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By Sophie R. Bonner," Kurtis J. Nelson,! Peter G. Rinkleff, Chad M. Hoffman,2 and Paul F. Steblein’

Abstract

On September 19, 2024, the U.S. Geological Survey
(USGS) held a virtual workshop titled “Potential for
Evaluation of Fire Models with Remote Sensing Data
Workshop” to assess the feasibility of using remotely sensed
datasets to evaluate next-generation wildland fire behavior
models. Remote sensing and fire modelling experts gathered
to: (1) assess the suitability of a variety of classified,
commercial, and publicly available remotely sensed datasets
for advancing fire model evaluation; (2) develop ideas on
how to integrate remotely sensed data products with fire
model inputs and outputs; and (3) identify any barriers and
limitations to performing an evaluation of next-generation fire
models. The USGS National Civil Applications Center, USGS
Earth Resources Observation and Science Center, and USGS
Fort Collins Ecosystem Science Center presented information
on remote sensing datasets for three Arizona wildfire case
studies. The development teams of the Fire Dynamics
Simulator and QUIC-Fire fire behavior models presented their
models and current evaluation methodologies. Interspersed
with these presentations were discussions regarding how to
expand current wildfire remote sensing data collection efforts
beyond operational needs to assist in future fire modeling.

Workshop participants agreed that several of the remote
sensing datasets have potential for wildfire model evaluation.
However, participants also identified several barriers and
complications to performing a model evaluation including
key gaps in wildfire datasets; uncertainties related to model
fire-atmosphere reinitiation; lack of ground truthing and
atmospheric correction of remotely sensed datasets; and
differences in spatial, geolocation, radiometric, and temporal
resolutions between the datasets and models. Further,
the absence of standardized methodologies for image
interpretation, poor understanding of sensor capabilities

U.S. Geological Survey.

2Department of Forest and Rangeland Stewardship, Colorado State
University.

and limitations, and a lack of automation also hinder model
evaluation efforts. Based on feedback from this workshop,
USGS fire modelers are considering a project to address the
uncertainties related to fire model reinitiation and encouraging
fire practitioners to collaborate with remote sensing experts
on wildland fires to improve data collection for a broader
community of practice. Additionally, multiagency efforts are
in development for a comprehensive cross-sensor validation
and ground-truth campaign to test spatial, spectral, and
geolocation sensor capabilities, determine limitations, and
identify observational gaps for future sensor development
and acquisition.

Introduction and Background

A new generation of fire behavior models is being
developed to address the increasing need to understand and
predict wildland fire behavior and effects under a broad
range of burning conditions. This next generation of fire
models—including those such as the Fire Dynamics Simulator
(FDS; Mell and others, 2007, 2009; Bova and others, 2015),
QUIC-Fire (Linn and others, 2020), and FIRETEC (Linn and
Harlow, 1997; Linn and others, 2002; Linn and Cunningham,
2005)—use advanced computer simulation techniques
to represent and model the various processes driving fire
behavior in wildland systems. Though these modeling systems
often include empiricism, they are classified as physical or
quasi-physical models (Sullivan, 2009a). These models have
several advantages over the historically used empirical and
quasi-empirical models (Sullivan, 2009a, b, c), including that
they can explicitly resolve fire behavior at fine resolutions
(to a sub-meter scale), capture the influences and interactions
of fuels, winds, terrain, and fire on a landscape in three
dimensions, and have potential to be applied to a wide range
of fuel types and burning conditions (Or and others, 2023). As
part of the development and adoption of these new models, it
is crucial that they be evaluated against real-world wildland
fire data to determine the reliability of the model predictions
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across a range of scenarios and to identify possible flaws

and future research for model improvement (Alexander

and Cruz, 2013). Evaluation of these models is critical for
supporting the research-to-operations transition by building
confidence in model results and enabling land managers to use
modeling tools for real-time decision making (Hoffman and
others, 2018).

Past work to evaluate these fire behavior models has
included comparisons against empirical fire spread models
(Linn and Cunningham, 2005; Pimont and others, 2012;
Ritter and others, 2020; Atchley and others, 2024), laboratory
experiments (Marino and others, 2012; Perez-Ramirez and
others, 2017), laboratory and field-scale fire simulations
(Mell and others, 2007, 2009; Dupuy and others, 2011;
Hoffman and others, 2016; Liu and others, 2017), and other
next-generation fire behavior models (Linn and others, 2020).
These evaluations show that the models can simulate realistic
fire behaviors and effects under moderate conditions; however,
they do not capture the full range of weather conditions, fuels,
or fire behaviors that can be present during wildfires or larger
operational prescribed fires. The models’ limitations may be
important for the increasing number of wildfires occurring
under extreme environmental conditions (for example, hot,
dry, or windy). Fire modelers have also evaluated models
using re-creations of wildfires (Bossert and others, 2000;
Gallagher and others, 2021), though these evaluations take
advantage of preexisting measurements of fuels in the
area, stationed wind sensors within range of the fires, and
on-the-ground observations of fire behavior from incident
responders. As most wildfires do not have these datasets
and sensors readily available, model evaluation efforts have
primarily focused on prescribed and laboratory fires.

