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Conversion Factors
U.S. customary units to International System of Units

Multiply By To obtain

Length

inch (in.) 2.54 centimeter (cm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

square foot (ft2) 0.09290 square meter (m2)
square mile (mi2) 2.590 square kilometer (km2)

Flow rate

cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
 
International System of Units to U.S. customary units

Multiply By To obtain

Length
centimeter (cm) 0.3937 inch (in.)
meter (m) 3.281 foot (ft)
kilometer (km) 0.6214 mile (mi)

Area

square meter (m2) 10.76 square foot (ft2)
square kilometer (km2) 0.3861 square mile (mi2)
Flow rate
cubic meter per second (m3/s) 35.31 cubic foot per second (ft3/s)

 
Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

					     °F = (1.8 × °C) + 32.

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

					     °C = (°F – 32) / 1.8.

Datums
Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Supplemental Information
A water year is the 12-month period from October 1 through September 30 of the following year 
and is designated by the calendar year in which it ends.
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Nonstationary Flood Frequency Analysis Using Regression 
in the North-Central United States

By Sara B. Levin

Abstract
Traditional flood frequency methods assume that the 

statistical properties of peak streamflow do not change 
with time and may not be appropriate for many areas in 
the north-central United States. This study examines a 
nonstationary flood frequency analysis method that uses 
ordinary least squares linear regression to estimate flood 
magnitudes at U.S. Geological Survey streamgages that 
exhibit trends and change points in a nine-State region 
including Montana, North Dakota, South Dakota, Minnesota, 
Illinois, Iowa, Wisconsin, Missouri, and Michigan. 
Additionally, an extension of this method is introduced, which 
enables nonstationary flood frequency based on a statistical 
relation with a stochastic climate predictor.

Estimates of the 1-percent annual exceedance probability 
flood using regression equations to adjust for conditions in 
2020 were computed at U.S. Geological Survey streamgages 
across the study area. Regression equations used either 
a time index or a climate variable as the explanatory 
variable for changes in peak streamflow. Of 153 candidate 
streamgages, the assumptions of time-adjusted analyses were 
met at 137 streamgages. Climate-adjusted flood frequency 
analyses were applicable at 98 streamgages based on annual 
precipitation, annual temperature, or annual snowfall. Time- 
and climate-adjusted methods produced similar estimates of 
the 1-percent annual exceedance probability flood magnitude 
at streamgages where both methods were applicable. 
Nonstationary estimates of the 1-percent annual exceedance 
probability flood were primarily greater than stationary 
estimates in eastern North and South Dakota, Minnesota, 
Iowa, Illinois, and parts of Missouri and less than stationary 
estimates in Montana, western North and South Dakota, and 
Wisconsin. The largest differences between stationary and 
nonstationary flood estimates were in North and South Dakota 
and Minnesota.

Introduction
Flood frequency analysis (FFA) is a statistical method 

that estimates the magnitude of a flood for a given annual 
exceedance probability (AEP) and is used extensively in 
infrastructure design such as bridges and culverts, floodplain 
mapping, and water-resources management. FFA involves 
fitting a time series of annual peak streamflow to a probability 
distribution from which the magnitude of a quantile of interest 
can be calculated. Standardized recommended guidelines 
for FFA in the United States are presented in “Guidelines for 
determining flood flow frequency—Bulletin 17C (hereafter 
referred to as “Bulletin 17C”; England and others, 2018).

A primary assumption with FFA is that the statistical 
properties of the peak streamflow time series (such as mean, 
variance and skew) do not change over time. This assumption, 
called stationarity, has been questioned in recent decades 
because of concerns over changing climate and land-use 
patterns as well as observed changes in peak streamflows 
(Milly and others, 2008). A time series is nonstationary if the 
statistical properties of the underlying probability distribution 
change over time. Nonstationarity can be gradual over 
time, such as a trend in the mean or variance, or can happen 
abruptly, such as a change point (Ryberg and others, 2024). 
Bulletin 17C (England and others, 2018) does not provide 
guidance on how to incorporate nonstationarity into FFA. 
However, failure to account for nonstationarity in FFA can 
lead to poor estimates of design-flood magnitudes and flood 
risk. Because these flood estimates are routinely used in 
riverine infrastructure design and floodplain management, 
poorly estimated flood magnitudes or frequencies can lead 
to excessive costs when flood magnitudes are overestimated, 
or public safety issues when flood magnitudes are 
underestimated.
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Monotonic trends and change points in peak streamflows 
have been identified in streamgages across the Midwest 
United States (Villarini and others, 2011; Hodgkins and 
others, 2019; Ryberg and others, 2020; Marti and others, 
2024). These changes include upward and downward changes 
in peak streamflow magnitude, as well as changes in the 
timing of peak streamflows (Dhakal and Palmer, 2020; Neri 
and others, 2020). Anthropogenic causes of nonstationarity 
include urbanization or other land use changes, and dam 
construction (Hodgkins and others, 2017; Hodgkins and 
others, 2019; Levin and Holtschlag, 2022). Large regional 
patterns of hydroclimatic changes, such as distinct areas of 
upward or downward changes in precipitation or temperature, 
have been identified in the region (Ryberg and others, 2014; 
Mallakpour and Villarini, 2015; Ivancic and Shaw, 2017; 
Norton and others, 2022). Regional hydroclimatic changes 
have been identified as primary drivers of peak streamflow 
nonstationarity in the study area (Levin and Holtschlag, 2022; 
Sando and others, 2022).

During the past decade, there has been a surge in research 
associated with detection and attribution of streamflow 
nonstationarity (Hodgkins and others, 2019; Neri and others, 
2019) and development of methods of estimating flood 
frequency under nonstationary conditions. A wide variety of 
potential methods of nonstationary flood frequency analysis 
(NFFA) have been proposed in the literature, including 
but not limited to, modeling time-varying peak streamflow 
distribution parameters (Serago and Vogel, 2018; Ouarda 
and Charron, 2019), peaks-over-thresholds (Lang and others, 
1999; Slater and Villarini, 2016), Bayesian frameworks 
(Ouarda and El-Adlouni, 2011; Bracken and others, 2018), 
quantile regression (Over and others, 2016), and methods that 
combine statistical techniques with deterministic hydrologic 
and climate models (Hirabayashi and others, 2008; Gilroy 
and McCuen, 2012). Khaliq and others (2006), Salas and 
others (2018), and Barbhuiya and others (2023) provide 
comprehensive reviews of this topic.

Despite the large research effort and number of 
publications on this topic, there is little consensus on the 
most appropriate method of NFFA, or even if such methods 
should be used (Koutsoyiannis and Montanari, 2015). There 
are large uncertainties associated with the detection and 
characterization of nonstationarity in peak streamflows. Even 
when nonstationarity can be detected and characterized with 
an acceptable level of certainty, nonstationary flood frequency 
methods introduce additional uncertainty that may be difficult 
to quantify (Cohn and Lins, 2005; Lins and Cohn, 2011). 
Despite these uncertainties, if there are changes, particularly 
increases, in the historical peak streamflow record that can be 
reasonably explained by a causal mechanism and are expected 
to continue during the design life of a project, it is important 
to account for these changes in a flood frequency estimate, 
because biased or underestimated design-flood magnitudes 
may pose a public safety risk (Salas and others, 2018; Serago 
and Vogel, 2018).

One NFFA approach is to model one or more parameters 
of the annual peak streamflow distribution (mean, variance, 
and skew) using one or more explanatory variables. This 
approach develops a statistical model that predicts the 
annual peak streamflow distribution moments using either 
a time or an independent covariate, such as precipitation or 
land use change, that is assumed to have a causal relation to 
the observed peak streamflow nonstationarity. After these 
conditional moments are computed, the flood frequency 
distribution can be determined using the method of moments 
or other standard distribution-fitting methods (Stedinger and 
others, 1993). This method is beneficial because it is a natural 
extension of stationary FFA methods, which are currently 
used in the United States and are familiar to users (England 
and others, 2018). This similarity with FFA also facilitates a 
more straightforward comparison with stationary estimates 
and integration with existing design flood criteria as compared 
to methods that use daily streamflows or physically based 
rainfall-runoff models.

A wide range of statistical frameworks have been 
proposed to estimate peak streamflow distribution moments 
ranging from ordinary least squares (OLS) regression (Serago 
and Vogel, 2018; Hecht and Vogel, 2020) and generalized 
linear models (Hecht and others, 2022) to more complex 
statistical models such as generalized additive model of 
location, scale, and shape (Rigby and Stasinopoulos 2005; 
Villarini and others, 2009). There are several advantages 
to using regression for estimation of distribution moments 
rather than a more complex statistical model, such as ease 
of application and communication, the ability to compute 
analytical prediction intervals, and well-documented methods 
for model selection and evaluation (Serago and Vogel, 2018). 
Additionally, linear regression can accommodate a variety 
of nonstationary patterns including trends, change points, 
and some nonlinear relations through a variety of data 
transformations (Serago and Vogel, 2018). Limitations of OLS 
regression methods include that the residuals of the fitted must 
be homoscedastic and normally distributed and regression 
may not be able to adequately model some more complex or 
nonlinear relations.

This study extends the OLS method described by Serago 
and Vogel (2018) by introducing a procedure for estimating 
the flood probability for a given year based on a stochastic 
climate variable. A stochastic variable, such as annual 
precipitation, displays random variability and will fluctuate 
in time according to a probability distribution. Conversely, 
a deterministic explanatory variable, such as time, is known 
with certainty. When using time as an explanatory variable, the 
conditional flood distribution for a given year can be computed 
directly from the fitted regression equation (Serago and Vogel, 
2018). If a climate variable, such as precipitation, is used as 
the explanatory variable, the resulting regression equation can 
be used to derive the conditional flood frequency distribution 
for a specific value of the climate variable. Climate variables, 
unlike time, have annual variability and may themselves be 
nonstationary. Therefore, if the goal is to use a climate-based 
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regression to estimate the flood frequency for current climate 
conditions, the probability distribution of the climate variable 
for the year of interest must be known and accounted for in 
the NFFA. This study describes a procedure to estimate a flood 
magnitude that is weighted by the probability distribution of a 
stochastic climate variable.

To assess whether NFFA using OLS regression is 
a viable method on a regional scale in the north-central 
United States, time- and climate-adjusted NFFA methods 
were applied at candidate U.S. Geological Survey (USGS) 
streamgages in a nine-State region including Illinois, Iowa, 
Michigan, Minnesota, Missouri, Montana, North Dakota, 
South Dakota, and Wisconsin. Climate-adjusted analyses used 
a limited set of three candidate climate variables including 
annual precipitation, annual mean temperature, and annual 
snowfall to facilitate the application of the method at a large 
spatial extent.

