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Sensitivity of Benthic Biota and Toxicity of Cadmium, Cobalt, 
Copper, Nickel, Lead, and Zinc Mixtures in Near-Surface 
Porewater in the Upper Columbia River Basin, Washington, 
United States, and British Columbia, Canada

By Laurie S. Balistrieri

Abstract
Relative sensitivities and responses of juvenile white 

sturgeon (Acipenser transmontanus), Hyalella azteca, two 
families of mayfly (Ephemerellidae, Heptageniidae), one 
family of caddisfly (Brachycentridae), and a natural community 
of benthic macroinvertebrates (BMI) to multiple metals are 
predicted using previously collected laboratory and field samples 
and a metal mixture model. Biological responses in single 
metal exposures are used to parameterize toxicity functions, 
which include accumulations of hydrogen and selected metals 
on biological receptors, intrinsic potencies of hydrogen and 
metals, sensitivities of organisms, and times of exposure. 
The model then is used to predict responses in multiple metal 
laboratory exposures and field-collected porewater. The 
following sensitivity sequence in porewater was determined 
based on endpoints of survival or total abundance: juvenile 
white sturgeon greater than (>) Ephemerellidae family > 
Hyalella azteca > Heptageniidae family about equal to (~) 
benthic macroinvertebrate community > Brachycentridae family. 
The fraction of porewater samples that are predicted to have 
adverse impacts on benthic biota (20-percent or greater negative 
response) depends on organism sensitivities and metal toxicities, 
and ranges from 44 to 48 percent for juvenile white sturgeon, 
23 to 26 percent for the Ephemerellidae family, 16 to 22 percent 
for Hyalella azteca, 5 to 8 percent for the Heptageniidae family 
and BMI community, and 0 percent for the caddisfly family. 
The most toxic porewater in the upper Columbia River Basin 
(UCR) is at the backwater bar site at Deadmans Eddy and China 
Bend. The model also indicates that the element responsible 
for the most toxic conditions in UCR porewater is copper for 
all organisms, except Hyalella azteca and the metal-insensitive 
Brachycentridae family. Copper and lead result in the most toxic 
conditions for Hyalella azteca. This approach and results can aid 
in assessing metal toxicity and its potential risk to aquatic biota 
in ecosystems impacted by historical mining activities.

Introduction
Ecological risk assessments identify hazardous 

chemicals, ecological receptors, pathways of exposure, 
and media that result in exposure. Risks are characterized, 

solutions for mitigating those risks are developed, and results 
are communicated to risk managers and decision makers 
(Barnthouse, 2008; Harford and others, 2022). To identify 
and characterize those risks, an understanding of physical and 
biogeochemical processes that redistribute chemicals in the 
environment and affect uptake by biota is necessary. Knowledge 
is required about sources, concentrations, distributions, 
speciation, and bioavailability of chemicals, as well as identities, 
life stages, habitats, and mechanisms of exposure to biological 
receptors. The evaluation of risks also relies on identification of 
background chemical concentrations and benchmarks of toxicity 
for chemicals in water, sediment, soil, and biota. Integration of 
all this information is required to develop successful strategies 
for remediation activities that minimize risks.

Ecosystems containing highly mineralized rock pose 
potential risks to humans, terrestrial and aquatic life, and the 
environment. One such system is the upper Columbia River 
Basin in northeastern Washington, United States, and British 
Columbia, Canada (fig. 1). This basin contains mineralized 
deposits primarily containing copper (Cu), gold, lead (Pb), 
silver, and zinc (Zn). Mining, smelting, and processing of 
ore have occurred in this region since the mid-to-late 1800s. 
Early mining activities released a solid waste product from 
processing of natural ore (that is, slag) and liquid effluent 
into several fast-flowing rivers, resulting in a legacy of metal 
enrichment in downstream sediment and porewater (Johnson 
and others, 1990; Paulson and Cox, 2007; Besser and others, 
2018). Remedial investigations, feasibility studies, and baseline 
ecological risk assessments are currently being conducted in the 
main stem of the upper Columbia River Basin (UCR) near the 
United States-Canadian border (U.S. Environmental Protection 
Agency, 2024). Two field studies in the UCR in which in situ 
porewater was collected and its composition analyzed (Cox and 
others, 2016; Environmental Resources Management, 2022) 
are of interest to the present study. Previous research examined 
the toxicity of metal mixtures in these porewater samples to 
juvenile white sturgeon (Acipenser transmontanus) using several 
different metal-mixture models (Balistrieri, 2024; Balistrieri and 
others, 2018). The present work expands upon this previous 
work by considering metal-mixture toxicity to multiple benthic 
organisms in UCR porewater using a new metal-mixture model 
(Tipping and others, 2023).
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Figure 1. Study area in the upper Columbia River Basin in northeastern Washington State, United States, 
and British Columbia, Canada. USGS, U.S. Geological Survey.
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Purpose and Scope
The objectives of this work are threefold: (1) to 

