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Regional Hydraulic Geometry Characteristics of Stream 
Channels in the Boston Mountains in Arkansas

By Daniel E. Kroes,1 Laura Ruhl-Whittle,1 Allegra C. Pieri,1 and Aaron L. Pugh2

Abstract
Many stream-channel infrastructure, habitat 

enhancement, and restoration projects are undertaken on 
streams throughout Arkansas by Federal, State, and local 
agencies as well as by private organizations and businesses 
with limited data on local geomorphology and streamflow 
conditions. Equations that relate drainage area above 
stable stream reaches to the basin characteristics, bankfull 
streamflow, and the associated channel dimensions can be used 
to estimate stream conditions. These equations, along with 
streambed material particle information, provide information 
that can be used to improve stream-channel projects. The 
U.S. Geological Survey, in cooperation with the U.S. Army 
Corps of Engineers, Little Rock District, completed a study to 
develop these equations for streams in the Boston Mountains 
in Arkansas.

Fourteen U.S. Geological Survey streamgages and stream 
reaches located in the Boston Mountains were selected for 
analysis. Geomorphic parameters of streams, including the 
mean bankfull channel dimensions (cross-sectional area, top 
width, mean depth, and streamflow), and the contributing 
drainage areas were investigated. Streambed materials were 
collected at eight of these sites to develop descriptive statistics 
of the streambed particle-size distributions and percentages 
of substrate type. Stream reaches at each study site were 
classified to Rosgen level II stream type based on the averages 
of stream-channel metrics collected from site cross sections 
and profiles. Of the 14 selected Boston Mountain stream 
reaches, 7 were classified as B-type streams, and 7 were 
classified as C-type streams. For these streams, the significant 
differences in measured parameters between stream types were 
that the B-type streams had greater depth, hydraulic radii, and 
bar D50 and D85 particle sizes, while C-type streams had 
greater watershed slopes. Streambed material particle size 
decreased with mean drainage basin elevation and decreased 
with increasing entrenchment ratios. Bar sediment size 
exhibited decreasing size with increasing sinuosity. Regional 
hydraulic geometry curves were constructed for the streams in 

1U.S. Geological Survey.

2U.S. Geological Survey, retired.

the Boston Mountains by plotting measured bankfull geometry 
dimensions from stable reaches and the associated bankfull 
streamflow against the contributing drainage area.

Introduction
Natural stream channels systematically adjust their form, 

dimension, and slope through natural fluvial processes to 
establish and maintain equilibrium between streamflow and 
the erosion, transport, and deposition of sediment (Wolman, 
1955; Leopold and others, 1964; Rosgen, 1996). When a 
natural stream channel exhibits long-term stability, it may 
laterally reposition (meander) itself in its valley and (or) 
undergo minor aggradation or degradation of the streambed 
over time without excessive changes in the mean top width 
and mean depth. Conversely, when a natural stream channel 
is unstable, there is an imbalance between the erosive and 
depositional forces. This imbalance may cause extreme 
lateral movement and streambed aggradation or degradation 
resulting in large changes in the mean top width and mean 
depth and excessive streambank erosion (Hupp and Simon, 
1991; Pierce and King, 2008; Kroes and Hupp, 2010). The 
overall stability of a stream channel and the rate of associated 
stream-channel adjustments are the direct result of natural and 
(or) anthropogenic changes in hydrology or sediment supply 
imposed on the watershed and (or) channel.

The properties of the sediment transported along the 
streambed (bedload) play a role in the overall stability of 
the stream channel (Wolman, 1955; Leopold and others, 
1964). Bedload is the part of the total sediment load that 
is transported by streamflow and intermittent contact with 
the streambed by rolling, sliding, or bouncing. The bedload 
transport process is controlled by the interaction between the 
stream-channel hydraulics and streambed material conditions 
that govern the stream-channel geomorphology. Knowledge 
of bedload transport is necessary to understand the causes 
and consequences of changes in fluvial form and to make 
informed management decisions that affect stream-channel 
geomorphology and function.

Scientists and engineers have long resorted to 
classification schemes as a means of describing the variability 
of the physical nature of rivers. Recent stream classification 
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systems are process based and incorporate characteristics of 
the cross section, longitudinal profile, and channel materials 
(Schumm and others, 1984; Simon and Hupp, 1986; Simon, 
1989; Montgomery and Buffington, 1993; Whiting and 
Bradley, 1993; Rosgen, 1994, 1996). Rosgen (1996) developed 
a stream classification system to (1) address specific, applied 
objectives related to conditions and processes; (2) predict 
behavior from appearance and develop specific hydraulic 
and sediment relations for given stream types; (3) provide a 
mechanism for extrapolation of site-specific data to streams of 
similar types; and (4) provide a consistent frame of reference 
to aid communication about stream geomorphology and 
condition among various disciplines.

Within stream classification systems, regional hydraulic 
geometry curves are a planning tool used for evaluating 
similar river types while still accounting for variations in 
stream drainage areas. The curves help with estimations of 
site-specific stream conditions for stream assessments, natural 
stream design, stream restoration, and habitat enhancement 
(Rosgen, 1994; U.S. Army Corps of Engineers [USACE], 
1994; Brookes and Shields, 1996; Thorne and others, 1997). 
Regional hydraulic geometry curves are empirical relations 
constructed from observations of bankfull dimensions 
(the reach mean elevation where a streambank makes a 
topographic break in slope from within the channel and 
the wetted width begins to rapidly increase with stage) and 
other measurements made at stable stream reaches on gaged 
streams within a relatively homogeneous region as they 
relate to drainage area. Bankfull geometry dimensions are 
developed from topographic surveys at stable stream reaches 
and include point locations defining the channel thalweg, 
bankfull profiles, and riffle and pool cross sections. Regression 
equations derived from hydraulic geometry curves express 
the mathematical relation (power functions, Y = aXb) between 
the bankfull channel dimensions (Y) and the contributing 
drainage areas (X) for stable stream reaches within the same 
physiographic area. The curves and equations created for 
gaged streams can be used to provide estimates of bankfull 
channel dimensions and bankfull streamflow and to allow for 
comparisons to be made between riffle dimensions at stable, 
ungaged streams within the same physiographic region. 
Stream-channel projects using natural channel design are 

often based on bankfull streamflow and basin characteristics 
to ensure that the channel accommodates the streamflow and 
sediment transport without excessive erosion or deposition.

Purpose and Scope
The U.S. Geological Survey (USGS), in cooperation 

with the USACE, Little Rock District, conducted this study, 
in part, to provide the USACE Regulatory (Permits) program 
with fluvial geomorphic information to better fulfill the 
mission of protecting the aquatic resources of the Nation 
while allowing reasonable development through fair, flexible, 
and balanced permit decisions. The USACE evaluates permit 
applications for essentially all construction activities that 
occur in waterways in the United States (refer to United States 
Title 33 Code of Federal Regulations, Parts 320 through 330). 
Considerations in these evaluations may include the elevation, 
sizing, and materials used in the design of bridges, culverts, 
and bank armoring that can be calculated using regional 
hydraulic geometry curves.

This report documents the physical and hydrologic 
environment of the Boston Mountains in Arkansas, and the 
methods used to collect and analyze data for the development 
of a set of regional hydrologic geometry curves. This work 
supports a major goal of the USGS Water Mission Area 
Science Strategy (Evenson and others, 2013, p. 32) to “predict 
changes in the quantity and quality of water resources in 
response to changing climate, population, land use, and 
management scenarios.” The data collection and analyses 
conducted as part of this study can help to improve the 
understanding of the geomorphology and stability of streams 
and provide a way to evaluate the potential effects of natural 
and anthropogenic changes within watersheds of streams of 
the Boston Mountains. The scope of this investigation was 
confined to streams in the Boston Mountains physiographic 
section (fig. 1; Fenneman, 1938) that have streamflow 
measurement data collected by the USGS (table 1). The report 
structure, study objectives, and methods mirror those of Pugh 
and Redman (2019).
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Figure 1.  Maps showing A, physiographic sections of the south-central United States, the Boston Mountains and 
B, watersheds, sites and U.S. Environmental Protection Agency (EPA) Level IV Ecoregions associated with the Boston Mountains 
study area in Arkansas.
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Data Release
Many of the larger datasets or tables assembled for this 

study are not presented in this report but are publicly available 
in a USGS data release (Kroes and Ruhl-Whittle, 2025). These 
supporting files include the following:

•	 A geographic information system (GIS) geopackage 
of the study site locations, the associated contributing 
watersheds, and the individual latitudinal and 
longitudinal survey points of the streams and 
stream valleys.

•	 Comma-separated value files of the streambed and 
point bar particle measurements made at stream 
reaches and the associated graphs of particle-size 
distributions and particle-shape analysis.

•	 A comma-separated value file containing the USGS 
streamgage location, basin characteristics, bankfull 
channel characteristics, and stream classification for 
each site.

•	 A comma-separated value file containing descriptions 
of the selected study sites including the reach 
beginning and ending locations; the geology and soils 
at the reach; the land cover within the watershed; 
the streambed substrate type within the reach; the 
entrenchment ratio, width-to-depth ratio, and sinuosity 
for the reach; the observed reach geomorphology; and 
the stream type classification for the reach.

•	 Photographs documenting the selected stream reaches.

Table 1.  Selected USGS streamgage stations in the Boston Mountains in Arkansas (USGS, 2024).