Purpose and Scope
The purpose of this report is to evaluate the applicability 

of an NFFA method that uses linear regression to model trends 
and change points in peak streamflow across a nine-State 
region including Illinois, Iowa, Michigan, Minnesota, 
Missouri, Montana, North Dakota, South Dakota, and 
Wisconsin. A procedure for applying the method using climate 
covariates was developed and applied at streamgages across 
the study area. This report is intended as a screening-level 
analysis to assess whether OLS regression equations relating 
peak streamflow to commonly available climate data in this 
region can satisfy the assumptions of the method, and to 
identify any potential barriers to the application of the method 
through this region. Results within this report do not supersede 
current published flood frequency estimates in these States.

Data and Site Selection
The study area consists of a nine-State region consisting 

of Illinois, Iowa, Michigan, Minnesota, Missouri, Montana, 
North Dakota, South Dakota, and Wisconsin. This region has 
a wide range of topography and climate conditions that result 
in a variety of patterns in the seasonality and magnitude of 
floods. In some areas, floods are generated primarily by spring 
snowmelt, whereas in other areas, floods are primarily caused 
by large rainstorms outside of the snowmelt period or have 
a mix of flood generating mechanisms (Ryberg and others, 
2016; Collins and others, 2022). Changes in streamflow in 
minimally altered or regulated streams in the study area during 
the past 100 years have been previously identified across the 
region (Ryberg and others, 2016; Hodgkins and others, 2019). 
In general, trends in peak streamflow have been downward 
in the western part of the study area including Montana and 
the western halves of North and South Dakota, and trends 

have been primarily upward in minimally regulated streams 
in Minnesota, Iowa, Illinois, Missouri, and Michigan (Ryberg 
and others, 2016; Levin and Holtschlag, 2022; Sando and 
others, 2022). Downward trends have also been identified 
in Wisconsin and the Upper Peninsula of Michigan (Levin, 
2024a, 2024b).

Unregulated streamgages in the study area that had at 
least 50 years of peak streamflow data between water years 
1921 and 2020 were selected as candidate streamgages for 
analysis. A water year is the 12-month period from October 1 
through September 30 of the following year and is designated 
by the calendar year in which it ends. Streamgages with 
substantial regulation, as identified by Marti and Ryberg 
(2023), were excluded from the study. Over and others (2025) 
computed the percent impervious cover for streamgages in the 
study area from the National Land Cover Database (Dewitz 
and U.S. Geological Survey, 2021). Streamgages with greater 
than 5 percent impervious cover in their drainage areas were 
also removed from the study. Annual peak streamflow was 
obtained from the USGS National Water Information System 
(NWIS) (USGS, 2024) for water years 1921–2020. Peak 
streamflows in NWIS have associated qualification codes that 
indicate special conditions that may affect the uncertainty or 
interpretation of the reported values. Peak streamflows were 
removed from the data if they were not an instantaneous peak 
(code 1), were affected by dam failure (code 3), were less than 
or greater than the indicated value (code 4 or 8), were affected 
by regulation or diversion (code 6), or were historical peaks 
outside the systematic record (code 7).

Peak streamflow time series at candidate streamgages 
were tested for trends and change points. The Mann-Kendall 
test is a nonparametric test for a monotonic trend in a time 
series (Kendall, 1938). The Mann-Kendall test was applied 
at all sites using the kendallTrendTest function in the R 
package “EnvStats” (Millard, 2013). Unlike trends that are 
gradual changes during the period of record, change points 
are abrupt changes in mean, median, or variability of a time 
series. Change points in the median peak streamflow were 
determined using the Pettitt test (Pettitt, 1979), which finds 
a single change point in a time series (Pettitt, 1979; Ryberg 
and others, 2020). The Pettit test was applied using the pettitt.
test function in the R package “trend” (Pohlert, 2020b). 
Streamgages with statistically significant trends or change 
points in peak streamflow at the 95-percent significance level 
were retained in the dataset for nonstationary flood frequency 
analysis. Tests for monotonic trends can be affected by the 
presence of a change point (Villarini and others, 2009). For 
streamgages with a statistically significant change point, trends 
were assessed separately before and after the change point as 
recommended by Villarini and others (2009).

There were 153 streamgages in the study area with 
statistically significant trends or change points (fig. 1). 
Periods of record for peak annual streamflow ranged from 
50 to 100 years with a median of 81 years of annual peak 
streamflow observations. Drainage areas of candidate 
streamgages ranged from 0.13 to 69,099 square miles with 
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a median of 686 square miles. Streamgages with downward 
trends and change points were primarily in the western part 
of the study area and in and near Wisconsin, whereas upward 
trends and change points were throughout the central and 
southern areas of the study area as well as southern Michigan.

Climate data used in this study are from the output 
of a monthly water balance model, available for the years 
1900–2020 (McCabe and Wolock, 2011; Wieczorek and 
others, 2022). These data were compiled for each streamgage 
in the study area as described in Ryberg and others (2024) 
and published in Marti and others (2024). Available monthly 
time series from the water balance model include temperature, 
precipitation, potential evapotranspiration, snowfall, soil 
moisture storage, and runoff on a 3.1-mile by 3.1-mile grid for 
the conterminous United States. Precipitation and temperature 
data within the water balance model were from National 
Oceanic and Atmospheric Administration (NOAA) Monthly 
U.S. Climate Gridded Dataset (Vose and others, 2015), which 

corrects and interpolates station data to a 5-mile grid. The 
remaining monthly time series were computed using the water 
balance model. For this study, annual precipitation in inches, 
annual snowfall in inches of water equivalent, and mean 
annual temperature in degrees Fahrenheit were computed from 
the monthly time series and used as potential explanatory 
variables in climate-adjusted NFFA analyses. Monotonic 
trends and change points were determined with a 95-percent 
confidence level using the Mann-Kendall test and Pettitt test, 
respectively. Annual precipitation had statistically significant 
upward trends or change points throughout much of the 
eastern part of the study area (fig. 2A). Statistically significant 
upward trends or change points in annual temperature were 
present primarily in the northern part of the study area, as well 
as parts of Illinois (fig. 2B). Downward snowfall trends were 
less primarily in Montana, with several isolated cases in North 
and South Dakota and Minnesota.
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Figure 1.  Locations of selected U.S. Geological Survey streamgages with statistically significant trends or change points in 
the Midwest during various periods of record from water years 1921 through 2020.
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Flood Frequency Methods
This section describes the methods used to compute 

stationary and nonstationary flood frequency estimates 
in this study. Stationary flood frequency methods used in 
this report may differ from those outlined in Bulletin 17C 
(England and others, 2018) and are used here only as a general 
comparison with nonstationary methods. Nonstationary 
flood frequency methods can be used to estimate a flood 
magnitude based on a temporal trend or change point in 
the peak streamflow (time-adjusted NFFA) or based on an 
independent variable such as precipitation that is a plausible 
causal mechanism for the observed peak streamflow 
nonstationarity (climate-adjusted NFFA). The first part of 
this section describes methods for estimating nonstationary 
flood frequency using a regression equation with time as the 
explanatory variable to model the trend or change point in 
peak streamflows (Serago and Vogel, 2018). The second part 

of this section describes methods to compute nonstationary 
flood probability when the conditional flood distribution is 
based on a climate variable.

Stationary Flood Frequency

Flood frequency analysis uses statistical techniques to 
estimate flood magnitudes associated with specific AEPs. An 
AEP is the probability that a flood of a specific magnitude or 
higher will occur in a given year. Flood frequency estimates at 
a streamgage are computed by fitting a probability distribution 
to the time series of the logarithm of annual peak streamflows. 
Flood magnitudes for AEPs of interest are computed from 
the quantiles of the fitted probability distribution. Bulletin 
17C recommends fitting a Log-Pearson type III (LP3) 
distribution for peak streamflow (England and others, 2018). 
For this study, the method of moments was used to estimate 
the parameters of the LP3 distribution and corresponding 
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Figure 2.  Statistically significant trends and change points for water years 1921 through 2020 at selected U.S. Geological 
Survey streamgages. A, Annual precipitation. B, Temperature. C, Snow.
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quantiles. This method uses the sample mean (my), standard 
deviation (sy), and skew (gy) of the logarithms of the peak 
streamflows (y) to estimate distribution moments, which is 
shown in equations 1–3. The lmomco package in R (Asquith, 
2023) was used to fit the LP3 distributions and compute 
quantiles from the sample moments.

	​​ m​ y​​ ​ =   ​ 1 _ n​ ​∑ i=1​ n ​​ ​y​ i​​​� (1)

	​​ s​ y​​= ​√ 
_________________

  ​ 1 _ n − 1​ ​∑ i=1​ n ​​ ​​(​y​ i​​ − ​m​ y​​)​​​ 2​ ​​� (2)

	​​ g​ y​​ ​ = ​ (1 + ​6 _ n​)​​(​  n ____________  ​(n − 1)​​(n − 2)​​)​ ​∑ i=1​ n ​​ ​​(​
​y​ i​​ − ​m​ y​​

 _ ​s​ y​​ ​)​​​ 
3

​​� (3)

where
	 my	 is the sample mean of the log-transformed 

peak streamflows;

	 sy	 is the sample standard deviation of the 
log-transformed peak streamflows;

	 gy	 is the sample skew of the log-transformed 
peak streamflows; and

	 n	 is the number of peak streamflow 
observations; and

	 yi	 is the natural logarithm of a peak streamflow, 
in cubic feet per second, for water year i.
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Figure 2.  Statistically significant trends and change points for water years 1921 through 2020 at selected U.S. Geological 
Survey streamgages. A, Annual precipitation. B, Temperature. C, Snow.—Continued



Flood Frequency Methods    7

The quantity (1+6/n) is a bias correction factor for the 
skew of an LP3 distribution recommended by Tasker and 
Stedinger (1986). The stationary FFA method used in this 
study differs from that recommended by Bulletin 17C, which 
uses the expected moments algorithm to fit the distribution and 
also recommends using a weighted or regional skew (England 
and others, 2018). The method of moments using the sample 
skew is used here so that comparisons between stationary and 
nonstationary estimates of flood magnitudes can be made with 
more consistent methodologies. Bulletin 17C recommends 
using the multiple Grubbs-Beck test (Cohn and others, 2013) 
to identify and potentially remove low outlier values to 
improve the fit of the distribution for the highest streamflows. 
This method, which assumes stationarity, may not be suitable 
in NFFA because the thresholds for identifying an outlier may 
change as the peak streamflow distribution changes through 

time. Because there is currently no recommended method 
for identifying or handling outliers in NFFA, and to keep 
stationary and nonstationary FFA methodologies consistent, all 
outliers were retained in the dataset.

