
Appendix 1. Model Archival Summary for Bromide 
Concentration at U.S. Geological Survey Streamgage 
06892350, Kansas River at De Soto, Kansas, during January 
2021 through October 2023 

This model archival summary summarizes the bromide (Br; U.S. Geological Survey [USGS] 

parameter code 91000) concentration model developed to compute 15-minute, hourly, or daily 

Br concentrations from January 2021 onward. This model is specific to the Kansas River at De 

Soto, Kansas (USGS streamgage 06892350), during this study period and cannot be applied to 

data collected from other locations on the Kansas River or data collected from other 

waterbodies. 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply 

endorsement by the U.S. Government. 

Streamgage and Model Information 

Streamgage number: 06892350 

Streamgage name: Kansas River at De Soto, Kansas 

Location: Lat 38°59'00", long 94°57'52" referenced to North American Datum of 1927, in NE 

1/4 SE 1/4 SE 1/4 sec. 28, T. 12 S., R. 22 E., Leavenworth County, Kansas, hydrologic unit 

10270104. 

Equipment: A Xylem YSI EXO2 water-quality monitor (equipped with sensors for water 

temperature, specific conductance [SC], dissolved oxygen, pH, turbidity, and chlorophyll and 

phycocyanin fluorescence) and a Hach Nitratax plus sc monitor (equipped with a 5-millimeter 

path length nitrate sensor) were deployed during January 2021 through October 2023. 

Readings from the monitors were recorded every 15 minutes and transmitted by way of 

satellite, hourly. 

Date model was created: March 21, 2024 

Model-calibration data period: January 25, 2021, through October 23, 2023 

Model-application date: January 25, 2021, onward 

Model computations are available at the USGS National Real-Time Water-Quality website 

(https://nrtwq.usgs.gov/ks/).  

Bromide Sampling Details 

During January 2021 through October 2023, Br samples were collected on a biweekly to 

bimonthly basis using the equal-width increment collection method (U.S. Geological Survey, 

https://nrtwq.usgs.gov/ks/


variously dated). All samples were composited for analysis (U.S. Geological Survey, variously 

dated). A USGS Federal Interagency Sedimentation Project US DH–81, DH–95, or D–96–A1 

depth integrating sampler was used (Davis and the Federal Interagency Sedimentation Project, 

2005). Samples were analyzed for Br concentration using Environmental Protection Agency 

Method 300.1 (U.S. Environmental Protection Agency, 1997) by the Water District No. 1 of 

Johnson County Laboratory in Kansas City, Kansas. 

Model-Calibration Dataset 

All data were collected using USGS protocols (Wagner and others, 2006; U.S. Geological 

Survey, variously dated) and are stored in the USGS National Water Information System 

(U.S. Geological Survey, 2024) database and available to the public. Ordinary least squares 

analysis was used to develop regression models using R programming language (R Core 

Team, 2024). Potential explanatory variables that were evaluated individually and in 

combination included streamflow, water temperature, SC, dissolved oxygen, pH, turbidity, 

chlorophyll and phycocyanin fluorescence, and nitrate. These potential explanatory variables 

were interpolated within the 15-minute continuous record based on sample time. The 

maximum time span between two continuous data points used for interpolation was 1 hour. 

Seasonal components (sine and cosine variables) also were evaluated as potential explanatory 

variables.  

The final selected regression model was based on 41 concurrent measurements of Br 

concentration and sensor-measured SC during January 25, 2021, through October 23, 2023. 

Samples were collected throughout the range of continuously observed hydrologic conditions. 

No samples had concentrations less than laboratory minimum reporting limits.  

