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Nonstationary Flood Frequency Analysis Using Regression
in the North-Central United States

By Sara B. Levin

Abstract

Traditional flood frequency methods assume that the
statistical properties of peak streamflow do not change
with time and may not be appropriate for many areas in
the north-central United States. This study examines a
nonstationary flood frequency analysis method that uses
ordinary least squares linear regression to estimate flood
magnitudes at U.S. Geological Survey streamgages that
exhibit trends and change points in a nine-State region
including Montana, North Dakota, South Dakota, Minnesota,
[llinois, Towa, Wisconsin, Missouri, and Michigan.
Additionally, an extension of this method is introduced, which
enables nonstationary flood frequency based on a statistical
relation with a stochastic climate predictor.

Estimates of the 1-percent annual exceedance probability
flood using regression equations to adjust for conditions in
2020 were computed at U.S. Geological Survey streamgages
across the study area. Regression equations used either
a time index or a climate variable as the explanatory
variable for changes in peak streamflow. Of 153 candidate
streamgages, the assumptions of time-adjusted analyses were
met at 137 streamgages. Climate-adjusted flood frequency
analyses were applicable at 98 streamgages based on annual
precipitation, annual temperature, or annual snowfall. Time-
and climate-adjusted methods produced similar estimates of
the 1-percent annual exceedance probability flood magnitude
at streamgages where both methods were applicable.
Nonstationary estimates of the 1-percent annual exceedance
probability flood were primarily greater than stationary
estimates in eastern North and South Dakota, Minnesota,
Iowa, Illinois, and parts of Missouri and less than stationary
estimates in Montana, western North and South Dakota, and
Wisconsin. The largest differences between stationary and
nonstationary flood estimates were in North and South Dakota
and Minnesota.

Introduction

Flood frequency analysis (FFA) is a statistical method
that estimates the magnitude of a flood for a given annual
exceedance probability (AEP) and is used extensively in
infrastructure design such as bridges and culverts, floodplain
mapping, and water-resources management. FFA involves
fitting a time series of annual peak streamflow to a probability
distribution from which the magnitude of a quantile of interest
can be calculated. Standardized recommended guidelines
for FFA in the United States are presented in “Guidelines for
determining flood flow frequency—Bulletin 17C (hereafter
referred to as “Bulletin 17C”; England and others, 2018).

A primary assumption with FFA is that the statistical
properties of the peak streamflow time series (such as mean,
variance and skew) do not change over time. This assumption,
called stationarity, has been questioned in recent decades
because of concerns over changing climate and land-use
patterns as well as observed changes in peak streamflows
(Milly and others, 2008). A time series is nonstationary if the
statistical properties of the underlying probability distribution
change over time. Nonstationarity can be gradual over
time, such as a trend in the mean or variance, or can happen
abruptly, such as a change point (Ryberg and others, 2024).
Bulletin 17C (England and others, 2018) does not provide
guidance on how to incorporate nonstationarity into FFA.
However, failure to account for nonstationarity in FFA can
lead to poor estimates of design-flood magnitudes and flood
risk. Because these flood estimates are routinely used in
riverine infrastructure design and floodplain management,
poorly estimated flood magnitudes or frequencies can lead
to excessive costs when flood magnitudes are overestimated,
or public safety issues when flood magnitudes are
underestimated.
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Monotonic trends and change points in peak streamflows
have been identified in streamgages across the Midwest
United States (Villarini and others, 2011; Hodgkins and
others, 2019; Ryberg and others, 2020; Marti and others,
2024). These changes include upward and downward changes
in peak streamflow magnitude, as well as changes in the
timing of peak streamflows (Dhakal and Palmer, 2020; Neri
and others, 2020). Anthropogenic causes of nonstationarity
include urbanization or other land use changes, and dam
construction (Hodgkins and others, 2017; Hodgkins and
others, 2019; Levin and Holtschlag, 2022). Large regional
patterns of hydroclimatic changes, such as distinct areas of
upward or downward changes in precipitation or temperature,
have been identified in the region (Ryberg and others, 2014;
Mallakpour and Villarini, 2015; Ivancic and Shaw, 2017,
Norton and others, 2022). Regional hydroclimatic changes
have been identified as primary drivers of peak streamflow
nonstationarity in the study area (Levin and Holtschlag, 2022;
Sando and others, 2022).

During the past decade, there has been a surge in research
associated with detection and attribution of streamflow
nonstationarity (Hodgkins and others, 2019; Neri and others,
2019) and development of methods of estimating flood
frequency under nonstationary conditions. A wide variety of
potential methods of nonstationary flood frequency analysis
(NFFA) have been proposed in the literature, including
but not limited to, modeling time-varying peak streamflow
distribution parameters (Serago and Vogel, 2018; Ouarda
and Charron, 2019), peaks-over-thresholds (Lang and others,
1999; Slater and Villarini, 2016), Bayesian frameworks
(Ouarda and El-Adlouni, 2011; Bracken and others, 2018),
quantile regression (Over and others, 2016), and methods that
combine statistical techniques with deterministic hydrologic
and climate models (Hirabayashi and others, 2008; Gilroy
and McCuen, 2012). Khaliq and others (2006), Salas and
others (2018), and Barbhuiya and others (2023) provide
comprehensive reviews of this topic.

Despite the large research effort and number of
publications on this topic, there is little consensus on the
most appropriate method of NFFA, or even if such methods
should be used (Koutsoyiannis and Montanari, 2015). There
are large uncertainties associated with the detection and
characterization of nonstationarity in peak streamflows. Even
when nonstationarity can be detected and characterized with
an acceptable level of certainty, nonstationary flood frequency
methods introduce additional uncertainty that may be difficult
to quantify (Cohn and Lins, 2005; Lins and Cohn, 2011).
Despite these uncertainties, if there are changes, particularly
increases, in the historical peak streamflow record that can be
reasonably explained by a causal mechanism and are expected
to continue during the design life of a project, it is important
to account for these changes in a flood frequency estimate,
because biased or underestimated design-flood magnitudes
may pose a public safety risk (Salas and others, 2018; Serago
and Vogel, 2018).

One NFFA approach is to model one or more parameters
of the annual peak streamflow distribution (mean, variance,
and skew) using one or more explanatory variables. This
approach develops a statistical model that predicts the
annual peak streamflow distribution moments using either
a time or an independent covariate, such as precipitation or
land use change, that is assumed to have a causal relation to
the observed peak streamflow nonstationarity. After these
conditional moments are computed, the flood frequency
distribution can be determined using the method of moments
or other standard distribution-fitting methods (Stedinger and
others, 1993). This method is beneficial because it is a natural
extension of stationary FFA methods, which are currently
used in the United States and are familiar to users (England
and others, 2018). This similarity with FFA also facilitates a
more straightforward comparison with stationary estimates
and integration with existing design flood criteria as compared
to methods that use daily streamflows or physically based
rainfall-runoff models.

A wide range of statistical frameworks have been
proposed to estimate peak streamflow distribution moments
ranging from ordinary least squares (OLS) regression (Serago
and Vogel, 2018; Hecht and Vogel, 2020) and generalized
linear models (Hecht and others, 2022) to more complex
statistical models such as generalized additive model of
location, scale, and shape (Rigby and Stasinopoulos 2005;
Villarini and others, 2009). There are several advantages
to using regression for estimation of distribution moments
rather than a more complex statistical model, such as ease
of application and communication, the ability to compute
analytical prediction intervals, and well-documented methods
for model selection and evaluation (Serago and Vogel, 2018).
Additionally, linear regression can accommodate a variety
of nonstationary patterns including trends, change points,
and some nonlinear relations through a variety of data
transformations (Serago and Vogel, 2018). Limitations of OLS
regression methods include that the residuals of the fitted must
be homoscedastic and normally distributed and regression
may not be able to adequately model some more complex or
nonlinear relations.

This study extends the OLS method described by Serago
and Vogel (2018) by introducing a procedure for estimating
the flood probability for a given year based on a stochastic
climate variable. A stochastic variable, such as annual
precipitation, displays random variability and will fluctuate
in time according to a probability distribution. Conversely,

a deterministic explanatory variable, such as time, is known
with certainty. When using time as an explanatory variable, the
conditional flood distribution for a given year can be computed
directly from the fitted regression equation (Serago and Vogel,
2018). If a climate variable, such as precipitation, is used as
the explanatory variable, the resulting regression equation can
be used to derive the conditional flood frequency distribution
for a specific value of the climate variable. Climate variables,
unlike time, have annual variability and may themselves be
nonstationary. Therefore, if the goal is to use a climate-based



regression to estimate the flood frequency for current climate
conditions, the probability distribution of the climate variable
for the year of interest must be known and accounted for in
the NFFA. This study describes a procedure to estimate a flood
magnitude that is weighted by the probability distribution of a
stochastic climate variable.

To assess whether NFFA using OLS regression is
a viable method on a regional scale in the north-central
United States, time- and climate-adjusted NFFA methods
were applied at candidate U.S. Geological Survey (USGS)
streamgages in a nine-State region including Illinois, Iowa,
Michigan, Minnesota, Missouri, Montana, North Dakota,
South Dakota, and Wisconsin. Climate-adjusted analyses used
a limited set of three candidate climate variables including
annual precipitation, annual mean temperature, and annual
snowfall to facilitate the application of the method at a large
spatial extent.

