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Multidecadal Change in Pesticide Concentrations Relative 
to Human Health Benchmarks in the Nation’s Groundwater

By Sarah M. Stackpoole, Bruce D. Lindsey, and Cee S. Nell

Abstract
Groundwater-quality trend assessments identify aquifers that  

are responding to changes in pesticide use and the compounds that  
may pose a threat to water availability. The U.S. Geological Survey  
has been monitoring pesticide concentrations in groundwater for  
25 principal aquifers across the conterminous United States since  
1993. The groundwater well locations represent a range of soils,  
climate, and landforms. The wells are used to monitor groundwater  
underlying selected agricultural and urban settings and groundwater  
used for domestic supply. This study examined changes in relative  
concentrations, defined here as the percentage of wells with pesticide  
concentrations exceeding a human health benchmark (HHB).  
HHBs used in this report are legally enforceable drinking-water  
standards and nonenforceable drinking water levels. Relative  
pesticide concentration increases may lead to decreased water  
availability, as restrictions may be put in place for groundwater  
used as a drinking-water source.

This study focused on concentration changes in 22 pesticides  
that were included in laboratory analysis from 1993 to 2023. The  
analysis and interpretation of these pesticide concentrations  
in groundwater have been separated into approximate decadal  
intervals (decade 1 (1993–2001), decade 2 (2002–12), and decade 3  
(2013–22). For one pesticide, 1,2-dibromo-3-chloropropane (DBCP),  
concentration data were also collected in decade 4 (2023–onward).

Atrazine, deethylatrazine, alachlor, prometon, and simazine  
were 5 pesticides detected at moderate concentrations (greater than  
10 percent of the HHB but less than or equal to the HHB). The  
percentage of wells that had groundwater pesticide concentrations  
in the moderate concentration category decreased from 7 percent  
in decade 1 to 2 percent in decade 3. The agricultural networks  
had the highest percentages of wells with moderate concentrations,  
and these percentages decreased from 13 percent in decade 1 to  
4 percent in decade 3. Moderate concentrations in the urban  
networks decreased between decades 1 and 2 from 4 percent to  
0 percent. No moderate concentrations occurred in the urban  
networks in decade 3. The percentage of wells with moderate  
concentrations in the domestic supply networks (1 percent) was  
the lowest of all the network types and did not change across the  
three decades. Moderate atrazine or deethylatrazine concentrations  
occurred across all three decades in aggregated ecoregions  
representing similar soils, climate, and landforms in the Semiarid  
West, Midcontinent, and Northeastern United States. Moderate  
concentrations of prometon, alachlor, and simazine also occurred 

in the Midcontinent, Arid West, Northeast, South Atlantic Gulf,  
and Semiarid West regions, but the moderate concentrations did  
not persist across all three decades.

DBCP was the only pesticide that exceeded its respective  
HHB, and the exceedances occurred across all four decades. In  
this report, the DBCP analysis was limited to one well network 
in the Central Valley, California. Agricultural use of DBCP was 
suspended in 1977. Forty-five years after being banned, DBCP  
concentrations were greater than the maximum contaminant level  
of 2 micrograms per liter (µg/L), but the number of exceedances  
decreased from 50 percent to 15 percent of the samples between  
1993 and 2023.

This assessment of decadal groundwater pesticide concentrations  
provides a characterization of changes in water availability because 
of pesticide contamination in areas where groundwater is used as a  
drinking-water source. The results highlight the importance of  
continued long-term monitoring and assessment of groundwater  
pesticides to identify locations and specific compounds that may  
pose a potential risk to human health.

Introduction
The widespread use of pesticides in both agricultural and urban  

environments to protect crops, lawns, gardens, ornamental plants,  
and turf from diseases, weeds, and insect damage (Hoffman and  
others, 2000; Coupe and Capel, 2016) has led to the contamination 
of groundwater resources (Gilliom, 2007; DeSimone and others,  
2014; Remigio and others, 2024). The time lag between use on the  
land surface and detection in groundwater can span years or  
decades, and the potential for increasing pesticide concentrations  
is of particular concern in areas where groundwater is heavily  
used as a drinking-water source. In the United States, groundwater  
from domestic supply wells is used as a drinking-water source  
for 13 percent of the U.S. population (Dieter and others, 2018;  
Johnson and others, 2019). Domestic-supply wells are not regulated  
by state or federal law, and homeowners are responsible for the  
maintenance and any monitoring of these drinking-water sources  
(Leistra and Boesten, 1989; DeSimone, 2009; Tesoriero and others,  
2024). Pesticides in groundwater can become problematic from  
a human health perspective if concentrations are elevated relative  
to human health benchmarks (HHBs) and the groundwater source is  
used as a drinking-water source (Gilliom and others, 2006; McKnight  
and others, 2015; Hakoun and others, 2017; McGinley and others,  
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2023). Multidecadal analysis of trends in groundwater concentrations  
can demonstrate the time scales over which groundwater systems  
respond to changes in pesticide use and identify compounds that  
may pose a threat to water quality before large-scale problems occur.

Three decades ago, the U.S. Geological Survey (USGS)  
established a water quality monitoring network through the National  
Water-Quality Assessment (NAWQA) Program that is currently  
known as the National Water Quality Network (NWQN) (Gilliom  
and others, 2006; Rowe and others, 2013). The groundwater (GW)  
portion of the network was designed to provide an overview of  
water quality underlying areas of agricultural and urban land use  
and domestic drinking-water supply wells. The USGS monitors  
pesticide concentrations in 59 well networks that are distributed  
throughout eight aggregated ecoregions (Pacific Northwest, Pacific  
Coast, Arid West, Semiarid West, Mountain West, Midcontinent,  
South Atlantic Gulf, and Northeast). These aggregated ecoregions  
represent a range of soils, climate, and landforms in the conterminous  
United States. The NWQN-GW is the largest spatially distributed  
groundwater-quality monitoring network in the world (Lindsey  
and others, 2023). The land use networks (agricultural and urban)  
capture the quality of groundwater for the two different land use  
types, whereas the domestic supply wells capture the quality of  
groundwater used as a drinking-water source.

Groundwater pesticide concentration data from these monitoring  
locations supported a prior multidecadal pesticide assessment. The  
analysis of 80 pesticide concentrations in groundwater was separated  
into approximate decadal intervals (decade 1 [1993–2001], decade 2  
[2002–12]). The prior study included an analysis of about 80 parent  
and degradate compounds; transformation of parent compounds by  
chemical, photochemical, or biological reactions in the environment  
produces degradate pesticide compounds in the environment.  
Groundwater pesticides were compared to HHBs to assess the  
potential risk to human health in locations where groundwater  
is used as a drinking-water source. HHBs used in this report are  
legally enforceable drinking-water standards and nonenforceable 
drinking water levels (U.S. Environmental Protection Agency, 2018,  
2021; U.S. Geological Survey, 2024). More information about the  
HHBs is provided in the Methods Section, “Human health benchmarks  
for potential toxicity.”

