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Assessing the Potential for Evaluation of Wildland 
Fire Models Using Remotely Sensed Data—
Summary Proceedings from a U.S. Geological Survey 
Workshop in 2024

By Sophie R. Bonner,1 Kurtis J. Nelson,1 Peter G. Rinkleff,1 Chad M. Hoffman,2 and Paul F. Steblein1

Abstract
On September 19, 2024, the U.S. Geological Survey 

(USGS) held a virtual workshop titled “Potential for 
Evaluation of Fire Models with Remote Sensing Data 
Workshop” to assess the feasibility of using remotely sensed 
datasets to evaluate next-generation wildland fire behavior 
models. Remote sensing and fire modelling experts gathered 
to: (1) assess the suitability of a variety of classified, 
commercial, and publicly available remotely sensed datasets 
for advancing fire model evaluation; (2) develop ideas on 
how to integrate remotely sensed data products with fire 
model inputs and outputs; and (3) identify any barriers and 
limitations to performing an evaluation of next-generation fire 
models. The USGS National Civil Applications Center, USGS 
Earth Resources Observation and Science Center, and USGS 
Fort Collins Ecosystem Science Center presented information 
on remote sensing datasets for three Arizona wildfire case 
studies. The development teams of the Fire Dynamics 
Simulator and QUIC-Fire fire behavior models presented their 
models and current evaluation methodologies. Interspersed 
with these presentations were discussions regarding how to 
expand current wildfire remote sensing data collection efforts 
beyond operational needs to assist in future fire modeling.

Workshop participants agreed that several of the remote 
sensing datasets have potential for wildfire model evaluation. 
However, participants also identified several barriers and 
complications to performing a model evaluation including 
key gaps in wildfire datasets; uncertainties related to model 
fire-atmosphere reinitiation; lack of ground truthing and 
atmospheric correction of remotely sensed datasets; and 
differences in spatial, geolocation, radiometric, and temporal 
resolutions between the datasets and models. Further, 
the absence of standardized methodologies for image 
interpretation, poor understanding of sensor capabilities 

1U.S. Geological Survey.

2Department of Forest and Rangeland Stewardship, Colorado State 
University.

and limitations, and a lack of automation also hinder model 
evaluation efforts. Based on feedback from this workshop, 
USGS fire modelers are considering a project to address the 
uncertainties related to fire model reinitiation and encouraging 
fire practitioners to collaborate with remote sensing experts 
on wildland fires to improve data collection for a broader 
community of practice. Additionally, multiagency efforts are 
in development for a comprehensive cross-sensor validation 
and ground-truth campaign to test spatial, spectral, and 
geolocation sensor capabilities, determine limitations, and 
identify observational gaps for future sensor development 
and acquisition.

Introduction and Background
A new generation of fire behavior models is being 

developed to address the increasing need to understand and 
predict wildland fire behavior and effects under a broad 
range of burning conditions. This next generation of fire 
models—including those such as the Fire Dynamics Simulator 
(FDS; Mell and others, 2007, 2009; Bova and others, 2015), 
QUIC-Fire (Linn and others, 2020), and FIRETEC (Linn and 
Harlow, 1997; Linn and others, 2002; Linn and Cunningham, 
2005)—use advanced computer simulation techniques 
to represent and model the various processes driving fire 
behavior in wildland systems. Though these modeling systems 
often include empiricism, they are classified as physical or 
quasi-physical models (Sullivan, 2009a). These models have 
several advantages over the historically used empirical and 
quasi-empirical models (Sullivan, 2009a, b, c), including that 
they can explicitly resolve fire behavior at fine resolutions 
(to a sub-meter scale), capture the influences and interactions 
of fuels, winds, terrain, and fire on a landscape in three 
dimensions, and have potential to be applied to a wide range 
of fuel types and burning conditions (Or and others, 2023). As 
part of the development and adoption of these new models, it 
is crucial that they be evaluated against real-world wildland 
fire data to determine the reliability of the model predictions 
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across a range of scenarios and to identify possible flaws 
and future research for model improvement (Alexander 
and Cruz, 2013). Evaluation of these models is critical for 
supporting the research-to-operations transition by building 
confidence in model results and enabling land managers to use 
modeling tools for real-time decision making (Hoffman and 
others, 2018).

Past work to evaluate these fire behavior models has 
included comparisons against empirical fire spread models 
(Linn and Cunningham, 2005; Pimont and others, 2012; 
Ritter and others, 2020; Atchley and others, 2024), laboratory 
experiments (Marino and others, 2012; Perez-Ramirez and 
others, 2017), laboratory and field-scale fire simulations 
(Mell and others, 2007, 2009; Dupuy and others, 2011; 
Hoffman and others, 2016; Liu and others, 2017), and other 
next-generation fire behavior models (Linn and others, 2020). 
These evaluations show that the models can simulate realistic 
fire behaviors and effects under moderate conditions; however, 
they do not capture the full range of weather conditions, fuels, 
or fire behaviors that can be present during wildfires or larger 
operational prescribed fires. The models’ limitations may be 
important for the increasing number of wildfires occurring 
under extreme environmental conditions (for example, hot, 
dry, or windy). Fire modelers have also evaluated models 
using re-creations of wildfires (Bossert and others, 2000; 
Gallagher and others, 2021), though these evaluations take 
advantage of preexisting measurements of fuels in the 
area, stationed wind sensors within range of the fires, and 
on-the-ground observations of fire behavior from incident 
responders. As most wildfires do not have these datasets 
and sensors readily available, model evaluation efforts have 
primarily focused on prescribed and laboratory fires.