[USGS, U.S. Geological Survey; AR, Arkansas; mi2, square mile; DD, Decimal Degrees; NAD 83, North American Datum of 1983; HUC, hydrologic unit code]

Map  
number
(fig. 1B)

USGS station 
number

USGS station name
Drainage area 

(mi2)
Latitude  

(DD, NAD 83)
Longitude 

(DD, NAD 83)
County 8-digit HUC

1 07257060 Mikes Creek 
Tributary near 
Ozone, AR

0.19 35.6237 −93.4341 Johnson 11110202

2 07074900 Trace Creek Tributary 
near Marshall, AR

0.24 35.8706 −92.6024 Searcy 11010014

3 07074950 Tick Creek near 
Leslie, AR

1.58 35.8555 −92.4400 Searcy 11010014

4 07050200 Maxwell Creek at 
Kingston, AR

2.75 36.0517 −93.5175 Madison 11010001

5 07250974 Jack Creek near 
Winfrey, AR

6.87 35.7044 −94.0917 Crawford 11110201

6 07055650 Smith Creek near 
Boxley, AR

8.33 35.9472 −93.3978 Newton 11010005

7 07250935 Jones Creek at 
Winfrey, AR

20.3 35.7358 −94.1031 Crawford 11110201

8 07250965 Frog Bayou at 
Winfrey, AR

54.9 35.7222 −94.1136 Crawford 11110201

9 07055646 Buffalo River near 
Boxley, AR

59.2 35.9389 −93.4050 Newton 11010005

10 07055875 Richland Creek near 
Witts Spring, AR

67.3 35.7972 −92.9289 Searcy 11010005

11 07056515 Bear Creek near 
Silver Hill, AR

78.5 35.9400 −92.7133 Searcy 11010005

12 07257000 Big Piney Creek near 
Dover, AR

274 35.5494 −93.1583 Pope 11110202

13 07075000 Middle Fork of 
Little Red River at 
Shirley, AR

302 35.6567 −92.2928 Van Buren 11010014

14 07252000 Mulberry River near 
Mulberry, AR

373 35.5769 −94.0153 Franklin 11110201
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Description of the Boston Mountains
The current conditions of streams and their watersheds 

are the result of the interactions between the local geology, 
land cover, and climate. To characterize the watersheds of 
the mountains, it is essential to understand how the landscape 
has evolved over time on human and geological time scales. 
This section contains descriptions of the location, topography, 
geology, soils, land cover, population, and climate of the 
Boston Mountains in Arkansas.

Location

The Boston Mountains are in north-central Arkansas and 
northeastern Oklahoma, extending approximately 200 miles 
from Independence County, Ark., westward to Muskogee 
County, Okla., and approximately 40–50 miles from the Ozark 
Highlands southward to the northern margin of the Arkansas 
Valley. The Boston Mountains are located within the Boston 
Mountains physiographic section (fig. 1; Fenneman, 1938). 
Generally, the Boston Mountains physiographic section lies 
within the Boston Mountains U.S. Environmental Protection 
Agency (EPA) Level III Ecoregion with inclusions in the 
Ozark Highlands and Arkansas Valley (Omernik, 1987). 
The EPA has further divided the study area into six Level IV 
Ecoregions (fig. 1B; EPA, 2010; Omernik and Griffith, 2014).

The Boston Mountains in Arkansas are contained 
within nine watersheds, or hydrologic units, that are part of 
the Arkansas-White-Red regional (2-digit code) hydrologic 
unit (table 2; fig. 2). The Boston Mountains are within 
two subregional hydrologic units—the Upper White and the 
Lower Arkansas. The percentages of the Boston Mountains 
in Arkansas within specific hydrologic units (table 2) were 

determined by extracting the hydrologic unit code (HUC) 
shapefile (U.S. Geological Survey, 2016) using extract by 
mask in ArcGIS Pro to the area contained within the Boston 
Mountains physiographic section (Fenneman, 1938; Esri, 
2023). Areas of the extracted HUCs were divided by the total 
area of the Boston Mountains physiographic section (fig. 2). 
The Boston Mountains are primarily within the Beaver 
Reservoir (HUC 11010001; 23 percent), the Buffalo (HUC 
11010005; 20 percent), the Little Red (HUC 11010014; 
19 percent), and the Dardanelle Reservoir (HUC 11110202; 
12 percent) hydrologic units.

Topography

The Boston Mountains in Arkansas are the eroded and 
uplifted southern extent of the Ozark Plateau. This mountain 
range spans an area that is about 35 miles north to south and 
about 200 miles east to west (Purdue, 1907). The relief, or 
differences in elevation from the valley floors to the ridgetops, 
generally ranges from 300 to 1,500 feet (ft) (Maxfield, 
1964). The maximum elevation of the range is at Wahzhazhe 
Summit (formerly Buffalo Lookout, 2,561 ft, North American 
Vertical Datum of 1988 [NAVD 88]; USGS, 1967). The 
Boston Mountains are a plateau that is dissected by numerous 
streams that have cut deep, narrow stream valleys with large 
streambeds ranging in elevation from 260 to 850 ft, NAVD 88 
(McKeown and others, 1988). Along the northern border of 
these mountains is an escarpment with many valleys eroded by 
northward-flowing streams. “This escarpment is highest in its 
middle portion and gradually falls off eastward and westward 
to the borders of the area” (Purdue, 1907, p. 1). To the south, 
the mountains gradually slope into the Arkansas Valley 
(Purdue, 1907).

Table 2.  Hydrologic units within the Boston Mountains in Arkansas.

[HUC, hydrologic unit code. Boston Mountains boundary from Fenneman (1938); watershed boundaries from U.S. Geological Survey (2016)]

Watershed name and HUC Percentage of  
Boston Mountains  
in cataloging unit

Regional
(2-digit HUC)

Subregional
(4-digit HUC)

Accounting
(6-digit HUC)

Cataloging (8-digit HUC; fig. 2)

Arkansas-
White-Red 
(11)

Upper White 
(1101)

Upper White (110100) Beaver Reservoir (11010001) 23
Bull Shoals Lake (11010003) 5.9
Middle White (11010004) 20
Buffalo (11010005) 0.7
Little Red (11010014) 19

Lower Arkansas 
(1111)

Robert S. Kerr 
Reservoir (111101)

Illinois (11110103) 2.5
Robert S. Kerr Reservoir (1110104) 7.2

Lower Arkansas-
Fourche La Fave 
(111102)

Frog-Mulberry (1110201) 10
Dardanelle Reservoir (11110202) 12
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Geology

All the rocks exposed within the Boston Mountains 
are of sedimentary origin and consist of sandstones, shales, 
and limestones. The sandstones and shales were formed of 
muds, sands, and organic material that were transported from 
adjacent land areas by streams and deposited over the bottom 
of the sea when the Boston Mountains and neighboring 
regions were beneath sea level. Deposited fine-sediment 
muds containing a large amount of carbonaceous matter 
subsequently became consolidated, forming the shales. Coarse 
material (loose sand) became consolidated, forming the 
sandstones. The limestones were formed largely of shells and 
other parts of animals that lived in the seas at that time. The 
rocks are consolidated but not metamorphosed. No igneous 
or volcanic rocks occur at the surface within the Boston 
Mountains. The formations that occur at the surface in the 
Boston Mountains are all Carboniferous. The northern edge 
of the Boston Mountains is Mississippian, and most of the 
southern area is predominantly Pennsylvanian (fig. 3; Purdue, 
1907). The Arkansas Geological Survey 1:500,000-scale 
geologic map of Arkansas, including a stratigraphic column of 
the geological formations underlying Arkansas, as well as the 
formation age, geologic history, distribution, and formation 
description, is provided in Haley and others (1993) (fig. 4).

The rocks of the northern and middle parts of the Boston 
Mountains are mainly horizontal. The structure of the southern 
portion of the Boston Mountains is monoclinal, with the rocks 
dipping southward, generally at a low but perceptible angle. 
Faulting occurs along the east-west line where the Boston 
Mountains extend into the Arkansas Valley. The downthrow 
of these faults is on the south side of the mountains 
(Purdue, 1907).

The endurance of the Boston Mountains’ elevation 
relative to the erosion observed along their northern boundary 
and the southern boundary of the Springfield-Salem Plateaus is 
because of the flat anticline structure of the Boston Mountains. 
The geologic structure of the mountains determined the 
location of the drainage divide, and the principal agents 
of erosion were headwater streams. In some areas of the 
mountains, massive beds of sandstone that were resistant to 
erosion also contributed to the preservation of the mountains. 
Notably, the thick ledges of the Atoka Formation formed steep 
slopes to the north and south of the divide. Steep slopes in the 
Boston Mountains caused the streams that flow northward and 
southward from the divide to be swift, resulting in entrenched 
floodplains and channels without substantial lateral cutting 
or meandering. Alternating layers of hard (resistant) and soft 
(erosive) rock have resulted in numerous waterfalls and rapids 
with outcropping of the harder layers. Streams primarily 
developed in the direction of the dip and strike of rocks with 
few streams developing in other directions (Purdue, 1907).

Soils

Soils develop horizons that form because of persistent 
physical and chemical weathering processes acting on the 
parent material. Soils that form in similar parent material, age, 
topography, and climate have soil horizons that are similar in 
texture, structure, colors, and thickness. The soils in the study 
area are primarily Ultisols that are intensively weathered and 
characterized by low fertility. Soils in this order are acidic 
because of long periods of weathering during the Pleistocene 
and Holocene Epochs (Hoelscher and others, 1975). These 
soils form in humid climates under pine-hardwood forests 
and are generally moist throughout the year. The soils are 
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strongly leached and are generally of medium texture and 
moderate permeability (Steila and Pond, 1989). Within the 
Boston Mountains, soils are of the suborder Udults (Nofziger, 
2000). They are stony and nonstony, with medium texture 
and siliceous or mixed mineralogy. Ridgetops, benches, 
and upper slopes are well drained, shallow, and moderately 
deep (Mountainburg and Linker series). Middle and lower 
slopes and concave inter-ledge positions are well-drained, 
deep Paleudults (Nella series) and Hapludults (Enders 
series). Stream floodplains are Udifluvents (Ceda series) and 
Hapludults (Spadra series), and valley terraces are Fragiudults 
(Leadvale and Taft series) and Hapludults (Pickwick series) 
(Nofziger, 2000).