provide a comparison of the relative sensitivities of multiple 
organisms—including the benthic life stage of white 
sturgeon, Hyalella azteca; families of Ephemerellidae, 
Heptageniidae, and Brachycentridae; and a community of 
benthic macroinvertebrates—to multiple metal mixtures using 
a consistent modeling framework; (2) to evaluate the toxicity 
of dissolved metals in near-surface porewater in the UCR to 
these organisms; and (3) to identify the element(s) that cause 
the most toxic conditions in UCR porewater. This approach 
provides a tool for evaluating risks of metal exposure to 
aquatic biota in the upper Columbia River Basin and other 
areas impacted by historical mining activities.

Methods

Laboratory Data Sets

Laboratory studies of toxicity to aquatic organisms 
in single metal solutions provide the fundamental data for 
model validation. Laboratory data include the composition of 
water samples [temperature, pH, concentrations of major ions 
(calcium [Ca], magnesium [Mg], sodium [Na], potassium [K], 
chlorine [Cl], sulfate [SO4], carbonate species), dissolved 
organic carbon (DOC), and metals of interest] as well as 
responses of biota upon exposure to metals. Laboratory 
studies provide an opportunity to validate models because 
they consider well-controlled and less-complex systems and 
generally examine a wider range of metal concentrations than 
those observed in natural, pristine environments. Previously 
collected laboratory data for six organisms are used in this 
study and summarized in sections, “Juvenile White Sturgeon 
(Acipenser transmontanus),” “Hyalella azteca,” and “Natural 
Benthic Macroinvertebrate Community.”

Juvenile White Sturgeon (Acipenser 
transmontanus)

Studies of the toxicity of individual dissolved metals 
(cadmium [Cd], copper, lead, zinc) to juvenile white sturgeon 
(less than 27 days post hatch) were conducted at the U.S. 
Geological Survey Columbia Environmental Research Center 
(Calfee and others, 2014; Ingersoll and Mebane, 2014; 
Wang and others, 2014). Data are summarized in Balistrieri 
and others (2018). The 84 samples had endpoints of effective 
survival, which includes behavioral characteristics as well as 
survival, and growth for 4–53 days of exposure.

Hyalella azteca
Studies that determined the response of Hyalella azteca 

as a function of individual dissolved metal (Cd, Co [cobalt], 
Cu, Ni [nickel], Pb, Zn) concentrations were conducted 
in tap water from Lake Ontario. Paired 28-day LC25 and 
LC50 (lethal concentrations at 25 or 50 percent mortality) 
for each of the six metals (that is, 12 values) are summarized 
in Norwood and others (2013). To predict a larger range of 
metal concentrations and mortalities of Hyalella azteca for 
the present study, a logistic curve was fit to the published 
individual dissolved metal concentrations at 25 and 50 percent 
mortality and presented as solid curves in model results for 
Hyalella azteca.

Natural Benthic Macroinvertebrate Community
Four mesocosm experiments of metal toxicity to 

benthic macroinvertebrates (BMI) were conducted at the 
U.S. Geological Survey (Balistrieri and others, 2020; 
Mebane and others, 2017, 2020; Schmidt and others, 2018). 
A natural community of BMI was colonized in the field, 
transferred to laboratory streams, and exposed to dissolved 
single metals and metal mixtures of Cd, Co, Cu, Ni, and 
Zn. Mixtures included dissolved concentrations of Cd+Zn, 
Co+Cu, Cu+Ni, Cu+Zn, Ni+Zn, Cd+Cu+Zn, Co+Cu+Ni, 
and Cu+Ni+Zn. Water and larvae were collected after 32 
days of exposure in 144 streams. Larvae were identified and 
counted; water samples were analyzed for their composition. 
Data are summarized in Schmidt and others (2019). 
Total abundance of the BMI community and families of 
Ephemerellidae, Heptageniidae, and Brachycentridae are used 
in this work. The members (1) of the Ephemerellidae family 
were Drunella doddsii, Drunella grandis, and Ephemerella 
sp.; (2) of the Heptageniidae family were Cinygmula sp., 
Epeorus longimanus, and Rhithrogena sp.; and (3) of the 
Brachycentridae family were Brachycentrus americanus, 
Brachycentrus occidentalis, and Micrasema bactro.

