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Conversion Factors

U.S. customary units to International System of Units

Multiply By To obtain
Length
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

International System of Units to U.S. customary units

Multiply By To obtain
Length
kilometer 0.6214 mile (mi)

Datum

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).



A Model Uncertainty Quantification Protocol for
Evaluating the Value of Observation Data

By Michael N. Fienen, Laura A. Schachter, and Randall J. Hunt

Abstract

The history-matching approach to parameter estimation
with models enables a powerful offshoot analysis of data
worth—using the uncertainty of a model forecast as a metric
for the worth of data. Adding observation data will either have
no impact on forecast uncertainty or will reduce it. Removing
existing data will either have no impact on forecast uncertainty
or will increase it. The history-matching framework makes
it possible to perform this quantitative analysis leveraging
the connections among observations, model parameters,
and model forecasts. We show this behavior on a specific
groundwater flow model of the Mississippi Alluvial Plain and
show where the analysis can be informative for considering
the potential design of an observation network based on
existing or potential observations.

Introduction

The Mississippi Alluvial Plain (MAP) project is a
large, multi-disciplinary project with the goal of supporting
stakeholder-driven decision support for water-resource
management. This project includes endpoints of streamflow
depletion and drawdown as forecasts that can be managed
through land-use and water-management changes, guided
by economic tradeoffs. In this report, we examine the
theory and practice of using mathematical techniques with
a groundwater-flow model to evaluate the relative worth of
existing and potential observation data that can be used for
parameter estimation through history matching. The metric of
reducing forecast uncertainty is used to evaluate data worth.

Purpose and Scope

This document is intended to provide the theoretical
background for evaluating forecast uncertainty with models.
In particular, this project is motivated by a desire for models to
be dynamic and “living” such that over the course of a project,

the models not only serve the needs of making forecasts,
but the quality of those forecasts can guide data collection
throughout the project.

The examples in this work are based on a regional
groundwater-surface water project with a groundwater-flow
model (Hunt and others, 2021) and a soil-water balance model
(Nielsen and Westenbroek, 2023). However, the techniques
presented here can be used with a range of models and the
tools are generally model-independent.

A Note on Software Packages Used

The workflows in this document use the open-source
scripting environment of the Python and the PEST/PEST++
suite of programs (Doherty, 2010a; Doherty and others,

2011; Welter and others, 2012; White and others, 2020;
https://github.com/usgs/pestpp) which interface with the utility
software PyEMU (White and others, 2016; https://github.com/
pypest/pyemu). These tools were chosen because they

are model-independent, free, and open-source. Model
independence has been a feature of the PEST suite of tools
from its inception, and the techniques documented here can be
applied to any models.

Background Mathematics

The mathematics behind linear and nonlinear uncertainty
methods are rooted in considering quantities related to models
(for example, input parameters, model outputs collocated
with observations, and outputs making forecasts) as random
variables. This means we not only consider the base values
of these quantities, but also their uncertainty (expressed as
variance or covariance).

Distributions

In this work, Gaussian (Normal) and Uniform Probability
Density Functions (Distributions) are used to describe random
variables.


https://github.com/usgs/pestpp
https://github.com/pypest/pyemu
https://github.com/pypest/pyemu
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For a single (scalar) value, the Gaussian distribution is

1 1(6-1)
N0, 62) = €72 52 1
where
N (H|,u, 62) is a Normal Distribution of 8 conditional

on u and 62,
0 is the random variable,
u is the mean, and
6?2 is the variance.

For a vector of multiple values, the multivariate Gaussian
distribution is

1 1
N(Op,X) = ———¢ (6-W=Z'On) 2
©OZ) = o @
where
i (9| H, Z) is a Normal Distribution of 6 conditional

onpand X,
0 is the vector of k£ random variables,
is the vector of k£ mean values,
p) is the k Xk covariance matrix, and
T isamatrix transpose.

For a single (scalar) value, the Uniform Distribution is

1
ﬂﬁ)z{b—a fora <60 <b 3)
0 for x{0 or )b

where
0 is the random variable, and

aand b are the lower and upper bounds of the

distribution, respectively.

