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A Model Uncertainty Quantification Protocol for 
Evaluating the Value of Observation Data

By Michael N. Fienen, Laura A. Schachter, and Randall J. Hunt

Abstract
The history-matching approach to parameter estimation 

with models enables a powerful offshoot analysis of data 
worth—using the uncertainty of a model forecast as a metric 
for the worth of data. Adding observation data will either have 
no impact on forecast uncertainty or will reduce it. Removing 
existing data will either have no impact on forecast uncertainty 
or will increase it. The history-matching framework makes 
it possible to perform this quantitative analysis leveraging 
the connections among observations, model parameters, 
and model forecasts. We show this behavior on a specific 
groundwater flow model of the Mississippi Alluvial Plain and 
show where the analysis can be informative for considering 
the potential design of an observation network based on 
existing or potential observations.

Introduction
The Mississippi Alluvial Plain (MAP) project is a 

large, multi-disciplinary project with the goal of supporting 
stakeholder-driven decision support for water-resource 
management. This project includes endpoints of streamflow 
depletion and drawdown as forecasts that can be managed 
through land-use and water-management changes, guided 
by economic tradeoffs. In this report, we examine the 
theory and practice of using mathematical techniques with 
a groundwater-flow model to evaluate the relative worth of 
existing and potential observation data that can be used for 
parameter estimation through history matching. The metric of 
reducing forecast uncertainty is used to evaluate data worth.

Purpose and Scope
This document is intended to provide the theoretical 

background for evaluating forecast uncertainty with models. 
In particular, this project is motivated by a desire for models to 
be dynamic and “living” such that over the course of a project, 

the models not only serve the needs of making forecasts, 
but the quality of those forecasts can guide data collection 
throughout the project.

The examples in this work are based on a regional 
groundwater-surface water project with a groundwater-flow 
model (Hunt and others, 2021) and a soil-water balance model 
(Nielsen and Westenbroek, 2023). However, the techniques 
presented here can be used with a range of models and the 
tools are generally model-independent.

A Note on Software Packages Used
The workflows in this document use the open-source 

scripting environment of the Python and the PEST/PEST++ 
suite of programs (Doherty, 2010a; Doherty and others, 
2011; Welter and others, 2012; White and others, 2020; 
https://github.com/​usgs/​pestpp) which interface with the utility 
software PyEMU (White and others, 2016; https://github.com/​
pypest/​pyemu). These tools were chosen because they 
are model-independent, free, and open-source. Model 
independence has been a feature of the PEST suite of tools 
from its inception, and the techniques documented here can be 
applied to any models.

Background Mathematics
The mathematics behind linear and nonlinear uncertainty 

methods are rooted in considering quantities related to models 
(for example, input parameters, model outputs collocated 
with observations, and outputs making forecasts) as random 
variables. This means we not only consider the base values 
of these quantities, but also their uncertainty (expressed as 
variance or covariance).

Distributions

In this work, Gaussian (Normal) and Uniform Probability 
Density Functions (Distributions) are used to describe random 
variables.

https://github.com/usgs/pestpp
https://github.com/pypest/pyemu
https://github.com/pypest/pyemu
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For a single (scalar) value, the Gaussian distribution is

  𝒩 (θ |μ,  σ  ) 1=  __  e _1(θ ) 2
2 _−μ  

−         (1)​​ ​​ ​ ​   ​
​√   2π ​σ​​ 2​ ​

​ ​ ​​ 2​​
​​ ​​​

​σ​​ 2​ ​ ​

where
 𝒩  (θ |μ,  σ 2 )   is a Normal Distribution of θ conditional 

on  μ and σ 2,

 θ is the random variable,

 µ is the mean, and

 σ2 is the variance.

For a vector of multiple values, the multivariate Gaussian
distribution is

( | ) __1 𝒩  𝛉 𝛍, 𝚺 =    e − _1  ( (𝛉−𝛍) T𝚺 −1(𝛉−𝛍))  (2
 √ (2π) k|𝚺|    

2

where
 𝒩  (𝛉 |𝛍, 𝚺)   is a Normal Distribution of θ conditional 

on µ and Σ,

 θ is the vector of k random variables,

 µ is the vector of k mean values,

  𝚺  is the k×k covariance matrix, and

 T is a matrix transpose.

