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Conversion Factors
U.S. customary units to International System of Units

Multiply By To obtain

Length

inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

acre 4,047 square meter (m2)
acre 0.4047 hectare (ha)
acre 0.4047 square hectometer (hm2)
acre 0.004047 square kilometer (km2)

Volume

cubic yard (yd3) 0.7646 cubic meter (m3)
Flow rate

foot per day (ft/d) 0.3048 meter per day (m/d)
foot per year (ft/yr) 0.3048 meter per year (m/yr)

Mass

ton, short (2,000 lb) 0.9072 metric ton (t)
Hydraulic conductivity

foot per day (ft/d) 0.3048 meter per day (m/d)
Hydraulic gradient

foot per foot (ft/ft) 1 meter per meter (m/m)
International System of Units to U.S. customary units

Multiply By To obtain

Length

millimeter (mm) 0.03937 inch (in.)
meter (m) 3.281 foot (ft)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F = (1.8 × °C) + 32.

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C = (°F – 32) / 1.8.

Datums
Vertical coordinate information is referenced to the North American Vertical Datum of 1988 
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83) 
using the Universal Transverse Mercator projection zone 14 north.

Altitude, as used in this report, refers to distance above the vertical datum.
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Supplemental Information
Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm 
at 25 °C).

Concentrations of chemical constituents in water are given in either milligrams per liter (mg/L) 
or micrograms per liter (µg/L).

Milligrams per kilogram (mg/kg) is a unit expressing the mass of the constituent per unit mass 
(kilogram) of material; milligrams per kilogram is equivalent to parts per million (ppm).

Milligrams per liter (mg/L) and micrograms per liter (µg/L) are units expressing the mass of the 
solute per unit volume (liter) of water. Milligrams per liter is equivalent to parts per million (ppm), 
whereas micrograms per liter is equivalent to parts per billion (ppb).

Resistivity is given in ohm-meters (ohm-m); conductivity (the inverse of resistivity) is given in 
millisiemens per meter (mS/m).

Hertz (Hz) is a unit expressing frequency in cycles per second; 1 hertz is equal to the rise and 
fall of a wave per second.
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Abstract
The Wilcox Oil Company Superfund site (hereinafter 

referred to as “the site”) was formerly an oil refinery northeast 
of Bristow in Creek County, Oklahoma. Historical refinery 
operations contaminated the soil, surface water, streambed 
sediments, alluvium, and groundwater with refined and 
stored products at the site. The Wilcox and Lorraine process 
areas are where the highest concentrations of volatile organic 
compounds, semivolatile organic compounds, polycyclic 
aromatic hydrocarbons, and trace elements (including metals) 
(collectively hereinafter referred to as “contaminants”) were 
measured in a local shallow perched groundwater system 
within the alluvium (hereinafter referred to as the “alluvial 
aquifer”) at the site during previous site assessments. In order 
to understand the potential migration of contaminants through 
the soil and groundwater in these areas, the U.S. Geological 
Survey, in cooperation with the U.S. Environmental 
Protection Agency, investigated aquifer characteristics of 
the alluvial aquifer in the Wilcox and Lorraine process areas 
of the site to (1) document hydraulic conductivity and other 
aquifer characteristics of the alluvial aquifer that govern 
contaminant fate and transport, (2) describe the geospatial 
extent and concentration of the contaminants in the alluvial 
aquifer in the Wilcox and Lorraine process areas, and (3) 
describe the geochemical controls pertaining to oxidation 
and reduction governing the fate and transport and the 
degradation potential of contaminants in the groundwater. 
Various data were compiled and collected to evaluate the 
aquifer characteristics at the site including the hydrogeologic 
framework, groundwater-flow system, geochemistry, and 
hydraulic properties of the aquifer. A total of 20 new (2022) 
groundwater monitoring wells were installed at the site to 
collect data used to supplement groundwater-level altitude 

and groundwater-quality data collected from older, existing 
groundwater monitoring wells and piezometers. Data 
compiled and collected for the study were used to evaluate the 
characteristics of the alluvial aquifer at the site. These aquifer 
characteristics are defined by the hydrogeologic framework, 
groundwater-flow system, geochemistry, and hydraulic 
properties of the aquifer.

Introduction
The Wilcox Oil Company Superfund site (hereinafter 

referred to as “the site”) was formerly an oil refinery northeast 
of Bristow in Creek County, Oklahoma (fig. 1). Crude oil 
was refined and processed at the site from approximately 
1915 to 1963 (U.S. Environmental Protection Agency [EPA], 
2023a). The Wilcox Oil Refinery began processing oil in 
the 1920s, after the Lorraine Oil Refinery began processing 
oil at the site in 1915 (EPA, 2023a). In 1937, the Wilcox 
Oil Refinery purchased the Lorraine Oil Refinery to expand 
its operations westward; after the merger the company was 
renamed the Wilcox Oil and Gas Company (EPA, 2023a). The 
two process areas where crude oil was refined and processed 
are hereinafter referred to as the “Wilcox process area” and 
the “Lorraine process area.” The site contained approximately 
80 storage tanks of various sizes, approximately 10 buildings 
for refinery operations, and various other structures associated 
with refinery operations, collectively referred to as “historical 
infrastructure” (fig. 1), as well as contained natural ponds 
and man-made cooling ponds (EA Engineering, Science, and 
Technology, Inc., PBC, 2020a, b, c, 2021). Products known 
to have been refined or stored on site were crude oil, fuel oil, 
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gas oil, distillate, kerosene, naphtha, and benzene (petroleum 
ether) (EA Engineering, Science, and Technology, Inc., PBC, 
2020a, b, c, 2021).

The Wilcox Oil and Gas Company sold the property 
in 1963, and most of the equipment and storage tanks were 
removed by the new property owners, after which the property 
was sold again to private interests (EA Engineering, Science, 
and Technology, Inc., PBC, 2020a, b, c, 2021). From 1975 
to 2004, the property was parceled out for residential and 
commercial development, and a church and seven residences 
were constructed (EA Engineering, Science, and Technology, 
Inc., PBC, 2020a, b, c, 2021). Although the site was partially 
cleared during these transitions, remnants of the former 
oil refining operations and storage tanks remained as of 
December 2022.

Historical refinery operations contaminated the 
soil, surface water, streambed sediments, alluvium, and 
groundwater with refined and stored products at the site 
(EA Engineering, Science, and Technology, Inc., PBC, 
2020a, b, c, 2021; EPA, 2023a). On December 12, 2013, 
the property formerly owned by the Wilcox Oil and Gas 
Company was placed on the National Priorities List and 
was later authorized as a Superfund site when a responsible 
party for restoration of the site was not identified (EPA, 
2023a). As part of the remedial investigation, multiple 
sampling events have been completed by the Oklahoma 
Department of Environmental Quality and the EPA. The 
remedial investigation report (EA Engineering, Science, and 
Technology, Inc., PBC, 2020a) indicated that subsurface 
contamination at the site is confined to a shallow perched 
groundwater system within the alluvium (hereinafter referred 
to as the “alluvial aquifer”). Approximately 31,000 cubic 
yards of contaminated soil and 1,349 tons of petroleum waste 
material have been removed from the site (EPA, 2023a). 
The alluvial aquifer was susceptible to contamination from 
the petroleum waste and contaminated soil as a result of 
precipitation percolating through contaminated soils and 
alluvium (EA Engineering, Science, and Technology, Inc., 
PBC, 2021). Groundwater-quality sampling in 2020 indicated 
that petroleum hydrocarbons were found in the alluvial aquifer 
at the site but not in the deeper regional groundwater system 
(EA Engineering, Science, and Technology, Inc., PBC, 2020d, 
2021). As indicated in the soil feasibility study report (EA 
Engineering, Science, and Technology, Inc., PBC, 2021), a 
data gap analysis (EA Engineering, Science, and Technology, 
Inc., PBC, 2020d) determined that additional information 
could help address the areal extent of contamination. The 
Wilcox and Lorraine process areas are where the highest 
concentrations of volatile organic compounds (VOCs) (such 
as benzene), semivolatile organic compounds (SVOCs), 
polycyclic aromatic hydrocarbons, and trace elements 
(including metals) (collectively hereinafter referred to as 
“contaminants”) were measured in the groundwater during 
previous site assessments. The Wilcox and Lorraine process 
areas overlie the thickest portions of the alluvium at the site, 
and understanding the potential migration of contaminants 

through the soil and groundwater in these areas could help 
address the areal extent of contamination. Therefore, in 2022, 
the U.S. Geological Survey (USGS), in cooperation with the 
EPA, investigated aquifer characteristics of the alluvial aquifer 
in the Wilcox and Lorraine process areas of the site to help 
fill data gaps related to the geochemistry, nature and extent of 
contamination, and the fate and transport and the degradation 
potential of contaminants in the groundwater.

Purpose and Scope

This report documents the results of a groundwater 
assessment in the Wilcox and Lorraine process areas of the 
Wilcox Oil Company Superfund site completed in 2022 by the 
USGS in cooperation with the EPA. This report builds on the 
results of previous studies that documented the presence of 
contaminants in the alluvial aquifer (EA Engineering, Science, 
and Technology, Inc., PBC, 2020d). This report (1) documents 
hydraulic conductivity and other aquifer characteristics of the 
alluvial aquifer that govern contaminant fate and transport, 
(2) describes the geospatial extent and concentration of the 
contaminants in the alluvial aquifer in the Wilcox and Lorraine 
process areas, and (3) describes the geochemical controls 
pertaining to oxidation and reduction governing the fate and 
transport and the degradation potential of contaminants in the 
groundwater.

Description of Study Area

The study area is on the outskirts of Bristow in Creek 
County, Oklahoma (fig. 1). The site is in a semirural area with 
about 6,900 people living within 5 miles of its boundaries 
in 2020 (Center for International Earth Science Information 
Network [CIESIN] Columbia University, 2023).

The site has a humid subtropical climate, characterized 
by hot and humid summers and cool to mild winters (Kottek 
and others, 2006). Climatology data for the city of Bristow 
compiled by the National Weather Service during 1981–2010 
were used to characterize the temperature and precipitation at 
the site (National Weather Service, 2023). The mean annual 
temperature is 59.1 degrees Fahrenheit (°F). The coldest 
month is January, with a mean monthly temperature of 25.8 °F, 
whereas the warmest month is August, with a mean monthly 
temperature of 91.5 °F. The mean annual precipitation is 
40.98 inches (in.), and the mean annual snowfall is 9.2 in. The 
wettest and driest months are May and January, with 5.66 and 
1.71 in. of mean monthly precipitation, respectively.

The approximately 150-acre site is divided into five 
major former operational areas: the Wilcox and Lorraine 
process areas, two main groups of storage tanks that are 
referred to as the “east tank farm” and “north tank farm,” and 
the loading dock area (fig. 1) (EPA, 2023a). The focus of this 
report is on the Wilcox and Lorraine process areas; the other 
operational areas will not be discussed further in this report. 
The Wilcox and Lorraine process areas are separated by a 
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railroad that remains in active use (fig. 2). The topography 
within the Wilcox and Lorraine process areas generally slopes 
to the south and southwest towards Sand Creek (fig. 2).

The Wilcox process area covers approximately 26 acres 
east of the railroad that divides the site, and most of the 
infrastructure that existed when the facility was operational 
has been removed; what remains are dilapidated structures. 
The location of historical infrastructure associated with the 
contamination at the site is depicted in figures 1 and 2. Of the 
infrastructure that remains, there are four aboveground storage 
tanks, a former lead additive area in the southwestern part of 
the process area (commonly referred to as “lead sweetening 
area” [EPA, 2017a]), and two vacant residences that are not 
delineated on the figures in this report (EA Engineering, 
Science, and Technology, Inc., PBC, 2020a, b, c, 2021). One 
of these two vacant residences is in the northern part of the 
process area and was a former laboratory and office building 
of the refinery that was later converted into a residence. The 
second vacant residence is in the eastern part of the process 
area. Refinery-related debris, such as drums and pieces of 
scrap iron and piping, was discarded throughout the site (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a, 
b, c, 2021). Much of the land surface in the Wilcox process 
area is barren or shows evidence of plants experiencing 
unfavorable conditions that hinder their normal growth, 
development, and metabolism, or stressed vegetation, and 
petroleum hydrocarbon waste (EA Engineering, Science, and 
Technology, Inc., PBC, 2020a, b, c, 2021).

The Lorraine process area covers approximately 8 acres 
west of the railroad (fig. 2), and like the Wilcox process 
area, most of the infrastructure that existed in the Lorraine 
process area has been removed. No refinery infrastructure 
remains in this area, although an abandoned church and a 
vacant residence still exist (EA Engineering, Science, and 
Technology, Inc., PBC, 2020a, b, c, 2021). Similar to the 
Wilcox process area, much of the land surface in the Lorraine 
process area is barren or shows evidence of stressed vegetation 
and petroleum hydrocarbon waste (EA Engineering, Science, 
and Technology, Inc., PBC, 2020a, b, c, 2021).

Perennial and intermittent streams and drainages cross 
the study area, and contaminants from petroleum hydrocarbon 
waste have been detected in the surface water and streambed 
sediments of the streams and ponds (EA Engineering, Science, 
and Technology, Inc., PBC, 2016, 2020a, b, c, 2021). Sand 
Creek is a perennial stream south of the Wilcox process area 
and west and south of the Lorraine process area (fig. 2). An 
unnamed tributary to Sand Creek referred to hereinafter as the 
“west tributary” is an intermittent stream that flows southward 
across the eastern part of the Wilcox process area through a 
small pond before emptying into Sand Creek (fig. 2). A second 
unnamed tributary to Sand Creek referred to hereinafter as 
the “northwest tributary” is an intermittent stream west of 
the Lorraine process area that flows south before emptying 
into Sand Creek (fig. 2). Contaminants have mostly been 
detected in surface-water and streambed-sediment samples 
from the intermittent west tributary, with few detections in 

the surface-water and streambed-sediment samples from Sand 
Creek (surface-water and streambed-sediment samples were 
not collected from the northwest tributary) (EA Engineering, 
Science, and Technology, Inc., PBC, 2016, 2020a, b, c, 
2021). In addition to the west and northwest tributaries, 
several other smaller drainages provide flow into Sand Creek 
during precipitation events within the Wilcox process area, 
some of which have also been contaminated by historical 
petroleum hydrocarbon waste as evidenced by the detection of 
hydrocarbons in soil samples (EA Engineering, Science, and 
Technology, Inc., PBC, 2016, 2020a, b, c, 2021).

Geologic Setting

The Paleozoic-age (Upper Pennsylvanian Period) 
Barnsdall Formation of the Ochelata Group is exposed at 
land surface in parts of the study area (fig. 3). The Barnsdall 
Formation is composed of two alternating layers of 
weathering mudstone and two alternating layers of weathering 
fine-grained quartz arenites (Stanley, 2017). Quartz arenite is 
a type of sandstone composed of more than 90 percent quartz 
(Pettijohn and others, 1973). The term “weathering” refers to 
the breaking down of the mudstone and quartz arenite layers 
into the silt, clay, and sand particles that compose them as a 
result of erosional processes.

The total thickness of the Barnsdall Formation in the 
area around Bristow, Oklahoma, ranges from 50 to 160 feet 
(ft), and the formation tends to thin to the south (Stanley, 
2017). Sandstone outcrops of the Barnsdall Formation 
(the quartz arenites of the Barnsdall Formation described 
by Stanley [2017]) are common throughout the site (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a, 
2021). Previous studies (Stanley, 2017; EA Engineering, 
Science, and Technology, Inc., PBC, 2020a, 2021) indicated 
that as much as 30 ft of Quaternary-age alluvium overlies the 
Barnsdall Formation in the Wilcox and Lorraine process areas 
(fig. 3). The west and northwest tributaries along with Sand 
Creek likely contributed to the deposition of this alluvium, 
which consists of sand, silt, clay, and lenticular beds of 
gravel (EA Engineering, Science, and Technology, Inc., PBC, 
2020a, 2021).

The Natural Resources Conservation Service (NRCS; 
2019) identified four main soil classification types 
associated with the site: Bigheart-Niotaze-Rock outcrop 
complex, oil-waste land-Huska complex, Ashport silt loam, 
and Dale clay loam (fig. 4). The Bigheart-Niotaze-Rock 
outcrop complex soil type is found on slopes ranging 
from 1 to 8 percent, and the runoff potential increases as 
the slope increases (NRCS, 2019). The Bigheart soil of 
the Bigheart-Niotaze-Rock outcrop complex is typically 
composed of fine sandy loam at depths from land surface of 
0–3 in. and of gravelly fine sandy loam at depths from land 
surface of 3–12 in.; the underlying bedrock extends from 12 
to 22 in. below land surface (NRCS, 2019). The Niotaze soil 
of the Bigheart-Niotaze-Rock outcrop complex is typically 
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composed of fine sandy loam at depths from land surface 
of 0–16 in. and of silty clay at depths from land surface of 
16–40 in. (NRCS, 2019). The Bigheart soil is well drained, 
whereas the Niotaze soil is poorly drained (NRCS, 2019). The 
Bigheart-Niotaze-Rock outcrop complex soil type covers the 
majority of the Lorraine process area, as well as the northern 
and eastern parts of the Wilcox process area. The oil-waste 
land-Huska complex is a soil type found in areas contaminated 
with oil and other liquid waste. Burgess Engineering and 
Testing, Inc. (2010, p. 2), explained that the “oil-waste 
land-Huska complex is made up of areas in which liquid oily 
waste has accumulated. This complex includes slush pits and 
the adjacent uplands and bottom lands that have been affected 
by liquid wastes, mainly salt water and oil.” The oil-waste 
land-Huska complex soil type is moderately well drained 
and is found on slopes ranging from 1 to 8 percent (NRCS, 
2019). The oil-waste land soils of the oil-waste land-Huska 
complex are found throughout much of the Wilcox process 
area and consist of loamy and clayey particles weathered from 
sandstone and mudstone (NRCS, 2019). The Huska soil of 
the oil-waste land-Huska complex is also found throughout 
much of the Wilcox process area on slopes ranging from 1 
to 8 percent and is typically composed of silt loam at depths 
from land surface of 0–6 in., silty clay loam at depths from 
land surface of 6–25 in., and clay at depths from land surface 
of 25–50 in. The underlying bedrock extends from 50 to 60 in. 
below land surface (NRCS, 2019). In addition to the oil-waste 
land-Huska complex soil being found throughout most of the 
Wilcox process area, it is also found in the eastern part of the 
Lorraine process area (fig. 4). Both the Ashport silt loam and 
Dale clay loam soil types occur in floodplains and consist of 
well-drained particles that provide negligible runoff (NRCS, 
2019). The Ashport silt loam soil type is typically composed 
of silt loam at depths from land surface of 0–48 in. and silty 
clay loam at depths from land surface of 48–64 in. (NRCS, 
2019). The Dale clay loam soil type is typically composed 
of clay loam at depths from land surface of 0–61 in. (NRCS, 
2019) and is found in the southeastern part of the Wilcox 
process area (fig. 4). The Ashport silt loam soil type is found 
in the floodplain of Sand Creek in the southern parts of the 
Wilcox and Lorraine process areas (fig. 4).

Hydrogeologic Setting

Groundwater at the site is found both in the overlying 
alluvial aquifer and in the Barnsdall Formation (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a, 
2021). The lower, sand-dominated units of the Barnsdall 
Formation contain the regional groundwater system 
(hereinafter referred to as the “bedrock aquifer”), but this 
bedrock aquifer is not one of the major or minor aquifers 
identified in Oklahoma by the State of Oklahoma Water 
Resources Board (Oklahoma Department of Environmental 

Quality, 1994; Osborn and Hardy, 1999; EA Engineering, 
Science, and Technology, Inc., PBC, 2020a, 2021). Aquifer 
characteristics and groundwater quality associated with 
groundwater contained in the Barnsdall Formation were not 
assessed as part of this study.

Both the alluvial aquifer and the bedrock aquifer 
contained in the Barnsdall Formation are generally considered 
unconfined with the exception that more competent units of 
the alluvium (where present) might act as lower confining 
units to the localized alluvial aquifer in some parts of the 
study area (EA Engineering, Science, and Technology, Inc., 
PBC, 2020a, 2021). Infiltration of precipitation provides 
direct recharge to the alluvial aquifer, whereas recharge to the 
bedrock aquifer occurs through infiltration from precipitation 
at sandstone outcrops and potentially through downward 
migration of groundwater from the alluvial aquifer (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a, 
2021). The more competent units of the alluvium acting as a 
lower confining unit in the eastern part of the Wilcox process 
area have been truncated by erosion in association with the 
west tributary and have created conditions favorable for 
the downward migration of groundwater (EA Engineering, 
Science, and Technology, Inc., PBC, 2020a, 2021). There 
is also evidence that the alluvial aquifer discharges to Sand 
Creek (EA Engineering, Science, and Technology, Inc., PBC, 
2020a, 2021).