Field Datasets

Two sets of in situ porewater were collected in the UCR 
and analyzed for their composition (that is, temperature, 
pH, dissolved concentrations of major ions, DOC, and 
metals of interest). The first set of 78 samples included 
surface water and porewater and was collected in 2015 
across the sediment-water interface at 7.5 centimeters (cm) 
above the interface (surface water), at the interface (0 cm; 
sediment-water interface), 4.5 cm below the interface (shallow 
porewater), and 14.5 cm below the interface (deep porewater) 
at locations between the United States-Canadian border and 
China Bend (fig. 1). These data are summarized in Cox and 
others (2016) and more fully discussed in Balistrieri and 
others (2018). The porewater had an average pH of 7.91±0.21, 
a hardness of 94±14 milligrams per liter (mg /L) of calcium 
carbonate (CaCO3), and 0.56±0.22 mg/L of DOC. The 
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second set of samples was 122 composite porewater samples 
collected in 2019 from 0 to 15 cm below the sediment-water 
interface at areas of interest (AOIs) in the UCR. These areas 
include reference sites above the United States-Canadian 
border and sites downstream from the border at Deadmans 
Eddy, China Bend, and Evans (fig. 1; Environmental 
Resources Management, 2022). Samples at Deadmans 
Eddy were collected at an eddy site in the main stem of the 
river and within the backwater of a sand bar. The data are 
summarized and more fully discussed in Balistrieri (2024). 
These porewater samples had average pH of 7.82±0.78, 
hardness of 88±43 mg/L of CaCO3, and 1.1±1.2 mg/L of 
DOC. Although metal concentrations were reported for all 
porewater samples in this study, many were qualified as 
non-detectable or less than detection limits. In these cases, 
dissolved metal concentrations were assigned to be 50 percent 
of reported values.

WHAM-FTOXβ Model

The WHAM-FTOXβ model, which was developed by 
Tipping and others (2023), is used to evaluate hydrogen and 
metal toxicity to biota in laboratory and field studies. An 
overview of the model using Cd and Zn as example metals 
and mayfly and fish as example organisms is presented in 
figure 2. Responses for mayfly to metals are less sensitive 
than responses for fish in the example. Laboratory and 
field metal-toxicity studies characterize the responses of 
organisms that are exposed to ranges of dissolved metal 
concentrations. Typically, responses are related to metal 
concentrations for single metal solutions or toxic units or 
other multiple metal metrics for metal mixtures (Schmidt and 
others, 2012; Mebane and others, 2015). In the WHAM-FTOXβ 
model, biological responses are related to toxicity functions. 
These toxicity functions, FTOXβ, include accumulations 
of hydrogen and metals on biological receptors, intrinsic 
potency coefficients for hydrogen and metals, sensitivity 
values for biota, and times of exposure to metals. The 
accumulations of hydrogen and metals are determined by 
treating biological receptors as humic acid. This approach uses 
a comprehensive database of metal-organic matter interactions 
that is incorporated into the computer program Windermere 
Humic Aqueous Model 7 (WHAM 7) (Tipping and others, 
2011; Lofts, 2012). Thus, accumulations of elements on all 
biological receptors are represented by accumulations of 
elements on humic acid. This assumption means that the 
amount of hydrogen and metals bound to biological receptors 
is the same for all organisms in each water sample. Toxicity 
functions, FTOXβ, are compared to positive responses (R) of 
biota exposed to hydrogen and metals and the data are fit 
using three piece-wise linear sections and lower (FTOXβ, LT) 
and upper (FTOXβ, UT) thresholds of FTOXβ. For FTOXβ<FTOXβ, 

LT; R=maximum response (for example, 100 percent) and 
for FTOXβ>FTOXβ, UT; R=minimum response (for example, 0 
percent). Responses decrease linearly between the lower and 
upper thresholds. Therefore, as FTOXβ increases, responses 
become less positive (fig. 2). This model is applicable to single 
and multiple metal toxicity studies.

