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Datums
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Supplemental Information
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water year 2025 is the period from October 1, 2024, through September 30, 2025.
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Methods for Peak-Flow Frequency Analysis for
Streamgages in or near Montana, North Dakota, South

Dakota, and Wyoming

By Seth A. Siefken, Tara Williams-Sether, Nancy A. Barth, Katherine J. Chase, and Mark A. Cedar Face

Abstract

The U.S. Geological Survey, in cooperation with the
Montana Department of Natural Resources and Conservation,
North Dakota Department of Water Resources, South Dakota
Department of Transportation, and the Wyoming Water
Development Office, has developed standard methods of
peak-flow frequency analysis for studies in Montana, North
Dakota, South Dakota, and Wyoming. These methods describe
the implementation of national flood frequency guidelines
described in Bulletin 17C (https://doi.org/10.3133/tm4B5)
for the four States and deviations from Bulletin 17C standard
procedures to accommodate unusual hydrologic conditions. A
U.S. Geological Survey data release accompanying this report
(https://doi.org/10.5066/P1 WHRKS8H) provides example
peak-flow frequency analyses for selected streamgages in the
study area. The methods described in this report can be used
to publish similar data releases for other streamgages in the
study area.

Introduction

The U.S. Geological Survey, in cooperation with the
Montana Department of Natural Resources and Conservation,
North Dakota Department of Water Resources, South Dakota
Department of Transportation, and the Wyoming Water
Development Office, has developed standard methods of
peak-flow frequency analysis for studies in Montana, North
Dakota, South Dakota, and Wyoming. The U.S. Geological
Survey (USGS) Techniques and Methods report by England
and others (2018), hereafter referenced as Bulletin 17C,
describes procedures for computing peak-flow frequency
from annual peak-flow data recorded at streamgages. This
report describes the application of Bulletin 17C guidelines for
studies published by the USGS for Montana, North Dakota,
South Dakota, and Wyoming. These procedures cover standard
Bulletin 17C analysis, deviations from Bulletin 17C to
accommodate sites with unusual hydrologic conditions such as
artificial streamflow alteration or mixed-population floods, and

methods to improve analyses using Maintenance of Variance
Extension type III (MOVE.3) record extension (Vogel and
Stedinger, 1985) and weighting with regional regression
equations (RREs) following the method of Sando and
McCarthy (2018). Substantial reference throughout this report
is made to the national guidelines for flood frequency analysis
published in Bulletin 17C and previous guidelines published
for Montana (Sando and McCarthy, 2018). Specific citations
to these references are provided; however, some phrases and
terminology from these documents are used without citation to
facilitate the presentation of information.

Purpose and Scope

The purpose of this report is to document the methods
used for peak-flow frequency analysis for streamgages in
Montana, North Dakota, South Dakota, Wyoming, and nearby,
hydrologically similar locations used to inform regional
studies in these States. A USGS data release accompanying
this report (Siefken and others, 2025) presents peak-flow
frequency analyses for example streamgages in various
hydrologic settings within the study area. The data release
includes tables and plots that document the interpretive
decisions involved in the analysis and present the results of the
analysis, as well as data and specification files for the analysis.
The methods documented in this report update methods
published for Montana (Sando and McCarthy, 2018), North
Dakota (Williams-Sether, 2015), South Dakota (Sando, 1998),
and Wyoming (Miller, 2003).

The USGS is just one of many government agencies
that use peak-flow frequency statistics. When possible,
coordination between the USGS and other government
agencies on future peak-flow frequency analyses that follow
the methods in this report can aid in ensuring consistency
between USGS analyses and those from other agencies.

Terminology

This report describes methods of peak-flow frequency
analysis in the context of quantifying flood risk. Within this
report, the terms “peak flow” and “flood” are defined as
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in Sando and McCarthy (2018, p. 2), “A flood is any high
streamflow that overtops the natural or artificial banks of a
stream and is defined on the basis of stage. An annual peak
flow is the annual maximum instantaneous discharge recorded
for each water year (October 1 through September 30 and
designated by the calendar year in which it ends) that an
individual streamgage is operated and is defined on the

basis of discharge. The stage associated with a given annual
peak flow might not overtop the river banks and thus the
peak flow might not qualify as a flood. Conversely, multiple
floods that overtop the stream banks might happen in a
single year. In various frequency-analysis literature the terms
‘peak flow’ and ‘flood’ are sometimes used synonymously.”
In this report, ‘peak flow’ is the preferred term in referring

to discharge-based data; however, in some cases ‘flood’ is
used in describing large streamflow events that exceed river
banks and also in discussion of information taken from
references in which the terms ‘peak flow’ and ‘flood’ are
used synonymously. In this report, some uses of the term
“peak-flow frequency” are shortened to “frequency.”

Description of Study Area

The study area covers the four States of Montana, South
Dakota, North Dakota, and Wyoming, as well as nearby areas
with similar hydrologic characteristics where streamgages
may provide regional information for one or more of the
four States. The four States cover a combined area of
393,000 square miles with considerable variation in climate,
topography, and hydrology. Peak flows in the western part
of the study area are driven primarily by snowmelt, while
in the Dakotas and the central and eastern parts of Montana
and Wyoming, peak flows are driven by more complex
mechanisms that can include both rainfall and snowmelt. The
following sections provide an overview of the hydroclimatic
factors that drive annual peak flows in each State in the
study region.

Montana

Montana is the largest State in the study and spans
three major drainage basins—the Missouri River Basin, the
Columbia River Basin, and the Hudson Bay Basin, as shown
in figure 1. Elevations across the State range from about
1,800 to 12,800 feet (ft) above the North American Vertical
Datum of 1988 (NAVD 88), leading to large variations in
temperature and precipitation (Frankson and others, 2022a).
The topography of western Montana is mountainous, whereas
the eastern part of the State consists of rolling plains. In the
central part of the State are several isolated mountain ranges
surrounded by wide valleys and open plains. At the transition
between mountains and plains, orographic effects can produce
intense rainfall resulting in large floods (Hansen and others,
1988; Sando and McCarthy, 2018).

High elevation regions in the western part of the State
accumulate large snowpacks from late fall through early
spring. Melting snowpack contributes much of the annual
runoff in western Montana (Sando and McCarthy, 2018).
Snowpack is more variable in the lower elevation eastern part
of Montana. In some years, large snowpacks accumulate on
the plains, the rapid melting of which can result in substantial
flooding, such as the widespread flooding on the Milk River
in 1952 (Wells, 1955). In other years, runoff from prairie
snowpack may be minimal, and rainfall may be the primary
source of runoff on prairie streams. Pederson and others (2011)
provide further information on the contributions of rainfall and
snowmelt on annual peak flow.