Local Sensitivity and the Jacobian Matrix

PEST is based on the Gauss-Levenberg-Marquardt
technique for damped least-squares regression. Fienen and
others (2024) provide a derivation and interpretation of the
algorithm. This is a gradient-based algorithm that depends on
parameter sensitivity to supply the gradients. The parameter

sensitivity of the modeled output m(6) (collocated in space
and time with observation z) to model input parameter & is
defined as

oz _ om0
00 00 @)

This sensitivity is commonly approximated using
finite differences by perturbing a parameter by a small
increment 46 as

0z _ m(0+460) — m(6)
00~ 40 )

where
m(-) is the model output collocated with an

observed data point z.

The Jacobian matrix (J) is constructed of the local
sensitivity of all pairs of observations with parameters forming
a matrix:

J = 30, (6)

where
i ranges from | to the number of observations
(NOBS), and

j  ranges from 1 to the number of adjustable
parameters (NPAR).

At its root, the Jacobian matrix can be interpreted as the
basis for an approximation for a mapping from R* — R”
used in the change of variables for integration in calculus
(the determinant of the Jacobian matrix provides the actual
mapping if the Jacobian is a square matrix; Simmons, 1985,
p. 673). In the context of parameter estimation, this matrix
not only provides the gradients needed to find a solution
to the inverse problem, but also serves as an approximate
mapping from observation space to parameter space (for
example, Ro? — Rras), thus projecting information from a
set of observation data to a set of parameter data. If the system
were totally linear, then this mapping would be complete and
a unique mapping would result in a calibrated model in one
step. However, this is not the case, as discussed briefly below
in the Parameter Estimation—Gauss-Levenberg-Marquardt
Algorithm section (and in more detail in Fienen and
others, 2024), so the mapping of observation information
to parameters is approximate. That approximation, when
adjusted based on assumed uncertainty of observation data,
is a powerful one and can inform the likely quality of a



parameter-estimation effort. This approximation can map
the uncertainty of observation data onto parameter data and,
similarly, project that out to model forecasts.

Forecast Sensitivity

A similar calculation can also be made to determine the
sensitivity of a model forecast (s) to the model and parameters
(0) also using the finite-difference approximation

s Os_ s(0+40)— 50 @)
Y= %0~ 10

where, in this case,
s() is the modeled forecast.

Similar to local sensitivity of model observations, this
calculation is made entirely from adjusting parameters and
calculating model outputs. As a result, there is no need for an
independent estimate of the forecast value to calculate this
sensitivity.

Parameter Estimation—The Objective Function

The parameter-estimation process entails the finding
of the set of parameter values that minimizes an objective
function. The objective function (@) is a metric of weighted,
squared differences between observations (z) and modeled
equivalents to them (J0):

® = (z—-JOTE (z-JO) (3)

where
Y,  isthe covariance matrix of observation
errors (€), which are, in practice, typically
assumed independent and normally
distributed.

The diagonal variance values 62 constituting X_are
informed to the PEST and PyEmu programs as weights,
defined as w= (—15, where o is an estimate of the standard

deviation of the observed value. The matrix X, has ¢ for each
observation on the diagonal. This value of 6 corresponds with
the epistemic error that encapsulates measurement error and
assumed errors in the model (for example, Doherty and Welter,
2010; White and others, 2014). As a result, the covariance
matrices are metrics of error or uncertainty.

Parameter Estimation—
Gauss-Levenberg-Marquardt Algorithm

To find the parameters that minimize @ (eq. 8) for a

linear case, the best estimate of parameters (8) is available
using the Gauss-Newton method as
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For nonlinear cases, a Taylor expansion is repeatedly iterated
about an initial estimate of parameters (X,). For an incremental
step to new parameters

2(0 +8) ~ z(0) + J& (10)
where
o is an incremental change in parameter values.

Rearranging this to iteratively solve for parameters 0,
each subsequent iteration takes the form of

0,=0., +(ITE,J + idiagdTD) ' ITE (z-36,,) (11)
where
J  isrecalculated at each iteration using the
most recent estimate of parameters
available (6[_1), and

A is the Marquardt adjustment that adjusts the
solution trajectory between the Newton
direction and the steepest descent direction.

This iterative procedure accounts for the nonlinearity of
the problem. For a linear problem, J would not change with
changing parameter values. The inverse problem is solved
making use of just these few pieces of information: J, X, and
z. As a result, much information regarding potential parameter
estimation results can be gleaned from these values.