Groundwater-level altitudes within the alluvial aquifer 
in the Wilcox and Lorraine process areas generally range 
from 5 to 16 ft below land surface (EA Engineering, Science, 
and Technology, Inc., PBC, 2020a, 2021). The bedrock 
aquifer is slightly deeper than the alluvial aquifer, and 
groundwater-level altitudes in the bedrock aquifer are likely 
less than 25 ft below land surface (Oklahoma Department of 
Environmental Quality, 1994; EA Engineering, Science, and 
Technology, Inc., PBC, 2020a, 2021). Although few wells 
at the site were completed in the bedrock aquifer, previous 
studies (EA Engineering, Science, and Technology, Inc., PBC, 
2020a, 2021) indicated that there is not a clear distinction 
between groundwater-level altitudes in the alluvial aquifer and 
groundwater-level altitudes in the bedrock aquifer because any 
local domestic wells at the site were constructed such that the 
screened interval intercepts both the alluvial aquifer and the 
bedrock aquifer, facilitating a hydraulic connection between 
the two aquifers. Groundwater flow within the Wilcox and 
Lorraine process areas for the alluvial aquifer is generally to 
the south towards Sand Creek. Based on information shown 
in figure 3 of EA Engineering, Science, and Technology, Inc., 
PBC (2020d), the local mean gradient of about 5 ft per 250 ft 
was indicated for the site, which corresponds to approximately 
a 0.02 foot per foot (ft/ft) hydraulic gradient. An estimated 
velocity of 1.3 feet per year (ft/yr) was also reported (EA 
Engineering, Science, and Technology, Inc., PBC, 2020d).
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Figure 4.  Surface soil classification types in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near 
Bristow, Creek County, Oklahoma.
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Previous Studies

The most recent (since 2020) investigation and risk 
assessment reports that are extensively referenced in 
this report include the remedial investigation report (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a), 
human health risk assessment (EA Engineering, Science, and 
Technology, Inc., PBC, 2020b), ecological risk assessment 
(EA Engineering, Science, and Technology, Inc., PBC, 
2020c), technical memorandum on data gap investigation (EA 
Engineering, Science, and Technology, Inc., PBC, 2020d), 
and soil feasibility study (EA Engineering, Science, and 
Technology, Inc., PBC, 2021). These reports provided basic 
information about the site and detailed information on the 
multiple sampling events and other studies done at the site. 
The remedial investigation report also identified potential 
source areas, defined the known contamination extent, and 
evaluated potential migration pathways.

In 2015, 473 surface soil (less than or equal to a 
depth of 2 ft below land surface) samples, 355 subsurface 
soil (greater than a depth of 2 ft below land surface) 
samples, 44 streambed-sediment samples, 56 surface-water 
samples, and 35 groundwater samples were collected by 
EA Engineering, Science, and Technology, Inc., PBC, for 
the remedial investigation (EA Engineering, Science, and 
Technology, Inc., PBC, 2020a). These samples, along with 
428 surface soil samples collected by the EPA, were used 
to evaluate the nature and extent of the contamination and 
to determine potential risks to human health and ecological 
receptors (EA Engineering, Science, and Technology, Inc., 
PBC, 2020a). Potential sources that were identified include 
the skimming and cracking plant, redistillation battery, stills, 
cooling ponds, lead additive area, tanks, and other historical 
infrastructure related to refinery activities at the site (figs. 1 
and 2) (EA Engineering, Science, and Technology, Inc., PBC, 
2020a). Sampling results indicated that the Wilcox process 
area was the most widely affected area within the site from 
leaks and spills from the historical refining operations (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a).

There were 73 surface soil samples collected in the 
Wilcox process area and 36 surface soil samples collected 
in the Lorraine process area and analyzed for organic 
compounds including the polycyclic aromatic hydrocarbons, 
benzo(a)pyrene, benzene, and ethylbenzene and for metals 
including lead. Concentrations of benzo(a)pyrene exceeded 
the residential soil screening value of 0.11 milligram per 
kilogram (mg/kg) in 35 of the surface soil samples collected 
in the Wilcox process area and in 7 of the surface soil samples 
collected in the Lorraine process area (EA Engineering, 
Science, and Technology, Inc., PBC, 2020a). In the Wilcox 
process area, benzo(a)pyrene exceedances mainly occurred in 
samples from the northern and northwestern parts, whereas in 
the Lorraine process area, benzo(a)pyrene exceedances were 
mainly in samples from the northwestern and eastern parts. 
Concentrations of benzene and ethylbenzene exceeded their 
residential soil screening values of 1.2 and 5.8 mg/kg,  

respectively, in six of the surface soil samples collected in 
the Wilcox process area; none of the surface soil samples 
collected in the Lorraine process area exceeded the benzene 
and ethylbenzene residential soil screening values (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a). 
In the Wilcox process area, benzene and ethylbenzene 
exceedances mainly occurred in samples from areas near 
former storage tanks. Concentrations of lead exceeded the 
residential soil screening value of 400 mg/kg in 19 surface 
soil samples collected in the Wilcox process area and in 4 
surface soil samples collected in the Lorraine process area (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a). In 
the Wilcox process area, these lead exceedances were mainly 
trending southwest from the northeast corner of the area to the 
area surrounding the former lead additive area, whereas in the 
Lorraine process area, these lead exceedances occurred mainly 
near former storage tanks and cooling ponds.

Elevated benzo(a)pyrene concentrations were 
measured in streambed-sediment samples collected at the 
site, whereas elevated lead concentrations were measured 
in both streambed-sediment and surface-water samples 
collected at the site. Concentrations of benzo(a)pyrene that 
exceeded the residential soil screening level for this organic 
compound were most often measured in streambed-sediment 
samples associated with (1) the west tributary to Sand Creek, 
(2) the pond fed by the west tributary, (3) the reach of Sand 
Creek that flows along the southern border of the Wilcox 
process area, and (4) a downstream location in Sand Creek 
approximately 700 ft southeast of the site (EA Engineering, 
Science, and Technology, Inc., PBC, 2020a). Concentrations 
of lead that exceeded the residential soil screening level for 
this heavy metal were measured in streambed-sediment and 
surface-water samples collected from the west tributary to 
Sand Creek, including the pond fed by the tributary (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a). The 
locations where the samples with elevated benzo(a)pyrene 
and lead concentrations were collected indicate that, although 
there has been contamination by these constituents in the west 
tributary to Sand Creek, there likely has not been appreciable 
contamination to Sand Creek downstream from the Wilcox 
process area (EA Engineering, Science, and Technology, Inc., 
PBC, 2020a).

Groundwater sampling results from the remedial 
investigation indicated that the alluvial aquifer at the site 
is most likely affected by contamination (EA Engineering, 
Science, and Technology, Inc., PBC, 2020a). Elevated 
concentrations of benzene, toluene, and ethylbenzene were 
measured in the samples collected from well MW-04 (fig. 2), 
indicating that gasoline distillate is likely present in the 
groundwater (EA Engineering, Science, and Technology, Inc., 
PBC, 2020a). The distribution of groundwater exceedances 
for benzene, toluene, and ethylbenzene at the site indicates 
that there is a plume of contaminated groundwater near well 
MW-04 but that the plume has not migrated offsite or into 
Sand Creek (EA Engineering, Science, and Technology, Inc., 
PBC, 2020a). However, the remedial investigation report 
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acknowledges that there is a gap in groundwater data and 
that additional information may help to define the extent of 
this plume (EA Engineering, Science, and Technology, Inc., 
PBC, 2020a).

Human health and ecological risk assessments provided 
information on the distribution of organic compounds and 
metals that exceeded the human health and ecological 
screening level criteria at the site. The primary classes of 
chemicals exceeding those screening levels included VOCs, 
SVOCs, polycyclic aromatic hydrocarbons, and metals (EA 
Engineering, Science, and Technology, Inc., PBC, 2020b, c).

In the technical memorandum on data gap investigation 
(EA Engineering, Science, and Technology, Inc., PBC, 
2020d), there was a focus on collecting additional data at 
existing and at new, temporary wells to further delineate 
possible contaminant plumes in the Wilcox and Lorraine 
process areas, gain a better understanding of groundwater 
and surface-water interactions, and characterize hydraulic 
and geochemical properties of the alluvial aquifer, including 
those pertaining to natural attenuation of contaminants. 
Groundwater-level altitudes measured in existing wells 
indicated that groundwater flows towards Sand Creek and 
that the groundwater-level altitude is typically higher than 
the surface-water altitude in Sand Creek (EA Engineering, 
Science, and Technology, Inc., PBC, 2020d). Along Sand 
Creek, groundwater discharges as seepages on the streambank; 
these seepages are ephemeral and responsive to precipitation, 
infiltration, recharge, and groundwater movement (EA 
Engineering, Science, and Technology, Inc., PBC, 2020d). 
Slug tests were performed by EA Engineering, Science, 
and Technology, Inc., PBC, at existing wells, and the mean 
hydraulic conductivity for what they defined as “representative 
of zones that transmit groundwater at the site” was 0.35 foot 
per day (ft/d) (EA Engineering, Science, and Technology, 
Inc., PBC, 2020d, p. 6). Natural attenuation properties for 
groundwater monitored at the site indicated that elevated 
iron and manganese concentrations, low oxidation-reduction 
potential (ORP), and low dissolved oxygen (DO) were present 
(EA Engineering, Science, and Technology, Inc., PBC, 
2020d). The elevated iron and manganese concentrations, 
low ORP, and low DO indicate that anoxic conditions are 
present within the aquifer (EA Engineering, Science, and 
Technology, Inc., PBC, 2020d). The minimal seepage velocity 
(0.0035 ft/d) of groundwater at the site is supported by these 
anoxic conditions, including the elevated iron and manganese 
in groundwater that are in turn oxidized at the point of 
discharge on the streambanks (EA Engineering, Science, and 
Technology, Inc., PBC, 2020d).

The groundwater sampling results from the technical 
memorandum on data gap investigation (EA Engineering, 
Science, and Technology, Inc., PBC, 2020d) described the 
predominant contaminants at the site, noteworthy plumes 
of contaminants in the groundwater, and the remaining 
potential for aerobic degradation of petroleum hydrocarbons. 
Benzene was the predominant VOC, exceeding its maximum 
contaminant level (MCL) of 5.0 micrograms per liter (µg/L) 

(EPA, 2023b), with a partially defined benzene plume 
encompassing wells MW-04, WPA-GW-02, WPA-GW-05, 
and WPA-GW-07 (fig. 2). The only sample with an MCL 
exceedance for any other SVOCs or polycyclic aromatic 
hydrocarbons was collected from well WPA-GW-02 with an 
exceedance of 0.20 µg/L for benzo(a)pyrene (EA Engineering, 
Science, and Technology, Inc., PBC, 2020d). Two plumes of 
groundwater contaminated with lead were partially defined, 
one near the central and northeastern parts of the Wilcox 
process area and the other near the central part of the Lorraine 
process area (EA Engineering, Science, and Technology, 
Inc., PBC, 2020d). There were two plumes of groundwater 
contaminated with arsenic, one in the Wilcox process area 
that extended from the southwest to the northwest and the 
other in the western part of the Lorraine process area (EA 
Engineering, Science, and Technology, Inc., PBC, 2020d). 
For the evaluation of sulfate in groundwater at the site, 
the technical memorandum on data gap investigation (EA 
Engineering, Science, and Technology, Inc., PBC, 2020d, 
p. 8) stated, “At MW-04, sulfate has been totally depleted 
indicating virtually no assimilative capacity for continued 
sulfate reduction; however, the presence of methane indicates 
that methanogenesis is ongoing.” The technical memorandum 
on data gap investigation (EA Engineering, Science, and 
Technology, Inc., PBC, 2020d) concluded that there was not 
an appreciable amount of ongoing aerobic degradation of 
petroleum hydrocarbons.

In 2015, rapid optical screening tool (ROST) 
measurements were collected in multiple boreholes throughout 
the site to measure the returning fluorescence from any 
existing light nonaqueous phase liquids (LNAPLs) that may 
be present in the subsurface (Lockheed Martin Scientific, 
Engineering, Response and Analytical Services [Lockheed 
Martin SERAS], 2016; S2C2, Inc., 2016). The fluorescence 
from LNAPL contaminants in the subsurface was measured 
by the ROST as a percentage of relative emittance. The 
ROST uses a laser to excite hydrocarbon compounds in 
the subsurface, causing them to fluoresce, and measures 
the intensity and wavelength distribution of fluorescence 
emission after excitation (Lockheed Martin SERAS, 2016). A 
reference oil that provides 100 percent fluorescence was used 
to calibrate the ROST (Lockheed Martin SERAS, 2016). S2C2, 
Inc. (2016), used a kriging method to spatially interpolate 
the fluorescence results and removed fluorescence emittance 
values if the relative emittance was less than 3 percent. The 
baseline at the site for fluorescence as a percentage of relative 
emittance was assumed to be 3 percent (Lockheed Martin 
SERAS, 2016). According to Lockheed Martin SERAS (2016, 
p. 13), “This value was chosen based on inspection of the 
actual ROST logs as well as based on a visual evaluation of 
kriging results ([that is, less than 3 percent relative emittance], 
boundary conditions become more apparent which is common 
in kriged data sets when a given threshold approaches the 
reporting limit).” Fluorescence values exceeding 3 percent  
relative emittance are assumed to represent some 
concentration of LNAPLs in the soil (fig. 2).
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The plume of groundwater contaminated with benzene 
as described in the technical memorandum on data gap 
investigation (EA Engineering, Science, and Technology, Inc., 
PBC, 2020d), the extent of the LNAPL concentrations from 
the ROST dataset (Lockheed Martin SERAS, 2016), and an 
estimated distribution of sheen or product (EA Engineering, 
Science, and Technology, Inc., PBC, 2021) were used to aid 
in the placement of groundwater monitoring wells installed 
in 2022 at the site for the current study. In this report, the 
term “groundwater monitoring well” refers to a well where 
an open hole is drilled, the open hole is installed with well 
casing and screen interval, the annular space is sealed typically 
with bentonite grout or pellets, and a surface concrete pad is 
installed around the well for the main purpose of monitoring 
groundwater conditions. EA Engineering, Science, and 
Technology, Inc., PBC (2021), estimated the distribution 
of petroleum hydrocarbon sheen and (or) hydrocarbon 
product from temporary monitoring of soil cores and prior 
assessments of soil samples from the alluvial aquifer in the 
Wilcox and Lorraine process areas (fig. 2). The soil-core 
descriptions and depth of refusal data from the ROST cores 
(S2C2, Inc., 2016) and the soil samples (EA Engineering, 
Science, and Technology, Inc., PBC, 2020a) were used along 
with the soil-core descriptions and depth of refusal data 
from the groundwater monitoring wells installed in 2022 to 
help characterize the overburden and depth to bedrock at 
the site. Depth of refusal was defined as the point at which 
the hammer or other tool used to drill the borehole failed to 
advance the borehole as additional blows were applied by the 
tool to the rock being removed (Minnesota Pollution Control 
Agency, 2023).

An extensive list of other historical documents pertaining 
to the site follows:

•	 Preliminary assessment of the Wilcox Oil Company 
(Oklahoma Department of Environmental 
Quality, 1994),

•	 Expanded site investigation report—Wilcox Oil 
Company (Roy F. Weston, Inc., 1997),

•	 Site assessment report for Wilcox Refinery (Ecology 
and Environment, Inc., 1999),

•	 Preliminary assessment of the Lorraine Refinery 
site (Oklahoma Department of Environmental 
Quality, 2008),

•	 Site inspection report of the Lorraine Refinery 
(Oklahoma Department of Environmental 
Quality, 2009),

•	 Expanded site inspection report, Lorraine Refinery 
(Oklahoma Department of Environmental 
Quality, 2010),

•	 Expanded site inspection report, Wilcox Refinery 
(Oklahoma Department of Environmental 
Quality, 2011),

•	 Radiation survey, Wilcox Oil Company Superfund 
site (Oklahoma Department of Environmental 
Quality, 2016),

•	 Surface-water sampling report, Wilcox Oil Company 
site (EPA, 2016),

•	 Removal action report for Wilcox Oil Company 
residence site removal (Weston Solutions, Inc., 2017),

•	 Work plan for investigation of lead contamination at 
the ethyl blending and lead sweetening areas, Wilcox 
Oil Company Superfund site (EPA, 2017a),

•	 Source control record of decision summary, Wilcox Oil 
Company Superfund site (EPA, 2018a), and

•	 Final remedial design report for source control, 
Wilcox Oil Company Superfund site (EA Engineering, 
Science, and Technology, Inc., PBC, 2019).

Data Compilation, Collection, and 
Analysis Methods

Various data were compiled and collected to evaluate the 
aquifer characteristics at the site including the hydrogeologic 
framework, groundwater-flow system, geochemistry, 
and hydraulic properties of the aquifer. A total of 20 new 
groundwater monitoring wells were installed at the site to 
collect data used to supplement groundwater-level altitude 
and groundwater-quality data collected from older, existing 
groundwater monitoring wells and piezometers. In this report, 
the term “piezometer” refers to a well that was installed to be 
a temporary well typically without the annular space being 
sealed and without a surface concrete pad. Compiled historical 
soil-core descriptions and depth of refusal information 
were used in conjunction with collected conductivity logs, 
soil-core descriptions, and surface geophysical data to 
characterize the sediments and their extents in the aquifer. 
Groundwater-level altitude measurements were collected to 
develop potentiometric-surface maps of the site and to identify 
potential groundwater-flow direction. Groundwater-quality 
samples were collected to define the concentration and extent 
of any contaminants and their byproducts and to estimate 
natural attenuation potential. An emphasis was placed on 
understanding the distribution and migration of benzene in 
the alluvial aquifer because previous studies indicated that it 
was one of the predominant VOCs in groundwater at the site. 
Slug tests were completed by the USGS to estimate hydraulic 
conductivity values at each of the newly installed (2022) 
groundwater monitoring wells.
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Compilation and Review of Historical Data

As mentioned in the “Previous Studies” section of this 
report, an extensive amount of investigative work has been 
done at the site, providing an opportunity to compile and 
review historical data for use in this report. A thorough review 
of the previously published reports and data was completed 
to identify pertinent information to aquifer characteristics, 
such as drillers’ descriptions or previously collected surface 
or borehole geophysical data and groundwater-quality data. 
Data were digitized (if not already in digital format) and 
incorporated into the datasets collected for this study (Teeple 
and others, 2025). Datasets that were digitized from the 
previous studies included depth of refusal data from the soil 
cores done for the remedial investigation (EA Engineering, 
Science, and Technology, Inc., PBC, 2020a) and the depth 
of refusal data from the ROST fluorescence logging (S2C2, 
Inc., 2016). Other data that were not digitized but were used 
to compare results included soil-core descriptions, maps, 
and cross sections from the remedial investigation (EA 
Engineering, Science, and Technology, Inc., PBC, 2020a); 
soil, streambed-sediment, and water-quality sampling results 
and maps from the remedial investigation (EA Engineering, 
Science, and Technology, Inc., PBC, 2020a), technical 
memorandum on data gap investigation (EA Engineering, 
Science, and Technology, Inc., PBC, 2020d), and soil 
feasibility study (EA Engineering, Science, and Technology, 
Inc., PBC, 2021); and hydraulic conductivity values collected 
for the technical memorandum on data gap investigation (EA 
Engineering, Science, and Technology, Inc., PBC, 2020d).

Continuous soil cores were collected for the remedial 
investigation (EA Engineering, Science, and Technology, Inc., 
PBC, 2020a) by using direct-push technology (DPT) whereby 
a machine is used to push sampling tools, instruments, and 
sensors into the subsurface without the need for a rotary 
drill to remove the soil (Kejr, Inc., 2023a). Typically, DPT 
machines rely on static weight and percussive energy to help 
advance the tool (Kejr, Inc., 2023a). For most of the soil 
cores at the site using DPT, the soil cores were terminated 
at the depth of refusal as a result of encountering either 
well-lithified sandstones or hard, dense clay or mudstone units 
(EA Engineering, Science, and Technology, Inc., PBC, 2020a). 
These sandstones or mudstone units are generally related to 
the sandstones and mudstones of the Barnsdall Formation 
(Stanley, 2017), and therefore, the depth of refusal is 
interpreted as the depth to the top of the Barnsdall Formation. 
Similarly, the ROST fluorescence data were collected by 
using DPT (S2C2, Inc., 2016). The depths of refusals from the 
continuous soil cores from the remedial investigation and from 
the ROST fluorescence logging were compiled and digitized 
to help interpret the top of bedrock in the Wilcox and Lorraine 
process areas (Teeple and others, 2025). Land-surface altitudes 
were determined from a digital elevation model (DEM) 
for soil-core and ROST fluorescence logging locations by 
using their horizontal coordinates to provide consistency 

and improve accuracy. DEM data were obtained from the 
3D Elevation Program (3DEP) (USGS, 2017) to estimate 
land-surface altitudes across the study area.