Many of the largest floods in Montana have resulted
from spring rainfall coinciding with snowmelt runoff. Such
large floods have occurred in 1908 (National Weather Service,
2024b), 1953 (Wells, 1957), 1964 (Boner and Stermitz,

1967), 1975 (Johnson and Omang, 1976), and 2022 (Chase
and others, 2024). Other floods, such as those in southeastern
Montana in 1978 (Parrett and others, 1984) and central
Montana in 2011 (National Weather Service, 2024b) resulted
almost entirely from rainfall.

North Dakota

North Dakota is separated into two major drainage basins
by a Continental Divide running from the northwest to the
southeastern part of the State, as shown in figure 1. The part
of the State northeast of this Continental Divide falls within
the Hudson Bay Basin, and the southwestern part falls within
the Missouri River Basin. Elevations across the State range
from about 750 to 3,500 ft above NAVD 88 (Williams-Sether,
1992). The topography of North Dakota is predominated
by rolling plains with occasional buttes and bluffs but no
mountains.

The climate of North Dakota is best described as
semiarid; precipitation is highly variable, and humidity is
low (Enz, 2003). Cycles of persistent dry or wet conditions
within North Dakota may greatly affect floods. Floods in the
Hudson Bay Basin in North Dakota are mainly associated
with rapid spring snowmelt, which may be accompanied by
rain. In general, the later spring snowmelt begins, the more
likely it will be accelerated by high temperatures, rainfall, or
both, making flooding more likely (Enz, 2003). Floods in the
Missouri River Basin in North Dakota are mainly associated
with spring snowmelt or heavy summer rainfall. Local floods
occur occasionally on all the tributaries within both basins.

Notable floods in North Dakota have usually followed
years where the snowpack is large and spring snowmelt is
rapid. The Red River of the North and its tributaries in eastern
North Dakota have a rich history of flood records that date
back to the 1700s (Ryberg and others, 2007). Some floods that
have affected the entire State were in 1950, 1997, 2009, and
2011 (Macek-Rowland and Gross, 2011; National Weather
Service, 2024c).
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Figure 1.

Map showing locations of basins and selected streamgages from Siefken and others (2025) in Montana, Wyoming, North Dakota, and South Dakota used as examples accompanying this report.
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4 Methods for Peak-Flow Frequency Analysis in or near Montana, North Dakota, South Dakota, and Wyoming

South Dakota

South Dakota is primarily within the Missouri River
Basin, although small parts of eastern South Dakota drain into
the Hudson Bay Basin through the Red River of the North
or the Upper Mississippi River Basin through the Minnesota
River (fig. 1). Elevations in the State range from about 1,000 ft
above NAVD 88 in the northeast to more than 7,000 ft above
NAVD 88 in the Black Hills area (fig. 1). Most of western
South Dakota is well drained, and contributing drainage areas
are equal to the total drainage areas for most streamgages
(Sando and others, 2008). In contrast, many parts of eastern
South Dakota are relatively flat and poorly drained with large
volumes of depression storage. Additionally, the low channel
gradients in some parts of eastern South Dakota frequently
result in backwater conditions during flood stages (Thompson,
2006). These hydrogeologic features may have substantial
effects on the behaviors of annual peak flows in eastern
South Dakota because of long-term persistence of antecedent
moisture over weeks, months, or even years (Sando and
others, 2008).

Flood-generating mechanisms in South Dakota include
snowmelt, intense rainfall events, and rain-on-snow events.
Smaller spring floods occur when the river ice breakup is
earlier in the spring and the rate of snowmelt is slow, thus
reducing the magnitude of the peak. In contrast, the largest
river ice breakup floods are caused by high antecedent
moisture, heavy snow cover, frozen ground surface, and
precipitation coinciding with a late seasonal river ice breakup
(McCabe and Crosby, 1959).

Some of the largest floods on record, such as in the Black
Hills, are generated by localized summertime convective
storms that produce heavy precipitation over a short period
of time, including the June 9, 1972, flood, during which
15 inches of rain fell in about 6 hours near Nemo, South
Dakota (Schwarz and others, 1975). The 1984, 1995, and
1997 regional floods, primarily in eastern South Dakota,
were generated by multiple causal mechanisms: higher than
average antecedent moisture conditions, high winter snowfall,
springtime snowmelt, and heavy precipitation in April and
May (Engel and Benson, 1987; Teller and others, 1995; Teller
and Burr, 1998; Holmes and others, 2013).

Wyoming

Wyoming is separated into four major drainage basins—
the Missouri River Basin, the Columbia River Basin, the
Upper Colorado River Basin, and the Great Basin, as shown in
figure 1. All the flow from Wyoming into the Columbia River
Basin is through the Snake River, and all the flow into the
upper Colorado River is through the Green River. Elevations
range from about 3,100 to 13,800 ft above NAVD 88, causing
wide variations in temperature throughout the State (Frankson
and others, 2022b). Northwestern Wyoming is dominated by
high mountain ranges, whereas southern and eastern Wyoming
are marked by high mountain ranges interspersed by wide

expanses of arid plains. All four of Wyoming’s river systems
drain high, mountainous regions, but only the Missouri and
Upper Colorado River Basins include substantial areas of
plains or desert in Wyoming.

Mountain streamflows are typically dominated by
snowmelt, and peak flows usually occur in late spring or early
summer. Streams originating on the plains are frequently
ephemeral, flowing for only short periods of time after local
rainstorms or snowmelt, and generally have greater annual
variability in peak flows than mountain streams (Miller, 2003).
Timing of peak flows on these streams also tends to be more
variable, and annual peak flows are commonly observed from
later winter through late summer (Zelt and others, 1999).

Floods in Wyoming have resulted from rainfall
(Rostvedt, 1965), and rain falling on snow (Rostvedt and
others, 1970). Damaging floods resulting exclusively from
snowmelt are unusual in Wyoming, although the third greatest
discharge in the USGS peak-flow database (U.S. Geological
Survey, 2024a) for a streamgage in Wyoming was at Snake
River above Reservoir, near Alpine, Wyoming (USGS
streamgage 13022500; U.S. Geological Survey, 2024t). That
flood resulted primarily from melting of heavy snowpack in
1997 (National Weather Service, 2024a). The largest discharge
in the streamgage record of Wyoming was at Powder River at
Arvada, Wyo. (USGS streamgage 06317000; U.S. Geological
Survey, 2024p), in the fall of 1923 because of heavy rainfall in
late September (Follansbee and Hodges, 1925).