Potential outliers initially were identified using scatterplots of the Br and SC model-

calibration data (Rasmussen and others, 2009). Studentized residuals from the model were 

inspected for values greater than three or less than negative three (Pardoe, 2020). Values 

outside of that range were considered potential outliers and were investigated. Additionally, 

computations of leverage, Cook’s distance (Cook’s D), and difference in fits (DFFITS) 

statistics were used to estimate potential outlier effect on the final selected regression model 

(Cook, 1977; Helsel and others, 2020). Outliers were investigated for potential removal from 

the model-calibration dataset by confirming correct database entry, evaluating laboratory 

analytical performance, and reviewing field notes associated with the sample (Rasmussen and 

others, 2009). Potential outliers were not determined to have errors associated with sample 

collection, processing, or analysis and were therefore considered valid. 

Model Development 

Ordinary least squares regression analysis was done using the stats (v4.3.0) package in R 

programming language (R Core Team, 2024) to relate discretely collected Br concentration to 

sensor-measured SC. The distribution of residuals (the difference between the measured and 

computed values) was examined for normality, and the plots of residuals were examined for 



homoscedasticity (departures from zero did not change substantially over the range of 

computed values).  

SC was selected as a good surrogate for Br based on residual plots, coefficient of determination 

(R2), and model standard percentage error. Values for all the aforementioned statistics, all 

relevant sample data, and additional statistical information are included in the “Model 

Statistics, Data, and Plots” section of this appendix. 

Model Summary 

The following is a summary of the final regression analysis for Br concentration at USGS 

streamgage 06892350: 

Br concentration-based model: 

log𝐵𝑟 = 1.224(log𝑆𝐶) − 1.460 

where 

log = logarithm base 10; 

Br = bromide concentration, in micrograms per liter; and 

SC = specific conductance, in microsiemens per centimeter at 25 degrees Celsius. 

SC makes physical and statistical sense as an explanatory variable for Br because of its positive 

correlation with charged ionic species (Hem, 1985). 

The logarithmically (log) transformed model may be retransformed to the original units so that 

Br can be calculated directly. The retransformation introduces a bias in the calculated 

constituent. This bias may be corrected using Duan’s bias correction factor (BCF; Duan, 1983). 

For this model, the calculated BCF is 1.012. The retransformed model, accounting for BCF is as 

follows: 

𝐵𝑟 = 1.012 × (𝑆𝐶1.224 × 10−1.460) 

This model was developed using continuous and discrete water-quality data collected during 

January 2021 through October 2023. These data were collected throughout the observed range of 

streamflow conditions during this time. However, a limitation in model accuracy during 

conditions outside of those observed during January 2021 through October 2023 warrants 

consideration when interpreting model computations beyond October 2023. Extrapolation, 

defined as computation beyond the range of the model calibration dataset, should be used no 

more than 10 percent beyond the range of the calibration data used to fit the model and is 

therefore limited. The extrapolation limit for Br concentration using this model is 276 

micrograms per liter. Computed estimates exceeding that limit are not supported by the current 

model calibration dataset. 



Previous Models 

No Br models at this streamgage have been published previously. However, similar models for 

other constituents have been published at this streamgage and other Kansas River streamgages, 

as documented by Rasmussen and others (2005), Foster and Graham (2016), and Williams 

(2021, 2023). 

Model Statistics, Data, and Plots 

Definitions 

Variable Explanation 

BCF Duan’s bias correction factor (Duan, 1983). 

Br Bromide concentration, in micrograms per liter (USGS parameter code 91000; 

USGS method code IC041). 

Cook’s D Cook’s distance (Cook, 1977; Helsel and others, 2020). 

DFFITS Difference in fits statistic (Helsel and others, 2020). 

Leverage An outlier’s measure in the x direction (Helsel and others, 2020) 

LOESS Local polynomial regression fitting, or locally estimated scatterplot smoothing 

(Helsel and others, 2020). 

log Common logarithm with base 10. 

MSE Mean square error (Helsel and others, 2020). 

MSPE Model standard percentage error (Helsel and others, 2020). 

Pr(>|t|) The probability that the independent variable has no effect on the dependent 

variable (Helsel and others, 2020). 

Q1 The value at which 25 percent of the data fall under when data are arranged in 

ascending order (25th percentile). 