The toxicity function in equation form is:

   F  TOX   β  =  α  H     θ  H   + ∑  α  MX     θ  MX   , with (1)

  αMX  = β αMX* × kt /  (kt + 1)  , (2)

where
 αH is potency coefficient for hydrogen,

 θH is fractional accumulation of hydrogen on 
biological receptors,

 αMX is potency coefficients for metals,

 θMX is fractional accumulations of metals on 
biological receptors,

 β is sensitivity of the organism,

 αMX* is intrinsic potency coefficients of metals,

 k is rate constant (per day), and

 t is time of exposure (day).

Fractional accumulations of hydrogen and metals on 
biological receptors are calculated from the compositions 
of water in laboratory and field studies using WHAM 7. 
The water composition of each sample is required for 
the calculations and includes temperature, pH, and total 
concentrations of major cations (Ca, Mg, Na, K), major anions 
(Cl, SO4, inorganic carbonate species or alkalinity), DOC, 
and metals of interest (Cd, Co, Cu, Ni, Pb, Zn). Dissolved 
organic matter is assumed to be 100 percent fulvic acid (FA) 
and 50 percent DOC. Sixty five percent of DOC is considered 
to actively complex with metals (Bryan and others, 2002). 
Thus, FA (in grams per liter [g/L]) = 1.3×DOC (g/L). The 
analog for biological receptors [that is, humic acid (HA)] is 
included for each sample at concentrations of 1×10-9 g/L. 
This concentration does not affect the dissolved chemical 
speciation of the solution. Solutions are assumed to be in 
equilibrium with amorphous iron and aluminum hydroxides 
(Tipping and others, 2002). Fractional accumulations are 
moles of hydrogen or metal per gram HA normalized to 
total binding sites on humic acid (HA–hydrogen [H]/HAtotal 
or HA–MX/HAtotal, where HAtotal=5.1×10-3 moles/g HA; 
Tipping and others, 2023).
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Figure 2. Diagram showing summary of the WHAM-FTOXβ model as developed by Tipping and others (2023). T, temperature; DOC, 
dissolved organic carbon; Zn, zinc; Zn+2, zinc cation; Cd, cadmium; Cd+2 cadmium cation; H, hydrogen; H+, hydrogen ion.

The meta-analysis of toxicity studies done by Tipping 
and others (2023) resulted in values for intrinsic potency 
coefficients for metals relative to the potency coefficient 
for hydrogen (that is, αH=1), sensitivity parameters for 
many biological species including juvenile white sturgeon 
and Hyalella azteca, mean values for the lower and upper 
thresholds of FToxβ, and the time dependent rate constant 
(k). The lower threshold of the toxicity function (FTOXβ, 
LT) is 0.503 and the upper threshold (FTOXβ, UT) is 1.137 by 
assuming that the toxicity function equals 0.820 at 50-percent 
response (Tipping and others, 2023). A summary of all 
parameters that are needed to model metal toxicity using the 
WHAM-FTOXβ model is in table 1.

Toxicity Quotient

Porewater samples in the UCR contain mixtures of 
metals and the toxicity function for each mixture is calculated 
using the WHAM-FTOXβ model. The toxicity of these metal 
mixtures to various benthic biota is assessed by comparing the 
calculated toxicity function for a porewater sample (FTOXβ) to 
a benchmark toxicity function. The benchmark chosen for this 
work is the toxicity function at 20 percent negative response 
(TF20). Thus, this ratio, which is called a Toxicity Quotient 
(TQ), is defined as:

 Toxicity Quotient=FTOXβsample/FTOXβTF20 (3)

TQs greater than or equal to (≥) 1 for porewater samples 
indicate adverse impacts to benthic biota.
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Table 1. Summary of intrinsic potency coefficients for hydrogen and metals (αH, αMX) and sensitivity (β) parameters for organisms in the WHAM-FTOXβ model.