Methods for At-Site Peak-Flow
Frequency Analysis

At-site peak-flow frequency analysis refers to analysis
of peak-flow data collected at a streamgage that does not
incorporate regional information from regression equations
or MOVE.3 record extension. The frequency-analysis
methods in this report follow the Bulletin 17C guidelines with
allowance for informed-user adjustments to address special
considerations for unusual peak-flow data.

The USGS peakfq software package (Siefken and others,
2024) is the primary tool for computing at-site peak-flow
frequency estimates, although the methods could be applied
with other software. The workflow for at-site frequency
analysis consists of the following steps:

1. Collecting applicable data and applying any needed
data preprocessing, such as data correction or data
combination;

2. Analyzing the effect of nonstationarity, including
upstream alteration or urbanization, and modifying the
data accordingly;

3. Incorporating historical information with perception
thresholds for ungaged periods of the analysis; and



4. Selecting appropriate analysis options for regional skew
and low outlier thresholds.

Data Sources, Data Correction, and Data
Combination

Data sources for use in peak-flow frequency analyses
include systematic records and historical flood information
(Bulletin 17C). The minimum record length of peak-flow
data for a frequency analysis is 10 years (Bulletin 17C).

For locations at which 10 years of peak-flow data are not
available, the methods in this report should not be used for
peak-flow frequency analysis. Even 10 years of data may
not be sufficient to provide a reliable frequency analysis,
particularly for sites with highly variable or highly skewed
peak flows. If additional data from historical information
or data combination are available for a streamgage, these
data can be used to supplement streamgage data for at-site
peak-flow frequency analysis.

Peak-flow data may be from either continuously operated
streamgages or crest-stage gages (CSGs). CSGs only capture
the peak streamflow at the site between site visits but provide
a cost-effective method of collecting peak-flow data on small,
remote streams. All data used in peak-flow frequency analysis
should be carefully examined. Any unusually large or small
peaks should be investigated to verify the data are not in error.
Rarely, published peak-flow values may be corrected for use in
peak-flow frequency analysis.

Systematic Records

The primary source of data for peak-flow frequency
analyses is the USGS National Water Information System
(NWIS) peak-flow database (U.S. Geological Survey, 2024a);
however, peak-flow data are sometimes available from
other data sources. For streamgages currently or previously
operated jointly with Canada through the International
Joint Commission, additional data may be available from
Environment and Climate Change Canada. Data from other
government or private sources may also provide valuable
information for frequency analysis; however, any data from a
source other than NWIS must be evaluated before use to verify
data collection procedures meet appropriate quality standards
for peak-flow frequency analysis. The data should be of a
similar quality level to USGS peak-flow data as described in
Rantz and others (1982).

Data Correction

Data correction refers to manually adjusting NWIS
peak-flow data. These adjustments are applied in cases of
unique hydrologic conditions that are not adequately captured
in the NWIS database. Data corrections are documented in the
peak-flow frequency-analysis data releases.

Methods for At-Site Peak-Flow Frequency Analysis 5

Peak flows affected by dam breaks are commonly
addressed by data correction. A flow interval representing
known upper and lower bounds of the peak flow without
the effect of the dam break may be used or, if a detailed
investigation of the dam break is available, a point value
excluding the effect of the dam break may be substituted. For
example, the 1964 peak flow of 241,000 cubic feet per second
(ft’/s) recorded for Marias River near Shelby, Montana (USGS
streamgage 06099500; U.S. Geological Survey 2024d), was
increased by an upstream dam break. In the example in the
associated data release (Siefken and others, 2025), a value
of 150,000 ft3/s is substituted for the 1964 peak flow based
on investigation of what the peak discharge would have been
without the dam break (Sando and McCarthy, 2018).

Peak-flow values determined to be opportunistic may
also require data correction. An opportunistic peak is a
peak-flow value collected during an ungaged period (outside
of the systematic period of record) that is not large enough to
determine nonexceedance during all or part of the ungaged
period. An effort to document opportunistic peaks with the
appropriate qualifier in the NWIS database has been made, but
some qualifiers have not been applied in the database because
future analysis of data (using data sources not readily available
currently) may determine the peak to not be opportunistic. In
such cases, the peak-flow value in question may be excluded
from a particular analysis but not have an opportunistic
qualifier applied in the NWIS database.

Other data corrections may also be applied to account
for unique hydrologic conditions. One example of this from
Siefken and others (2025) is Red Lodge Creek below Cooney
Reservoir near Boyd, Mont. (USGS streamgage 06212500;
U.S. Geological Survey, 2024m). Peak flows at this site are
highly affected by the operation of Cooney Reservoir (not
shown on figure 1). However, Cooney Reservoir does not
have any dedicated flood storage (Montana Department of
Natural Resources and Conservation, 2021) and so cannot
be relied upon to provide substantial protection against
large floods. Therefore, naturalized annual peak flows were
calculated at the site from two upstream streamgages, Red
Lodge Creek above Cooney Reservoir near Boyd, Mont.
(USGS streamgage 06211000; U.S. Geological Survey,
2024k), and Willow Creek near Boyd, Mont. (USGS
streamgage 06211500; U.S. Geological Survey, 20241).

The naturalized annual peak flows were then used for the
peak-flow frequency analysis. The example in the associated
data release (Siefken and others, 2025) includes the
naturalized flow analysis and analysis on the regulated flows
for comparison.

Data Combination

Data combination refers to combining the nonconcurrent
peak-flow records of two or more closely located streamgages
on the same channel. Records are combined to produce an
analysis that represents a larger sample of peak-flow data on
the channel when the drainage areas of the streamgages differ
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by less than about 5 percent (Sando and McCarthy, 2018).
Data combination assumes that peak discharge at two such
streamgages is essentially equivalent, which should be true
for most such sites in the study area provided no substantial
tributary contributes flow between the two streamgages.

When data combination is used, the analysis is reported
using the site number for the site with the most recent
peak-flow data. The years for which peak-flow data were
combined from different streamgages are documented in the
associated data release. An example of this from Siefken and
others (2025) is Clarks Fork Yellowstone River at Edgar,
Mont. (USGS streamgage 06208500; U.S. Geological
Survey, 2024i), where peak-flow data are combined with
data from the nearby streamgages Clarks Fork Yellowstone
River at Fromberg, Mont. (USGS streamgage 06208000;
U.S. Geological Survey, 2024h; not shown in fig. 1), and
Clarks Fork Yellowstone River near Silesia, Mont. (USGS
streamgage 06208800; U.S. Geological Survey, 2024;j; not
shown in fig. 1).