Ten years have passed since the previous national-scale analysis  
of changes in groundwater pesticide concentrations was completed.  
Given the potential risk of pesticides to reducing water availability,  
particularly in regions where groundwater is a drinking-water source,  
another analysis is warranted. The availability of additional data,  
from 2013 through 2024, provides an opportunity to do an updated  
assessment for the conterminous United States.

Purpose and Scope
Through the 2009 SECURE Water Act, the U.S. Congress  

tasked the USGS to perform regular, comprehensive water availability  
assessments (Alley and others, 2013; Evenson and others, 2018).  
The USGS completed an assessment of water supply, quality, and use  
for the period 2010–20 (Stets, 2025). The results from this assessment  
can be used to inform water resource managers about the availability  
of the Nation’s freshwater, with respect to both quantity and quality,  
for human and environmental needs. Groundwater quality is a key  

water resources domain that can affect water availability trends  
(Stackpoole and others, 2023), and the purpose of this multi-decadal  
groundwater pesticide trends study is to assess changes in  
concentrations within the NWQN-GW. An analysis of groundwater  
pesticide concentrations over time can be used to identify which  
groundwater systems are responding to changes in pesticide use  
and transport. The results of 2 separate pesticide components in  
this report can also be used to determine which compounds may  
pose a threat to human health where groundwater is used as a  
drinking-water source.

The first component of this study assessed pesticide 
concentrations by network type and aggregated ecoregion and  
is referred to as the “National Groundwater Network Decadal  
Pesticide Analysis” in this document. Relative pesticide 
concentrations for pesticide compounds were estimated from  
59 groundwater-quality monitoring networks distributed in the  
25 principal aquifers of the conterminous United States. Relative  
concentrations are defined here as the percentage of wells with  
pesticide concentrations exceeding a HHB. The total number of  
pesticides included in this study is less than the previous national  
assessment (n=80) (Toccalino and others, 2014), because only  
21 compounds were included in laboratory analysis from 1993  
to 2023 and also had HHBs to evaluate potential risk to human  
health. Changes in the relative concentrations of groundwater  
pesticides were examined by network type (agricultural, urban,  
and domestic supply). In addition to the network type analysis,  
relative concentrations were examined across eight aggregated  
ecoregions (Pacific Northwest, Pacific Coast, Arid West, Semiarid  
West, Mountain West, Midcontinent, South Atlantic Gulf, and  
Northeast) with similar soils, climate, and landforms.

The second component of the study is referred to as the “DBCP  
in the Central Valley, Calif. change analysis” and focused on  
concentration changes for an additional pesticide, DBCP, in  
one well network in the Central Valley, California. The scope is  
limited to that network because prior USGS groundwater quality  
studies that focused on DBCP in the Central Valley found DBCP  
concentrations in groundwater above its HHB (Burow and others,  
1998; Burow and others, 2007). This study serves as an update  
on DBCP trends for that location.

Methods
This study examined the proportion of pesticide concentrations  

relative to HHBs from 1993 to 2023. In this section, we describe  
the monitoring network for data collection, laboratory pesticide  
analysis, HHBs, and the analytical methods used for the “National  
Groundwater Network Decadal Pesticide Analysis” and the “DBCP  
in the Central Valley, Calif. change analysis.”

Groundwater Pesticide Sampling—National  
Groundwater Network

The national groundwater network decadal pesticide analysis  
focused on samples collected from the USGS NWQN-GW. The  
current study presents pesticide data from 59 well networks (Lindsey  
and Kingsbury, 2024). The groundwater quality monitoring networks  
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are defined as groups of wells with similar characteristics, and each  
network was originally designed with 20 to 30 wells using spatially  
distributed randomized sampling (Scott, 1990; fig. 1). Samples were  
collected from each network about every 10 years between 1993 and  
2022. The alphanumeric network identifier is an abbreviation  
indicating the drainage basin name and the network type, such as  
ccptlusag2b for the Central Columbia Plateau (ccpt) land use study  
network (lus) focused on agricultural land use (ag) (table 1). The  
first decade of groundwater pesticide sampling was 1993–2001,  
the second was 2002–12, the third was 2013–22, and the fourth  
decade of sampling started in 2023. Herein, the term “decadal  
sampling” refers to the frequency of water quality sampling in this  
network. The “National Groundwater Network Decadal Pesticide  
Analysis” examines data from decades 1, 2, and 3, but the “DBCP  
in the Central Valley, Calif. change analysis” examines data from  
decades 1–4.

During each year in decades 1 and 2, pesticide samples were  
collected from 20 to 30 wells in 8 to 10 networks, resulting in  
all networks being sampled within a 10 year period. Because  
groundwater pesticide concentrations in exceedance of HHBs 
were not detected in the first two decades of monitoring and 
analysis (Toccalino and others, 2014), the number of monitored  
wells where groundwater pesticide samples were collected was  
reduced. In the third decade, the rotating schedule of network  
sampling was maintained, but the collection of pesticide samples 
was reduced to 8 wells within each network. Pesticide samples  
from groundwater were collected from these locations following  
protocols established by the USGS; raw samples were collected  
(before any treatment for domestic well water), and they were 
passed through 0.7-micrometer filters (Lapham and others, 1995; 
Koterba, 1998).

The objective of this monitoring framework was to evaluate 
the quality of groundwater underlying selected agricultural (number  
of well networks [n]=24) and urban (n=15) settings or groundwater  
used for domestic supply (n=20) within 25 principal aquifers of the  
United States (Gilliom and others, 1995). Wells in the agricultural  
and urban land use networks are typically shallower (average well  
depth, 6 meters [m] below surface) than wells in the domestic supply  
networks (average well depth, 43 m below surface), but well depths  
can vary by aquifers (Lindsey and Rupert, 2012) (table 1). For the  
purposes of discussion, wells in agricultural networks are referred  
to as “agricultural wells.” Comparable language is used for wells  
in urban networks. Previous studies have referred to the well  
networks representing the depth zone used for domestic supply as  
major aquifer studies (Lindsey and others, 2023). Those networks  
are referred to herein as “the domestic supply network type.”

The well networks are distributed across seven of the eight  
aggregated ecoregions (Pacific Northwest, Pacific Coast, Arid West,  
Semiarid West, Midcontinent, South Atlantic Gulf, and Northeast),  
which are regions of the conterminous United States with similar  
soils, climate, and landforms. There were no wells with pesticide  
monitoring in the Mountain West. These aggregated ecoregions  
have been used in prior groundwater-quality trend reports (Lindsey  
and others, 2023). The aggregated ecoregions combine multiple  
factors that affect groundwater quality such as soils, climate, and  
landforms into large, relatively homogenous units (Commission  
for Environmental Cooperation, 1997), with the latest ecoregions  
reflecting a regrouping of the EPA Level 3 ecoregions (Commission  

for Environmental Cooperation, 2021; Lindsey and others, 2023).  
The boundaries of the 59 well networks shown in figure 1 fall  
within the aggregated ecoregions. The boundaries of the aggregated 
ecoregions cross the boundaries of the principal aquifers shown in  
figure 1.