For a single (scalar) value, the Uniform Distribution is

1  _    for a ≤ θ ≤ b f  (θ) =  b −      a     (3
{ 0  for x 〈θ or θ〉b 

where
 θ is the random variable, and

  a and b are the lower and upper bounds of the 
distribution, respectively.

Local Sensitivity and the Jacobian Matrix

PEST is based on the Gauss-Levenberg-Marquardt 
technique for damped least-squares regression. Fienen and 
others (2024) provide a derivation and interpretation of the 
algorithm. This is a gradient-based algorithm that depends on 
parameter sensitivity to supply the gradients. The parameter 

​​ ​​ ​ 
​ ​​ ​​ ​​

 

​​ ​ ​   ​
​​ ​​​ ​​

​ ​ ​​ ​​ ​​ ​​​ ​​ ​​ ​​ ​​� )
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​ 

sensitivity of the modeled output m θ
and time with observation z) to model input parameter θ is 
defined as

∂ z )
 _ = _∂ m (θ      (4)∂ θ ∂ θ

This sensitivity is commonly approximated using 
finite differences by perturbing a parameter by a small 
increment Δθ as

_∂ z _______________m( θ + Δθ)  − m (θ)      ≈       (5)∂ θ Δθ

where
  m (⋅)   is the model output collocated with an 

observed data point z.

The Jacobian matrix (J) is constructed of the local 
sensitivity of all pairs of observations with parameters forming 
a matrix:

∂  z  
  J  =  _ i  (6)∂  θj

where
 i ranges from 1 to the number of observations 

(NOBS), and

 j ranges from 1 to the number of adjustable 
parameters (NPAR).

At its root, the Jacobian matrix can be interpreted as the 
basis for an approximation for a mapping from ℝ     n → ℝ m
used in the change of variables for integration in calculus 
(the determinant of the Jacobian matrix provides the actual 
mapping if the Jacobian is a square matrix; Simmons, 1985, 
p. 673). In the context of parameter estimation, this matrix 
not only provides the gradients needed to find a solution 
to the inverse problem, but also serves as an approximate 
mapping from observation space to parameter space (for 
example, ℝ obs  →  ℝ pars  ), thus projecting information from a 
set of observation data to a set of parameter data. If the system 
were totally linear, then this mapping would be complete and 
a unique mapping would result in a calibrated model in one 
step. However, this is not the case, as discussed briefly below 
in the Parameter Estimation—Gauss-Levenberg-Marquardt 
Algorithm section (and in more detail in Fienen and 
others, 2024), so the mapping of observation information 
to parameters is approximate. That approximation, when 
adjusted based on assumed uncertainty of observation data, 
is a powerful one and can inform the likely quality of a 

( ) (collocated in space 

	​​  ​ ​   ​  ​​�

	​​  ​​�

​​
​ ​​​​�

​   ​  ​​ ​​ 

​​ ​​ ​​
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parameter-estimation effort. This approximation can map 
the uncertainty of observation data onto parameter data and, 
similarly, project that out to model forecasts.

Forecast Sensitivity

A similar calculation can also be made to determine the 
sensitivity of a model forecast (s) to the model and parameters 
(θ) also using the finite-difference approximation

	 ​y  ≜ ​  ∂ s _ ∂ 𝛉​ ≈  ​ s​(𝛉 + Δ𝛉)​ − s​(𝛉)​  _____________ Δ𝛉  ​​ � (7)

where, in this case,
  s (⋅)   is the modeled forecast.

Similar to local sensitivity of model observations, this 
calculation is made entirely from adjusting parameters and 
calculating model outputs. As a result, there is no need for an 
independent estimate of the forecast value to calculate this 
sensitivity.

Parameter Estimation—The Objective Function

The parameter-estimation process entails the finding 
of the set of parameter values that minimizes an objective 
function. The objective function (Φ) is a metric of weighted, 
squared differences between observations (z) and modeled 
equivalents to them  ( J𝛉):

                               𝚽 = (z − J𝛉) T 𝚺  (ϵ z − J𝛉)                         (8)

where
 Σϵ is the covariance matrix of observation 

errors (ϵ), which are, in practice, typically 
assumed independent and normally 
distributed.