Nonstationarity Considerations

A basic assumption for the analysis procedures within
Bulletin 17C is that the statistical properties of the distribution
of peak flows are stationary; that is, the mean, variance, and
skew are constant. From the onset of the USGS streamgage
program through most of the 20th century, the stationarity
assumption for streamgages unaffected by upstream
regulation or diversions was widely accepted. However, in
recent decades, a better understanding of multi-year climatic
persistence (extended periods of relatively wet or relatively
dry conditions) and studies documenting changes in climate
and land use have caused a reexamination of the stationarity
assumption (Milly and others, 2008; Lins and Cohn, 2011;
Stedinger and Griffis, 2011; Koutsoyiannis and Montanari,
2015; Serinaldi and Kilsby, 2015).

Nonstationarity is a property of a peak-flow series
such that the statistical distribution properties change
either gradually or abruptly through time. Individual
nonstationarities may be attributed to one source (for example,
reservoir regulation, land-use change, or climate) but often
are the result of a mixture of sources (Vogel and others, 2011),
which makes detection and attribution of nonstationarities
challenging (Barth and others, 2022). Neglecting trends and
abrupt changes in peak-flow frequency analysis may result
in a poor representation of the true flood risk. However,
Bulletin 17C does not offer guidance on how to incorporate
nonstationarities when estimating flood magnitudes for
associated recurrence intervals and further identifies a
future need for additional studies that incorporate changing
climate or drainage basin characteristics into the analysis
(Bulletin 17C). Thus, peak-flow frequency-analysis results
using the methods of this report generally do not address
potential nonstationarities in the peak-flow time series.

Streamgages with obvious and substantial nonstationarity
should not be analyzed using the methods of this report. An
example of this has been observed at Dinwoody Creek above
Lakes, Near Burris, Wyo. (USGS streamgage 06221400;

U.S. Geological Survey, 2024n). Mud Lake (not shown on
figure 1), about 1 mile upstream from the streamgage, has a
subterranean outlet. The hydraulic function of the outlet seems
to have been substantially altered before or during 2017 spring
runoff, which is the largest peak flow ever observed at the site.
A marked increase in annual peak flow after 2016 is shown

in figure 2. As a result, peak-flow data before 2017 are not
considered representative of the current hydrology of the site.
Because less than 10 years of data have been collected since
2017, a peak-flow frequency analysis cannot be completed for
the site at the present time.

Analysis of Sites with Upstream Alteration

Discharge at many streamgages in the study area is
affected to some extent by upstream alterations such as
storage reservoirs or irrigation diversions. The effects of these
alterations on peak flow range from negligible to completely
controlling. Small diversions tend to have minor effects on
peak flow, but large flood control reservoirs may store a large
proportion of runoff and considerably decrease the peak flow
downstream. Some alterations to peak streamflows may be
such that annual peak flows do not follow a log-Pearson type
III distribution. As Bulletin 17C notes, frequency analysis for
altered streams is an area that could benefit from additional
research to develop improved methods (Bulletin 17C);
however, Bulletin 17C procedures with informed adjustments
can usually produce acceptable peak-flow frequency estimates
on altered streams.

If the streamgage period of record spans construction,
modification, or removal of flow-modifying structures
(including dams and diversions), the streamflow record can
be split into altered and unaltered periods (or into separate
periods that reflect different degrees of alteration) for
peak-flow frequency analyses. Separate peak-flow frequency
analyses can then be computed on data from the separate
periods so that all data used in an individual analysis are
affected by the same degree of alteration. An example of
splitting a record because of a change in alteration status
in Siefken and others (2025) is the analysis of South
Fork Flathead River near Columbia Falls, Mont. (USGS
streamgage 12362500; U.S. Geological Survey, 2024s), where
the construction of Hungry Horse Dam greatly altered peak
streamflows starting in 1952 (Stene, 1995).

The NWIS peak-flow database includes peak discharge
qualification codes (5 and 6) designed to indicate whether a
given peak-flow value was affected by upstream alteration or
not (U.S. Geological Survey, 2024a). However, these codes
have not been applied consistently across the study region and
so cannot be used as the sole determination of alteration status.
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Figure 2. Graph showing annual peak streamflow from 1958 to 2023 for Dinwoody
Creek above Lakes, near Burris, Wyoming (U.S. Geological Survey streamgage 06221400;

U.S. Geological Survey, 2024n).

McCarthy and others (2016) determined alteration
(“regulation”) status of streamgages by computing the
cumulative drainage area upstream from all dams in relation
to the streamgage drainage area. Wieczorek and others (2021)
included the cumulative drainage area upstream from dams,
the streamgage drainage area, the storage behind the dams
and the amount of precipitation in the drainage basin in a dam
disturbance index:

b ZHsa) "
damsx P A2

where
DI

dams,x

is the unitless disturbance index for alteration
owing to dams at location x;

S, is the storage volume behind dam i, in

acre-feet;

A,  isthe drainage area upstream from dam i,
in acres;

P, is the mean annual precipitation at location x,
in feet; and

A,  is the drainage area at location x, in acres.

For at-site statistical analyses in the State of Wyoming,
Armstrong and others (2025) calculated a disturbance index
for alteration owing to diversions (DI, ) as follows:

iversions,x.

Qdiv
Dldiversions, x Q H (2)
meanNHD
where
DLy ersions.x is the disturbance index for alteration owing

to diversions at location x;

Q. 1isthe diversion flow amount, in cubic feet per
second; and
Q,reannin is the mean annual flow from NHDPIus

(U.S. Geological Survey and
U.S. Environmental Protection Agency,
2012), in cubic feet per second.

Disturbance indexes have been applied in different ways
in Montana, Wyoming, North Dakota, and South Dakota.
Armstrong and others (2025) developed thresholds for
classifying streamgages as “altered” or “unaltered” because
of dams and diversions and used a multitiered approach to
generate final classifications of streamflow alteration for each
streamgage. In a separate study, Marti and Ryberg (2023) used
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the dam disturbance index published by Wieczorek and others
(2021) to identify altered (or regulated) USGS streamgages
in Montana, North Dakota, South Dakota, and other States in
the Central United States. Although disturbance index values
computed using equations | and 2 can be highly informative
for determining the extent to which peak flows at a streamgage
are affected by upstream alteration, calculating accurate
disturbance index values is challenging if accurate datasets for
dam locations, storage volumes, diversion flow amounts, and
upstream drainage areas are not available.

Alteration status for frequency analyses published using
the methods in this report is described using three broad
categories:

* Major alteration—Flow at the streamgage is affected
by a dam or other hydraulic structure, which has
an obvious and substantial effect on peak flow.
Major alteration is most commonly the result of
onstream storage reservoirs, although it can result
from diversions or canal transfers from other basins.
Reservoirs considered to cause major alteration are
generally impounded by dams listed in the National
Inventory of Dams and typically have storage
capacities of 100 acre-feet or more.