Groundwater Pesticide Sampling—1,2-Dibromo-3- 
Chloropropane (DBCP) in the Central Valley,  
California

The 1,2-dibromo-3-chloropropane (DBCP) in the Central  
Valley, Calif. change analysis relied on two sets of sampling data.  
Decadal samples of DBCP were collected from one well network  
in the San Joaquin-Tulare River Basin; refer to the sanjlusor1a  
network in figure 1 and table 1. The decadal concentration samples  
were collected from 36 wells in 1993, 2001, 2013, and 2023. The  
USGS also evaluated changes in DBCP concentrations at shorter  
time scales through a type of NWQN-GW well network known as  
an Enhanced Trends Network (ETN; Mathany and others, 2019).  
The ETN in the Central Valley aquifer of California collected  
bimonthly DBCP samples from a 98-m deep supply well and a  
71-m deep monitoring well from 2014 to 2019 (Saraceno and  
others, 2018). Unfiltered DBCP samples were collected before any  
treatment for domestic well water (Lapham and others, 1995;  
Koterba, 1998).

Laboratory Pesticide Analysis

Water quality samples were analyzed for pesticide concentrations  
at the USGS National Water Quality Laboratory (NWQL) in Denver,  
Colorado. Water quality samples for the national groundwater 
network decadal pesticide analysis were analyzed using two different  
laboratory methods. Samples collected in decades 1 and 2 were  
analyzed using gas chromatography/mass spectrometry (Zaugg and 
others, 1995) or high-performance liquid chromatography (Werner  
and others, 1996; Furlong and others, 2001), also known as NWQL 
Laboratory Schedule 2033. Decade 3 samples were analyzed at the  
NWQL using a broad-spectrum liquid chromatography-tandem mass  
spectrometry method (Sandstrom and others, 2015), also known  
as NWQL Laboratory Schedule 2437. The change in laboratory  
analytical methods between decades 2 and 3 has the potential  
to introduce bias into the analysis of datasets that span all three  
decades. For this report, the relative comparability of the older and  
newer concentration data was confirmed based on the findings of a  
prior USGS report from Martin and others (2017), which compared  
the data from the 2033 method to the 2437 method. Martin and  
others (2017) focused on data collected from surface waters and  
incorporated adjustments for changes in laboratory recovery as  
assessed through laboratory spikes for 21 pesticide compounds  
included in this report. Martin and others (2017) found that the  
relation between the atrazine concentrations based on the older  
and newer NWQL methods was weak at concentrations below  
0.01 micrograms per liter (µg/L). For concentrations greater than  
0.1 µg/L, the relation between concentrations from both methods  
was close to a 1:1 line (fig. 2). The results of the two different  
analytical methods are comparable at concentrations relevant to  
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Figure 1.  Map showing the U.S. Geological Survey National Water Quality Network for Groundwater and the associated principal aquifers and dominant lithology. Symbols are on  
the centroid of each network type.
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Table 1.  Overview of pesticide sampling across 59 well networks in the United States, including network identifiers, drainage basin-based study units, principal aquifer systems, network  
types, years sampled across three decades, the number of wells sampled, median well depth (meters), and aggregated ecoregion.

[ID, identifier]

Network 
ID

Drainage basin-based study unit Principal aquifer system or aquifer Network type

Year 
sampled, 
decade 1 

(1993–2001)

Year 
sampled, 
decade 2 
(2002–12)

Year 
sampled, 
decade 3 
(2013–22)

Number 
of wells 
sampled 
across 

all three 
decades

Network 
median 

well 
depth 

(meters)

Aggregated 
ecoregion

acadlusrc1 Acadian-Pontchartrain Drainages Coastal lowlands Urban land use 2002 2011 2021 7 18 South Atlantic Gulf

acadsus1 Acadian-Pontchartrain Drainages Coastal lowlands Domestic supply 2000 2008 2020 4 44 South Atlantic Gulf

acfbluscr3 Apalachicola-Chattahoochee-Flint River Basin Floridan and Surficial Agricultural land use 1993 2002 2013 7 14 South Atlantic Gulf

acfbsus1 Apalachicola-Chattahoochee-Flint River Basin Floridan Domestic supply 1995 2002 2015 4 42 South Atlantic Gulf

albelusag1 Albemarle-Pamlico Drainage Basin Northern Atlantic Coastal Plain Agricultural land use 1994 2002 2014 1 6 South Atlantic Gulf

cazbsus1a Central Arizona Basins Basin and Range Domestic supply 1997 2008 2018 4 148 Arid West

ccptlusag2b Central Columbia Plateau Columbia Plateau basin-fill and basaltic-rock Agricultural land use 1994 2002 2014 6 13 Pacific Northwest

ccptlusor1b Central Columbia Plateau Columbia Plateau basin-fill and basaltic-rock Agricultural land use 1995 2002 2015 6 9 Pacific Northwest

ccptsus1b Central Columbia Plateau Columbia Plateau basin-fill and basaltic-rock Domestic supply 1994 2002 2014 7 68 Pacific Northwest

eiwaluscr1 Eastern Iowa Basins Glacial Agricultural land use 1997 2007 2017 8 5 Midcontinent

eiwasus2 Eastern Iowa Basins Glacial Domestic supply 1998 2007 2017 7 17 Midcontinent

gaflluscr1 Georgia-Florida Coastal Plain Surficial Agricultural land use 1994 2002 2015 5 9 South Atlantic Gulf

grsllusrc1 Great Salt Lake Basins Basin and Range Urban land use 1999 2012 2020 10 21 Arid West

grslsus2 Great Salt Lake Basins Basin and Range Domestic supply 2000 2008 2021 4 147 Arid West

hpgwsus1a High Plains Regional Ground Water Study High Plains Domestic supply 1999 2010 2021 8 89 Semiarid West

lerilusrc1 Lake Erie-Lake Saint Clair Drainages Glacial Urban land use 1996 2006 2016 7 8 Midcontinent

lerisus1 Lake Erie-Lake Saint Clair Drainages Glacial Domestic supply 1998 2007 2016 8 27 Midcontinent

linjlusrc1 Long Island-New Jersey Coastal Drainages Northern Atlantic Coastal Plain Urban land use 1996 2005 2017 9 9 Northeast

linjsus2 Long Island-New Jersey Coastal Drainages North Atlantic Coastal Plain Domestic supply 1998 2006 2018 8 30 Northeast

lirbsus1 Lower Illinois River Basin Glacial Domestic supply 1996 2007 2018 8 77 Midcontinent

ltenlusag1 Lower Tennessee River Basin Mississippian Agricultural land use 2000 2012 2022 7 11 Midcontinent

