UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

TRACE ELEMENTS INVESTIGATIONS
THE OCCURRENCE OF COLUMBIUM AND TANTALUM

by
Michael Fleischer and James O. Harder

Trace Elements Investigations—Report No. 14
CONTENTS

ABSTRACT ... 1
INTRODUCTION .. 1
GEOCHEMICAL CONSIDERATIONS .. 2

General Statement ... 2
Occurrences in specific minerals and rocks ... 3

Index of minerals mentioned .. 4

(1) Minerals in which columbium and/or tantalum is a major constituent 7

(2) Minerals in which columbium and/or tantalum is a minor constituent 11

Rocks .. 13
Results of mill product studies .. 14

Best sources of columbium and tantalum .. 15
Suggestions for further investigations ... 19

Annotated bibliography of occurrences of columbium and tantalum 22

TABLES

1. Best columbium values resulting from mill products spectrography 20
Columbium and tantalum occur most abundantly in certain minerals which form late in the general process of magmatic differentiation, including the late hydrothermal stages. These minerals occur almost without exception in granitic and syenitic pegmatites and placers derived therefrom. Among the metallic elements, columbium and tantalum are most closely associated with titanium, zirconium, uranium, rare earths, and tin, as might be expected from their ionic radii. The $\text{Cb}_2\text{O}_5 \cdot \text{Ta}_2\text{O}_5$ content of the minerals varies from a trace to 86 percent. The high value is for columbite-tantalite, the most common ore mineral of columbium and tantalum.

The domestic reserves of columbium-tantalum minerals are estimated to be 875,800 pounds of all minerals as of January 1, 1945. No grade figures are reported.

Products of tin smelters and plants which treat minerals chemically for elements such as titanium and tungsten should be investigated for columbium on the basis of association.

INTRODUCTION

This report on the occurrences of columbium and tantalum is the fourth in a series of similar reports to be prepared by the Geological Survey discussing possible sources of several rare or uncommon elements for which there are war uses. Other elements will be discussed in forthcoming reports.
Columbium and tantalum are chemical elements with atomic numbers 41 and 73, and atomic weights 92.91 and 180.86, respectively. They belong to the fifth group of the periodic table and are quinquevalent in most of their compounds. The history of these elements, their properties and those of their compounds, are summarized by Møller (19). Their chemistry and metallurgy have been summarized recently (l, 20).

GEOCHEMICAL CONSIDERATIONS

General statement

Columbium and tantalum are relatively rare elements, whose exact position in the order of abundance of the elements is uncertain. Analysis for these elements is unusually difficult, which may explain the paucity of data on their distribution and the widely varying estimates of their abundance. Thus Clarke and Washington in 1934 (5) gave 0.003 percent as the average columbium plus tantalum content of igneous rocks, whereas two years earlier they had given it as \(n \times 10^{-5} \) percent. More recently, von Hevesy and coworkers (14, 15) gave \(3.2 \times 10^{-5} \) percent Cb and \(2.4 \times 10^{-5} \) percent Ta for the average contents of eruptive rocks, Goldschmidt (12) gave 0.002 percent Cb and 0.0015 percent Ta, and van Tongeren (24) estimated 0.001 percent Cb to be the average content of the rocks of the Dutch East Indies.

Columbium and tantalum are lithophilic elements that occur almost exclusively in igneous rocks. In contrast to dispersed elements such as gallium and indium, columbium and tantalum are so concentrated during the processes of magmatic differentiation that they are major constituents of many minerals. These minerals, almost without exception, occur in granitic and syenitic pegmatites.
The empirical ionic radius of columbium is given as 0.69 Å and that of tantalum must be nearly the same. Columbium and tantalum are associated closely with titanium and zirconium, and to some extent with tin and tungsten. These associations would be anticipated from the ionic radii (titanium 0.64, tin 0.74, tungsten approximately 0.6), except for zirconium, whose ionic radius is given as 0.87 Å, but may well be smaller. Molybdenum minerals have apparently not been tested for the presence of columbium and tantalum, although the ionic radius of molybdenum (0.6 - 0.7) suggests a possible association especially in molybdenite from pegmatites. Some molybdenum ores tested spectrographically by Babbitt (25) did not contain measurable amounts of columbium, but no molybdenum mineral was tested.