Land Cover and Population

Oak and hickory forests are the major land cover, 
with pasture and hay lands within broader stream valleys. 
Northern red oak (Quercus rubra), southern red oak (Quercus 
falcata), white oak (Quercus alba), and hickories (Carya 
spp.) typically dominate the uplands, but shortleaf pine 
(Pinus echinata) grows on drier, south- and west-facing 
slopes underlain by sandstone. Pasture or hay lands occur 
on nearly level ridgetops, benches, and valley floors (EPA, 
2010). About 14 percent of the Boston Mountains study area 
has been cleared of natural vegetation for agricultural use. 
The major agricultural farming activities are pasture and hay 
land according to the National Land Cover Database (NLCD; 
Dewitz, 2023). From 1973 to 2000, net forest land cover was 
reduced by 1.7 percent, mechanically disturbed (clear cut or 
cleared) increased by 1 percent, and agriculture increased by 
0.7 percent (Karstensen, 2009).

The Boston Mountains are generally sparsely populated; 
the largest population center, the Fayetteville metropolitan 
area (547,000 population), is located along the northwestern 
edge of the Boston Mountains (fig. 1B; U.S. Census Bureau, 
2020). Boone, Carroll, Independence, Madison, Pope, and 
Washington Counties (fig. 2B) increased in population 
from 2010 to 2020, while the population in Cleburne, 
Conway, Newton, Searcy, Stone, and Van Buren Counties 
(fig. 2B) either remained stable or decreased (U.S. Census 
Bureau, 2020).

Climate

The mean annual temperature (1895–2013) for 
Fayetteville, Ark., was 58 degrees Fahrenheit (°F). The 
mean temperature for April through September was 71 °F, 
and the mean temperature for October through March was 
45 °F (1895–2013). Extended warm and humid periods 
were common in summer (Office of the Arkansas State 
Climatologist, 2014).

Annual precipitation totals (1895–2013) ranged roughly 
from 45 to 55 inches (in.) (Office of the Arkansas State 
Climatologist, 2014). Precipitation results from middle latitude 

cyclones (lows), with warm, cold, and other frontal situations; 
tropical lows from the Gulf of America; and thunderstorms, 
or orographic uplift, caused by hills and mountains. Rainfall 
was generally abundant throughout the year. The dry months 
in Fayetteville were January and February, averaging 2.5 and 
2.4 in. of precipitation, respectively. The number of days with 
measurable precipitation averaged about 100 per year. Most 
of the precipitation fell as rain. Heavy local storms that result 
in precipitation totals from 5 to 10 in. over extensive areas are 
common. During fall, winter, and early spring, precipitation 
events are usually less intense and of longer duration than 
during the summer. The mean annual snowfall total was 5 in. 
Snowfall was generally light and remains on the ground only 
briefly, but rare winter storms do occur with accumulations 
of as much as 10 in. during a 24-hour period. Ice storms were 
also infrequent but can be severe. On average, 26 tornadoes 
were reported each year (1950-2013) and generally occurred 
during the spring months (Office of the Arkansas State 
Climatologist, 2014; U.S. Climate Data, 2024).

Methods
The following discussions describe the selection of study 

reaches and the sampling methods used at each location. 
Sampling methods included stream geometry surveys, 
streambed material particle sampling, and digital photography 
documentation.

Reach Selection

At various times over the past 80 years, the USGS has 
maintained and operated approximately 40 streamgages 
throughout the Boston Mountains. Based on the criteria listed 
below, 14 study reaches associated with these streamgages 
were selected for analysis (table 1; fig. 1).

•	 The streamgage had approximately 20 years or more of 
flow record (USGS, 2025).

•	 Less than 3 percent of the watershed above the 
streamgage was classified as urban (developed 
land cover), not including developed open space 
(Dewitz, 2023).

•	 Streams had no flow-controlled impoundments in the 
drainage basin above the streamgage. Run of the river 
type impoundments were permissible.

•	 Upon inspection, the stream was stable upstream and 
downstream of the streamgage without excessive 
streambank failure and without excessive aggradation 
or degradation of the streambed.
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•	 Drainage basins were selected to incorporate a range 
of sizes and geographic distributions across the Boston 
Mountains and facilitate development of representative 
regional curves.

Land Cover and Use Analysis

Land cover is the vegetation and physical material 
covering the Earth’s surface. Data from the NLCD 2021 
(Dewitz, 2023) were used to determine the land cover and use 
of each of the watersheds above the selected stream reaches. 
The watersheds of the selected study reach streamgages 
were clipped from the NLCD shapefile by using the Extract 
by Mask tool in ArcGIS Pro (Esri, 2023). The percentage of 
each landcover class was determined by dividing the area of 
each class by the watershed area. These data allow for the 
extrapolation of our findings to similar land cover and land use 
areas within the Boston Mountains.

Longitudinal Profile and Cross-Section Surveys

Topographic surveys of stream longitudinal profiles 
and cross sections were conducted at each study reach to 
obtain information on the thalweg and bankfull slopes and 
cross-sectional hydraulic geometry. Reaches were surveyed 
at 3 to 12 cross sections, with a mean and median of 
approximately 6 cross sections ranging in length from 163 
to 7,540 ft. Distances from the first to the last cross section 
ranged from 5.2 to 83 bankfull widths, with a median of 
13.3 and a mean of 16.8 bankfull widths. Surveys at smaller 
streams were conducted by using traditional optical level, 
rod, and tape surveying equipment (±0.005 ft accuracy) with 
elevations determined by using geodetic surveying equipment 
(±0.1 ft accuracy; Rydlund and Densmore, 2012). Larger 
stream channels were surveyed by using a combination 
of traditional optical survey equipment and a kayak- or 
canoe-mounted sonar-measured bathymetry with Global 
Positioning System horizontal positioning (±0.3 ft vertical and 
1.5 ft horizontal accuracy) and 1-meter (m) digital elevation 
model lidar surveys (±0.5 ft vertical accuracy; Arkansas GIS 
Office, 2017; Kroes and Ruhl-Whittle, 2025), and elevations 
at cross sections were determined from geodetic surveys. 
Each topographic survey measured the location and elevation 
of points along the thalweg and bankfull profiles and along 
selected riffle and pool cross sections. Longitudinal profiles 
were acquired above and (or) below the streamgage location 
for a total distance of at least 20 bankfull widths. All bankfull 
indicators that could be located and surveyed were measured 
and included points on both the left and right banks. Stage 
elevations associated with streamflows at the 1.5-year 
recurrence interval were used to aid in the identification of 
bankfull indicators during stream surveys. Field identification 
of bankfull indicators was cross referenced to cross-sectional 
plots and compared with multiple cross sections from each 

reach for final bankfull determinations (Kroes and Brinson, 
2004). Cross-sectional surveys were acquired up to an 
elevation high enough to include the flood-prone elevation 
(twice the maximum bankfull depth; Leopold and others, 
1964; Rosgen, 1996). The following channel geomorphic 
metrics and measurements were used to classify the studied 
stream reaches.

•	 Bankfull top width: the mean width of the stream 
channel at bankfull stage elevation for the reach.

•	 Bankfull mean depth: the mean depth of the stream 
channel for the reach, calculated by dividing the 
bankfull cross-sectional area by the bankfull width.

•	 Width-to-depth ratio: the mean bankfull width divided 
by the mean bankfull depth for the reach. A reach is 
considered to have a low width-to-depth ratio if the 
ratio is less than 12, a moderate width-to-depth ratio 
if the ratio is between 12 and 40, and a very high 
width-to-depth ratio if the ratio is greater than 40.

•	 Bankfull cross-sectional area: the mean area of 
the stream-channel cross section for the reach, at 
bankfull stage.

•	 Flood-prone width: the mean width of the valley 
measured at the elevation of twice the maximum 
bankfull depth.

•	 Entrenchment ratio: a field measurement of channel 
incision, defined as the flood-prone width divided by 
the bankfull width. A reach is considered entrenched if 
the ratio is less than 1.4, moderately entrenched if the 
ratio is between 1.4 and 2.2, and slightly entrenched if 
the ratio is greater than 2.2.

•	 Median size (D50) of streambed material: the median 
particle size, or the diameter that exceeds the diameter 
of 50 percent of all streambed material particles.

•	 Valley slope: the change in elevation divided by the 
length of valley. It is the slope of a valley for a given 
reach measured in a straight line from the start of the 
reach to the end of the reach.

•	 Water-surface slope: the difference between the 
water-surface elevation at the upstream end of a riffle 
to the upstream end of another riffle at least 20 bankfull 
widths downstream, divided by the distance between 
the riffles along the thalweg.

•	 Sinuosity: an index of channel pattern, determined 
from the ratio of the stream length measured along 
the center of the channel divided by straight line 
distance between the beginning and end of the reach 
as measured from our surveys. This can also be 
estimated from the ratio of the valley slope divided by 
the water-surface slope. A reach is considered to have 
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a low sinuosity if the ratio is less than 1.2, a moderate 
sinuosity if the ratio is between 1.2 and 1.5, and a high 
sinuosity if the ratio is greater than 1.5.