Purpose and Scope

The purpose of this report is to evaluate the applicability
of an NFFA method that uses linear regression to model trends
and change points in peak streamflow across a nine-State
region including Illinois, lowa, Michigan, Minnesota,
Missouri, Montana, North Dakota, South Dakota, and
Wisconsin. A procedure for applying the method using climate
covariates was developed and applied at streamgages across
the study area. This report is intended as a screening-level
analysis to assess whether OLS regression equations relating
peak streamflow to commonly available climate data in this
region can satisfy the assumptions of the method, and to
identify any potential barriers to the application of the method
through this region. Results within this report do not supersede
current published flood frequency estimates in these States.

Data and Site Selection

The study area consists of a nine-State region consisting
of Illinois, lowa, Michigan, Minnesota, Missouri, Montana,
North Dakota, South Dakota, and Wisconsin. This region has
a wide range of topography and climate conditions that result
in a variety of patterns in the seasonality and magnitude of
floods. In some areas, floods are generated primarily by spring
snowmelt, whereas in other areas, floods are primarily caused
by large rainstorms outside of the snowmelt period or have
a mix of flood generating mechanisms (Ryberg and others,
2016; Collins and others, 2022). Changes in streamflow in
minimally altered or regulated streams in the study area during
the past 100 years have been previously identified across the
region (Ryberg and others, 2016; Hodgkins and others, 2019).
In general, trends in peak streamflow have been downward
in the western part of the study area including Montana and
the western halves of North and South Dakota, and trends
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have been primarily upward in minimally regulated streams
in Minnesota, lowa, Illinois, Missouri, and Michigan (Ryberg
and others, 2016; Levin and Holtschlag, 2022; Sando and
others, 2022). Downward trends have also been identified

in Wisconsin and the Upper Peninsula of Michigan (Levin,
2024a, 2024b).

Unregulated streamgages in the study area that had at
least 50 years of peak streamflow data between water years
1921 and 2020 were selected as candidate streamgages for
analysis. A water year is the 12-month period from October 1
through September 30 of the following year and is designated
by the calendar year in which it ends. Streamgages with
substantial regulation, as identified by Marti and Ryberg
(2023), were excluded from the study. Over and others (2025)
computed the percent impervious cover for streamgages in the
study area from the National Land Cover Database (Dewitz
and U.S. Geological Survey, 2021). Streamgages with greater
than 5 percent impervious cover in their drainage areas were
also removed from the study. Annual peak streamflow was
obtained from the USGS National Water Information System
(NWIS) (USGS, 2024) for water years 1921-2020. Peak
streamflows in NWIS have associated qualification codes that
indicate special conditions that may affect the uncertainty or
interpretation of the reported values. Peak streamflows were
removed from the data if they were not an instantaneous peak
(code 1), were affected by dam failure (code 3), were less than
or greater than the indicated value (code 4 or 8), were affected
by regulation or diversion (code 6), or were historical peaks
outside the systematic record (code 7).

Peak streamflow time series at candidate streamgages
were tested for trends and change points. The Mann-Kendall
test is a nonparametric test for a monotonic trend in a time
series (Kendall, 1938). The Mann-Kendall test was applied
at all sites using the kendallTrendTest function in the R
package “EnvStats” (Millard, 2013). Unlike trends that are
gradual changes during the period of record, change points
are abrupt changes in mean, median, or variability of a time
series. Change points in the median peak streamflow were
determined using the Pettitt test (Pettitt, 1979), which finds
a single change point in a time series (Pettitt, 1979; Ryberg
and others, 2020). The Pettit test was applied using the pettitt.
test function in the R package “trend” (Pohlert, 2020b).
Streamgages with statistically significant trends or change
points in peak streamflow at the 95-percent significance level
were retained in the dataset for nonstationary flood frequency
analysis. Tests for monotonic trends can be affected by the
presence of a change point (Villarini and others, 2009). For
streamgages with a statistically significant change point, trends
were assessed separately before and after the change point as
recommended by Villarini and others (2009).

There were 153 streamgages in the study area with
statistically significant trends or change points (fig. 1).
Periods of record for peak annual streamflow ranged from
50 to 100 years with a median of 81 years of annual peak
streamflow observations. Drainage areas of candidate
streamgages ranged from 0.13 to 69,099 square miles with
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Locations of selected U.S. Geological Survey streamgages with statistically significant trends or change points in

the Midwest during various periods of record from water years 1921 through 2020.

a median of 686 square miles. Streamgages with downward
trends and change points were primarily in the western part
of the study area and in and near Wisconsin, whereas upward
trends and change points were throughout the central and
southern areas of the study area as well as southern Michigan.
Climate data used in this study are from the output
of a monthly water balance model, available for the years
19002020 (McCabe and Wolock, 2011; Wieczorek and
others, 2022). These data were compiled for each streamgage
in the study area as described in Ryberg and others (2024)
and published in Marti and others (2024). Available monthly
time series from the water balance model include temperature,
precipitation, potential evapotranspiration, snowfall, soil
moisture storage, and runoff on a 3.1-mile by 3.1-mile grid for
the conterminous United States. Precipitation and temperature
data within the water balance model were from National
Oceanic and Atmospheric Administration (NOAA) Monthly
U.S. Climate Gridded Dataset (Vose and others, 2015), which

corrects and interpolates station data to a 5-mile grid. The
remaining monthly time series were computed using the water
balance model. For this study, annual precipitation in inches,
annual snowfall in inches of water equivalent, and mean
annual temperature in degrees Fahrenheit were computed from
the monthly time series and used as potential explanatory
variables in climate-adjusted NFFA analyses. Monotonic
trends and change points were determined with a 95-percent
confidence level using the Mann-Kendall test and Pettitt test,
respectively. Annual precipitation had statistically significant
upward trends or change points throughout much of the
eastern part of the study area (fig. 24). Statistically significant
upward trends or change points in annual temperature were
present primarily in the northern part of the study area, as well
as parts of Illinois (fig. 2B). Downward snowfall trends were
less primarily in Montana, with several isolated cases in North
and South Dakota and Minnesota.
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Flood Frequency Methods

This section describes the methods used to compute
stationary and nonstationary flood frequency estimates
in this study. Stationary flood frequency methods used in
this report may differ from those outlined in Bulletin 17C
(England and others, 2018) and are used here only as a general
comparison with nonstationary methods. Nonstationary
flood frequency methods can be used to estimate a flood
magnitude based on a temporal trend or change point in
the peak streamflow (time-adjusted NFFA) or based on an
independent variable such as precipitation that is a plausible
causal mechanism for the observed peak streamflow
nonstationarity (climate-adjusted NFFA). The first part of
this section describes methods for estimating nonstationary
flood frequency using a regression equation with time as the
explanatory variable to model the trend or change point in
peak streamflows (Serago and Vogel, 2018). The second part

of this section describes methods to compute nonstationary
flood probability when the conditional flood distribution is
based on a climate variable.

Stationary Flood Frequency

Flood frequency analysis uses statistical techniques to
estimate flood magnitudes associated with specific AEPs. An
AERP is the probability that a flood of a specific magnitude or
higher will occur in a given year. Flood frequency estimates at
a streamgage are computed by fitting a probability distribution
to the time series of the logarithm of annual peak streamflows.
Flood magnitudes for AEPs of interest are computed from
the quantiles of the fitted probability distribution. Bulletin
17C recommends fitting a Log-Pearson type 111 (LP3)
distribution for peak streamflow (England and others, 2018).
For this study, the method of moments was used to estimate
the parameters of the LP3 distribution and corresponding
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quantiles. This method uses the sample mean (m,), standard where
deviation (s,), and skew (g,) of the logarithms of the peak m,
streamflows (y) to estimate distribution moments, which is

shown in equations 1-3. The Imomco package in R (Asquith,

2023) was used to fit the LP3 distributions and compute Sy
quantiles from the sample moments.

1
my = ﬁz;‘l:lyi (1) gy
n
1
8= \/n X m) @
Vi

S 3
o~ (1)) = (50) o

is the sample mean of the log-transformed
peak streamflows;

is the sample standard deviation of the
log-transformed peak streamflows;

is the sample skew of the log-transformed
peak streamflows; and

is the number of peak streamflow
observations; and

is the natural logarithm of a peak streamflow,
in cubic feet per second, for water year i.
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The quantity (1+6/n) is a bias correction factor for the
skew of an LP3 distribution recommended by Tasker and
Stedinger (1986). The stationary FFA method used in this
study differs from that recommended by Bulletin 17C, which
uses the expected moments algorithm to fit the distribution and
also recommends using a weighted or regional skew (England
and others, 2018). The method of moments using the sample
skew is used here so that comparisons between stationary and
nonstationary estimates of flood magnitudes can be made with
more consistent methodologies. Bulletin 17C recommends
using the multiple Grubbs-Beck test (Cohn and others, 2013)
to identify and potentially remove low outlier values to
improve the fit of the distribution for the highest streamflows.
This method, which assumes stationarity, may not be suitable
in NFFA because the thresholds for identifying an outlier may
change as the peak streamflow distribution changes through

time. Because there is currently no recommended method

for identifying or handling outliers in NFFA, and to keep
stationary and nonstationary FFA methodologies consistent, all
outliers were retained in the dataset.