miselusrc1 Mississippi Embayment Miss. Embayment-TX Coastal Uplands Urban land use 1997 2006 2017 7 20 South Atlantic Gulf

misesus4 Mississippi Embayment Miss. Embayment-TX Coastal Uplands Domestic supply 2007 2019 1 88 South Atlantic Gulf

necblusrc1 New England Coastal Basins Glacial Urban land use 1999 2010 2019 8 8 Northeast

necbsus3 New England Coastal Basins Glacial Domestic supply 2001 2011 2019 8 18 Northeast

nvbrlusrc1 Nevada Basin and Range Basin and Range Urban land use 2002 2013 4 12 Arid West

nvbrsus2 Nevada Basin and Range Basin and Range Domestic supply 1995 2003 2016 3 110 Arid West

ozrklusag2a Ozark Plateaus Ozark Plateaus Agricultural land use 1995 2007 2017 6 55 Midcontinent

potolusag1 Potomac River Basin Valley and Ridge Agricultural land use 1993 2002 2014 19 47 Northeast

pugtluscr1 Puget Sound Basin Glacial Agricultural land use 1997 2006 2018 5 9 Pacific Northwest

rioglusag1 Rio Grande Valley Rio Grande Agricultural land use 1994 2006 2016 3 6 Arid West
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Table 1.  Overview of pesticide sampling across 59 well networks in the United States, including network identifiers, drainage basin-based study units, principal aquifer systems, network  
types, years sampled across three decades, the number of wells sampled, median well depth (meters), and aggregated ecoregion.—Continued

[ID, identifier]

Network 
ID

Drainage basin-based study unit Principal aquifer system or aquifer Network type

Year 
sampled, 
decade 1 

(1993–2001)

Year 
sampled, 
decade 2 
(2002–12)

Year 
sampled, 
decade 3 
(2013–22)

Number 
of wells 
sampled 
across 

all three 
decades

Network 
median 

well 
depth 

(meters)

Aggregated 
ecoregion

rioglusrc1 Rio Grande Valley Rio Grande Urban land use 1993 2006 2016 2 7 Arid West

sacrluscr1 Sacramento River Basin Central Valley Agricultural land use 1997 2006 2017 7 11 Pacific

sacrlusrc1 Sacramento River Basin Central Valley Urban land use 1998 2005 2017 5 24 Pacific

sanasus1 Santa Ana Basin California Coastal Basin Domestic supply 2000 2011 2022 5 180 Pacific

sanasus2 Santa Ana Basin California Coastal Basin Domestic supply 1999 2009 2020 5 282 Pacific

sanjluscr1a San Joaquin-Tulare Basins Central Valley Agricultural land use 1995 2002 2015 7 45 Pacific

sanjlusor1a San Joaquin-Tulare Basins Central Valley Agricultural land use 1993 2001 2013 13 50 Pacific

sanjlusor2a San Joaquin-Tulare Basins Central Valley Agricultural land use 1994 2001 2014 6 47 Pacific

sanjsus1 San Joaquin-Tulare Basins Central Valley Domestic supply 1995 2002 2015 8 47 Pacific

santluscr1 Santee River Basin and Coastal Drainages Surficial Agricultural land use 1997 2007 2018 5 5 South Atlantic Gulf

santlusrc1 Southeastern Coastal Plain aquifer system Surficial Urban land use 1996 2006 2016 6 6 South Atlantic Gulf

santsus2 Santee River Basin and Coastal Drainages Floridan Domestic supply 1998 2006 2018 7 55 South Atlantic Gulf

sctxlusrc1 South-Central Texas Edwards-Trinity Urban land use 1998 2006 2017 20 80 Semiarid West

sctxsus1 South-Central Texas Edwards-Trinity Urban land Use 1998 2006 2017 8 109 Semiarid West

sofllusor1 Southern Florida Surficial Agricultural land use 1998 2009 2019 3 4 South Atlantic Gulf

sofllusrc1a Southern Florida Biscayne Urban land use 1996 2010 2021 1 5 South Atlantic Gulf

spltluscr1 South Platte River Basin Alluvial Agricultural land use 1994 2002 2013 26 7 Semiarid West

trinsus3 Trinity River Basin Coastal lowlands Domestic supply 1994 2002 2014 3 55 South Atlantic Gulf

uirbluscr1 Upper Illinois River Basin Glacial Agricultural land use 1999 2012 2021 7 5 Midcontinent

uirblusrc1 Upper Illinois River Basin Glacial Urban land use 2000 2010 2021 5 9 Midcontinent

umisluscr1 Upper Mississippi River Basin Glacial Agricultural land use 1998 2006 2018 6 8 Midcontinent

umislusrc1 Upper Mississippi River Basin Glacial Urban land use 1996 2006 2016 6 5 Midcontinent

umissus3 Upper Mississippi River Basin Cambrian-Ordovician Domestic supply 1996 2007 2018 6 55 Midcontinent

usnkluscr2 Upper Snake River Basin Snake River Plain Agricultural land use 1993 2005 2016 5 71 Arid West

usnkluscr3 Upper Snake River Basin Snake River Plain Agricultural land use 1994 2005 2017 6 62 Arid West

whitluscr1 White River Basin Glacial Agricultural land use 1994 2002 2014 8 8 Midcontinent

wmiclusag2 Western Lake Michigan Drainages Glacial Agricultural land use 1994 2002 2014 22 13 Midcontinent

wmicsus1 Western Lake Michigan Drainages Cambrian-Ordovician Domestic supply 1995 2002 2015 7 49 Midcontinent
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[Data from Martin and others, 2017]

Figure 2.  Graph showing the comparison of pesticide concentrations determined by two different analytical methods (2033 older and  
2437 newer) during the period of study. This example plot shows that for atrazine, the results of the two different analytical methods are  
comparable at concentrations relevant to reporting on potential risk to human health, that is, at concentrations greater than 0.3 ug/L, which  
is the concentration that is 10 percent of the human health benchmark.
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reporting on potential risk to human health, that is, at concentrations  
greater than 10 percent of the human-health benchmark. A relation  
similar to the one found for atrazine was also observed for the  
other pesticides that have been commonly detected in groundwater  
(metolachlor, prometon, and simazine). Therefore, for this report,  
we treat pesticide data from decades 1 and 2 as comparable to  
decade 3.

Water quality samples for the DBCP concentration change  
analysis in the Central Valley, Calif. relied on a different laboratory  
analysis because DBCP is a volatile organic compound. In decade 1, 
 the USGS DBCP laboratory analysis method had a reporting level  

of 0.03 µg/L (Fishman, 1993). An enhanced method, to measure  
concentrations for more compounds, at lower concentrations, was  
implemented, which resulted in a lower reporting level of 0.02 µg/L  
(Rose and others, 2016).