Bayes’ Theorem

At the heart of the propagation of variance we wish
to explore uncertainty cascading from observations to
parameters and ultimately to forecasts. We can accomplish this
propagation of variance in a Bayesian context. Bayes’ theorem
states that

p(dp(h)

plhid)="=5

x p(dihp(h) (12)

where
is probability,

pC)
| is conditionality,
h  isa hypothesis,
d is data or evidence,

p(h) is the prior distribution of the hypothesis,

independent of the data d,
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is the likelihood that the data would be
observed if the hypothesis was true (in
modeling, this is characterized by the
difference between model output and
observations collocated in time and space),

p(dfh)

p(d) is the marginal distribution of the data
being observed independent from the
hypothesis, and

p(hjd) s the posterior distribution of the hypothesis
conditional on the data d that were

observed.

In plain language, the posterior distribution of the
hypothesis given the data p(h|d) is proportional to the
product of the a priori knowledge about the hypothesis
independent from the data (p(h)) and the information
that the data provides (p(dlh)). This is a form of updating
information through new observations or experiments. In the
parameter-estimation context, one can think of h as a set of
parameters to be estimated, and d as a set of observations used
in the parameter-estimation process.

First-Order Second-Moment (FOSM)
Propagation of Variance

From a Bayesian context, we can formally estimate the
change in variance when updating the prior variance with
new information (in this case, through parameter estimation
with new evidence). A full derivation of these calculations
is presented in Fienen and others (2010). The cascade of
information from observations to parameters is “Notional
Calibration” (Doherty, 2010b) as it reflects the reduction of
uncertainty to parameters that would result from calibration to
the dataset for which J indicates the sensitivity, and assuming
the weights in X_and the prior parameter covariance in X, if
the relationships were all linear.

Schur Complement for Notional Calibration

Given a prior covariance for the parameters (%), the
posterior covariance after updating with new observations ()

can be calculated using the Schur Complement (White and
others, 2016) as

£,=%,-ZJT[JEIT+X]IZ, (13)

This equation shows that the prior covariance (%) is
either unchanged or reduced by the parameter-estimation
process represented as the second term on the right-hand
side. The actual observation values do not feature in this
equation—only the sensitivity to observations as expressed
in the Jacobian matrix J. This allows the value of potential
observations to be evaluated as long as the sensitivity of a
model output collocated in time and space with a potential
observation location can be evaluated through perturbations,
as shown in the “Local Sensitivity and the Jacobian
Matrix” section.

Extending to a Forecast

The prior variance of a forecast based on prior parameter
covariance or uncertainty (X,) can be calculated using the
forecast sensitivity outlined in equation 7:

ol =y'Zyy. (14)
Similarly, the posterior variance of a forecast, based on

an estimate of reduced parameter uncertainty through notional
calibration, can be calculated as

2 —
o, =y Z,y=y'Zyy

—yIEIT[IZ,IT+X ] IZ,y. (15)

Nonlinear Methods

The Monte Carlo technique is a rejection sampling
technique in which an ensemble of parameter values is
generated and the underlying process model is run using each
member of the ensemble as a parameter set. For nonlinear
Monte Carlo techniques, a Gaussian Distribution (egs. 1
and 2) or a Uniform Distribution (eq. 3) is used to generate
parameter or observation realizations by drawing random
samples from the distributions. These realizations can use
information from the PEST control file to construct variance
and covariance values or use geostatistical information about
the parameter values in the Gaussian case or to construct the
bounds for the Uniform case. For each member, the objective
function (®, eq. 8) is calculated, and for values of ® lower
than an acceptable threshold, all model outputs are aggregated,
resulting in distributions of outputs and accompanying metrics
of their covariance or uncertainty.



Linear Uncertainty Methods—Three
Main Approaches

Propagation of uncertainty using linear methods is
efficient once several quantities are calculated: (1) the
prior covariance of parameters (X,); (2) the covariance of
the observations (Z); (3) the Jacobian matrix (including
sensitivity to potential new observations, if considering
potential observations) ; and (4) the sensitivity of forecasts to
the model and parameters (y).