Conditional Peak Streamflow Moments

When peak streamflows exhibit nonstationarity, the peak
streamflow probability distribution changes over time. To
estimate a flood AEP for current conditions, the conditional
peak streamflow distribution for that year of interest must be
determined. Serago and Vogel (2018) introduce expressions
for estimating conditional distribution moments derived
from a linear regression equation relating nonstationary peak
streamflows to an explanatory variable such as a time index,
urbanization, or climate variable (eq. 4).
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y=ptphote “4)

where
y is the natural logarithm of annual peak
streamflows,

w is an explanatory variable,

ﬂoa ﬂl

€ is a normally distributed error with a
mean of zero.

are fitted regression coefficients, and

If the regression residuals are homoscedastic and
normally distributed, the conditional mean of the peak
streamflow distribution can be obtained by solving the
regression equation for a specific value of @ (eq. 5).

:uy‘woz ﬁO +ﬁl Wy (5)
where
o, is the conditional mean of y given w,,

, is the value of the explanatory variable for
which the conditional peak distribution is
derived, and

Lo By are fitted regression coefficients.

The conditional standard deviation can be derived by
substituting equation 5 into formulas for standard deviation
and skew (egs. 2 and 3).

1
Gy\cu: \/ oy — Ztr‘l:l (yz _/uy‘wi)z (6)
where n-p-1
Sl is the conditional standard deviation of

v given o,

n is the number of peak streamflow
observations,

p is the number of independent explanatory
variables in the regression equation,

¥;  is the natural logarithm of peak
streamflows, and

e is the conditional mean of y given w,.

The difference y; — u,,, is equivalent to the residuals
of the fitted regression model and p adjusts for the degrees
of freedom in the regression if more than one explanatory
variable is used.

There are several derivations for conditional skew
based on an OLS regression. Serago and Vogel (2018) and
Hecht and others (2022) derive conditional skews based on
an OLS regression using time as an explanatory variable.

The simplifications made in these derivations apply only to
uniformly distributed variables and are not applicable to a
stochastic climate variable. This report uses an alternative
method of computing the skew introduced in Glas and

others (2023), which is applicable for time and climate
explanatory variables. This method computes the skew using a
standardized time series of peak streamflows:

yi 7Iuy|(u,
4= —5,. (7

Mo

where
Z, is the standardized peak streamflow,

1

¥;  is the natural logarithm of peak streamflows,

e is the conditional mean of y given ®,, and

Sl is the conditional standard deviation of

» given .

The conditional skew (y,) can then be computed using Z,
instead of y; in equation 3:

_ 3
= (D) o) 2 () ®

where
n is the number of peak streamflow
observations,

Z, s the standardized peak streamflow,

U, 1is the sample mean of the standardized peak
streamflows,

o6, Iisthe sample standard deviation of the
standardized peak streamflows, and

y, 1is the sample skew of the standardized peak
streamflows.

Equations 6 and 8 produce a conditional standard
deviation and skew that are constants and therefore are most
appropriate when the nonstationarity arises from a change in
the mean only.

Regression equations used for computing conditional
peak streamflow moments should have homoscedastic and
normally distributed residuals to avoid biased estimates
of conditional moments. Regression residual assumptions
were tested using a Breusch-Pagan test of homoscedasticity
(Breusch and Pagan, 1979) and a probability plot correlation
coefficient (ppcc) test for residual normality (Vogel, 1986).
The Breusch-Pagan test was computed using the bptest
function in the Imtest package in R (Zeileis and Hothorn,
2002). The null hypothesis for this test is that residuals are
homoscedastic. Probability values (p-values) greater than 0.05



indicate an acceptable level of homoscedasticity for regression
models. The ppcc test was computed in R using the ppccTest
function in the ppcc package (Pohlert, 2020a). This test
compares the correlation between the ordered residuals and the
theoretical quantiles of a normal distribution. P-values greater
than 0.05 and correlations close to 1 indicate that the residuals
are likely to be normally distributed.

If the mean and variability of peak streamflows are
nonstationary, the regression equation used to model the
conditional distribution moments may have heteroscedastic
residuals. Hecht and Vogel (2020) developed an approach
to estimate the conditional standard deviation (o, ) for a
regression equation with heteroscedastic residuals. This
approach uses a second regression to statistically model
the variance of the fitted regression equation (eq. 9), which
is then used to determine the conditional variance of the
peak streamflow distribution (eq. 10). The residuals, €, from
equation 4 are used as the dependent variable in the variance
regression. Equation 9 relates an independent variable
to the residuals that have been raised to the 2/3 power.

This transformation, called an Anscombe transformation
(Anscombe, 1961), produces normally distributed,
nonnegative values.

e, =byt bty ©)

where
g are the residuals from a regression equation
for peak streamflow (eq. 4),

are fitted regression coefficients,
w is an independent variable, and

0] are normally distributed errors with a
mean of zero.

If the residuals of equation 9 are normally distributed and
homoscedastic, the conditional variance of peak streamflows
(y) given o, can be computed according to equation 10 (refer
to Hecht and Vogel [2020] for a complete derivation).

Gﬁwo = (by+bywy)>+3 cg(bo + b, ;) (10)
where
®, 1is the value of the explanatory variable for

which the conditional peak distribution
is derived,

o} is the conditional variance of peak
Y,

streamflows given ,,
b,b,  arefitted regression coefficients, and

o} is the variance of the error terms from the
variance regression (eq. 9).
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The conditional standard deviation, G oy in the
heteroscedastic case is the square root of equation 10. For
this study, the explanatory variable used in equation 10 was
assumed to the same as that used in equation 4, although this
is not a requirement of the method. If there is evidence that
there are different causal mechanisms for the change in mean
and the change in variance of peak streamflows, they could
be modeled using different explanatory variables (Hecht and
Vogel, 2020).

The conditional moments (egs. 5, 6, 8, 10) can be used
to fit a conditional peak flow distribution using the method of
moments in the same way as for stationary FFA. Conditional
moments can be used to fit any of the common distributions
used in FFA. In this study the LP3 distribution is used to
maintain consistency with the stationary estimates.

Flood Probability Conditioned on a Stochastic
Variable

When the explanatory variable used to model peak
streamflows is time, the flood magnitude for a given AEP can
be computed directly from the conditional distribution. In
this case, the conditional AEP represents the probability that
a flood of a given value will occur in year ®,. For example,
to update the 1-percent AEP flood estimate to conditions in
the year 2020 using a regression equation with water year as
the explanatory variable (o), the conditional mean, standard
deviation, and skew could be computed for w,=2020. Then,
the 1-percent AEP could be determined from the quantile of
the fitted distribution.

If a climate variable is used as the explanatory variable,
o, in the regression equation (eq. 4), the conditional peak
streamflow moments can be computed for a specific value of
w, using equations 5-10. To estimate the flood frequency for
conditions in a specific year of interest, an appropriate value of
®, is needed for the year of interest. However, because climate
variables have random variability from year to year, there is a
range of plausible values that o, could take in any given year.

For example, annual precipitation and peak streamflow at
USGS streamgage 05481000 (Boone River near Webster City,
Iowa) have upward trends in peak streamflow and an upward
trend in precipitation (fig. 34, peak streamflow not shown). A
conditional flood frequency curve can be generated for peak
streamflow for any single value of precipitation using the
relation between peak streamflow and precipitation (fig. 3B).
When estimating the flood frequency for the year 2020 using
equations 5—10, a representative value of precipitation (®,)
is needed. In 2020, the observed annual precipitation was
27.8 inches, the mean annual precipitation estimated by
a linear regression is 34.0 inches, and the median annual
precipitation estimated by a quantile regression is 35.8 inches.
Any of these values may be a plausible value to use for o, in
equation 5; however, the conditional mean streamflow and the
resulting AEP flood magnitude estimate will vary considerably
depending on the choice of w, (fig. 34, B).
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The conditional probability of a flood for a specific value  probability distribution of annual precipitation for the year of
of annual precipitation is of limited use in most applications interest to produce a probability-weighted estimate of the flood
because there is a range of possible annual precipitation values  frequency for the year 2020 (fig. 3C).
that could occur in any given year. Instead, the conditional
peak streamflow distribution can be weighted by the
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Figure 3. Conditional nonstationary flood frequency estimates adjusting for the trend in precipitation obtained from three
discrete representative precipitation values for the year 2020 are compared to a distribution-weighted flood frequency
estimate for U.S. Geological Survey streamgage 05481000 (Boone River near Webster City, lowa). A, Mean, median, and
observed precipitation for the year 2020 are obtained from annual precipitation data. B, The relation between peak streamflow
and precipitation is used to determine the conditional mean peak streamflow for each precipitation estimate. C, Conditional
flood frequency curves adjusted for the three precipitation values are compared with a distribution-weighted curve which
accounts for the total probability distribution of precipitation for 2020.



The total probability, P(y), of a flood across all probable
values of a climate variable @ can be computed using the law
of total probability (Harchol-Balter, 2024).