Existing groundwater monitoring wells and piezometers 
in the Wilcox and Lorraine process areas were inventoried, 
and pertinent information (such as location, depth, diameter, 
screen interval, and water-level and water-quality data) 
was compiled from wells used in previous studies (fig. 2; 
table 1) (EA Engineering, Science, and Technology, Inc., 
PBC, 2020a, b, c, d, 2021). The depth of refusal data from the 
existing groundwater monitoring wells and piezometers were 
incorporated into the interpretation for the top of bedrock. 
These existing groundwater monitoring wells and piezometers 
were incorporated in the network of groundwater monitoring 
wells installed for this study, and groundwater-level altitude 
measurements and groundwater-quality samples were 
collected in this combined well network; this combined 
network of wells is hereinafter referred to as “wells.”

Groundwater Monitoring Well Installation

Twenty new groundwater monitoring wells were installed 
at the site by the USGS in October 2022 (fig. 2; table 1) by 
using a Geoprobe DPT drilling system (Kejr, Inc., 2023b) 
to collect groundwater-level altitude measurements and 
groundwater-quality samples within the alluvial aquifer, thus 
supplementing the existing data from older wells at the site. 
The new groundwater monitoring wells were all screened 
in the alluvial aquifer to facilitate future monitoring and 
sampling efforts and installed to a depth of 20 ft or the depth 
of refusal, which is explained further in the “Compilation and 
Review of Historical Data” section of this report. The total 
depth of 20 ft was selected because the focus of this study 
was the alluvial aquifer, and the depth to groundwater was 
typically no more than 15 ft; the intent was to have at least a 
5-ft screen interval below the top of the groundwater table. An 
electrical conductivity (EC) log and a soil core were collected 
at each location where a groundwater monitoring well was 
installed to better understand and correlate observations in 
the subsurface and more accurately determine contamination 
zones. The borehole EC logs, soil-core descriptions, and well 
construction information were published in a companion 
data release to this report (Teeple and others, 2025), and the 
borehole EC logs were also archived in the USGS GeoLog 
Locator (USGS, 2024).

Borehole Electrical Conductivity Logging
EC is the relative ability of earth material to transmit a 

current. As discussed in Teeple (2017, p. 6), “The electrical 
properties of soil and rock are determined by water content, 
porosity, clay content, and conductivity (reciprocal of 
electrical resistivity) of the pore water (Lucius and others, 
2007). * * * Electrical changes detected within the subsurface 
also reflect changes that occur within the hydrogeology.” 
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Table 1.  Inventory of groundwater monitoring wells and piezometers in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek 
County, Oklahoma, 2022.

[Data from Teeple and others (2025). USGS, U.S. Geological Survey; ID, identifier; ft, foot; NAVD 88, North American Vertical Datum of 1988; bls, below land surface; ─, no data]

USGS site number
Well ID 
(fig. 2)

Latitude, 
in decimal 

degrees

Longitude, 
in decimal 

degrees

Altitude, 
in ft above 
NAVD 88

Type of well

Installed 
as part 
of this 
study?

Depth of 
refusal,  
in ft bls

Diameter, 
in inches

Depth of 
well,  

in ft bls

Top of 
screen, 
in ft bls

Bottom 
of 

screen, 
in ft bls

355034096231301 MW-01 35.842779 −96.386949 794.3 Monitoring well No ─ 2.0 17.0 7.0 17.0
355029096231202 MW-02 35.841324 −96.386658 793.8 Monitoring well No ─ 2.0 16.0 6.0 16.0
355030096231103 MW-03 35.841863 −96.386477 800.1 Monitoring well No ─ 2.0 12.5 7.5 12.5
355029096230104 MW-04 35.841620 −96.383870 794.1 Monitoring well No ─ 2.0 38.0 18.0 38.0
355025096230705 MW-05 35.840439 −96.385491 786.9 Monitoring well No ─ 2.0 37.0 17.0 37.0
355023096230606 MW-06 35.839826 −96.385082 779.0 Monitoring well No ─ 2.0 50.0 30.0 50.0
355024096230401 PW-01 35.840237 −96.384541 785.6 Piezometer No ─ 11.0 18.0 ─ ─
355023096230401 PW-022 35.839720 −96.384440 785.3 Piezometer No ─ 11.0 117.0 ─ ─
355023096230403 PW-03 35.840030 −96.384613 785.3 Piezometer No ─ 11.0 113.5 ─ ─
355034096231304 PW-04 35.842834 −96.386946 794.0 Piezometer No ─ 11.0 112.0 ─ ─
355030096231201 LPA-GW-01 35.841871 −96.386855 796.0 Piezometer No 14.0 1.0 14.0 4.0 14.0
355030096231102 LPA-GW-02 35.841830 −96.386509 798.6 Piezometer No 15.0 1.0 15.0 5.0 15.0
355030096230903 LPA-GW-03 35.841874 −96.386083 807.4 Piezometer No 15.0 1.0 15.0 5.0 15.0
355024096230801 WPA-GW-01 35.840059 −96.385709 784.5 Piezometer No ─ 1.0 25.0 15.0 25.0

─ WPA-GW-023 35.841235 −96.383898 793.4 Borehole 
(plugged)3 No ─ ─ 24.0 ─ ─

355028096225904 WPA-GW-04 35.841254 −96.383245 792.3 Piezometer No 12.0 1.0 12.0 2.0 12.0
355030096230005 WPA-GW-05 35.841702 −96.383527 792.5 Piezometer No 22.0 1.0 22.0 12.0 22.0
355028096230306 WPA-GW-06 35.841284 −96.384258 793.3 Piezometer No 9.0 1.0 9.0 0.0 9.0
355030096225807 WPA-GW-07 35.841634 −96.382831 794.9 Piezometer No 24.0 1.0 24.0 14.0 24.0
355031096225809 WPA-GW-09 35.842198 −96.382763 797.4 Piezometer No 15.0 1.0 15.0 5.0 15.0
355029096230400 USGS-00 35.841574 −96.384516 799.0 Monitoring well Yes 11.0 1.5 10.0 5.0 10.0
355025096230101 USGS-01 35.840344 −96.383752 788.4 Monitoring well Yes 9.5 1.5 8.5 3.5 8.5
355028096230102 USGS-02 35.841324 −96.383726 790.9 Monitoring well Yes 7.0 1.5 6.0 1.0 6.0
355029096225804 USGS-04 35.841384 −96.382964 792.6 Monitoring well Yes ─ 1.5 20.0 10.0 20.0
355033096230005 USGS-05 35.842594 −96.383513 801.5 Monitoring well Yes 9.5 1.5 9.0 4.0 9.0
355032096230106 USGS-06 35.842312 −96.383809 801.6 Monitoring well Yes 9.5 1.5 9.0 4.0 9.0
355027096230407 USGS-07 35.841125 −96.384558 796.1 Monitoring well Yes 10.0 1.5 9.5 4.5 9.5
355030096230308 USGS-08 35.841959 −96.384190 800.4 Monitoring well Yes 15.0 1.5 15.0 5.0 15.0
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Table 1.  Inventory of groundwater monitoring wells and piezometers in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek 
County, Oklahoma, 2022.—Continued

[Data from Teeple and others (2025). USGS, U.S. Geological Survey; ID, identifier; ft, foot; NAVD 88, North American Vertical Datum of 1988; bls, below land surface; ─, no data]

USGS site number
Well ID 
(fig. 2)

Latitude, 
in decimal 

degrees

Longitude, 
in decimal 

degrees

Altitude, 
in ft above 
NAVD 88

Type of well

Installed 
as part 
of this 
study?

Depth of 
refusal,  
in ft bls

Diameter, 
in inches

Depth of 
well,  

in ft bls

Top of 
screen, 
in ft bls

Bottom 
of 

screen, 
in ft bls

355029096230709 USGS-09 35.841552 −96.385408 795.6 Monitoring well Yes 14.0 1.5 12.5 7.5 12.5
355023096230710 USGS-10 35.839995 −96.385506 785.2 Monitoring well Yes ─ 1.5 20.0 10.0 20.0
355030096231311 USGS-11 35.841827 −96.386954 795.0 Monitoring well Yes 13.0 1.5 10.0 5.0 10.0
355029096231112 USGS-12 35.841636 −96.386664 795.7 Monitoring well Yes 13.0 1.5 12.0 2.0 12.0
355031096231313 USGS-13 35.842181 −96.386845 800.5 Monitoring well Yes 11.0 1.5 10.5 5.5 10.5
355033096231114 USGS-14 35.842786 −96.386600 797.9 Monitoring well Yes 19.0 1.5 19.0 4.0 19.0
355032096231115 USGS-15 35.842296 −96.386397 807.7 Monitoring well Yes 10.0 1.5 10.0 5.0 10.0
355031096225916 USGS-16 35.842078 −96.383539 796.2 Monitoring well Yes ─ 1.5 20.0 5.0 20.0
355025096230617 USGS-17 35.840295 −96.385037 787.7 Monitoring well Yes ─ 1.5 20.0 10.0 20.0
355029096225718 USGS-18 35.841621 −96.382605 796.6 Monitoring well Yes 9.0 1.5 9.0 4.0 9.0
355034096231119 USGS-19 35.843136 −96.386538 802.6 Monitoring well Yes 19.0 1.5 18.0 3.0 18.0
355022096225823 USGS-23 35.839404 −96.382724 783.9 Monitoring well Yes ─ 1.5 20.0 10.0 20.0

1Diameter and depth of well were not reported in published reports and were measured in the field.
2Piezometer was located on site and sampled. Location of well does not directly match with published reports, but there were two piezometers nearby that may correlate with this piezometer: TF-34-DISCH 

and TF-34-01 (Lockheed Martin Scientific, Engineering, Response and Analytical Services, 2016); TF-34-DISCH is the more likely piezometer.
3WPA-GW-02 is a borehole that was never screened or completed as a well; a groundwater sample was collected from this borehole before it was plugged.
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Prior to installing a groundwater monitoring well at a 
given location, a borehole EC log was collected using a 
1.5-in.-diameter Geoprobe EC sensor (Kejr, Inc., 2023c). The 
sensor is at the tip of the DPT drive-head device and uses 
an array of four electrodes (two transmitter [Tx] electrodes 
and two receiver [Rx] electrodes) to measure EC of the soil 
in millisiemens per meter as it is pushed into the subsurface 
(fig. 5A) (Teeple, 2017). A known current was transmitted into 
the subsurface through the Tx electrodes, and the resulting 
electrical potential was measured as a voltage change between 
the two Rx electrodes (Teeple, 2017). Using the known 
current, the measured voltage values, and the geometric factor 
dependent on the array, a conductivity value was calculated 
by using Ohm’s law (fig. 5B) (Teeple, 2017). For this study, 
EC values were typically lower in coarse-grained sediments 
such as sand or gravel than in fine-grained sediments such 
as clay and silt or sediment contaminated with previously 

refined or stored products at the site. Data were not collected 
or were unusable because of issues with the EC probe at wells 
USGS-12, USGS-19, and USGS-23.

Collecting Soil Cores
Directly adjacent to the EC borehole, a 1.5-in.-diameter 

soil core was collected to the same depth, if possible. The 
variability of consolidated sediments resulted in varying 
depths of penetration even if the tool was moved just a few 
feet; depths typically varied between the EC borehole and 
adjacent soil core by about 0.5 to 1 ft, but greater differences 
sometimes occurred. The soil core was segmented into 
lithologic units wherein each segment that was discernable 
from the unit above and below was individually described 
for color, grain size, and sorting by using field charts 
based on methods outlined in Wentworth (1922), Shepard 
(1954), Compton (1962), Schlee (1973), Folk (1980), 
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1Sand and gravel—Gravel less than 50 percent and equal to or greater than 10 percent 
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is greater than silt, and silt less than 20 percent.
3Silty clay—Clay less than 75 percent and equal to or greater than 50 percent, silt is 
greater than sand, and sand less than 20 percent.
4Clayey silt—Silt less than 75 percent and equal to or greater than 50 percent, clay 
is greater than sand, and sand less than 20 percent.
5Silt and clay—Silt and clay have equal percentages and sand less than 20 percent.
Source: Shepard (1954); Schlee (1973); Poppe and others (2005).

Figure 5.  (A) The direct-push electrical conductivity method (modified from Teeple, 2017). (B) Example of the electrical conductivity 
and resistivity from borehole electrical conductivity logging at the Wilcox Oil Company Superfund site near Bristow, Creek County, 
Oklahoma, October 2022.



16    Hydrogeologic Framework, Groundwater-Flow System, Geochemistry, and Aquifer Properties, Wilcox Oil Co. Superfund Site

Munsell Color Co., Inc. (1992), and Poppe and others 
(2005). The soil-core descriptions were made onsite and then 
later digitized to a machine-readable text file (Teeple and 
others, 2025).

A photoionization detector (PID) was used to monitor 
the presence of VOCs during groundwater monitoring well 
installation. VOC off-gassing was monitored throughout 
the drilling and soil-core description processes. The VOC 
concentration values detected were used to determine 
the severity of contamination at each location where a 
groundwater monitoring well was installed at the site. The 
PID was used only to detect general VOCs, so the presence 
of specific VOCs was not determined during groundwater 
monitoring well installation. The VOC concentration and 
saturation were noted in the soil-core description (Teeple 
and others, 2025). Once a groundwater monitoring well 
was installed, the soil core was disposed of properly, as it 
contained contaminants from the subsurface alluvium.

Groundwater Monitoring Well Completion
After collecting the soil core, the Geoprobe DPT drilling 

system was used to install the groundwater monitoring well; 
each groundwater monitoring well was installed by directly 
pushing a 3.25-in.-outer-diameter rod with an expendable 
point down the same hole where the soil core was collected. 
After reaching the desired depth, the prepacked screens (Kejr, 
Inc., 2023d) and 1.5-in. polyvinyl chloride (PVC) risers were 
placed inside the 3.25-in. rod, with the screens placed at an 
optimal depth for groundwater sampling. The prepacked 
screens were made of slotted PVC wrapped in sand and 
stainless-steel mesh (Kejr, Inc., 2023d). The outer diameter 
of the screens was 2.5 in. with an inner diameter of 1.5 in. 
(Kejr, Inc., 2023d). The prepacked screens were secured in the 
borehole with 20/40 mesh sand (more than 90 percent of the 
sand grains by weight are between 0.85 and 0.425 millimeter) 
(Zheng and Tannant, 2016). Annular sealing was completed 
by using sodium bentonite pellets (0.25- to 0.75-in. size) 
starting from about 0.5 ft above the top of the screen to about 
2 ft below land surface. The surface seal was completed with 
concrete from land surface to a depth of about 2 ft below 
land surface. Well construction information was noted in the 
field and then later digitized to a machine-readable text file 
(Teeple and others, 2025). Each groundwater monitoring well 
was geospatially referenced with coordinates collected from a 
real-time kinematic (RTK) Global Positioning System (GPS) 
receiver.

Development of the Top of Bedrock Surface
The depth of refusal from the soil cores for the remedial 

investigation, the ROST fluorescence logging, and the 
groundwater monitoring wells installed in 2022 (Teeple and 
others, 2025) were used to create a top of bedrock surface 
grid. Depth of refusal data were converted to refusal altitudes 

by subtracting the depths from the 3DEP DEM. The top 
of bedrock surface grid was created by using Oasis montaj 
(Seequent, 2025). A kriging method featuring “trend removal” 
(elimination of spatial data artifacts) is included in Oasis 
montaj (Seequent, 2020). There are different variogram 
parameters and models to choose from in the Oasis montaj 
software; the default kriging parameters for an exponential 
variogram model were used (Seequent, 2020). The grid cell 
size used was a horizontal grid spacing of 5 by 5 meters (m). 
The top of bedrock grids were iteratively compared to the 
refusal altitudes to evaluate outliers and grid accuracy and 
identify clustered data. All outlier locations were evaluated 
through a correlation process to determine data-point 
uncertainty. The correlation process involved the comparison 
of refusal altitudes between the given site and nearby sites. 
Throughout the process, all refusal altitudes were reviewed 
and revised as needed to provide the best possible final 
representation of the top of bedrock.

Surface Geophysical Data Collection

Surface geophysical resistivity methods have been used 
extensively by Teeple (2017) and Teeple and others (2009a, 
b, c, 2021) for site characterization and hydrogeologic 
framework development, and the methods used herein 
and their detailed descriptions are adapted from those 
reports, especially when discussing the frequency domain 
electromagnetic (FDEM) (Teeple and others, 2009c; Teeple, 
2017) and electrical resistivity tomography (ERT) (Teeple and 
others, 2009a, b, c; Teeple, 2017) methods and the integration 
of geophysical data from multiple methods (Teeple, 2017). 
Similar to the borehole EC logging done during groundwater 
monitoring well installation, surface geophysical resistivity 
methods can be used to detect spatial changes in the electrical 
properties of the subsurface (Zohdy and others, 1974); 
electrical changes detected within the subsurface can reflect 
changes that occur within the hydrogeology. Geophysical 
methods (which are relatively noninvasive) are therefore 
valuable for interpreting hydrogeologic characteristics in 
areas between wells, where typically little to no information 
is available. FDEM and ERT methods were used at the 
site to investigate the characteristics of the alluvial aquifer. 
Resistivity measurements from these methods were published 
in a companion data release (Teeple and others, 2025) and 
were merged with the resistivity measurements (inverse of 
conductivity) from the borehole EC logging to construct 
two-dimensional (2D) and three-dimensional (3D) grids of the 
spatial distribution of electrical properties of the subsurface, 
which were then used to describe variations in the subsurface 
hydrogeology. Comprehensive descriptions of the theory 
and application of geophysical resistivity methods, as well 
as tables of the electrical properties of earth materials, are 
presented in Keller and Frischknecht (1966) and Lucius and 
others (2007) and are not presented in this report.
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Frequency Domain Electromagnetics
The FDEM method uses multiple frequencies to measure 

bulk conductivity values of the subsurface at different depths. 
These measurements are made by producing an alternating 
electrical current in a Tx coil at a known frequency (fig. 6) 
(Lucius and others, 2007). This time-varying electrical current 
produces a primary magnetic field. The primary magnetic field 
propagates into the subsurface, where it induces electrical 
currents that are proportional to the EC of the material. These 
electrical currents, in turn, produce a secondary magnetic 
field that propagates back to the surface, thereby inducing a 
current in the Rx coil; the magnitudes of the primary magnetic 
field and secondary magnetic field are measured by using 
the Rx coil (fig. 6). In-phase and quadrature responses are 
calculated as the ratio of the magnitudes of the secondary to 
the primary magnetic field. In-phase responses are the portion 
of the secondary magnetic field that matches the phase of the 
primary magnetic field, whereas quadrature responses are the 
portion of the secondary magnetic field that are 90 degrees 
out of phase with the primary magnetic field (Keller and 
Frischknecht, 1966). Both the in-phase and quadrature 
responses are then used to calculate the apparent resistivity of 
the subsurface. Apparent resistivity represents the resistivity 
of completely uniform (homogeneous and isotropic) earth 
material (Keller and Frischknecht, 1966).

In January and August 2022, a hand-held GEM-2 
electromagnetic sensor was used to collect FDEM sounding 
data representing 15 frequencies (810; 1,110; 1,530; 2,070; 
2,850; 3,930; 5,370; 7,290; 9,990; 13,710; 18,810; 25,710; 
35,250; 48,270; and 66,090 hertz [Hz]) at the site along 
with 60-Hz FDEM sounding data as quality control to aid 
in identifying areas that may be affected by nearby power 
lines (Geophex, Ltd., 2024) (fig. 7). The GEM-2 sensor is 
a broadband, multifrequency, fixed-coil electromagnetic 
induction unit that can collect multiple frequencies 
simultaneously, and the deployment of this unit is relatively 
quick (a tool typically carried or mobilized on wheels during 
collection) (Geophex, Ltd., 2024). FDEM soundings were 

collected at the default interval of 1 Hz while the instrument 
was held approximately 3 ft above land surface. A Trimble 
DSM 232 GPS receiver (Trimble Inc., 2006) was used to 
georeference each FDEM sounding with a spatial coordinate. 
A detailed discussion of the GEM-2 and FDEM data theory is 
provided in Geophex, Ltd. (2024).

Over the course of collecting measurements with the 
GEM-2 sensor, the instrument has the potential for drift 
because of battery voltage depletion or temperature variations 
(Abraham and others, 2006). To account for drift correction, 
FDEM leveling stations (fig. 7) were established and occupied 
at the beginning, end, and regularly throughout the survey to 
compare static measurements over time to a single reference 
measurement. This loop-closure technique was adapted from 
the methods discussed in Abraham and others (2006). In 
January, a reconnaissance FDEM dataset was collected prior to 
the start of the study to test the feasibility of the method at the 
site. Leveling stations were not established for this feasibility 
dataset; therefore, a drift correction was not applied. It was 
observed that the changes (if any) from drift in that dataset 
were negligible and had a minimal impact on the final results.