Prescribed fires and wildfires differ in several ways,
including their scales, planning horizons, environmental
conditions, and fire behaviors (Hiers and others, 2020);
therefore, the model validation process for the two types of
fires will also differ. Prescribed fires are planned events with
designated containment units so data collection devices can
be positioned to capture environmental and fire information
at a high resolution before and throughout the operational
window. Wildfires are unplanned and do not have prescribed
bounds so responders to wildfires often do not have the
opportunity to place additional sensors ahead of time and
must rely on existing in situ sensors to provide data. However,
additional remote sensing resources can be ordered for
both types of fires to provide high-resolution imagery and
environmental data to track fire behavior and perimeters.
Although there are numerous existing experimental datasets
from free spreading (Cruz and others, 2025) and prescribed
fires (Bonner and others, 2021) that could be applied in model
evaluation, the data collected during these experiments are
often insufficient to evaluate next generation fire behavior
models or have considerable uncertainties. Because of the
abundance and diversity of wildfire events globally and the
coverage of operational datasets, we look toward wildfires for
data and validation.

Next generation fire behavior models require a large
amount of highly precise environmental data to simulate a
real burning environment, much of which can be collected
using remote sensing methods (Filkov and others, 2018).
Environmental information, such as topography, fuel structure
and composition, weather, and fire locations, are required
at a meter level throughout a prefire landscape to accurately
initiate a wildfire simulation. Additionally, to fully evaluate
fire behavior model simulations against real wildfires, it is
necessary to collect environmental data during the active
burning period and post fire. These model requirements—to
collect large amounts of data with fine temporal and spatial
resolutions over large scales—necessitate the use of remote
sensing-sourced data. Satellite, aircraft, and terrestrial sensors
enable a wide variety of environmental data to be quickly and
consistently collected at fine resolutions over large areas.

Improvements in remote-sensing technologies and
a greater range of classified, commercial, and publicly
available (refer to the “Glossary” section of this report for
the applicable definition) wildfire remote-sensing datasets
offer the opportunity to better evaluate fire behavior models.
However, there are several current barriers to evaluation,
including determining which datasets and derivatives thereof
to use, associating remotely sensed datasets to fire behavior
model inputs and outputs, and identifying the limitations
and uncertainties involved with evaluating a fire model.
Previous discussions with sensor operators and data users
revealed that this is further confounded by a general lack of
sensor performance for fire relative to spectral sensitivities
and temporal resolutions, geolocation inaccuracy, and
spatial constraints in complex landscapes and under variable
atmospheric conditions.

To help identify possible future research areas related
to remote sensing and fire behavior model evaluation, a
mix of remote-sensing and fire-modeling researchers and
developers (app. 1) came together on September 19, 2024, for
a day-long virtual workshop to assess the feasibility of using
remotely sensed datasets to evaluate next-generation wildland
fire behavior models. U.S. Geological Survey (USGS)
remote-sensing experts from the National Civil Applications
Center and the Earth Resources Observation and Science
Center identified three Arizona wildfires (the 2023 Kane, 2022
San Rafael, and 2022 Tunnel Fires) and presented information
on 19 classified, commercial, and publicly sourced remotely
sensed environmental datasets for these fires. Developers of
the FDS and QUIC-Fire models presented on the respective
information needs, model inputs and outputs, and evaluation
goals for their fire behavior models. Workshop discussions
addressed topics including operational remote-sensing tasking,
dataset scale and resolution requirements for modelers,
derivatives of remote-sensing datasets, dataset-to-fire model
linkages, missing or incomplete datasets and possible
proxies, model uncertainties, previously accomplished model
evaluation methodologies, and prospective next steps. This



report provides a summary of the discussions that took place
during the 2024 virtual workshop “Potential for Evaluation of
Fire Models with Remote Sensing Data Workshop.”

Workshop Overview and Goals

The 2024 virtual workshop “Potential for Evaluation of
Fire Models with Remote Sensing Data Workshop” and the
discussions therein were initiated by the U.S. Department of
Defense Environmental Security Technology Certification
Program advance fire model evaluation efforts and support
the continued growth of the Innovation Landscape Network
and the invested stakeholders. The coordinators of the
workshop invited a mix of remote-sensing experts and fire
modelers (app. 1) to discuss how best to take advantage
of remote-sensing technologies to evaluate fire models
including FDS and QUIC-Fire. Remote sensing experts from
the National Civil Applications Center and Earth Resources
Observation Science Center spoke on remotely sensed
datasets and possibilities for expanding the usefulness and
automation of existing and future remote-sensing systems.
Fire model developers of FDS from the U.S. Department
of Agriculture Forest Service and the National Institute
of Standards and Technology (NIST) and developers
of the FIRETEC and QUIC-Fire models at Los Alamos
National Laboratory presented on their model needs and
evaluation efforts. This workshop was primarily designed
to be an information exchange between remote-sensing and
fire-modeling experts to help both groups meet their respective
and interdependent objectives.

The goals of the September 19, 2024, workshop were to:

1. Assess the suitability of a variety of classified,
commercial, and publicly available remotely sensed
datasets for advancing fire model evaluation.