Po)=IP(y|X = o) fiw)do (11)
where
y is the natural logarithm of a peak streamflow
P®y) is the probability of y,
Pl X=w) is the conditional probability of y given a
climate variable of magnitude w, and
fu(w) is the probability density function of the

climate variable for a year of interest.

In terms of the NFFA, this law can be generally interpreted
as a weighted average of the conditional probability of a flood
magnitude (y) given some value of precipitation, weighted by the
relative probability of that annual precipitation value, and evaluated
across the whole distribution of annual precipitation values.

When obtaining the total probability of a flood of a given
magnitude using equation 11, it is necessary to know the
probability density of the explanatory variable used to estimate
the conditional moments of'y. If that distribution is known, the
integral can be solved using numerical estimation methods such
as quadrature. Quadrature is a method of estimating the area under
a curve by dividing into many small rectangular intervals and
summing the areas of all the intervals (Chapra and Canale, 2006).

o, tw

Pyy=2n, POIX = wi)];(wi)< n

D

where
P(y)

is the probability of a streamflow of
magnitude y;

n is the number of intervals used;

w; is the value of the climate variable for
interval i;

P(y|X = w,)is the conditional probability of a flood of
magnitude y, given a climate variable of
magnitude o, (eqs. 5-11);

fi()

(“5)
n
Equation 12 computes the probability of a flood with a given
magnitude (that is, the probability of a flood of 10,000 cubic feet
per second [{t3/s]). Typically, with FFA, the inverse of this function
is of interest and the flood magnitude of a given probability
is sought (that is, the magnitude of a flood with a 1-percent
probability). To estimate the flood magnitude of a specific AEP,
optimization can be used to iteratively solve equation 12 across a
range of values of y until the AEP of interest is obtained.

is the probability density value for a climate
variable equal to w;; and

is the interval width.
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When computing the total probability, the conditional
probability distribution of the selected climate variable for the
year of interest is required. However, assuming the climate
variable is the cause of the peak streamflow, nonstationarity
means that the climate variable itself is also likely nonstationary,
so traditional stationary distribution fitting methods are
not applicable to the climate variable of interest. For this
study, annual precipitation, temperature, and snow were
used as potential explanatory variables for peak streamflow
nonstationarity. The conditional distributions for the water year
2020 for climate variables were computed using equations 4-10
with time as the explanatory variable in the regression equation.
Lognormal density functions were used for climate variables in
equation 12. If future scenarios are of interest, information from
large scale climate models could also be used to estimate these
climate distributions.

The process used for estimating a flood magnitude for an
AEP of interest using a climate-based regression and the law of
total probability is outlined below and illustrated in figure 4 using
annual precipitation as the climate variable.

1. First, a regression equation is developed for
log-transformed annual precipitation, ®, using water year
as the explanatory variable. The conditional mean and
standard deviation of annual precipitation for water year
2020 are computed using equations 5 and 6 (fig. 44).

2. Alognormal conditional probability density function,
f(w), for annual precipitation is fit using the conditional
mean and standard deviation from step 1 (fig 4B).

3. The probability density curve is divided into n intervals

w1+ wn
n

of width < ) Minimum and maximum values of

o were computed from the 0.0001 and 0.9999 quantiles
of the fitted density curve. For each interval, the density
function value, f,(®,), is computed for o, using the
dnorm function in R (fig. 4B).

4. A regression equation is developed for log-transformed
peak streamflow, y, using log-transformed annual
precipitation, m, as an explanatory variable (fig. 4C). For
each value of o, in step 3, the conditional moments of
peak streamflow are determined using equations 5—10
and a conditional LP3 distribution is fit using the method
of moments.

5. The conditional probability of a flood of magnitude
¥, P|X = ®,), is determined from the fitted conditional
distribution in step 4 for each value of w; (fig. 4D).

6. The total probability of a flood of magnitude y is
computed from equation 12 using the interval width and
probability density of annual precipitation from step 3,
and the conditional flood probability from step 5.

7. Steps 5 and 6 are repeated across a range of flood
magnitudes (y) until step 6 produces the AEP of interest.
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Illustration of the steps for estimating the components of equation 13 used for implementing nonstationary flood frequency

conditioned on annual precipitation. A, A regression equation relating annual precipitation to water year is used to determine
conditional distribution moments for the year 2020. B, The conditional probability density function is evaluated at discrete intervals
across the range of the distribution. C, A regression equation relating the logarithm of peak streamflow to the logarithm of annual
precipitation is used to determine the conditional moments of the peak streamflow distribution for each interval in part B. D, Conditional
flood probability for each precipitation interval is determined by fitting an LP3 distribution to the conditional moments. E, The total
probability of a flood of magnitude y is computed by computing the law of probability from the quantities determined in parts B and D.

Confidence Intervals for Flood Frequency
Estimates

Bootstrapped 95-percent confidence intervals were computed
to assess the uncertainty in stationary FFA and NFFA estimates for
the 1-percent AEP flood. For stationary FFA, the peak streamflow
data at each streamgage were sampled with replacement for the
same length as the period of record. FFA was then performed on
the resampled dataset to obtain a bootstrapped estimate. Several
different methods of confidence intervals for nonstationary FFA
have been developed (Obeysekera and Salas, 2014). In this study,
residual bootstrapping of linear regression equations was used to
obtain bootstrapped estimates of the conditional mean, standard
deviation, and skews for peak streamflow and climate variable
distributions (Davison and Hinkley, 1997; Obeysekera and Salas,
2014). The residuals of the fitted linear regression were sampled
with replacement and added to the fitted model estimates to create
anew bootstrapped dataset. NFFA was then performed on the

bootstrapped dataset. For climate-adjusted NFFA, bootstrapping
was performed on the linear regression estimating the conditional
climate distribution and the linear regression estimating the
conditional peak streamflow. For stationary and nonstationary
bootstrap methods, confidence intervals were based on 3,000
bootstrapped estimates and computed as the 2.5-percent and
99.5-percent quantiles of the bootstrapped estimates.

Estimation of Flood Frequency at
Candidate Streamgages

Prior to using NFFA at a streamgage, peak streamflow
nonstationarity should be characterized and if possible, a causal
mechanism should be attributed. This is an important step
because there are large uncertainties associated with the detection
and characterization of nonstationarity in peak streamflows. For



example, an apparent trend over a short period of record may
actually be a temporary departure from stationary conditions
when viewed over a longer period of record, or a change point
may be mistakenly characterized as a trend (Lins and Cohn, 2011;
Salas and others, 2018). Because of the difficulty in characterizing
nonstationarity, exploratory data analysis can help to identify

a deterministic, causal mechanism leading to the observed
nonstationarity prior to performing NFFA (Koutsoyiannis and
Montanari, 2015; Serinaldi and Kilsby, 2015; Slater and others,
2021). Previously published studies have identified changes

in precipitation and temperature as likely drivers of changes

in peak streamflows in this study area (Levin and Holtschlag,
2022; Sando and others, 2022; Levin, 2024a, 2024b; Marti and
Heimann, 2024; Marti and Over, 2024). Additionally, forecasts
based on deterministic climate models suggest these trends may
continue during the next century (Kunkel and others, 2022).

This section describes the process that was used to screen data
and apply time- and climate-adjusted NFFA at selected USGS
streamgages and provides examples of how regional trend
analyses can be used to support NFFA modeling decisions.

Time-Adjusted Nonstationary Flood Frequency

Time-adjusted NFFA uses time as the only explanatory
variable to model peak streamflow nonstationarity. This method is
computationally simpler than using a stochastic climate variable
and does not require additional data; however, it can be difficult to
determine the most appropriate model form.

A time series with a change point can display a variety of
statistical characteristics. In some cases, a change point may
indicate a step change in the mean or variance of the data. In other
cases, there may be a change point within a larger gradual trend,
or it may indicate a change in direction of a trend slope. Within a
linear regression framework there are several approaches that could
be used to model a time series with a change point. Using simple
linear regression, a step change in the mean can be modeled using
an indicator variable that takes the value of 0 for years equal and
prior to the change point and 1 after the change point year. The
data before and after the change point can be modeled as a constant
or changing in time using an additional explanatory variable for
time. A change in slope at a change point can be modeled using
an interaction term between a change point indicator and a time
variable. Other regression methods such as piecewise regression
or local linear regression could also be used in situations where
there is a nonlinear pattern of nonstationarity (Chen and others,
2010, Bates and others, 2012), but these methods were not tested in
this study.

In cases when statistical tests indicate a trend and a change
point, it can be difficult to determine the most appropriate
regression model form. For example, figure 5 shows peak
streamflow for USGS streamgage 05094000 (South Branch Two
Rivers at Lake Bronson, Minnesota), which has a statistically
significant change point in water year 1961 (p-value<0.001)
and trend (p-value=0.001). Using OLS regression, this peak
streamflow time series could be modeled using either a trend or
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Figure 5. Annual peak streamflow for U.S. Geological Survey
streamgage 05094000 (South Branch Two Rivers at Lake Bronson,
Minnesota) for water years 1929 through 2020 modeled with a
trend and a change point.

a change point. However, predicted flood magnitudes from these
two model specifications were very different in a time-adjusted
NFFA. In this case, the change point model estimates a conditional
mean of 1,949 ft3/s and a 1-percent AEP streamflow magnitude

of 5,287 ft¥/s for the year 2020, whereas a trend model estimates

a conditional mean of 2,885 ft3/s and a 1-percent AEP streamflow
magnitude of 9,462.