The raw in-phase and quadrature responses of the 
FDEM data were reviewed to remove any data values that 
deviated excessively from surrounding values because of 
electromagnetic noise. First, a factor of 1.25 times the central 
tendency of the entire dataset was used to remove sequential 
outliers consisting of five values or less. Any values that were 
identified as outliers were replaced with a value representing 
the central tendency. The next step was to remove any 
remaining outliers by analyzing sequential runs of 11 data 
values. For this step, a trimmed mean was computed for each 
sequential run of 11 data values; the trimmed mean removed 
the highest and lowest 5 percent (totaling 10 percent) of 
the in-phase and quadrature response values before a mean 
was computed. After this processing of the raw data was 
completed, a drift correction was applied by using a linear 
correction calculated from the difference between static 
measurements of the in-phase and quadrature responses at the 
leveling stations. The three lowest frequencies (810; 1,110; 
and 1,530 Hz) were determined to be too “noisy” or variable 
to obtain any usable data for interpretation, so all data from 
these three lowest frequencies were removed from the dataset 
prior to any further processing. Examples of the raw and 
processed in-phase and quadrature responses are provided 
(fig. 8).

Because the GEM-2 sensor only records relative 
changes in apparent resistivity, the data required calibration 
to reference the “true” electrical response of earth material. 
The “true” in-phase and quadrature responses were calculated 
from the layered-earth resistivity model obtained from the 
ERT data described in the “Electrical Resistivity Tomography” 
section of this report. The depth and resistivity values from 
the final layered-earth model were used to back-calculate the 
in-phase and quadrature responses for the frequencies used 
by the GEM-2 sensor during FDEM data collection. The 
filtered and drift-corrected in-phase (fig. 8C) and quadrature 
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Figure 6.  The frequency domain electromagnetic method 
(modified from Teeple and others, 2009c; Teeple, 2017).
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Figure 7.  Locations where frequency domain electromagnetic and electrical resistivity tomography profile data were collected 
and leveling station locations in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, 
Creek County, Oklahoma, January and August 2022.
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(E) inverse modeling results of the processed frequency domain electromagnetic data collected in the Wilcox and Lorraine process 
areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, August 2022.
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(fig. 8D) values obtained by using the GEM-2 sensor were 
shifted to match the in-phase and quadrature responses from 
the layered-earth resistivity model results. In this manner, the 
relative changes in apparent resistivity measured by using 
the GEM-2 sensor were calibrated to the modeled (best-fit) 
electrical response of earth material. Apparent resistivity 
values were calculated for each frequency of the FDEM data 
by using these calibrated in-phase and quadrature responses. 
Further explanation of how apparent resistivity values are 
calculated from the in-phase and quadrature responses is 
provided by Huang and Won (2000).

Inverse modeling is the process of estimating the spatial 
distribution of subsurface resistivity from the measured 
in-phase and quadrature responses. The WinGEMv3 inversion 
program, developed by Geophex, Ltd. (2024), was used for 
inverse modeling of the FDEM soundings. Ten-layered models 
with initial thicknesses increasing with depth (resulting in a 
total depth of about 10.0 m) and initial resistivity values of 
100 ohm-meters (ohm-m) were used as the starting models 
for the inversion process. The inversion program determines 
the calculated system response of these ten-layered models—
the calculated apparent resistivities—as they are updated. 
The inversion program attempts to replicate the field data 
by altering the simulated thickness (depth) and resistivity 
values and recalculating the apparent resistivities in a series 
of iterations. The final models represent nonunique estimates 
of the true distribution of subsurface resistivity (fig. 8E). The 
final models were evaluated for anomalous resistivity values, 
and these values were removed from the dataset prior to the 
final interpretation (fig. 8E).

Electrical Resistivity Tomography
The ERT method uses an array of four electrodes (two Tx 

electrodes and two Rx electrodes) implanted into the ground 
to measure the bulk resistivity of the subsurface for a given 
point on the Earth’s surface (fig. 9). A known current was 
transmitted into the subsurface through the Tx electrodes, and 
the resulting electrical potential was measured as a voltage 
change between the two Rx electrodes. By increasing the 
distance between electrodes, the Tx current flows deeper 
into the subsurface, with the resulting voltage potential 
measured at the Rx electrodes representative of bulk electrical 
characteristics at greater depth. Using the known current and 
the measured voltage values, a resistance (the relative ability 
of earth material to transmit a current) was calculated by using 
Ohm’s law. The apparent resistivity of the subsurface was 
obtained by multiplying the resistance by a geometric factor 
dependent on the array geometry (Zohdy and others, 1974). 
A description of the ERT method and tables of the electrical 
properties of earth materials can be found in Zohdy and others 
(1974), Sumner (1976), Sharma (1997), Fitterman and Labson 
(2005), and Lucius and others (2007).

In August 2022, an IRIS Syscal Pro (IRIS Instruments, 
Orléans, France) 96-electrode unit resistivity meter was used 
to collect resistivity data from a reciprocal Schlumberger array 

(Tx electrodes located between Rx electrodes in a straight 
line), a Schlumberger array (Rx electrodes located between 
Tx electrodes in a straight line), and a forward and reverse 
dipole-dipole array (a Tx pair followed by an Rx pair in a 
straight line) (Zohdy and others, 1974). Two ERT profiles 
with electrodes spaced every 2 m were collected at the site: 
one in the Wilcox process area that was 192 m in length and 
one in the Lorraine process area that was 144 m in length. 
Each electrode was geospatially referenced with coordinates 
collected from an RTK GPS receiver. More discussion on ERT 
surveying and array configurations can be found in Burton and 
others (2014).

The raw data were imported into Prosys II software 
(IRIS Instruments, Orléans, France) (fig. 10A). The 
apparent resistivity values for each of the arrays were 
visually compared among each other as a quality check for 
reproducibility of the measurement. Although noisy (highly 
variable) data were measured at the site, all of the arrays 
showed similar results. The topography for the ERT profiles 
was input into the arrays, and each of the arrays was filtered 
to remove any excess noise. The induced current, measured 
voltage, and calculated apparent resistivity values were 
evaluated if they were within reasonable ranges, removing 
outliers, if necessary; induced currents between 240 and 
900 milliamps, measured voltages of less than 0 millivolts (for 
dipole-dipole arrays only), and calculated apparent resistivity 
values between 0 and 500 ohm-m were retained. Anomalous 
points were further removed by using the automatic removal 
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Figure 9.  The electrical resistivity tomography method 
(modified from Teeple, 2017).
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options within the software, which rejects points that do not 
match the general trend. To help further reduce noise in the 
ERT profiles, all of the arrays were combined into an apparent 
resistivity profile, and an automatic filtering was done by the 
software on the combined dataset for each profile (fig. 10B).

The filtered apparent resistivity data (fig. 10B) were 
processed and inverted with topographic data by using the 
finite-element method with least-squares estimation using 
RES2DINVx64 version 4.10.3 (Aarhus Geosoftware, 
Denmark). A 2D model consisting of multiple rectangular 
blocks, each assigned a centered resistivity value, was used 
by the program to determine electrical resistivity values 
for a nonuniform subsurface (Ball and others, 2006). The 
mean value of all apparent resistivities in the input data was 
selected as the starting apparent resistivity value for all model 
blocks. The inversion program determines the calculated 
system response of this 2D model—the calculated apparent 
resistivities—as the apparent resistivity values are updated. 

The inversion process iteratively calculates the system 
response to the numerical model of the subsurface distribution 
of resistivity with depth. The accuracy of the model is 
determined by comparing the absolute difference between the 
calculated model results with the measured data. The final 2D 
model represents a nonunique estimate of the true distribution 
of subsurface resistivity (fig. 10C). The inverse modeling 
process is described in detail by Loke (2004) and Advanced 
Geosciences, Inc. (2009).

Three-Dimensional Resistivity Grid Development
Land-surface altitudes were determined from the 3DEP 

DEM for all FDEM sounding locations and ERT electrode 
locations by using their horizontal coordinates to provide 
consistency and improve accuracy. Because of the similar 
depth and resistivity response by the borehole EC logging, 
FDEM soundings, and ERT profiles, the data were gridded 
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Figure 10.  Examples of (A) raw and (B) filtered apparent resistivity data and (C) inverse modeling results for electrical 
resistivity tomography profile data collected in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund 
site near Bristow, Creek County, Oklahoma, August 2022.
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together into a 3D grid by using Oasis montaj (Seequent, 
2025) and the 3D-kriging method using the default kriging 
parameters for an exponential variogram model and a 
horizontal weighting factor of eight horizontal grid cells to one 
vertical grid cell (Seequent, 2020). The grid cell size used was 
a horizontal grid spacing of 5 by 5 m and a vertical spacing 
of 0.5 ft. For viewing on surface maps, 2D grids can be 
extracted from the 3D grid. The resistivity grid was iteratively 
compared to the inverse modeling results to evaluate outliers, 
grid accuracy, and clustered data. All outlier locations 
were evaluated through a correlation process to determine 
data-point uncertainty. The correlation process involved 
the comparison of gridded resistivity values to the inverse 
modeling results. Throughout the process, all resistivity values 
were reviewed and revised as needed to provide the best 
possible final representation of the inverse modeling results. 
The results from this 3D grid were compared to previously and 
newly collected subsurface data at the site.

Groundwater-Level Altitude Measurements

Prior to collecting groundwater-quality samples or 
slug tests, groundwater-level altitudes were measured 
at each well by following USGS methods described in 
Cunningham and Schalk (2011) (table 2). Electric tapes 
were used for all groundwater-level altitude measurements. 
Potentiometric-surface maps were created from the 
groundwater-level altitude data collected prior to collection of 
groundwater-quality samples during October–November 2022 
to help assess spatial changes in groundwater-level altitudes 
across the study area (table 2). The groundwater-level altitude 
dataset collected prior to groundwater-quality sampling was 
used to develop the potentiometric-surface maps because it 
contained measurements from more wells compared to the 
groundwater-level altitude dataset collected prior to the slug 
tests; groundwater-level altitudes for the slug tests were only 
measured for the groundwater monitoring wells installed in 
2022. Measured depths to the water table were converted to 
groundwater-level altitudes by subtracting the depths to the 
water table from the land-surface altitude at the well in feet 
above the North American Vertical Datum of 1988 (NAVD 88) 
(table 2). The potentiometric-surface grid was created by using 
a gridding method implemented in Oasis montaj (Seequent, 
2025) referred to as the minimum curvature method (Webring, 
1981; Seequent, 2020). The default gridding parameters 
included in Oasis montaj were used except tighter constraints 
were used on the acceptable difference between gridded and 
measured values in order to force more iterations, along 
with tighter constraints on the number of gridded values 
that meet this deviation requirement (Seequent, 2020). The 
maximum number of iterations for the gridding algorithm to 
converge to a solution was also increased (Seequent, 2020). 
The grid cell size used was a horizontal grid spacing of 15 by 
15 m. All groundwater-level altitudes and the resulting grid 
were reviewed for the best possible final representation of 

the potentiometric surface. The groundwater-level altitude 
measurements for this study are available in a companion data 
release (Teeple and others, 2025).

Groundwater-Quality Sampling

Groundwater-quality samples were collected from 
33 wells during October–November 2022 (table 2). Of the 
existing wells at the site (table 1), six wells could not be 
sampled because those wells were dry or contained insufficient 
water. Samples were collected and shipped for laboratory 
analysis of VOCs, SVOCs, trace elements (including metals), 
major ions, natural attenuation parameters, and natural 
attenuation biomarkers. Sample collection and analysis 
methods and the quality-assurance and quality-control 
procedures used to collect, analyze, and verify the data are 
outlined in this section of the report.

Sample Collection and Analysis
Groundwater-quality samples were collected by 

following protocols for low-flow groundwater sampling (Puls 
and Barcelona, 1996). Samples were collected by using a 
peristaltic pump with dedicated polytetrafluoroethylene-lined 
tubing. Wells were purged of groundwater within the well 
column to ensure that groundwater being sampled was 
representative of the aquifer. During well purging, field 
properties (DO concentration, ORP, pH, specific conductance, 
groundwater temperature, and turbidity) were measured and 
recorded with an In-Situ AquaTroll 600 multiparameter sonde 
(In-Situ Inc., 2023a) and a Hach 2100Q portable turbidity 
meter (Hach, 2023). Because the turbidity values in the in-situ 
water in some wells were higher than the operational range 
of the Hach turbidity meter, turbidity was measured with the 
AquaTroll 600 multiparameter sonde at those wells. A well 
was considered stable and the purging of the well ceased when 
the field properties were within the criteria established in Puls 
and Barcelona (1996) for three consecutive measurements. 
Because of low recharge rates, some wells were completely 
dewatered during stabilization of field properties or during 
sample collection. At wells PW-01, PW-02, WPA-GW-04, 
WPA-GW-06, USGS-01, USGS-06, USGS-07, and USGS-18, 
(fig. 2; table 3), there was not enough groundwater volume 
available to obtain more than three consecutive stabilizations 
of field-property readings. If a well was dewatered during 
purging or sampling, the well was left to recharge overnight, 
and sampling was continued the following day, when possible, 
without recording field properties. Because these wells had 
already been pumped dry, any recharge was presumed to be 
representative of the aquifer. Sample dates and times for each 
groundwater-quality constituent group collected are available 
in Teeple and others (2025).

USGS standard protocols, as described in the “National 
Field Manual for the Collection of Water-Quality Data” 
(USGS, variously dated), were followed for decontaminating 
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Table 2.  Groundwater-level altitudes measured at each groundwater monitoring well or piezometer screened in the alluvial aquifer 
prior to collecting groundwater-quality samples or slug tests in the Wilcox and Lorraine process areas of the Wilcox Oil Company 
Superfund site near Bristow, Creek County, Oklahoma, October–December 2022.

[Data from Teeple and others (2025). ID, identifier; ft, foot; NAVD 88, North American Vertical Datum of 1988; WL, groundwater-level; QW, 
groundwater-quality; bls, below land surface; ─, no data. Dates are in month/day/year format]

Well ID 
(fig. 2)

Altitude, 
in ft above 
NAVD 88

Date of WL  
measurement 
prior to QW 

sampling

Depth of  
groundwater 
prior to QW 
sampling,  

in ft bls

WL altitude 
prior to QW 
sampling,  
in ft above 
NAVD 88

Date of WL  
measurement 

prior to slug test

Depth of 
water prior 
to slug test,  

in ft bls

WL altitude 
prior to  

slug test,  
in ft above 
NAVD 88

MW-01 794.3 10/10/2022 6.96 787.3 ─ ─ ─
MW-02 793.8 10/12/2022 115.94 1777.9 ─ ─ ─
MW-03 800.1 10/10/2022 10.36 789.7 ─ ─ ─
MW-04 794.1 10/11/2022 14.34 779.8 ─ ─ ─
MW-05 786.9 10/12/2022 11.35 775.6 ─ ─ ─
MW-06 779.0 10/13/2022 11.29 767.7 ─ ─ ─
PW-01 785.6 10/13/2022 3.84 781.8 ─ ─ ─
PW-02 785.3 11/1/2022 9.73 775.6 ─ ─ ─
PW-03 785.3 10/13/2022 4.30 781.0 ─ ─ ─
PW-04 794.0 10/10/2022 6.01 788.0 ─ ─ ─

LPA-GW-01 796.0 10/31/2022 6.50 789.5 ─ ─ ─
LPA-GW-02 798.6 10/31/2022 ─2 ─2 ─ ─ ─
LPA-GW-03 807.4 ─ Dry ─ ─ ─ ─
WPA-GW-01 784.5 10/12/2022 13.06 771.4 ─ ─ ─
WPA-GW-04 792.3 10/11/2022 10.89 781.4 ─ ─ ─
WPA-GW-05 792.5 10/11/2022 11.80 780.7 ─ ─ ─
WPA-GW-06 793.3 10/31/2022 5.68 787.6 ─ ─ ─
WPA-GW-07 794.9 10/11/2022 11.85 783.1 ─ ─ ─
WPA-GW-09 797.4 10/12/2022 12.59 784.8 ─ ─ ─

USGS-00 799.0 ─ Dry ─ 11/18/2022 Dry ─
USGS-01 788.4 11/2/2022 7.60 780.8 11/10/2022 Dry ─
USGS-02 790.9 10/31/2022 4.57 786.3 11/18/2022 4.66 786.2
USGS-04 792.6 11/1/2022 12.31 780.3 11/10/2022 11.34 781.3
USGS-05 801.5 ─ Dry ─ 11/8/2022 Dry ─
USGS-06 801.6 11/1/2022 18.84 1792.8 11/8/2022 Dry ─
USGS-07 796.1 10/31/2022 8.39 787.7 11/18/2022 Dry ─
USGS-08 800.4 10/31/2022 12.77 787.6 11/18/2022 13.39 787.0
USGS-09 795.6 ─ Dry ─ 11/18/2022 Dry ─
USGS-10 785.2 10/31/2022 16.08 769.1 11/10/2022 17.22 768.0
USGS-11 795.0 10/11/2022 7.45 787.6 12/8/2022 7.75 787.3
USGS-12 795.7 10/10/2022 7.74 788.0 12/8/2022 8.48 787.2
USGS-13 800.5 10/11/2022 6.24 794.3 12/8/2022 4.60 795.9
USGS-14 797.9 10/10/2022 8.22 789.7 12/8/2022 7.05 790.9
USGS-15 807.7 10/11/2022 Dry ─ 12/8/2022 9.87 797.8
USGS-16 796.2 11/3/2022 6.90 789.3 11/18/2022 7.61 788.6
USGS-17 787.7 10/31/2022 15.47 772.2 11/10/2022 17.14 770.6
USGS-18 796.6 11/2/2022 8.65 788.0 11/10/2022 8.78 787.8
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equipment and collecting and processing groundwater 
samples except as noted in this section. Because of slow 
recharge rates, the groundwater-quality properties sampled at 
each well were dependent on the volume of water available 
in a given well. Because of these limitations, the order 
of sample collection was modified from standard USGS 
sampling protocols to ensure that samples for prioritized 
groundwater-quality properties were collected first. Samples 
were collected in the following order: microbial community 
samples, VOCs, SVOCs, trace elements, methane (because of 
its lower photochemical reactivity compared to other VOCs, 
methane is treated separately), and major ions, including 
nitrate, nitrite, and sulfate (the major ions analyzed at the 
site that will be discussed in this report). If a sample for a 
specific groundwater-quality constituent could not be collected 
because of volume limitations, a sample requiring less volume 
for the next group on the priority list was collected. When 
possible, Vacu-vials test kits (CHEMetrics, 2023) were used 
in the field to measure ferrous iron and sulfide concentrations. 
Groundwater-quality constituents measured at each well are 
summarized in table 3.

Groundwater-quality samples for VOCs, SVOCs, and 
trace elements were preserved, chilled on ice, and shipped 
within 24 hours to the EPA Region 6 Houston Laboratory 
in Houston, Texas, for analysis. Methods for the analysis of 
VOCs, SVOCs, and trace elements are documented in a series 
of EPA reports (EPA, 2014, 2017b, 2018b, 2018c). Samples 
for major ions (including nitrate, nitrite, and sulfate) were 
filtered by using a 0.45-micron pore size filter, chilled on ice, 
and shipped within 24 hours to the USGS National Water 
Quality Laboratory in Lakewood, Colorado, for analysis. 
Methods for the analysis of major ions are documented in 
Fishman and Friedman (1989) and Patton and Kryskalla 
(2011). Samples for methane were chilled on ice and 
submitted at the end of each sampling week to the SGS North 
America, Inc., laboratory in Orlando, Florida. Methods for 
the analysis of methane are documented in Hudson (2004). 

Samples for microbial community analysis were frozen and 
shipped to Microbiome Insights, Inc., in Vancouver, British 
Columbia, Canada, for sequencing of the 16S ribosomal 
ribonucleic acid (16S rRNA) gene to obtain abundance 
estimates of the microbial community. Community sequence 
data were processed by the Microbiome Insights, Inc., 
laboratory by using an Illumina MiSeq sequencing platform 
(Kozich and others, 2013) and the mothur software package 
(Schloss and others, 2009). Classification was completed using 
the SILVA 138 reference database (Quast and others, 2012).

Quality-Assurance and Quality-Control 
Procedures

To evaluate the variability of sample processing and 
analysis in groundwater-quality constituents, data from 
field-replicate samples were considered. A total of three 
replicate samples were collected and analyzed for VOCs 
and SVOCs, and two replicate samples were collected and 
analyzed for trace elements. Replicate samples were only used 
to assess variability when results were greater than or equal 
to the method detection limit. Data from the quality-control 
samples are available in Teeple and others (2025). To 
determine variability in environmental samples, the relative 
percent difference (RPD) between each pair of replicate 
samples was calculated by using the following equation:

	​ RPD= ​ 
​|​C​ 1​​ − ​C​ 2​​|​ _ 

​(​
​C​ 1​​ + ​C​ 2​​ _ 2 ​)​

​​	

where
	 C1	 is the constituent concentration in the 

environmental sample, and

	 C2	 is the constituent concentration in the 
replicate sample.