Conditional Peak Streamflow Moments

When peak streamflows exhibit nonstationarity, the peak 
streamflow probability distribution changes over time. To 
estimate a flood AEP for current conditions, the conditional 
peak streamflow distribution for that year of interest must be 
determined. Serago and Vogel (2018) introduce expressions 
for estimating conditional distribution moments derived 
from a linear regression equation relating nonstationary peak 
streamflows to an explanatory variable such as a time index, 
urbanization, or climate variable (eq. 4).
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	​ y ​ = ​ β​ 0​​ + ​β​ 1​​ ω + ε​� (4)

where
	 y	 is the natural logarithm of annual peak 

streamflows,

	 ω	 is an explanatory variable,

	 β0, β1	 are fitted regression coefficients, and

	 ε	 is a normally distributed error with a 
mean of zero.

If the regression residuals are homoscedastic and 
normally distributed, the conditional mean of the peak 
streamflow distribution can be obtained by solving the 
regression equation for a specific value of ω (eq. 5).

	​​ μ​ y​|​​​ω​ 0​​​​= ​β​ 0​​ + ​β​ 1​​ ​ω​ 0​​​� (5)

where
	​​ μ​ y​|​​​ω​ 0​​​​​	 is the conditional mean of y given ω0,

	 ω0	 is the value of the explanatory variable for 
which the conditional peak distribution is 
derived, and

	 β0, β1	 are fitted regression coefficients.

The conditional standard deviation can be derived by 
substituting equation 5 into formulas for standard deviation 
and skew (eqs. 2 and 3).

		  ​​σ​ y​|​​ω​​= ​√ 
_____________________

  ​ 1 _ n − p − 1​ ​∑ i=1​ n ​​ ​​(​y​ i​​ − ​μ​ y​|​​​ω​ i​​​​)​​​ 2​ ​​� (6)
where
	​​ σ​ y​|​​ω​​​	 is the conditional standard deviation of 

y given ω,

	 n	 is the number of peak streamflow 
observations,

	 p	 is the number of independent explanatory 
variables in the regression equation,

	 yi	 is the natural logarithm of peak 
streamflows, and

	​​ μ​ y​|​​​ω​ i​​​​​	 is the conditional mean of y given ωi.

The difference ​​y​ i​​ − ​μ​ y​|​​​ω​ i​​​​​ is equivalent to the residuals 
of the fitted regression model and p adjusts for the degrees 
of freedom in the regression if more than one explanatory 
variable is used.

There are several derivations for conditional skew 
based on an OLS regression. Serago and Vogel (2018) and 
Hecht and others (2022) derive conditional skews based on 
an OLS regression using time as an explanatory variable. 

The simplifications made in these derivations apply only to 
uniformly distributed variables and are not applicable to a 
stochastic climate variable. This report uses an alternative 
method of computing the skew introduced in Glas and 
others (2023), which is applicable for time and climate 
explanatory variables. This method computes the skew using a 
standardized time series of peak streamflows:

	​​ Ζ​ i​​ ​ =   ​
​y​ i​​ − ​μ​ y​|​​​ω​ i​​​​ _ ​σ​ y​|​​ω​​ ​​� (7)

where
	 Zi	 is the standardized peak streamflow,

	 yi	 is the natural logarithm of peak streamflows,

	​​ μ​ y​|​​​ω​ i​​​​​	 is the conditional mean of y given ωi, and

	​​ σ​ y​|​​ω​​​	 is the conditional standard deviation of 
y given ω.

The conditional skew (γZ) can then be computed using Zi 
instead of yi in equation 3:

	​​ γ​ Z​​ ​ = ​ (1 + ​6 _ n​)​​(​  n ____________  ​(n − 1)​​(n − 2)​​)​ ​∑ i=1​ n ​​ ​​(​
​Z​ i​​ − ​μ​ Z​​

 _ ​σ​ Z​​ ​)​​​ 
3

​​� (8)

where
	 n	 is the number of peak streamflow 

observations,

	 Zi	 is the standardized peak streamflow,

	 μZ	 is the sample mean of the standardized peak 
streamflows,

	 σZ	 is the sample standard deviation of the 
standardized peak streamflows, and

	 γZ	 is the sample skew of the standardized peak 
streamflows.

Equations 6 and 8 produce a conditional standard 
deviation and skew that are constants and therefore are most 
appropriate when the nonstationarity arises from a change in 
the mean only.

Regression equations used for computing conditional 
peak streamflow moments should have homoscedastic and 
normally distributed residuals to avoid biased estimates 
of conditional moments. Regression residual assumptions 
were tested using a Breusch-Pagan test of homoscedasticity 
(Breusch and Pagan, 1979) and a probability plot correlation 
coefficient (ppcc) test for residual normality (Vogel, 1986). 
The Breusch-Pagan test was computed using the bptest 
function in the lmtest package in R (Zeileis and Hothorn, 
2002). The null hypothesis for this test is that residuals are 
homoscedastic. Probability values (p-values) greater than 0.05 
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indicate an acceptable level of homoscedasticity for regression 
models. The ppcc test was computed in R using the ppccTest 
function in the ppcc package (Pohlert, 2020a). This test 
compares the correlation between the ordered residuals and the 
theoretical quantiles of a normal distribution. P-values greater 
than 0.05 and correlations close to 1 indicate that the residuals 
are likely to be normally distributed.

If the mean and variability of peak streamflows are 
nonstationary, the regression equation used to model the 
conditional distribution moments may have heteroscedastic 
residuals. Hecht and Vogel (2020) developed an approach 
to estimate the conditional standard deviation (​​σ​ y​|​​​ω​ 0​​​​) ​for a 
regression equation with heteroscedastic residuals. This 
approach uses a second regression to statistically model 
the variance of the fitted regression equation (eq. 9), which 
is then used to determine the conditional variance of the 
peak streamflow distribution (eq. 10). The residuals, ε, from 
equation 4 are used as the dependent variable in the variance 
regression. Equation 9 relates an independent variable 
to the residuals that have been raised to the 2/3 power. 
This transformation, called an Anscombe transformation 
(Anscombe, 1961), produces normally distributed, 
nonnegative values.

	​​ ε​ ω   ​ ​2 _ 3​​= ​b​ 0​​ + ​b​ 1​​ ω + φ​� (9)

where
	 εω	 are the residuals from a regression equation 

for peak streamflow (eq. 4),

	 b0,b1	 are fitted regression coefficients,

	 ω	 is an independent variable, and

	 φ	 are normally distributed errors with a 
mean of zero.

If the residuals of equation 9 are normally distributed and 
homoscedastic, the conditional variance of peak streamflows 
(y) given ω0 can be computed according to equation 10 (refer 
to Hecht and Vogel [2020] for a complete derivation).

	​​ σ​ y​|​​​ω​ 0​​​ 
2 ​ ​ = ​​ (​b​ 0​​ + ​b​ 1​​ ​ω​ 0​​)​​​ 3​ + 3 ​σ​ ϕ​ 2​​(​b​ 0​​ + ​b​ 1​​ ​ω​ 0​​)​​� (10)

where
	 ω0	 is the value of the explanatory variable for 

which the conditional peak distribution 
is derived,

	​​ σ​ y​|​​​ω​ 0​​​ 
2 ​​	 is the conditional variance of peak 

streamflows given ω0,

	 b0,b1	 are fitted regression coefficients, and

	​​ σ​ ϕ​ 2​​	 is the variance of the error terms from the 
variance regression (eq. 9).

The conditional standard deviation, ​​σ​ y​|​​​ω​ 0​​​​​, in the 
heteroscedastic case is the square root of equation 10. For 
this study, the explanatory variable used in equation 10 was 
assumed to the same as that used in equation 4, although this 
is not a requirement of the method. If there is evidence that 
there are different causal mechanisms for the change in mean 
and the change in variance of peak streamflows, they could 
be modeled using different explanatory variables (Hecht and 
Vogel, 2020).

The conditional moments (eqs. 5, 6, 8, 10) can be used 
to fit a conditional peak flow distribution using the method of 
moments in the same way as for stationary FFA. Conditional 
moments can be used to fit any of the common distributions 
used in FFA. In this study the LP3 distribution is used to 
maintain consistency with the stationary estimates.

Flood Probability Conditioned on a Stochastic 
Variable

When the explanatory variable used to model peak 
streamflows is time, the flood magnitude for a given AEP can 
be computed directly from the conditional distribution. In 
this case, the conditional AEP represents the probability that 
a flood of a given value will occur in year ω0. For example, 
to update the 1-percent AEP flood estimate to conditions in 
the year 2020 using a regression equation with water year as 
the explanatory variable (ω), the conditional mean, standard 
deviation, and skew could be computed for ω0=2020. Then, 
the 1-percent AEP could be determined from the quantile of 
the fitted distribution.

If a climate variable is used as the explanatory variable, 
ω, in the regression equation (eq. 4), the conditional peak 
streamflow moments can be computed for a specific value of 
ω0 using equations 5–10. To estimate the flood frequency for 
conditions in a specific year of interest, an appropriate value of 
ω0 is needed for the year of interest. However, because climate 
variables have random variability from year to year, there is a 
range of plausible values that ω0 could take in any given year.