The diagonal variance values σ2 constituting Σϵ are 
informed to the PEST and PyEmu programs as weights, 

1defined as w  = _ σ   , where σ is an estimate of the standard 
deviation of the observed value. The matrix Σϵ has σ2 for each 
observation on the diagonal. This value of σ corresponds with 
the epistemic error that encapsulates measurement error and 
assumed errors in the model (for example, Doherty and Welter, 
2010; White and others, 2014). As a result, the covariance 
matrices are metrics of error or uncertainty.

Parameter Estimation—
Gauss-Levenberg-Marquardt Algorithm

To find the parameters that minimize Φ (eq. 8) for a 
linear case, the best estimate of parameters (   ̂𝛉  ) is available 
using the Gauss-Newton method as

​​

 ​   ​​  ​​​ ​ ​ ​​​

​​

​​ 

                                   ​​  𝛉​ ​ = ​ ​(​J​​ T​ ​𝚺​ ϵ​​ J)​​​ −1​ ​J​​ T​ ​𝚺​ ϵ​​ z​​ ​                        (9)

For nonlinear cases, a Taylor expansion is repeatedly iterated 
about an initial estimate of parameters (x0). For an incremental 
step to new parameters

                                 ​z​(𝛉 + 𝛅)​ ≈ z​(𝛉)​ + J𝛅​​ ​                        (10)

where
	​ 𝛅​	 is an incremental change in parameter values.

Rearranging this to iteratively solve for parameters θ, 
each subsequent iteration takes the form of

   ​​​̂  𝛉​​ i​​ ​= ​​̂  𝛉​​ i−1​​ + ​​(​J​​ T​ ​𝚺​ ϵ​​ J + λdiag ​(​J​​ T​ J)​)​​​ −1​ ​J​​ T​ ​𝚺​ ϵ​​​(z − J ​​  𝛉​​ i−1​​)​​     (11)

where
	​ J​	 is recalculated at each iteration using the 

most recent estimate of parameters 
available ​​(​​  𝛉​​ i−1​​)​​, and

	 λ	 is the Marquardt adjustment that adjusts the 
solution trajectory between the Newton 
direction and the steepest descent direction.

This iterative procedure accounts for the nonlinearity of 
the problem. For a linear problem, ​J​ would not change with 
changing parameter values. The inverse problem is solved 
making use of just these few pieces of information: ​J​, Σϵ, and 
z. As a result, much information regarding potential parameter 
estimation results can be gleaned from these values.

Bayes’ Theorem

At the heart of the propagation of variance we wish 
to explore uncertainty cascading from observations to 
parameters and ultimately to forecasts. We can accomplish this 
propagation of variance in a Bayesian context. Bayes’ theorem 
states that

	​ p​(h​|​​d)​ = ​
p​(d​|​​h)​p​(h)​

 _ p​(d)​ ​ ∝ p​(d​|​​h)​p​(h)​​�  (12)

where
	​ p​(⋅)​​	 is probability,

	 |	 is conditionality,

	 h	 is a hypothesis, 

	 d	 is data or evidence,

	 p(h)	 is the prior distribution of the hypothesis, 
independent of the data ​d​,
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	 p(d|h)	 is the likelihood that the data would be 
observed if the hypothesis was true (in 
modeling, this is characterized by the 
difference between model output and 
observations collocated in time and space),

	 p(d)	 is the marginal distribution of the data 
being observed independent from the 
hypothesis, and

	 p(h|d)	 is the posterior distribution of the hypothesis 
conditional on the data ​d​ that were 
observed.

In plain language, the posterior distribution of the 
hypothesis given the data p(h|d) is proportional to the 
product of the a priori knowledge about the hypothesis 
independent from the data ​​(p​(h)​)​​ and the information 
that the data provides ​​(p​(d​|​​h)​)​​. This is a form of updating 
information through new observations or experiments. In the 
parameter-estimation context, one can think of h as a set of 
parameters to be estimated, and d as a set of observations used 
in the parameter-estimation process.