* Minor alteration—The streamgage is downstream
from a large diversion, a canal transferring water from
another basin, or one or more dams. The upstream
alteration affects peak flows at the site, but the
primary purpose of the alteration is generally not for
flood control.

* Unaltered—Any alteration of peak flow from upstream
hydraulic structures is negligible for the purposes of
peak-flow frequency analysis.

In some cases, even though a known change in upstream
alteration occurred during the streamgage record, the effect of
the alteration change may be minor enough that it is preferable
to analyze all the data together in one frequency analysis
rather than split the data before and after the change occurred.
Such analyses using the total period of data are given the
alteration classification of “total.”

Analysis of Sites Affected by Urbanization

Urbanization of a drainage basin can also affect peak
flows (Konrad, 2003). Although few streamgages in the
study area are affected by urbanization to an extent to be a
concern for peak-flow frequency analysis, it is an important
consideration for some sites, such as Crow Creek at Sth Street,
Cheyenne, Wyo. (USGS streamgage 410720104483801;
U.S. Geological Survey, 2024u). Peak-flow values affected
by urbanization are denoted with a “C” qualifier in the NWIS

database (U.S. Geological Survey, 2024a). Peak-flow values
affected by urbanization are analyzed separately from any
nonurbanized values at the same site, and the alteration status
of the site is denoted as urbanization in the analysis.

Standard Procedures for Implementing
Bulletin 17C Guidelines

The procedure for fitting the log-Pearson type 111
distribution using the expected moments algorithm (EMA)
described in Bulletin 17C incorporates several additional
inputs besides the observed peak-flow data. These inputs
include perception thresholds, the potentially influential
low flood (PILF) threshold, and regional skew information
(Bulletin 17C). The standard procedure for implementing
Bulletin 17C guidelines in the study area is to use the multiple
Grubbs-Beck test (MGBT) (Cohn and others, 2013) to
determine the PILF threshold and to use a weighted skew
coefficient incorporating regional skew information.

Applying Perception Thresholds

Lower and upper perception thresholds need to be
specified for every year of the record in a peak-flow frequency
analysis (Bulletin 17C). For periods of systematic streamgage
operation, the lower perception threshold is usually set to zero
and the upper perception threshold is set to infinity, indicating
it would be possible to observe any discharge value at the
streamgage. CSGs may not be able to observe any discharge
value; setting perception thresholds for this case is described
in the following section. For periods where a streamgage has
been discontinued or ceased operation (ungaged period), and
no historical peak-flow information is available, the lower and
upper perception thresholds are both set to infinity, indicating
no information about that particular period is available.

Procedures for Crest-Stage Gages

The peak flow for a given year might be too small to be
measured by the lowest point on a CSG because the gages
are usually installed such that flow can occur but not leave a
mark on the gage. In this case, the lower perception threshold
for each water year should be set to a value corresponding to
the minimum measurable discharge at the CSG for that water
year (Bulletin 17C). However, the PILF threshold is usually
greater than the lowest measurable flood for a CSG, making it
unnecessary to explicitly incorporate the minimum measurable
discharge from the bottom of the CSG into the frequency
analysis. If a PILF threshold is not greater than the minimum
discharge that the CSG could measure for every year in
the analysis, perception thresholds based on the discharge
recordable by the gage should be included in the analysis.



Procedures for Incorporating Historical Information

Historical information is incorporated into peak-flow
frequency analyses using flow intervals and perception
thresholds, as described in Bulletin 17C. Some historical
information is available in NWIS from “largest since”
years associated with peak-flow values, indicating a certain
peak-flow value was the largest since at least the given year.
For example, at Beaver Creek near Newcastle, Wyo. (USGS
streamgage 06394000; U.S. Geological Survey, 2024q),
the 1962 peak flow of 11,900 ft3/s is noted to be the largest
since 1927. Therefore, the lower perception threshold for
the ungaged years from water year 1928 to water year 1944
can be set to the 1962 flood discharge of 11,900 ft3/s. The
lower perception threshold for 1943 is set to zero because
the streamgage was operated that year (Siefken and others,
2025). Other historical flood information is available in USGS
water supply papers, streamgage site descriptions, and outside
sources including newspapers and accounts of local residents.

Historical information can also be incorporated from
data collected at other streamgages in the area. For example,
if a large flood event occurred while a streamgage of interest
was not operating but the event was recorded at an upstream
or downstream streamgage, it may be possible to set a
perception threshold for the streamgage of interest based on
the recorded value at the other streamgage. In such cases, it is
still preferable to have additional information specific to the
streamgage of interest to corroborate the perception threshold
set based on data from the other streamgage.

The value of a perception threshold for historical flood
information at a streamgage is usually set as the discharge of
a flood of known magnitude at the streamgage. For example,
the 1964 flood discharge at the Marias River near Shelby,
Mont. (USGS streamgage 06099500; U.S. Geological Survey,
2024d), was greater than any flood since at least 1881. As
discussed in the “Data Correction” section, the 1964 discharge
in NWIS was modified by Siefken and others (2025) to reflect
what the discharge would have been without the dam break, so
the lower perception threshold for the ungaged period before
water year 1964 is set to the corrected 1964 flood discharge
of 150,000 ft3/s. Any flood after 1881 with greater discharge
would have been noted as being greater than the 1964
discharge. Perception thresholds do not have to be set based
on recorded floods at a streamgage, but recorded floods are
usually the best information available for setting perception
thresholds. All perception thresholds and flow intervals used to
incorporate historical flood information are documented in the
data release.

Procedures for Incorporating Paleoflood Information

Paleoflood data derived from geologic or botanical
records can provide valuable information on rare,
large-magnitude floods outside of the historical flood record.
Harden and others (2021) provide guidance on appropriate
methods for paleoflood studies. Any paleoflood data
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incorporated into analyses published following the methods
in this report should be from studies consistent with the
methods described in Harden and others (2021). Paleoflood
studies considered unreliable should not be used in peak-flow
frequency analysis.

Because paleoflood data may have large uncertainty,
special procedures are required to appropriately represent the
data in a peak-flow frequency analysis. Perception thresholds
are used to represent time periods for which the paleoflood
study indicated floods did not exceed a certain value.
Individual paleofloods identified by a study are represented
as either intervals or censored values because of the large
uncertainty of paleoflood estimates. Harden and others (2021)
provide additional guidance on representing paleoflood data
in peak-flow frequency studies. Paleoflood data from Harden
and others (2011) are included in the analysis for Boxelder
Creek near Nemo, S. Dak. (USGS streamgage 06422500;
U.S. Geological Survey, 2024r), in the accompanying data
release by Siefken and others (2025).