For example, annual precipitation and peak streamflow at 
USGS streamgage 05481000 (Boone River near Webster City, 
Iowa) have upward trends in peak streamflow and an upward 
trend in precipitation (fig. 3A, peak streamflow not shown). A 
conditional flood frequency curve can be generated for peak 
streamflow for any single value of precipitation using the 
relation between peak streamflow and precipitation (fig. 3B). 
When estimating the flood frequency for the year 2020 using 
equations 5–10, a representative value of precipitation (ω0) 
is needed. In 2020, the observed annual precipitation was 
27.8 inches, the mean annual precipitation estimated by 
a linear regression is 34.0 inches, and the median annual 
precipitation estimated by a quantile regression is 35.8 inches. 
Any of these values may be a plausible value to use for ω0 in 
equation 5; however, the conditional mean streamflow and the 
resulting AEP flood magnitude estimate will vary considerably 
depending on the choice of ω0 (fig. 3A, B).
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The conditional probability of a flood for a specific value 
of annual precipitation is of limited use in most applications 
because there is a range of possible annual precipitation values 
that could occur in any given year. Instead, the conditional 
peak streamflow distribution can be weighted by the 

probability distribution of annual precipitation for the year of 
interest to produce a probability-weighted estimate of the flood 
frequency for the year 2020 (fig. 3C).
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Figure 3.  Conditional nonstationary flood frequency estimates adjusting for the trend in precipitation obtained from three 
discrete representative precipitation values for the year 2020 are compared to a distribution-weighted flood frequency 
estimate for U.S. Geological Survey streamgage 05481000 (Boone River near Webster City, Iowa). A, Mean, median, and 
observed precipitation for the year 2020 are obtained from annual precipitation data. B, The relation between peak streamflow 
and precipitation is used to determine the conditional mean peak streamflow for each precipitation estimate. C, Conditional 
flood frequency curves adjusted for the three precipitation values are compared with a distribution-weighted curve which 
accounts for the total probability distribution of precipitation for 2020.
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The total probability, P(y), of a flood across all probable 
values of a climate variable ​ω​ can be computed using the law 
of total probability (Harchol-Balter, 2024).

	​ P​(y)​= ∫ P​(y​|​​X ​ =  ω)​ ​f​ x​​​(ω)​dω​� (11)

where
	 y	 is the natural logarithm of a peak streamflow

	 P(y)	 is the probability of y,

	 P(y|X=​ω​)	 is the conditional probability of y given a 
climate variable of magnitude ​ω​, and

	 fx(​ω​)	 is the probability density function of the 
climate variable for a year of interest.

In terms of the NFFA, this law can be generally interpreted 
as a weighted average of the conditional probability of a flood 
magnitude (y) given some value of precipitation, weighted by the 
relative probability of that annual precipitation value, and evaluated 
across the whole distribution of annual precipitation values.

When obtaining the total probability of a flood of a given 
magnitude using equation 11, it is necessary to know the 
probability density of the explanatory variable used to estimate 
the conditional moments of y. If that distribution is known, the 
integral can be solved using numerical estimation methods such 
as quadrature. Quadrature is a method of estimating the area under 
a curve by dividing into many small rectangular intervals and 
summing the areas of all the intervals (Chapra and Canale, 2006).

	​​  P​(y)​= ​∑ i=1​ n ​​ P(y​|​​X ​ = ​ ω​ i​​)​ f​ x​​​(​ω​ i​​)​​(​
​ω​ 1​​ + ​ω​ n​​ _ n ​)​ ​​� (12)

where
	 P(y)	 is the probability of a streamflow of 

magnitude y;

	 n	 is the number of intervals used;

	 ωi	 is the value of the climate variable for 
interval i;

	​P​(y|X ​ = ​ ω​ i​​)​​ is the conditional probability of a flood of 
magnitude y, given a climate variable of 
magnitude ​​ω​ i​​​ (eqs. 5–11);

	 fx(ωi)	 is the probability density value for a climate 
variable equal to ωi; and

	​​ (​
​ω​ 1​​ + ​ω​ n​​ _ n ​)​​	 is the interval width.

Equation 12 computes the probability of a flood with a given 
magnitude (that is, the probability of a flood of 10,000 cubic feet 
per second [ft3/s]). Typically, with FFA, the inverse of this function 
is of interest and the flood magnitude of a given probability 
is sought (that is, the magnitude of a flood with a 1-percent 
probability). To estimate the flood magnitude of a specific AEP, 
optimization can be used to iteratively solve equation 12 across a 
range of values of y until the AEP of interest is obtained.

When computing the total probability, the conditional 
probability distribution of the selected climate variable for the 
year of interest is required. However, assuming the climate 
variable is the cause of the peak streamflow, nonstationarity 
means that the climate variable itself is also likely nonstationary, 
so traditional stationary distribution fitting methods are 
not applicable to the climate variable of interest. For this 
study, annual precipitation, temperature, and snow were 
used as potential explanatory variables for peak streamflow 
nonstationarity. The conditional distributions for the water year 
2020 for climate variables were computed using equations 4–10 
with time as the explanatory variable in the regression equation. 
Lognormal density functions were used for climate variables in 
equation 12. If future scenarios are of interest, information from 
large scale climate models could also be used to estimate these 
climate distributions.

The process used for estimating a flood magnitude for an 
AEP of interest using a climate-based regression and the law of 
total probability is outlined below and illustrated in figure 4 using 
annual precipitation as the climate variable.

1.	First, a regression equation is developed for 
log-transformed annual precipitation, ω, using water year 
as the explanatory variable. The conditional mean and 
standard deviation of annual precipitation for water year 
2020 are computed using equations 5 and 6 (fig. 4A).

2.	A lognormal conditional probability density function, 
f(ω), for annual precipitation is fit using the conditional 
mean and standard deviation from step 1 (fig 4B).

3.	The probability density curve is divided into n intervals 

of width ​​(
​​ω​ 1​​ + ​ω​ n​​ _

 n ​)​​. Minimum and maximum values of 

ω were computed from the 0.0001 and 0.9999 quantiles 
of the fitted density curve. For each interval, the density 
function value, fx(ωi), is computed for ωi using the 
dnorm function in R (fig. 4B).

4.	A regression equation is developed for log-transformed 
peak streamflow, y, using log-transformed annual 
precipitation, ω, as an explanatory variable (fig. 4C). For 
each value of ωi in step 3, the conditional moments of 
peak streamflow are determined using equations 5–10 
and a conditional LP3 distribution is fit using the method 
of moments.

5.	The conditional probability of a flood of magnitude 
y, ​P​(y|X  = ​ ω​ i​​)​​, is determined from the fitted conditional 
distribution in step 4 for each value of ωi (fig. 4D).

6.	The total probability of a flood of magnitude y is 
computed from equation 12 using the interval width and 
probability density of annual precipitation from step 3, 
and the conditional flood probability from step 5.

7.	Steps 5 and 6 are repeated across a range of flood 
magnitudes (y) until step 6 produces the AEP of interest.
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Confidence Intervals for Flood Frequency 
Estimates

Bootstrapped 95-percent confidence intervals were computed 
to assess the uncertainty in stationary FFA and NFFA estimates for 
the 1-percent AEP flood. For stationary FFA, the peak streamflow 
data at each streamgage were sampled with replacement for the 
same length as the period of record. FFA was then performed on 
the resampled dataset to obtain a bootstrapped estimate. Several 
different methods of confidence intervals for nonstationary FFA 
have been developed (Obeysekera and Salas, 2014). In this study, 
residual bootstrapping of linear regression equations was used to 
obtain bootstrapped estimates of the conditional mean, standard 
deviation, and skews for peak streamflow and climate variable 
distributions (Davison and Hinkley, 1997; Obeysekera and Salas, 
2014). The residuals of the fitted linear regression were sampled 
with replacement and added to the fitted model estimates to create 
a new bootstrapped dataset. NFFA was then performed on the 

bootstrapped dataset. For climate-adjusted NFFA, bootstrapping 
was performed on the linear regression estimating the conditional 
climate distribution and the linear regression estimating the 
conditional peak streamflow. For stationary and nonstationary 
bootstrap methods, confidence intervals were based on 3,000 
bootstrapped estimates and computed as the 2.5-percent and 
99.5-percent quantiles of the bootstrapped estimates.

Estimation of Flood Frequency at 
Candidate Streamgages

Prior to using NFFA at a streamgage, peak streamflow 
nonstationarity should be characterized and if possible, a causal 
mechanism should be attributed. This is an important step 
because there are large uncertainties associated with the detection 
and characterization of nonstationarity in peak streamflows. For 
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where
P(y) is the probability of y,
n is number of data points,
P(y|X = ωi) is the conditional probability
of y given a climate variable to magnitude ω,
ƒx(ωi) is the probability density function
of the climate variable for a year or
interest, and                   

is the incremental width used to 
compute the integration function.

Figure 4.  Illustration of the steps for estimating the components of equation 13 used for implementing nonstationary flood frequency 
conditioned on annual precipitation. A, A regression equation relating annual precipitation to water year is used to determine 
conditional distribution moments for the year 2020. B, The conditional probability density function is evaluated at discrete intervals 
across the range of the distribution. C, A regression equation relating the logarithm of peak streamflow to the logarithm of annual 
precipitation is used to determine the conditional moments of the peak streamflow distribution for each interval in part B. D, Conditional 
flood probability for each precipitation interval is determined by fitting an LP3 distribution to the conditional moments. E, The total 
probability of a flood of magnitude y is computed by computing the law of probability from the quantities determined in parts B and D.



Estimation of Flood Frequency at Candidate Streamgages    13

example, an apparent trend over a short period of record may 
actually be a temporary departure from stationary conditions 
when viewed over a longer period of record, or a change point 
may be mistakenly characterized as a trend (Lins and Cohn, 2011; 
Salas and others, 2018). Because of the difficulty in characterizing 
nonstationarity, exploratory data analysis can help to identify 
a deterministic, causal mechanism leading to the observed 
nonstationarity prior to performing NFFA (Koutsoyiannis and 
Montanari, 2015; Serinaldi and Kilsby, 2015; Slater and others, 
2021). Previously published studies have identified changes 
in precipitation and temperature as likely drivers of changes 
in peak streamflows in this study area (Levin and Holtschlag, 
2022; Sando and others, 2022; Levin, 2024a, 2024b; Marti and 
Heimann, 2024; Marti and Over, 2024). Additionally, forecasts 
based on deterministic climate models suggest these trends may 
continue during the next century (Kunkel and others, 2022). 
This section describes the process that was used to screen data 
and apply time- and climate-adjusted NFFA at selected USGS 
streamgages and provides examples of how regional trend 
analyses can be used to support NFFA modeling decisions.

Time-Adjusted Nonstationary Flood Frequency

Time-adjusted NFFA uses time as the only explanatory 
variable to model peak streamflow nonstationarity. This method is 
computationally simpler than using a stochastic climate variable 
and does not require additional data; however, it can be difficult to 
determine the most appropriate model form.