Table 2.  Groundwater-level altitudes measured at each groundwater monitoring well or piezometer screened in the alluvial aquifer 
prior to collecting groundwater-quality samples or slug tests in the Wilcox and Lorraine process areas of the Wilcox Oil Company 
Superfund site near Bristow, Creek County, Oklahoma, October–December 2022.—Continued

[Data from Teeple and others (2025). ID, identifier; ft, foot; NAVD 88, North American Vertical Datum of 1988; WL, groundwater-level; QW, 
groundwater-quality; bls, below land surface; ─, no data. Dates are in month/day/year format]

Well ID 
(fig. 2)

Altitude, 
in ft above 
NAVD 88

Date of WL  
measurement 
prior to QW 

sampling

Depth of  
groundwater 
prior to QW 
sampling,  

in ft bls

WL altitude 
prior to QW 
sampling,  
in ft above 
NAVD 88

Date of WL  
measurement 

prior to slug test

Depth of 
water prior 
to slug test,  

in ft bls

WL altitude 
prior to  

slug test,  
in ft above 
NAVD 88

USGS-19 802.6 11/2/2022 9.11 793.5 11/18/2022 6.97 795.6
USGS-23 783.9 11/2/2022 10.84 773.1 11/10/2022 8.10 775.8

1Water was observed on the end of the electric-tape probe but was not enough to trigger the sensor. This groundwater-level altitude measurement is an 
estimate.

2Groundwater level could not be measured because the well casing was bent, thereby preventing access for the electric tape.
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Table 3.  Selected water-quality properties measured in the samples collected from each groundwater monitoring well or piezometer 
in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, October–
November 2022.

[Data from Teeple and others (2025). ID, identifier; VOC, volatile organic compound; SVOC, semivolatile organic compound; ORP, oxygen-reduction potential; 
DO, dissolved oxygen; SC, specific conductance; X, sample collected; ─, not sampled]

Well ID 
(fig. 2)

Laboratory analysis Field measurement

VOCs SVOCs
Trace  

elements

Nitrate 
and 

nitrite
Sulfate Methane

Microbial 
community

Stabilization 
field  

properties  
(pH, ORP,  
DO, SC,  

temperature,  
and turbidity)

Ferrous 
iron

Sulfide

MW-01 X X X X X X X X X X
MW-03 X X X X X X X X X X
MW-04 X X X X X X X X X X
MW-05 X X X X X X X X X X
MW-06 X X X X X X ─ X X X
PW-01 ─ ─ ─ X X ─ X ─ ─ ─
PW-02 X ─ ─ ─ ─ ─ X ─ ─ ─
PW-03 X X ─ ─ ─ ─ ─ X ─ ─
PW-04 X X ─ ─ ─ ─ X X ─ ─

LPA-GW-01 X ─ X ─ ─ ─ X X ─ ─
LPA-GW-02 X X X X X X X X X X
WPA-GW-01 X X X X X X X X X X
WPA-GW-04 X ─ ─ ─ ─ ─ X ─ ─ ─
WPA-GW-05 X X X X X X X X X X
WPA-GW-06 X ─ X X X X X ─ ─ ─
WPA-GW-07 X X X X X X X X X X
WPA-GW-09 X ─ X ─ ─ ─ X X ─ ─

USGS-01 X ─ X ─ ─ X X ─ ─ ─
USGS-02 X ─ X X X ─ X X ─ ─
USGS-04 X X X X X X X X X ─
USGS-06 ─ ─ ─ ─ ─ ─ X ─ ─ ─
USGS-07 ─ ─ ─ ─ ─ ─ X ─ ─ ─
USGS-08 X ─ X ─ ─ X X X ─ ─
USGS-10 X ─ X X ─ X X X X X
USGS-11 X X X ─ ─ ─ X X ─ ─
USGS-12 X X X ─ ─ ─ X X ─ ─
USGS-13 X X X ─ ─ ─ X X ─ ─
USGS-14 X X X X X X X X X X
USGS-16 X X X X X X X X X X
USGS-17 X ─ X X ─ X X X ─ ─
USGS-18 ─ ─ ─ ─ ─ ─ X ─ ─ ─
USGS-19 X X X X X X X X ─ ─
USGS-23 X X X X X X X X ─ ─
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The RPDs for VOCs and SVOCs were evaluated first. 
RPDs for VOC replicate pairs ranged from 0.9 to 19.7 percent. 
The RPDs for eight of the nine constituents detected in 
VOC replicate pairs were less than 15 percent, indicating 
relatively low variability. For SVOCs, RPDs ranged from 0 
to 100 percent. RPDs exceeded 30 percent for 9 of 18 SVOC 
constituents that were detected in replicate pairs. For five of 
these SVOC constituents, the concentrations were reported 
as estimated because results exceeded the calibration range, 
a failure in surrogate recovery during laboratory analysis was 
documented, or an internal standard exceeded the lower limit 
measured in samples. In the remaining nine replicate pairs, 
low concentrations of SVOCs (less than 4 µg/L) yielded 
RPDs greater than 30 percent; small differences in paired low 
concentration values of less than 4 µg/L in replicate samples 
inherently yield such relatively large RPDs.

RPDs for trace element replicate pairs were evaluated for 
replicate samples collected from wells MW-04 and MW-03 
(fig. 2; table 1). The RPDs ranged from 0.8 to 98.1 percent for 
trace element replicate pairs. RPDs greater than 30 percent 
were calculated for 9 of 14 trace elements detected in 
replicate pairs, indicating high variability. All trace elements 
with high RPDs were measured in a sample collected from 
well MW-04. Although field properties had stabilized when 
groundwater-quality samples were collected, it is possible 
that a change in groundwater conditions as a result of 
groundwater withdrawals occurred between the collection of 
the environmental sample and the replicate sample. Because 
of possible changes in the groundwater withdrawal conditions, 
trace element results from samples collected at well MW-04 
were flagged with a quality indicator to indicate the degree of 
questionable precision and accuracy of the value. Because the 
amount of variability in the replicate pair of samples collected 
from well MW-03 was deemed acceptable, no other trace 
element samples were qualified.

An equipment blank sample and trip blank samples were 
part of the sampling design. An equipment blank sample was 
collected and analyzed for VOCs, SVOCs, and trace elements, 
and five trip blanks were collected and analyzed for VOCs. 
The equipment blank sample was collected and analyzed 
to assess the potential bias resulting from contamination 
associated with environmental conditions, collection and 
processing procedures, equipment cleaning, transport, and 
laboratory analysis. Trip blank samples were collected and 
analyzed to assess the potential contamination associated with 
transport of samples from the field to the laboratory. None 
of the constituents analyzed were detected in the equipment 
blank sample or trip blank samples, thereby indicating 
that field and analytical procedures did not bias reported 
concentrations.

Slug Tests

In November and December 2022, following 
groundwater monitoring well development and 
groundwater-quality sampling, slug tests were completed on 

each of the groundwater monitoring wells installed in 2022 to 
(1) determine if the wells were in good hydraulic connection 
with the aquifer and (2) estimate the hydraulic conductivity of 
the aquifer at each well (table 4). Hydraulic conductivity is a 
measure of the ability of a porous material to allow fluids to 
pass through it. Higher hydraulic conductivity values correlate 
with higher yields and less drawdown in a well (Heath, 1983). 
A slug test requires a rapid change in groundwater level, 
usually as a result of adding or removing a known volume, 
or “slug,” into or from the well and then measuring the rate 
at which the groundwater level returns to static conditions 
(Cunningham and Schalk, 2011). Because of the slow 
recharge observed in the wells during groundwater-quality 
sampling, slug tests were determined to be the ideal method 
for testing the groundwater monitoring wells; the alternative 
of completing pump tests may have resulted in pumping the 
groundwater monitoring wells dry. The slug-test procedures 
were modified from Cunningham and Schalk (2011).

Ideally, a slug test is performed when the 
groundwater-level altitude is above the top of the screened 
interval (Cunningham and Schalk, 2011). For almost all of the 
groundwater monitoring wells installed in 2022, this was not 
the case. A localized “static” groundwater level was estimated 
by filling the groundwater monitoring well with water and 
observing the change until a stationary level was reached and 
was above the screened interval. A Level TROLL 500 pressure 
transducer (In-Situ Inc., 2023b) was used to continuously log 
the groundwater level within the groundwater monitoring well 
at a 0.5-second interval. Prior to each slug test, the pressure 
transducer was lowered to the bottom of the groundwater 
monitoring well, and continuous logging was started. A 
known volume of water was immediately introduced into 
the groundwater monitoring well, and the groundwater level 
was recorded by the pressure transducer and simultaneously 
watched on a computer until the groundwater level had 
returned or almost returned to the localized “static” 
groundwater level. This process was repeated two to three 
times as separate test runs to evaluate the repeatability of 
the measurement. Data were downloaded from the pressure 
transducer by using Win-Situ software, version 5.7.8.0 (In-Situ 
Inc., Fort Collins, Colorado) and documented in a companion 
data release (Teeple and others, 2025). Data from the slug tests 
were analyzed by using the Bouwer-Rice method (Bouwer 
and Rice, 1976) and by assuming that the base of aquifer 
was at the bottom of the groundwater monitoring well if a 
depth of refusal was noted when the borehole for the well 
was drilled. The last test run at each groundwater monitoring 
well was used for the final interpretation of the site. The last 
test run was used because it provided the longest interval for 
the localized “static” groundwater level to equilibrate in the 
aquifer and will provide the most accurate representation 
of the hydraulic conductivity of the aquifer where the 
groundwater monitoring well was drilled.
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Table 4.  Summary of slug-test results from the groundwater monitoring wells screened in the alluvial aquifer in the Wilcox and Lorraine process areas of the Wilcox Oil 
Company Superfund site near Bristow, Creek County, Oklahoma, November and December 2022.

[Data from Teeple and others (2025). ID, identifier; WL, groundwater level; ft, foot; bls, below land surface; ft/d, foot per day, ─, no data. Dates are in month/day/year format]

Well ID  
(fig. 2)

Date of test

Estimated 
depth to 

“static” WL for 
test run 1,  
in ft bls1

Hydraulic  
conductivity 

from test run 1,  
in ft/d

Estimated depth 
to “static” WL 
for test run 2,  

in ft bls1

Hydraulic  
conductivity 

from test run 2,  
in ft/d

Estimated depth 
to “static” WL 
for test run 3,  

in ft bls1

Hydraulic  
conductivity 

from test run 3,  
in ft/d

Appears to 
converge to a 
“static” WL1

Final hydraulic 
conductivity,  

in ft/d

USGS-00 11/18/2022 −0.17 0.6 −2.66 0.2 ─ ─ No ─
USGS-01 11/10/2022 0.34 0.1 −2.24 0.2 ─ ─ No ─
USGS-02 11/18/2022 1.99 0.7 0.32 0.5 0.28 0.5 Yes 0.5
USGS-04 11/10/2022 8.01 0.1 8.28 0.04 ─ ─ Yes 0.04
USGS-05 11/8/2022 6.50 0.2 4.57 0.5 4.54 0.4 Yes 0.4
USGS-06 11/8/2022 1.78 0.01 0.87 0.02 ─ ─ Yes 0.02
USGS-07 11/18/2022 3.54 0.2 2.33 0.1 ─ ─ Yes 0.1
USGS-08 11/18/2022 4.66 0.03 −1.17 0.5 ─ ─ No ─
USGS-09 11/18/2022 8.32 0.4 8.48 0.3 ─ ─ Yes 0.3
USGS-10 11/10/2022 5.71 0.03 3.29 0.05 ─ ─ No ─
USGS-11 12/8/2022 3.71 0.2 3.74 0.2 ─ ─ Yes 0.2
USGS-12 12/8/2022 3.06 0.1 2.92 0.09 ─ ─ Yes 0.09
USGS-13 12/8/2022 −0.64 0.4 4.31 0.009 ─ ─ No ─
USGS-14 12/8/2022 2.10 0.01 2.17 0.01 ─ ─ Yes 0.01
USGS-15 12/8/2022 9.23 0.3 9.41 0.3 ─ ─ Yes 0.3
USGS-16 11/18/2022 6.89 0.2 6.87 0.1 6.88 0.1 Yes 0.1
USGS-17 11/10/2022 7.84 1 5.26 3 3.45 2 No ─
USGS-18 11/10/2022 7.91 0.3 4.47 0.4 5.98 0.2 Yes 0.2
USGS-19 11/18/2022 7.01 0.2 7.03 0.1 6.51 0.1 Yes 0.1
USGS-23 11/10/2022 7.07 0.02 6.93 0.02 ─ ─ Yes 0.02

1A localized “static” groundwater level was estimated by filling the well with water and observing the change until a stationary level was reached and was above the screened interval.
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Characterization of the Alluvial Aquifer
Data compiled and collected for the study were used to 

evaluate the characteristics of the alluvial aquifer at the site. 
These aquifer characteristics are defined by the hydrogeologic 
framework, groundwater-flow system, geochemistry, and 
hydraulic properties of the aquifer.

Hydrogeologic Framework

The term “hydrogeologic framework” as used in this 
report refers to the following geologic attributes that govern 
groundwater flow in the alluvial aquifer: land-surface altitude 
and orientation, bedrock altitude and orientation, overburden 
thickness, and sediment characteristics. The slope of the land 
surface helps to govern runoff from the site and recharge 
to the alluvial aquifer. Bedrock altitudes help to determine 
groundwater-flow paths, locations of inferred paleochannels 
important to groundwater flow, and the presence or absence 
of groundwater in a given location. Overburden thickness 
governs how quickly recharge reaches the alluvial aquifer and 
plays an important role in groundwater flow. The distribution 
of sediments (sand, silt, and clay) and the resistivity 
values of the sediments provide insights into the size and 
distribution of sediment particles in the subsurface that govern 
groundwater-flow characteristics and contaminant fate and 
transport.

The land surface in the Wilcox and Lorraine process 
areas generally slopes to the south and southwest towards 
Sand Creek (fig. 2). The lowest altitudes of the land surface 
are along stream channels in the depressions carved by Sand 
Creek and its west and northwest tributaries. In the Wilcox 
process area, the highest altitudes are in the northwest, and 
the topography slopes to the south and east to Sand Creek and 
its west tributary, respectively. In the Lorraine process area, 
the highest altitudes are in the northeast, and the topography 
slopes to the south and west to Sand Creek and its northwest 
tributary, respectively.

The altitudes to the top of bedrock have similar trends 
to those found in the land-surface topography. Bedrock is 
exposed or very near land surface to the north of the Wilcox 
and Lorraine process areas and generally slopes to the south 
and southwest towards Sand Creek (fig. 11). Similar to land 
surface, the lowest altitudes of the top of bedrock are found 
in the depressions carved by Sand Creek and its west and 
northwest tributaries. In the case of the west tributary, the 
depressions are not located directly below the stream; they 
are present on either side of the stream. The locations of the 
depressions likely indicate that the tributary has historically 
incised what appear to be two paleochannels into the bedrock. 
The inferred paleochannel to the east of the west tributary 
has deeper depressions than the inferred paleochannel to the 
west. In the Wilcox process area, the highest altitudes of the 
top of bedrock are in the northwest, and the bedrock slopes 
to the south and east to Sand Creek and its west tributary, 

respectively. In the Lorraine process area, the highest altitudes 
of the top of bedrock are in the northeast, but there is another 
bedrock high near the center of the process area. There is a 
small depression in the northwest part of the Lorraine process 
area that may be a small paleochannel that trends to the west.

An overburden thickness grid was computed by 
subtracting the altitudes of the bedrock surface grid from 
the land-surface topography (fig. 12). Because of the similar 
slopes between land surface (fig. 2) and the top of bedrock 
(fig. 11), locations with the thickest overburden occur where 
there are depressions in the bedrock typically related to 
inferred paleochannels (fig. 12). These locations coincide with 
Sand Creek and the locations of two inferred paleochannels 
on the east and west sides of the west tributary (fig. 12). In 
the Lorraine process area, there is thick overburden (greater 
than 20 ft) to the north (fig. 12) that would correlate with an 
apparent bedrock low between two bedrock highs (fig. 11).

The primary sediment observed within the overburden 
consisted of silt to sand-sized unconsolidated sediments 
that ranged from light brown to black. The borehole EC 
logging results were compared to the soil-core descriptions, 
and there appeared to be three major sediment groups: (1) a 
clay-dominant group with most of the resistivity values less 
than 100 ohm-m, (2) a sand-dominant group with most of the 
resistivity values greater than 200 ohm-m, and (3) a clay and 
sand mix group with most resistivity values between 100 and 
200 ohm-m (figs. 13 and 14A). The combined 3D resistivity 
model results were compared to the soil-core descriptions 
as well, but because the combined 3D resistivity model 
statistically merges spatial resistivity results throughout the 
Wilcox and Lorraine process areas and incorporates multiple 
collection methods with different spatial resolutions, only 
bulk resistivity changes could be measured. Resistivity values 
for the clay-dominant group and sand-dominant group in the 
Wilcox and Lorraine process areas derived from the borehole 
EC logging results (fig. 14A) and combined 3D resistivity 
model showed good agreement (fig. 14B). However, resistivity 
values for the clay and sand mix group in the Wilcox and 
Lorraine process areas derived from the borehole EC logging 
results (fig. 14A) were higher than the resistivity values 
derived from the combined 3D resistivity model (fig. 14B). 
This difference between resistivity values derived from the 
borehole EC logging results and combined 3D resistivity 
model for the clay and sand mix group is attributed to the bulk 
resistivity values measured in the combined 3D resistivity 
model; resistivity values in the model have a gradual change 
across clay and sand boundaries instead of sharp changes as 
measured in the borehole EC logging results. In the combined 
3D resistivity model, most resistivity values are greater than 
140 ohm-m in the sand-dominant group, and most resistivity 
values are less than 100 ohm-m in the clay-dominant group 
(fig. 14B). It was assumed that resistivity values derived 
from the combined 3D resistivity model of 100 ohm-m 
represented at least an equal proportion of clay and sand and 
that resistivity values greater than 100 ohm-m represented the 
sand-dominant group.
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Figure 11.  Altitudes of the top of bedrock in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site 
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near Bristow, Creek County, Oklahoma.
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Figure 13.  Boxplots of resistivity values derived from the borehole electrical conductivity logging results based on soil-core 
descriptions in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, 
Oklahoma, October 2022.
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Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, 2022.
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Resistivity values of the sand-dominant group (resistivity 
values greater than 100 ohm-m) were extracted from the 
combined 3D resistivity model to gain a better understanding 
of locations of thicker sand layers in the Wilcox and Lorraine 
process areas. Figure 15 shows the estimated overall 
thickness of the sand-dominant group within the overburden, 
which might represent one sand layer, or multiple sand 
layers separated by clay-dominant group sediments; these 
sand-dominant group thicknesses are undifferentiated between 
these two scenarios. A sand-dominant group thickness within 
the overburden of less than or equal to 10 ft was evident 
in most (about 90 percent) of the gridded area (fig. 15). 
A comparatively thick sand-dominant group (greater than 
15 ft thick in some areas) was mapped in the bedrock east 
of the west tributary to Sand Creek; this comparatively thick 
sand-dominant group coincides with the location of an inferred 
paleochannel (figs. 11 and 15).

Evaluating the mean normalized resistivity values for the 
sand-dominant parts of the overburden can potentially identify 
areas that contain a higher percentage of sand and gravel 
compared to fine-grained sediments (fig. 16). Resistivity 
values were converted to log values, a mean was calculated, 
and then the mean log value was recomputed to resistivity to 
obtain the mean normalized resistivity. In about 75 percent 
of the gridded area (fig. 15), the mean normalized resistivity 
values in the sand-dominant group were interpreted as being 
less than 210 ohm-m—a value similar to the lower particle 
size cutoff of the sand-dominant group of 200 ohm-m as 
defined by the borehole EC logging results (fig. 14A). Hence, 
in about 75 percent of the gridded area, the sand-dominant 
group thickness consists of relatively fine sand with some 
clay and silt mixed in, similar to that of the clay and sand mix 
group (resistivities between 100 and 200 ohm-m) (fig. 14A). 
Areas with mean normalized resistivity values greater than 
210 ohm-m in the sand-dominant group thickness (fig. 16) are 
generally associated with areas of thin overburden (fig. 12). 
These high mean normalized resistivity values may indicate 
that the bedrock in these locations consists of exposed 
sandstone layers as opposed to the upper mudstone unit of the 
Barnsdall Formation; weathering of the interbedded layers of 
sandstone found in the Barnsdall Formation has likely resulted 
in an abundance of sandstone gravel and sand in these areas. 
In the northeastern part of the Wilcox process area, some 
of this weathered sandstone may have filled in the inferred 
paleochannels on either side of the west tributary (fig. 16).