•	 Bankfull shear stress: the tractive force of flow at 
bankfull stage, used to calculate particle sizes that 
could be mobilized during bankfull discharges. This 
value is calculated from the reach mean as:

	 Bankfull shear stress (pound force per square foot) = 	  
           62.4 × hydraulic radius × bankfull water slope� (1)

•	 Particle size transported at bankfull flows: the 
calculated mean streambed particle diameter mobilized 
during bankfull discharges. This value was calculated 
by using a power equation derived by Leopold and 
others (1964) as:

	 Particle size transported (in millimeters) = 	  
                   77.966 × Bankfull shear stress1.042� (2)

The particle size transported at bankfull discharge was 
compared with the measured streambed material to determine 
the percentage of the streambed that may be mobilized during 
a bankfull, 1.5-year flood discharge.

Streambed Material Particle Sampling

Streambed material sampling was conducted on eight 
streams to develop particle-size distribution plots from 
which particle-size quantile values, descriptive statistics 
of particle-size distributions, and particle-size distribution 
percentages of substrate type were calculated to determine 
the shapes of the individual particles composing the 
streambeds for each study reach. Grain-size ranges given 
for streambed material particle-size ranges and percentages 
of substrate type were based on the modified Wentworth 
scale (American Geological Institute, 1982). Information on 
streambed material particle-size distribution is a parameter 
used in the Rosgen (1994) stream reach classification 
system. Streambed material particle sizes were measured 
by using two methods: (1) a modified Wolman pebble count 
(Wolman, 1955) and (2) a sieve analysis of bar samples.

The modified Wolman pebble counts were conducted 
across the riffles and pools within each study reach 
(Harrelson and others, 1994). An observer waded the 
stream by using a step-toe procedure to collect and measure 
approximately 100 streambed material samples at each 
riffle and pool. Materials from the active streambed, defined 
as the area between the toes of the left and right bankfull 
terraces, were measured. For each sample selected, the 
longest axis (length, denoted “a-axis”), intermediate axis 
(width, denoted “b-axis”), and shortest axis (thickness, 
denoted “c-axis”) were measured and recorded (fig. 5). 
From the pebble count data, the bedrock tallies were 

removed, and cumulative frequency curves were developed. 
Bedrock was defined as any exposure of native solid rock in 
the streambed or along the streambanks. The median (D50) 
and one standard deviation from the median (D16 and D84) 
particle sizes were determined. Particle counts, cumulative 
frequency, descriptive statistics, and percent by substrate type 
for each study reach are available from Kroes and Ruhl-
Whittle (2025).

The second streambed material particle-size sampling 
procedure was a sieve analysis of bar samples. A 5-gallon 
pail (approximately 55 pounds or 25 kilograms) of bar gravel 
was collected from the downstream face of a point bar at an 
elevation approximately two-thirds of the distance between the 
bankfull and thalweg elevations. The sample was collected by 
first removing the armored layer of gravel and then collecting 
all the particles from an area approximately 0.3 m in diameter 
and 0.4 m in depth. The sample was dried and weighed to the 
nearest 0.1 gram (g) to determine the total sample weight. 
The sample was placed in a nest of sieves (refer to table 3 for 
listing of sieve sizes used) and shaken to separate the sample. 
The sample from each sieve was then removed and weighed. 
The final total weights retained on each sieve were summed 
and compared to the original total weight before sieving. 
From the weight retained on each sieve, cumulative frequency 
curves were developed, and D16, D50, and D84 particle sizes 
were determined.

EXPLANATION
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Figure 5.  Particle axis measurement (from Pugh and Redman, 
2019).
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Streambed material particle-shape analysis can provide 
information about the particle transport history and aid 
facies differentiation and characterization of depositional 
environments. Particles were classified into four basic shapes 
according to the ratios of the three particle axes: the a-, b-, 
and c-axes (fig. 5). Sneed and Folk (1958) classified particle 
shapes in terms of compactness, platyness, bladedness, and 
elongatedness (fig. 6). Triangular diagrams (fig. 6), based 
on ratios of the three-orthogonal particle axis were used for 
unbiased presentation of primary particle-shape data (Graham 
and Midgley, 2000). The Sneed and Folk (1958) descriptive 
particle-shape data and summaries for the Wolman pebble 
count data are provided in Kroes and Ruhl-Whittle (2025).

Streambed particle-shape analyses were not used in 
the regional analysis in this report. Particle shape affects the 
amount of area a particle has exposed to the forces of flow, 
drag, and lift acting on it. This difference in shape affects 

particle entrainment, transport, and deposition. Consequently, 
two particles having the same weight and b-axis lengths but 
with different a- and c-axis lengths (different shapes) will 
respond differently to streamflow. These data were collected 
and computed in Kroes and Ruhl-Whittle (2025) as a means 
of archiving the dataset as a building block until a sufficiently 
larger dataset exists to further analyze streambed material 
particle shapes.

Table 3.  Bar sediment sampling sieve sizes for streambed 
material particle-size sampling in selected stream reaches in the 
Boston Mountains in Arkansas. Fine sand and smaller passes 
through the #60 sieve, collected and weighed.

Material Sieve size
Opening  

(millimeter)

Medium sand #60 0.25
Coarse sand #35 0.50
Coarse sand #30 0.59
Very fine gravel #10 2.0
Very fine gravel #6 3.4
Very fine gravel #5 4
Fine gravel #4 4.8
Fine gravel 0.25 inch 6.3
Medium gravel 0.5 inch 12
Coarse gravel 1 inch 25
Very coarse gravel 2 inches 50
Small cobble 3 inches 76
Medium cobble 4 inches 100 EXPLANATION
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Figure 6.  Descriptive particle-shape classes (modified from Sneed 
and Folk, 1958; Pugh and Redman, 2019).
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Stream Reach Classification

Streams of similar drainage areas may differ in width, 
depth, and sinuosity because of climate, geology, valley type, 
slope, sediment load, and (or) streambed and bank materials; 
however, because bankfull dimensions can characterize stream 
channels, streams with similar drainage areas can be classified 
and compared. Rosgen (1994) developed a stream reach 
classification system dividing streams into seven major types 
and dozens of subtypes, each denoted by a letter and number 
based on stream form and pattern. Because streams may vary 
in character over relatively short distance, the Rosgen (1994) 
classification system describes individual reaches, not the 
entire stream system.

Each reach was classified to the Rosgen level II stream 
type (Rosgen, 1994) based on the average of stream-channel 
metrics collected at measured cross sections and profiles. 
Level I classification (types A through G) describes the 
geomorphic characteristics at a coarse scale and is based 
on the entrenchment ratio and width-to-depth ratio. Level 
II classification (subtypes A1 to A6, B1 to B6, and so forth) 
provides a more detailed morphological description of 
the stream through additional examination of the stream 
pattern, profile, and streambed materials based on measured 
cross-section geometry, water-surface slope, and median size 
of the streambed material (Rosgen, 1996). Rosgen (1996, 
2006) provided a means for describing deviations of measured 
values from the average level II values by using the following 
suffixes. The suffix “a” designation indicates that streams 
classified as a B type have a slope that is between 4 percent 
and 9.9 percent. The suffix “c” designation indicates that 
streams classified as a B type have a slope that is less than 
2 percent. The suffix “b” designation indicates that streams 
classified as a C type have a slope that is between 2 percent 
and 3.9 percent. The suffix “c” designation indicates that 
streams classified as a C type have a slope that is less than 
0.1 percent. The suffix “/1” designates the presence of bedrock 
within the study reach as noted during pebble counts.

Statistical Comparisons

Sediment particle-size distributions of streambed and 
bar material were compared for reaches where sediment 
was analyzed by using regression equations and correlation 
coefficients with the geomorphic parameters listed in the 
“Longitudinal Profile and Cross-Section Surveys” section, as 
well as 1.5-year-interval flood discharge and drainage basin 
characteristics available from USGS StreamStats (USGS, 
2024) (drainage area, mean basin elevation, 10–85 stream 
slope, longest flow path, basin shape, estimated 2-year flood 
discharge, mean annual rainfall, mean annual runoff). Stream 
classifications were compared to the geomorphic and hydraulic 
parameters listed above using t-Tests: two- sample assuming 
unequal variance, one-tailed P, to determine significant (α ≤ 
0.05) parameter differences between stream classifications.

Photographs

Digital photographs were taken at all cross sections. 
The photographs include views looking along the centerline 
of the cross section at the left and right banks and looking 
upstream and downstream from the cross-section thalweg. 
Representative stream reach images are available in Kroes and 
Ruhl-Whittle (2025).

Regional Hydraulic Geometry 
Characteristics of Selected Boston 
Mountain Stream Channels

The following discussions are about the analysis of 
data collected from the 14 study reaches within the Boston 
Mountains in Arkansas. The following report sections include 
general descriptions of the geology of the 14 study reaches and 
regional hydraulic geometry relations. Streambed materials 
from eight study reaches were analyzed.