Occurrences in specific minerals and rocks

The following list includes all the minerals that are reported to contain columbium or tantalum which are recognised as valid species and some that are of dubious validity. The complexity of composition and the difficulty of analysis make it impossible to systematically classify all these minerals accurately. They have been divided into two groups: (1) Minerals in which columbium or tantalum is a major constituent, and (2) Minerals in which these elements are minor constituents. Within each group, the arrangement is roughly in order of possible importance as a source of columbium and tantalum. For the many rare and ill-defined species, a rough grouping of like minerals has been attempted. Unless otherwise indicated, the data given are from volume 1 of the Seventh Edition of Dana's System of Mineralogy (6) and from the mineralogical file of the Section of Chemistry and Physics, Geological Survey, Department of the Interior.
Index of minerals mentioned

Ampangabeite. See Betafite, p. 10

Arizonaite. See Ilmenite, p. 12

Astrophyllite, p. 13

Betafite, p. 10

Dismutotantalite, p. 9

Bloomstrandite. See Eschynite, p. 9

Brookite, p. 12

Caryocerite, p. 13

Cassiterite, p. 12

Columbite, p. 7

Columbomicrolite. See Pyrochlore-Microlite Group, p. 8

Cyrtolite. See Zircon, p. 12

Djulmaite. See Betafite, p. 10

Dysanalyte. See Ferovskite, p. 8

Elsworthite. See Pyrochlore-Microlite Group, p. 8

Epistolite, p. 11

Eschweigeite, p. 9

Eschynite, p. 9

Eudialyte, p. 13

Euexinite, p. 9

Fergusonite, p. 10

Fersmanite, p. 11

Formanite. See Fergusonite, p. 10

Hagatelite. See Zircon, p. 12

Hatchettolite. See Pyrochlore-Microlite Group, p. 8

Hortdahlite, p. 11
Index of minerals mentioned (continued)

Hjelmite, p. 8
Ilmenite, p. 12
Ilmenorutile. See Rutile, p. 8
Ishikawite, p. 10
Kalkowskite. See Ilmenite, p. 12
Khlopinite, p. 12
Koppite. See Pyrochlore-Microlite Group, p. 8
Lavenite, p. 11
Loparite, p. 7
Loranskite. See Polymignite, p. 10
Lorenzenite, p. 13
Melanocerite. See Caryocerite, p. 13
Microlite. See Pyrochlore-Microlite Group, p. 8
Mossite. See Topiolite, p. 7
Murmanite, p. 11
Naegite. See Zircon, p. 12
Perovskite, p. 8
Policrato. See Roxenite, p. 9
Polylithioninite, p. 13
Polymignite, p. 10
Priorite. See Nashynite, p. 9
Pyrochlore, p. 8
Ramsayite. See Lorenzenite, p. 13
Rutile, p. 8
Samaraskite, p. 10
Samiresite. See Betafite, p. 10
Index of minerals mentioned (continued)

Scheelite. See Wulfenite, p. 11
Schistelignite, p. 8
Simpsonite, p. 9
Sphene, p. 12
Steenstrupine, p. 13
Stibiocolumbite. See Stibiotantalite, p. 9
Stibiotantalite, p. 9
Struverite. See Rutile, p. 8
Tantalite. See Columbite, p. 7
Tantalum, p. 9
Tapiolite, p. 7
Thoresulite, p. 9
Titanite. See Sphene, p. 12
Tritomite, p. 13
Wöhlerite, p. 11
Wolframite, p. 11
Yttrotantalite, p. 10
Zircon, p. 12
(1) Minerals in which columbium and/or tantalum is a major constituent

Columbite-Tantalite Series $(Fe, Mn) (Cb, Ta)_2O_6$ varying from columbite containing little tantalum to tantalite containing little columbium. The Cb_2O_5-Ta_2O_5 content is 75 to 86 percent. This is the principal ore of columbium and tantalum. Columbite-tantalite and tapiolite are the ores from which 95% or more of these metals are produced outside the U.S.S.R. (See loparite, below.) Columbite-tantalite occurs almost exclusively in granite pegmatites, especially in those rich in lithium minerals. Although of widespread occurrence, it is generally sparsely disseminated, and relatively few of the occurrences contain large amounts. It has also been found in some placer deposits, and occurs in the cryolite deposits at Ivigtut, Greenland. A summary account of columbite-tantalite deposits has been published by Mathieu (18), and an account of the Russian deposits by Gerasimovskii (10).