Similar to prior USGS pesticide (Toccalino and others, 2014)  
and DBCP analysis (Rowe and others, 2007) studies, this report  
analyzed data across multiple laboratory schedules and laboratory  
reporting levels (LRL). Results that are greater than the LRL are  
reported, and results that are less the LRL are reported as nondetects  
(Bonn, 2008). The highest magnitude LRL for all decades was used  
in our analysis and this value is included in table 2.

Table 2.  Characteristics of the 22 pesticides and their corresponding human health benchmarks (HHBs), including magnitude and type, 
in relation to multidecadal change in the Nation’s groundwater.

[Reporting Level is the maximum reporting level present in the dataset for this report. Individual samples with raised reporting limits were removed if they were 
greater than 5 percent of the respective HHB. Samples with raised reporting limits were retained if the value was less than or equal to 5 percent of the HHB. µg/L,  
microgram per liter; HHB, human health benchmark; MCL, maximum contaminant level; HHBP-NC, Chronic, human health benchmark for pesticides noncancer  
chronic; HHBP-NC, Acute, human health benchmark for pesticides noncancer acute; HBSL-C, health based screening levels cancer; HBSL-NC, health based  
screening levels noncancer]

Compound name Use group
Parent or 
degradate

Highest 
laboratory 

reporting level
(µg/L)

HHB type HHB (µg/L)

Category of highest 
concentration (high, 

moderate, low-
moderate, and low) 
in decades 1, 2, or 3

Deethylatrazine (DEA) Herbicide Degradate 0.086 MCL 3 Moderate
Acetochlor Herbicide Parent 0.25 HHBP-NC, Chronic 100 Low
Alachlor Herbicide Parent 0.05 MCL 2 Moderate
Atrazine Herbicide Parent 0.05 MCL 3 Moderate

Azinphos-methyl Insecticide Parent 0.16 HHBP-NC, Chronic 8.9 Low
Carbaryl Insecticide Parent 0.25 HBSL-C 30 to 3,000a Low

Chlorpyrifos Insecticide Parent 0.06 HBSL-NC 5 Low
cis-Permethrin Insecticide Parent 0.25 HHPB-NC, Acuteb 2,900 Low

Diazinon Insecticide Parent 0.056 HBSL-NC 2 Low
Fonofos Insecticide Parent 0.022 HBSL-NC 10 Low

Malathion Insecticide Parent 0.25 HBSL-NC 60 Low
Methyl-parathionc Insecticide Parent 0.500 HBSL-NC 1d Low

Metolachlor Herbicide Parent 0.18 HBSL-NC 2,000 Low
Metribuzin Herbicide Parent 0.4 HBSL-NC 8 Low

Pendimethalin Herbicide Parent 0.2 HHBP-NC 2,000 Low
Phorate Insecticide Parent 0.055 HHBP-NC 1 Low

Prometon Herbicide Parent 0.25 HBSL-NC 300 Moderate
Propyzamide Herbicide Parent 0.048 HHBP-NC 77 Low

Simazine Herbicide Parent 0.144 MCL 4 Moderate
Tebuthiuron Herbicide Parent 0.0767 HBSL-NC 800 Low

Terbufos Insecticide Parent 0.05 HBSL-NC 0.06d Low
1,2-dibromo-3-chloropropane Nematicide Parent 0.03 MCL 0.2 High

aCancer HBSLs are a range. The range represents a one-in-one million (10-6) to one-in-ten thousand (10-4) cancer risk range. The lower value of the range (30 ug/L)  
was used in this study’s analysis.

bReference for this benchmark is U.S. Geological Survey (2024). This value is the acute HHBP for children; the acute population adjusted dose adequately accounts  
for all chronic toxicity, including carcinogenicity.

cThe name parathion-methyl is also used for this compound.
dSamples with raised reporting limits were retained if the value was less than or equal to 5 percent of the HHB.
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Quality-assurance and quality-control (QAQC) samples were  
collected for all 22 pesticides. These QAQC field blank samples  
were used to evaluate the potential for sample collection, handling,  
and analysis to introduce contamination to water quality samples.  
The QAQC field replicate samples are used to characterize the  
variability of analytical results caused by random measurement  
error, and to estimate any positive or negative bias that might result  
from method performance. QAQC matrix spikes prepared in the  
field or laboratory samples were used to assess the effects of the  
sample matrix and (or) analyte degradation between sampling and  
analysis (Rowe and others, 2007, Toccalino and others, 2014). We  
did not identify any QAQC issues that would affect the results of  
our analysis. The accepted holding time for pesticide samples is  
14 days (Sandstrom and others, 2015; Rose and others, 2016);  
we did not delete any data because of holding time issues. The  
quality of pesticide data collected in the third decade of sampling  
is summarized in Bexfield and others (2020), and QAQC of DBCP  
data for the public supply wells is the same as it is for other  
groundwater wells and is summarized in Bexfield and others  
(2022a; 2022b). The data analyzed in this study are available at 
Lindsey and Stackpoole (2025).

Human Health Benchmarks for Potential Toxicity

The national groundwater network and the DBCP in the Central  
Valley, Calif. change analyses examined pesticide concentrations  
relative to HHBs, defined here as relative concentrations. HHBs were  
used to classify groundwater pesticide concentrations into one of  
four categories. Pesticide concentrations above an HHB were  
defined as high. Concentrations that exceeded 0.10 of the HHB but  
were lower than or equal to the HHB were moderate. Concentrations  
that exceeded 0.05 of the HHB but were lower than or equal to 0.10  
of the HHB were defined as low-moderate. Concentrations lower  
than or equal to 0.05 of the HHB were low (fig. 3A). These definitions  
are modified from the definitions used in prior USGS groundwater  
quality assessment studies (Belitz and others, 2022), with the addition  
of the low-moderate category.

The HHBs used for this study were the U.S. Environmental  
Protection Agency (EPA) maximum contaminant levels (MCLs)  
(U.S. Environmental Protection Agency, 2018). MCLs, established 
through the Safe Drinking Water Act of 1974 (42 U.S.C. 300(f)),  
are legally enforceable drinking-water standards for public water  
supplies. If MCLs were not available, then the EPA human health  
benchmarks for pesticides (HHBPs) (U.S. Environmental Protection  
Agency, 2021) or the USGS Health-Based Screening Levels 
(HBSLs) (U.S. Geological Survey, 2024) were used. HHBPs  
are nonenforceable drinking water levels that offer information  
about adverse health effects from drinking water exposure to 
contaminants that have no drinking water standards or health  
advisories, and they include noncancer benchmarks for acute  
(one-day) and chronic (lifetime) drinking water exposures. HBSLs 
are also nonenforceable guidelines for pesticides for which the EPA  
has not issued a drinking water health advisory or set an enforceable  
Federal drinking water standard. The HBSLs are determined only  
for those compounds that do not already have a MCL or a HHBP.  
HBSLs are typically determined using the same methodology that  
the EPA uses for chronic non-cancer HHBPs, with the exception of  
permethrin, for which the HHBP non cancer acute benchmark was  

used; the USEPA determined that there is no lower concentration  
level to protect against chronic or carcinogenic toxicity (U.S.  
Geological Survey, 2024).