General Geologic Characteristics of Selected 
Stream Reaches

Geology is the primary framework upon which fluvial 
processes operate, largely governing the landforms observed 
today. The geologic formations underlying each of the 
selected stream reaches are listed in table 4. Because of the 
differential erodibility of the rock types underlying the Boston 
Mountains, the ridges consist largely of sandstone and shale, 
while the valleys are mostly underlain by mixed sandstone, 
shale, and limestone. Most of the study reaches are underlain 
by the Atoka, Bloyd, or Boone Formations. The Atoka 
Formation, consisting of a sequence of sandstones and shales, 
underlies Mikes Creek Tributary near Ozone, Jack Creek near 
Winfrey, Frog Bayou at Winfrey, and Mulberry River near 
Mulberry (sites 1, 5, 8, and 14, respectively; fig. 1B; table 4; 
McFarland, 2004). The Bloyd Formation, consisting of a mix 
of sandstones, shales, and limestone, underlies Jones Creek 
at Winfrey, Big Piney Creek near Dover, and Middle Fork of 
Little Red River at Shirley (sites 7, 12, and 13, respectively; 
fig. 1B; table 4; McFarland, 2004). The Boone Formation, 
consisting of limestone, chert, and shale, underlies Maxwell 
Creek at Kingston, Smith Creek near Boxley, Buffalo River 
near Boxley, and Bear Creek near Silver Hill (sites 4, 6, 9, 
and 11, respectively; fig. 1B; table 4; McFarland, 2004). The 
Batesville Sandstone, Fayetteville Shale, and Pitkin Limestone 
underlie Trace Creek Tributary near Marshall and Richland 
Creek near Witts Spring (sites 2 and 10, respectively; fig. 1B; 
table 4). The Cane Hill Member of the Hale Formation, 
consisting of silty sandstone and siltstone, underlies Tick 
Creek near Leslie (site 3; fig. 1B; table 5; McFarland, 2004).
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Table 4.  Geology and soil series at selected stream reaches in the Boston Mountains in Arkansas.

[Green shading indicates mixed lithology; USGS, U.S. Geological Survey; USDA, U.S. Department of Agriculture; NRCS, Natural Resources Conservation Service. Station names from USGS (2024). Only 
geologic units mapped at study reach are listed. The Arkansas county soil survey index number of soil map units of residuum, colluvium, and alluvium are listed in parentheses as (county – index number)]

Map 
no. 

(fig. 3)

USGS station 
name  

(table 1)

Bedrock geology (Haley and others, 1993)
Soil parent material (USDA, NRCS, 2017)

Residuum Colluvium Alluvium

Sandstone Shale Limestone Sandstone Shale Limestone Sandstone Shale Limestone
Floodplain and  

terrace deposits

1 Mikes Creek 
Tributary 
near Ozone, 
AR

Atoka Formation1 Mountainburg Nella and 
Enders

2 Trace Creek 
Tributary 
near 
Marshall, 
AR

Batesville 
Sandstone

Fayetteville 
Shale

Pitkin 
Limestone

Newnata and Summit silty clay 
loams, 8 to 15 percent slopes, 
eroded (Searcy – 54D2) and 
Newnata-Eden-Moko com-
plex, 20 to 40 percent slopes 
(Searcy – 56EF)1

Newnata and Summit silty 
clay loams, 3 to 8 percent 
slopes, eroded (Searcy – 
54C2)1

3 Tick Creek 
near Leslie, 
AR

Cane Hill Member of the Hale 
Formation1

Enders and Nella complex, 
3 to 20 percent slopes 
(Searcy – 24CD) and 
Enders-Nella stony 
loams, 20 to 40 percent 
slopes (Searcy – 24EF)1

Ceda and Kenn  
complex, fre-
quently flooded 
(Searcy – 12)

4 Maxwell Creek 
at Kingston, 
AR

Boone 
Formation

Noark very 
cherty silt 
loam, 20 to 
40 percent 
slopes 
(Newton – 
44)

Ceda gravelly fine 
sandy loam, 
occasionally 
flooded (Madison 
– 7) and Leesburg 
gravelly loam, 3 
to 8 percent slope 
(Madison – 20)

5 Jack Creek 
near 
Winfrey, 
AR

Atoka Formation1 Nella and Enders associa-
tion, steep (Crawford – 
22)1

6 Smith Creek 
near Boxley, 
AR

Boone 
Formation

Noark very 
cherty silt 
loam, 20 to 
40 percent 
slopes 
(Newton – 
44)

Razort loam,  
occasionally 
flooded (Newton 
– 48)
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Table 4.  Geology and soil series at selected stream reaches in the Boston Mountains in Arkansas.—Continued

[Green shading indicates mixed lithology; USGS, U.S. Geological Survey; USDA, U.S. Department of Agriculture; NRCS, Natural Resources Conservation Service. Station names from USGS (2024). Only 
geologic units mapped at study reach are listed. The Arkansas county soil survey index number of soil map units of residuum, colluvium, and alluvium are listed in parentheses as (county – index number)]

Map 
no. 

(fig. 3)

USGS station 
name  

(table 1)

Bedrock geology (Haley and others, 1993)
Soil parent material (USDA, NRCS, 2017)

Residuum Colluvium Alluvium

Sandstone Shale Limestone Sandstone Shale Limestone Sandstone Shale Limestone
Floodplain and  

terrace deposits

7 Jones Creek 
at Winfrey, 
AR

Bloyd Shale and Prairie 
Grove Member of the Hale 
Formation1

Nella and Enders as-
sociation, very steep 
(Crawford – 23)1

Leadvale silt loam, 3 
to 8 percent slope 
(Crawford – 13) 
and Spadra fine 
sandy loam, oc-
casionally flooded 
(Crawford – 29)

8 Frog Bayou 
at Winfrey, 
AR

Atoka Formation1 Nella and Enders associa-
tion, steep and very steep 
(Crawford – 22 and 
Crawford – 23)1

Spadra fine 
sandy loam, oc-
casionally flooded 
(Crawford – 29)

9 Buffalo River 
near Boxley, 
AR

Boone 
Formation

Arkana and 
Moko com-
plex, 0 to 
40 percent 
slopes 
(Newton 
– 3)

Ceda and Kenn com-
plex, frequently 
flooded (Newton 
– 6)

10 Richland Creek 
near Witts 
Spring, AR

Batesville 
Sandstone

Fayetteville 
Shale

Pitkin 
Limestone

Newnata and Summit 
complex, 8 to 15 percent 
slopes, eroded (Searcy – 
54D2)1

Ceda very cobbly 
loam, frequently 
flooded (Searcy 
– 10) and Spadra 
loam, 1 to 5 
percent slopes 
(Searcy – 80B)

11 Bear Creek 
near Silver 
Hill, AR

Moorefield 
Formation

Boone 
Formation

Clarksville 
very grav-
elly silt 
loam, 20 to 
50 percent 
slopes 
(Searcy – 
14F)

Razort loam, fre-
quently flooded 
(Searcy – 70)

12 Big Piney 
Creek near 
Dover, AR

Bloyd Shale and Prairie 
Grove Member of the Hale 
Formation1

Nella and 
Enders

Spadra
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Table 4.  Geology and soil series at selected stream reaches in the Boston Mountains in Arkansas.—Continued

[Green shading indicates mixed lithology; USGS, U.S. Geological Survey; USDA, U.S. Department of Agriculture; NRCS, Natural Resources Conservation Service. Station names from USGS (2024). Only 
geologic units mapped at study reach are listed. The Arkansas county soil survey index number of soil map units of residuum, colluvium, and alluvium are listed in parentheses as (county – index number)]

Map 
no. 

(fig. 3)

USGS station 
name  

(table 1)

Bedrock geology (Haley and others, 1993)
Soil parent material (USDA, NRCS, 2017)

Residuum Colluvium Alluvium

Sandstone Shale Limestone Sandstone Shale Limestone Sandstone Shale Limestone
Floodplain and  

terrace deposits

13 Middle Fork of 
Little Red 
River at 
Shirley, AR

Bloyd Shale and Prairie 
Grove Member of the Hale 
Formation1

Steprock and 
Mountainburg 
and rock 
outcrop com-
plex, 40 to 60 
percent slopes 
(Van Buren 
– 32)

Kenn and Ceda com-
plex, frequently 
flooded (Van 
Buren – 12) and 
Spadra loam, oc-
casionally flooded 
(Van Buren – 27)

14 Mulberry 
River near 
Mulberry, 
AR

Atoka Formation1 Allen and Enders association, steep 
(Franklin – AEE)1

Bruno and Iuka soils 
(Franklin – Bu) 
and Dubbs fine 
sandy loam, 1 to 
3 percent slopes 
(Franklin – DbB)

1Green shading indicates formations with mixed lithologies.
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General Soil Characteristics of Selected Stream 
Reaches

Soils provide insight into the evolution, age, and stability 
of the landform upon which they develop. The soil series 
mapped by the U.S. Department of Agriculture, Natural 
Resources Conservation Service are arranged according to the 
soil parent material type for the 14 selected stream reaches 
(table 4). Complete descriptions of the soil series are available 
from Hoelscher and others (1975) and Ditzler (2017).

Residuum soils are residual soil material formed in place 
by weathering (Hoelscher and others, 1975; Ditzler, 2017). 
These soils are on the ridgetops and side slopes and constitute 
the upland valley floors in the larger valleys at an elevation 
above the floodplain or oldest alluvial terrace. Allen and 
Summit soils are shale residuum on upland terraces. Enders 
soils are shale-sandstone residuum on valley uplands. Enders 
and Nella soils are shale residuum on ridgetops and side 
slopes. Allen soils are sandstone residuum on ridgetops and 
side slopes. Newnata soils are limestone, shale, and siltstone 
residuum on hilltops and side slopes. Mountainburg soils are 
sandstone on hills, ridges, mountaintops, and mountainsides. 
Steprock soils are sandstone residuum on very steep sides of 
hills, mountains, and ridges.