Tapiolite-Mossite Series $(Fe, Mn) (Ta, Cb)_2O_6$. Varying from tapiolite with little columbium to mossite with $Cb:Ta$ approximately 1:1. The Cb_2O_5-Ta_2O_5 content is 79 to 85 percent. This tetragonal dimorph of orthorhombic columbite-tantalite is generally considered to be a rare mineral, but is actually of common occurrence. Much of the so-called tantalite has been found by x-ray study to be tapiolite at Geological Survey Laboratory (25). It occurs in granitic pegmatites, generally associated with tantalite.

Loparite, essentially $(Ce, Na, Ca)_2 (Ti, Cb)_2O_6$, a member of the perovskite group. The Cb_2O_5-Ta_2O_5 content is 9 to 11 percent, with columbium predominating over tantalum. Loparite is a rare mineral, known only from nepheline syenite pegmatites of the Kola Peninsula, U.S.S.R. where, however, it occurs in large amounts and may be an important source of columbium. The deposits have been described (8,9,10).
Perovskite, CaTiO₃, with columbium and tantalum substituting for titanium, and rare earths and sodium for calcium (compare loparite). The columbian variety is called dysanalyte. The \(\text{Cb}_2\text{O}_5\cdot\text{Ta}_2\text{O}_5 \) content ranges from traces to 26 percent and is particularly high in samples from contact zones of nephelinitic rocks. The columbian variety of perovskite is an uncommon mineral that generally occurs in small amounts.

Pyrochlore-Microlite Group (including the varieties columbomicrolite, koppite, hatchettolite, ellsworthite). Formula essentially \((\text{Na, Ca})_2 (\text{Cb, Ta})_2\text{O}_6 (0, 0\text{H,F})\), but with variable amounts of uranium and rare earths replacing calcium and with various elements, especially titanium, replacing columbium and tantalum. The \(\text{Cb}_2\text{O}_5\cdot\text{Ta}_2\text{O}_5 \) content is generally 56 to 78 percent, but may be as low as 40%, particularly in uraniam varieties. Tantalum commonly predominates over columbium. These minerals are of uncommon occurrence and are present in small amounts in most occurrences. However, at a few localities, they occur in sufficient amounts to be mined as a source of tantalum. They occur in granitic pegmatites and in nepheline syenites and related rocks, also in placers derived from such rocks.

Schatelgite is a very rare complex mineral related to the Pyrochlore-Microlite Group. It contains 29 percent \(\text{Cb}_2\text{O}_5\cdot\text{Ta}_2\text{O}_5 \). It occurs in granitic pegmatites.

Hielsite is a very rare, chemically complex mineral similar to microlite in composition and containing 62 to 70 percent \(\text{Cb}_2\text{O}_5\cdot\text{Ta}_2\text{O}_5 \). It occurs in granitic pegmatites.

Rutile, TiO₂ (columbian and tantalian varieties, also called ilmenorutile and struvewite.) These are solid solutions of TiO₂ containing variable amounts of the tapiolite-mossite molecules, Fe(Ta, Cb)₂O₆. The \(\text{Cb}_2\text{O}_5\cdot\text{Ta}_2\text{O}_5 \) content ranges from traces to 47 percent. The varieties of rutile that contain appreciable percentages of columbium and tantalum are rare minerals, occurring in
granitic and syenitic pegmatites.

Tantalum, Ta. Tantalum metal, containing 1.5% Cb, has been reported to occur as a rarity in some placers, but the occurrences need verification.

Simpsonite, Al₄Ta₄O₁₉, containing up to 8% Cb₂O₅. The Cb₂O₅-Ta₂O₅ content is 70 to 75 percent. A rare mineral occurring in granitic pegmatites. It has been reported to occur in placers in sufficient amount to serve as a minor source of tantalum.

Stibiotantalite-Stibiocolumbite Series. Sb(Cb, Ta)O₄, nearly the entire series being known. The Cb₂O₅-Ta₂O₅ content is 50 to 60 percent. It is a rare mineral, occurring in small amounts in lithium-rich granitic pegmatites and in some placers derived therefrom.