First-Order Second-Moment (FOSM) 
Propagation of Variance

From a Bayesian context, we can formally estimate the 
change in variance when updating the prior variance with 
new information (in this case, through parameter estimation 
with new evidence). A full derivation of these calculations 
is presented in Fienen and others (2010). The cascade of 
information from observations to parameters is “Notional 
Calibration” (Doherty, 2010b) as it reflects the reduction of 
uncertainty to parameters that would result from calibration to 
the dataset for which ​J​ indicates the sensitivity, and assuming 
the weights in Σϵ and the prior parameter covariance in Σθ, if 
the relationships were all linear.

Schur Complement for Notional Calibration

Given a prior covariance for the parameters (Σθ), the 
posterior covariance after updating with new observations ​​(​​

_
 𝚺​​ θ​​)​​ 

can be calculated using the Schur Complement (White and 
others, 2016) as

	​​ ​
_

 𝚺​​ θ​​ ​= ​𝚺​ θ​​ − ​𝚺​ θ​​ ​J​​ T​ ​​[J ​𝚺​ θ​​ ​J​​ T​ + ​𝚺​ ϵ​​]​​​ −1​ J ​𝚺​ θ​​​� (13)

This equation shows that the prior covariance (Σθ) is 
either unchanged or reduced by the parameter-estimation 
process represented as the second term on the right-hand 
side. The actual observation values do not feature in this 
equation—only the sensitivity to observations as expressed 
in the Jacobian matrix ​J.​ This allows the value of potential 
observations to be evaluated as long as the sensitivity of a 
model output collocated in time and space with a potential 
observation location can be evaluated through perturbations, 
as shown in the “Local Sensitivity and the Jacobian 
Matrix” section.

Extending to a Forecast

The prior variance of a forecast based on prior parameter 
covariance or uncertainty (Σθ) can be calculated using the 
forecast sensitivity outlined in equation 7:

	​​ σ​ s​ 2​ = ​y​​ T​ ​𝚺​ θ​​ y​.� (14)

Similarly, the posterior variance of a forecast, based on 
an estimate of reduced parameter uncertainty through notional 
calibration, can be calculated as

​​​​σ   =  y Ts  T
θ   θ

  −  y T 𝚺  θ J T  [J  𝚺  θJ T  +  𝚺  ϵ] −1 J𝚺  θy .  
 𝚺   y =  y 𝚺   y  

               (15)
​ ​​​​ ​​​
2
​​ ​​ ​ ​

_
​​ ​  ​ ​​ ​ ​ ​ 

​​ ​ ​ ​ ​ ​​ ​ ​ ​​ ​ ​​ ​​ ​​​ ​  ​​ ​​ 

Nonlinear Methods

The Monte Carlo technique is a rejection sampling 
technique in which an ensemble of parameter values is 
generated and the underlying process model is run using each 
member of the ensemble as a parameter set. For nonlinear 
Monte Carlo techniques, a Gaussian Distribution (eqs. 1 
and 2) or a Uniform Distribution (eq. 3) is used to generate 
parameter or observation realizations by drawing random 
samples from the distributions. These realizations can use 
information from the PEST control file to construct variance 
and covariance values or use geostatistical information about 
the parameter values in the Gaussian case or to construct the 
bounds for the Uniform case. For each member, the objective 
function (Φ, eq. 8) is calculated, and for values of Φ lower 
than an acceptable threshold, all model outputs are aggregated, 
resulting in distributions of outputs and accompanying metrics 
of their covariance or uncertainty.
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Linear Uncertainty Methods—Three 
Main Approaches

Propagation of uncertainty using linear methods is 
efficient once several quantities are calculated: (1) the 
prior covariance of parameters (Σθ); (2) the covariance of 
the observations (Σϵ); (3) the Jacobian matrix (including 
sensitivity to potential new observations, if considering 
potential observations) ; and (4) the sensitivity of forecasts to 
the model and parameters (y).

Linear uncertainty methods using these four components 
provide three main approaches to examine the worth of 
potential and future data. These are summarized in figure 1 
and discussed briefly in this section. More details on the 
implementation of the workflow are provided in the “Results 
of Analysis in the Mississippi Alluvial Plain Using Linear 
Uncertainty Methods” section.