Only pesticides with an HHB were included in the multidecadal 
pesticide change analysis. Similar to other groundwater pesticide  
assessments, the assumption of equimolar toxicity described in  
Bexfield and others (2021) was used for pesticide parent products  
and their degradates in this analysis. The results represent the  
number of wells with an exceedance for at least one pesticide;  
if multiple pesticides exceeded a HHB in a well, only one HHB  
exceedance was counted for that well. As a result, changes in the  
potential combined risk of mixtures of pesticides are not addressed  
in this study.

For most of the compounds analyzed in this study, the  
magnitude of the HHBs was at least 100 times the magnitude of 
the highest LRL; therefore, the changing LRLs over time did not 
affect the application of the method of reporting concentrations  
relative to HHBs for these compounds. However, for 2 compounds,  
terbufos and methyl-parathion, the highest LRL was greater than  
both 10 percent and 5 percent of the HHB. These two pesticides are  
less likely than the others to be quantified when they are present  
in groundwater at concentrations near their HHBs, meaning  
these compounds may be reported as nondetects, when they are  
actually in the sample (Bexfield and others, 2020). Terbufos and  
methyl-parathion were only evaluated for potentially exceeding a  
HHB, not the moderate or low-moderate categories. The highest  
LRL that we used for DBCP was greater than both 10 percent  
and 5 percent of the HHB, but not higher than the HHB. We only  
focused on reporting changes in concentration greater than the 
HHB for this compound.

National Groundwater Network Decadal 
Pesticide Analysis

The change in relative concentrations of 21 pesticides sampled  
across all 59 networks over three decades is presented by category  
(high, moderate, low-moderate, and low) for each network type and  
aggregated ecoregion. Toccalino and others (2014) used a different 
method, the Wilcoxon-Pratt signed-rank test, to determine changes  
in groundwater pesticide concentrations between decades 1 and 2.  
The Wilcoxon-Pratt signed-rank test (Pratt, 1959) is a nonparametric  
test that can be used for analysis of change between matched pairs  
of wells and two sampling periods. This test was used because 20  
to 30 matched-pair trend tests within a well network were available  
for both decades 1 and 2. This study employed a more conservative,  
semi-quantitative approach because fewer wells were represented  
in decade 3, as compared to decades 1 and 2. In the third decade,  
the rotating schedule of network sampling was maintained, but  
the collection of pesticide samples was reduced to 8 wells within  
each network.

DBCP in the Central Valley, California Change 
Analysis

DBCP concentrations were obtained once per decade from  
36 wells over four decades from one network in the Central Valley,  
Calif. The Wilcoxon-Pratt signed-rank test was used for the analysis  
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Figure 3.  Graph showing the percentage of pesticide detections in each concentration category (high, moderate, 
low-moderate, and low) for each decade. A, all wells and B, wells separated out by network type: agricultural  
land use, urban land use, and domestic supply for the period 1993–2022.
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of change between two sampling periods, and the Regional Kendall  
test was used to evaluate changes in DBCP concentration across all  
four sampling periods (Frans and Helsel, 2005; Helsel and others,  
2006). The Regional Kendall test is an adaptation of the Seasonal  
Kendall test, where the wells were used instead of season of year  
as the “season” variable.

Bimonthly concentrations from two monitoring wells from  
2014 to 2019 to the MCL (0.2 µg/L) were also collected. A  
Mann-Kendall trend test was used to evaluate temporal changes  
in these bimonthly data for the period 2014–19 (Helsel and  
others, 2020). The Mann-Kendall trend test can be used to test for  
monotonic trends, either a decrease or an increase in concentrations  
over time, and it does not assume that the data are normally  
distributed. The statistical analyses performed for this study were  
considered significant at a probability value (p-value) of less than  
or equal to 0.1.

Results

National Groundwater Network Decadal 
Pesticide Analysis

No pesticides were detected at high concentrations, and five  
pesticides were detected at moderate concentrations (alachlor, 
atrazine, deethylatrazine [DEA], prometon, and simazine). The  
percentage of all wells that had pesticide concentrations in the  
moderate category decreased each decade, from 7 percent in  
decade 1 to 2 percent in decade 3 (fig. 3A). Alachlor and prometon  
were detected at moderate concentrations in decade 1. Simazine  
was detected at moderate concentrations in decades 1 and 3. Atrazine  
or DEA were detected at moderate concentrations in decades 1,  
2, and 3.

The agricultural wells were the well type that had the highest  
percentages of moderate concentrations, and these percentages  
decreased each decade (fig. 3B). Moderate concentrations were  
generally less frequent in the urban as compared to the agricultural  
wells. Moderate concentrations in the urban wells decreased between  
decades 1 and 2 from 4 percent to 0 percent and remained at  
0 percent in decade 3. The percentage of domestic wells with moderate  
concentrations (1 percent) was the lowest of all the network types  
and did not change across the three decades.

Four pesticides (alachlor, atrazine, DEA, and simazine) were  
detected at low-moderate concentrations. The percentage of wells  
with detections in that category showed little change across all  
three decades (fig. 3A). The highest percentages of low-moderate  
concentrations occurred in the agricultural wells and remained at  
about 8 percent for each decade (fig. 3B). The percentage of wells  
with low-moderate concentrations also had little change across the  
decades in the urban and domestic supply wells.

Pesticides were detected at moderate or low-moderate 
concentrations during at least one decade in 6 of the 8 aggregated 
ecoregions. The Northeast, Midcontinent, and the Semiarid West  
aggregated ecoregions had wells with moderate concentrations  
in all three decades (figs. 4A and 4B). Atrazine or DEA occurred  
at moderate concentrations in 6 of the 8 aggregated ecoregions  
in at least one of the three decades. Moderate concentrations of  

alachlor, prometon, and simazine were also found in groundwater 
from some NWQN-GW wells in decades 1 and 3. The Pacific 
Coast was the only ecoregion where groundwater pesticide  
monitoring took place in all three decades, and no pesticides  
were detected in this ecoregion at moderate concentrations. No  
pesticide monitoring occurred in the Mountain West ecoregion.

DBCP in the Central Valley, California Change 
Analysis

One network in the Central Valley had DBCP concentrations  
that exceeded the 0.2 µg/L HHB in the first and second decades of  
sampling, so continued monitoring of DBCP concentrations in  
20–30 wells in this network continued into the third and fourth  
decades of sampling. The results of the Wilcoxon-Pratt signed rank  
test indicated statistically significant decreases from the first to  
second decade (p=0.058) and the second to third decade (p=0.002),  
but there was no statistically significant change from the third to  
the fourth decade (p=0.34) (fig. 5). The Regional Kendall test for  
changes at the network level indicated a statistically significant  
decrease in DBCP concentrations from 1993 to 2024 (p=0.0006). 
The percentage of samples exceeding the HHB dropped from  
50 percent to 15 percent, most concentrations were less than 
the MCL in the fourth decade of sampling.