Bismutotantalite, Bi(Ta, Cb)O₄, with tantalum predominating. The Cb₂O₅-Ta₂O₅ content is 45 to 47 percent. It is a very rare mineral that occurs in granitic pegmatite.

Thoreaulite, SnTa₂O₇, containing Cb₂O₅ trace, Ta₂O₅ 73 percent. It is a very rare mineral, occurring in granitic pegmatite.

Following is a group of complex, poorly defined columbates and tantalates of the rare earths.

Euxenite-Polycrase Series, essentially A₂O₅, with A = chiefly yttrium and calcium, also cerium, uranium, and thorium; B = chiefly columbium, tantalum, and titanium. The Cb₂O₅-Ta₂O₅ content ranges from 20 to 51 percent. It is an uncommon mineral occurring in granitic pegmatites, but only rarely in appreciable amounts. It has also been found in placers.

Euhlopinite and Euchvangeite are very rare minerals similar to euxenite in composition and occurrence.

Sachynite-Priorite Series, including bloematrandine. These minerals are similar to the euxenite-polycrase series in composition, but differ in crystal
structure. The $\text{Cb}_2\text{O}_5\text{Ta}_2\text{O}_5$ content ranges from 16 to 37 percent. Columbium generally predominates over tantalum. These are uncommon minerals that occur, generally in small amounts, in nepheline-syenite and related rocks and in granitic pegmatites.

Samarakite is similar in composition to euxenite, but differs in crystal structure. The $\text{Cb}_2\text{O}_5\text{Ta}_2\text{O}_5$ content ranges from 43 to 60 percent. Columbium generally predominates over tantalum. Samarakite is an uncommon mineral that occurs, generally in small amounts, in granitic pegmatites.

Fergusonite-Formanite Series, essentially $\text{Y(Cb,Ta)}\text{O}_4$, with variable amounts of calcium, cerium, and uranium substituting for yttrium, and with titanium and other elements substituting for columbium and tantalum. Columbium generally predominates over tantalum. The $\text{Cb}_2\text{O}_5\text{Ta}_2\text{O}_5$ content ranges from 43 to 58 percent. Fergusonite is an uncommon mineral that occurs, generally in small amounts, in granitic pegmatites, and in placers derived therefrom.

Yttrotantalite is similar to fergusonite in composition, but differs in crystal structure. The $\text{Cb}_2\text{O}_5\text{Ta}_2\text{O}_5$ content is 55 to 60 percent. It is a very rare mineral that occurs in granitic pegmatites.

Ishikawite is a very rare mineral similar to yttrotantalite in composition and occurrence. The $\text{Cb}_2\text{O}_5\text{Ta}_2\text{O}_5$ content is 52 percent.

Polymignite and Loreanskite are very rare, ill-defined minerals similar to yttrotantalite in composition, but containing much zirconium. The $\text{Cb}_2\text{O}_5\text{Ta}_2\text{O}_5$ contents reported range from 13 to 48 percent. These are very rare minerals, occurring in small amounts in granitic pegmatites, nepheline-syenites, and augite-syenite pegmatites.

Betasite Group (including betaite, samiresite, djalamite and amangabisite). A group of complex, ill-defined minerals of doubtful formula, containing chiefly columbium, tantalum, titanium, calcium, and uranium. The $\text{Cb}_2\text{O}_5\text{Ta}_2\text{O}_5$ content
ranges from 18 to 73 percent. These rare minerals all occur in granitic pegmatites.

Fersmanite, (Ca,Na)₂(Ti,Cb) SiO₃F. The Cb₂O₅-Ta₂O₅ content is about 15 percent, nearly all of which is columbium. It is a rare mineral that occurs in nepheline syenite pegmatite.

Nurmanite, approximately (Na,Ca)₃(Ti,Cb)₅ Si₃O₁₉(OH)₇ 4H₂O. It contains about 8 percent Cb₂O₅ and 1 percent Ta₂O₅. It is a rare mineral that occurs in nepheline syenite pegmatite with loparite and fersmanite and is therefore a minor source of columbium in the treatment of loparite.