A time series with a change point can display a variety of 
statistical characteristics. In some cases, a change point may 
indicate a step change in the mean or variance of the data. In other 
cases, there may be a change point within a larger gradual trend, 
or it may indicate a change in direction of a trend slope. Within a 
linear regression framework there are several approaches that could 
be used to model a time series with a change point. Using simple 
linear regression, a step change in the mean can be modeled using 
an indicator variable that takes the value of 0 for years equal and 
prior to the change point and 1 after the change point year. The 
data before and after the change point can be modeled as a constant 
or changing in time using an additional explanatory variable for 
time. A change in slope at a change point can be modeled using 
an interaction term between a change point indicator and a time 
variable. Other regression methods such as piecewise regression 
or local linear regression could also be used in situations where 
there is a nonlinear pattern of nonstationarity (Chen and others, 
2010, Bates and others, 2012), but these methods were not tested in 
this study.

In cases when statistical tests indicate a trend and a change 
point, it can be difficult to determine the most appropriate 
regression model form. For example, figure 5 shows peak 
streamflow for USGS streamgage 05094000 (South Branch Two 
Rivers at Lake Bronson, Minnesota), which has a statistically 
significant change point in water year 1961 (p-value<0.001) 
and trend (p-value=0.001). Using OLS regression, this peak 
streamflow time series could be modeled using either a trend or 

a change point. However, predicted flood magnitudes from these 
two model specifications were very different in a time-adjusted 
NFFA. In this case, the change point model estimates a conditional 
mean of 1,949 ft3/s and a 1-percent AEP streamflow magnitude 
of 5,287 ft3/s for the year 2020, whereas a trend model estimates 
a conditional mean of 2,885 ft3/s and a 1-percent AEP streamflow 
magnitude of 9,462.

Because trend tests can be affected by the presence of change 
points, it is generally recommended that change points be identified 
first and that trend tests are performed separately on subsets of 
the data before and after the change point (Villarini and others, 
2009). Site specific exploratory data analysis of hydroclimatic, 
land use change, and regulation information, as well as regional 
nonstationarity analyses such as those found in Marti and others 
(2024), can be used to support the choice of the regression equation 
form in cases where nonstationarity test results are ambiguous. 
Examples 1 and 2, discussed in the upcoming sections, demonstrate 
time-adjusted NFFA at USGS streamgages with a trend and change 
point in peak streamflows, respectively. For both examples, climate 
and streamflow data and analyses in Marti and others (2024) were 
used to characterize the hydroclimate regime and identify probable 
causal mechanisms for the peak streamflow nonstationarity. 
Additionally, climate summaries including historical and future 
scenarios provided by NOAA for each State are used to provide an 
additional line of evidence to support the use of NFFA (Kunkel and 
others, 2022).
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Figure 5.  Annual peak streamflow for U.S. Geological Survey 
streamgage 05094000 (South Branch Two Rivers at Lake Bronson, 
Minnesota) for water years 1929 through 2020 modeled with a 
trend and a change point.
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Example 1
This example estimates the time-adjusted 1-percent 

AEP flood at USGS streamgage 04108600 (Rabbit River 
near Hopkins, Michigan) on the western side of the Lower 
Peninsula of Michigan. This streamgage has 55 peak streamflow 
observations from water year 1966 through 2020. Mean annual 
precipitation during the period of record was 37.3 inches and was 
typically spread throughout the year without a strong seasonal 
pattern (Marti and others, 2024). Soil is typically near or at 
saturated conditions during winter and spring (December through 
May). Peak streamflows during the period of record occur 
primarily from December through July, with the highest density 
of peak streamflows in March and April (Marti and others, 2024).

Upward trends in peak streamflow (p-value=0.02, fig. 6A), 
annual precipitation (p-value<0.01, fig. 6B), and annual 
temperature (p-value<0.01, not shown) were identified during 
the period of record. Seasonal trend analyses in Marti and others 
(2024) showed upward temperature trends in all seasons, with 

the largest increases in winter (December through February). 
Upward trends in precipitation were only in winter (December 
through February) and spring (March through May). Regional 
analyses using multiple lines of evidence indicate that increases 
in spring precipitation and changes in winter temperature may 
be altering snowmelt dynamics and are plausible drivers of 
changing peak streamflow (Levin, 2024a).

Climate data at this streamgage, as well as regional trend 
analyses (Levin, 2024a) that show similar precipitation-driven 
trends in Michigan, provide strong evidence that increases in 
peak streamflow at this streamgage may be driven by changes 
in regional climate. Additionally, statewide climate assessments 
from NOAA predict that increases in precipitation are likely to 
continue in southern Michigan during the next century, which 
supports the use of NFFA for this streamgage (Frankson and 
others, 2022).

Conditional moments of the peak streamflow distribution 
were computed using a regression equation relating the natural 
log of peak streamflow (y) and a water year index (wyi), equal 
to the water year minus 1920. The fitted regression model 
was y=6.33+0.026×wyi. Fitted regression coefficients for 
intercept and slope had p-values of less than 0.001 and 0.01, 
respectively. The residuals do not show evidence of being 
heteroscedastic (p-value=0.79) or non-normal (p-value=0.94). 
The conditional mean for the year 2020 was computed 
from the regression equation using wyi=100. Conditional 
standard deviation and skew were fit using equations 5 and 
6, respectively. The 1-percent AEP quantile was estimated 
with the method of moments using the quape3 function in 
the lmomco R package (Asquith, 2023). The conditional and 
stationary moments and fitted 1-percent AEP quantile are 
shown in table 1, and figure 7 shows a comparison of stationary 
and nonstationary estimates across the range of AEPs. The 
nonstationary estimate of the 1-percent AEP flood for 2020 was 
18 percent higher than the stationary estimate.
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Figure 6.  Upward trends for U.S. Geological Survey streamgage 
04108600 (Rabbit River near Hopkins, Michigan) for water years 
1966 through 2020. A, Peak streamflow. B, Annual precipitation.

Table 1.  Log-Pearson type III distribution moments and 
1-percent annual exceedance probability using stationary and 
time-adjusted flood frequency methods for water year 2020 for 
U.S. Geological Survey streamgage 04108600 (Rabbit River near 
Hopkins, Michigan).

Method
Stationary 

flood frequency

Time-adjusted  
nonstationary  

flood frequency

Mean 6.54 6.81
Standard deviation 0.53 0.51
Skew 0.92 0.81
1-percent annual  

exceedance  
probability flood 
estimate

3,345 3,966



Estimation of Flood Frequency at Candidate Streamgages    15

Example 2
USGS streamgage 05051600 (Wild Rice River near 

Rutland, North Dakota) has 58 peak streamflow observations 
from water years 1960 through 2020. Precipitation has a 
seasonal pattern with lower precipitation between November 
and February and higher precipitation in May through July. 
Median monthly temperatures are typically below freezing 
from November through March during when streamflow is 
very low. Streamflow generally increases in the spring as the 
snowpack melts and precipitation volumes increase. Peak 
streamflows occur most frequently in the spring primarily 
owing to snowmelt but can also occur in the summer from 
large rainstorms (Marti and others, 2024).

Peak streamflows at this location have a statistically 
significant change point at water year 1992 (p-value<0.001) 
and a statistically significant upward trend (p-value=0.002, 
fig. 8A). Mean peak streamflow increased from 82 ft3/s prior 
to the change point to 468 ft3/s after the change point, which 
is a 5.7-fold increase. Annual precipitation at this location also 
has an upward change point in 1990 (p-value=0.016, fig. 8B) 
and an upward trend (p-value=0.017). An analysis of the 
timing of peak streamflows and daily streamflows is shown 
in figure 9A (Marti and others, 2024). In the mid-1990s, there 
was an abrupt change in the seasonality of peak streamflows. 
Although peaks prior to the mid-1990s occurred primarily 
in the spring, after the mid-1990s there was an increase 
in peaks in May through August (fig. 9A). Additionally, 
daily streamflows and lower flows increased abruptly in 
the mid-1990s (fig. 9B). Modelled annual soil storage data 
indicate that annual soil storage increased concurrent with the 
change point in precipitation (fig. 9C). The abrupt increase in 

precipitation and antecedent soil storage during the summer is 
a likely driver of the change in seasonality and magnitude of 
peak streamflows.

Climate data for this streamgage, as well as regional 
trend analyses (Ryberg and others, 2024), provide strong 
evidence that increases in peak streamflow at this streamgage 
may be caused by changes in regional climate. Additionally, 
the concurrent change point in precipitation and soil moisture, 
as well as the apparent abrupt change in peak streamflow 
seasonality and daily streamflow at the time of the change 
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point, provide strong evidence that peak streamflows in this 
location have undergone an abrupt shift rather than a gradual 
trend and that time-adjusted NFFA analyses may be more 
accurately represented with a change point model.

Peak streamflows were transformed using the natural 
log (y) and a change point indicator variable (cpind) was 
computed that was equal to 0 for years 1960 through 1992 

and equal to 1 from 1993 to 2020. The period after the 
change point does not have a statistically significant trend 
(p-value=0.80) and the regression equation used only the 
change point indicator as an independent variable. The fitted 
regression equation was y=4.40+1.74×cpind. Fitted regression 
coefficients for intercept and change point indicator had 
p-values of less than 0.001. Residuals from this regression 
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Figure 9.  Abrupt changes in streamflow and soil water storage support the use of a change point model for estimating nonstationary 
peak flows for U.S. Geological Survey streamgage 05051600 (Wild Rice River, near Rutland North Dakota). A, Peak streamflow timing and 
magnitude. B, Daily streamflow magnitude for each day of the period of record. C, Annual soil water storage. Data are from Marti and 
others (2024).
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did not show significant heteroscedasticity (p-value=0.062) 
or non-normality (p-value=0.104). The conditional mean 
after the change point is estimated by the regression equation 
as ​​μ​ y​|​​cpind​​​=4.4+1.74×1=6.14. Conditional standard deviation 
and skew were derived from the fitted regression residuals and 
standardized time series using equations 6 and 9, respectively. 
The 1-percent AEP quantile was estimated with the method of 
moments using the quape3 function in the lmomco R package 
(Asquith, 2023). The conditional and stationary moments 
and fitted 1-percent AEP quantile are shown in table 2, and 
figure 10 shows a comparison of stationary and time-adjusted 
nonstationary estimates across the range of AEPs.

Climate-Adjusted Nonstationary Flood 
Frequency Analysis

Climate-adjusted NFFA uses a climate variable to 
model the nonstationarity in peak streamflow. This method 
requires a regression equation relating peak streamflow to the 
climate variable and the probability distribution of the climate 
variable for the year of interest. Climate-adjusted NFFA is 
more computationally complex than time-adjusted NFFA and 
there may be additional uncertainty from the inclusion of the 
estimated climate probability distribution.