The Mann-Kendall trend test for DBCP concentrations in  
seasonal samples from the two wells sampled from 2014 to 2019 in  
the ETN indicated a significant negative trend for each well 
(monitoring well, tau=−0.6061, and p-value=0.0061; supply well,  
tau=−0.6095, p-value=0.0001). In the shallower monitoring well,  
(71-m deep), DBCP concentrations were greater than the HHB for  
the entire sampling period. In the deeper supply well, (98-m deep),  
all measured DBCP concentrations were less than the HHB by 2016  
and remained less than the HHB to the most recent sampling in  
2019 (fig. 6).

Discussion

National Groundwater Network Decadal 
Pesticide Analysis

The proportion of pesticide concentrations in the moderate  
category (greater than 10 percent of the HHB but less than or equal  
to HHB) decreased over time. Five of the 21 pesticides were found  
at moderate concentrations: alachalor, atrazine, DEA, simazine, and  
prometon. These compounds had the highest pesticide concentrations  
found, and they are the focus of our discussion. In our study, atrazine  
was detected at moderate concentrations in 6 different ecoregions  
(Pacific Northwest, Arid West, Semiarid West, Midcontinent, South  
Atlantic Gulf, and Northeast) in decade 1, but by decade 3, it was  
only detected in 1, the Midcontinent ecoregion. We hypothesize that  
one of the processes that may have contributed to the reduction  
of pesticide concentrations in groundwater include degradation  
through abiotic or biotic processes in soils or groundwater 
(Fenner and others, 2013; Aisopou and others, 2015; Kundu and  
others, 2019). Alternative explanations for the decrease include  
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Figure 4.  A, Map showing he conterminous United States with aggregated ecoregions: Pacific, Pacific Northwest, Arid West, Semiarid West, Midcontinent, South Atlantic Gulf, and Northeast.  
B, Graph showing changes in groundwater pesticide concentrations relative to a human health benchmark by aggregated ecoregion and land use for the period 1993–2022. Stacked bar  
charts are arranged from left to right according to their geographic location by aggregated ecoregions: Pacific, Pacific Northwest, Arid West, Semiarid West, Midcontinent, South Atlantic  
Gulf, and Northeast. There is no bar plot for the urban network in the Pacific Northwest ecoregion because there is no monitoring network for this land use type in that ecoregion. There  
are no bar plots for the Mountain West because there was no groundwater pesticide monitoring in that aggregated ecoregion.
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Figure 4.—Continued



14    Multidecadal Change in Pesticide Concentrations Relative to Human Health Benchmarks in the Nation’s Groundwater

Ja
nu

ar
y 

1,
 2

00
0

Ja
nu

ar
y 

1,
 2

00
5

Ja
nu

ar
y 

1,
 1

99
5

Ja
nu

ar
y 

1,
 1

99
0

Ja
nu

ar
y 

1,
 2

01
0

Ja
nu

ar
y 

1,
 2

01
5

Date

Ja
nu

ar
y 

1,
 2

02
0

Ja
nu

ar
y 

1,
 2

02
5

DB
CP

 c
on

ce
nt

ra
tio

n,
 in

 m
ic

ro
gr

am
s 

pe
r l

ite
r

0.01

0.1

1

50 percent
exceed MCL

44 percent
exceed MCL

33 percent
exceed MCL

15 percent
exceed MCL

50th percentile (median)

25th percentile

75th percentile
Maximum

DBCP concentration

U.S. Environmental Protection Agency 
maximum contaminant level
(MCL) (0.2 micrograms per liter)

Reporting level

EXPLANATION
[Data from Lindsey and Stackpoole, 2025]

Figure 5.  Graph showing 1,2-dibromo-3-chloropropane (DBCP) concentrations in groundwater from wells in the U.S. Geological Survey  
National Water Quality Network for Groundwater land use network in the Central Valley of California for the period from 1993 to 2024.
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reduction in pesticide use or a change in the transport of pesticides  
to groundwater over time. Changes in pesticide use and soil  
management, coupled with changes in precipitation and temperature,  
can vary over time, affecting pesticide transport to groundwater  
(Arias-Estévez and others, 2008; Bexfield and others, 2021).

Atrazine and its degradate, DEA, were the pesticides that were  
most commonly observed at moderate concentrations across all  
three decades in the Semiarid West, Midcontinent, and Northeast  
aggregated ecoregions. In the United States, atrazine is still one of  
the most heavily used agricultural pesticides (Wieben, 2025). For  
roughly the same period of record encompassed in this report,  
atrazine and DEA were frequently detected at elevated concentrations  
in surface water for the period from 1993 to 2017, (Larson and others,  
1999; Stone and others, 2014; Nowell and others, 2018; Stackpoole  
and others, 2021). In the prior NGWN-GW groundwater pesticide  
trends assessment, these two compounds were frequently detected in  
groundwater in decades 1 and 2. Atrazine concentrations decreased 
in agricultural wells, and DEA concentrations increased in the urban  
and domestic drinking water supply wells (Toccalino and others, 2014). 

The specific aquifers where atrazine and DEA detections  
occurred across all three decades include the South Platte River  
Basin Alluvial aquifer in the Semiarid West, the Western Lake  
Michigan Drainages Glacial aquifer in the Midcontinent, and the  
Potomac River Basin Valley and Ridge aquifer in the Northeast. 
In these specific geographic locations, if atrazine or DEA were  
detected at moderate concentrations in decade 1, they were also 
detected at moderate concentrations in decades 2 and 3. We also  
found geographic locations where either atrazine or DEA were  

only found in decade 3; this occurred in the Midcontinent ecoregion,  
the Glacial Aquifer system in the Eastern Iowa Basin, and in the  
Semiarid West ecoregion, the Alluvial Aquifer system in the High  
Plains of Texas. Identification of these new locations with moderate  
concentrations of atrazine or DEA would not have been possible 
without continued monitoring of this pesticide and its degradate  
in the environment across all three decades. However, we are unable  
to determine the drivers of these decadal patterns in the groundwater  
pesticide concentration data because we lack information about  
pesticide use and management and the soil conditions and precipitation, 
key factors affecting transport and degradation rates of pesticides  
near these aquifer locations.