Groundwater-Flow System

Groundwater-level altitudes in the alluvial aquifer in 
the Wilcox and Lorraine process areas are affected by the 
overburden and bedrock altitudes (fig. 17). With such a thin 
overburden in the area (fig. 12), the presence of groundwater 
and the groundwater flow in the alluvial aquifer are highly 
dependent on the bedrock altitude (fig. 11). During October–
November 2022, groundwater was absent in the north-central 

parts of the Wilcox and Lorraine process areas because the 
bedrock altitudes were higher than the groundwater-level 
altitudes in these parts (figs. 11, 17). The bedrock altitudes 
eventually became lower than the groundwater-level altitudes 
as the bedrock altitudes dipped towards the south to southwest 
and to the east in the Wilcox process area and to the west in 
the Lorraine process area. Groundwater-level altitudes could 
not be characterized in the southwestern part of the Wilcox 
process area and the southern part of the Lorraine process 
area because of a lack of groundwater-level altitude data for 
these parts.

In general, groundwater flows south towards Sand Creek, 
although bedrock highs in the Wilcox and Lorraine process 
areas affect the flow of groundwater at more localized scales 
(fig. 17). In the Wilcox process area, there is a bedrock high in 
the central part of the process area that acts as a groundwater 
divide, causing groundwater to flow in opposite directions on 
either side of this high. Groundwater to the north of this divide 
flows east and then south, following the location of an inferred 
paleochannel east from the west tributary to Sand Creek in 
the south (fig. 17). Although not mapped in this report, the 
potential exists for disconnected pools of groundwater to form 
as precipitation is recharged in the depressions of the bedrock 
highs in the Wilcox and Lorraine process areas. A mapped 
disconnect in the groundwater-flow path east of well USGS-01 
(fig. 17) may be an artifact caused by a lack of depth of refusal 
data for the area where interpolation from gridding resulted 
in higher top of bedrock altitudes in this area (fig. 11), and 
a hydraulic connection (groundwater-flow path) may in fact 
exist where a disconnect is mapped. Similar to the Wilcox 
process area, there is a bedrock high in the central part of 
the Lorraine process area that acts as a groundwater divide 
(fig. 17). Groundwater north of this divide follows separate 
flow paths that join and flow west towards the northwest 
tributary. Based on the groundwater-level altitudes measured 
during October–November 2022, the mean groundwater 
gradient in the Wilcox and Lorraine process areas is 0.04 ft/ft.

Geochemistry

Wells that were coincident with or proximal to bedrock 
highs (MW-02, LPA-GW-03, USGS-00, USGS-05, USGS-09, 
and USGS-15) were not sampled because they contained 
insufficient water (figs. 11, 17). For the wells that were 
sampled, groundwater results for VOCs, SVOCs, and trace 
elements were compared against screening levels established 
for the site by the EPA (EA Engineering, Science, and 
Technology, Inc., PBC, 2020a). The screening levels are based 
on either the MCL for a constituent, which is defined as the 
maximum level allowed of a contaminant in water delivered 
to any user of a public water system (EPA, 2023b), or the EPA 
Region 6 regional screening levels (RSLs) for tapwater (EPA, 
2025) if an MCL for a particular constituent is not applicable 
(EA Engineering, Science, and Technology, Inc., PBC, 2020a).
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Figure 15.  Overall thickness of the sand-dominant group identified in the combined three-dimensional resistivity model by 
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Because of suspected high concentrations at well 
PW-03, samples for VOCs and SVOCs were diluted by a 
factor of 1,000 and 200, respectively, prior to analysis of 
all constituents in the schedules used by the laboratory. 
As a result, the reporting limits associated with VOC and 
SVOC analyses for samples collected from well PW-03 
were various orders of magnitude higher than the reporting 
limits for samples collected from the remaining wells. The 
elevated reporting levels associated with well PW-03 may 
have prevented the detection of some of the VOCs and 
SVOCs present in the sample at concentrations lower than the 
reporting limit.

Volatile Organic Compounds
Groundwater samples for the analysis of VOCs were 

collected from 29 wells (table 3). VOCs were detected in 
the samples from 26 of these 29 wells, and the number of 
VOCs detected in the samples from a given well ranged 
from 1 to 8 (table 5). Of the 49 VOCs quantified, the 
concentrations of 6 VOCs exceeded their respective screening 
levels in samples collected from 1 or more wells (table 6). 
Methylcyclohexane, a solvent (EPA, 1984), was the most 
frequently detected VOC (detected in samples from 19 wells) 
with concentrations ranging from 0.6 to 684 µg/L; the 
maximum concentration of methylcyclohexane was measured 
in the sample collected from well USGS-16. The petroleum 
hydrocarbons cyclohexane and isopropylbenzene (EPA, 2009) 
were both detected in the samples collected from 15 wells. 
The concentrations of cyclohexane and isopropylbenzene 
ranged from 1.7 to 694 µg/L and from 2.5 to 61.8 µg/L, 
respectively. Concentrations of isopropylbenzene exceeded the 
screening level in the samples collected from wells MW-01 
and MW-04 (table 6). Benzene, which is also a petroleum 
hydrocarbon (EPA, 2009), was detected at concentrations 
ranging from 1.0 to 3,300 µg/L in samples collected from 
10 wells. The screening level for benzene was exceeded in the 
samples collected from seven wells (fig. 18). All six VOCs 
that exceeded their respective screening levels (benzene, 
ethylbenzene, isopropylbenzene, meta- and (or) para-xylene, 
ortho-xylene, and toluene) had maximum concentration for 
these constituents measured at well MW-04 (table 6).

The highest concentrations of VOCs among the 
constituents exceeding screening levels were typically 
measured in samples collected from wells in the northern part 
of the Wilcox process area, which includes wells MW-04 and 
WPA-GW-05. Periodic releases of contaminants into the soil 
in the Wilcox process area likely resulted in migration of these 
contaminants into the groundwater (EA Engineering, Science, 
and Technology, Inc., PBC, 2020a). Because of the direction 
of groundwater flow (figs. 18, 19, and 20), contaminants are 
likely to remain in the area surrounding well MW-04 with 
perhaps the potential to migrate east and south along the 
inferred paleochannel that is east of the west tributary to Sand 
Creek. These results are consistent with previous findings 
by EA Engineering, Science, and Technology, Inc., PBC, 

(2020a) in which the area surrounding well MW-04 had higher 
numbers of VOC detections and higher VOC concentrations 
compared to the areas surrounding other wells sampled. 
Because concentrations of VOCs did not typically exceed 
screening levels at wells outside of the vicinity of MW-04, 
results from this sampling event indicate that a plume of 
substantial areal extent has not developed at the site for VOCs.

Semivolatile Organic Compounds
Groundwater samples for the analysis of SVOCs were 

collected from 19 wells (table 3). SVOCs were detected in the 
samples from 17 wells, and the number of SVOCs detected in 
the samples from a given well ranged from 1 to 18 (table 5). 
Of the 70 constituents quantified by the analytical methods, 
25 were detected in groundwater samples collected at the site 
(table 7). The compound 1-methylnaphthalene was detected 
at the highest frequency (detected in samples from 14 wells) 
with concentrations ranging from 0.2 to 75.5 µg/L, with the 
maximum concentration measured at well MW-04. There are 
no screening levels associated with 1-methylnaphthalene. In 
the samples from 13 wells, 2-methylnaphthalene was detected. 
The screening level of 36 µg/L for 2-methylnaphthalene was 
exceeded in the samples from five wells. Benzo(a)pyrene was 
detected in the samples from four wells with concentrations 
ranging from 0.1 to 0.4 µg/L (fig. 21). The screening level 
of 0.2 µg/L for benzo(a)pyrene was exceeded in the samples 
from wells MW-04 and PW-04. Naphthalene was detected in 
the samples from 12 wells with concentrations ranging from 
0.3 to 154 µg/L (fig. 22). The screening level of 0.17 µg/L 
for naphthalene was exceeded in the samples from all wells 
in which naphthalene was detected, which included wells 
in the Lorraine process area. Extremely high concentrations 
of phenol (180,000 µg/L), and selected cresol compounds 
(2-methylphenol [782,000 µg/L], 2,4-dimethylphenol 
[868,000 µg/L], and 3- and (or) 4-methylphenol 
[714,000 µg/L]) were measured in the sample from well 
PW-03, resulting in exceedances of the EPA Region 6 RSLs 
for tapwater (EPA, 2025) for all constituents measured in 
samples collected from well PW-03.

The highest concentrations of SVOCs among the 
constituents exceeding screening levels were most often 
measured in samples collected from well MW-04 in the 
northern part of the Wilcox process area (fig. 2; table 7); high 
concentrations of selected SVOCs were also measured in the 
sample collected from well WPA-GW-05 in this same part 
of the Wilcox process area (fig. 2; table 7). Concentrations 
of SVOCs are likely the highest in the samples from 
wells MW-04 and WPA-GW-05 because the direction of 
groundwater flow (figs. 21 and 22) restricts the migration of 
contaminants out of the area surrounding these wells. There 
may be the potential for the contaminants to migrate east and 
south along the inferred paleochannel that is east of the west 
tributary to Sand Creek. Because concentrations of SVOCs 
did not typically exceed screening levels in samples collected 
from wells outside of the vicinity of well MW-04, results 
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Figure 18.  Concentrations of benzene measured in samples collected from groundwater monitoring wells or piezometers 
in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, 
October–November 2022.
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Figure 19.  Concentrations of ethylbenzene measured in samples collected from groundwater monitoring wells or piezometers in 
the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, October–
November 2022.
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Figure 20.  Concentrations of toluene measured in samples collected from groundwater monitoring wells or piezometers in the 
Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, October–
November 2022.
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from this sampling event indicate that a plume of substantial 
areal extent has not developed at the site for SVOCs. There 
was, however, one well (PW-03) where the groundwater 
was heavily contaminated with phenol and selected cresol 
compounds (2-methylphenol; 2,4-dimethylphenol; and 3- and 
(or) 4-methylphenol) near the southern border of the site; the 
contaminants in this groundwater have the potential to migrate 
to Sand Creek along identified groundwater-flow paths.

Trace Elements
Groundwater samples for the analysis of trace elements 

(including metals) were collected from 25 wells (table 3). Of 
the 19 trace elements quantified by the analytical methods, 
15 were detected in the groundwater samples (table 8). 
Barium, iron, and manganese were detected in the samples 
collected from every well. Aluminum was detected in the 
samples from 22 wells in concentrations ranging from 316 to 
122,000 µg/L (fig. 23A). The screening level for aluminum 
of 20,000 µg/L was exceeded in samples from three wells. 
Arsenic was detected in the samples from 16 wells at 
concentrations ranging from 11.8 to 51.9 µg/L (fig. 23B). 
The screening level of 10 µg/L for arsenic was exceeded in 
every sample in which it was detected. The screening level 
of 2,000 µg/L for barium was exceeded in the sample from 
one well (well WPA-GW-01) (fig. 23C). The screening 
level of 14,000 µg/L for iron was exceeded in samples from 
16 wells (fig. 23D). The screening level of 15 µg/L for 
lead was exceeded in the samples from 14 wells (fig. 23E). 
Manganese was detected in the samples from all 25 wells in 
concentrations ranging from 189 to 7,940 µg/L (fig. 23F). 
The screening level of 430 µg/L for manganese was exceeded 
in the samples collected from 20 wells. Although the spatial 
distribution of trace element concentrations did not follow a 
specific spatial pattern, the maximum concentrations for 13 
of the 15 trace elements detected at the site were measured 
in the samples from 2 wells: WPA-GW-01, with maximum 
concentrations for 7 trace elements (aluminum, barium, 
beryllium, cadmium, iron, manganese, and vanadium), located 
in the Wilcox process area, and USGS-12, with maximum 
concentrations for 6 trace elements (chromium, copper, 
lead, molybdenum, nickel, and zinc), located in the Lorraine 
process area.

Table 5.  Number of volatile and semivolatile organic compounds 
detected in samples collected from groundwater monitoring wells 
or piezometers in the Wilcox and Lorraine process areas of the 
Wilcox Oil Company Superfund site near Bristow, Creek County, 
Oklahoma, October–November 2022.

[Data from Teeple and others (2025). ID, identifier; VOC, volatile organic 
compound; SVOC, semivolatile organic compound; ─, not sampled]

Well ID 
(figs. 2 and 17–20)

Number of  
VOCs detected

Number of  
SVOCs detected

MW-01 3 7
MW-03 0 1
MW-04 8 18
MW-05 1 0
MW-06 0 0
PW-02 8 ─
PW-03 0 4
PW-04 3 14

LPA-GW-01 2 ─
LPA-GW-02 3 6
WPA-GW-01 1 4
WPA-GW-04 2 ─
WPA-GW-05 8 14
WPA-GW-06 4 ─
WPA-GW-07 8 5
WPA-GW-09 8 ─

USGS-01 4 ─
USGS-02 8 ─
USGS-04 2 4
USGS-08 8 ─
USGS-10 6 ─
USGS-11 5 7
USGS-12 2 1
USGS-13 4 5
USGS-14 5 9
USGS-16 7 13
USGS-17 3 ─
USGS-19 4 8
USGS-23 6 7
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Geochemical and Microbial Indicators of 
Degradation

Geochemical indicators provide information on the 
conditions that prevail in an aquifer that are supportive 
of natural attenuation and help determine if the aquifer 
has the capacity to naturally degrade contaminants (New 
Jersey Department of Environmental Protection, 2022). 
Degradation of organic contaminants in groundwater occurs 
through oxidation-reduction (redox) reactions facilitated 
by microorganisms in which electrons are transferred from 
one compound (the electron donor) to another (the electron 
acceptor) (New Jersey Department of Environmental 
Protection, 2022). The primary electron donors in aquifers 
contaminated as a result of oil refinery operations such as 
the shallow groundwater system in the Wilcox and Lorraine 
process areas are organic matter and include petroleum 

hydrocarbons and other VOCs and SVOCs. Commonly 
available electron acceptors include iron, manganese, oxygen, 
nitrate, and sulfate (New Jersey Department of Environmental 
Protection, 2022; Teeple and others, 2025). The reduction 
of oxygen generates the maximum amount of available 
energy; thus, it is used preferentially by oxygen-reducing 
microorganisms (McMahon and Chapelle, 2008). After 
oxygen is depleted, the next most energetically favorable 
available electron acceptor is nitrate, followed by manganese, 
iron, sulfate, and carbon dioxide (McMahon and Chapelle, 
2008). Because of this succession, predominant redox 
processes tend to be isolated into zones within a contaminant 
plume. The reduction of these common electron acceptors 
also produces distinctive compounds that can be monitored 
in groundwater to assess the redox processes occurring in 
the groundwater and the potential for degradation of organic 
contaminants (McMahon and Chapelle, 2008).

Table 6.  Volatile organic compounds detected in samples collected from groundwater monitoring wells or piezometers in the Wilcox 
and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, October–November 2022.

[Data from Teeple and others (2025). VOC, volatile organic compound; µg/L, microgram per liter; ID, identifier; MCL, maximum contaminant level (U.S. 
Environmental Protection Agency [EPA], 2023b); RSL, EPA Region 6 regional screening level for tapwater (EPA, 2025; EA Engineering, Science, and 
Technology, Inc., PBC, 2020a)]

VOC
Number of 
detections

Minimum 
concentration, 

in µg/L

Maximum 
concentration, 

in µg/L

Well ID for 
well with 
maximum  

concentration 
(figs. 2 and 

17–20)

Screening 
level type

Screening 
level,  

in µg/L

Number 
of times 

screening 
level was 
exceeded

1,2-dichloroethane 1 1.3 1.3 MW-05 MCL 5.0 0
2-butanone 5 5.7 11.6 USGS-11 RSL 560 0

Acetone 14 6.9 85.0 USGS-11 RSL 14,000 0
Benzene 10 1.0 3,300 MW-04 MCL 5.0 7

Bromodichloromethane 1 0.8 0.8 USGS-01 RSL 8.3 0
Bromoform 1 2.5 2.5 USGS-01 MCL 80 0

Chloromethane 4 0.5 0.9 USGS-04 RSL 19 0
Cyclohexane 15 1.7 694 USGS-16 RSL 13,000 0

Dibromochloromethane 2 0.5 2.4 USGS-01 MCL 80 0
Ethylbenzene 7 5.0 1,170 MW-04 MCL 700 1

Isopropylbenzene 15 2.5 61.8 MW-04 RSL 45 2
meta-and (or) para-xylene 8 2.9 1,970 MW-04 RSL 190 3

Methylcyclohexane 19 0.6 684 USGS-16 RSL 1,300 0
Methylene chloride 1 0.9 0.9 USGS-10 MCL 5.0 0

ortho-xylene 8 0.6 342 MW-04 RSL 190 1
Toluene 12 0.5 1,080 MW-04 MCL 1,000 1
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pH and ORP, a measure of the relative intensity of 
oxidizing and reducing conditions in an aquifer, also are 
geochemical indicators of the relative oxidizing or reducing 
characteristics of a groundwater system (Hem, 1985). The 
pH of groundwater can affect the presence and activity of the 
microbial community. Optimal pH ranges for biodegrading 
bacteria vary slightly in the literature (for example, from 6.0 to 
8.0 standard units [New Jersey Department of Environmental 
Protection, 2022] and from 5.0 to 9.0 standard units [Corseuil 

and Alvarez, 1996]) but are typically centered around the 
neutral pH value of 7.0 standard units (Corseuil and Alvarez, 
1996; New Jersey Department of Environmental Protection, 
2022). Positive ORP values indicate that the groundwater 
system is relatively oxidizing, and negative ORP values 
indicate that it is relatively reducing; thus, it is common to 
observe lower ORP values within the contaminant plume, 
where anaerobic biodegradation is occurring, than outside the 
contaminant plume (Hem, 1985). In addition to geochemical 

Table 7.  Semivolatile organic compounds detected in samples collected from groundwater monitoring wells or piezometers in 
the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, October–
November 2022.

[Data from Teeple and others (2025). SVOC, semivolatile organic compound; µg/L, microgram per liter; ID, identifier; ─, no data; RSL, U.S. Environmental 
Protection Agency [EPA] Region 6 regional screening level for tapwater (EPA, 2025; EA Engineering, Science, and Technology, Inc., PBC, 2020a); MCL, 
maximum contaminant level (EPA, 2023b)]

SVOC
Number of 
detections

Minimum  
concentration,  

in µg/L

Maximum 
concentration, 

in µg/L

Well ID for well 
with maximum 
concentration 
(figs. 2, 17–22)

Screening 
level type

Screening 
level,  

in µg/L

Number 
of times 

screening 
level was 
exceeded

1-methylnaphthalene 14 0.2 75.5 MW-04 None ─ ─
1,1'-biphenyl 2 1.6 1.9 WPA-GW-05 RSL 0.083 2

2-methylnaphthalene 13 0.2 103 MW-04 RSL 36 5
2-methylphenol1 1 782,000 782,000 PW-03 RSL 93 1

2,4-dimethylphenol1 3 10.5 868,000 PW-03 RSL 360 1
3- and (or) 4-methylphenol1 4 6.6 714,000 PW-03 RSL 190 1

Acenaphthene 9 0.2 1.1 MW-04 RSL 190 0
Anthracene 4 0.2 0.8 MW-04 RSL 1,800 0

Benzo(a)anthracene 3 0.2 1.0 MW-04 RSL 0.03 3
Benzo(a)pyrene 4 0.1 0.4 MW-04 MCL 0.2 2

Benzo(b)fluoranthene 2 0.1 0.3 MW-04 RSL 0.25 1
Benzo(g,h,i)perylene 2 0.2 0.2 MW-04 and 

PW-04
None ─ ─

Bis(2-ethylhexyl) phthalate 1 2.3 2.3 PW-04 MCL 6.0 0
Caprolactam 2 11.8 18.7 USGS-11 RSL 990 0

Carbazole 2 2.9 3.3 WPA-GW-05 None ─ ─
Chrysene 4 0.2 1.6 MW-04 RSL 25 0

Di-n-butyl phthalate 4 3.4 11.0 USGS-23 RSL 90 0
Diethyl phthalate 1 5.9 5.9 USGS-14 RSL 15,000 0

Fluoranthene 3 0.2 0.8 MW-04 RSL 800 0
Fluorene 13 0.2 3.0 PW-04 RSL 290 0

Naphthalene 12 0.3 154 MW-04 RSL 0.17 12
Pentachlorophenol 2 0.3 0.4 USGS-16 RSL 1.0 0

Phenanthrene 13 0.1 11.1 MW-04 None ─ ─
Phenol 5 4.7 180,000 PW-03 RSL 5,800 1
Pyrene 4 0.6 3.5 MW-04 RSL 120 0

12-methylphenol; 2,4-dimethylphenol; and 3 and (or) 4-methylphenol are all Cresol compounds.