Epistolite is a sodium columbium silicate of uncertain formula. The only analysis gave 34 percent Cb₂O₅. It is a very rare mineral that occurs in nepheline syenite pegmatite.

Wöhlerite, perhaps NaCa₂(Zr,Cb) Si₂O₇ (O,OH,F)₂. The Cb₂O₅-Ta₂O₅ content is 13 to 15 percent; with columbium predominating over tantalum. Wöhlerite is a very rare mineral that occurs in nepheline syenite pegmatites.

Lövenite and **Niortdahlite** are sodium calcium zirconium silicates, like wöhlerite, but are reported to contain up to 5.2 percent and 2 percent, respectively, of Cb₂O₅-Ta₂O₅. They are very rare minerals that occur in nepheline syenite pegmatites.

(2) Minerals in which columbium or tantalum is a minor constituent

Wolframite, (Fe,Mn)WO₄. Few analyses of wolframite report columbium or tantalum, but these may have been overlooked (16). The content of columbium and tantalum might be expected to be low, except for samples from pegmatites, but the data in the literature are too few to allow any estimate of average content. The maximum content recorded is 2.2 percent Cb₂O₅-Ta₂O₅.

Scheelite, CaWO₄, has been reported to contain 0.10 percent Cb₂O₅-Ta₂O₅ (4), but the method of analysis used has been challenged (22). No other analysis of scheelite shows columbium or tantalum.
Ilmenite, FeTiO₃. Columbium and tantalum have been reported in only a few analyses of this very common mineral, but may not have been looked for. The maximum content of \(\text{Cb}_2\text{O}_5 + \text{Ta}_2\text{O}_5 \) reported is 1.3 percent from syenitic pegmatite, which would be expected to be relatively high in columbium + tantalum content (14, 21, 36, 27). Two black sands from Norway and India contained 0.16 and 0.03 percent, respectively, of \(\text{Cb}_2\text{O}_5 + \text{Ta}_2\text{O}_5 \) (14). These were presumably the "ilmenite" sands of commerce, which may be ilmenite, arizonite, or amorphous material. The only analysis of arizonite shows neither columbium nor tantalum, but the similar mineral/

Kalkowkite contains 1.7 percent \(\text{Cb}_2\text{O}_5 + \text{Ta}_2\text{O}_5 \).

Cassiterite, SnO₂. This very common mineral has been reported to contain columbium and tantalum in amounts ranging from spectrographic traces to over 10 percent \(\text{Cb}_2\text{O}_5 + \text{Ta}_2\text{O}_5 \). Some of the samples analyzed probably were not homogeneous and contained intergrown columbite-tantalite or tapiolite, but there is evidence that cassiterite may contain columbium and tantalum in solid solution (7). Cassiterite from pegmatite veins contains more columbium than cassiterite from hydrothermal sulfide-bearing veins (3, 17).

Brookite, TiO₂, has been reported to contain spectrographic traces of columbium and tantalum. No quantitative data are available.

Zircon, ZrSiO₄. Most analyses of this very common mineral do not report columbium or tantalum, which may have been overlooked. However, zircons that contain appreciable amounts of rare earths and uranium also generally contain columbium and tantalum, the maximum content reported being 7.7 percent \(\text{Cb}_2\text{O}_5 + \text{Ta}_2\text{O}_5 \). This variety of zircon (to which several special names such as crytalite naegkite and megatelite have been given) is of rare occurrence in granitic pegmatites.

Sphene, CaTiSiO₅ commonly contains columbium and tantalum in amounts ranging from traces to about 2 percent \(\text{Cb}_2\text{O}_5 + \text{Ta}_2\text{O}_5 \) (2, 14). The highest
percentages reported are for samples from nepheline syenite pegmatites.

Columbium generally predominate over tantalum.

Astrophyllite, \((K, Na) Fe_2TiSi_3O_11\) (OH), has been reported to contain up to 0.8 percent \(Ta_2O_5\). It is a very rare mineral that occurs in nepheline syenite pegmatites.

Radialyte, approximately \((Na, Ca)_5(Zr, Fe)_2Si_6O_{18}\) (OH, Cl). It has been reported to contain up to 3.5 percent \(Cb_2O_5+Ta_2O_5\), with tantalum predominating over columbium. Radialyte is a rare mineral that occurs in nepheline syenite pegmatites.