Colluvial soils are unconsolidated sediments that 
have moved downslope because of gravitational forces 
(Hoelscher and others, 1975; Ditzler, 2017). Enders soils are 
shale-sandstone colluvium found on uplands, mountaintops, 
ridges side slopes and footslopes of mountains. Nella soils 
are colluvium from interbedded limestone, alkaline shale, and 
siltstone found on hillsides, benches, and footslopes. Newnata 
soils are colluvium from interbedded limestone, alkaline shale, 
and siltstone found on hillsides and ridges. Summit soils are 
colluvium on interfluves, divides, and hillslopes. Noark soils 
are colluvium from cherty limestones found on steep uplands. 
Arkana and Moko soils are residuum from limestone found on 
steep uplands.

Alluvium or alluvial deposits represent the most recent 
deposition of sediment within a watershed and are present 
at each of the selected stream reaches in the channel and 
on the floodplains (Hoelscher and others, 1975; Ditzler, 
2017). Terraces are the oldest alluvial deposits, representing 
abandoned floodplains, and are present at most selected 
stream reaches. Bruno, Ceda, Iuka, Kenn, Leadvale, Leesburg, 
Razort, and Spadra soils are Quaternary alluvium on the 
floodplains and terraces.

Land Cover Above Selected Stream Reaches

Data from the NLCD of 2021 (Dewitz, 2023) were used 
to determine the land cover within the Boston Mountains. 
Forest (deciduous forest, evergreen forest, and mixed forest) 
is the dominant land cover comprising 78 percent of the area. 
Undeveloped open land (shrub/scrub, grassland/herbaceous, 
or pasture/hay) represented 18 percent of the area. Developed 

land (developed, open space; developed, low intensity; 
developed, medium intensity; or developed, high intensity) 
was the third greatest land cover representing 0.86 percent of 
the area.

These data (Dewitz, 2023) were also used to determine 
the land cover within each of the watersheds above the 
selected stream reaches (table 5). Forest is the dominant 
land cover in the selected watersheds (table 5). On average, 
the watersheds were 84 percent forest, ranging from 48 to 
99 percent. The second largest land cover category within the 
selected watersheds was undeveloped open land. On average, 
the selected watersheds were 12 percent undeveloped open 
land, ranging from 0.56 to 46 percent. The third largest land 
cover category within the selected watersheds was developed. 
On average, the selected watersheds were 3.1 percent 
developed, ranging from 0.75 to 5.8 percent. These three land 
cover categories—forest, undeveloped open land, and 
developed—accounted for greater than 99 percent of the land 
cover within all selected watersheds.

No trends in watershed development, forest prevalence, 
or undeveloped open land were identified, but developed 
area of the watersheds ranged from 0.75 to 5.8 percent. 
The watersheds above sites 2, 5, 10, and 12 had greater 
than 4 percent developed area, and watersheds above sites 
11, 13, and 14 had less than 2 percent developed area. The 
watersheds above sites 3, 6, and 14 had the greatest forest 
cover (>93 percent) and the watersheds above sites 5 and 12 
had less than 65 percent coverage. The watersheds above sites 
3, 6, and 14 had less than 3.3 percent undeveloped open land, 
and those above sites 2, 5, and 12 had greater than 18 percent 
undeveloped open land.

Streambed Material Analysis

An example of the results of particle data analysis 
is shown in figure 7 for Smith Creek near Boxley, Ark. 
(07055650; site 6; fig. 1; table 6). The computed streambed 
material particle-size classes (D16, D50, and D84 percent), 
along with the percentage of bedrock for all sampled cross 
sections, were used for subsequent statistical analyses relating 
geomorphic characteristics to basin characteristics and in the 
determination of the stream reach classification. Streambed 
material particle-size distributions were determined for sites 
1, 2, 3, 6, 7, 8, 10, and 13 (table 6). The same analysis was 
conducted for the point bar material particle-size distributions. 
Particle-size quantile values of percent finer, descriptive 
statistics of particle-size distributions, and the particle-size 
distribution percentages of substrate type for cross sections 
and point bar material are available in Kroes and Ruhl-
Whittle (2025).

Bedrock was identified as streambed material in seven 
of the eight streams sampled for particle-size distribution. 
Streambed mean particle size ranged from 30 to 99 millimeters 
(mm), with an overall mean of 73 mm (Kroes and Ruhl-
Whittle, 2025). On average, 68 percent of the measured 
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Table 5.  Land cover within watersheds above selected stream reaches in the Boston Mountains in Arkansas.

[Station names from U.S. Geological Survey (USGS; 2024); Land cover from National Land Cover Database (Dewitz, 2023). The classification system used by the National Land Cover Database is modified 
from the Anderson Land Classification System (Anderson and others, 1976)]

Map no.  
(fig. 1B)

USGS station name  
(table 1)

Land cover class within watershed (percent)

Open 
water

Developed,  
open  
space

Developed, 
low  

intensity

Developed, 
medium 
intensity

Developed,  
high  

intensity

Barren 
land 

(rocks/
sand/
clay)

Deciduous 
forest

Evergreen  
forest

Mixed 
forest

Shrubs/
scrub

Grassland/ 
herbaceous

Pasture/
hay

Woody 
wetlands

Evergreen  
herbaceous 

wetlands

1 Mikes Creek Tributary near Ozone, 
AR

0.20 3.09 0.16 0.03 0.00 0.01 76 9.99 4.6 0.70 1.2 4.0 0.05 0.02

2 Trace Creek Tributary near Marshall, 
AR

0.14 3.45 0.70 0.12 0.03 0.20 62 4.6 8.5 2.1 1.9 17 0.03 0.03

3 Tick Creek near Leslie, AR 0.12 2.69 0.10 0.02 0.00 0.01 83 7.5 3.8 0.51 0.50 2.2 0.07 0.01

4 Maxwell Creek at Kingston, AR 0.06 2.92 0.24 0.05 0.02 0.21 79 0.7 3.6 1.7 1.7 10 0.18 0.05

5 Jack Creek near Winfrey, AR 0.03 3.34 1.01 0.35 0.09 0.13 61 1.3 2.2 1.6 1.6 27 0.05 0.00

6 Smith Creek near Boxley, AR 0.01 2.65 0.06 0.02 0.00 0.00 89 3.3 1.7 0.61 0.31 2.1 0.01 0.00

7 Jones Creek at Winfrey, AR 0.01 2.32 0.08 0.03 0.00 0.01 90 2.0 1.0 0.34 0.67 4.0 0.01 0.00

8 Frog Bayou at Winfrey, AR 0.05 1.92 0.26 0.05 0.00 0.00 88 0.40 0.64 0.19 0.20 8.4 0.04 0.03

9 Buffalo River near Boxley, AR 0.05 2.28 0.44 0.07 0.00 0.00 88 0.04 0.58 0.27 0.23 8.3 0.03 0.00

10 Richland Creek near Witts Spring, 
AR

0.00 4.34 0.12 0.05 0.00 0.01 85 1.1 1.0 1.1 2.2 5.1 0.00 0.00

11 Bear Creek near Silver Hill, AR 0.00 1.82 0.07 0.01 0.01 0.00 81 6.0 4.4 0.13 0.14 6.7 0.00 0.00

12 Big Piney Creek near Dover, AR 0.11 3.28 2.34 0.11 0.11 0.00 42 1.2 4.7 1.7 4.7 40 0.00 0.00

13 Middle Fork of Little Red River at 
Shirley, AR

0.00 0.28 0.84 0.00 0.00 0.00 75 0.56 11 0.00 0.00 12 0.00 0.00

14 Mulberry River near Mulberry, AR 0.00 0.56 0.19 0.00 0.00 0.00 96 0.37 2.2 0.56 0.00 0.00 0.00 0.00
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streambed sediment was at or below the size that may be 
mobilized during a bankfull discharge. Although analysis was 
limited by small sample sizes (N = 8), streambed material 
particle size decreased nonsignificantly with mean watershed 
elevation (coefficient of determination [R2] = 0.26; probability 
value [p-value] = 0.25) and exhibited finer sediments with 
increased entrenchment (R2 = 0.33; p-value = 0.18). Observed 
streambed particle size correlated significantly with calculated 
shear stress (R2 = 0.80; p-value = 0.006) and calculated 
width of particle transported at bankfull discharge (R2 = 0.80; 
p-value = 0.007).

By using Sneed and Folk (1958) particle-shape 
classification, we determined that bed materials at sites 1, 2, 
and 7 were primarily very platy and very bladed (Kroes and 
Ruhl-Whittle, 2025).

Other sites had more varied particle shapes, but the data 
formed a centroid between bladed and very bladed. This 
distribution of particle shapes is likely due to sediment origin 
as eroded sedimentary layers.

Measured bar sediment particle means ranged from 0.6 
to 16 mm, with an overall mean of 12 mm. Bar sediment size 
correlations were also limited by small sample size (N = 8) but 
exhibited decreasing size with increasing sinuosity (R2 = 0.32; 
p-value = 0.14) and entrenchment (R2 = 0.31; p-value = 0.16). 
Increases in bar material size were correlated with increasing 
streambed material size (R2 = 0.45; p-value = 0.067). 
However, these results were not statistically significant.

The calculated particle sizes transported at bankfull 
ranged from 19 to 256 mm (table 6). These calculated 
values correlated significantly with observed bed sediment 
size distributions (D50 [R2 = 0.73; p-value = 0.007] and 
D84 [R2 = 0.86; p-value = 0.0009]). Of the eight reaches 
where bed sediment was measured, four were dominated by 
cobble. Those four cobble-dominated sites had calculated 
particle sizes transported at bankfull greater than 100 mm. 
Extrapolation of these observations and regressions to sites 
where bed sediment was not measured suggests that gravel 
may be the dominant particle size at sites 4 and 13 and cobble 
may be dominant at sites 5, 9, 11, and 14.