[Rate constant (k) =0.77/d. Lower threshold value for toxicity function (FTOXβ, LT) =0.503. Upper threshold value for toxicity function (FTOXβ, UT) =1.137. Maximum positive response=100 percent. Minimum 
positive response=0 percent. Data for single metal exposures were fit. Endpoints: survival or growth (juvenile white sturgeon), survival (Hyalella azteca), total abundance (BMI community, families of mayfly 
and caddisfly). Abbreviations: BMI, benthic macroinvertebrate community; N/A, data not available; na, not applicable]

Chemical 
element

Tipping and 
others (2023) 

meta-analysis

Juvenile white 
sturgeon

Hyalella azteca BMI community
Ephemerellidae 

family 
(mayfly)

Heptageniidae 
family 

(mayfly)

Brachycentridae 
family 

(caddisfly)

Intrinsic potency coefficient for hydrogen or metal (  𝛂  H    or   𝛂  MX   )
Hydrogen 1 1 1 1 1 1 1
Cadmium 464.9 316.4 4,901.0 4,903.3 5,080.5 3,977.5 464.9

Cobalt 29.3 N/A 2,261.6 109.1 303.5 393.6 29.3
Copper 24.4 65.6 12.7 94.4 134.0 92.1 24.4
Nickel 19.0 N/A 270.5 104.6 104.0 59.5 19.0
Lead 41.6 121.8 422.7 N/A N/A N/A 41.6
Zinc 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Sensitivity parameter ( 𝛃 )

na na 1.40 1.96 0.32 0.42 0.39 0.11

Sensitivity parameter ( 𝛃 [meta-analysis])

na na 1.32 2.32 N/A N/A N/A N/A
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Predictions of Metal Toxicity to 
Benthic Biota

The approach for assessing metal toxicity in the UCR is 
to use laboratory data to validate the WHAM-FTOXβ model, 
adjust parameters if necessary, and then use the model and 
field porewater data to predict toxicity functions, responses, 
and TQs for the various organisms in multiple metal 
laboratory exposures and porewater in the UCR.

Laboratory Studies—WHAM-FTOXβ Predictions 
of Response in Single Metal Exposures

The WHAM-FTOXβ model was developed for individual 
organisms. All parameters that are needed for modeling 
toxicity are available only for juvenile white sturgeon 
and Hyalella azteca. Sensitivity parameters for mayfly, 
caddisfly, or a community of BMI were not determined in 
the meta-analysis of Tipping and others (2023). One test 
of the model is to evaluate whether responses of juvenile 
white sturgeon and Hyalella azteca are predicted in single 
metal solutions using the parameters developed in the 
meta-analysis. The first step is to calculate accumulations of 
hydrogen and metals in the single metal toxicity studies for 
juvenile white sturgeon and Hyalella azteca. The toxicity 
functions then are calculated using the accumulations and 
meta-analysis parameters (eqs. 1 and 2; table 1). The results 
indicate that responses to zinc are reasonably predicted for 
the two organisms (fig. 3). In contrast, responses to Cd, Co, 
Cu, Ni, and Pb for these organisms are poorly predicted. 
The WHAM-FTOXβ model was developed on the premise 
that each metal has intrinsic potency (that is, does not vary 
among organisms) and that the sensitivities of organisms to 
metals vary (Tipping and others, 2023). If the lower and upper 
thresholds for FTOXβ and minimum and maximum responses 
are set at the meta-analysis values, then it is not possible for 
Cd, Cu, or Pb to have unique intrinsic potency coefficients that 
fit both sets of data.

The approach taken in this work is to use the 
meta-analysis values for αH (1), αZn* (12.5), lower threshold 
(0.503) and upper threshold (1.137) of the toxicity function, 
and minimum positive response (0 percent) and maximum 
positive response (100 percent). The intrinsic potency 
coefficient for Zn (αZn*) determined in the meta-analysis 
was used because laboratory Zn data for juvenile white 
sturgeon and Hyalella azteca were reasonably predicted 
using this value (fig. 3). Additionally, fixing some parameters 
minimizes the number of adjustable parameters in the model. 
Values of the sensitivity coefficients (β) for all studied 
organisms are determined by fitting Zn data. Intrinsic potency 
coefficients (αMX*) for Cd, Co, Cu, Pb, and Ni then are 
determined by fitting the single metal data for each organism 
(that is, juvenile white sturgeon, Hyalella azteca, BMI 
community, Ephemerellidae family, Heptageniidae family). 

Intrinsic potency coefficients for all metals were kept at the 
meta-analysis values for the insensitive Brachycentridae 
family. Data were fit using SOLVER in Excel and by 
minimizing the absolute difference between measured and 
predicted responses. The fitting parameters are in table 1 and 
the model fits for single metal exposures are in figure 4. It is 
clear from table 1 that a single intrinsic potency coefficient 
for each metal does not fit all datasets. For example, intrinsic 
potency coefficients for Cd range from 316.4 to 5,080.5 for the 
organisms.