Because trend tests can be affected by the presence of change
points, it is generally recommended that change points be identified
first and that trend tests are performed separately on subsets of
the data before and after the change point (Villarini and others,
2009). Site specific exploratory data analysis of hydroclimatic,
land use change, and regulation information, as well as regional
nonstationarity analyses such as those found in Marti and others
(2024), can be used to support the choice of the regression equation
form in cases where nonstationarity test results are ambiguous.
Examples 1 and 2, discussed in the upcoming sections, demonstrate
time-adjusted NFFA at USGS streamgages with a trend and change
point in peak streamflows, respectively. For both examples, climate
and streamflow data and analyses in Marti and others (2024) were
used to characterize the hydroclimate regime and identify probable
causal mechanisms for the peak streamflow nonstationarity.
Additionally, climate summaries including historical and future
scenarios provided by NOAA for each State are used to provide an
additional line of evidence to support the use of NFFA (Kunkel and
others, 2022).
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Example 1

This example estimates the time-adjusted 1-percent
AEP flood at USGS streamgage 04108600 (Rabbit River
near Hopkins, Michigan) on the western side of the Lower
Peninsula of Michigan. This streamgage has 55 peak streamflow
observations from water year 1966 through 2020. Mean annual
precipitation during the period of record was 37.3 inches and was
typically spread throughout the year without a strong seasonal
pattern (Marti and others, 2024). Soil is typically near or at
saturated conditions during winter and spring (December through
May). Peak streamflows during the period of record occur
primarily from December through July, with the highest density
of peak streamflows in March and April (Marti and others, 2024).

Upward trends in peak streamflow (p-value=0.02, fig. 64),
annual precipitation (p-value<0.01, fig. 6B8), and annual
temperature (p-value<0.01, not shown) were identified during
the period of record. Seasonal trend analyses in Marti and others
(2024) showed upward temperature trends in all seasons, with
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Figure 6. Upward trends for U.S. Geological Survey streamgage
04108600 (Rabbit River near Hopkins, Michigan) for water years
1966 through 2020. A, Peak streamflow. B, Annual precipitation.

the largest increases in winter (December through February).
Upward trends in precipitation were only in winter (December
through February) and spring (March through May). Regional
analyses using multiple lines of evidence indicate that increases
in spring precipitation and changes in winter temperature may
be altering snowmelt dynamics and are plausible drivers of
changing peak streamflow (Levin, 2024a).

Climate data at this streamgage, as well as regional trend
analyses (Levin, 2024a) that show similar precipitation-driven
trends in Michigan, provide strong evidence that increases in
peak streamflow at this streamgage may be driven by changes
in regional climate. Additionally, statewide climate assessments
from NOAA predict that increases in precipitation are likely to
continue in southern Michigan during the next century, which
supports the use of NFFA for this streamgage (Frankson and
others, 2022).

Conditional moments of the peak streamflow distribution
were computed using a regression equation relating the natural
log of peak streamflow (y) and a water year index (wy;), equal

to the water year minus 1920. The fitted regression model

was y=6.33+0.026xwy,. Fitted regression coefficients for
intercept and slope had p-values of less than 0.001 and 0.01,
respectively. The residuals do not show evidence of being
heteroscedastic (p-value=0.79) or non-normal (p-value=0.94).
The conditional mean for the year 2020 was computed

from the regression equation using wy,=100. Conditional
standard deviation and skew were fit using equations 5 and

6, respectively. The 1-percent AEP quantile was estimated

with the method of moments using the quape3 function in

the Imomco R package (Asquith, 2023). The conditional and
stationary moments and fitted 1-percent AEP quantile are
shown in table 1, and figure 7 shows a comparison of stationary
and nonstationary estimates across the range of AEPs. The
nonstationary estimate of the 1-percent AEP flood for 2020 was
18 percent higher than the stationary estimate.

Table 1. Log-Pearson type Il distribution moments and
1-percent annual exceedance probability using stationary and
time-adjusted flood frequency methods for water year 2020 for
U.S. Geological Survey streamgage 04108600 (Rabbit River near
Hopkins, Michigan).

Time-adjusted
nonstationary
flood frequency

Stationary

Method flood frequency

Mean 6.54 6.81
Standard deviation 0.53 0.51
Skew 0.92 0.81
1-percent annual 3,345 3,966

exceedance

probability flood

estimate
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Figure 7. Stationary and nonstationary flood frequency
curves for U.S. Geological Survey streamgage 04108600
(Rabbit River near Hopkins, Michigan).

Example 2

USGS streamgage 05051600 (Wild Rice River near
Rutland, North Dakota) has 58 peak streamflow observations
from water years 1960 through 2020. Precipitation has a
seasonal pattern with lower precipitation between November
and February and higher precipitation in May through July.
Median monthly temperatures are typically below freezing
from November through March during when streamflow is
very low. Streamflow generally increases in the spring as the
snowpack melts and precipitation volumes increase. Peak
streamflows occur most frequently in the spring primarily
owing to snowmelt but can also occur in the summer from
large rainstorms (Marti and others, 2024).

Peak streamflows at this location have a statistically
significant change point at water year 1992 (p-value<0.001)
and a statistically significant upward trend (p-value=0.002,
fig. 84). Mean peak streamflow increased from 82 ft3/s prior
to the change point to 468 ft*/s after the change point, which
is a 5.7-fold increase. Annual precipitation at this location also
has an upward change point in 1990 (p-value=0.016, fig. 8B)
and an upward trend (p-value=0.017). An analysis of the
timing of peak streamflows and daily streamflows is shown
in figure 94 (Marti and others, 2024). In the mid-1990s, there
was an abrupt change in the seasonality of peak streamflows.
Although peaks prior to the mid-1990s occurred primarily
in the spring, after the mid-1990s there was an increase
in peaks in May through August (fig. 94). Additionally,
daily streamflows and lower flows increased abruptly in
the mid-1990s (fig. 98). Modelled annual soil storage data
indicate that annual soil storage increased concurrent with the
change point in precipitation (fig. 9C). The abrupt increase in
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Figure 8. Upward trends at U.S. Geological Survey streamgage
05051600 (Wild Rice River near Rutland, North Dakota) for A,
peak streamflow and B, annual precipitation.

precipitation and antecedent soil storage during the summer is
a likely driver of the change in seasonality and magnitude of
peak streamflows.

Climate data for this streamgage, as well as regional
trend analyses (Ryberg and others, 2024), provide strong
evidence that increases in peak streamflow at this streamgage
may be caused by changes in regional climate. Additionally,
the concurrent change point in precipitation and soil moisture,
as well as the apparent abrupt change in peak streamflow
seasonality and daily streamflow at the time of the change
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magnitude. B, Daily streamflow magnitude for each day of the period
others (2024).

point, provide strong evidence that peak streamflows in this
location have undergone an abrupt shift rather than a gradual
trend and that time-adjusted NFFA analyses may be more
accurately represented with a change point model.

Peak streamflows were transformed using the natural
log () and a change point indicator variable (cpind) was
computed that was equal to 0 for years 1960 through 1992

of record. C, Annual soil water storage. Data are from Marti and

and equal to 1 from 1993 to 2020. The period after the

change point does not have a statistically significant trend
(p-value=0.80) and the regression equation used only the
change point indicator as an independent variable. The fitted
regression equation was y=4.40+1.74xcpind. Fitted regression
coefficients for intercept and change point indicator had
p-values of less than 0.001. Residuals from this regression
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did not show significant heteroscedasticity (p-value=0.062)

or non-normality (p-value=0.104). The conditional mean

after the change point is estimated by the regression equation
as fb)pii—4-4+1.74x1=6.14. Conditional standard deviation
and skew were derived from the fitted regression residuals and
standardized time series using equations 6 and 9, respectively.
The 1-percent AEP quantile was estimated with the method of
moments using the quape3 function in the Imomco R package
(Asquith, 2023). The conditional and stationary moments

and fitted 1-percent AEP quantile are shown in table 2, and
figure 10 shows a comparison of stationary and time-adjusted
nonstationary estimates across the range of AEPs.

Climate-Adjusted Nonstationary Flood
Frequency Analysis

Climate-adjusted NFFA uses a climate variable to
model the nonstationarity in peak streamflow. This method
requires a regression equation relating peak streamflow to the
climate variable and the probability distribution of the climate
variable for the year of interest. Climate-adjusted NFFA is
more computationally complex than time-adjusted NFFA and
there may be additional uncertainty from the inclusion of the
estimated climate probability distribution.

Regional trend attribution studies have identified
large-scale changes in climate as a driver of peak streamflow
nonstationarity in the study area (Levin and Holtschlag, 2022;
Sando and others, 2022). Changes in precipitation magnitude
and timing have been identified as likely causes of increasing
peak flows in the upper Midwest (Levin and Holtschlag,
2022; Sando and others, 2022). Decreasing peak flows have

been attributed to land use change, groundwater withdrawals,
decreases in soil moisture, increased temperature, and
decreases in snowpack (Neri and others, 2019; Sando and
others, 2022). For this study, only annual precipitation,
temperature, and snowfall were considered as explanatory
variables for regressions estimating peak streamflow. These
variables were chosen because of their wide-scale data
availability across the region and because they have been used
in previous related publications characterizing nonstationarity
in this region (Ryberg, 2024).