Prescribed fires and wildfires differ in several ways, 
including their scales, planning horizons, environmental 
conditions, and fire behaviors (Hiers and others, 2020); 
therefore, the model validation process for the two types of 
fires will also differ. Prescribed fires are planned events with 
designated containment units so data collection devices can 
be positioned to capture environmental and fire information 
at a high resolution before and throughout the operational 
window. Wildfires are unplanned and do not have prescribed 
bounds so responders to wildfires often do not have the 
opportunity to place additional sensors ahead of time and 
must rely on existing in situ sensors to provide data. However, 
additional remote sensing resources can be ordered for 
both types of fires to provide high-resolution imagery and 
environmental data to track fire behavior and perimeters. 
Although there are numerous existing experimental datasets 
from free spreading (Cruz and others, 2025) and prescribed 
fires (Bonner and others, 2021) that could be applied in model 
evaluation, the data collected during these experiments are 
often insufficient to evaluate next generation fire behavior 
models or have considerable uncertainties. Because of the 
abundance and diversity of wildfire events globally and the 
coverage of operational datasets, we look toward wildfires for 
data and validation.

Next generation fire behavior models require a large 
amount of highly precise environmental data to simulate a 
real burning environment, much of which can be collected 
using remote sensing methods (Filkov and others, 2018). 
Environmental information, such as topography, fuel structure 
and composition, weather, and fire locations, are required 
at a meter level throughout a prefire landscape to accurately 
initiate a wildfire simulation. Additionally, to fully evaluate 
fire behavior model simulations against real wildfires, it is 
necessary to collect environmental data during the active 
burning period and post fire. These model requirements—to 
collect large amounts of data with fine temporal and spatial 
resolutions over large scales—necessitate the use of remote 
sensing-sourced data. Satellite, aircraft, and terrestrial sensors 
enable a wide variety of environmental data to be quickly and 
consistently collected at fine resolutions over large areas.

Improvements in remote-sensing technologies and 
a greater range of classified, commercial, and publicly 
available (refer to the “Glossary” section of this report for 
the applicable definition) wildfire remote-sensing datasets 
offer the opportunity to better evaluate fire behavior models. 
However, there are several current barriers to evaluation, 
including determining which datasets and derivatives thereof 
to use, associating remotely sensed datasets to fire behavior 
model inputs and outputs, and identifying the limitations 
and uncertainties involved with evaluating a fire model. 
Previous discussions with sensor operators and data users 
revealed that this is further confounded by a general lack of 
sensor performance for fire relative to spectral sensitivities 
and temporal resolutions, geolocation inaccuracy, and 
spatial constraints in complex landscapes and under variable 
atmospheric conditions.

To help identify possible future research areas related 
to remote sensing and fire behavior model evaluation, a 
mix of remote-sensing and fire-modeling researchers and 
developers (app. 1) came together on September 19, 2024, for 
a day-long virtual workshop to assess the feasibility of using 
remotely sensed datasets to evaluate next-generation wildland 
fire behavior models. U.S. Geological Survey (USGS) 
remote-sensing experts from the National Civil Applications 
Center and the Earth Resources Observation and Science 
Center identified three Arizona wildfires (the 2023 Kane, 2022 
San Rafael, and 2022 Tunnel Fires) and presented information 
on 19 classified, commercial, and publicly sourced remotely 
sensed environmental datasets for these fires. Developers of 
the FDS and QUIC-Fire models presented on the respective 
information needs, model inputs and outputs, and evaluation 
goals for their fire behavior models. Workshop discussions 
addressed topics including operational remote-sensing tasking, 
dataset scale and resolution requirements for modelers, 
derivatives of remote-sensing datasets, dataset-to-fire model 
linkages, missing or incomplete datasets and possible 
proxies, model uncertainties, previously accomplished model 
evaluation methodologies, and prospective next steps. This 
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report provides a summary of the discussions that took place 
during the 2024 virtual workshop “Potential for Evaluation of 
Fire Models with Remote Sensing Data Workshop.”

Workshop Overview and Goals

The 2024 virtual workshop “Potential for Evaluation of 
Fire Models with Remote Sensing Data Workshop” and the 
discussions therein were initiated by the U.S. Department of 
Defense Environmental Security Technology Certification 
Program advance fire model evaluation efforts and support 
the continued growth of the Innovation Landscape Network 
and the invested stakeholders. The coordinators of the 
workshop invited a mix of remote-sensing experts and fire 
modelers (app. 1) to discuss how best to take advantage 
of remote-sensing technologies to evaluate fire models 
including FDS and QUIC-Fire. Remote sensing experts from 
the National Civil Applications Center and Earth Resources 
Observation Science Center spoke on remotely sensed 
datasets and possibilities for expanding the usefulness and 
automation of existing and future remote-sensing systems. 
Fire model developers of FDS from the U.S. Department 
of Agriculture Forest Service and the National Institute 
of Standards and Technology (NIST) and developers 
of the FIRETEC and QUIC-Fire models at Los Alamos 
National Laboratory presented on their model needs and 
evaluation efforts. This workshop was primarily designed 
to be an information exchange between remote-sensing and 
fire-modeling experts to help both groups meet their respective 
and interdependent objectives.

The goals of the September 19, 2024, workshop were to:
1.	Assess the suitability of a variety of classified, 

commercial, and publicly available remotely sensed 
datasets for advancing fire model evaluation.

2.	Develop ideas to integrate remotely sensed data products 
with fire model inputs and outputs.

3.	 Identify barriers and limitations to performing an 
evaluation of next-generation fire behavior models.

Methods
To provide material for workshop discussions, the 

workshop coordinators developed presentations on remotely 
sensed wildfire response datasets available for fire behavior 
model evaluation. We primarily described datasets collected 
for the southwest region of the United States as our 
funding directives from the U.S. Department of Defense 
Environmental Security Technology Certification Program 
were to support the Southwest Innovation Landscape Network 
fire model evaluation efforts. We identified three past wildfires 
(2023 Kane, 2022 San Rafael, and 2022 Tunnel Fires) in 

Arizona to use as case studies for our wildfire remote-sensing 
dataset presentations. Using the perimeters and burning period 
of these wildfires, we assessed and presented the classified, 
commercial, and public remote-sensing datasets commonly 
available for use in fire modelling validation.