Linear uncertainty methods using these four components
provide three main approaches to examine the worth of
potential and future data. These are summarized in figure 1
and discussed briefly in this section. More details on the
implementation of the workflow are provided in the “Results
of Analysis in the Mississippi Alluvial Plain Using Linear
Uncertainty Methods” section.

Approach 1—The first strategy is to evaluate the
potential value of gaining better information directly on
model parameters. If we consider that the parameters follow
a multivariate Gaussian distribution (.#/(0, X)) , we can
evaluate the contribution of each parameter by repeating
the calculations of equation 14 with parameter covariance
altered to simulate perfect knowledge of a parameter. This is
accomplished by setting the variance of a parameter to zero
(setting the diagonal of X, corresponding to that parameter to
zero) and conditioning the off-diagonal elements to simulate
perfect knowledge by reducing the variance of all parameters
correlated with the parameter being evaluated proportional
to their correlation. The Schur Complement then is used

_2 . . .
to calculate 0’5, (for example, the posterior variance with
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parameter I known perfectly). If the parameter is important

_2 . _2 .
for the forecast, then O s, will be less than & ;. A metric of
parameter importance can be calculated as

-2 =2

Os—O0y
parameter importance = 772“ x 100 percent. (16)
O

Approach 2.—The second strategy is to evaluate the
value of potential new observations. This is accomplished
by supplementing the Jacobian matrix J with a row
corresponding to the sensitivity of a potential observation
to the parameters. An entry must also be added to the
epistemic error covariance matrix (2,) indicating the
expected uncertainty of the new observation. Assigning
weights to observations—potential or existing—is always
somewhat subjective. A common approach for potential new
observations is to use the same weight as the best-quality
existing observations of a similar type, if they exist, with
the logic that new data will be collected using the best
techniques available resulting in quality commensurate with
the best existing data. The Schur Complement (eq. 15) is used
again with the augmented and X_matrices to calculate (the
posterior variance with the i potential observation added),
and the importance of the added observation can be calculated
by evaluating the decrease in forecast variance with the added

observation as
—2 —2

Os—O3
added observation importance =———— % 100 percent. (17)
Os

Approach 3.—The third strategy is to evaluate the value
of existing observations based on their contribution to forecast
uncertainty. This is accomplished by setting the weight of

e Simulate adding new potential observations to evaluate how new information reduces uncertainty
of parameters and cascades out to forecasts through the calibration process.

6 Simulate removing existing observations to evaluate how potentially redundant information increases
uncertainty of parameters and cascades out to forecasts. If the increase in uncertainty is acceptable,
this can guide reduction of an observation network.

Observations

Figure 1.

Notional calibration approximated assuming linearity:

1) Simulate collecting information on parameters to evaluate how
reduction in prior parameter uncertainty impacts forecasts
directly and through the notional calbration process.

Forecasts

Diagram showing the three main ways the Schur Complement is used to propagate uncertainty from

observations to model parameters and through to model forecasts.
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an observation to evaluate to zero on the diagonal of the
epistemic error covariance matrix (X)) and then calculating
657,_ (the posterior variance with the i observation omitted)
using the Schur Complement (eq. 15). The importance of
the existing observation can be calculated by evaluating the
increase in forecast variance with a removed observation as

—2 —2

Lo Gs,—0s
removed observation importance = ———x 100 percent. ~ (18)
G

K

i

Results of Analysis in the Mississippi
Alluvial Plain Using Linear Uncertainty
Methods

We show the use of linear uncertainty methods in the
three approaches described in section “Linear Uncertainty
Methods—Three Main Approaches” using the forecast of
drawdown at multiple future times in the Sunflower region as
the forecast of interest. Haugh and others (2020a) documented
a specific region of significant drawdown (referred to in
Haugh and others, 2020a, 2020b, and in this work as the
“composite hydrograph area”) and various potential remedies
to stop or reverse the drawdown. The forecasts of how these
remedies might be effective was simulated using the improved
Mississippi Embayment Regional Aquifer Study (MERAS)
MODFLOW (Hunt and others, 2021) model, which updated
the original MODFLOW=-2005 (Harbaugh, 2005) version of
the model (Clark and others, 2013). In this work, a further
update of the MODFLOW model (Hunt and others, 2021),
implemented in MODFLOW-NWT (Niswonger and others,
2011), was used to make the same forecasts. The composite
hydrograph area, delineating the area over which the forecast
is defined, is shown in figure 2.