44    Hydrogeologic Framework, Groundwater-Flow System, Geochemistry, and Aquifer Properties, Wilcox Oil Co. Superfund Site

788

786

784

790

780

784

778
776

780

774

788

772

78
2

78
0

77
2

770

782

776

778

786

786

784

782
784

784

774

768

786
788

792

786
788

790

794

79
2

794

776

774
772

768
770

794

792
790

780

782

782

780

782
784

778

786

784

790

780

784

778
776

780

774

788

772

78
2

78
0

77
2

770

782

776

778

786

786

784

782
784

784

774

768

786
788

792

786
788

790

794

79
2

794

776

774
772

768
770

794

792
790

780

782
788

782

780

782
784

778

USGS-02
--

ND

ND E0.4

ND

ND

ND

E0.3

--

ND

ND

0.1
USGS-00

--

USGS-01
--

USGS-04
ND

USGS-05
--

USGS-06
--

USGS-07
--

USGS-08

USGS-09
--

USGS-10
--

USGS-11
ND

USGS-12
ND

USGS-13
ND

USGS-14
ND

USGS-15
--

USGS-16
0.2

USGS-17

--

USGS-18
--

USGS-19
ND

USGS-23

PW-04

PW-01
--

PW-03

PW-02

MW-06

MW-05

MW-04

MW-01

MW-03

MW-02
--

LPA-GW-01

LPA-GW-03
--

LPA-GW-02

WPA-GW-01

WPA-GW-04

WPA-GW-02
--

WPA-GW-06

WPA-GW-05 WPA-GW-07

WPA-GW-09

ND

ND

--

--

--

--

--

ND

ND E0.4

ND

ND

ND

ND

E0.3

--

ND

ND

0.1
USGS-00

--

USGS-01
--

USGS-02
--

USGS-04
ND

ND

USGS-05
--

USGS-06
--

USGS-07
--

USGS-08

USGS-09
--

USGS-10
--

USGS-11
ND

USGS-12
ND

USGS-13
ND

USGS-14
ND

USGS-15
--

USGS-16
0.2

USGS-17

--

--

--

--

--

--

USGS-18
--

USGS-19
ND

USGS-23

PW-04

PW-01
--

PW-03

PW-02

MW-06

MW-05

MW-04

MW-01

MW-03

MW-02
--

LPA-GW-01

LPA-GW-03
--

LPA-GW-02

WPA-GW-01

WPA-GW-04

WPA-GW-02
--

WPA-GW-06

WPA-GW-05 WPA-GW-07

WPA-GW-09

Sand Creek
Sand Creek

Northwest
tributary

Northwest
tributary

West
tributary

West
tributary

EXPLANATION

Inferred paleochannel

Historical infrastructure (modified from EA
      Engineering, Science, and Technology, Inc.,
      PBC, 2020a, b, c, d, 2021)

Railroad

Pipeline

Fence line

776

Groundwater-flow path

Concentration (in micrograms per liter) of 
      benzo(a)pyrene measured in groundwater 
      samples (”E” indicates that the concentration 
      is estimated) (Teeple and others, 2025)

Not sampled ("--")

Not detected ("ND")

0.1

0.2

0.3

0.4

USGS-00
--

USGS-04
ND

0.1

USGS-16
0.2

PW-04
E0.3

MW-04
E0.4

WPA-GW-05

Potentiometric contour—Shows altitude at 
      which water level would have stood in 
      tightly cased wells, October–November 2022,
      derived from groundwater-level altitude 
      surface (Teeple and others, 2025). Contour 
      interval is 2 feet. Datum is North American 
      Vertical Datum of 1988

35°50'35"

35°50'30"

35°50'25"

35°50'20"

96°23'00"96°23'05"96°23'10"96°23'15"

Lead
additive

area

Base modified from U.S. Geological Survey 1:24,000-scale digital data
U.S. Department of Agriculture National Agricultural Imagery Program
Universal Transverse Mercator projection, zone 14 north
North American Datum of 1983 

0 20 40 60 80 100 METERS

0 100 200 300 400 500 FEET

Boundary of Wilcox Oil Company 
      Superfund site (modified from 
      EA Engineering, Science, and 
      Technology, Inc., PBC, 2020a, 
      b, c, d, 2021)

Wilcox process area

Lorraine process area

East tank farm

North tank farm

Loading dock area

Pond

Pond

Pond

Pond

Pond

Pond
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November 2022.
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Figure 22.  Concentrations of naphthalene measured in samples collected from groundwater monitoring wells or piezometers in 
the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, October–
November 2022.
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indicators, microbial indicator information such as the 
identification and quantification of microbial communities can 
be used to assess potential redox conditions because many 
redox processes are microbially mediated (Christensen and 
others, 2000).

Several conditions throughout the site such as 
groundwater system equilibrium issues, spatial differences in 
soil contamination, and sampling issues from dewatering wells 
complicate the determination of redox conditions. Several 
reduction processes can occur over time because groundwater 
systems are unlikely to be in thermodynamic equilibrium 
(Christensen and others, 2000). Redox indicator constituents, 
such as iron and manganese, from contaminated soil caused 
by previous activities at the site could be transported into 
groundwater. There is also more than one area where 
contamination occurred within the site, limiting the ability 
to differentiate whether elevated concentrations of redox 
indicator constituents are a result of contamination from the 
various sources or from redox processes within the plume. 
During the sampling event, not all geochemical indicators 
could be measured at each well because an insufficient volume 
of water was available for sampling at some wells and because 
many of the wells that were sampled had been recently 
installed and thus lacked historical data for assessing temporal 
trends. These data limitations and confounding factors 
constrained the ability to fully assess redox conditions at each 

well; thus, only a general assessment of the potential redox 
conditions based on geochemical and microbial indicators of 
degradation is discussed.

In-situ measurements of pH, ORP, and DO were made 
in 25 wells. pH values ranged from 6.0 to 9.3 standard units 
(table 9). At 24 wells the pH was within the optimal range 
for biodegradation of 6 to 8 standard units (New Jersey 
Department of Environmental Protection, 2022). The only well 
where the pH was outside this optimal range was well PW-03; 
the sample from well PW-03 indicated that the groundwater at 
this well was heavily contaminated with phenol and selected 
cresol compounds (2-methylphenol; 2,4-dimethylphenol; 
and 3- and (or) 4-methylphenol) (table 7). ORP values 
ranged from −209 to 66.5 millivolts for all 25 wells at the 
site (table 9). A positive ORP value was measured in two 
of the wells, USGS-04 and USGS-23, whereas a negative 
ORP value was measured in the remaining wells. Because 
negative ORP values indicate the presence of a reducing 
environment appropriate for anaerobic biodegradation (Hem, 
1985), the measured ORP values indicate that an environment 
favorable to anaerobic biodegradation was likely predominant 
throughout the site. DO concentrations ranged from less 
than 1.0 to 6.6 milligrams per liter (mg/L) (table 9). Anoxic 
conditions (DO concentrations less than 1.0 mg/L) were 
measured in 15 of the 25 wells where DO was measured, 
indicating that the predominant pathway for degradation 

Table 8.  Trace elements detected in groundwater samples collected from groundwater monitoring wells or piezometers in the Wilcox 
and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, October–November 2022.

[Data from Teeple and others (2025). µg/L, microgram per liter; ID, identifier; RSL, U.S. Environmental Protection Agency [EPA] Region 6 regional screening 
level for tapwater (EPA, 2025; EA Engineering, Science, and Technology, Inc., PBC, 2020a); MCL, maximum contaminant level (EPA, 2023b); ─, no data]

Trace element
Number of 
detections

Minimum  
concentration,  

in µg/L

Maximum  
concentration,  

in µg/L

Well ID for well 
with maximum 
concentration 
(figs. 2, 17–22)

Screening 
level type

Screening 
level,  

in µg/L

Number 
of times 

screening 
level was 
exceeded

Aluminum 22 316 122,000 WPA-GW-01 RSL 20,000 3
Arsenic 16 11.8 51.9 WPA-GW-05 MCL 10 16
Barium 25 78.7 2,190 WPA-GW-01 MCL 2,000 1

Beryllium 1 9.6 9.6 WPA-GW-01 MCL 4 1
Cadmium 1 5.5 5.5 WPA-GW-01 MCL 5 1
Chromium 13 10.2 251 USGS-12 MCL 100 2

Cobalt 4 21.1 44.9 WPA-GW-01 None ─ ─
Copper 7 26.4 1,480 USGS-12 MCL 1,300 1

Iron 25 1,030 119,000 WPA-GW-01 RSL 14,000 16
Lead 18 8.2 1,290 USGS-12 MCL 15 15

Manganese 25 189 7,940 WPA-GW-01 RSL 430 21
Molybdenum 2 51.6 68.4 USGS-12 None ─ ─

Nickel 15 20.8 133 USGS-12 RSL 390 0
Vanadium 8 26.0 148 WPA-GW-01 RSL 86 3

Zinc 22 20.3 1,400 USGS-12 RSL 6,000 0
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Figure 23.  Concentrations of (A) aluminum, (B) arsenic, (C) barium, (D) iron, (E) lead, and (F) manganese measured in samples 
collected from groundwater monitoring wells or piezometers in the Wilcox and Lorraine process areas of the Wilcox Oil Company 
Superfund site near Bristow, Creek County, Oklahoma, October–November 2022.
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is anaerobic. Oxic conditions (DO concentrations greater 
than or equal to 1.0 mg/L) were measured in seven wells 
(table 9). Wells WPA-GW-07, USGS-10, and USGS-12 could 
not be qualified as either oxic or anoxic because these wells 
dewatered during the sampling process before stabilization of 
field properties, and their respective DO concentrations of 1.1, 
1.8, and 2.0 mg/L were considered estimates. Because the DO 
concentrations measured in wells WPA-GW-07, USGS-10, 
and USGS-12 were near the 1.0-mg/L threshold between 
oxic and anoxic conditions and because field properties 
were not measured again during the subsequent collection 
of groundwater-quality samples from these wells, indicators 
other than DO concentration may be more appropriate for 
evaluating redox conditions in the groundwater characterized 
by these wells, such as the prevalence of aerobic and 
anaerobic bacteria. In the sample from well USGS-12, bacteria 
of the genus Massilia, which are generally aerobes (Vikram 
and others, 2017), were the most abundant and represented 
56 percent of the total bacterial community, indicating 
predominantly oxic conditions at this well (Teeple and 
others, 2025). In the sample from well USGS-10, 53 genera 
of bacteria were identified; of these 53 genera, at a relative 
abundance of 14 percent, Massilia was most abundant, 
followed by Enterobacter, which is facultative anaerobic, 
at a relative abundance of 11 percent and Geobacter, which 
is anaerobic but has been found tolerant to oxic conditions 
(Lin and others, 2004), at a relative abundance of 10 percent 
(Teeple and others, 2025). In the sample from well USGS-17, 
a well in which the conditions were oxic, the predominant 
genera were Geobacter and Pseudomonas, which is facultative 
anaerobic, at 24 and 15 percent relative abundances, 
respectively (Teeple and others, 2025). Coexistence of aerobic 
and anaerobic bacteria in groundwater has been documented 
(Bekins and others, 1999; Aburto and others, 2009) and 
indicates that variable redox conditions are likely.

Although a DO concentration of 4.8 mg/L was measured 
at well USGS-19 (table 9), the DO readings during field 
sampling were highly variable before finally stabilizing, 
indicating that a potential equipment malfunction could have 
resulted in an elevated, biased final DO concentration. A DO 
concentration greater than 1.0 mg/L is also inconsistent with 
bacterial community data from samples collected at well 
USGS-19. Results from 16S rRNA analysis indicate that 
bacteria of the phyla Desulfobacterota and Chloroflexi, which 
are predominantly anaerobic (Murphy and others, 2021; Yu 
and others, 2023; Pavlova and others, 2024), represented 
61 percent of the total bacterial community at that well 
(Teeple and others, 2025). At well USGS-23, the highest DO 
concentration (6.6 mg/L) was recorded among the wells where 
DO was measured. In the sample from well USGS-23, bacteria 
of the genus Bacillus, which are predominantly aerobic, were 

predominant at a 68 percent relative abundance (Teeple and 
others, 2025). The 6.6 mg/L DO concentration and 68 percent 
relative abundance of bacteria of the genus Bacillus are 
indicative of oxic conditions at well USGS-23 (Hu and others, 
2022; Yao and others, 2022).

Total iron and ferrous iron were measured in the samples 
collected from 25 and 13 wells, respectively. Concentrations 
of total iron ranged from 1,030 to 119,000 µg/L, whereas 
concentrations of ferrous iron ranged from 1,600 to 
27,200 µg/L (table 9). The presence of ferrous iron is 
an indication of ferric iron reduction during microbial 
degradation of organic compounds in the absence of oxygen 
and nitrate (New Jersey Department of Environmental 
Protection, 2022). In the Wilcox process area, concentrations 
of total iron were about 2 to 24 times greater than the 
concentrations of ferrous iron, whereas in the Lorraine 
process area, the concentrations of total iron were similar 
to (less than 2 times) the concentrations of ferrous iron. 
Genera of bacteria that include species capable of reducing 
iron, such as Aeromonas, Desulfitobacterium, Desulfovibrio, 
Geobacter, and Hydrogenophaga (Weber and others, 2006), 
were identified at relative abundances greater than 10 percent 
in the samples from wells MW-05, WPA-GW-04, USGS-04, 
USGS-07, USGS-10, USGS-11, USGS-15, and USGS-17 
(Teeple and others, 2025). Relative abundances of these 
genera of bacteria at these wells ranged from 12 to 48 percent. 
General conditions at the site, including predominantly anoxic 
conditions, nitrate depletion, and presence of iron-reducing 
bacteria, are favorable for degradation through iron reduction. 
These conditions, in combination with high concentrations 
of ferrous iron at various wells, indicate that iron reduction is 
likely occurring.

Nitrate was detected at concentrations that ranged from 
0.033 to 0.839 mg/L in 5 of the 19 wells that were sampled 
for this constituent (table 9). The highest concentrations of 
nitrate were measured in the samples from wells USGS-19 
and USGS-23 (0.526 and 0.839 mg/L, respectively). Because 
oxic conditions were identified at well USGS-23, the nitrate 
present in the groundwater in and near this well has likely 
not been depleted, as denitrification is an anaerobic process. 
If groundwater conditions around well USGS-23 become 
anoxic, nitrate reduction could occur because bacteria of the 
genus Bacillus, which are present at high proportions in this 
well, are capable of reducing nitrate under anoxic conditions 
(Schirawski and Unden, 1995). Low nitrate concentrations 
ranging from 0.033 to 0.084 mg/L were measured in the 
samples collected from the remaining wells in which nitrate 
was detected. Because nitrate concentrations were low when 
detected and frequently not detected at all, nitrate reduction 
at most of the wells is unlikely to be an effective degradation 
mechanism.
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Table 9.  Groundwater geochemical data from samples collected from groundwater monitoring wells or piezometers in the Wilcox and Lorraine process areas of the Wilcox Oil 
Company Superfund site near Bristow, Creek County, Oklahoma, October–November 2022.

[Data from Teeple and others (2025). ID, identifier; DO, dissolved oxygen; mg/L, milligram per liter; µg/L, microgram per liter; ORP, oxidation-reduction potential; mV, millivolt; µS/cm, microsiemens per 
centimeter; °C, degree Celsius; ─, not sampled; <, less than; >, greater than; E, estimated; w, high variability, questionable precision and accuracy]

Well ID 
(figs. 2, 17–22)

Total iron,  
in µg/L

Ferrous 
iron,  

in µg/L

Total  
manganese,  

in µg/L

pH,  
in  

standard  
units

ORP,  
in mV

DO,  
in 

mg/L

Specific  
conductance,  

in µS/cm  
at 25 °C

Temperature, 
in °C

Nitrate, 
in mg/L

Nitrite, 
in mg/L

Sulfate, 
in mg/L

Sulfide, 
in mg/L

Methane, 
in mg/L

Lorraine process area

MW-01 41,900 >24,000 928 6.3 −85.0 <1.0 357 21.0 <0.040 <0.001 0.11 <0.3 5.96
MW-03 7,650 5,900 189 6.3 −63.9 1.0 438 19.4 <0.040 <0.001 27.5 <0.3 0.0677
PW-04 ─ ─ ─ 6.3 −104 <1.0 401 21.6 ─ ─ ─ ─ ─

LPA-GW-01 21,700 ─ 893 6.6 −118 1.0 886 17.8 ─ ─ ─ ─ ─
LPA-GW-02 27,700 24,800 222 6.3 −68.6 <1.0 377 18.6 <0.040 <0.001 1.15 <0.3 1.54

USGS-11 27,400 ─ 1,720 6.6 −116 <1.0 586 20.9 ─ ─ ─ ─ ─
USGS-12 95,800 ─ 690 6.0 −65.9 E2.0 500 21.1 ─ ─ ─ ─ ─
USGS-13 11,700 ─ 438 6.7 −107 <1.0 495 22.7 ─ ─ ─ ─ ─
USGS-14 20,200 17,200 3,840 6.7 −104 <1.0 612 19.8 <0.040 <0.001 20.8 <0.3 1.68
USGS-19 11,800 ─ 1,840 6.7 −48.6 w4.8 453 21.1 0.526 0.003 21.9 ─ 0.138

Wilcox process area

MW-04 w67,400 2,780 w3,580 6.4 −102 <1.0 586 20.9 <0.040 <0.001 0.07 2.9 9.04
MW-05 54,800 2,400 3,160 6.4 −65.3 <1.0 908 21.7 <0.040 <0.001 64.9 1.6 0.0101
MW-06 3,600 2,600 377 7.0 −108 <1.0 895 17.7 <0.040 <0.001 46.8 <0.3 0.0900
PW-01 ─ ─ ─ ─ ─ ─ ─ ─ <0.040 0.001 11.1 ─ ─
PW-03 ─ ─ ─ 9.3 −209 <1.0 20,200 21.0 ─ ─ ─ ─ ─

WPA-GW-01 119,000 8,400 7,940 6.6 −77.3 1.0 552 23.2 0.081 0.003 0.24 1.3 0.639
WPA-GW-05 40,100 4,000 1,430 6.6 −146 <1.0 1,110 19.5 <0.040 <0.001 0.21 1.2 11.9
WPA-GW-06 16,700 ─ 3,550 ─ ─ ─ ─ ─ <0.040 0.003 0.79 ─ 1.31
WPA-GW-07 59,800 >24,000 1,070 E6.6 E−107 E1.1 E785 E20.3 <0.040 <0.001 0.23 0.6 3.76
WPA-GW-09 36,900 ─ 4,180 6.5 −75.0 <1.0 335 25.4 ─ ─ ─ ─ ─

USGS-01 1,030 ─ 282 ─ ─ ─ ─ ─ ─ ─ ─ ─ 0.0010
USGS-02 14,000 ─ 1,640 6.7 −94.3 <1.0 625 21.3 0.033 0.008 83.6 ─ ─
USGS-04 4,850 2,100 1,520 6.1 66.5 <1.0 486 21.9 <0.040 0.001 65.7 ─ 0.0025
USGS-08 38,900 ─ 7,270 6.5 −49.2 1.0 714 21.1 ─ ─ ─ ─ 1.79
USGS-10 11,800 1,600 4,750 6.5 −76.4 E1.8 475 19.4 <0.040 <0.001 ─ <0.3 0.674
USGS-16 57,100 27,200 1,700 6.5 −65.4 <1.0 538 18.8 0.084 0.003 4.08 5.4 4.2
USGS-17 27,800 ─ 2,780 6.9 −98.4 1.5 2,140 19.5 <0.040 <0.001 ─ ─ 0.220
USGS-23 2,500 ─ 382 6.8 6.9 6.6 751 17.0 0.839 0.006 50.3 ─ 0.322
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Sulfate was measured in the samples collected from 
17 wells at concentrations that ranged from 0.07 to 83.6 mg/L 
(table 9), with the maximum concentration measured in the 
sample from well USGS-02. Sulfide was measured in the 
field at 12 wells, and concentrations ranged from less than 
0.3 to 5.4 mg/L. Differentiating between iron reduction and 
sulfate reduction can be difficult. The concentrations of sulfate 
measured in the samples from wells MW-03 and USGS-19 
or the presence of sulfide in the samples from wells MW-04, 
MW-05, WPA-GW-01, and USGS-16 in combination with 
the presence of Desulfobacterota at relative abundances 
greater than 15 percent at these wells (fig. 24) are indicative 
of possible sulfate reduction. At wells WPA-GW-04, 
USGS-10, USGS-11, and USGS-17, sulfate and sulfide 
were either not measured or not detected in the samples that 
were collected; however, Desulfobacterota were measured 
at abundances ranging from 15 to 35 percent at these wells 
(fig. 24), indicating potential for sulfate reduction. Bacteria 
of the family Rhodocyclaceae, which includes some species 
capable of reducing both iron and sulfate, were also present 
in the samples collected from all wells, with the exception 
of well MW-03; a high relative abundance (43 percent) of 
Desulfobacterota was measured in the sample collected from 
this well (fig. 24).