Q2 The value at which 50 percent of the data fall under when data are arranged in 

ascending order (median). 

Q3 The value at which 75 percent of the data fall under when data are arranged in 

ascending order (75th percentile). 

R2 Coefficient of determination. 

RMSE Root mean square error (Helsel and others, 2020). 

SC Specific conductance, in microsiemens per centimeter at 25 degrees Celsius 

(USGS parameter code 00095; USGS method code SC001). 

t value Student’s t value; the coefficient divided by its associated standard error (Helsel 

and others, 2020). 



Model 

log𝐵𝑟 = 1.224(log𝑆𝐶) − 1.460 

Variable Summary Statistics 

Variable  Minimum Q1 Median Mean Q3 Maximum 

Br  31.9 94.3 136 131 166 251 

SC  359 656 830 823 975 1240 

logBr  1.5 1.97 2.13 2.08 2.22 2.4 

logSC  2.56 2.82 2.92 2.9 2.99 3.09 

Duration Plots 

 

Figure 1. Duration plot of continuous log-transformed specific conductance (SC; black line) and 

measured specific conductance during discrete sample collection (blue dots) by quantile. 



 

Figure 2. Seasonal duration plots of continuous log-transformed specific conductance (SC; black 

line) and measured specific conductance during discrete sample collection (blue dots) by 

quantile. 

Boxplots 

Figure 3. Boxplots of log-transformed (left) and untransformed (right) bromide concentration 

(Br) and specific conductance (SC) sample results used in the model-calibration dataset.  

            



Scatterplots 

 

Figure 4. Bivariate plots of log-transformed bromide concentration (Br) and log-transformed 

specific conductance (SC). The x- and y-axis labels for a given bivariate plot are defined by the 

intersecting row and column labels. 

Basic Model Statistics 

Statistic Value 

Observations 41 

R2 0.858 

Adjusted R2 0.854 

RMSE 0.0676 

Upper MSPE (90 percent) 16.9 

Lower MSPE (90 percent) 14.4 

BCF 1.012 

Model Coefficients 

 Estimate Standard Error t value Pr(>|t|) 

(Intercept) -1.459881 0.2314467 -6.307636 2e-07 

logSC 1.223701 0.0798250 15.329803 0e+00 



Correlation Matrix 

 logBr logSC 

logBr 1.0000000 0.9261024 

logSC 0.9261024 1.0000000 

Outlier Test Criteria 

Leverage DFFITS Cook’s D 

0.1463 0.4417 0.1938 

Flagged Observations 

datetime logBr Cook’s D DFFITS Leverage Studentized Residual Flag* 

2021-05-18 11:40:00 1.5 0.82 -1.4 0.187 -2.92 CL 

2023-10-23 11:10:00 2.32 0.137 0.607 0.0245 3.83 DS 

 

*C: Cook’s distance; L: Leverage; D: Difference in fits statistic; S: Studentized residual 



Statistical Plots 

 

Figure 5. Statistical plots of model residuals relative to regression-computed bromide 

concentration, date, normal quantiles, log-transformed specific conductance (SC); and observed 

bromide concentration relative to regression-computed bromide concentration. Blue line shows 

the locally estimated scatterplot smoothing (LOESS). BCF=Duan’s bias correction factor. 



   

Figure 6. Boxplots of model residuals by month (left) and log-transformed computed and 

observed bromide concentrations (Br; right). 

 

 

Figure 7. Boxplots of model residuals by year. 



 

Figure 8. A 10-fold cross-validation plot (fold: equal partition of the data [10 percent of the 

data]; large symbols: observed value of a data point removed in a fold; small symbols: 

recomputed value of a data point removed in a fold; recomputed regression lines: adjusted 

regression line with one fold removed). Br=bromide concentration; SC=specific conductance. 