Laboratory Studies—WHAM-FTOXβ Predictions 
of Response in Metal Mixture Exposures

The four mesocosm studies also evaluated responses of 
families of mayfly and caddisfly and a community of BMI to 
metal mixtures (Schmidt and others, 2019). Because porewater 
solutions contain metal mixtures, the predicted responses 
of these organisms in metal mixtures based on parameters 
developed in single metal solutions are of interest. Like the 
single metal exposures, the toxicity function was calculated 
for each multi-metal mesocosm sample and compared to the 
normalized responses of the mayfly and BMI community. 
The responses of mayfly and the BMI community are well 
predicted in multiple metal solutions using the optimized 
WHAM-FTOXβ model based on fits in single metal solutions 
(fig. 5) and bodes favorably for predicting toxicity functions 
and responses in porewater with metal mixtures.

Field Porewater— Optimized WHAM-FTOXβ 
Predictions of Toxicity Functions, Responses, 
and Toxicity Quotients

Because there are no organism responses for the 
field-collected porewater samples, the toxicity functions, 
responses, and TQs are predicted for multiple metal porewater 
in the UCR using the optimized WHAM-FTOXβ model and 
parameterizations from laboratory experiments. The first 
step is to run WHAM 7 to determine accumulations of 
hydrogen and metals on HA for each porewater sample. The 
accumulations of hydrogen and metals are the same for all 
organisms in each field porewater sample as the biological 
receptors are all treated as HA. Boxplots of hydrogen and 
metal accumulations by HA in 2019 UCR porewater indicate 
that hydrogen accumulation is largest followed by Cu 
accumulations (fig. 6). The smallest accumulations are for Cd. 
The toxicity functions are calculated (eqs. 2 and 3; table 1) and 
used to predict responses for each porewater sample and each 
organism. Because intrinsic potency coefficients of metals 
and sensitivity coefficients are different among the organisms 
(table 1), the magnitude of the toxicity function for a given 
porewater varies for the organisms. Predictions of response 
for benthic biota in 2019 UCR porewater indicate that their 
sensitivity decreases as follows: juvenile white sturgeon > 
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Ephemerellidae family > Hyalella azteca > Heptageniidae 
family ~ BMI community > Brachycentridae family (fig. 7). 
The relative sensitivities of the studied organisms to metal 
mixtures are reflected in decreasing toxicity functions for a 
given porewater sample. Biological responses become more 
positive as calculated toxicity functions decrease.

The fraction of porewater samples that predict adverse 
impacts to organisms is examined using TQs. The three 
piece-wise linear sections of the model that depict positive 
responses compared to toxicity functions are the same for all 
organisms (that is, same threshold values and minimum and 
maximum responses); thus, the value of the toxicity function 
at 20-percent negative response (TF20) is calculated at 0.63. 
Hence, a TQ can be calculated for each porewater sample 
(eq. 3). The fraction of porewater samples collected during 
2015 and 2019 with a TQ≥1 varies with the metal toxicities 
and sensitivities of the studied organisms (fig. 8). Adverse 
impacts are predicted to decrease as the sensitivity of the 
organisms decreases. From 44 to 48 percent of porewater 
samples are predicted to have adverse impacts on the most 
sensitive organism (that is, juvenile white sturgeon), whereas 
no samples are predicted to have adverse impacts on the least 
sensitive Brachycentridae family.

The two porewater datasets from the UCR were collected 
for different reasons. The 2015 study examined water 
compositions across the sediment-water interface and the 
2019 study considered porewater compositions at AOIs in 
the basin (that is, reference, Deadmans Eddy at eddy and bar 
sites, China Bend, and Evans; fig. 1). The fraction of shallow 
and deep porewater samples that are predicted to have a TQ≥1 
for juvenile white sturgeon, the Ephemerellidae family, and 
Hyalella azteca is greater than 0.2 whereas the fraction of 

porewater samples that have a TQ≥1 for the Heptageniidae 
family and BMI community is less than 0.1 (fig. 9). All surface 
water and other sampled depths for the Brachycentridae 
family have no samples with a TQ≥1. The bar samples at 
Deadmans Eddy have the most adverse impacts (that is, 
fractions range from 0.28 to 0.89) for all organisms except the 
Brachycentridae family. The fraction of China Bend samples 
that have a TQ≥1 for the most sensitive organisms (that is, 
juvenile white sturgeon, Ephemerellidae family, and Hyalella 
azteca) ranges from 0.33 to 0.64.