Regional trend attribution studies have identified 
large-scale changes in climate as a driver of peak streamflow 
nonstationarity in the study area (Levin and Holtschlag, 2022; 
Sando and others, 2022). Changes in precipitation magnitude 
and timing have been identified as likely causes of increasing 
peak flows in the upper Midwest (Levin and Holtschlag, 
2022; Sando and others, 2022). Decreasing peak flows have 

been attributed to land use change, groundwater withdrawals, 
decreases in soil moisture, increased temperature, and 
decreases in snowpack (Neri and others, 2019; Sando and 
others, 2022). For this study, only annual precipitation, 
temperature, and snowfall were considered as explanatory 
variables for regressions estimating peak streamflow. These 
variables were chosen because of their wide-scale data 
availability across the region and because they have been used 
in previous related publications characterizing nonstationarity 
in this region (Ryberg, 2024).

Table 2.  Log-Pearson type III distribution moments and 
1-percent annual exceedance probability using stationary and 
nonstationary methods for water year 2020 flood frequency 
methods for U.S. Geological Survey streamgage 05051600 (Wild 
Rice River near Rutland, North Dakota).

Method
Stationary

flood frequency

Time-adjusted 
nonstationary  

flood frequency

Mean 5.25 6.15
Standard deviation 1.65 1.4
Skew −1.00 −0.8
1-percent annual  

exceedance probability 
flood estimate

2,586 5,321
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Figure 9.  Abrupt changes in streamflow and soil water storage support the use of a change point model for estimating nonstationary 
peak flows for U.S. Geological Survey streamgage 05051600 (Wild Rice River, near Rutland North Dakota). A, Peak streamflow timing and 
magnitude. B, Daily streamflow magnitude for each day of the period of record. C, Annual soil water storage. Data are from Marti and 
others (2024).—Continued
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Because the conditional variance and skew for NFFA 
analyses are computed from regression residuals, it is 
important that fitted regressions have residuals that are 
homoscedastic and normally distributed. Failure to meet 
these assumptions may result in biased estimates of these 
distribution parameters. The assumptions of homoscedasticity 
and normality were tested with the Breusch-Pagan test 
for homoscedasticity (Breusch and Pagan, 1979) and the 
probability plot correlation test (Vogel, 1986), respectively. 
Time-adjusted conditional distribution moments for 
climate variables were computed for the year 2020 using 
equations 5–11. Annual climate variables were fit to lognormal 
probability distributions. The conditional flood and the 
conditional climate variable distribution were used in the total 
probability equation (eq. 12) and optimization was used to 
determine the streamflow magnitude for the 1-percent AEP 
flood magnitude.

At some streamgages with change points in peak 
streamflows, there was a change in the relation between peak 
streamflow and the explanatory climate variable before and 
after the change point. This change can happen when a change 
in temperature or soil moisture modifies the relation between 
precipitation and streamflow (Woodhouse and others, 2016). 
For example, a step increase in precipitation can increase soil 
moisture throughout the year. The change in antecedent soil 
moisture can cause greater streamflow for a given precipitation 
event after the change point year. In these cases, a change 
point indicator variable equal to 0 for observations prior to and 
including the year of the change point and 1 after the change 
point can be included in the regression equation between 
peak streamflow and the climate variable to improve the fitted 
regression equation (refer to ”Example 4” section).

The following examples demonstrate the process of 
climate-adjusted NFFA at two streamgages. The examples 
estimate the 1-percent AEP flood using climate conditions for 
the year 2020.

Example 3
USGS streamgage 05107500 (Roseau River at Ross, 

Minn.) has 80 peak streamflow observations from water 
year 1929 through 2020. This streamgage is located along 
the northern border of Minnesota and streamflow is strongly 
influenced by snowmelt. Precipitation has a seasonal pattern 
with lowest precipitation from November through March and 
highest precipitation in May through July. Median monthly 
temperatures are typically below freezing from November 
through March during which time streamflow is very low. 
Streamflows increase in the spring as the snowpack melts and 
precipitation volumes increase (Marti and others, 2024).

Peak streamflows at this location have a marginally 
significant upward change point at water year 1961 
(p-value=0.08) and a statistically significant upward trend 
(p-value=0.02, fig. 11A). Annual precipitation at this 
location has an upward change point (p-value=0.007) and 
an upward trend (p-value=0.002, fig. 11B) driven largely 
by upward trends in winter and spring (Marti and others, 
2024). Temperature at this location also increased and had a 
statistically significant change point (p-value<0.001) in 1979. 
Increased precipitation accompanied by warmer temperatures, 
particularly during the winter, which can cause rain-on-snow 
events and changes in snowmelt dynamics, are consistent as a 
causal mechanism for the increase in peak streamflows at this 
location. Climate data for this streamgage, as well as regional 
trend analyses (Marti and others, 2024), provide strong 
evidence that increases in peak streamflow at this streamgage 
may be caused by changes in regional climate. Statewide 
climate assessments by NOAA predict that high precipitation 
rates will continue in this region through this century, 
supporting the use of NFFA at this streamgage (Runkle and 
others, 2022).

Conditional moments for peak streamflows were 
based on the relation between peak streamflows and annual 
precipitation (fig. 12). The fitted regression equation 
between the natural log of peak streamflows (y) and natural 
log of annual precipitation (w) was y=1.78+1.84×w. 
Residuals for this regression equation do not show evidence 
of heteroscedasticity (p-value=0.41) or non-normality 
(p-value=0.21). Conditional moments for peak streamflow 
were computed using equations 5–8.

Conditional moments of annual precipitation for the year 
2020 were computed from the regression equation relating 
the natural logarithm of annual precipitation (w) and a change 
point indicator (cpind) equal to zero prior to and including 
water year 1961 and equal to 1 after that: w=2.98+0.14×cpind. 
Residuals from this equation do not show evidence of 
heteroscedasticity (p-value=0.41) or non-normality 
(p-value=0.21). The conditional mean of log-transformed 
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Figure 10.  Stationary and time-adjusted nonstationary 
flood frequency curves for U.S. Geological Survey 
streamgage 05051600 (Wild Rice River near Rutland, North 
Dakota).
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annual precipitation for the year 2020 was 3.12, and the 
standard deviation was 0.179. The conditional probability 
density function for the log-transformed annual precipitation 
for the year 2020 was estimated with the dnorm function in R.

Equation 12 was computed across the range of 
precipitation values from the 0.0001 to 0.9999 quantiles of the 
computed conditional precipitation distribution. Optimization 
of equation 12 was performed in R with the optim() function, 
starting with an initial flood estimate equal to the minimum 
observed peak streamflow and iterating until the estimated 
annual exceedance probability was within 0.0002 of the 
target AEP value (in this case, 1 percent). Estimates of the 
1-percent AEP flood using stationary, time-adjusted NFFA, 
and climate-adjusted NFFA methods are shown in table 3. The 
conditional mean is not reported in table 3 for climate-adjusted 
NFFA because there are a range of conditional means used in 
equation 12. Plots of the annual exceedance probability across 
a range of values using stationary, time-adjusted NFFA, and 
climate-adjusted NFFA methods are shown in figure 13.

Example 4
USGS streamgage 06326500 (Powder River near Locate, 

Montana) has 78 peak streamflow observations from water 
year 1938 through 2020. Precipitation has a seasonal pattern 
with lowest precipitation from November and March and 
highest precipitation in May and June. Median monthly 
temperatures are typically below freezing from November 
through March during which time streamflow is very low. 
Similar to other northern locations in the study area, peak 
streamflow at this location is influenced by snowfall and 
snowmelt, which can persist until May or June (Marti and 
others, 2024).

Water year
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Figure 11.  Upward trends and change points at U.S. 
Geological Survey streamgage 05107500 (Roseau River at 
Ross, Minnesota) for A, Peak streamflow and B, Annual 
precipitation.
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Peak streamflow at this location has a downward 
change point in 1972 (p-value=0.001, fig. 14A). There was 
no trend or change point in precipitation at this location, but 
nonstationarity was detected in annual snow and annual mean 
temperature (fig. 14). Annual mean temperature had an upward 
change point in 1986 (p-value<0.001) and annual snowfall 
had downward change point in 1979 (p-value=0.02). Previous 
studies have attributed downward trends in peak streamflow 
in Montana to combination of precipitation and temperature 
effects that are difficult to separate (Sando and others, 2022). 
Nonstationarity in temperature can modify the relation 
between streamflow and precipitation or snowfall by changing 
evapotranspiration, soil moisture, and snowmelt processes 
(Woodhouse and others, 2016). A decrease in snowfall is 
a likely driver of downward changes in peak streamflow; 

however, an apparent change in the relation between peak 
streamflow and snowfall before and after the change point is 
likely due to the change in temperature (fig. 15).

Conditional moments for peak streamflow were based 
on the relation among log transformed peak streamflow (y), 
annual snowfall (w), and a change point indicator variable 
(cpind) equal to 0 prior to and including the change point year 
and equal to 1 after (fig. 15). The fitted regression equation 
was y=7.35+1.74×w–0.56×cpind. All fitted coefficients were 
statistically significant with p-values<0.01. Residuals for 
this equation did not show significant heteroscedasticity 
(p-value=0.54) or non-normality (p-value=0.18). Conditional 
moments were computed using equations 5–8 (table 4).

Conditional moments for annual snowfall were computed 
for the year 2020 using the relation between the natural 
logarithm of annual snowfall (w) and time, using a change 
point indicator (cpind) equal to zero prior to or equal to 1979 
and 1 afterwards, with the equation w=1.11–0.16×cpind. 
The conditional mean of log-transformed annual snowfall 
for the year 2020 of 0.95, and the standard deviation was 
0.228. The conditional probability density function for 
the log-transformed annual snowfall for the year 2020 
was estimated with the dnorm function in R. Equation 12 
was computed across the range of snowfall distribution. 
Optimization of equation 12 was performed in R with the 
optim() function, starting with an initial flood estimate equal to 
the minimum observed peak streamflow and iterating until the 
estimated annual exceedance probability was within 0.0002 of 
the target AEP value (in this case, 1 percent).

Estimates of the 1-percent AEP flood using stationary, 
time-adjusted NFFA, and snowfall-adjusted NFFA methods 
are shown in table 4. The conditional mean is not reported 
for climate-adjusted NFFA because there is a range of 
conditional means used in equation 12. Plots of the annual 
exceedance probability across a range of values using 
stationary, time-adjusted NFFA, and climate-adjusted NFFA 
methods are shown in figure 16. In this case, time-adjusted 
and climate-adjusted methods produce similar results, both 
of which estimate lower flood magnitudes than the stationary 
method.