The updated MODFLOW-NWT model uses 16
stress periods for parameter estimation. An initial 9-year
dynamic-equilibrium stress period, representing average
stresses from 1998 to 2007, is followed by 15 additional
6-month stress periods. These 15 additional stress periods
each represent 6 months and alternate between growing and
non-growing seasons. A 50-year forecast period then follows
this parameter estimation period with 100 repeated alternating
growing and non-growing season 6-month stress periods
selected from the parameter estimation time (stress periods 7
and 12 for growing and nongrowing, respectively) resulting
in a 50-year forecast period consistent with (Haugh and
others, 2020a).

To evaluate data worth, the forecast of interest was
identified as the mean drawdown in the composite hydrograph
area (refer to fig. 2) at stress periods 17, 37, 57, and 107,
representing 0, 10, 20, and 45 years into the simulated
forecast period.

To evaluate potential observations, a network of potential
head observation locations was simulated at the first stress
period of the forecast period (stress period 17). The data
worth of these potential observations is discussed in the
“Worth of Potential New Observations on Reducing Forecast
Uncertainty” section.

The most basic calculation to be made using linear
uncertainty methods is the reduction in uncertainty of the
forecast prior to parameter estimation with the available
dataset and after parameter estimation (the prior and posterior
standard deviation, respectively). The prior standard deviation
(o) was 3,367.59 feet and the posterior o was 0.10 foot.

The remainder of this section examines how information
on parameters and observations play important roles in
contributing to the posterior 6.

Contribution of Parameters to Forecast
Uncertainty—Parameter Importance

The first analysis result shows the contribution of
various model parameters to uncertainty. This result can be
summarized by group to help indicate which broad categories
of parameter information contribute most significantly to the
posterior uncertainty. As shown in figure 3, recharge pilot
points in aggregate (rpp) are the most important, followed by
specific yield (sy), anisotropy (aniso), and horizontal hydraulic
conductivity pilot points in aggregate (hkpp). The remaining
parameter groups include zones of hydraulic conductivity
(horizontal and vertical), streamflow routing (sfr), and specific
storage (ss).

Worth of Existing Observations on Reducing
Forecast Uncertainty

The worth of existing observations can be calculated
using equation 18. This has the dual purpose of potentially
helping indicate which observations may be redundant
in a monitoring network and helping users to understand
the importance of specific observations in the calibration
dataset as they impact forecast uncertainty. Figure 4 shows
the locations of the observations scaled by their removed
observation importance, aggregated across all stress periods.
The “x” marks on figure 4 indicate all locations of head
observations that were available for at least part of the
history-matching time period. Two forecasts were evaluated
for this analysis—the mean and median drawdown in the
composite hydrograph area. In figure 44 and 4B showing
aggregated data worth for both forecasts, the colored circle
symbols indicate aggregated normalized data worth for all
existing observation locations with a value greater than 0.001.
The aggregated normalized data worth was calculated by
summing the calculated data worth across all forecast and
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Figure 2. Map showing location of the composite hydrograph area within the Mississippi Embayment Regional
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Parameter importance for mean drawdown forecast
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Figure 3. Bar graph showing parameter importance (eq. 16) aggregated to each parameter group. Individual bars correspond
with specific stress periods in the model.
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Images showing aggregated data worth for removed, existing observation locations across all stress periods. A,
Aggregated mean drawdown forecast. B, Aggregated median drawdown forecasts.



history-matching stress periods for which an observation was
simulated at each specific location. This quantity was then
normalized by dividing by the maximum aggregated value at
each point. Therefore, the actual magnitude of the quantity
does not have an interpretable value, but the relative rank of
the values can help inform which locations have relatively
more or less value. As figure 44 and 4B indicates, the patterns
are not well connected with hydrologic features such as the
streamflow routing (sfr) cells. Indeed, although the highest
value in each case is near the composite hydrograph area,

it is not within the area, which is suspicious. The density of
existing data confounds the ability of this analysis to identify
a single most important or valuable data point. The level of
redundancy of existing data indicates that, in this case, the
analysis does not deeply inform decisions to remove data from
future consideration.