Wildfire Selection

We identified wildfires for remote-sensing dataset 
assessment by first searching for all wildfires occurring in 
Arizona during the 5 years from January 2020–August 2024. 
We then filtered down the number of selected wildfires to 10 
by only including those which:

•	 Burned for at least 5 consecutive days, and

•	 Had various classified and unclassified remote-sensing 
datasets available.

From these 10 fires, we collectively selected 3 wildfires 
for further analyses, aiming for wildfires that represented a 
variety of terrain, vegetation, and sizes (table 1; fig. 1A–D).

Remote Sensing Data Collection

We searched for classified, commercial, and publicly 
available remotely sensed datasets for our three selected 
wildfires. For each wildfire, we used a hand-rendered fire 
perimeter generated from classified Aircraft 3/Firehawk 
data (table 2; fig. 1) to filter the remotely sensed datasets 
to a specific wildfire location. We used the active fire dates 
(table 1) of each wildfire to temporally filter relevant datasets 
to the pre, active, and postfire timeframes.

To filter the remote sensing datasets for evaluation, 
we selected only those datasets relevant to fire behavior 
simulation modelling. Specifically, we only included datasets 
that help to determine fire perimeters, intensities, effects, and 
behaviors, as well as datasets with information regarding 
fuels, terrain, and fire weather. Following this process, we 
selected 2 classified, 1 airborne, 6 commercial, and 11 publicly 
available remotely sensed datasets and metadata to use in 
presentations and discussions during the workshop (table 2).

Table 1.  Arizona fires selected for the 2024 virtual workshop 
on assessing the potential for evaluation of wildland fire models 
using remotely sensed data.

[Dates shown as month/day/year.]

Fire name Fire dates
Fire  

duration  
(in days)

Final area  
(acres)

Kane 08/04/2023–09/01/2023 28 2,800
San Rafael 05/07/2022–05/12/2022 6 11,000
Tunnel 04/17/2022–06/01/2022 75 20,000
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Table 2.  Classified, commercial, and publicly available remote-sensing datasets for fire behavior modeling.

[NGA, U.S. National Geospatial-Intelligence Agency; NCAC, U.S. Geological Survey National Civil Applications Center; NA, none available; DoD, U.S. 
Department of Defense; NIROPS, U.S. Forest Service National Infrared Operations; FS, U.S. Department of Agriculture Forest Service; lidar, light detection 
and ranging; USGS, U.S. Geological Survey; NASA, U.S. National Aeronautics and Space Administration; NIFC, National Interagency Fire Center]

Dataset name Data type Owner or contributor Classification Web page address

Aircraft3/Firehawk Fire perimeters NGA and NCAC Classified NA
FireGuard Fire perimeters NGA and DoD Classified NA
NIROPS/Phoenix Sensor Fire perimeters, 

intensity
FS NIROPS Commercial https://fsapps.nwcg.gov/nirops/

NIROPS/TK7-TK9 Fire perimeters, 
intensity

FS NIROPS Contracts Airborne https://fsapps.nwcg.gov/nirops/

BlackSky Global 1-20 Multispectral BlackSky Holdings 
Inc.

Commercial https://calval.cr.usgs.gov/apps/compendium/
detail?p=h/yyMzecUKEneo/8vUbqDQ==

Pelican-1 Multispectral Planet Inc. Commercial https://calval.cr.usgs.gov/apps/compendium/
detail?p=aesT/d+xUV7c0I2Bb4bwzA==

SkySat 01-21 Multispectral Planet Inc. Commercial https://calval.cr.usgs.gov/apps/compendium/ 
detail?p=+4M2zr3s7Wh6Q2B5YJm6hQ==

SuperDove Flock Multispectral Planet Inc. Commercial https://calval.cr.usgs.gov/apps/compendium/ 
detail?p=YNuejBHUBteJvOesFQLmgQ==

WorldView 1-3 Multispectral DigitalGlobe Inc. Commercial https://calval.cr.usgs.gov/apps/compendium/deta
il?p=fozjrnIPNs+vh4z42FXT4Q==

3-Dimensional Elevation 
Program (3DEP)

Lidar USGS Public https://apps.nationalmap.gov/lidar-explorer/#/

Burned Area Reflectance 
Classification (BARC)

Burn severity FS and USGS Public https://burnseverity.cr.usgs.gov/baer/

Global Ecosystem 
Dynamics 
Investigation (GEDI)

Lidar NASA Public https://calval.cr.usgs.gov/apps/compendium/ 
detail?p=TbmTRLq60bEA20CDS0XS1w==

Interagency Ecosystem 
LiDAR Monitoring 
(IntELiMon)

Lidar Multiple Public https://dmsdata.cr.usgs.gov/lidar-monitoring/
viewer/

LANDFIRE Vegetation, fuels, 
fire regimes

FS and USGS Public https://landfire.gov/

LANDSAT 8-9 Multispectral NASA and USGS Public https://calval.cr.usgs.gov/apps/compendium/ 
detail?p=0EqQWOVINgvtSk6/7G7Qlw==

Monitoring Trends 
in Burn Severity 
(MTBS)

Burn severity FS and USGS Public https://www.mtbs.gov/

NIFC - Fire Perimeters 
and operational data

Fire perimeters,  
operational data

NIFC Public https://data-nifc.opendata.arcgis.com/

Rapid Assessment of 
Vegetation Condition 
After Wildfire 
(RAVG)

Burn severity FS and USGS Public https://burnseverity.cr.usgs.gov/ravg/

Remote Automatic 
Weather Stations 
(RAWS)