Table 2. Log-Pearson type Il distribution moments and
1-percent annual exceedance probability using stationary and
nonstationary methods for water year 2020 flood frequency
methods for U.S. Geological Survey streamgage 05051600 (Wild
Rice River near Rutland, North Dakota).

Time-adjusted
nonstationary
flood frequency

Stationary

Method flood frequency

Mean 5.25 6.15
Standard deviation 1.65 1.4
Skew —-1.00 -0.8
1-percent annual 2,586 5,321

exceedance probability
flood estimate
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Figure 10. Stationary and time-adjusted nonstationary
flood frequency curves for U.S. Geological Survey
streamgage 05051600 (Wild Rice River near Rutland, North
Dakota).

Because the conditional variance and skew for NFFA
analyses are computed from regression residuals, it is
important that fitted regressions have residuals that are
homoscedastic and normally distributed. Failure to meet
these assumptions may result in biased estimates of these
distribution parameters. The assumptions of homoscedasticity
and normality were tested with the Breusch-Pagan test
for homoscedasticity (Breusch and Pagan, 1979) and the
probability plot correlation test (Vogel, 1986), respectively.
Time-adjusted conditional distribution moments for
climate variables were computed for the year 2020 using
equations 5—11. Annual climate variables were fit to lognormal
probability distributions. The conditional flood and the
conditional climate variable distribution were used in the total
probability equation (eq. 12) and optimization was used to
determine the streamflow magnitude for the 1-percent AEP
flood magnitude.

At some streamgages with change points in peak
streamflows, there was a change in the relation between peak
streamflow and the explanatory climate variable before and
after the change point. This change can happen when a change
in temperature or soil moisture modifies the relation between
precipitation and streamflow (Woodhouse and others, 2016).
For example, a step increase in precipitation can increase soil
moisture throughout the year. The change in antecedent soil
moisture can cause greater streamflow for a given precipitation
event after the change point year. In these cases, a change
point indicator variable equal to 0 for observations prior to and
including the year of the change point and 1 after the change
point can be included in the regression equation between
peak streamflow and the climate variable to improve the fitted
regression equation (refer to "Example 4” section).

The following examples demonstrate the process of
climate-adjusted NFFA at two streamgages. The examples
estimate the 1-percent AEP flood using climate conditions for
the year 2020.

Example 3

USGS streamgage 05107500 (Roseau River at Ross,
Minn.) has 80 peak streamflow observations from water
year 1929 through 2020. This streamgage is located along
the northern border of Minnesota and streamflow is strongly
influenced by snowmelt. Precipitation has a seasonal pattern
with lowest precipitation from November through March and
highest precipitation in May through July. Median monthly
temperatures are typically below freezing from November
through March during which time streamflow is very low.
Streamflows increase in the spring as the snowpack melts and
precipitation volumes increase (Marti and others, 2024).

Peak streamflows at this location have a marginally
significant upward change point at water year 1961
(p-value=0.08) and a statistically significant upward trend
(p-value=0.02, fig. 114). Annual precipitation at this
location has an upward change point (p-value=0.007) and
an upward trend (p-value=0.002, fig. 11B) driven largely
by upward trends in winter and spring (Marti and others,
2024). Temperature at this location also increased and had a
statistically significant change point (p-value<0.001) in 1979.
Increased precipitation accompanied by warmer temperatures,
particularly during the winter, which can cause rain-on-snow
events and changes in snowmelt dynamics, are consistent as a
causal mechanism for the increase in peak streamflows at this
location. Climate data for this streamgage, as well as regional
trend analyses (Marti and others, 2024), provide strong
evidence that increases in peak streamflow at this streamgage
may be caused by changes in regional climate. Statewide
climate assessments by NOAA predict that high precipitation
rates will continue in this region through this century,
supporting the use of NFFA at this streamgage (Runkle and
others, 2022).

Conditional moments for peak streamflows were
based on the relation between peak streamflows and annual
precipitation (fig. 12). The fitted regression equation
between the natural log of peak streamflows (y) and natural
log of annual precipitation (w) was y=1.78+1.84xw.
Residuals for this regression equation do not show evidence
of heteroscedasticity (p-value=0.41) or non-normality
(p-value=0.21). Conditional moments for peak streamflow
were computed using equations 5-8.

Conditional moments of annual precipitation for the year
2020 were computed from the regression equation relating
the natural logarithm of annual precipitation (w) and a change
point indicator (cpind) equal to zero prior to and including
water year 1961 and equal to | after that: w=2.98+0.14%cpind.
Residuals from this equation do not show evidence of
heteroscedasticity (p-value=0.41) or non-normality
(p-value=0.21). The conditional mean of log-transformed
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Figure 11. Upward trends and change points at U.S.
Geological Survey streamgage 05107500 (Roseau River at
Ross, Minnesota) for A, Peak streamflow and B, Annual
precipitation.

annual precipitation for the year 2020 was 3.12, and the
standard deviation was 0.179. The conditional probability
density function for the log-transformed annual precipitation

for the year 2020 was estimated with the dnorm function in R.

—— Linear regression line

Figure 12. Relation between peak streamflow and annual
precipitation at U.S. Geological Survey streamgage 05107500
(Roseau River at Ross, Minnesota).

Equation 12 was computed across the range of
precipitation values from the 0.0001 to 0.9999 quantiles of the
computed conditional precipitation distribution. Optimization
of equation 12 was performed in R with the optim() function,
starting with an initial flood estimate equal to the minimum
observed peak streamflow and iterating until the estimated
annual exceedance probability was within 0.0002 of the
target AEP value (in this case, 1 percent). Estimates of the
1-percent AEP flood using stationary, time-adjusted NFFA,
and climate-adjusted NFFA methods are shown in table 3. The
conditional mean is not reported in table 3 for climate-adjusted
NFFA because there are a range of conditional means used in
equation 12. Plots of the annual exceedance probability across
a range of values using stationary, time-adjusted NFFA, and
climate-adjusted NFFA methods are shown in figure 13.

Example 4

USGS streamgage 06326500 (Powder River near Locate,
Montana) has 78 peak streamflow observations from water
year 1938 through 2020. Precipitation has a seasonal pattern
with lowest precipitation from November and March and
highest precipitation in May and June. Median monthly
temperatures are typically below freezing from November
through March during which time streamflow is very low.
Similar to other northern locations in the study area, peak
streamflow at this location is influenced by snowfall and
snowmelt, which can persist until May or June (Marti and
others, 2024).
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Table 3.

Log-Pearson type Il distribution moments and 1-percent annual exceedance probability using stationary, time-adjusted

nonstationary, and climate-adjusted nonstationary flood frequency methods for water year 2020 for U.S. Geological Survey streamgage

05107500 (Roseau River at Ross, Minnesota).

[--, no data]
Time-adjusted Climate-adjusted
Method Stationary nonstationary nonstationary
flood frequency flood frequency
Mean 7.43 7.73 -
Standard deviation 0.7 0.68 0.61
Skew —0.55 —-0.55 —0.38
1-percent annual exceedance 6,486 8,463 7,993

probability flood estimate
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Figure 13. Stationary and nonstationary flood frequency
curves for U.S. Geological Survey streamgage 05107500
(Roseau River at Ross, Minnesota).

Peak streamflow at this location has a downward
change point in 1972 (p-value=0.001, fig. 144). There was
no trend or change point in precipitation at this location, but
nonstationarity was detected in annual snow and annual mean
temperature (fig. 14). Annual mean temperature had an upward
change point in 1986 (p-value<0.001) and annual snowfall
had downward change point in 1979 (p-value=0.02). Previous
studies have attributed downward trends in peak streamflow
in Montana to combination of precipitation and temperature
effects that are difficult to separate (Sando and others, 2022).
Nonstationarity in temperature can modify the relation
between streamflow and precipitation or snowfall by changing
evapotranspiration, soil moisture, and snowmelt processes
(Woodhouse and others, 2016). A decrease in snowfall is
a likely driver of downward changes in peak streamflow;

however, an apparent change in the relation between peak
streamflow and snowfall before and after the change point is
likely due to the change in temperature (fig. 15).

Conditional moments for peak streamflow were based
on the relation among log transformed peak streamflow (y),
annual snowfall (w), and a change point indicator variable
(cpind) equal to O prior to and including the change point year
and equal to 1 after (fig. 15). The fitted regression equation
was y=7.35+1.74xw—-0.56xcpind. All fitted coefficients were
statistically significant with p-values<0.01. Residuals for
this equation did not show significant heteroscedasticity
(p-value=0.54) or non-normality (p-value=0.18). Conditional
moments were computed using equations 58 (table 4).

Conditional moments for annual snowfall were computed
for the year 2020 using the relation between the natural
logarithm of annual snowfall (w) and time, using a change
point indicator (cpind) equal to zero prior to or equal to 1979
and 1 afterwards, with the equation w=1.11-0.16xcpind.