Worth of Potential New Observations on
Reducing Forecast Uncertainty

The final analysis using linear uncertainty methods
evaluated the contributions to uncertainty reduction made
by data obtained from new observations. For this evaluation,
a network of potential head observations was simulated in
every model cell within a buffer of about 10 miles around the
composite hydrograph area. Despite good spatial coverage
of head observations used for the calibration of the model,
this exercise was performed to evaluate the potential to fill
in gaps of unobserved areas and to focus on data collected
at the onset of the forecast period. Forecast uncertainty
was evaluated at each stress period (for example, 6-month
intervals) for the entire 50-year forecast period. As discussed
in the “First-Order Second-Moment (FOSM) Propagation of
Variance” section, data worth must be evaluated with respect
to a specific forecast of interest. As a result, potential data
worth values exist for every simulated potential observation
location for all 100 forecast-period stress periods. An
aggregated representation of data worth, normalized to the
maximum aggregated data worth over all forecast time, is
shown in figure 54. In other words, the scale from 0.0 to 1.0 is
intended to convey the spatial location of maximum forecast
uncertainty reduction achieved if a new head observation is
made at the beginning of the forecast period (stress period
17). A heatmap of the typical location of the maximum
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drawdown within the composite hydrograph area, to provide
some context regarding where most additional information

is likely to be found if adding a new observation, is shown

in figure 5B. The actual decrease of forecast variance for the
mean drawdown is shown in figure 5C and generally decreases
throughout the forecast time. This trend highlights that, as
time continues in the forecast period, the value of monitoring
new data decreases because more of the actual forecast time
has elapsed and monitoring data at the beginning of the
forecast period is eclipsed by actual observations throughout
that time period. These results show that potential new data
are most valuable close to the center of mass of where the
maximum drawdown forecast is located. This conclusion is
logical, as pumping greater than recharge is the key driver of
drawdown, so collecting more data in the region where the
forecast is occurring should be informative about the forecast.
Observations at the beginning of the forecast period are also
more informative than subsequent observations as the forecast
period elapses (fig. 5C). The evolution of the actual forecast
over time and that, once the trajectory is underway, the

value of observations at the beginning of the forecast period
diminishes, are shown in figure 5D.

Limitations and Lessons Learned

We have described the theoretical background and
provided an example of use of a groundwater-flow model
for evaluating data worth using a parameter-estimation
mathematical and statistical framework. The metric of
uncertainty of a forecast of interest is the key metric with
which to judge data worth.

Limitations

The mathematical framework depends on the Jacobian
matrix, a prior covariance structure for the parameters, and
a meaningful observation weighting scheme. All of these
elements depend on a model that is stable, predictable in
its behavior, and a reasonable simulator of the system.
Instabilities and large misrepresentations of the system
dynamics can negatively impact the value of data-worth
calculations.
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Figure 5. Image, heatmap, and graphs showing value of potential new observations, collected at the end of
the history-matching period with importance aggregated over all future time. A, Aggregated representation
of data worth, normalized to the maximum aggregated data worth over 50-year forecast period. B, Maximum
drawdown model cell location. C, Data worth—mean drawdown over time. D. Actual forecast—mean
drawdown over time.



Summary, Conclusions, and Lessons Learned

In the example we evaluated, the existence of a large
spatially and temporally distributed observation network
masks the value of the analysis. For example, the identification
of a single observation among hundreds of existing
observations as less valuable implies that the information such
an observation provides is redundant or disconnected from the
forecast of interest. However, with such uniform coverage,
one could argue that almost all the observations are redundant
and picking one or more to drop is difficult either qualitatively
or using the quantitative methods examined here. Similarly,
when there are few spatial gaps where observations do not
exist, it is difficult for the method to evaluate where additional
information could be added. Finally, the temporal aspect
of this modeling effort required summarizing observation
acquisition and forecast times in ways that make the base
units of the data worth quantities difficult to interpret, but
instead focus on the rank of data worth from one location to
another. The data worth methods presented are perhaps most
valuable when fewer observations already exist. Nonetheless,
the insights gained are valuable and the low incremental
computational cost when a parameter estimation framework is
in place make this a valuable analysis tool to use.
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