Moderate concentrations of alachlor, prometon, and simazine  
were also found in groundwater from some NWQN-GW wells in  
decades 1 and 3. In 1990, alachlor was a heavily used herbicide,  
especially where corn was commonly a dominant agricultural crop.  
However, because of the introduction of acetochlor for corn and  
glyphosate-resistant soybeans, the use of alachlor has steadily declined  
since 1994 (Vecchia and others, 2009). Alachlor is not a pesticide  
that has frequently been detected in prior USGS national-scale  
groundwater reports, which were focused on decades 1 and 2 of  
sampling (Kolpin and others, 1998; Toccalino and others, 2014).  
Prometon was detected at moderate concentrations in the Semiarid  
West ecoregion in decade 1. Simazine was detected in moderate  
concentrations in the Arid West and the Northeast in decades 1  
and 3. In prior USGS studies prometon and simazine were commonly  
detected in groundwater (Kolpin and others, 1998; Toccalino and  
others, 2014).
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Figure 6.  Graph showing 1,2-dibromo-3-chloropropane (DBCP) concentrations in two wells (98-meter [m] deep supply well and a 71-m  
deep monitoring well) sampled bimonthly for the period 2014 to 2019.
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There were differences in groundwater pesticide trend patterns  
across the different well types. The agricultural and urban networks  
capture the quality of recently recharged groundwater underlying  
selected agricultural land uses, whereas the domestic drinking-water 
supply wells are generally deeper than the land use networks  
and reflect a mixed land use signal. A larger number of moderate  
concentrations were detected in the agricultural as compared  
to the urban or domestic use networks, but the percentage of  
agricultural wells with moderate concentrations decreased. In  
contrast, the percentage of urban and domestic wells with moderate  
concentrations was lower than the agricultural wells. Moreover, the  
percentage of moderate pesticide concentrations in urban wells 
decreased over the three decades, but the percentage remained the  
same in the domestic supply wells.

Groundwater from individual wells in the domestic-well networks 
is generally used by rural residents as a primary drinking-water source  
(U.S. Environmental Protection Agency, 1977; Degnan and others,  
2021; Lindsey and others, 2021). In our study, pesticides were detected  
at moderate concentrations in domestic supply wells in three aggregated  
ecoregions: the Arid West, Northeast, and Semiarid West. The  
domestic-well networks within the NWQN-GW cover areas that  
supply groundwater to more than 6 million people, or about 13 percent  
of the total number of people relying on domestic supply in the  
United States (Dieter and others, 2018; Johnson and others, 2019),  
and these networks cover at least part of the principal aquifers that  
together represent 99 percent of the withdrawals for domestic supply  
(Maupin and Arnold, 2010). Domestic-supply wells are not regulated  
by federal or state laws, and individuals are responsible for the  
maintenance and any monitoring of these drinking-water sources  
(Leistra and Boesten, 1989; DeSimone, 2009; Tesoriero and 
others, 2024).

The rarity of HHB exceedances and the national-scale decrease  
in moderate concentrations of pesticides can be viewed as encouraging  
results from a human-health standpoint. However, continued  
monitoring and assessment of groundwater pesticides is warranted,  
as many negative human-health effects have been linked to pesticide  
exposure (Montiel-León and others, 2019; de Souza and others,  
2020; Stradtman and Freeman, 2021; McGinley and others, 2023),  
and these negative effects can occur when pesticide concentrations  
are below the human health benchmarks used in this study (Ackerman,  
2007; Kim and others, 2017; Remigio and others, 2024). Additionally,  
multiple geogenic constituents (arsenic, lithium, and strontium), as  
well as nitrate and salt, are common and widely distributed at  
concentrations exceeding current regulatory thresholds in aquifers  
underlying the hydrologic regions across the United States (Lindsey  
and others, 2023; Erickson and others, 2024). Currently, groundwater  
contaminants from either geogenic or anthropogenic origin are very  
likely to coexist in groundwater, and there is a scientific gap in  
understanding about the combined effects of these groundwater  
contaminants on human health (Xie and others, 2023; Tesoriero  
and others, 2024).

DBCP in the Central Valley, California Change 
Analysis

In this study, DBCP was the only pesticide that was found  
at high concentrations (above the HHB) in groundwater, and this  
occurred in one well network in the Central Valley, California. Prior  

studies have documented that nonpoint, agricultural sources of 
DBCP were found to contribute to groundwater contamination in  
the Central Valley, Calif. (Loague and Abrams, 1999). The half-life 
of DBCP, which has been assessed at 6 years (Burow and others,  
1998; Burow and others, 2007), is likely a factor contributing to  
its persistence in the environment. Our study documented that,  
even 45 years after being banned, DBCP continued to be present 
in groundwater from some NWQN-GW wells at concentrations  
greater than the MCL of 2 µg/L. However, samples collected from  
the decadal NQWN-GW network of 36 wells between 1993 and  
2024 and bimonthly samples collected from two ETN wells from  
2014 to 2019 indicated that concentrations of DBCP at the locations  
and depths represented by these wells are steadily decreasing over  
time, and most concentrations are now less than the MCL.

The analysis of change in groundwater DBCP concentrations  
in part of the Central Valley of California provided an opportunity  
to illustrate a localized example of the effects of a legacy pesticide  
on the environment. Legacy pesticides are those that have been banned  
or phased out of use and are detected in either surface or groundwater  
years to decades after application of active ingredients in the  
environment has ceased (Rasmussen and others, 2015; McManus  
and others, 2017). Legacy pesticides in groundwater can become  
problematic for human health if concentrations are elevated relative  
to human health benchmarks and the groundwater source is used as  
a drinking-water source (Gilliom and others, 2006; McKnight and  
others, 2015; Hakoun and others, 2017; McGinley and others, 2023).  
Agricultural application of DBCP was banned in the conterminous  
United States in 1979 (California State Water Resources Control  
Board, 2002). Forty-five years after being banned, groundwater  
DBCP concentrations were still greater than the maximum  
contaminant level of 2 micrograms per liter (µg/L). The long-term  
monitoring data did show that number of exceedances decreased  
from 50 percent to 15 percent of the samples between 1993 and  
2024, indicating progress toward reducing the human health risks  
of this pesticide in groundwater.

Summary
Increases in contaminant concentrations over time, and  

contaminant concentrations that exceed or approach levels of  
human-health concern, could affect groundwater used as a  
drinking-water source. We evaluated 21 pesticides in the national  
groundwater network. The percentage of wells that had groundwater 
pesticide concentrations in the moderate concentration category 
decreased from 7 percent in decade 1 to 2 percent in decade 3.  
Five pesticides (atrazine, deethyatrazine, alachlor, prometon, and  
simazine) had concentrations within 0.10 and 0.05 of the human  
health benchmark (HHB). We examined one specific pesticide,  
1,2-dibromo-3-chloropropane, in a groundwater network in the  
Central Valley, California. Across all three decades, 1,2-dibromo-3- 
chloropropane, exceeded its respective HHB, but exceedances  
decreased over time. Given that groundwater from domestic or  
public supply wells is used as a drinking-water source for roughly  
13 percent of the U.S. population, and that negative human-health  
impacts can potentially occur from consuming water with contaminant  
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concentrations below HHBs, continued monitoring and evaluation  
of changes in pesticide concentrations in groundwater is important  
for the continued protection of human health.
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