Weather Multiple Public https://raws.nifc.gov/

Sentinel 2 A-C Multispectral European Space 
Agency

Public https://calval.cr.usgs.gov/apps/compendium/ 
detail?p=W2+54RoMXIkuOxZbKa1hEQ==

https://fsapps.nwcg.gov/nirops/
https://fsapps.nwcg.gov/nirops/
https://calval.cr.usgs.gov/apps/compendium/detail?p=h/yyMzecUKEneo/8vUbqDQ==
https://calval.cr.usgs.gov/apps/compendium/detail?p=h/yyMzecUKEneo/8vUbqDQ==
https://calval.cr.usgs.gov/apps/compendium/detail?p=aesT/d+xUV7c0I2Bb4bwzA==
https://calval.cr.usgs.gov/apps/compendium/detail?p=aesT/d+xUV7c0I2Bb4bwzA==
https://calval.cr.usgs.gov/apps/compendium/detail?p=+4M2zr3s7Wh6Q2B5YJm6hQ==
https://calval.cr.usgs.gov/apps/compendium/detail?p=+4M2zr3s7Wh6Q2B5YJm6hQ==
https://calval.cr.usgs.gov/apps/compendium/detail?p=YNuejBHUBteJvOesFQLmgQ==
https://calval.cr.usgs.gov/apps/compendium/detail?p=YNuejBHUBteJvOesFQLmgQ==
https://calval.cr.usgs.gov/apps/compendium/detail?p=fozjrnIPNs+vh4z42FXT4Q==
https://calval.cr.usgs.gov/apps/compendium/detail?p=fozjrnIPNs+vh4z42FXT4Q==
https://apps.nationalmap.gov/lidar-explorer/#/
https://burnseverity.cr.usgs.gov/baer/
https://calval.cr.usgs.gov/apps/compendium/detail?p=TbmTRLq60bEA20CDS0XS1w==
https://calval.cr.usgs.gov/apps/compendium/detail?p=TbmTRLq60bEA20CDS0XS1w==
https://dmsdata.cr.usgs.gov/lidar-monitoring/viewer/
https://dmsdata.cr.usgs.gov/lidar-monitoring/viewer/
https://landfire.gov/
https://calval.cr.usgs.gov/apps/compendium/detail?p=0EqQWOVINgvtSk6/7G7Qlw==
https://calval.cr.usgs.gov/apps/compendium/detail?p=0EqQWOVINgvtSk6/7G7Qlw==
https://www.mtbs.gov/
https://data-nifc.opendata.arcgis.com/
https://burnseverity.cr.usgs.gov/ravg/
https://raws.nifc.gov/
https://calval.cr.usgs.gov/apps/compendium/detail?p=W2+54RoMXIkuOxZbKa1hEQ==
https://calval.cr.usgs.gov/apps/compendium/detail?p=W2+54RoMXIkuOxZbKa1hEQ==


6    Assessing the Potential for Evaluation of Wildland Fire Models Using Remotely Sensed Data

Next-Generation Fire Behavior Models

We invited the development teams of FDS and 
QUIC-Fire to present on their respective wildland fire 
behavior models, which are shown in figures 2A–B. Presenters 
from these teams identified model inputs and outputs, 
described present and future data needs, and addressed past 
model evaluations undertaken to validate their model. As these 
presentations were only intended to introduce the model to 
remote sensing experts and set the scene for discussions, we 
did not go into detail on model parameters.

Fire Dynamics Simulator
The FDS is a powerful computational fluid dynamics 

model codeveloped by NIST and the U.S. Department of 
Agriculture Forest Service to simulate fire-driven fluid flow 
(McGrattan and others, 2013). It uses large eddy simulation 
techniques to solve governing equations for low-speed, 
thermally driven flow, focusing on smoke and heat transport 
from fires. The FDS has been widely used since its public 
release in 2000 for applications such as designing smoke 
handling systems (Sotiriadis and Kontoleon, 2023), studying 
sprinkler/detector activation (Hopkin and Spearpoint, 2019), 
and simulating building interior fires (Moon and others, 2021). 
The FDS has been upgraded by the Forest Service and NIST to 
model wildfire behavior across a range of scenarios including 
in complex terrain (Innocent and others, 2023), heterogenous 
vegetation (Ziegler and others, 2017), and for multiple 
interacting fires (Morvan and others, 2009) such as during a 
prescribed burning event. Vegetation can be represented as 

either a generic landscape value or as individual trees and 
shrubs down to the centimeter scale. The model can export a 
variety of outputs relevant to fire, smoke, and fuels.

QUIC-Fire
QUIC-Fire is a three-dimensional (3D) coupled 

atmospheric-fire behavior and spread modeling tool 
developed by the Los Alamos National Laboratory (Linn 
and others, 2020). This model couples the 3D wind solver 
QUIC-URB (Singh and others, 2008; Robinson and others, 
2023) to the cellular automata (CA) fire-spread model 
Fire-CA to represent dynamic fire-atmospheric interactions 
and fire spread. QUIC-Fire was developed to require less 
computational time and a lower cost burden than most 
computational fluid dynamics fire-atmospheric models (for 
example, FIRETEC) and has greater fidelity for fire dynamics 
and fuel structure than traditional models (for example, 
FlamMap). Inputs for the model include 3D fuel and elevation 
grids; wind input locations with wind speeds, directions, 
and input heights; and a spatially and temporally explicit 
ignition pattern. Outputs from the model are saved during 
the simulation and include information on fuel and moisture 
consumption, winds, fire energy release, and emissions. 
Overall, QUIC-Fire is a fast-running model intended to enable 
land managers and researchers to rapidly and accurately 
simulate wildland fire behavior and effects under complex 3D 
vegetative fuel structures, topographies, weather conditions, 
and ignition patterns.
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Discussion
Workshop participants acknowledged that the data from 

the remotely sensed datasets that were presented are useful 
for parameterizing many of the fuels, terrain, and weather 
conditions required for simulating a wildfire, and have further 
use in comparing real and simulated fire perimeters, area 
growth, and canopy consumption. Three-dimensional forest 
structure and surface fuel model inputs can be built from 

multiple remote-sensing resources, including lidar (Castorena 
and others, 2025), multispectral imagery (Abdollahi and 
Yebra, 2023; Chávez-Durán and others, 2024), and derived 
sources such as LANDFIRE (Rollins, 2009). Digital elevation 
models derived from lidar scans, such as those included in the 
3D Elevation Program that is also known as 3DEP (Snyder, 
2012), cover the entirety of the United States and provide 
the necessary information to build terrain inputs for any 
landscape. Weather inputs such as wind velocities and smoke 