Approach 1.—The first strategy is to evaluate the 
potential value of gaining better information directly on 
model parameters. If we consider that the parameters follow 
a multivariate Gaussian distribution ​​(𝒩(𝛉, 𝚺𝛉))​​ , we can 
evaluate the contribution of each parameter by repeating 
the calculations of equation 14 with parameter covariance 
altered to simulate perfect knowledge of a parameter. This is 
accomplished by setting the variance of a parameter to zero 
(setting the diagonal of Σθ corresponding to that parameter to 
zero) and conditioning the off-diagonal elements to simulate 
perfect knowledge by reducing the variance of all parameters 
correlated with the parameter being evaluated proportional 
to their correlation. The Schur Complement then is used 
to calculate        (for example, the posterior variance with 

parameter i  known perfectly). If the parameter is important 
for the forecast, then 2 2

s  
i
will be less than s . A metric of 

parameter importance can be calculated as

2 2
s s

 parameter importance =               i

2 × 100 percent.  (16)
s

Approach 2.—The second strategy is to evaluate the 
value of potential new observations. This is accomplished 
by supplementing the Jacobian matrix J with a row 
corresponding to the sensitivity of a potential observation 
to the parameters. An entry must also be added to the 
epistemic error covariance matrix (Σϵ) indicating the 
expected uncertainty of the new observation. Assigning 
weights to observations—potential or existing—is always 
somewhat subjective. A common approach for potential new 
observations is to use the same weight as the best-quality 
existing observations of a similar type, if they exist, with 
the logic that new data will be collected using the best 
techniques available resulting in quality commensurate with 
the best existing data. The Schur Complement (eq. 15) is used 
again with the augmented  and Σϵ matrices to calculate  (the 
posterior variance with the ith potential observation added), 
and the importance of the added observation can be calculated 
by evaluating the decrease in forecast variance with the added 
observation as

2 2
s s

 added observation importance =                
i

2 × 100 percent.
s

(17)

Approach 3.—The third strategy is to evaluate the value 
of existing observations based on their contribution to forecast 
uncertainty. This is accomplished by setting the weight of is

2

2

Observations

Model Forecasts

3

Simulate adding new potential observations to evaluate how new information reduces uncertainty 
of parameters and cascades out to forecasts through the calibration process. 

Simulate removing existing observations to evaluate how potentially redundant information increases 
uncertainty of parameters and cascades out to forecasts. If the increase in uncertainty is acceptable, 
this can guide reduction of an observation network. 

1 Simulate collecting information on parameters to evaluate how 
reduction in prior parameter uncertainty impacts forecasts 
directly and through the notional calbration process.

Notional calibration approximated assuming linearity:

            Information flow

Figure 1.  Diagram showing the three main ways the Schur Complement is used to propagate uncertainty from 
observations to model parameters and through to model forecasts.
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an observation to evaluate to zero on the diagonal of the 
epistemic error covariance matrix (Σϵ) and then calculating 

s
2

i (the posterior variance with the ith observation omitted) 
using the Schur Complement (eq. 15). The importance of 
the existing observation can be calculated by evaluating the 
increase in forecast variance with a removed observation as

	�  (18)

Results of Analysis in the Mississippi 
Alluvial Plain Using Linear Uncertainty 
Methods

We show the use of linear uncertainty methods in the 
three approaches described in section “Linear Uncertainty 
Methods—Three Main Approaches” using the forecast of 
drawdown at multiple future times in the Sunflower region as 
the forecast of interest. Haugh and others (2020a) documented 
a specific region of significant drawdown (referred to in 
Haugh and others, 2020a, 2020b, and in this work as the 
“composite hydrograph area”) and various potential remedies 
to stop or reverse the drawdown. The forecasts of how these 
remedies might be effective was simulated using the improved 
Mississippi Embayment Regional Aquifer Study (MERAS) 
MODFLOW (Hunt and others, 2021) model, which updated 
the original MODFLOW–2005 (Harbaugh, 2005) version of 
the model (Clark and others, 2013). In this work, a further 
update of the MODFLOW model (Hunt and others, 2021), 
implemented in MODFLOW–NWT (Niswonger and others, 
2011), was used to make the same forecasts. The composite 
hydrograph area, delineating the area over which the forecast 
is defined, is shown in figure 2.