2. Develop ideas to integrate remotely sensed data products
with fire model inputs and outputs.

3. Identify barriers and limitations to performing an
evaluation of next-generation fire behavior models.

Methods

To provide material for workshop discussions, the
workshop coordinators developed presentations on remotely
sensed wildfire response datasets available for fire behavior
model evaluation. We primarily described datasets collected
for the southwest region of the United States as our
funding directives from the U.S. Department of Defense
Environmental Security Technology Certification Program
were to support the Southwest Innovation Landscape Network
fire model evaluation efforts. We identified three past wildfires
(2023 Kane, 2022 San Rafael, and 2022 Tunnel Fires) in
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Arizona to use as case studies for our wildfire remote-sensing
dataset presentations. Using the perimeters and burning period
of these wildfires, we assessed and presented the classified,
commercial, and public remote-sensing datasets commonly
available for use in fire modelling validation.

Wildfire Selection

We identified wildfires for remote-sensing dataset
assessment by first searching for all wildfires occurring in
Arizona during the 5 years from January 2020—-August 2024.
We then filtered down the number of selected wildfires to 10
by only including those which:

» Burned for at least 5 consecutive days, and

» Had various classified and unclassified remote-sensing
datasets available.

From these 10 fires, we collectively selected 3 wildfires
for further analyses, aiming for wildfires that represented a
variety of terrain, vegetation, and sizes (table 1; fig. 14-D).

Remote Sensing Data Collection

We searched for classified, commercial, and publicly
available remotely sensed datasets for our three selected
wildfires. For each wildfire, we used a hand-rendered fire
perimeter generated from classified Aircraft 3/Firehawk
data (table 2; fig. 1) to filter the remotely sensed datasets
to a specific wildfire location. We used the active fire dates
(table 1) of each wildfire to temporally filter relevant datasets
to the pre, active, and postfire timeframes.

To filter the remote sensing datasets for evaluation,
we selected only those datasets relevant to fire behavior
simulation modelling. Specifically, we only included datasets
that help to determine fire perimeters, intensities, effects, and
behaviors, as well as datasets with information regarding
fuels, terrain, and fire weather. Following this process, we
selected 2 classified, 1 airborne, 6 commercial, and 11 publicly
available remotely sensed datasets and metadata to use in
presentations and discussions during the workshop (table 2).

Table 1. Arizona fires selected for the 2024 virtual workshop
on assessing the potential for evaluation of wildland fire models
using remotely sensed data.

[Dates shown as month/day/year.]

Fire

Fire name Fire dates duration Final area
. (acres)
(in days)
Kane 08/04/2023-09/01/2023 28 2,800
San Rafael  05/07/2022-05/12/2022 6 11,000
Tunnel 04/17/2022-06/01/2022 75 20,000
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Table 2. Classified, commercial, and publicly available remote-sensing datasets for fire behavior modeling.

[NGA, U.S. National Geospatial-Intelligence Agency; NCAC, U.S. Geological Survey National Civil Applications Center; NA, none available; DoD, U.S.
Department of Defense; NIROPS, U.S. Forest Service National Infrared Operations; FS, U.S. Department of Agriculture Forest Service; lidar, light detection
and ranging; USGS, U.S. Geological Survey; NASA, U.S. National Aeronautics and Space Administration; NIFC, National Interagency Fire Center]

Dataset name Data type Owner or contributor  Classification Web page address

Aircraft3/Firehawk Fire perimeters NGA and NCAC Classified NA

FireGuard Fire perimeters NGA and DoD Classified NA

NIROPS/Phoenix Sensor Fire perimeters, FS NIROPS Commercial https://fsapps.nweg.gov/nirops/

intensity
NIROPS/TK7-TK9 Fire perimeters, FS NIROPS Contracts  Airborne https://fsapps.nwecg.gov/nirops/
intensity
BlackSky Global 1-20 Multispectral BlackSky Holdings Commercial https://calval.cr.usgs.gov/apps/compendium/
Inc. detail?p=h/yyMzecUKEneo/8vUbqDQ==

Pelican-1 Multispectral Planet Inc. Commercial https://calval.cr.usgs.gov/apps/compendium/

detail?p=aesT/d+xUV7c0I2Bb4bwzA==

SkySat 01-21 Multispectral Planet Inc. Commercial https://calval.cr.usgs.gov/apps/compendium/

detail?p=1+4M2zr3s7Wh6Q2B5YJm6hQ==

SuperDove Flock Multispectral Planet Inc. Commercial https://calval.cr.usgs.gov/apps/compendium/

detail?p=YNuejBHUBteJvOesFQLmgQ==

WorldView 1-3 Multispectral DigitalGlobe Inc. Commercial https://calval.cr.usgs.gov/apps/compendium/deta

i1?p=fozjrnIPNs+vh4z42F X T4Q==
3-Dimensional Elevation Lidar USGS Public https://apps.nationalmap.gov/lidar-explorer/#/
Program (3DEP)

Burned Area Reflectance  Burn severity FS and USGS Public https://burnseverity.cr.usgs.gov/baer/
Classification (BARC)

Global Ecosystem Lidar NASA Public https://calval.cr.usgs.gov/apps/compendium/
Dynamics detail?p=TbmTRLq60bEA20CDS0XS1w==
Investigation (GEDI)

Interagency Ecosystem  Lidar Multiple Public https://dmsdata.cr.usgs.gov/lidar-monitoring/
LiDAR Monitoring viewer/