Drinking water standards for methane have not been 
published; a few observations regarding the concentrations 
of methane can be made. Methane concentrations ranged 
from 0.0010 to 11.9 mg/L (table 9). The maximum methane 
concentration of 11.9 mg/L was measured in a sample 
collected from well WPA-GW-05, followed by a methane 
concentration of 9.04 mg/L in the sample from well MW-04, 
which is near well WPA-GW-05 (fig. 25). Concentrations 
of methane exceeding 1.00 mg/L were also measured in the 
samples collected from other wells near well MW-04, such as 
the samples collected from wells WPA-GW-06, WPA-GW-07, 
USGS-08, and USGS-16. Other samples exceeding 1.00 mg/L 
were collected from wells MW-01, LPA-GW-02, and 
USGS-14 in the Lorraine process area. Methanotrophs of the 
genera Methylomonas and Methylobacter (Bowman, 2006) 
were identified in the samples from six wells (MW-03, PW-02, 
WPA-GW-01, WPA-GW-04, WPA-GW-06, and WPA-GW-09) 
at relative abundances ranging from 2 to 20 percent; however, 
the relative abundance of bacteria that were unclassified at 
the phylum level ranged from 8 to 26 percent in samples with 
methane concentrations greater than 5.00 mg/L (Teeple and 
others, 2025). Bacteria of the genus Clostridium and phylum 
Firmicutes, which includes species capable of participating in 

acetogenesis (Schuchmann and Müller, 2016), an intermediate 
step of degradation previous to methanogenesis, were the 
most abundant in samples with high (greater than 1.00 mg/L) 
methane concentrations (Teeple and others, 2025).

Although the dataset of all the samples available for 
the determination of redox conditions was relatively small 
along with limited constituent results because of lacking 
water for complete sample sets, a general assessment of 
geochemical and microbial indicators demonstrates that iron, 
sulfate, and methane reduction processes are likely occurring 
at the site and could contribute to the natural attenuation of 
contaminants. In addition, the microbial community identified 
in the groundwater indicates a potential for bioremediation as 
iron-, nitrate-, and sulfate-reducing bacteria. Future sampling 
events that include the collection of samples for measuring 
dissolved hydrogen concentrations may provide additional 
data that can help to better determine the predominant redox 
process in the groundwater at the site (Christensen and 
others, 2000).

Aquifer Hydraulic Properties

The final hydraulic conductivity values measured in the 
groundwater monitoring wells screened in the alluvial aquifer 
at the site ranged from 0.01 to 0.5 ft/d (table 4), resulting in 
a mean hydraulic conductivity of about 0.2 ft/d. Whereas 
these hydraulic conductivity values are within the range of 
hydraulic conductivity values reported in the literature for 
unconsolidated sediments (3×10−6 to 8,500 ft/d), they are on 
the lower end of the range of reported hydraulic conductivity 
values for clean sands (0.06 to 1,700 ft/d) and exceed the 
range of reported hydraulic conductivity values of 3×10−6 to 
0.001 ft/d for “fat clays,” which are cohesive and compressible 
clays of high plasticity (Heath, 1983; Domenico and Schwartz, 
1990; American GeoServices, LLC, 2016). The measured 
hydraulic conductivity values compare reasonably well with 
the hydraulic conductivity values reported in the technical 
memorandum on data gap investigation (EA Engineering, 
Science, and Technology, Inc., PBC, 2020d), which listed 
values that ranged from 0.07 to 0.64 ft/d. After completion 
of the slug tests, it was determined that six groundwater 
monitoring wells (USGS-00, USGS-01, USGS-08, USGS-10, 
USGS-13, and USGS-17) lacked the pronounced hydraulic 
connection with the aquifer necessary for unimpeded 
groundwater movement into and out of the groundwater 
monitoring well, and therefore, a final hydraulic conductivity 
value could not be calculated for those groundwater 
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monitoring wells. An estimated range of interstitial velocity 
values was calculated using the measured range of hydraulic 
conductivity values, the mean hydraulic gradient the 
authors of this report estimated at the site (0.04 ft/ft), and an 
approximate effective porosity value (20 percent) from the 
EA Engineering, Science, and Technology, Inc., PBC (2020d) 
report. The estimated range of interstitial velocity values was 
from 0.002 to 0.1 ft/d (0.7 to 40 ft/yr) with a mean interstitial 
velocity of 0.04 ft/d (10 ft/yr). These values for the range and 
mean interstitial velocity vary appreciably from the estimated 
interstitial velocity of 0.0035 ft/d (1.3 ft/yr) reported in EA 

Engineering, Science, and Technology, Inc., PBC (2020d); 
the dissimilarity between these interstitial velocities is a 
result of the different hydraulic gradient values used in the 
conversions: 0.04 ft/ft determined in this report compared to 
0.002 ft/ft used in EA Engineering, Science, and Technology, 
Inc., PBC (2020d). Using the same estimated deceleration rate 
factor for benzene of 2–3 as used in EA Engineering, Science, 
and Technology, Inc., PBC (2020d), the interstitial velocity 
for benzene in the groundwater at the site is estimated to be 
0.2–20 ft/yr with a mean of about 4 ft/yr.
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Figure 24.  Relative abundance of Desulfobacterota and Rhodocyclaceae measured in samples collected from 
groundwater monitoring wells or piezometers in the Wilcox and Lorraine process areas of the Wilcox Oil Company 
Superfund site near Bristow, Creek County, Oklahoma, October–November 2022.
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Figure 25.  Concentrations of methane measured in samples collected from groundwater monitoring wells or piezometers 
in the Wilcox and Lorraine process areas of the Wilcox Oil Company Superfund site near Bristow, Creek County, Oklahoma, 
October–November 2022.
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Summary
The Wilcox Oil Company Superfund site (hereinafter 

referred to as “the site”) was formerly an oil refinery northeast 
of Bristow in Creek County, Oklahoma. Crude oil was refined 
and processed at the site from approximately 1915 to 1963. 
Products known to have been refined or stored onsite were 
crude oil, fuel oil, gas oil, distillate, kerosene, naphtha, and 
benzene (petroleum ether). The Wilcox Oil and Gas Company 
sold the property in 1963, and from 1975 to 2004, the property 
was parceled out for residential and commercial development, 
and a church and seven residences were constructed. Although 
the site was partially cleared during these transitions, remnants 
of the former oil refining operations and storage tanks 
remained as of December 2022.

Historical refinery operations contaminated the 
soil, surface water, streambed sediments, alluvium, and 
groundwater with refined and stored products at the site, 
which led to the property formerly owned by the Wilcox Oil 
and Gas Company being placed on the National Priorities List 
on December 12, 2013, and later authorized as a Superfund 
site when a responsible party for restoration of the site was not 
identified. Groundwater-quality sampling in 2020 indicated 
that petroleum hydrocarbons were found in the local shallow 
perched groundwater system within the alluvium (hereinafter 
referred to as the “alluvial aquifer”) at the site, but not in 
the deeper regional groundwater system. The Wilcox and 
Lorraine process areas are where the highest concentrations 
of volatile organic compounds (VOCs) (such as benzene), 
semivolatile organic compounds (SVOCs), polycyclic 
aromatic hydrocarbons, and trace elements (including metals) 
(collectively hereinafter referred to as “contaminants”) were 
measured in the groundwater during previous site assessments. 
The Wilcox and Lorraine process areas overlie the thickest 
portions of the alluvium at the site, and understanding the 
potential migration of contaminants through the soil and 
groundwater in these areas could help address the areal extent 
of contamination. Therefore, in 2022, the U.S. Geological 
Survey (USGS), in cooperation with the U.S. Environmental 
Protection Agency (EPA), investigated aquifer characteristics 
of the alluvial aquifer in the Wilcox and Lorraine process areas 
of the site to fill data gaps related to the geochemistry, nature 
and extent of contamination, and the fate and transport and the 
degradation potential of contaminants in the groundwater.

This report documents the results of the groundwater 
assessment in the Wilcox and Lorraine process areas of the 
site completed in 2022 by the USGS in cooperation with 
the EPA. This report (1) documents hydraulic conductivity 
and other aquifer characteristics of the alluvial aquifer that 
govern contaminant fate and transport, (2) describes the 
geospatial extent and concentration of the contaminants in the 
alluvial aquifer in the Wilcox and Lorraine process areas, and 
(3) describes the geochemical controls pertaining to oxidation 
and reduction governing the fate and transport and the 
degradation potential of contaminants in the groundwater.

Various data were compiled and collected to 
evaluate the aquifer characteristics at the site including 
the hydrogeologic framework, groundwater-flow system, 
geochemistry, and hydraulic properties of the aquifer. 
A total of 20 new (2022) groundwater monitoring wells 
were installed at the site to collect data used to supplement 
groundwater-level altitude and groundwater-quality data 
collected from older, existing groundwater monitoring 
wells and piezometers; this combined network of wells 
is hereinafter referred to as “wells.” Compiled historical 
soil-core descriptions and depth of refusal information 
were used in conjunction with collected conductivity logs, 
soil-core descriptions, and surface geophysical data to 
characterize the sediments and their extents in the aquifer. 
Groundwater-level altitude measurements were collected to 
develop potentiometric-surface maps of the site and to identify 
potential groundwater-flow direction. Groundwater-quality 
samples were collected to define the concentration and extent 
of any contaminants and their byproducts and to estimate 
natural attenuation potential. Slug tests were completed by the 
USGS to estimate hydraulic conductivity values at each of the 
newly installed (2022) groundwater monitoring wells.

The term “hydrogeologic framework” as used in this 
report refers to the following geologic attributes that govern 
groundwater flow in the alluvial aquifer: land-surface altitude 
and orientation, bedrock altitude and orientation, overburden 
thickness, and sediment characteristics. The land surface and 
the altitudes to the top of bedrock in the Wilcox and Lorraine 
process areas generally slope to the south and southwest 
towards Sand Creek, where the lowest altitudes of the land 
surface and top of bedrock are along stream channels in the 
depressions carved by Sand Creek and its west and northwest 
tributaries. Bedrock is exposed or very near surface to the 
north of the Wilcox and Lorraine process areas. In the case 
of the west tributary, the depressions are not located directly 
below the stream; they are present on either side of the 
stream. The locations of the depressions likely indicate that 
the tributary has historically incised what appear to be two 
paleochannels into the bedrock. The inferred paleochannel 
to the east of the west tributary has deeper depressions than 
the inferred paleochannel to the west. Because of the similar 
slopes between land surface and the top of bedrock, locations 
with the thickest overburden occur where there are depressions 
in the bedrock typically related to inferred paleochannels. The 
primary sediment observed within the overburden consisted 
of silt to sand-sized unconsolidated sediments that ranged 
in color from light brown to black. The borehole electrical 
conductivity logging results were compared to the soil-core 
descriptions, and there appeared to be three major sediment 
groups: (1) a clay-dominant group, (2) a sand-dominant group, 
and (3) a clay and sand mix group. A sand-dominant group 
thickness within the overburden of less than or equal to 10 feet 
(ft) was evident in most (about 90 percent) of the gridded area. 
A comparatively thick sand-dominant group (greater than 
15 ft thick in some areas) was mapped in the bedrock east 
of the west tributary to Sand Creek; this comparatively thick 
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sand-dominant group coincides with the location of an inferred 
paleochannel. Evaluating the mean normalized resistivity 
values for the sand-dominant parts of the overburden can 
potentially identify areas that contain a higher percentage 
of sand and gravel compared to fine-grained sediments. In 
about 75 percent of the gridded area, the mean normalized 
resistivity values in the sand-dominant group were interpreted 
as being less than 210 ohm-meters (ohm-m). Areas with 
mean normalized resistivity values greater than 210 ohm-m 
in the sand-dominant group thickness are generally associated 
with areas of thin overburden. These high mean normalized 
resistivity values may indicate that the bedrock in these 
locations consists of exposed sandstone layers as opposed 
to the upper mudstone unit of the Paleozoic-age (Upper 
Pennsylvanian Period) Barnsdall Formation; weathering of 
the interbedded layers of sandstone found in the Barnsdall 
Formation has likely resulted in an abundance of sandstone 
gravel and sand in these areas. In the northeastern part of 
the Wilcox process area, some of this weathered sandstone 
may have filled in paleochannels on either side of the west 
tributary.

Potentiometric-surface maps were created from 
the groundwater-level altitude data collected prior to 
the collection of groundwater-quality samples during 
October–November 2022 to help assess spatial changes 
in groundwater-level altitudes across the study area. 
Groundwater-level altitudes in the alluvial aquifer in 
the Wilcox and Lorraine process areas are affected by 
the overburden and bedrock altitudes. With such a thin 
overburden in the area, the presence of groundwater and the 
groundwater flow in the alluvial aquifer are highly dependent 
on the bedrock altitude. During October–November 2022, 
groundwater was absent in the north-central part of the Wilcox 
and Lorraine process areas because the bedrock altitudes were 
higher than the groundwater-level altitudes in these parts. 
In general, groundwater flows south towards Sand Creek, 
although bedrock highs in the Wilcox and Lorraine process 
areas affect the flow of groundwater at more localized scales. 
In the Wilcox process area, there is a bedrock high in the 
central part of the process area that acts as a groundwater 
divide, causing groundwater to flow in opposite directions 
on either side of this high. Groundwater to the north of this 
divide flows east and then south, following the location of 
an inferred paleochannel east from the west tributary to Sand 
Creek in the south. Similar to the Wilcox process area, there 
is a bedrock high in the central part of the Lorraine process 
area that acts as a groundwater divide. Groundwater north of 
this divide follows separate flow paths that join and flow west 
towards the northwest tributary. Base on the groundwater-level 
altitudes measured during October–November 2022, the mean 
groundwater gradient for the Wilcox and Lorraine process 
areas is 0.04 foot per foot.

Groundwater-quality samples were collected from 
33 wells during October–November 2022. Samples were 
collected and shipped for laboratory analysis of VOCs, 
SVOCs, trace elements (including metals), major ions, 

natural attenuation parameters, and natural attenuation 
biomarkers. Wells that were coincident with or proximal to 
bedrock highs (MW-02, LPA-GW-03, USGS-00, USGS-05, 
USGS-09, and USGS-15) were not sampled because they 
contained insufficient water. For the wells that were sampled, 
groundwater results for VOCs, SVOCs, and trace elements 
were compared against screening levels established for the site 
by the EPA. Groundwater samples for the analysis of VOCs 
were collected from 29 wells, of which VOCs were detected in 
the samples from 26 of these wells, and the number of VOCs 
detected in the samples from a given well ranged from 1 to 
8. Of the 49 VOCs quantified, the concentrations of 6 VOCs 
exceeded their respective screening levels in samples collected 
from 1 or more wells. SVOCs were detected in the samples 
from 17 of the 19 wells that were sampled, and the number of 
SVOCs detected in the samples from a given well ranged from 
1 to 18. Of the 70 constituents quantified by the analytical 
methods, 25 were detected in groundwater samples collected 
at the site. The highest concentrations of VOCs and SVOCs 
among the constituents exceeding screening levels were most 
often measured in samples collected from well MW-04 in the 
northern part of the Wilcox process area; high concentrations 
of selected VOCs and SVOCs were also measured in the 
sample collected from well WPA-GW-05 in this same part of 
the Wilcox process area. Periodic releases of contaminants 
into the soil in the Wilcox process area likely resulted in 
migration of these contaminants into the groundwater. 
Because of the direction of groundwater flow, contaminants 
are likely to remain in the area surrounding well MW-04 with 
perhaps the potential to migrate east and to the south along 
the inferred paleochannel east of the west tributary to Sand 
Creek. Because concentrations of VOCs and SVOCs did 
not typically exceed screening levels at wells outside of the 
vicinity of MW-04, results from this sampling event indicate 
that a plume of substantial areal extent has not developed at 
the site for VOCs and SVOCs. There was, however, one well 
(PW-03) where the groundwater was heavily contaminated 
with phenol and selected cresol compounds (2-methylphenol; 
2,4-dimethylphenol; and 3- and (or) 4-methylphenol) near 
the southern border of the site; the contaminants in this 
groundwater have the potential to migrate to Sand Creek along 
identified groundwater-flow paths. Groundwater samples 
for the analysis of trace elements (including metals) were 
collected from 25 wells. Of the 19 trace elements quantified by 
the analytical methods, 15 were detected in the groundwater 
samples. Although the spatial distribution of trace element 
concentrations did not follow a specific spatial pattern, the 
maximum concentrations for 13 of the 15 trace elements 
detected at the site were measured in the samples from 2 
wells: WPA-GW-01, with maximum concentrations for 7 
trace elements (aluminum, barium, beryllium, cadmium, iron, 
manganese, and vanadium), located in the Wilcox process 
area, and USGS-12, with maximum concentrations for 6 trace 
elements (chromium, copper, lead, molybdenum, nickel, and 
zinc), located in the Lorraine process area.
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Geochemical indicators provide information on the 
conditions that prevail in an aquifer that are supportive of 
natural attenuation and help determine if the aquifer has the 
capacity to naturally degrade contaminants. Several conditions 
throughout the site such as groundwater system equilibrium 
issues, spatial differences in soil contamination, and sampling 
issues from dewatering wells complicate the determination of 
oxidation-reduction (redox) conditions. These data limitations 
and confounding factors constrained the ability to fully assess 
redox conditions at each well; thus, only a general assessment 
of the potential redox conditions based on geochemical and 
microbial indicators of degradation is discussed. In-situ 
measurements of pH, oxidation-reduction potential (ORP), 
and dissolved oxygen (DO) were made in 25 wells. At 24 
wells the pH was within the optimal range for biodegradation 
of 6 to 8 standard units. A positive ORP value was measured in 
two of the wells, USGS-04 and USGS-23, whereas a negative 
ORP value was measured in the remaining wells, indicating 
that an environment favorable to anaerobic biodegradation 
was likely predominant throughout the site. Anoxic conditions 
(DO concentrations less than 1.0 milligram per liter [mg/L]) 
were measured in 15 of the 25 wells where DO was measured, 
indicating that the predominant pathway for degradation 
is anaerobic. Total iron and ferrous iron were measured in 
the samples collected from 25 and 13 wells, respectively. 
Concentrations of total iron ranged from 1,030 to 119,000 
micrograms per liter (µg/L), whereas concentrations of ferrous 
iron ranged from 1,600 to 27,200 µg/L. Nitrate was detected 
at concentrations that ranged from 0.033 to 0.839 mg/L in 5 
of the 19 wells that were sampled for this constituent. The 
highest concentrations of nitrate were measured in the samples 
from wells USGS-19 and USGS-23 (0.526 and 0.839 mg/L, 
respectively). Sulfate was measured in the samples collected 
from 17 wells at concentrations that ranged from 0.07 to 
83.6 mg/L, with the maximum concentration measured in 
the sample from well USGS-02. Sulfide was measured in 
the field at 12 wells, and concentrations ranged from less 
than 0.3 to 5.4 mg/L. Methane concentrations ranged from 
0.0010 to 11.9 mg/L. Concentrations of methane exceeding 
1.00 mg/L were measured in the samples collected from 
other wells near well MW-04, such as the samples collected 
from wells WPA-GW-06, WPA-GW-07, USGS-08, and 
USGS-16. Other samples with concentrations exceeding 
1.00 mg/L were collected from wells MW-01, LPA-GW-02, 
and USGS-14 in the Lorraine process area. Although the 
dataset of all samples available for the determination of redox 
conditions was relatively small along with limited constituent 
results because of lacking water for complete sample sets, a 
general assessment of geochemical and microbial indicators 
demonstrates that iron, sulfate, and methane reduction 
processes are likely occurring at the site and could contribute 
to the natural attenuation of contaminants. In addition, 
the microbial community identified in the groundwater 
indicates a potential for bioremediation as iron-, nitrate-, and 
sulfate-reducing bacteria.

In November and December 2022, following 
groundwater monitoring well development and 
groundwater-quality sampling, slug tests were completed on 
each of the groundwater monitoring wells installed in 2022 to 
(1) determine if the wells were in good hydraulic connection 
with the aquifer and (2) estimate the hydraulic conductivity 
of the aquifer at each well. After completion of the slug tests, 
it was determined that six groundwater monitoring wells 
(USGS-00, USGS-01, USGS-08, USGS-10, USGS-13, and 
USGS-17) lacked the pronounced hydraulic connection with 
the aquifer necessary for unimpeded groundwater movement 
into and out of the groundwater monitoring well, and 
therefore, a final hydraulic conductivity value could not be 
calculated for those groundwater monitoring wells. The final 
hydraulic conductivity values measured in the groundwater 
monitoring wells screened in the alluvial aquifer at the site 
ranged from 0.01 to 0.5 foot per day (ft/d), resulting in a mean 
hydraulic conductivity of about 0.2 ft/d. The estimated range 
of interstitial velocity values was from 0.002 to 0.1 ft/d (0.7 
to 40 feet per year [ft/yr]) with a mean interstitial velocity of 
0.04 ft/d (10 ft/yr). Using an estimated deceleration rate factor 
for benzene of 2–3, the interstitial velocity for benzene in the 
groundwater at the site is estimated to be 0.2–20 ft/yr with a 
mean of about 4 ft/yr.
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