Standard Procedures for Handling Low Outliers

In peak-flow frequency analysis, low discharge values
can exert a large distorting effect on the fitted frequency curve
(Bulletin 17C). The MGBT (Cohn and others, 2013) provides
an effective test for identifying low outliers. Discharge values
less than the identified PILF threshold are represented as
intervals from zero to the PILF threshold to prevent them from
distorting the fitted frequency curve (Bulletin 17C). Using
the MGBT is the standard procedure for handling low outlier
detection.

Standard Procedures for Weighted Skew
Coefficients

The standard procedure for determining the skew
coefficients is to weight the at-site skew coefficient computed
from observed data at a streamgage with a regional skew
coefficient. The at-site skew coefficient can have large
uncertainty in even modest-length systematic records (Griffis
and Stedinger, 2009) that can often be improved by weighting
with regional skew information. Bulletin 17C indicates
that regional skew estimates should be developed using the
Bayesian weighted least squares/Bayesian generalized least
squares (BWLS/BGLS) method (Veilleux and others, 2011).

At the time of this writing, a BWLS/BGLS regional skew
study has not been completed for any part of the study area.
Until such a study is published, the best available regional
skew information for the study area is the national skew map
published in U.S. Interagency Advisory Committee on Water
Data (1982), referred to hereafter as the “Bulletin 17B national
skew map.” As BWLS/BGLS regional skew studies become
available for the study area, the values from those studies
should be used instead of those from the Bulletin 17B national
skew map.
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Parrett and Johnson (2004) analyzed skew coefficients
in Montana and concluded that the differences between the
generalized skew coefficients from the Bulletin 17B national
skew map and the regional skew coefficients from their
analysis were “small and probably not significant” Parrett
and Johnson, 2004, p. 8). Thus, Parrett and Johnson (2004)
determined that the generalized skew coefficients from
the Bulletin 17B national skew map were appropriate for
frequency analysis. Parrett and Johnson (2004) also calculated
a standard error of the Bulletin 17B national skew map
specific to Montana streamgages and obtained a value of 0.64
compared to the published value of 0.55 (U.S. Interagency
Advisory Committee on Water Data, 1982). The analysis
included 201 streamgages on unregulated streams having 25
or more years of record. Those 201 streamgages included
many sites with mixed-population floods for which regional
skew has been considered nonapplicable in past peak-flow
frequency studies (Parrett and Johnson, 2004; Sando and
others, 2016; Sando and McCarthy, 2018). Annual peak
flows that are caused by different hydrometeorological
events associated with distinct flood-generating mechanisms
such as snowmelt and rainfall only or a combination of
these are considered mixed populations (Bulletin 17C).
These mixed populations can have abnormally large skew
coefficients and (or) abnormal slope changes in the plotting
positions (Bulletin 17C). As a result, the value of 0.64 likely
overestimates the standard error of the Bulletin 17B national
skew map for the sites at which regional skew is applicable.
Therefore, this study recommends using the Bulletin 17B
national standard error value of 0.55 for Montana streamgages
at which regional skew is applicable.

Deviations from Standard Procedures

It is sometimes necessary to deviate from standard
procedures for implementing Bulletin 17C guidelines because
of site-specific hydrology. Common reasons for deviating
from standard procedure include upstream alteration,
mixed-population floods, and unusual peak-flow distributions
not well represented by a log-Pearson type III distribution.
Deviations from standard analysis procedures include using
at-site skew only instead of a weighted skew value and using
a manual PILF value instead of an MGBT PILF value. The
objective of all deviations from standard analysis procedures
is to best represent the upper part of the flood frequency curve
in the analysis.

At-Site Skew

For some streamgages, the regional skew coefficient is
not applicable either because of upstream regulation (such
as Sheyenne River near Kindred, North Dakota [USGS
streamgage 05059000; U.S. Geological Survey, 2024b],
and North Milk River near international boundary [USGS
streamgage 06134000; U.S. Geological Survey, 2024e])

or because of unique hydrologic conditions that are not
well represented by the regional skew coefficient. Unique
hydrologic conditions could include mixed-population
floods (such as Marias River near Shelby, Mont. [USGS
streamgage 06099500; U.S. Geological Survey, 2024d]), or
other hydrologic conditions that indicate a regional skew
analysis does not represent skewness at the streamgage well
(such as Lyons Creek at international boundary [USGS
streamgage 06151000; U.S. Geological Survey, 2024f]).
For such streamgages, the at-site skew is not weighted with
the regional skew coefficient. This approach follows the
recommendation in Bulletin 17C that the data and hydrology
of the drainage basin for streamgages for which regional
and at-site skew coefficients differ by more than 0.5 should
be carefully examined and greater weight may be given to
the at-site skew (Bulletin 17C). If the streamgage has a long
period of record (about 40 years or more), the at-site skew
coefficient alone should provide a reasonably good estimate
of the true skewness of the distribution. For sites with short
periods of record, the at-site skew has high uncertainty, and
analyses using only at-site skew will have large uncertainty in
flood quantile estimates.

Manual Potentially Influential Low Flood
Thresholds

For some streamgages, the low outlier (PILF) threshold
determined by the MGBT may not provide the best fit of the
peak-flow frequency curve. For such sites, a user-specified
(manual) PILF threshold may be used to improve the fitted
frequency curve. Use of manual PILF thresholds is common at
streamgages with mixed-population floods where specifying a
PILF threshold at inflection points below or near the median
annual peak discharge may be necessary to obtain the best
fit to the upper part of the frequency curve. An example
of this in Siefken and others (2025) is North Fork Powder
River near Hazelton, Wyo. (USGS streamgage 06311000;
U.S. Geological Survey, 20240).

Mixed-Population Analysis Methods

Annual peak-flow records that have a mixed population
of floods commonly have an abnormally shaped frequency
curve, which may not be well represented by a log-Pearson
type III distribution (Parrett and others, 2011; Gotvald
and others, 2012; England and others, 2018). Although no
formal procedure is available in Bulletin 17C to address
the poor frequency curve fit for mixed populations to the
empirical data, they do suggest that, in some situations,
separate frequency curves be fit for each type of flood event
and combined to produce a total frequency curve. Potential
challenges arise with this special treatment, including
subsamples based on flood types that may be too small to
accurately estimate the three moments of the log-Pearson
type III distribution (particularly skewness) or how to identify



the different flood types, such as snowmelt, rainfall, or rain

on snow, that can occur in the study region. As stated in
Bulletin 17C, separating flood types solely based on calendar
period is not sufficient unless the events are clearly generated
by different flood-generating conditions. Future studies may
benefit from considering more indepth approaches to identify
flood-generating mechanisms for candidate streamgages with
mixed populations and using advanced mixed-population flood
frequency methods for the individual streamgage.