(IntELiMon)

LANDFIRE Vegetation, fuels, FS and USGS Public https://landfire.gov/

fire regimes

LANDSAT 8-9 Multispectral NASA and USGS Public https://calval.cr.usgs.gov/apps/compendium/

detail?p=0EqQWOVINgvtSk6/7G7Qlw==

Monitoring Trends Burn severity FS and USGS Public https://www.mtbs.gov/
in Burn Severity
(MTBS)

NIFC - Fire Perimeters Fire perimeters, NIFC Public https://data-nifc.opendata.arcgis.com/
and operational data operational data

Rapid Assessment of Burn severity FS and USGS Public https://burnseverity.cr.usgs.gov/ravg/
Vegetation Condition
After Wildfire
(RAVG)

Remote Automatic Weather Multiple Public https://raws.nifc.gov/

Weather Stations
(RAWS)
Sentinel 2 A-C Multispectral European Space Public https://calval.cr.usgs.gov/apps/compendium/

Agency detail?p=W2+54RoM XIkuOxZbKalhEQ==
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Next-Generation Fire Behavior Models

We invited the development teams of FDS and
QUIC-Fire to present on their respective wildland fire
behavior models, which are shown in figures 24—B. Presenters
from these teams identified model inputs and outputs,
described present and future data needs, and addressed past
model evaluations undertaken to validate their model. As these
presentations were only intended to introduce the model to
remote sensing experts and set the scene for discussions, we
did not go into detail on model parameters.

Fire Dynamics Simulator

The FDS is a powerful computational fluid dynamics
model codeveloped by NIST and the U.S. Department of
Agriculture Forest Service to simulate fire-driven fluid flow
(McGrattan and others, 2013). It uses large eddy simulation
techniques to solve governing equations for low-speed,
thermally driven flow, focusing on smoke and heat transport
from fires. The FDS has been widely used since its public
release in 2000 for applications such as designing smoke
handling systems (Sotiriadis and Kontoleon, 2023), studying
sprinkler/detector activation (Hopkin and Spearpoint, 2019),
and simulating building interior fires (Moon and others, 2021).
The FDS has been upgraded by the Forest Service and NIST to
model wildfire behavior across a range of scenarios including
in complex terrain (Innocent and others, 2023), heterogenous
vegetation (Ziegler and others, 2017), and for multiple
interacting fires (Morvan and others, 2009) such as during a
prescribed burning event. Vegetation can be represented as

either a generic landscape value or as individual trees and
shrubs down to the centimeter scale. The model can export a
variety of outputs relevant to fire, smoke, and fuels.

QUIC-Fire

QUIC-Fire is a three-dimensional (3D) coupled
atmospheric-fire behavior and spread modeling tool
developed by the Los Alamos National Laboratory (Linn
and others, 2020). This model couples the 3D wind solver
QUIC-URB (Singh and others, 2008; Robinson and others,
2023) to the cellular automata (CA) fire-spread model
Fire-CA to represent dynamic fire-atmospheric interactions
and fire spread. QUIC-Fire was developed to require less
computational time and a lower cost burden than most
computational fluid dynamics fire-atmospheric models (for
example, FIRETEC) and has greater fidelity for fire dynamics
and fuel structure than traditional models (for example,
FlamMap). Inputs for the model include 3D fuel and elevation
grids; wind input locations with wind speeds, directions,
and input heights; and a spatially and temporally explicit
ignition pattern. Outputs from the model are saved during
the simulation and include information on fuel and moisture
consumption, winds, fire energy release, and emissions.
Overall, QUIC-Fire is a fast-running model intended to enable
land managers and researchers to rapidly and accurately
simulate wildland fire behavior and effects under complex 3D
vegetative fuel structures, topographies, weather conditions,
and ignition patterns.
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A
B
EXPLANATION
M Three-dimensional tree crowns
™ Burnt area
B Active fire

Figure 2. Next-generation fire behavior model simulation results shown at 350 seconds
into the model run using A, the Fire Dynamics Simulator (simulated area shown is 1,100
meters [m] x 400 m x 220 m with variable horizontal resolution between 1-2 m), and B,
QUIC-Fire (simulated area shown is 1,200 m x 1,200 m x 38 m with2m x 2 m x 1 m cell
resolution). The simulations are looked at from a birds-eye view.

Discussion multiple remote-sensing resources, including lidar (Castorena
and others, 2025), multispectral imagery (Abdollahi and
Yebra, 2023; Chavez-Duran and others, 2024), and derived
sources such as LANDFIRE (Rollins, 2009). Digital elevation
models derived from lidar scans, such as those included in the
3D Elevation Program that is also known as 3DEP (Snyder,
2012), cover the entirety of the United States and provide

the necessary information to build terrain inputs for any
landscape. Weather inputs such as wind velocities and smoke

Workshop participants acknowledged that the data from
the remotely sensed datasets that were presented are useful
for parameterizing many of the fuels, terrain, and weather
conditions required for simulating a wildfire, and have further
use in comparing real and simulated fire perimeters, area
growth, and canopy consumption. Three-dimensional forest
structure and surface fuel model inputs can be built from
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composition and transport have been gathered from permanent
Remote Automatic Weather Stations (Warren and Vance, 1981;
Horel and Dong, 2010) and portable weather sensors (Hartung
and others, 2006) and used in past model evaluations.