B

A

Three-dimensional tree crowns

Burnt area

Active fire�

EXPLANATION

Figure 2.  Next-generation fire behavior model simulation results shown at 350 seconds 
into the model run using A, the Fire Dynamics Simulator (simulated area shown is 1,100 
meters [m] × 400 m × 220 m with variable horizontal resolution between 1–2 m), and B, 
QUIC-Fire (simulated area shown is 1,200 m × 1,200 m × 38 m with 2 m × 2 m × 1 m cell 
resolution). The simulations are looked at from a birds-eye view. 



8    Assessing the Potential for Evaluation of Wildland Fire Models Using Remotely Sensed Data

composition and transport have been gathered from permanent 
Remote Automatic Weather Stations (Warren and Vance, 1981; 
Horel and Dong, 2010) and portable weather sensors (Hartung 
and others, 2006) and used in past model evaluations. 
Spatial fire behavior metrics including the location of fire 
on the landscape and its spread can be identified through the 
multispectral snapshots provided by various remotely sensed 
datasets (table 2).

Barriers and Limitations

Despite these uses for remotely sensed datasets, 
participants noted several barriers and limitations that would 
hinder the evaluation of fire behaviors and effects simulated 
in FDS and QUIC-Fire. Barriers to model evaluation include 
missing, incomplete, or uncertain datasets that prevent fire 
modelers’ ability to fully understand and simulate the various 
burning environments and behaviors of wildfires. Limitations 
are unknowns and uncertainties in the datasets and models that 
must be scientifically resolved before model evaluation. In the 
following subsections, we identify and discuss these barriers 
and limitations to model evaluation efforts and propose ideas 
and future research that could address these issues.

Missing Datasets
Although the identified remote-sensing datasets cover 

a range of existing conditions and landscapes, workshop 
participants noted that some key wildfire scenarios were 
not represented. For example, the presented datasets did 
not discern wildfire events with abrupt transitions in wind 
conditions (Potter and Hernandez, 2017), wherein the 
wind quickly changes directions, leading to changes in the 
direction and speed of fireline spread, fire behaviors, and 
how operational forces choose to respond to the fire. Also 
missing from these datasets were scenarios characterized 
by atmospheric instability (Giannaros and others, 2022; 
Menezes and others, 2024) and wind blow-up (Byram, 1954; 
Leach and Gibson, 2021), which affect turbulence and the 
vertical flow of air leading to erratic fire behaviors. Capturing 
wildfire and associated environmental data for these scenarios 
and evaluating how well the models can represent fire 
behaviors are of particular interest as wildfire operators must 
be able to quickly interpret and respond to atmospheric and 
wind shifts. Once evaluated, these fire behavior models can 
be used to better understand the fire-atmosphere interactions 
under these conditions and to train wildfire responders for 
suppression activities.

Additional remotely sensed data are needed for a more 
comprehensive understanding of fire. These include data from 
lidar to determine fuel volumes and structure and methods to 
rapidly assess fuel conditions like moisture and type in the 
vicinity of an active fire near the time of the fire itself. Lidar 
systems are readily available off the shelf, and methods exist 

for measuring fuel structures from lidar (Arkin and others, 
2021; Marcozzi and others, 2023; Xi and others, 2023) but 
some development may be needed to rapidly process and 
disseminate derived data into a format for model inputs. 
Conducting broad-area fuel condition assessments using 
remote sensing techniques would likely involve some spectral 
methodology coupled with other methods like synthetic 
aperture radar. Significant investment is required to develop, 
test, and validate methods.

Currently (2025), there are no remotely sensed datasets 
describing the spatial distribution of fuel moistures at fine 
enough spatial resolutions and timeliness for fire behavior 
modeling in FDS or QUIC-Fire. Live crown and dead surface 
fuel moisture contents (FMC), which are the amount of 
water in a leaf relative to the mass of dry leaf matter, are 
integral components of fire behavior models as they partially 
determine the probability of ignition, effective heat released 
during combustion (Rothermel, 1983), and further affect 
fire behaviors such as rate of spread, fire intensity, and fuel 
consumption (Matthews, 2013; Mišić and others, 2024). Dead 
surface FMC are closely tied to meteorological conditions 
and thus can be estimated from climate and weather data 
(Viney, 1991; Sharples and others, 2009) with knowledge of 
the vegetative fuels. Live canopy FMC, however, are a result 
of interactions between plant physiologies, fuel structure, 
soil moisture, and meteorological conditions (Danson and 
Bowyer, 2004), making these values more spatially variable 
than dead FMC and necessitating additional work to estimate. 
Current methods of estimating live FMC using remote sensing 
datasets are limited by spectral reflectance detecting issues, 
coarse-resolution data inputs for empirical modeling of FMC, 
data-heavy physics-based algorithms, quantifying error, and 
other constraints (Yebra and others, 2013). Further, many 
of the methods are site- or vegetation-specific and require 
large amounts of sampling to determine FMC, making 
them challenging to operationalize (Yebra and Chuvieco, 
2009). Therefore, there is a need for novel remote sensing 
methodologies that can be applied to a wide variety of 
ecosystems and can account for these issues to estimate live 
and dead FMC at fine scales and frequencies.