The conditional mean of log-transformed annual snowfall

for the year 2020 of 0.95, and the standard deviation was
0.228. The conditional probability density function for

the log-transformed annual snowfall for the year 2020

was estimated with the dnorm function in R. Equation 12

was computed across the range of snowfall distribution.
Optimization of equation 12 was performed in R with the
optim() function, starting with an initial flood estimate equal to
the minimum observed peak streamflow and iterating until the
estimated annual exceedance probability was within 0.0002 of
the target AEP value (in this case, 1 percent).

Estimates of the 1-percent AEP flood using stationary,
time-adjusted NFFA, and snowfall-adjusted NFFA methods
are shown in table 4. The conditional mean is not reported
for climate-adjusted NFFA because there is a range of
conditional means used in equation 12. Plots of the annual
exceedance probability across a range of values using
stationary, time-adjusted NFFA, and climate-adjusted NFFA
methods are shown in figure 16. In this case, time-adjusted
and climate-adjusted methods produce similar results, both
of which estimate lower flood magnitudes than the stationary
method.
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Table 4.

Log-Pearson type Il distribution moments and 1-percent annual exceedance probability using stationary, time-adjusted

nonstationary, and climate-adjusted nonstationary flood frequency methods for water year 2020 for U.S. Geological Survey streamgage

06326500 (Powder River near Locate, Montana).

[--, no data]
Time-adjusted Climate-adjusted
Method Stationary nonstationary nonstationary
flood frequency flood frequency
Mean 8.81 8.52 --
Standard deviation 0.84 0.77 0.56
Skew —-0.28 —0.43 —-0.32
1-percent annual exceedance probability 39,608 23,310 24,953

flood estimate
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Figure 16. Stationary and nonstationary flood frequency
curves for U.S. Geological Survey streamgage 06326500
(Powder River near Locate, Montana).

Regional Applicability of Using Linear
Regression in Nonstationary Flood
Frequency

Regional assessments of nonstationary flood frequency
can benefit from a consistent, broadly applicable method to
facilitate comparisons between streamgages or to regionalize
the results for prediction at ungaged locations. One goal of
the project was to determine whether or not the assumptions
of the method could be met across the study area and to
identify potential barriers to its usage. Time-adjusted NFFA
and climate-adjusted NFFA were attempted at all candidate
streamgages in the study area to determine the applicability of
this method.

Fitted NFFA models at each site were screened to
determine whether the assumptions of homoscedastic,
normally distributed residuals were met. Regression equations
for which p-values of residuals tests were greater than 0.05
were considered to satisfy OLS regression assumptions and
are good candidates for using linear regression for NFFA.
Regression equations for which the Breusch-Pagan test for
homoscedasticity was less than 0.05 but greater than 0.03
were considered marginally acceptable. Regression equations
for which the ppcc test p-value was less than 0.05 but the
correlation between residuals and theoretical quantiles of a
normal distribution were equal to or greater than 0.98 were
also considered marginally acceptable. In these cases, the
regression equations may have been affected by one or more
outliers or there may be a slight lack of linearity. Marginally
acceptable regressions may have greater uncertainty or slight
bias but still likely represent the current flood risk better
than a stationary estimate. Additional research can help to
determine how non-normal residuals or heteroscedasticity in
the regression equations affects NFFA estimates. Although
not included in this study, the marginal or poor regression
fits may potentially be improved using weighted, robust, or
multiple linear regression methods; other data transformations;
different explanatory variables; or removal of outliers that are
not representative of typical peak streamflows. NFFA analyses
were not performed for streamgages whose regression
equations had p-values below 0.01 in one or both residual
tests. The regressions at these streamgages exhibit substantial
heteroscedasticity or lack of linearity that may require
different explanatory variables or a more flexible statistical
framework to adequately estimate conditional moments
(Rigby and Stasinopoulos, 2005; Villarini and others, 2009).

Regional Time-Adjusted Nonstationary Flood
Frequency Analyses

NFFA using time as the explanatory variable was
performed at candidate streamgages in the study area. There
were 107 streamgages that had statistically significant change
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points as well as significant trends, similar to example 2. It
was beyond the scope of this study to do detailed site-specific
data analyses at all of these streamgages to determine which
model form would be more appropriate. Instead, if a change
point and trend were identified at a location, it was modeled as
a change point as is suggested by Villarini and others (2009).
The model form (change point or trend) of the regression
equation used for time-adjusted NFFA and how well the
regression residuals met the assumptions of OLS regression
are shown in figure 17. Of the 153 candidate streamgages,
103 were modeled with a change point indicator model and
34 were modeled as trends. There were 16 streamgages for
which time-adjusted NFFA was not performed because fitted
regression residuals exhibited extensive heteroscedasticity
or non-normality. Of the 137 streamgages for which
time-adjusted NFFA was performed, regression models at

101 streamgages had residuals that did not show significant
heteroscedasticity or non-normality or whose residuals could
be adequately modeled using a secondary error model (eq. 10),
making them good candidates for this NFFA method (fig. 17).
The other 36 streamgages had regression equations for which
the regression assumptions were marginally met.

The percent difference in the stationary and time-adjusted
nonstationary 1-percent AEP flood estimate was examined at
candidate streamgages in the study area (fig. 18). Comparisons
of FFA and NFFA methods in this report should be taken
only as a screening-level analysis to give an indication of
the general magnitude of change. Because it was outside the
scope of this study to use the expected moments algorithm
(EMA) method of FFA as recommended by Bulletin 17C,
the stationary FFA methods used in this study may not match
currently published estimates. Despite these limitations, these
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comparisons give a general estimate of the change in flood
magnitudes owing to nonstationarity and may identify regional
patterns.

Differences in flood estimates from time-adjusted NFFA
and stationary FFA across the region ranged from —80 percent
to 100 percent. The greatest percent differences between
stationary FFA and time-adjusted NFFA estimates for the
1-percent AEP flood magnitude were in the northern part
of the study area. Upward changes were greatest in eastern
North Dakota and Minnesota, whereas the greatest downward
changes in estimates were in western North Dakota, South

Dakota, and eastern Montana (fig. 18). Differences in the
1-percent AEP were less than 20 percent at most streamgages
in Missouri, Michigan, and Illinois.

Time-adjusted NFFA using linear regression was
applicable throughout most of the study area. The assumptions
of linear regression were adequately met for trend and change
point models at most streamgages. Although most streamgages
were fit with change point models, nearly all the streamgages
with change points also had statistically significant trends. In
some cases, site-specific exploratory analysis at individual
streamgages (examples 1-4) may lend support for different
modeling forms than those selected in this report.
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Regional Climate-Adjusted Nonstationary Flood
Frequency

Climate-adjusted NFFA was performed at streamgages
with a nonstationary annual climate variable that exhibited a
statistically significant trend or change point at the 95-percent
confidence level that was consistent with the direction of
significant change in the peak streamflows (fig. 2). The climate
variable selected for use in NFFA at streamgages across the study
area is shown in figure 19. Regression equations for upward
trends and change points in peak streamflow at streamgages
throughout the central part of the study area were fit using annual

25

precipitation if a concurrent upward trend or change point was
identified. Regression equations for downward peak streamflow
trends and change points in the western part of the study area and
in Wisconsin and upper Michigan were fit using either annual
temperature or annual snowfall. If temperature and snowfall
were nonstationary at a streamgage, the variable with the greater
regression coefficient of determination (R?) was chosen. The R?
measures the proportion of the variability in peak streamflow that
is explained by the explanatory variable (annual temperature or
snowfall). Of the 153 candidate streamgages, 70 were predicted
using annual precipitation, 21 were predicted using annual mean
temperature, and 7 were predicted using annual snowfall. There
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were 55 streamgages for which a climate variable could not be streamgages can benefit from closer examination and may need
identified as a causal mechanism for peak streamflow under the different explanatory climate variables, a more robust model
criteria used in this project. form, or an alternative NFFA method.

Of the 98 streamgages for which an appropriate climate The percent difference between stationary and
variable was identified, 65 had fitted regression models with climate-adjusted NFFA estimates of the 1-percent AEP flood
residuals that did not show significant heteroscedasticity or is shown in figure 20. Results were similar to those from the
non-normality or whose residuals could be adequately modeled time-adjusted analyses, with the greatest upward changes in
using a secondary error model (eq. 10), making them good eastern North and South Dakota and Minnesota. A comparison of
candidates for this NFFA method. An additional 33 streamgages climate and time-adjusted NFFA estimates at streamgages where
had regression equations for which the regression assumptions both analyses were performed is shown in figure 21. Differences
were marginally met. Climate-adjusted NFFA analyses at these between climate- and time-adjusted estimates agreed within

25 percent of each other in about 75 percent of the cases.
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Climate analyses were applicable in about 60 percent of
the streamgages with observed peak streamflow nonstationarity.
Many streamgages were excluded from analysis because none
of the three annual climate variables could be identified as a
probable cause of nonstationarity, either because they were
stationary or because the direction of the climate trend or change
point was not consistent with a causal mechanism for the peak
streamflow trend or change point. In cases where a climate
variable was identified as a likely driver of nonstationarity, the
method produced 1-percent AEP estimates that were similar
in magnitude to those estimated by time-adjusted NFFA
methods. Additionally, regression equations using climate
variables generally explained a larger portion of the variance
than time-based regression equations, with mean coefficient of
determination of 0.34 for climate-based regressions and 0.13 for
time-based regression equations.

