairie Creek

A first attempt at estimating specified inflow values for
the Puyallup River and South Prairie Creek consisted of the
same watershed scaling method applied to Big Soos Creek
and the Carbon River. The resulting monthly inflow rates for
the two streams were applied as specified flow rates in the
Streamflow-Routing Package. Output from the transient model
version resulted in a poor match to measured streamflow gains
and losses obtained from seepage runs that were described in
Chapter C of Welch and others (2024). The stream reaches
used in this comparison are the uppermost reaches in the
AMA, consisting of (1) the Puyallup River between stations
12093500 and 12092505 and (2) South Prairie Creek upstream
from 12095000 and downstream from stations 12094425 and
12094498 (fig. D1). The watershed scaling method resulted in
a variable streamflow gain for these reaches.
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In a second attempt at estimating specified inflow values,
we assumed that the base-flow gain for these two reaches
is constant for both streams rather than variable, even as
streamflow varies. These constants were subtracted from the
respective monthly base-flow records for the two stations (app.
1, table 1.8), the results of which were used as the specified
inflow records for the two streams in the transient model ver-
sion (app. 1, table 1.3).

To estimate a constant base-flow gain for the Puyallup
River, a specified inflow rate was applied to the steady-state
model version that resulted in a simulated base-flow rate for
station 12093500 that was similar to the estimated value. A
specified inflow of 576.2 cubic feet per second (ft3/s) (table
D4) resulted in simulated base flow for the station of 604.6
ft¥/s (after final model calibration), which is similar to the
estimated base flow of 602.5 ft3/s (table D1). This equates to
a simulated base-flow gain of 28.4 ft3/s for the stream reach,
which was compared with measured gains available from dis-
crete measurements during the seepage runs. Discrete stream-
flow measurements for station 12092505 near the inflow point
(fig. D1) were available to determine the gain for two different
occasions. The difference in measured streamflow between
stations 12092505 and 12093500 indicates a gain of 28 and 47
ft3/s on October 17,2011, and October 10, 2012, respectively
(U.S. Geological Survey, 2020), and the simulated base-flow
gain of 28.4 ft¥/s is within this range.

The approach taken for the Puyallup River specified
inflow also was applied to the South Prairie Creek inflow
point. A specified inflow rate of 142.3 ft3/s (table D4) was
applied to the steady-state model version, resulting in simu-
lated base flow for station 12095000 of 186.3 ft3/s (after final
model calibration), which is about 7 percent larger than the
estimated value of 173.9 ft3/s (table D1). This equates to a
simulated base-flow gain of 44.0 ft3/s for the stream reach,
which was compared with measured gains available from dis-
crete measurements during the seepage runs. Station 12094425
is on South Prairie Creek near the model boundary, and Station

12094498 is on Wilkeson Creek, a tributary to South Prairie
Creek, also near the model boundary (fig. D1). An inflow
point for the tributary was not explicitly included in the model
and was grouped together with the specified inflow for South
Prairie Creek. The difference in measured streamflow between
the sum of the two upstream stations and station 12095000
indicates a gain of 27.4 and 10.2 ft3/s on October 17, 2011,
and October 10, 2012, respectively (U.S. Geological Survey,
2020). The simulated base-flow gain of 44.0 ft¥/s is outside of
the range of measured values but was considered acceptable
and used as the constant base-flow gain.
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The following time-series plots provide a comparison of simulated values to measured or estimated values of hydraulic
head in calibration wells and base flow at streamgages for the transient model version. Calibration was focused on matching
simulated values to the temporal changes in measured or observed values, rather than the absolute differences.
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Figure 3.1. Hydrographs showing measured and simulated hydraulic-head values for 271 wells used in calibration of the transient

model version, near the southeastern part of Puget Sound, Washington.
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Time series of hydraulic head
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Time series of hydraulic head
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Time series of hydraulic head
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Time series of hydraulic head
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Time series of hydraulic head
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0 A. Flett Creek at Tacoma, WA (12091100)—Chambers-Clover Creek watershed
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Puget Sound, Washington. WA, Washington.



Numerical Model of the Groundwater-Flow System Near the Southeastern Part of Puget Sound, Washington

20

EXPLANATION
—e— Estimated

- —e—- Simulated

C. Leach Creek near Steilacoom, WA (12091300)—Chambers-Clover Creek watershed
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E. Spanaway Creek at Spanaway Lake outlet near Spanaway, WA (12090452)—

- Chambers-Clover Creek watershed
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G. Clover Creek near Tillicum, WA (12090500)—Chambers-Clover Creek watershed
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) 1. Swan Creek at 80th Street East near Tacoma, WA (12102190)—Puyallup River watershed
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) K. Mill Creek at Earthworks Park in Kent, WA (12113347)—Green River watershed
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M. Big Soos Creek above hatchery near Auburn, WA (12112600)
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N. Green River near Auburn, WA (12113000)
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0. Green River a 200th Street in Kent, WA (12113344)
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Base flow, in cubic feet per second
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P, South Prairie Creek in South Prairie, WA (12095000)
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Q. Puyallup River near Orting, WA (12093500)
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R. Puyallup River in Alderton, WA (12096500)
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S. Puyallup River at East Main Bridge in Puyallup, WA (12096505)
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T. Puyallup River at 5th Street Bridge in Puyallup, WA (12101470)
I

6,000 I I I
Total base flow
i
5,000 (— I 1 1 —
? H n ’
I i I I I f! !
Iy 1 Il 1 1 I A Iy
4,000 — I ot i1 1 T ‘ . I -
norong rrkd " - & b | d
AR ENANT rro g 1 I H ! t 2
Iy st R (I T I ! ! 4
. L I T 1Yol ol 1( 1 [ ! Vo
3000 1 A1) I Y |Ill H:‘ fﬁ 11 : | | v —
ot BRI R \ I | Lo
‘l‘ I ll* I \ N TAN A l“ll" 1 | t \
‘l\ ot I t el Loaelp ) l‘ll, \ ¢ 1 ¥ ) V)
20000+ ¢+ | oup VA O A PR A A \ | 4 Y |
. A S (] Tty b ' \ t 3 N \
ll Ll I 1 P W) [N \ \ A
T ¥ I A \ I Vi . \ 2
| I \y é \‘ h't ]
1000—\‘ “I ’ \1 —

1,000 | | | | | |
6,000 | | | | | |

Model area base flow

o
o
o
o

I

Base flow, in cubic feet per second

4,000 [—
3,000 [—
2,000 —

1,000 —

g > (S
Npteess’ \pegaeed \""“'}"\“-.o-“' Noosoes?™” Vooyor “'d‘!. Pocerts ‘“"’:TM\‘.-”
0 —

000 | | | | | |
0 20 40 60 80 100 120 140

Stress period, in seconds

EXPLANATION
—e— Estimated

- —e—- Simulated

Figure 3.2.—Continued



Base flow, in cubic feet per second

Appendix 3. Supplementary Figures 33

U. Puyallup River in Puyallup, WA (12101500)
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V. Boise Creek in Buckley, WA (12099600)
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W. White River above Boise Creek in Buckley, WA (12099200)
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X. White River at R Street near Auburn, WA (12100490)
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Y. White River near Auburn, WA (12100496)
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