Field Porewater—Contributions of Hydrogen 
and Metals to the Toxicity Function (FTOXβ)

The composition of metal mixtures in UCR porewater 
varies and each organism has unique responses to the mixtures 
depending on metal potency and their sensitivity. Organism 
sensitivity, hydrogen and metal potency, accumulations of 
H and metals on the biological receptors, and exposure time 
contribute to toxicity functions (eqs. 1 and 2). Identification 
of the dominant ion or ions that result in adverse toxic 
conditions is important because of differences in the chemical 
behavior and toxicity of each metal to biota. Knowledge of 
the dominant metal that causes toxicity is critical for assessing 
risk and developing appropriate remediation strategies. 
TQs for each organism compared to contributions of H and 
metals to the toxicity function indicate that Cu is the major 
contributor to adverse conditions (that is, TQ≥1) in the 
UCR for most benthic biota (fig. 10). The exceptions are the 
insensitive Brachycentridae family and Hyalella azteca, where 
Cu and Pb contribute to the most toxic conditions.
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Summary
Assessments of risk in metal-enriched environments 

involve consideration of many factors controlling the 
characteristics of metals and behavior of biological organisms. 
Modeling is only one component that provides insights 
into potential risks. This work uses a consistent modeling 
framework to evaluate sensitivities of multiple benthic 
organisms to hydrogen (H) and metals in porewater. The 
model includes accumulations of H and metals on biological 
receptors, relative toxicities or potencies of H and metals, 
sensitivities of organisms to H and metals, and times of 
exposure. Intrinsic potency coefficients for metals and 
sensitivities are unique to each organism. Outcomes of the 
model are the identification of a sentinel organism that is most 
sensitive to H and metals, a relative sensitivity sequence for all 
studied organisms, and identification of metals that contribute 
most to adverse conditions. Results indicate that aquatic 
organisms represent a spectrum of risk in metal-enriched 
systems. An organism with less sensitivity to metals will result 
in an evaluation of less risk than an organism that is more 
sensitive to metals.

The application of the WHAM-FTOXβ model to field 
porewater is new and further research is needed to evaluate the 
model and its assumptions in other aquatic systems. Several 
assumptions are inherent in the model: (1) the binding of H 
and metals to humic acid is a valid representation of biological 
receptors on all organisms, (2) binding to humic acid alone 
and not some other model formulation (for example, biotic 
ligand or biodynamic processes) is responsible for H and 
metal accumulation, (3) potency coefficients for individual 
metals are unique, and (4) sensitivities to hydrogen and 
metals vary among organisms. The laboratory results for the 
organisms in this study indicate that the assumption of unique 
intrinsic potency coefficients for metals for all organisms is 
not valid.

Of the studied aquatic benthic biota in the upper 
Columbia River Basin, juvenile white sturgeon (Acipenser 
transmontanus), mayfly of the Ephemerellidae family, and 
Hyalella azteca are most sensitive to H and metals in near 
surface porewater, whereas mayfly of the Heptageniidae 
family, a community of benthic macroinvertebrates (BMI), 
and caddisfly of the Brachycentridae family are the least 
sensitive. About one-half of all porewater samples have 
Toxicity Quotients greater than or equal to (>) 1 for juvenile 
white sturgeon and about one-quarter of the samples have 
Toxicity Quotients >1 for the Ephemerellidae family. From 16 
to 22 percent of porewater samples have Toxicity Quotients 
>1 for Hyalella azteca and less than or equal to 8 percent of 
porewater samples are predicted to have adverse conditions 
for the BMI community and families of Heptageniidae and 
Brachycentridae. Shallow and deeper porewater and samples 
from the backwater bar at Deadmans Eddy and at China Bend 
have the largest fractions of porewater with adverse conditions 
to the most sensitive organisms. Copper (Cu) is responsible for 

the most toxic conditions for most metal sensitive organisms. 
Both Cu and Pb play important roles in the most toxic 
conditions for Hyalella azteca.

This study provides an evaluation of a modeling 
approach that predicts potential toxicity of metal mixtures 
to aquatic benthic biota. This approach, in conjunction with 
other environmental and biological information, can be used to 
evaluate ecological risk in metal-enriched systems affected by 
historical mining activities.
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