Remote Sensing Dataset Quality
Assessing the quality of remote sensing methodologies 

is critical for building datasets that accurately represent real 
landscapes. Errors can be introduced during the acquisition, 
processing, analysis, and conversion of raw, remotely sensed 
data into interpreted dataset products (Lunetta and others, 
1991), and each introduced error can add or build on the last 
to misrepresent reality. Sources of error stem from sensor 
properties (for example, calibration, sensitivity, radiometric 
or geometric distortion), environmental conditions (for 
example, shadows, clouds, smoke, noise, water vapor aerosol 
content, obscurity because of landscape features, natural 
landscape variability), and human-introduced error (for 
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example, best sensors to use, operator-to-operator variability 
in interpretation, and postprocessing steps; Campbell and 
Wynne, 2011).

Although environmental conditions cannot be controlled, 
many of these other error sources can be accounted for. 
Expanding the common knowledge and understanding of the 
multiple sensors available and their best use cases can support 
wildfire managers and researchers in selecting appropriate 
sensors for their tasks. Additionally, sensors can be calibrated 
to better capture landscape features and reduce distortion and 
error (Kaasalainen and others, 2011; Fernández Pareja and 
others, 2013). Preprocessing steps such as cloud and cloud 
shadow detection systems, relative radiation correction, 
and geometric correction (Campbell and Wynne, 2011) can 
be implemented to better detect and compensate for issues 
in the raw imagery (Qi and others, 2018). Automation of 
the postprocessing steps typically done by individuals will 
improve the consistency and expediency of remote-sensing 
datasets and remove much of the human error element. 
Finally, using ground truthing to quantify error and validate 
remote-sensing datasets will help remote-sensing scientists 
adjust sensing methodologies to better match what is present 
on the landscape (Nagai and others, 2020). Through careful 
selection of sensors and sensing methodologies, understanding 
sensor properties and uncertainties, science-driven automation 
of postprocessing steps, and validation of datasets, remotely 
sensed datasets will become more useful for both operational 
wildfire mapping and fire model evaluations.

Each of the remotely sensed datasets evaluated during 
this workshop is discretely tasked and manually generated 
to support operational wildfire suppression requirements. As 
the fire environment changes and wildfire frequency and size 
expand, cost-effective and scalable methods can be developed 
and tested to augment and eventually stand in for human 
interpretation. Additionally, a coordinated approach for data 
tasking can be developed instead of single-purpose tasking 
from single-purpose instruments. For example, using an 
airborne thermal sensor to detect and map fires, an ensemble 
collection concept can be implemented to not only obtain 
tactical data for direct attack needs, but also to collect data 
useable for fuel evaluation, infrastructure assessments, and 
other needs (for example, fire model evaluation). As of 2025, 
these data are collected in a piecemeal, uncoordinated fashion, 
creating challenges in access to disparate data sources, in the 
alignment of spatial and temporal aspects, and in the area of 
coverage across datasets.

Imagery Interpretation and Mapping
Because current fire-mapping methods are exclusively 

manual, they are subject to operator biases that lead to 
inconsistencies in interpretation. As the fire environment 
evolves, automated detection and mapping tools are essential 
to meet the growing need for mapping products and model 
inputs—especially the ability to calculate the rate of spread 
from imagery. Moreover, as platforms and sensors with long 

dwell times become available, manual processing will be 
unable to keep up with collection and dissemination tempos. 
Mapping standards are required to ensure that automation is 
consistent, especially if manually derived inputs are to be used 
for training data to prepare artificial intelligence or machine 
learning methods. Standard, deterministic image-processing 
methods need consistent rules for algorithm development.

Using remotely sensed data to produce model inputs or 
validate model outputs requires interpreting the dataset and 
extracting information to develop mapped products. Various 
methods can be applied based on the type of product desired. 
In addition, interpretation can be subjective in some cases and 
lead to inconsistencies depending on the individual analyst 
producing the information product. Although some steps to 
preprocess data and develop draft products can be automated, 
there are often manual steps that also need to be completed to 
create a final product. These manual steps can lead to higher 
accuracy products with a skilled analyst performing the data 
interpretation but may create inconsistent results.

Much of the remotely sensed data explored at the 
workshop was various forms of optical imagery. These 
types of imagery are among the most prolific and easiest 
datasets to interpret; however, there are also limitations in 
their applicability to sense fire behavior and effects. For 
example, in dense canopies, optical imagery often cannot 
accurately capture the understory changes that occur during 
a fire (Szpakowski and Jensen, 2019). Active sensor data, for 
example from lidar sensors, can often penetrate the canopy 
and depict the understory conditions, but these data are 
not nearly as available, especially during wildfire response 
activities, due to dangerous flying conditions directly related 
to the fire itself and airspace restrictions that favor fire 
suppression activities (Xi and others, 2022).

Translating Remotely Sensed Data to Fire Models
Operational wildfire remote-sensing datasets are 

collected solely for fire-line mapping to support active 
incident suppression response with no regard for fire modeling 
requirements, postfire assessments, or other management 
and research uses. This means that, although these remotely 
sensed datasets may be useful for multiple purposes, the data 
are not specifically designed to have the coverage or qualities 
necessary for fire model parametrization or evaluation. Fire 
models such as FDS and QUIC-Fire capture the spatial 
behaviors and effects of wildland fire over time by modeling 
the burning environment on 3D arrays. These user-defined 
arrays are designed with specific volumes, spatial resolutions, 
and temporal frequencies, and require data inputs with higher 
resolutions than those datasets used for wildfire incident 
response.