Spatial fire behavior metrics including the location of fire

on the landscape and its spread can be identified through the
multispectral snapshots provided by various remotely sensed
datasets (table 2).

Barriers and Limitations

Despite these uses for remotely sensed datasets,
participants noted several barriers and limitations that would
hinder the evaluation of fire behaviors and effects simulated
in FDS and QUIC-Fire. Barriers to model evaluation include
missing, incomplete, or uncertain datasets that prevent fire
modelers’ ability to fully understand and simulate the various
burning environments and behaviors of wildfires. Limitations
are unknowns and uncertainties in the datasets and models that
must be scientifically resolved before model evaluation. In the
following subsections, we identify and discuss these barriers
and limitations to model evaluation efforts and propose ideas
and future research that could address these issues.

Missing Datasets

Although the identified remote-sensing datasets cover
a range of existing conditions and landscapes, workshop
participants noted that some key wildfire scenarios were
not represented. For example, the presented datasets did
not discern wildfire events with abrupt transitions in wind
conditions (Potter and Hernandez, 2017), wherein the
wind quickly changes directions, leading to changes in the
direction and speed of fireline spread, fire behaviors, and
how operational forces choose to respond to the fire. Also
missing from these datasets were scenarios characterized
by atmospheric instability (Giannaros and others, 2022;
Menezes and others, 2024) and wind blow-up (Byram, 1954;
Leach and Gibson, 2021), which affect turbulence and the
vertical flow of air leading to erratic fire behaviors. Capturing
wildfire and associated environmental data for these scenarios
and evaluating how well the models can represent fire
behaviors are of particular interest as wildfire operators must
be able to quickly interpret and respond to atmospheric and
wind shifts. Once evaluated, these fire behavior models can
be used to better understand the fire-atmosphere interactions
under these conditions and to train wildfire responders for
suppression activities.

Additional remotely sensed data are needed for a more
comprehensive understanding of fire. These include data from
lidar to determine fuel volumes and structure and methods to
rapidly assess fuel conditions like moisture and type in the
vicinity of an active fire near the time of the fire itself. Lidar
systems are readily available off the shelf, and methods exist

for measuring fuel structures from lidar (Arkin and others,
2021; Marcozzi and others, 2023; Xi and others, 2023) but
some development may be needed to rapidly process and
disseminate derived data into a format for model inputs.
Conducting broad-area fuel condition assessments using
remote sensing techniques would likely involve some spectral
methodology coupled with other methods like synthetic
aperture radar. Significant investment is required to develop,
test, and validate methods.

Currently (2025), there are no remotely sensed datasets
describing the spatial distribution of fuel moistures at fine
enough spatial resolutions and timeliness for fire behavior
modeling in FDS or QUIC-Fire. Live crown and dead surface
fuel moisture contents (FMC), which are the amount of
water in a leaf relative to the mass of dry leaf matter, are
integral components of fire behavior models as they partially
determine the probability of ignition, effective heat released
during combustion (Rothermel, 1983), and further affect
fire behaviors such as rate of spread, fire intensity, and fuel
consumption (Matthews, 2013; Misi¢ and others, 2024). Dead
surface FMC are closely tied to meteorological conditions
and thus can be estimated from climate and weather data
(Viney, 1991; Sharples and others, 2009) with knowledge of
the vegetative fuels. Live canopy FMC, however, are a result
of interactions between plant physiologies, fuel structure,
soil moisture, and meteorological conditions (Danson and
Bowyer, 2004), making these values more spatially variable
than dead FMC and necessitating additional work to estimate.
Current methods of estimating live FMC using remote sensing
datasets are limited by spectral reflectance detecting issues,
coarse-resolution data inputs for empirical modeling of FMC,
data-heavy physics-based algorithms, quantifying error, and
other constraints (Yebra and others, 2013). Further, many
of the methods are site- or vegetation-specific and require
large amounts of sampling to determine FMC, making
them challenging to operationalize (Yebra and Chuvieco,
2009). Therefore, there is a need for novel remote sensing
methodologies that can be applied to a wide variety of
ecosystems and can account for these issues to estimate live
and dead FMC at fine scales and frequencies.

Remote Sensing Dataset Quality

Assessing the quality of remote sensing methodologies
is critical for building datasets that accurately represent real
landscapes. Errors can be introduced during the acquisition,
processing, analysis, and conversion of raw, remotely sensed
data into interpreted dataset products (Lunetta and others,
1991), and each introduced error can add or build on the last
to misrepresent reality. Sources of error stem from sensor
properties (for example, calibration, sensitivity, radiometric
or geometric distortion), environmental conditions (for
example, shadows, clouds, smoke, noise, water vapor aerosol
content, obscurity because of landscape features, natural
landscape variability), and human-introduced error (for



example, best sensors to use, operator-to-operator variability
in interpretation, and postprocessing steps; Campbell and
Wynne, 2011).