Drainage basin land cover classes generally did not 
correlate well with mean streambed particle sizes; however, 
the strongest nonsignificant correlation was between 
increasing drainage basin percentages of emergent herbaceous 
wetlands and decreasing mean streambed particle size (R2 = 
0.29; p-value = 0.17). Land cover correlated well with mean 
bar particle sizes. The percentage of area in the watersheds 
that was emergent wetland increased nonsignificantly with 
finer distributions of bar particles (R2 = 0.46; p-value = 0.06). 
Likewise, increases in finer bar material were nonsignificantly 
related to increasing percentages of open water (R2 = 0.47; 
p-value = 0.06). Mixed forest (R2 = 0.38; p-value = 0.10) and 
developed medium intensity (R2 = 0.35; p-value = 0.12) also 
nonsignificantly increased as bar materials became finer.

Geomorphology at Selected Stream Reaches

The channel shape, or geomorphology, was measured at 
each of the selected stream reaches. The geomorphological 
attributes measured or calculated at each of the selected 
stream reaches include the bankfull top width and mean 
depth, the flood-prone width, and the water-surface and valley 
slopes. The ratios of the bankfull top width to mean depth 
(width-to-depth ratio), the flood-prone width to bankfull top 
width (entrenchment ratio), and the water-surface slope to 
the valley slope (sinuosity) allow comparisons to be made 
between watersheds of different sizes. The width-to-depth 
ratio from the selected stream reaches ranged from 14.8 to 
78.4, averaging 32.1. The entrenchment ratio ranged from 1.58 
to 9.60, averaging 3.35. The sinuosity from the selected stream 
reaches ranged from 1.05 to 2.25, averaging 1.19. The stream 
reach width-to-depth ratio, entrenchment ratio, sinuosity, and 
level II classification (Rosgen, 1994) are presented in table 7.

Classification of Selected Stream Reaches

According to the Rosgen (1994) level II stream system, 
half of the sites were classified as B-type streams, and half 
were classified as C-type streams. Comparisons of geomorphic 
parameters were made using two-sample, one-tailed t-tests 
assuming unequal variance to determine differences in stream 
geomorphology between the two classifications. B-type 
streams had lower upstream watershed (10-85) slope (means 
of 79 and 252 ft/mi, respectively; p-value = 0.048), greater 
hydraulic radii (means of 3.01 and 4.99 ft, respectively; 
p-value = 0.044), and depths (means of 3.26 and 5.14 ft, 
respectively; p-value = 0.054) than C-type streams. C-type 
streams had finer D50 bar material size fractions (means of 
6.04 and 15.15 mm, respectively; p-value = 0.051) and D85 
(means of 22.7 and 55.7 mm, respectively; p-value = 0.048) 
than B-type streams.

These stream types were also compared for drainage 
basin land cover. B-type streams had less barren land 
(rocks, sand, and clay (means of 0.002 and 0.081 percent, 
respectively; p-value = 0.038) than C-type streams. B-type 
streams also had less woody wetlands (means of 0.015 and 
0.050 percent, respectively; p-value = 0.098) and emergent 
herbaceous wetlands (means of 0.002 and 0.017 percent, 
respectively; p-value = 0.036) than C-type streams.

Regional Hydraulic Geometry Relations

Regional hydraulic geometry curves were constructed by 
plotting bankfull discharge and measured bankfull geometry 
dimensions (cross-sectional area, mean depth, and top width) 
from stable reaches and the associated bankfull streamflow 
against the contributing drainage area (table 7; fig. 8). 
Regression equations were derived from these hydraulic 
geometry curves and express the mathematical relation 
(power functions, Y = aXb) between the bankfull channel 
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Date:

Measurer:

Recorder:

Based on
total particle D16 D25 D50 D75 D84 Geo mean Sorting Skewness Kurtosis
count 37.752 52.90 99.1 177 229 93.1 2.5 50.9 0.2
Based on
total substrate Silt/clay Sand Gravel Cobble Boulder Bedrock Hardpan Wood/det Artificial
count 0 4 27 56 12 0 0 0 0
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Figure 7.  Streambed material data for Smith Creek near Boxley, Arkansas (07055650; table 1; Kroes and Ruhl-Whittle, 2025).
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Table 6.  Summary of streambed and point bar material analysis for selected stream reaches in the Boston Mountains in Arkansas (Kroes and Ruhl-Whittle, 2025).

[Station names from U.S. Geological Survey (USGS; 2024); D50, median particle size; D16 and D84, particle sizes that are one standard deviation from the median; lbf/ft2, pound-force per square foot; mm, 
millimeter; Bar, point bar sample, number in parentheses is number of point bars included in analysis; AR, Arkansas; --, no data]

Map no. 
(fig. 3)

USGS station 
name  

(table 1)

Sample 
type

Particle size distribution (mm) Substrate type (percent)
Bankfull 

shear 
stress 
(lbf/ft2)

Size 
transported 
at bankfull 
discharge 

(mm)

Streambed 
sediment 
mobilized 
at bankfull 
discharge 
(percent)

D16 D50 D84 Silt/clay Sand Gravel Cobble Boulder Bedrock

1 Mikes Creek 
Tributary 
near Ozone, 
AR

Bed (6)1 0.946 72.5 272 0.40 16 28 35 14 4.6 2.80 228 69
Bar (1)1 0.541 1.67 5.50 0 30 70 0 0 0

2 Trace Creek 
Tributary 
near 
Marshall, AR

Bed (6)1 0.285 30.0 79.0 9.5 18 37 19 0 16 0.55 42 38
Bar (1)1 0.062 0.60 4.00 6.4 52 41 0 0 0

3 Tick Creek near 
Leslie, AR

Bed (4)1 31.8 79.1 184 0 5.3 30 59 5 0.25 1.31 103 38
Bar (1)1 3.99 16.1 84.0 1.1 3.6 65 31 0 0

4 Maxwell Creek 
at Kingston, 
AR

Bed (0)1 -- -- -- -- -- -- -- -- -- 0.99 77 --
Bar (0)1 -- -- -- -- -- -- -- -- -- --

5 Jack Creek near 
Winfrey, AR

Bed (0)1 -- -- -- -- -- -- -- -- -- 1.74 139 --
Bar (0)1 -- -- -- -- -- -- -- -- -- --

6 Smith Creek 
near Boxley, 
AR

Bed (5)1 37.8 99.1 229 0 4.4 28 55 12 0 3.13 256 74
Bar (1)1 6.05 24.0 66.9 0 3 75 22 0 0

7 Jones Creek at 
Winfrey, AR

Bed (3)1 0.588 35.3 117 0 20 40 33 2.4 5.1 1.20 95 58
Bar (1)1 5.04 12.7 36.0 1.4 2.6 88 8.0 0 0

8 Frog Bayou at 
Winfrey, AR

Bed (5)1 0.816 39.8 151 0 18 43 28 4.0 7.5 1.04 81 51
Bar (1)1 1.04 6.90 27.0 0 13 78 9.2 0 0

9 Buffalo River 
near Boxley, 
AR

Bed (0)1 -- -- -- -- -- -- -- -- -- 1.69 134 --
Bar (0)1 -- -- -- -- -- -- -- -- -- --

10 Richland Creek 
near Witts 
Spring, AR

Bed (4)1 31.7 94.6 287 0 5.3 29 47 17 1.2 2.94 240 84
Bar (1)1 4.09 15.0 54.1 0 11 70 20 0 0

11 Bear Creek near 
Silver Hill, 
AR

Bed (0)1 -- -- -- -- -- -- -- -- -- 1.83 146 --
Bar (0)1 -- -- -- -- -- -- -- -- -- --
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Table 6.  Summary of streambed and point bar material analysis for selected stream reaches in the Boston Mountains in Arkansas (Kroes and Ruhl-Whittle, 2025).—Continued

[Station names from U.S. Geological Survey (USGS; 2024); D50, median particle size; D16 and D84, particle sizes that are one standard deviation from the median; lbf/ft2, pound-force per square foot; mm, 
millimeter; Bar, point bar sample, number in parentheses is number of point bars included in analysis; AR, Arkansas; --, no data]

Map no. 
(fig. 3)

USGS station 
name  

(table 1)

Sample 
type

Particle size distribution (mm) Substrate type (percent)
Bankfull 

shear 
stress 
(lbf/ft2)

Size 
transported 
at bankfull 
discharge 

(mm)

Streambed 
sediment 
mobilized 
at bankfull 
discharge 
(percent)

D16 D50 D84 Silt/clay Sand Gravel Cobble Boulder Bedrock

12 Big Piney Creek 
near Dover, 
AR

Bed (6)1 9.82 57.2 199 0.39 9.4 40 33 9.4 7.1 1.79 143 65
Bar (1)1 0.503 7.81 36.3 2.2 22 64 12 0 0

13 Middle Fork 
of Little 
Red River at 
Shirley, AR

Bed (0)1 -- -- -- -- -- -- -- -- -- 0.26 19 --
Bar (0)1 -- -- -- -- -- -- -- -- -- --

14 Mulberry 
River near 
Mulberry, AR

Bed (0)1 -- -- -- -- -- -- -- -- -- 0.64 49 --
Bar (0)1 -- -- -- -- -- -- -- -- -- --

1The number in parentheses is the number of cross sections included in analysis.
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Table 7.  Summary of bankfull dimensions and stream morphological attributes for selected stream reaches in the Boston Mountains in Arkansas (USGS, 2024; Kroes and Ruhl-
Whittle, 2025).