For some streamgages in the Black Hills region in
western South Dakota, the presence of high outlier floods from
mixed-population flood events leads to poor performance of
standard flood frequency-analysis procedures. Examining
the mechanisms responsible for generating some of these
high outlier events reveals common hydrogeologic and
meteorologic characteristics. In the eastern Black Hills, flood
observations of extreme magnitude are somewhat frequent and
may be better analyzed as a smaller subpopulation of events
unique to the rest of the overall flood population (Sando and
others, 2008). Therefore, a mixed-population method similar
to that used by Sando and others (2008) would be more
appropriate for many streamgages in the Black Hills region
than the methods described in this report. Such a methodology
is outside the scope of this report but may be published by
the USGS in the future to supplement the methods of this
report. For streamgages in the Black Hills with alteration from
upstream dams or streamgages with paleoflood data to extend
the peak-flow record, the methods described in this report are
still applicable.

Methods for Improving Peak-Flow
Frequency Analyses

Peak-flow frequency estimates at a streamgage can often
be improved by incorporating additional information beyond
the peak-flow data available for the site, as discussed in the
“Data Sources, Data Correction, and Data Combination”
section, and beyond the historical information expressed
as perception thresholds, as discussed in the “Procedures
for Incorporating Historical Information” section. This
improvement can be done using MOVE.3 record extension
with nearby sites or weighting with RREs. Whenever
MOVE.3 or RRE-weighted analyses are published, the at-site
analysis is published as well.

Record Extension with Nearby Sites

For a streamgage with peak discharges highly correlated
with one or more nearby, hydrologically similar streamgages,
it may be possible to improve peak-flow frequency estimates
by extending the peak-flow record using MOVE.3. The
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streamgage for which the record is being extended is referred
to as the “target site,” and the one or more streamgages used to
extend the peak-flow record are referred to as “index sites.”

Modifications to Bulletin 17C Maintenance of
Variance Extension Type Il Method

In Bulletin 17C, appendix 8 presents a method of record
extension recommended for use with the EMA. The method
is based on the MOVE.3 method of Vogel and Stedinger
(1985). Siefken and McCarthy (2022) presented a variation
of the method that takes into consideration the skewness
of the extended record. The MOVE.3 method in this report
follows the methodology of Siefken and McCarthy (2022)
with the following modifications to equation 23 in their paper
(reproduced below) that address cases where the value of £
is less than zero. The coefficient k relates the variance of the
extended record to the variance of the recorded data and the
squared difference in the mean of the extended record and
recorded data. A negative value of & indicates the variance
required for the extended record is too small to accommodate
the change in mean and variance from the recorded data.

ke=(n+n,~1)67=(m~1)s;

—nl[n'+l](/ft\_‘ -3) . €)

s

where
k  is a coefficient relating variance of the
extended record to the variance of the
recorded data and the squared difference
in the mean of the extended record and
recorded data,

n,  is the number of concurrent peak-flow values
at the target and index sites,

n is the number of synthesized
peak-flow values,

7 is the sample mean of recorded data at the
target site,

@, s the mean of extended record,

52 is the sample variance of recorded data at the
target site, and

62 is the variance of extended record.

1 - ~ 2 /\2 . .
For given values of n,, y,, fi,,, s}, and 67, the minimum

number of synthesized peak-flow values, n,,, required for & to
be nonnegative is described by equations 4 and 5:
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When the value of n, is taken as the equivalent years of record
(n,) computed using Bulletin 17C equation 8-19, n, may be
less than n,, for some cases, and record extension with the
method of Siefken and McCarthy (2022) is not possible. This
limitation can be overcome by computing #, as the larger
value of either n, or n,,. Using a value of n, greater than n,
will result in an underestimation of the uncertainty of the
computed moments and quantile estimates. However, as long
as the difference between n, and n, is small compared to the
effective length of the extended record, the underestimation of
the uncertainty will be minor. Therefore, n, is computed using
equation 6, provided the inequality in equation 7 is satisfied. If
the inequality is not satisfied, then MOVE.3 record extension
is not possible.

n=max(n,n,,) ©)
ng+n, 1
<
"+ 7, 1.1, @)
where
max() is a function selecting the maximum input

value, and

is the number of peak-flow values at the
target site.

The number of synthesized peak-flow values, n,, will
almost always be smaller than the number of additional
peak-flow values recorded at the index site because of
imperfect correlation between the target and index sites.
However, the synthesized values incorporate information from
all recorded values at the index site. Water years with recorded
peak-flow values at the index site not used to synthesize values
at the target site should be treated as missing data when fitting
log-Pearson type III distribution using EMA.

Criteria for Use of Maintenance of Variance
Extension Type Il Record Extension

MOVE .3 record extension can be applied if two
streamgages have at least 10 years of concurrent peak-flow
records with a Pearson correlation coefficient greater than
about 0.80 (Sando and McCarthy, 2018) and the sites are
hydrologically similar. As a further criterion, Bulletin 17C
recommends MOVE.3 not be used unless the equivalent years
of record, n,, added by the MOVE.3 extension are 4 or 5 years

or more. In any case, the modified MOVE.3 method described
in this report cannot be used unless at least three additional
peak-flow values are synthesized.

Because the MOVE.3 method described in Bulletin 17C
uses the log transformation of peak-flow values, MOVE.3
record extension cannot currently be applied to streamgages
that have peak-flow values of zero. Development of a record
extension method that can accommodate peak-flow values of
zero in a statistically rigorous manner would allow MOVE.3
to be used for streamgages that have years without any
recorded flow. The data release accompanying this report
(Siefken and others, 2025) includes examples of MOVE.3
record extension at several streamgages.

Weighting with Regional Regression Equations

For streamgages on streams where regional regression
equations for peak-flow statistics are applicable, the
uncertainty of at-site peak-flow statistics computed from
streamgage data can be reduced by weighting the at-site
estimate with an independent estimate from RREs. In
Bulletin 17C, appendix 9 presents the method for weighting
at-site and regional regression peak-flow frequency estimates
under the assumption that the two estimates are independent
and unbiased and that the variances are reliable and consistent.
The weighted frequency estimate is computed using the
following equation:

)?a*Vb+‘)?b*I/zz

X = 8
X wtd Vb + Va s ( )
where
X,and X, are the log-transformed frequency estimates
from methods a and b,
V,and V,  are the variances of the estimates from

methods a and b, and

>

w1 the weighted estimate from
methods @ and b.

In Bulletin 17C, appendix 9 also provides a method of
computing confidence intervals for the weighted estimates.
However, the confidence intervals described in appendix 9 of
Bulletin 17C do not account for correlation of the weighted
estimate with the estimated variance. Cohn and others (2001)
describe how highly correlated mean and variance estimators
from censored data can result in biased confidence intervals.
The method Cohn and others (2001) provide to address this
shortcoming computes confidence intervals using a Student’s
t-distribution (rather than a normal distribution) and a
correction factor adjusting for the correlation between the
quantile estimate and its estimated variance.