Table 3.  Log-Pearson type III distribution moments and 1-percent annual exceedance probability using stationary, time-adjusted 
nonstationary, and climate-adjusted nonstationary flood frequency methods for water year 2020 for U.S. Geological Survey streamgage 
05107500 (Roseau River at Ross, Minnesota).

[--, no data]

Method Stationary
Time-adjusted  
nonstationary  

flood frequency

Climate-adjusted  
nonstationary  

flood frequency

Mean 7.43 7.73 --
Standard deviation 0.7 0.68 0.61
Skew −0.55 −0.55 −0.38
1-percent annual exceedance  

probability flood estimate
6,486 8,463 7,993
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Figure 13.  Stationary and nonstationary flood frequency 
curves for U.S. Geological Survey streamgage 05107500 
(Roseau River at Ross, Minnesota).
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Figure 14.  Change points in streamflow and climate time 
series at U.S. Geological Survey streamgage 06326500 (Powder 
River near Locate, Montana). A, Annual peak streamflow. B, 
Annual snowfall. C, Annual mean temperature.
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Regional Applicability of Using Linear 
Regression in Nonstationary Flood 
Frequency

Regional assessments of nonstationary flood frequency 
can benefit from a consistent, broadly applicable method to 
facilitate comparisons between streamgages or to regionalize 
the results for prediction at ungaged locations. One goal of 
the project was to determine whether or not the assumptions 
of the method could be met across the study area and to 
identify potential barriers to its usage. Time-adjusted NFFA 
and climate-adjusted NFFA were attempted at all candidate 
streamgages in the study area to determine the applicability of 
this method.

Fitted NFFA models at each site were screened to 
determine whether the assumptions of homoscedastic, 
normally distributed residuals were met. Regression equations 
for which p-values of residuals tests were greater than 0.05 
were considered to satisfy OLS regression assumptions and 
are good candidates for using linear regression for NFFA. 
Regression equations for which the Breusch-Pagan test for 
homoscedasticity was less than 0.05 but greater than 0.03 
were considered marginally acceptable. Regression equations 
for which the ppcc test p-value was less than 0.05 but the 
correlation between residuals and theoretical quantiles of a 
normal distribution were equal to or greater than 0.98 were 
also considered marginally acceptable. In these cases, the 
regression equations may have been affected by one or more 
outliers or there may be a slight lack of linearity. Marginally 
acceptable regressions may have greater uncertainty or slight 
bias but still likely represent the current flood risk better 
than a stationary estimate. Additional research can help to 
determine how non-normal residuals or heteroscedasticity in 
the regression equations affects NFFA estimates. Although 
not included in this study, the marginal or poor regression 
fits may potentially be improved using weighted, robust, or 
multiple linear regression methods; other data transformations; 
different explanatory variables; or removal of outliers that are 
not representative of typical peak streamflows. NFFA analyses 
were not performed for streamgages whose regression 
equations had p-values below 0.01 in one or both residual 
tests. The regressions at these streamgages exhibit substantial 
heteroscedasticity or lack of linearity that may require 
different explanatory variables or a more flexible statistical 
framework to adequately estimate conditional moments 
(Rigby and Stasinopoulos, 2005; Villarini and others, 2009).

Regional Time-Adjusted Nonstationary Flood 
Frequency Analyses

NFFA using time as the explanatory variable was 
performed at candidate streamgages in the study area. There 
were 107 streamgages that had statistically significant change 

Table 4.  Log-Pearson type III distribution moments and 1-percent annual exceedance probability using stationary, time-adjusted 
nonstationary, and climate-adjusted nonstationary flood frequency methods for water year 2020 for U.S. Geological Survey streamgage 
06326500 (Powder River near Locate, Montana).

[--, no data]

Method Stationary
Time-adjusted  
nonstationary  

flood frequency

Climate-adjusted  
nonstationary  

flood frequency

Mean 8.81 8.52 --
Standard deviation 0.84 0.77 0.56
Skew −0.28 −0.43 −0.32
1-percent annual exceedance probability 

flood estimate
39,608 23,310 24,953
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Figure 16.  Stationary and nonstationary flood frequency 
curves for U.S. Geological Survey streamgage 06326500 
(Powder River near Locate, Montana).
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points as well as significant trends, similar to example 2. It 
was beyond the scope of this study to do detailed site-specific 
data analyses at all of these streamgages to determine which 
model form would be more appropriate. Instead, if a change 
point and trend were identified at a location, it was modeled as 
a change point as is suggested by Villarini and others (2009).

The model form (change point or trend) of the regression 
equation used for time-adjusted NFFA and how well the 
regression residuals met the assumptions of OLS regression 
are shown in figure 17. Of the 153 candidate streamgages, 
103 were modeled with a change point indicator model and 
34 were modeled as trends. There were 16 streamgages for 
which time-adjusted NFFA was not performed because fitted 
regression residuals exhibited extensive heteroscedasticity 
or non-normality. Of the 137 streamgages for which 
time-adjusted NFFA was performed, regression models at 

101 streamgages had residuals that did not show significant 
heteroscedasticity or non-normality or whose residuals could 
be adequately modeled using a secondary error model (eq. 10), 
making them good candidates for this NFFA method (fig. 17). 
The other 36 streamgages had regression equations for which 
the regression assumptions were marginally met.

The percent difference in the stationary and time-adjusted 
nonstationary 1-percent AEP flood estimate was examined at 
candidate streamgages in the study area (fig. 18). Comparisons 
of FFA and NFFA methods in this report should be taken 
only as a screening-level analysis to give an indication of 
the general magnitude of change. Because it was outside the 
scope of this study to use the expected moments algorithm 
(EMA) method of FFA as recommended by Bulletin 17C, 
the stationary FFA methods used in this study may not match 
currently published estimates. Despite these limitations, these 

Regression model form

Change point

Trend

Goodness of fit

Meets ordinary linear regression
assumptions

Marginally meets ordinary linear
regression assumptions

Does not meet ordinary linear
regression assumptions

IDAHO

MINNESOTA

NEW
MEXICO OKLAHOMA

NEBRASKA

SOUTH
DAKOTA

NORTH
DAKOTA

COLORADO

MONTANA

MICHIGAN

WISCONSIN

ARKANSAS

OHIO

KENTUCKY

INDIANA

MISSOURI

TENNESSEE

ILLINOIS

IOWA

KANSAS

ARIZONA

UTAH

WYOMING

CANADA

UNITED STATES

LAKE
SUPERIOR

LAKE
MICHIGAN

LAKE
HURON

45˚

40˚

35˚

11
0˚

10
0˚

90
˚

Base from Natural Earth 1:10,000,000-scale digital data, 2022 (Massicotte and South, 2023)
Albers Equal-Area Conic projection, standard parallels 29°30’ and 45°30’ N., central meridian 101° W.
North American Datum of 1983

0 50 100 150 MILES

0 100 200 KILOMETERS

EXPLANATION

River

Figure 17.  Model form and goodness of fit of regression equations used for time-adjusted nonstationary flood frequency at 
selected U.S. Geological Survey streamgages.



24    Nonstationary Flood Frequency Analysis Using Regression in the North-Central United States

comparisons give a general estimate of the change in flood 
magnitudes owing to nonstationarity and may identify regional 
patterns.

Differences in flood estimates from time-adjusted NFFA 
and stationary FFA across the region ranged from −80 percent 
to 100 percent. The greatest percent differences between 
stationary FFA and time-adjusted NFFA estimates for the 
1-percent AEP flood magnitude were in the northern part 
of the study area. Upward changes were greatest in eastern 
North Dakota and Minnesota, whereas the greatest downward 
changes in estimates were in western North Dakota, South 

Dakota, and eastern Montana (fig. 18). Differences in the 
1-percent AEP were less than 20 percent at most streamgages 
in Missouri, Michigan, and Illinois.

Time-adjusted NFFA using linear regression was 
applicable throughout most of the study area. The assumptions 
of linear regression were adequately met for trend and change 
point models at most streamgages. Although most streamgages 
were fit with change point models, nearly all the streamgages 
with change points also had statistically significant trends. In 
some cases, site-specific exploratory analysis at individual 
streamgages (examples 1–4) may lend support for different 
modeling forms than those selected in this report.
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Figure 18.  Percent difference between time-adjusted nonstationary flood frequency and stationary flood frequency 
estimates of the 1-percent annual exceedance probability flood at selected U.S. Geological Survey streamgages.
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Regional Climate-Adjusted Nonstationary Flood 
Frequency

Climate-adjusted NFFA was performed at streamgages 
with a nonstationary annual climate variable that exhibited a 
statistically significant trend or change point at the 95-percent 
confidence level that was consistent with the direction of 
significant change in the peak streamflows (fig. 2). The climate 
variable selected for use in NFFA at streamgages across the study 
area is shown in figure 19. Regression equations for upward 
trends and change points in peak streamflow at streamgages 
throughout the central part of the study area were fit using annual 

precipitation if a concurrent upward trend or change point was 
identified. Regression equations for downward peak streamflow 
trends and change points in the western part of the study area and 
in Wisconsin and upper Michigan were fit using either annual 
temperature or annual snowfall. If temperature and snowfall 
were nonstationary at a streamgage, the variable with the greater 
regression coefficient of determination (R2) was chosen. The R2 
measures the proportion of the variability in peak streamflow that 
is explained by the explanatory variable (annual temperature or 
snowfall). Of the 153 candidate streamgages, 70 were predicted 
using annual precipitation, 21 were predicted using annual mean 
temperature, and 7 were predicted using annual snowfall. There 
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Figure 19.  Climate variables used for nonstationary flood frequency at selected U.S. Geological Survey streamgages.
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were 55 streamgages for which a climate variable could not be 
identified as a causal mechanism for peak streamflow under the 
criteria used in this project.

Of the 98 streamgages for which an appropriate climate 
variable was identified, 65 had fitted regression models with 
residuals that did not show significant heteroscedasticity or 
non-normality or whose residuals could be adequately modeled 
using a secondary error model (eq. 10), making them good 
candidates for this NFFA method. An additional 33 streamgages 
had regression equations for which the regression assumptions 
were marginally met. Climate-adjusted NFFA analyses at these 

streamgages can benefit from closer examination and may need 
different explanatory climate variables, a more robust model 
form, or an alternative NFFA method.