[Station names from U.S. Geological Survey (USGS; 2024); AR, Arkansas; mi2, square mile; ft, foot; ft2, square foot; ft/ft; foot per foot. The suffix “/1” indicates the presence of bedrock within the study reach]

Map no. 
(fig. 1B)

USGS station name  
(table 1)

Drainage 
area  
(mi2)

Bankfull top 
width  

(ft)

Bankfull 
mean 
depth  

(ft)

Width-
to-depth 

ratio

Bankfull 
cross-

sectional 
area  
(ft2)

Flood-
prone 
width  

(ft)

Entrenchment 
ratio

Valley  
slope  
(ft/ft)

Water-
surface 
slope  
(ft/ft)

Sinuosity
Hydraulic 

radius

Level II  
stream reach  
classification 
(Rosgen, 1994)

1 Mikes Creek Tributary nr Ozone, AR 0.19 13.4 1.1 14.8 14.4 37 2.73 0.0570 0.0492 1.16 0.91 C1b/1

2 Trace Creek Tributary near Marshall, AR 0.24 9.66 0.8 18.0 7.76 39 4.27 0.0139 0.0124 1.12 0.71 C1/1

3 Tick Creek near Leslie, AR 1.58 64.3 1.6 43.2 99.5 122 2.00 0.0154 0.0138 1.11 1.52 B1c/1

4 Maxwell Creek at Kingston, AR 2.75 47.9 2.7 22.2 119 261 5.04 0.0085 0.0079 1.07 2.00 C1/1

5 Jack Creek near Winfrey, AR 6.87 84.7 3.3 29.3 259 275 3.02 0.0107 0.0089 1.21 3.14 C1/1

6 Smith Creek near Boxley, AR 8.33 59.5 3.9 15.5 231 100 1.70 0.0142 0.0135 1.05 3.71 B1c/1

7 Jones Creek at Winfrey, AR 20.3 106 4.2 28.0 421 165 1.58 0.0054 0.0048 1.14 4.06 B1c/1

8 Frog Bayou at Winfrey, AR 54.9 135 3.8 44.5 516 864 6.50 0.0047 0.0045 1.06 3.71 C1/1

9 Buffalo River near Boxley, AR 59.2 147 6.1 23.9 868 340 2.38 0.0050 0.0046 1.09 5.91 B1c/1

10 Richland Creek near Witts Spring, AR 67.3 186 6.4 35.0 1,080 272 1.62 0.0082 0.0079 1.05 5.97 C1/1

11 Bear Creek near Silver Hill, AR 78.5 152 5.5 28.4 837 1,534 9.60 0.0061 0.0055 1.11 5.35 B1c/1

12 Big Piney Creek near Dover, AR 274 255 7.7 38.5 1,899 479 2.14 0.0042 0.0038 1.09 7.52 B1c/1

13 Middle Fork of Little Red River at 
Shirley, AR

302 285 4.7 78.4 1,338 736 2.53 0.0020 0.0009 2.25 4.60 C1/1

14 Mulberry River near Mulberry, AR 373 204 7.0 29.2 1,446 357 1.75 0.0017 0.0015 1.09 6.86 B1c
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dimensions (Y) and the contributing drainage areas (X). The 
regression equations and corresponding 95-percent confidence 
and prediction intervals are presented on the regional 
hydraulic geometry curves (fig. 8). The 95-percent confidence 
intervals define a range of values that have a 95-percent 
probability of encompassing the results for other B- or C-type 
streams within the Boston Mountains physiographic section. 
The prediction intervals predict the 95-percent probability 
ranges for estimates of channel dimensions for a single 
stream of a given drainage area in the Boston Mountains 
physiographic section. The drainage areas of the studied 
stream reaches ranged from 0.19 to 373 square miles.

The regression equations for bankfull streamflow (eq. 3), 
bankfull channel cross-sectional area (eq. 4), mean depth 
(eq. 5) and top width (eq. 6) as a function of the contributing 
drainage area for streams in Boston Mountains in Arkansas are

	 Q = 142.586 × DA0.8363, R2 = 0.98� (3)

	 XSA = 46.265 × DA0.7341, R2 = 0.98� (4)

	 MD = 1.629 × DA0.297, R2 = 0.91� (5)

	 TW = 29.606 × DA0.03341, R2 =0.93� (6)

where
	 Q	 is bankfull discharge, in cubic feet per second;
	 DA	 is drainage area, in square miles;
	 XSA	 is bankfull cross-sectional area, in square feet;
	 MD	 is bankfull mean depth, in feet;
	 TW	 is bankfull top width, in feet; and
	 R2	 is the coefficient of determination, in 

log space.
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Figure 8.  Regional hydraulic geometry curves of bankfull channel dimensions as a function of drainage area for selected streams in 
the Boston Mountains in Arkansas, with 95-percent confidence and prediction intervals (Kroes and Ruhl-Whittle, 2025).
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Limitations of This Study
For this study, the selection of bankfull stage was 

initially assumed to be associated with a streamflow that 
has a recurrence interval of approximately 1.5 years. This 
assumption may be an oversimplification (Thorne and others, 
1997), even though other researchers have found bankfull 
stages associated with streamflows between 1- and 2-year 
recurrence intervals (Rosgen, 1994; Harman and Jennings, 
1999). If the bankfull recurrence interval at a site is outside 
the assumed range of a 1- to 2-year recurrence interval, the 
bankfull channel may have been incorrectly identified (White, 
2001). Additionally, B-type stream channels do not have a 
true floodplain. Selection of bankfull indicators along B-type 
streams is limited to discontinuous depositional surfaces along 
the channel banks.

The data and regional curves presented in this report are 
intended to provide users with stream hydraulic geometry 
information about the current conditions of stable B- and 
C-type streams in the Boston Mountains physiographic section 
in Arkansas. This study did not examine stable A-, D-, or 
E-type streams because no streamgages were located on these 
stream types. The curves presented in this report should be 
applied to only B- and C-type streams.

Appropriate use of the data presented in this report is 
left to the user. These data are suitable for most assessment 
and planning activities, including scaling natural stream 
restoration projects, habitat assessments of similar stream 
types, and prediction of natural stream-channel geometry. 
These data should be used in conjunction with other data for 
design purposes including analysis of peak flows, watershed 
assessments, and stream stability assessments.

Summary
Representative regional hydraulic geometry curves 

were developed for the Boston Mountains in Arkansas. The 
locations of 14 study reaches and streamgages operated by 
the U.S. Geological Survey and distributed across the Boston 
Mountains study area were selected for analysis on the basis 
of the following criteria: the streamgage had approximately 
20 years or more of streamflow record; the watershed above 
the streamgage had a minimal amount of urbanization and 
controlled drainage; the stream reaches above and below 
the streamgage were stable; and, as much as possible, the 
distribution of drainage basin sizes and geographic distribution 
across the Boston Mountains was sufficient to facilitate the 
development of these regional curves. These curves may be 
used in the design, planning, and permitting of roadways, 
floodplain developments, and stream modifications. Bridges, 
culverts, and bank armoring are designed with these regional 
curves to determine appropriate sizing and materials used.

The 14 selected streamgage sites had drainage basins 
ranging from 0.19 to 373 square miles and were distributed 
across 5 of the 9 eight-digit hydrologic units that are 
partially or totally within the Boston Mountains in Arkansas, 
representing 83 percent of the Boston Mountains’ area when 
smaller watersheds inside larger watersheds are subtracted 
(table 1). As a result of differential erosion of the rock types 
underlying the Boston Mountains, 8 of the 14 study reaches 
were underlain by sandstone and shale formations, with the 
remainder underlain by limestone, a combination of limestone 
and shale, or a combination of sandstone, shale, and limestone. 
The land cover within the watersheds above the study reaches 
was on average 84 percent forest, 12 percent undeveloped 
open land (shrub/scrub, grassland/herbaceous, or pasture/hay) 
open land, and 3.1 percent developed (table 5). Compared 
to the Boston Mountains as a whole, these watersheds had 
6 percent more forest, 6 percent less undeveloped open land, 
and 2.2 percent more development.

Channel morphological metrics of stream cross sections 
and longitudinal profiles were measured at each of the 
14 study reaches. Cross-section width-to-depth ratios ranged 
from 14.8 to 78.4, averaging 32.1; entrenchment ratios ranged 
from 1.58 to 9.60, averaging 3.35; sinuosity ranged from 1.05 
to 2.25, averaging 1.19; and water-surface slopes ranged from 
0.0009 to 0.0492 foot per foot. Cobble was the dominant 
streambed particle size measured at four of the eight measured 
reaches, and gravel was the dominant particle size at the 
four remaining locations. Indirect calculations of particle size 
transported at bankfull flows (greater than 100 millimeters) 
indicated possible cobble dominance of streambed material 
at another four of the unsampled study reaches and possible 
gravel dominance at another two reaches. Bedrock was 
identified as streambed material at seven of the eight study 
reaches where streambed material was analyzed. Based on 
these channel morphological metrics, 7 of the 14 study reaches 
were classified as Rosgen level II B-type streams, and 7 were 
classified as C-type streams.

Regional hydraulic geometry curves express the 
mathematical relation between the bankfull channel 
dimensions and the contributing drainage areas. Regional 
hydraulic curves for the Boston Mountains in Arkansas were 
constructed from the channel morphological metrics collected 
at the 14 study reaches by plotting measured bankfull 
geometry dimensions (cross-sectional area, top width, and 
mean depth) from stable riffle sections and the associated 
bankfull streamflow against the contributing drainage area. 
The resulting curves had adjusted coefficients of determination 
values ranging from 0.91 to 0.98.
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