Theoretically, the same approach could be applied to
compute improved confidence intervals for RRE-weighted
estimates. However, no method is currently accepted to
compute the covariance of the regional regression weighted
quantile estimate. As an alternative approach, Sando and
McCarthy (2018) used a simple approximation to compute
confidence intervals for regional regression weighted estimates
using the effective variance of the upper and lower confidence
intervals from the at-site quantile estimates as shown in
equations 9 through 14:

Uat—sitezlog 1 O(CIU,at—site) (9)

Lat—sitezloglo(CIL, (10)

at—site)

-~ 2
(Uutsite B Xatsite)
1.64

PN 2
La[*site B Xatsite)
Vepa = ( 1.64

Veﬂ,U = (11)

(12)

(13)

(14

where

CI and CI,

L,at-site

are the upper and lower limits
of the two-tailed 90-percent
confidence interval from the
at-site frequency analysis;

U, at-site

U

utsite ANA L are the upper and lower
log-transformed confidence limits
for the two-tailed 90-percent
confidence interval from the

at-site frequency analysis;

at-site

PN

is the log-transformed estimate
from the at-site frequency
analysis;

at=site

1.64 is the one-tailed Student’s t-value
for the 95-percent (upper) and
5-percent (lower) confidence
limits assuming infinite degrees

of freedom;
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are the effective variance for the upper and
lower confidence limits;

Ve/f;U and Ve/f;L

V,  is the variance of the second method, such as
RREs; and

U td and Lwtd

W

are the upper and lower log-transformed
confidence limits for the two-tailed
90-percent confidence interval.

In the example data release accompanying this report
(Siefken and other, 2025), 10 streamgages use weighting
with RREs to improve at-site frequency estimates. Although
weighted estimates generally improve the reliability and
accuracy of at-site frequency estimates, the RREs may provide
a poor representation of hydrologic conditions at a streamgage
(Sando and McCarthy, 2018). Where variation between the
at-site and weighted estimate is substantial, careful evaluation
should be made as to which result is more reliable.

Methods for Peak-Flow Frequency
Reporting

Peak-flow frequency analyses completed using the
methods described in this report are published as USGS
data releases, such as Siefken and others (2025). The data
releases include the peak-flow data used in the analysis,
a specifications file containing analysis options used in
the peakfq software, and results of each analysis in the
data release.

When multiple analyses are published for the same
alteration status for a streamgage (for example an at-site
and RRE-weighted or MOVE.3 analysis), a summary file is
included in the data release containing a column indicating
which analysis is considered the “preferred” analysis for use
in hydraulic design and floodplain mapping. The preferred
analysis is considered to be the most representative analysis
of peak-flow frequency after review by two or more USGS
analysts. If a MOVE.3 analysis is published for a site, that
analysis is always considered the preferred analysis. If an
at-site and an RRE-weighted analysis are published, the
RRE-weighted analysis is generally considered preferred if
fewer than 20 years of data are used in the at-site analysis
(Bulletin 17C, appendix 9). However, if examination of
the analysis indicates the RREs likely provide a poor
representation of peak-flow frequency at the site, then the
at-site analysis is considered preferred. When 20 or more
years of data are used in an at-site analysis, an RRE-weighted
analysis may still be considered preferred if the RRE-weighted
analysis has considerably lower variance for one or more
annual exceedance probability (AEP) estimates and the RREs
seem to appropriately represent the peak-flow hydrology of
the streamgage.
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For most streamgages, estimates are published for
selected AEPs from 66.7 percent to 0.2 percent. The methods
described in this report may also be used to compute estimates
for the 0.1-percent AEP, provided at least 100 years of
combined systematic, historical, and paleoflood information
is available for the streamgage, of which at least 50 years is
systematic record. Even if a streamgage has sufficient data to
compute the 0.1-percent AEP estimate, an analyst may elect
not to publish the estimates for the 0.1-percent AEP, depending
on the needs of the data release and the discretion of the
analyst. In the accompanying example data release (Siefken
and others, 2025), 0.1-percent AEP estimates are published
for Gallatin River near Gallatin Gateway, Mont. (USGS
streamgage 06043500; U.S. Geological Survey, 2024c);
Clarks Fork Yellowstone River near Belfry, Mont. (USGS
streamgage 06207500; U.S. Geological Survey, 2024g);
and Clarks Fork Yellowstone River at Edgar, Mont. (USGS
streamgage 06208500; U.S. Geological Survey, 20241).

Summary

The U.S. Geological Survey, in cooperation with the
Montana Department of Natural Resources and Conservation,
North Dakota Department of Water Resources, South
Dakota Department of Transportation, and the Wyoming
Water Development Office, has developed standard methods
of peak-flow frequency analysis for studies in Montana,
North Dakota, South Dakota, and Wyoming. This report
documents the methods for peak-flow frequency analysis
for studies published by the U.S. Geological Survey for
Montana, North Dakota, South Dakota, and Wyoming. At-site
peak-flow frequency follows the guidelines of Bulletin 17C
(https://doi.org/10.3133/tm4BS), and the expected moments
algorithm is used for fitting the log-Pearson type III
distribution. The standard procedure is to use the multiple
Grubbs-Beck test (https://doi.org/10.1002/wrcr.20392) for
identifying low outliers and weight the at-site skew coefficient
with a regional skew coefficient. For some sites, the peak-flow
records are not well represented by the standard procedures,
and user-informed adjustments of using a manual low outlier
value or using the at-site skew coefficient without weighting
with regional skew are made.

Many at-site frequency estimates may be improved by
incorporating information from other streamgages in the
region. Frequency estimates for unregulated streamgages
generally can be improved by weighting the at-site
frequency estimates with frequency estimates from regional
regression equations (https://doi.org/10.3133/sir20185046).
Maintenance of Variance Extension type III record extension
(https://doi.org/10.1029/WR0211005p00715) may be used
to improve frequency estimates for a streamgage with peak
discharges highly correlated with one or more nearby,
hydrologically similar streamgages. The methods for

improving at-site frequency estimates by weighting with
regional regression equations and by record extension are
described in the report.

A U.S. Geological Survey data release accompanying
this report (https://doi.org/10.5066/P1 WHRKS8H) presents
peak-flow frequency analyses for example streamgages in
various hydrologic settings within the study area. The data
release includes tables and graphical plots that document the
interpretive decisions involved in the analysis and present the
results of the analysis. The methodology in this report may
be used to publish similar data for other streamgages in the
study region.
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