Although environmental conditions cannot be controlled,
many of these other error sources can be accounted for.
Expanding the common knowledge and understanding of the
multiple sensors available and their best use cases can support
wildfire managers and researchers in selecting appropriate
sensors for their tasks. Additionally, sensors can be calibrated
to better capture landscape features and reduce distortion and
error (Kaasalainen and others, 2011; Fernandez Pareja and
others, 2013). Preprocessing steps such as cloud and cloud
shadow detection systems, relative radiation correction,
and geometric correction (Campbell and Wynne, 2011) can
be implemented to better detect and compensate for issues
in the raw imagery (Qi and others, 2018). Automation of
the postprocessing steps typically done by individuals will
improve the consistency and expediency of remote-sensing
datasets and remove much of the human error element.
Finally, using ground truthing to quantify error and validate
remote-sensing datasets will help remote-sensing scientists
adjust sensing methodologies to better match what is present
on the landscape (Nagai and others, 2020). Through careful
selection of sensors and sensing methodologies, understanding
sensor properties and uncertainties, science-driven automation
of postprocessing steps, and validation of datasets, remotely
sensed datasets will become more useful for both operational
wildfire mapping and fire model evaluations.

Each of the remotely sensed datasets evaluated during
this workshop is discretely tasked and manually generated
to support operational wildfire suppression requirements. As
the fire environment changes and wildfire frequency and size
expand, cost-effective and scalable methods can be developed
and tested to augment and eventually stand in for human
interpretation. Additionally, a coordinated approach for data
tasking can be developed instead of single-purpose tasking
from single-purpose instruments. For example, using an
airborne thermal sensor to detect and map fires, an ensemble
collection concept can be implemented to not only obtain
tactical data for direct attack needs, but also to collect data
useable for fuel evaluation, infrastructure assessments, and
other needs (for example, fire model evaluation). As of 2025,
these data are collected in a piecemeal, uncoordinated fashion,
creating challenges in access to disparate data sources, in the
alignment of spatial and temporal aspects, and in the area of
coverage across datasets.

Imagery Interpretation and Mapping

Because current fire-mapping methods are exclusively
manual, they are subject to operator biases that lead to
inconsistencies in interpretation. As the fire environment
evolves, automated detection and mapping tools are essential
to meet the growing need for mapping products and model
inputs—especially the ability to calculate the rate of spread
from imagery. Moreover, as platforms and sensors with long
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dwell times become available, manual processing will be
unable to keep up with collection and dissemination tempos.
Mapping standards are required to ensure that automation is
consistent, especially if manually derived inputs are to be used
for training data to prepare artificial intelligence or machine
learning methods. Standard, deterministic image-processing
methods need consistent rules for algorithm development.

Using remotely sensed data to produce model inputs or
validate model outputs requires interpreting the dataset and
extracting information to develop mapped products. Various
methods can be applied based on the type of product desired.
In addition, interpretation can be subjective in some cases and
lead to inconsistencies depending on the individual analyst
producing the information product. Although some steps to
preprocess data and develop draft products can be automated,
there are often manual steps that also need to be completed to
create a final product. These manual steps can lead to higher
accuracy products with a skilled analyst performing the data
interpretation but may create inconsistent results.

Much of the remotely sensed data explored at the
workshop was various forms of optical imagery. These
types of imagery are among the most prolific and easiest
datasets to interpret; however, there are also limitations in
their applicability to sense fire behavior and effects. For
example, in dense canopies, optical imagery often cannot
accurately capture the understory changes that occur during
a fire (Szpakowski and Jensen, 2019). Active sensor data, for
example from lidar sensors, can often penetrate the canopy
and depict the understory conditions, but these data are
not nearly as available, especially during wildfire response
activities, due to dangerous flying conditions directly related
to the fire itself and airspace restrictions that favor fire
suppression activities (Xi and others, 2022).

Translating Remotely Sensed Data to Fire Models

Operational wildfire remote-sensing datasets are
collected solely for fire-line mapping to support active
incident suppression response with no regard for fire modeling
requirements, postfire assessments, or other management
and research uses. This means that, although these remotely
sensed datasets may be useful for multiple purposes, the data
are not specifically designed to have the coverage or qualities
necessary for fire model parametrization or evaluation. Fire
models such as FDS and QUIC-Fire capture the spatial
behaviors and effects of wildland fire over time by modeling
the burning environment on 3D arrays. These user-defined
arrays are designed with specific volumes, spatial resolutions,
and temporal frequencies, and require data inputs with higher
resolutions than those datasets used for wildfire incident
response.

The intensive spatial requirements of these model inputs
and outputs must be resolved with the spatial properties of
the datasets. Remotely sensed datasets are tasked to record
data for a specific location with defined bounds, which may
not cover the full area required for a simulation. For example,
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terrestrial laser scanner (TLS) scans can quickly provide
high-density point clouds for small plots (for example,
10—60 meters; Pokswinski and others, 2021) that can be
processed to understand and build high-quality fuels inputs.
These data are useful for understanding fuel structures and
patterns in a limited area but require additional effort and
scanning to extend this information beyond the scan range

to describe an entire forest. Similarly, aerial datasets may
not cover an entire active wildfire in a single scan, which
makes detecting fire and fire behaviors with a single scan
difficult. Lack of coverage in remotely sensed datasets