 

Statistic Value 

Minimum MSE of folds 0.00271 

25th Percentile 0.00459 

Median MSE of folds 0.00472 

Mean MSE of folds 0.00456 

75th percentile 0.00489 

Maximum MSE of folds 0.00507 

Model MSE 0.00457 



 

Figure 9. Boxplot of mean square error (MSE) of folds from cross validation. 

Model-Calibration Dataset 

Date/Time1 logBr logSC Br SC Computed logBr Retransformed Br 

2021-01-25 10:10:00 2.24 3.06 174 1160 2.29 197 

2021-03-03 09:50:00 2.25 3.09 179 1230 2.32 212 

2021-03-23 09:40:00 2.00 2.82 99.7 656 1.99 98.2 

2021-04-05 10:20:00 1.90 2.76 79.8 573 1.92 83.3 

2021-04-20 09:20:00 2.08 2.87 121 743 2.05 114 

2021-05-03 10:00:00 2.17 2.94 147 862 2.13 137 

2021-05-18 11:40:00 1.50 2.56 31.9 359 1.67 47.0 

2021-06-07 09:50:00 2.14 2.83 139 674 2.00 102 

2021-06-22 10:10:00 2.22 2.98 166 949 2.18 154 

2021-07-19 10:20:00 1.97 2.82 94.3 654 1.99 97.8 

2021-08-18 09:40:00 2.18 2.98 151 952 2.19 155 

2021-09-08 09:10:00 1.97 2.78 92.6 604 1.94 88.9 

2021-10-19 10:50:00 2.17 2.97 149 933 2.17 151 

2021-12-06 11:10:00 2.22 3.08 165 1190 2.30 204 

2022-01-18 10:10:00 2.02 2.84 105 684 2.01 103 



Date/Time1 logBr logSC Br SC Computed logBr Retransformed Br 

2022-02-14 10:40:00 2.29 3.03 193 1060 2.24 177 

2022-03-08 11:00:00 2.28 3.07 190 1180 2.30 202 

2022-03-22 10:50:00 1.90 2.75 78.8 564 1.91 81.6 

2022-04-04 10:30:00 2.00 2.87 99.7 736 2.05 113 

2022-04-19 10:50:00 2.13 2.96 136 918 2.17 148 

2022-05-09 11:10:00 1.89 2.74 77.0 543 1.89 78.0 

2022-05-24 10:00:00 1.95 2.71 90.0 516 1.86 73.2 

2022-07-06 10:20:00 1.81 2.64 65.3 439 1.77 60.0 

2022-07-19 10:00:00 1.93 2.79 85.9 616 1.95 91.0 

2022-08-16 10:40:00 2.21 3.00 162 1000 2.21 165 

2022-09-07 10:00:00 2.25 3.00 178 995 2.21 164 

2022-10-25 10:50:00 2.23 2.99 171 975 2.20 160 

2022-12-05 11:10:00 2.25 3.08 176 1190 2.30 204 

2023-01-17 10:40:00 2.40 3.09 251 1240 2.33 214 

2023-02-13 10:30:00 2.11 2.98 130 948 2.18 154 

2023-03-07 10:50:00 2.00 2.83 101 670 2.00 101 

2023-03-21 11:00:00 2.16 2.98 144 945 2.18 154 

2023-04-11 11:00:00 2.25 3.00 176 989 2.21 162 

2023-04-24 10:10:00 1.88 2.82 76.1 668 2.00 101 

2023-05-08 10:40:00 2.08 2.95 121 900 2.16 145 

2023-05-23 10:30:00 2.03 2.87 107 749 2.06 116 

2023-06-05 10:10:00 1.75 2.61 55.6 409 1.74 55.1 

2023-06-20 11:10:00 2.16 2.92 145 830 2.11 131 

2023-07-10 10:10:00 2.13 2.92 136 831 2.11 131 

2023-08-15 09:40:00 2.02 2.90 106 802 2.09 126 

2023-10-23 11:10:00 2.32 2.91 207 804 2.10 126 

1Dates are formatted as “year-month-day” and times are formatted as “hours:minutes:seconds.” 
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