The intensive spatial requirements of these model inputs 
and outputs must be resolved with the spatial properties of 
the datasets. Remotely sensed datasets are tasked to record 
data for a specific location with defined bounds, which may 
not cover the full area required for a simulation. For example, 
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terrestrial laser scanner (TLS) scans can quickly provide 
high-density point clouds for small plots (for example, 
10–60 meters; Pokswinski and others, 2021) that can be 
processed to understand and build high-quality fuels inputs. 
These data are useful for understanding fuel structures and 
patterns in a limited area but require additional effort and 
scanning to extend this information beyond the scan range 
to describe an entire forest. Similarly, aerial datasets may 
not cover an entire active wildfire in a single scan, which 
makes detecting fire and fire behaviors with a single scan 
difficult. Lack of coverage in remotely sensed datasets 
can be overcome using additional close-in-time scans at 
the time of data collection or by developing statistical and 
geographic relationships with alternative datasets. In the case 
of expanding the coverage of TLS datasets, it is possible to 
upscale TLS from plot to landscape scale by coregistering 
multiple TLS scans with an aerial laser scanner dataset with 
greater coverage (Castorena and others, 2025). This allows for 
the scans to be aligned and relationships to be made between 
what a forest looks like from above (using an aerial laser 
scanner) and increased detail below the canopy (from TLS), 
giving a better understanding of forest structure and enabling 
that subcanopy information to be extrapolated beyond the 
TLS scan. Similarly, gaps in the spatial coverage of remotely 
sensed datasets can be interpreted by temporally or spatially 
interpolating information between scans with coverages of 
the area. Other spatial features that must be resolved are 
differences in the spatial resolutions, projections, and time 
of collection of grids between the various datasets and the 
models. Dataset grids are a feature of the sensor settings, 
location, and interpretation methods used. To get to the spatial 
information needed by models such as FDS and QUIC-Fire 
(from centimeters to the order of several meters), remote 
sensing datasets must be rescaled and aligned to the model 
grid resolution.

Temporal frequency of remote sensing datasets is most 
important for wind inputs and fire behavior and spread 
outputs. Wind velocities can rapidly shift over the course of 
a wildfire, resulting in changes to fire spread and behaviors. 
Capturing these changes at a high enough frequency is 
important for model parameterization and understanding 
one of the major driving factors of fire behavior. Fire spread 
and behavior datasets need to provide data at high enough 
temporal resolution to enable evaluation of how well the 
model can simulate fire behaviors over time and facilitate 
model reinitiation.

Finally, the actual translation methods of the remotely 
sensed datasets into useful information and formats for the 
various fire models is critical. Similar to how the remotely 
sensed datasets are interpreted from raw data, the fuels, 
weather, and fire data must be further interpreted for model 
parameterization and later for comparison against simulated 
outputs. These translation methods are not standardized 
and are subject to individual human understanding and 
interpretations of remotely sensed datasets and knowledge 
of the landscape. This lack of standardization means that 

a wildfire dataset may be interpreted in different ways and 
produce a wide range of simulated fire perimeters and 
behaviors, and that those model outputs may further be 
evaluated differently.

Fire Model Uncertainties and Unknowns
The FDS and QUIC-Fire are advanced tools with 

many built-in assumptions and limitations. Simulating the 
complex interactions between the atmosphere, fire, fuels, 
and topographies requires a complex coding schema, which 
introduces several uncertainties and unknowns into the model. 
A primary uncertainty brought up during the workshop 
centered on QUIC-Fire's model restart capabilities and the 
model’s fire-atmosphere recalibration period. To test how well 
the models can simulate fire behaviors over the course of a 
wildfire, it would be necessary to recalibrate the model inputs 
based on remotely sensed data from a point in time and restart 
the simulation for that time. However, the fire-atmospheric 
interactions and turbulent structures that drive fire behaviors 
and spread require time to develop in reality and in the 
simulation. The development of these interactions within the 
models also relies on the starting parameters within the model, 
meaning that careful selection of wind, fire, and fuel inputs 
will be necessary to return to the desired wind conditions. It is 
currently unknown how much simulation time is required for 
the model to reform those interactions and turbulent structures, 
or if it is even possible from a simulation with fire activity.

Another modeling uncertainty lies with modeling at the 
scales required of a wildfire. Wildfires occur at large scales 
that often exceed modeling capacity. Out of practicality, 
past research teams have maneuvered around this issue 
by simulating smaller, discrete portions of a wildfire. It is 
commonly assumed that simulating a small part of a wildfire 
is acceptable for producing accurate fire behaviors for that 
discrete area and for understanding overall fire behavior. This 
assumption has some potential flaws as the smaller simulated 
domain will likely not capture the full picture of landscape 
topography, fuels, wind patterns, and fireline interactions 
(Canfield and others, 2014) that drive behaviors at the larger 
scale. Therefore, there needs to be some investigation into 
appropriate modeling procedures for larger fires that considers 
the larger landscape. It may be possible to model entire 
wildfires with certain combinations of simulation parameters 
(for example, model resolution, number of processors, level of 
detail), though experimentation will be necessary to determine 
the appropriate parameters and computing power required. 
Addressing these modelling factors is the first step to facilitate 
the evaluation of the FDS and QUIC-Fire models.