The updated MODFLOW–NWT model uses 16 
stress periods for parameter estimation. An initial 9-year 
dynamic-equilibrium stress period, representing average 
stresses from 1998 to 2007, is followed by 15 additional 
6-month stress periods. These 15 additional stress periods 
each represent 6 months and alternate between growing and 
non-growing seasons. A 50-year forecast period then follows 
this parameter estimation period with 100 repeated alternating 
growing and non-growing season 6-month stress periods 
selected from the parameter estimation time (stress periods 7 
and 12 for growing and nongrowing, respectively) resulting 
in a 50-year forecast period consistent with (Haugh and 
others, 2020a).

To evaluate data worth, the forecast of interest was 
identified as the mean drawdown in the composite hydrograph 
area (refer to fig. 2) at stress periods 17, 37, 57, and 107, 
representing 0, 10, 20, and 45 years into the simulated 
forecast period.

To evaluate potential observations, a network of potential 
head observation locations was simulated at the first stress 
period of the forecast period (stress period 17). The data 
worth of these potential observations is discussed in the 
“Worth of Potential New Observations on Reducing Forecast 
Uncertainty” section.

The most basic calculation to be made using linear 
uncertainty methods is the reduction in uncertainty of the 
forecast prior to parameter estimation with the available 
dataset and after parameter estimation (the prior and posterior 
standard deviation, respectively). The prior standard deviation 
(σ) was 3,367.59 feet and the posterior σ was 0.10 foot. 
The remainder of this section examines how information 
on parameters and observations play important roles in 
contributing to the posterior σ.

Contribution of Parameters to Forecast 
Uncertainty—Parameter Importance

The first analysis result shows the contribution of 
various model parameters to uncertainty. This result can be 
summarized by group to help indicate which broad categories 
of parameter information contribute most significantly to the 
posterior uncertainty. As shown in figure 3, recharge pilot 
points in aggregate (rpp) are the most important, followed by 
specific yield (sy), anisotropy (aniso), and horizontal hydraulic 
conductivity pilot points in aggregate (hkpp). The remaining 
parameter groups include zones of hydraulic conductivity 
(horizontal and vertical), streamflow routing (sfr), and specific 
storage (ss).

Worth of Existing Observations on Reducing 
Forecast Uncertainty

The worth of existing observations can be calculated 
using equation 18. This has the dual purpose of potentially 
helping indicate which observations may be redundant 
in a monitoring network and helping users to understand 
the importance of specific observations in the calibration 
dataset as they impact forecast uncertainty. Figure 4 shows 
the locations of the observations scaled by their removed 
observation importance, aggregated across all stress periods. 
The “x” marks on figure 4 indicate all locations of head 
observations that were available for at least part of the 
history-matching time period. Two forecasts were evaluated 
for this analysis—the mean and median drawdown in the 
composite hydrograph area. In figure 4A and 4B showing 
aggregated data worth for both forecasts, the colored circle 
symbols indicate aggregated normalized data worth for all 
existing observation locations with a value greater than 0.001. 
The aggregated normalized data worth was calculated by 
summing the calculated data worth across all forecast and 

s
2

s
2removed observation importance =               × 100 percent.i

2
s
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Figure 2.  Map showing location of the composite hydrograph area within the Mississippi Embayment Regional 
Aquifer Study model footprint, Arkansas, Missouri, Illinois, Kentucky, Louisiana, Mississippi, and Alabama.
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Figure 4.  Images showing aggregated data worth for removed, existing observation locations across all stress periods. A, 
Aggregated mean drawdown forecast. B, Aggregated median drawdown forecasts.
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history-matching stress periods for which an observation was 
simulated at each specific location. This quantity was then 
normalized by dividing by the maximum aggregated value at 
each point. Therefore, the actual magnitude of the quantity 
does not have an interpretable value, but the relative rank of 
the values can help inform which locations have relatively 
more or less value. As figure 4A and 4B indicates, the patterns 
are not well connected with hydrologic features such as the 
streamflow routing (sfr) cells. Indeed, although the highest 
value in each case is near the composite hydrograph area, 
it is not within the area, which is suspicious. The density of 
existing data confounds the ability of this analysis to identify 
a single most important or valuable data point. The level of 
redundancy of existing data indicates that, in this case, the 
analysis does not deeply inform decisions to remove data from 
future consideration.