Uncertainty in FFA is high, even under stationary conditions.

Sources of uncertainty in stationary FFA include sampling error,
uncertainty in estimated sample moments, and the fit of the
selected distribution. Many of the same sources of uncertainty

in stationary FFA also apply to NFFA. Additionally, NFFA
methods in this study are affected by uncertainty from fitted
regression equations. Although a full examination of the controls
on uncertainty in regression-based NFFA are beyond the scope
of this study, the same factors that affect uncertainty in regression
are likely to affect NFFA estimates, including sample size, error
variance of the fitted regression, and the presence of outliers or
influential data points.

Median lower and upper bootstrapped 95-percent
confidence intervals were —28 and +38 percent of the estimated
value for stationary FFA, —32 and +43 percent for time-adjusted
NFFA, and —26 and +55 percent for climate-adjusted NFFA
(fig. 22). At some streamgages, NFFA confidence intervals were

excessively large, with upper confidence intervals greater than
400 percent. Large confidence intervals occurred at streamgages
with shorter periods of record (less than 70 years), those that had
large regression error variance, or several large outliers in the
data. In general, bootstrapped confidence intervals were larger
at streamgages with shorter periods of record where regression
slopes were more sensitive to variability in the bootstrapped
data and produced a wider range of conditional means. The
coefficient of variability of bootstrapped conditional means was
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twice as large in streamgages with less than 70 years of record
than it was at sites with longer periods of record (coefficient

of variability of 2.5 and 1.1, respectively). The large range of
conditional means reflects the sensitivity of OLS regression
slopes to data variability and outliers, particularly when samples
sizes are smaller. Additional research can help characterize the
factors affecting uncertainty in NFFA estimates; however, this
preliminary examination indicates that regression equations that
explain a greater portion of the variability and larger sample sizes
may produce flood estimates with less uncertainty.

Limitations

Analyses in this study should be regarded as preliminary
and do not supersede other published flood frequency
estimates. There are several limitations of analyses performed
in this study. Only annual precipitation, snowfall, and
temperature were considered as potential explanatory variables
in this study. These explanatory variables were chosen
because of their availability across the large study area and
their previous use in characterization of nonstationarity in
the study area (Ryberg, 2024); however, subannual climate
variables may be better predictors of flood magnitudes at some
locations. Additionally, these three climate variables do not
represent the full range of flood-generating mechanisms in the
region. Changes in land use from agriculture, urbanization,
and tile drainage may also have effects on flood magnitude
but were beyond the scope of this study. Additionally, only
linear OLS regression was considered for estimating the
relation between explanatory variables and peak streamflow.
Other regression methods such as piecewise regression,
robust regression, or multiple regression, which considers the
mutual effects of more than one explanatory variable were not
considered but may result in better model fits and reduce the
uncertainty in estimates. Finally, site-specific exploratory data
analyses (examples 1-4) were not completed for the regional
application of the method. These regional analyses were
performed as a preliminary assessment of the applicability of
the method and to identify areas where changes were greatest
in the estimated 1-percent AEP. Closer inspection of climate
and streamflow trends at individual sites may support the use
of different explanatory variables or model forms than those
used in this study.

Summary

A primary assumption of flood frequency analysis is that
the statistical properties of the peak streamflow time series do
not change over time. This assumption has been challenged
in recent decades owing to concerns that changes in observed
peak streamflows may be caused by changing climate patterns
and land-use changes. One approach to nonstationary flood
frequency (NFFA) is to model the change in peak streamflows
using regression. In this approach, conditional moments

for peak streamflow are derived from a regression equation
between peak streamflow and an explanatory variable such as
time or a climate variable. Flood magnitudes are computed by
fitting a probability distribution from the conditional moments
and computing the quantiles of the fitted distribution for the
annual exceedance probability (AEP) of interest.

For time-adjusted NFFA, the flood magnitude for a given
AEP and year is computed directly from the fitted regression
equation. For climate-adjusted NFFA, the conditional flood
magnitude can be computed for a specific value of the
explanatory variable. However, to estimate a climate-adjusted
NFFA for a particular year, the probability distribution
of the explanatory variable must also be considered. The
magnitude for a given AEP flood using a stochastic climate
variable can be computed using the law of total probability.
This equation integrates the product of the conditional flood
frequency and the probability density function of the climate
variable. When determining the flood magnitude of an AEP of
interest, optimization can be used to iteratively compute the
integration until a flood magnitude is that has the selected AEP
is determined.

The use of regression in NFFA is appealing owing to its
relative ease of application and flexibility to model change
points, trends, and some types of nonlinearity through data
transformations or other model equations. The use of this
method is restricted to situations in which a regression
equation can be fit with homoscedastic and normally
distributed residuals. Because the conditional moments are
derived from the fitted regression and the regression residuals,
it is important that the regression assumptions are met.
Regression equations with a poor model fit or an incorrect
model form (for example, modeling as a trend when the
nonstationarity is in fact a change point) can result in greater
uncertainty or bias in estimated flood magnitudes.

A nine-State region including Illinois, lowa, Michigan,
Minnesota, Missouri, Montana, North Dakota, South Dakota,
and Wisconsin was used as the study area to assess the
applicability of ordinary least squares (OLS) regression for
NFFA in the study area. Time-adjusted and climate-adjusted
NFFA were applied at 153 candidate streamgages with
statistically significant peak streamflow trends or change
points to determine whether the assumptions of the regressions
were met. Regression equations using time as the explanatory
variable had residuals that met the OLS assumptions at 101
streamgages and marginally met OLS assumptions at 36
streamgages. Regressions with marginally acceptable residuals
exhibited some lack of normality or slight heteroscedasticity,
which may result in higher uncertainty but is likely to be
a better estimate of flood risk than a stationary model.
Time-based regression equations at 16 streamgages exhibited
substantial heteroscedasticity or nonstationary patterns,
were nonlinear or nonmonotonic, and require more flexible
statistical models or other methods of NFFA.

Climate-adjusted NFFA was performed using annual
precipitation, annual snowfall, or mean annual temperature
as an explanatory variable. Annual precipitation with upward



trends or change points was used to estimate 1-percent AEP
floods at streamgages with upward trends or change points
throughout much of the central parts of the study area.
Annual snowfall and temperature had downward trends or
change points primarily in the western part of the study area,
Wisconsin, and the upper peninsula of Michigan. Annual
snowfall or temperature was used to estimate the 1-percent
AEP floods at streamgages with downward trends or change
points. Of the 153 candidate streamgages, 70 were predicted
using annual precipitation, 21 were predicted using annual
mean temperature, and 7 were predicted using annual
snowfall. There were 55 streamgages for which a climate
variable could not be identified as a causal mechanism

for peak streamflow under the criteria used in this project

or the fitted regression equations exhibited significant
heteroscedasticity or non-normality. Regression equations

in climate-adjusted NFFA met OLS assumptions at 65
streamgages and marginally met OLS assumptions at 33
streamgages. At streamgages where climate- and time-adjusted
NFFA were applied, estimates for 1-percent AEP matched
within 25 percent of each other at about 75 percent of the time.

For both NFFA adjustment methods, the difference
between stationary and nonstationary NFFA estimates was
greatest in the northern part of the region. In areas with
upward peak streamflow change points and trends, NFFA
estimates were generally less than 20 percent higher than
stationary estimates in the southern part of the study area and
were greatest in eastern North Dakota and western Minnesota.
Wisconsin, Montana, and western South Dakota and North
Dakota had primarily downward trends in peak streamflows.
Among these areas, eastern Montana and western North
Dakota had the largest downward change in the 1-percent
estimate from NFFA.

Overall, OLS regression shows promise for large scale
application across the study region. Time-adjusted NFFA is
somewhat simple to implement and patterns of nonstationarity
across most of the region were able to be modeled adequately
with OLS regression. OLS regression can be used to adjust
flood estimates based on change points or trends in the time
series. One challenge in using this method is determining the
proper equation form in cases where peak streamflow exhibits
a trend and a change point. An incorrect model form can lead
to large biases in estimates. Analysis of ancillary climate
at the streamgage and regionally can be used to support
the choice of model form in these cases. Climate-adjusted
NFFA is more computationally complex than time-adjusted
NFFA but may be used in cases where a climate attribution
of peak streamflow nonstationarity can be confidently
made. Climate-based regressions can account for complex
patterns of nonstationarity caused by interactions between
different climate effects, such as a temperature change point
altering the relation between peak flow and precipitation.
Climate-based regression equations generally explained
a higher portion of the variability in peak streamflows
compared to time-based regressions; however, the overall
uncertainty in climate-adjusted NFFA estimates may be larger
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than time-adjusted NFFA estimates owing to the additional
uncertainty from the climate distribution probability weighting
process. This study used only annual climate variables as
potential explanatory variables, but variables on shorter

time scales, such as seasonal precipitation, may have better
predictive ability in a regression equation.
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