can be overcome using additional close-in-time scans at

the time of data collection or by developing statistical and
geographic relationships with alternative datasets. In the case
of expanding the coverage of TLS datasets, it is possible to
upscale TLS from plot to landscape scale by coregistering
multiple TLS scans with an aerial laser scanner dataset with
greater coverage (Castorena and others, 2025). This allows for
the scans to be aligned and relationships to be made between
what a forest looks like from above (using an aerial laser
scanner) and increased detail below the canopy (from TLS),
giving a better understanding of forest structure and enabling
that subcanopy information to be extrapolated beyond the
TLS scan. Similarly, gaps in the spatial coverage of remotely
sensed datasets can be interpreted by temporally or spatially
interpolating information between scans with coverages of
the area. Other spatial features that must be resolved are
differences in the spatial resolutions, projections, and time
of collection of grids between the various datasets and the
models. Dataset grids are a feature of the sensor settings,
location, and interpretation methods used. To get to the spatial
information needed by models such as FDS and QUIC-Fire
(from centimeters to the order of several meters), remote
sensing datasets must be rescaled and aligned to the model
grid resolution.

Temporal frequency of remote sensing datasets is most
important for wind inputs and fire behavior and spread
outputs. Wind velocities can rapidly shift over the course of
a wildfire, resulting in changes to fire spread and behaviors.
Capturing these changes at a high enough frequency is
important for model parameterization and understanding
one of the major driving factors of fire behavior. Fire spread
and behavior datasets need to provide data at high enough
temporal resolution to enable evaluation of how well the
model can simulate fire behaviors over time and facilitate
model reinitiation.

Finally, the actual translation methods of the remotely
sensed datasets into useful information and formats for the
various fire models is critical. Similar to how the remotely
sensed datasets are interpreted from raw data, the fuels,
weather, and fire data must be further interpreted for model
parameterization and later for comparison against simulated
outputs. These translation methods are not standardized
and are subject to individual human understanding and
interpretations of remotely sensed datasets and knowledge
of the landscape. This lack of standardization means that

a wildfire dataset may be interpreted in different ways and
produce a wide range of simulated fire perimeters and
behaviors, and that those model outputs may further be
evaluated differently.

Fire Model Uncertainties and Unknowns

The FDS and QUIC-Fire are advanced tools with
many built-in assumptions and limitations. Simulating the
complex interactions between the atmosphere, fire, fuels,
and topographies requires a complex coding schema, which
introduces several uncertainties and unknowns into the model.
A primary uncertainty brought up during the workshop
centered on QUIC-Fire's model restart capabilities and the
model’s fire-atmosphere recalibration period. To test how well
the models can simulate fire behaviors over the course of a
wildfire, it would be necessary to recalibrate the model inputs
based on remotely sensed data from a point in time and restart
the simulation for that time. However, the fire-atmospheric
interactions and turbulent structures that drive fire behaviors
and spread require time to develop in reality and in the
simulation. The development of these interactions within the
models also relies on the starting parameters within the model,
meaning that careful selection of wind, fire, and fuel inputs
will be necessary to return to the desired wind conditions. It is
currently unknown how much simulation time is required for
the model to reform those interactions and turbulent structures,
or if it is even possible from a simulation with fire activity.

Another modeling uncertainty lies with modeling at the
scales required of a wildfire. Wildfires occur at large scales
that often exceed modeling capacity. Out of practicality,
past research teams have maneuvered around this issue
by simulating smaller, discrete portions of a wildfire. It is
commonly assumed that simulating a small part of a wildfire
is acceptable for producing accurate fire behaviors for that
discrete area and for understanding overall fire behavior. This
assumption has some potential flaws as the smaller simulated
domain will likely not capture the full picture of landscape
topography, fuels, wind patterns, and fireline interactions
(Canfield and others, 2014) that drive behaviors at the larger
scale. Therefore, there needs to be some investigation into
appropriate modeling procedures for larger fires that considers
the larger landscape. It may be possible to model entire
wildfires with certain combinations of simulation parameters
(for example, model resolution, number of processors, level of
detail), though experimentation will be necessary to determine
the appropriate parameters and computing power required.
Addressing these modelling factors is the first step to facilitate
the evaluation of the FDS and QUIC-Fire models.

Future Research

Implementing field campaigns to collect and record
data for a variety of fire weather conditions may assist in
meeting fire behavior models’ data requirements. These



field campaigns, while generally capturing data over smaller
land areas and timeframes than actual wildfires, provide
opportunities for researchers to record more data at improved
resolutions. The planning period allows researchers to
predetermine the types of sensors to use and their placements
that will capture information at useful frequencies and
locations for understanding fire weather and behaviors.
Within this planning period, land managers can also set up
measurement sites to record information on pre and postfire
fuels and initial wind conditions. Field campaigns further
address the ignition location issues inherent to wildfires, as the
fire is set by fire practitioners and can be tracked throughout
the experiment. Previous field campaigns have been successful
in helping fire modelers understand and integrate real wildland
fire information on weather (Linn and others, 2012; Clements
and others, 2019; Linn and others, 2021), fuels (Rowell and
others, 2015), and smoke (Pimont and others, 2014; O’Brien
and others, 2015; Brodrick and others, 2022) into their
models, and further validate how well the models predict
various fire behaviors (Morvan, 2011; Frangieh and others,
2018). Active field experiments such as those included in the
National Aeronautics and Space Administration FireSense
Project (Falkowski and others, 2024) are taking advantage of
advancements in remote-sensing technologies to improve how
wildfires are monitored and interpreted to support wildfire
operations and modeling. However, to our knowledge, none
of these campaigns have investigated using the classified data
sources identified in this report. Future field campaigns that
unite publicly available, commercial, and classified datasets
will be invaluable for evaluating next-generation fire behavior
models and supporting their transition to fire practitioners.