Worth of Potential New Observations on 
Reducing Forecast Uncertainty

The final analysis using linear uncertainty methods 
evaluated the contributions to uncertainty reduction made 
by data obtained from new observations. For this evaluation, 
a network of potential head observations was simulated in 
every model cell within a buffer of about 10 miles around the 
composite hydrograph area. Despite good spatial coverage 
of head observations used for the calibration of the model, 
this exercise was performed to evaluate the potential to fill 
in gaps of unobserved areas and to focus on data collected 
at the onset of the forecast period. Forecast uncertainty 
was evaluated at each stress period (for example, 6-month 
intervals) for the entire 50-year forecast period. As discussed 
in the “First-Order Second-Moment (FOSM) Propagation of 
Variance” section, data worth must be evaluated with respect 
to a specific forecast of interest. As a result, potential data 
worth values exist for every simulated potential observation 
location for all 100 forecast-period stress periods. An 
aggregated representation of data worth, normalized to the 
maximum aggregated data worth over all forecast time, is 
shown in figure 5A. In other words, the scale from 0.0 to 1.0 is 
intended to convey the spatial location of maximum forecast 
uncertainty reduction achieved if a new head observation is 
made at the beginning of the forecast period (stress period 
17). A heatmap of the typical location of the maximum 

drawdown within the composite hydrograph area, to provide 
some context regarding where most additional information 
is likely to be found if adding a new observation, is shown 
in figure 5B. The actual decrease of forecast variance for the 
mean drawdown is shown in figure 5C and generally decreases 
throughout the forecast time. This trend highlights that, as 
time continues in the forecast period, the value of monitoring 
new data decreases because more of the actual forecast time 
has elapsed and monitoring data at the beginning of the 
forecast period is eclipsed by actual observations throughout 
that time period. These results show that potential new data 
are most valuable close to the center of mass of where the 
maximum drawdown forecast is located. This conclusion is 
logical, as pumping greater than recharge is the key driver of 
drawdown, so collecting more data in the region where the 
forecast is occurring should be informative about the forecast. 
Observations at the beginning of the forecast period are also 
more informative than subsequent observations as the forecast 
period elapses (fig. 5C). The evolution of the actual forecast 
over time and that, once the trajectory is underway, the 
value of observations at the beginning of the forecast period 
diminishes, are shown in figure 5D.

Limitations and Lessons Learned
We have described the theoretical background and 

provided an example of use of a groundwater-flow model 
for evaluating data worth using a parameter-estimation 
mathematical and statistical framework. The metric of 
uncertainty of a forecast of interest is the key metric with 
which to judge data worth.

Limitations

The mathematical framework depends on the Jacobian 
matrix, a prior covariance structure for the parameters, and 
a meaningful observation weighting scheme. All of these 
elements depend on a model that is stable, predictable in 
its behavior, and a reasonable simulator of the system. 
Instabilities and large misrepresentations of the system 
dynamics can negatively impact the value of data-worth 
calculations.
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Summary, Conclusions, and Lessons Learned

In the example we evaluated, the existence of a large 
spatially and temporally distributed observation network 
masks the value of the analysis. For example, the identification 
of a single observation among hundreds of existing 
observations as less valuable implies that the information such 
an observation provides is redundant or disconnected from the 
forecast of interest. However, with such uniform coverage, 
one could argue that almost all the observations are redundant 
and picking one or more to drop is difficult either qualitatively 
or using the quantitative methods examined here. Similarly, 
when there are few spatial gaps where observations do not 
exist, it is difficult for the method to evaluate where additional 
information could be added. Finally, the temporal aspect 
of this modeling effort required summarizing observation 
acquisition and forecast times in ways that make the base 
units of the data worth quantities difficult to interpret, but 
instead focus on the rank of data worth from one location to 
another. The data worth methods presented are perhaps most 
valuable when fewer observations already exist. Nonetheless, 
the insights gained are valuable and the low incremental 
computational cost when a parameter estimation framework is 
in place make this a valuable analysis tool to use.
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