Future Research

Implementing field campaigns to collect and record 
data for a variety of fire weather conditions may assist in 
meeting fire behavior models’ data requirements. These 
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field campaigns, while generally capturing data over smaller 
land areas and timeframes than actual wildfires, provide 
opportunities for researchers to record more data at improved 
resolutions. The planning period allows researchers to 
predetermine the types of sensors to use and their placements 
that will capture information at useful frequencies and 
locations for understanding fire weather and behaviors. 
Within this planning period, land managers can also set up 
measurement sites to record information on pre and postfire 
fuels and initial wind conditions. Field campaigns further 
address the ignition location issues inherent to wildfires, as the 
fire is set by fire practitioners and can be tracked throughout 
the experiment. Previous field campaigns have been successful 
in helping fire modelers understand and integrate real wildland 
fire information on weather (Linn and others, 2012; Clements 
and others, 2019; Linn and others, 2021), fuels (Rowell and 
others, 2015), and smoke (Pimont and others, 2014; O’Brien 
and others, 2015; Brodrick and others, 2022) into their 
models, and further validate how well the models predict 
various fire behaviors (Morvan, 2011; Frangieh and others, 
2018). Active field experiments such as those included in the 
National Aeronautics and Space Administration FireSense 
Project (Falkowski and others, 2024) are taking advantage of 
advancements in remote-sensing technologies to improve how 
wildfires are monitored and interpreted to support wildfire 
operations and modeling. However, to our knowledge, none 
of these campaigns have investigated using the classified data 
sources identified in this report. Future field campaigns that 
unite publicly available, commercial, and classified datasets 
will be invaluable for evaluating next-generation fire behavior 
models and supporting their transition to fire practitioners.

As shown in table 2, multiple sensors are used for fire 
applications. To address the broad range of capabilities across 
the sensors used for fire detection and fireline mapping, 
a cross-sensor validation campaign could be proposed 
and developed to parameterize capabilities to establish an 
operational framework for the use and interpretation of data 
collected from multiple sensor types. Although the specifics 
of this validation campaign are too lengthy to describe here, 
such a campaign could involve multiple phases and occur 
in a variety of locations. Campaign goals might include, but 
are not limited to, target separation, intensity detection, fire 
spectra, geolocation, effects of elevation and topography 
on detection, effects of varying atmospheric conditions, 
discrimination of in-scene features (hot rocks, water, roads, 
and so on), and other tests and interests. The campaign phases 
could increase in complexity and scope as they progress and 
could involve in situ and remote observations. Because of 
the scope, complexity, and cost of such a campaign, it would 
likely need to involve a multiagency set of participants.

Conclusions
The U.S. Geological Survey “Potential for Evaluation 

of Fire Models with Remote Sensing Data” workshop aimed 
to discuss how various remotely sensed datasets could be 
used to advance the evaluation efforts of next-generation fire 
behavior models such as Fire Dynamics Simulator, FIRETEC, 
and QUIC-Fire. Participants found potential for using the 
20 presented remote-sensing datasets to parameterize the fire 
behavior models, though additional work to collect missing 
values for fuel volumes, bulk properties, and fuel moisture 
contents would benefit model optimization. Expansion of 
these datasets to capture a wider variety of wildfire scenarios 
could ensure a comprehensive wildfire database to evaluate the 
models against. Integrating remotely sensed data products into 
the fire models presents several key challenges, including error 
in the datasets, differences in the coverage and resolutions of 
remotely sensed datasets and the fire models, and a lack of 
standardization in data interpretation, processing, and mapping 
methods. Lastly, working toward a better understanding 
of the uncertainties affecting fire behavior inherent within 
the models, questioning and improving on current wildfire 
simulation designs, and pursuing additional field experiments 
with these remote sensing devices is critical for advancing 
evaluations of next-generation fire behavior models.
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classified  Classified data are described as 
imagery collected by U.S. National Imaging 
Systems originally intended for military and 
national intelligence applications. Although 
the raw imagery data are classified and can 
only be handled by personnel with security 
clearances, derived data are extracted from 
these images and disseminated to noncleared 
personnel to support operational needs.

commercial  Commercial data encompass 
a broad range of imagery collected and sold 
by commercial vendors. Some examples 
of these vendors include Planet, Blacksky, 
Maxar, Capella and many others. These data 
are exceptionally valuable but can also be 
expensive. Additionally, use of these data can 
be limited by licensing restrictions.

publicly available  Publicly available 
data include a broad range of satellite data 
collected by sensors typically operated by 
National level agencies, including LandSat 
from the USGS and National Aeronautics 
and Space Administration, Geostationary 
Operational Environmental Satellites from 
the National Oceanic and Atmospheric 
Administration, Radarsat from the Canadian 
Space Agency, Sentinel from the European 
Space Agency, and others. These data are 
available at no cost (Landsat and Sentinel) 
or for a fee (Radarsat). These data also tend 
to be provided at a coarser spatial resolution 
relative to commercial data.
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Appendix 1.  List of Workshop Participants
Twenty-one people participated in the September 19, 

2024, virtual workshop (table 1.1). Participants were from four 
Federal agencies, three universities, and two federally funded 
laboratories.

Table 1.1.  Participants of the September 19, 2024, virtual workshop on assessing the potential for evaluation of wildland fire models 
using remotely sensed data.

[*, workshop organizers]

Name Federal agency, university, or federally funded laboratory

Federal agency

Sophie Bonner* U.S. Geological Survey
Anthony Feliciano U.S. Geological Survey
James Furman U.S. Department of Agriculture Forest Service
Jeffery Ganuza U.S. Geological Survey
Kevin Hiers U.S. Department of Defense Strategic Environmental Research and Development Program
Stevie Mackie U.S. Geological Survey
J.D. Mejstrik U.S. Geological Survey
Ruddy Mell U.S. Department of Agriculture Forest Service
Eric Mueller National Institute of Standards and Technology
Kurtis Nelson* U.S. Geological Survey
Birgit Peterson U.S. Geological Survey
Peter Rinkleff* U.S. Geological Survey
Paul Steblein* U.S. Geological Survey

University

Peter Hamlington University of Colorado Boulder
Chad Hoffman* Colorado State University
Derek McNamara University of Ottawa

Federally funded laboratory

Alexander Josephson Los Alamos National Laboratory
Rodman Linn Los Alamos National Laboratory
Julia Oliveto Los Alamos National Laboratory
David Robinson Los Alamos National Laboratory
Serena Tramm Jet Propulsion Laboratory
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