As shown in table 2, multiple sensors are used for fire
applications. To address the broad range of capabilities across
the sensors used for fire detection and fireline mapping,

a cross-sensor validation campaign could be proposed

and developed to parameterize capabilities to establish an
operational framework for the use and interpretation of data
collected from multiple sensor types. Although the specifics
of this validation campaign are too lengthy to describe here,
such a campaign could involve multiple phases and occur

in a variety of locations. Campaign goals might include, but
are not limited to, target separation, intensity detection, fire
spectra, geolocation, effects of elevation and topography

on detection, effects of varying atmospheric conditions,
discrimination of in-scene features (hot rocks, water, roads,
and so on), and other tests and interests. The campaign phases
could increase in complexity and scope as they progress and
could involve in situ and remote observations. Because of
the scope, complexity, and cost of such a campaign, it would
likely need to involve a multiagency set of participants.

References Cited 1

Conclusions

The U.S. Geological Survey “Potential for Evaluation
of Fire Models with Remote Sensing Data” workshop aimed
to discuss how various remotely sensed datasets could be
used to advance the evaluation efforts of next-generation fire
behavior models such as Fire Dynamics Simulator, FIRETEC,
and QUIC-Fire. Participants found potential for using the
20 presented remote-sensing datasets to parameterize the fire
behavior models, though additional work to collect missing
values for fuel volumes, bulk properties, and fuel moisture
contents would benefit model optimization. Expansion of
these datasets to capture a wider variety of wildfire scenarios
could ensure a comprehensive wildfire database to evaluate the
models against. Integrating remotely sensed data products into
the fire models presents several key challenges, including error
in the datasets, differences in the coverage and resolutions of
remotely sensed datasets and the fire models, and a lack of
standardization in data interpretation, processing, and mapping
methods. Lastly, working toward a better understanding
of the uncertainties affecting fire behavior inherent within
the models, questioning and improving on current wildfire
simulation designs, and pursuing additional field experiments
with these remote sensing devices is critical for advancing
evaluations of next-generation fire behavior models.
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Glossary

classified Classified data are described as
imagery collected by U.S. National Imaging
Systems originally intended for military and
national intelligence applications. Although
the raw imagery data are classified and can
only be handled by personnel with security
clearances, derived data are extracted from
these images and disseminated to noncleared
personnel to support operational needs.

commercial Commercial data encompass

a broad range of imagery collected and sold
by commercial vendors. Some examples

of these vendors include Planet, Blacksky,
Maxar, Capella and many others. These data
are exceptionally valuable but can also be
expensive. Additionally, use of these data can
be limited by licensing restrictions.

Glossary

publicly available Publicly available

data include a broad range of satellite data
collected by sensors typically operated by
National level agencies, including LandSat
from the USGS and National Aeronautics
and Space Administration, Geostationary
Operational Environmental Satellites from
the National Oceanic and Atmospheric
Administration, Radarsat from the Canadian
Space Agency, Sentinel from the European
Space Agency, and others. These data are
available at no cost (Landsat and Sentinel)
or for a fee (Radarsat). These data also tend
to be provided at a coarser spatial resolution
relative to commercial data.
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Appendix 1. List of Workshop Participants

Twenty-one people participated in the September 19,
2024, virtual workshop (table 1.1). Participants were from four
Federal agencies, three universities, and two federally funded
laboratories.

Table 1.1. Participants of the September 19, 2024, virtual workshop on assessing the potential for evaluation of wildland fire models
using remotely sensed data.

[*, workshop organizers]

Name Federal agency, university, or federally funded laboratory

Federal agency

Sophie Bonner* U.S. Geological Survey
Anthony Feliciano U.S. Geological Survey
James Furman U.S. Department of Agriculture Forest Service
Jeffery Ganuza U.S. Geological Survey
Kevin Hiers U.S. Department of Defense Strategic Environmental Research and Development Program
Stevie Mackie U.S. Geological Survey
J.D. Mejstrik U.S. Geological Survey
Ruddy Mell U.S. Department of Agriculture Forest Service
Eric Mueller National Institute of Standards and Technology
Kurtis Nelson* U.S. Geological Survey
Birgit Peterson U.S. Geological Survey
Peter Rinkleff* U.S. Geological Survey
Paul Steblein* U.S. Geological Survey
University

Peter Hamlington University of Colorado Boulder
Chad Hoffman* Colorado State University
Derek McNamara University of Ottawa

Federally funded laboratory
Alexander Josephson Los Alamos National Laboratory
Rodman Linn Los Alamos National Laboratory
Julia Oliveto Los Alamos National Laboratory
David Robinson Los Alamos National Laboratory

Serena Tramm Jet Propulsion Laboratory
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