The percent difference between stationary and 
climate-adjusted NFFA estimates of the 1-percent AEP flood 
is shown in figure 20. Results were similar to those from the 
time-adjusted analyses, with the greatest upward changes in 
eastern North and South Dakota and Minnesota. A comparison of 
climate and time-adjusted NFFA estimates at streamgages where 
both analyses were performed is shown in figure 21. Differences 
between climate- and time-adjusted estimates agreed within 
25 percent of each other in about 75 percent of the cases.
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Figure 20.  Percent difference between climate-adjusted nonstationary flood frequency and stationary flood frequency 
estimates of the 1-percent annual exceedance probability flood at selected U.S. Geological Survey streamgages.
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Climate analyses were applicable in about 60 percent of 
the streamgages with observed peak streamflow nonstationarity. 
Many streamgages were excluded from analysis because none 
of the three annual climate variables could be identified as a 
probable cause of nonstationarity, either because they were 
stationary or because the direction of the climate trend or change 
point was not consistent with a causal mechanism for the peak 
streamflow trend or change point. In cases where a climate 
variable was identified as a likely driver of nonstationarity, the 
method produced 1-percent AEP estimates that were similar 
in magnitude to those estimated by time-adjusted NFFA 
methods. Additionally, regression equations using climate 
variables generally explained a larger portion of the variance 
than time-based regression equations, with mean coefficient of 
determination of 0.34 for climate-based regressions and 0.13 for 
time-based regression equations.

Uncertainty in FFA is high, even under stationary conditions. 
Sources of uncertainty in stationary FFA include sampling error, 
uncertainty in estimated sample moments, and the fit of the 
selected distribution. Many of the same sources of uncertainty 
in stationary FFA also apply to NFFA. Additionally, NFFA 
methods in this study are affected by uncertainty from fitted 
regression equations. Although a full examination of the controls 
on uncertainty in regression-based NFFA are beyond the scope 
of this study, the same factors that affect uncertainty in regression 
are likely to affect NFFA estimates, including sample size, error 
variance of the fitted regression, and the presence of outliers or 
influential data points.

Median lower and upper bootstrapped 95-percent 
confidence intervals were −28 and +38 percent of the estimated 
value for stationary FFA, −32 and +43 percent for time-adjusted 
NFFA, and −26 and +55 percent for climate-adjusted NFFA 
(fig. 22). At some streamgages, NFFA confidence intervals were 

excessively large, with upper confidence intervals greater than 
400 percent. Large confidence intervals occurred at streamgages 
with shorter periods of record (less than 70 years), those that had 
large regression error variance, or several large outliers in the 
data. In general, bootstrapped confidence intervals were larger 
at streamgages with shorter periods of record where regression 
slopes were more sensitive to variability in the bootstrapped 
data and produced a wider range of conditional means. The 
coefficient of variability of bootstrapped conditional means was 
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twice as large in streamgages with less than 70 years of record 
than it was at sites with longer periods of record (coefficient 
of variability of 2.5 and 1.1, respectively). The large range of 
conditional means reflects the sensitivity of OLS regression 
slopes to data variability and outliers, particularly when samples 
sizes are smaller. Additional research can help characterize the 
factors affecting uncertainty in NFFA estimates; however, this 
preliminary examination indicates that regression equations that 
explain a greater portion of the variability and larger sample sizes 
may produce flood estimates with less uncertainty.

Limitations

Analyses in this study should be regarded as preliminary 
and do not supersede other published flood frequency 
estimates. There are several limitations of analyses performed 
in this study. Only annual precipitation, snowfall, and 
temperature were considered as potential explanatory variables 
in this study. These explanatory variables were chosen 
because of their availability across the large study area and 
their previous use in characterization of nonstationarity in 
the study area (Ryberg, 2024); however, subannual climate 
variables may be better predictors of flood magnitudes at some 
locations. Additionally, these three climate variables do not 
represent the full range of flood-generating mechanisms in the 
region. Changes in land use from agriculture, urbanization, 
and tile drainage may also have effects on flood magnitude 
but were beyond the scope of this study. Additionally, only 
linear OLS regression was considered for estimating the 
relation between explanatory variables and peak streamflow. 
Other regression methods such as piecewise regression, 
robust regression, or multiple regression, which considers the 
mutual effects of more than one explanatory variable were not 
considered but may result in better model fits and reduce the 
uncertainty in estimates. Finally, site-specific exploratory data 
analyses (examples 1–4) were not completed for the regional 
application of the method. These regional analyses were 
performed as a preliminary assessment of the applicability of 
the method and to identify areas where changes were greatest 
in the estimated 1-percent AEP. Closer inspection of climate 
and streamflow trends at individual sites may support the use 
of different explanatory variables or model forms than those 
used in this study.

Summary
A primary assumption of flood frequency analysis is that 

the statistical properties of the peak streamflow time series do 
not change over time. This assumption has been challenged 
in recent decades owing to concerns that changes in observed 
peak streamflows may be caused by changing climate patterns 
and land-use changes. One approach to nonstationary flood 
frequency (NFFA) is to model the change in peak streamflows 
using regression. In this approach, conditional moments 

for peak streamflow are derived from a regression equation 
between peak streamflow and an explanatory variable such as 
time or a climate variable. Flood magnitudes are computed by 
fitting a probability distribution from the conditional moments 
and computing the quantiles of the fitted distribution for the 
annual exceedance probability (AEP) of interest.

For time-adjusted NFFA, the flood magnitude for a given 
AEP and year is computed directly from the fitted regression 
equation. For climate-adjusted NFFA, the conditional flood 
magnitude can be computed for a specific value of the 
explanatory variable. However, to estimate a climate-adjusted 
NFFA for a particular year, the probability distribution 
of the explanatory variable must also be considered. The 
magnitude for a given AEP flood using a stochastic climate 
variable can be computed using the law of total probability. 
This equation integrates the product of the conditional flood 
frequency and the probability density function of the climate 
variable. When determining the flood magnitude of an AEP of 
interest, optimization can be used to iteratively compute the 
integration until a flood magnitude is that has the selected AEP 
is determined.

The use of regression in NFFA is appealing owing to its 
relative ease of application and flexibility to model change 
points, trends, and some types of nonlinearity through data 
transformations or other model equations. The use of this 
method is restricted to situations in which a regression 
equation can be fit with homoscedastic and normally 
distributed residuals. Because the conditional moments are 
derived from the fitted regression and the regression residuals, 
it is important that the regression assumptions are met. 
Regression equations with a poor model fit or an incorrect 
model form (for example, modeling as a trend when the 
nonstationarity is in fact a change point) can result in greater 
uncertainty or bias in estimated flood magnitudes.

A nine-State region including Illinois, Iowa, Michigan, 
Minnesota, Missouri, Montana, North Dakota, South Dakota, 
and Wisconsin was used as the study area to assess the 
applicability of ordinary least squares (OLS) regression for 
NFFA in the study area. Time-adjusted and climate-adjusted 
NFFA were applied at 153 candidate streamgages with 
statistically significant peak streamflow trends or change 
points to determine whether the assumptions of the regressions 
were met. Regression equations using time as the explanatory 
variable had residuals that met the OLS assumptions at 101 
streamgages and marginally met OLS assumptions at 36 
streamgages. Regressions with marginally acceptable residuals 
exhibited some lack of normality or slight heteroscedasticity, 
which may result in higher uncertainty but is likely to be 
a better estimate of flood risk than a stationary model. 
Time-based regression equations at 16 streamgages exhibited 
substantial heteroscedasticity or nonstationary patterns, 
were nonlinear or nonmonotonic, and require more flexible 
statistical models or other methods of NFFA.

Climate-adjusted NFFA was performed using annual 
precipitation, annual snowfall, or mean annual temperature 
as an explanatory variable. Annual precipitation with upward 
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trends or change points was used to estimate 1-percent AEP 
floods at streamgages with upward trends or change points 
throughout much of the central parts of the study area. 
Annual snowfall and temperature had downward trends or 
change points primarily in the western part of the study area, 
Wisconsin, and the upper peninsula of Michigan. Annual 
snowfall or temperature was used to estimate the 1-percent 
AEP floods at streamgages with downward trends or change 
points. Of the 153 candidate streamgages, 70 were predicted 
using annual precipitation, 21 were predicted using annual 
mean temperature, and 7 were predicted using annual 
snowfall. There were 55 streamgages for which a climate 
variable could not be identified as a causal mechanism 
for peak streamflow under the criteria used in this project 
or the fitted regression equations exhibited significant 
heteroscedasticity or non-normality. Regression equations 
in climate-adjusted NFFA met OLS assumptions at 65 
streamgages and marginally met OLS assumptions at 33 
streamgages. At streamgages where climate- and time-adjusted 
NFFA were applied, estimates for 1-percent AEP matched 
within 25 percent of each other at about 75 percent of the time.

For both NFFA adjustment methods, the difference 
between stationary and nonstationary NFFA estimates was 
greatest in the northern part of the region. In areas with 
upward peak streamflow change points and trends, NFFA 
estimates were generally less than 20 percent higher than 
stationary estimates in the southern part of the study area and 
were greatest in eastern North Dakota and western Minnesota. 
Wisconsin, Montana, and western South Dakota and North 
Dakota had primarily downward trends in peak streamflows. 
Among these areas, eastern Montana and western North 
Dakota had the largest downward change in the 1-percent 
estimate from NFFA.

Overall, OLS regression shows promise for large scale 
application across the study region. Time-adjusted NFFA is 
somewhat simple to implement and patterns of nonstationarity 
across most of the region were able to be modeled adequately 
with OLS regression. OLS regression can be used to adjust 
flood estimates based on change points or trends in the time 
series. One challenge in using this method is determining the 
proper equation form in cases where peak streamflow exhibits 
a trend and a change point. An incorrect model form can lead 
to large biases in estimates. Analysis of ancillary climate 
at the streamgage and regionally can be used to support 
the choice of model form in these cases. Climate-adjusted 
NFFA is more computationally complex than time-adjusted 
NFFA but may be used in cases where a climate attribution 
of peak streamflow nonstationarity can be confidently 
made. Climate-based regressions can account for complex 
patterns of nonstationarity caused by interactions between 
different climate effects, such as a temperature change point 
altering the relation between peak flow and precipitation. 
Climate-based regression equations generally explained 
a higher portion of the variability in peak streamflows 
compared to time-based regressions; however, the overall 
uncertainty in climate-adjusted NFFA estimates may be larger 

than time-adjusted NFFA estimates owing to the additional 
uncertainty from the climate distribution probability weighting 
process. This study used only annual climate variables as 
potential explanatory variables, but variables on shorter 
time scales, such as seasonal precipitation, may have better 
predictive ability in a regression equation.
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