Lorenzenite (including the variety ramayite), \(Na_2(Ti, Zr)Si_2O_5\), is reported to contain columbium, but no quantitative data have been published. It is a very rare mineral that occurs in granitic and nepheline syenite pegmatites.

Tritonite, a complex borosilicate of cerium, lanthanum, thorium, and calcium, is reported to contain up to 3.1 percent \(Ta_2O_5\). It is a very rare mineral that occurs in nepheline syenite pegmatites.

Cryocerite-Melanocerite, a complex borosilicate of the rare earths and calcium, is reported to contain up to 3.5 percent \(Cb_2O_5+Ta_2O_5\). It is a very rare mineral that occurs in nepheline syenite pegmatites.

Stannatrupine, a complex phosphate-silicate of the rare earths, thorium, iron, and calcium, is reported to contain up to 4 percent \(Cb_2O_5+Ta_2O_5\). It is a very rare mineral that occurs in nepheline syenite pegmatites.

Polyliithionite, \(KLiAlSi_6O_{10}F_2\), contains up to 1.5 percent \(Cb_2O_5\). It is a very rare mineral that occurs in granitic pegmatites.

Rocks

Geochemical

As stated above under General Considerations, p. 2, data on the columbium and tantalum content of rocks are not in good agreement. The recent published values \((11,12,15,24)\) range from \(3.2 \times 10^{-5}\) percent \(Cb\) to 0.002 percent
Cb for the average content of igneous rocks. The highest values reported are 0.005 percent Cb for granite, 0.02 percent Cb for nepheline syenite (11). Less information is available on the tantalum content, which appears to be approximately two-thirds that of the columbium content.

Results of Mill Product Studies

The columbium content of more than 1000 samples from over 200 mines, mills, and geological occurrences, was determined spectrographically by Rabbitt (25) as part of the Geological Survey's Trace Elements investigations. Three of the samples each contained 0.2 percent \(\text{Cb}_2\text{O}_5 \). Two of these were from areas of alkali-syenite intrusions, some of which contain eudialyte. The third of these three samples is a placer concentrate from the Yentna district in Alaska. In addition to the three samples described above, 22 samples contained columbium in amounts ranging from 0.005 to 0.008 percent \(\text{Cb}_2\text{O}_5 \). All of these samples are listed in Table 1 on page 20 of this report.

It is noteworthy that excepting the placer sample the highest content of columbium was in the samples from alkali-syenite intrusive areas. This is in accord with previous experience which has shown columbium to be generally concentrated in the late differentiates of the magma. The only other important conclusion to be drawn from the mill product spectrographic study is a negative one. The remaining thousand odd samples which were examined and found to contain less than 0.005 percent \(\text{Cb}_2\text{O}_5 \) included products from nearly every type of valuable mineral deposit and a variety of other geological occurrences. This evidence strengthens the relationship between columbium and late magmatic differentiates and makes hydrothermal deposits appear unattractive as possible columbium sources.
Best Sources of Columbium and Tantalum

At present, columbium and tantalum are produced almost entirely from columbite-tantalite and tapiolite, with minor amounts from microlite and simpsonite, all from granitic pegmatites. The minerals, such as loparite, associated with nepheline syenites appear to have been utilized only in the U.S.S.R., where the deposits are large. These minerals have low columbium + tantalum contents and are probably not attractive sources, even if titanium is also recovered.

Some production and reserve figures on the domestic columbium-tantalum supply were obtained by the Geological Survey. The figures were assembled from data supplied by various men. All of the figures are production or reserves for granitic pegmatites in the states indicated.

The production is given in pounds of mineral produced. Records are not available, and probably not existent, to show the proportion of columbium to tantalum in the various minerals listed and there are no figures to show the amount of pegmatite material from which the minerals were obtained. In nearly all cases the columbium-tantalum minerals are produced as by-products of the mining of a pegmatite body for other valuable minerals such as mica, feldspar, and apatite. With one possible exception, it is doubtful if there is a single domestic mine which could operate for columbium-tantalum alone.

Reserve figures given in pounds of mineral are in part based on production records and estimates of volumes of pegmatite. Neither grade figures to show percentage of mineral in the pegmatite nor figures to show the ratio of columbium to tantalum have been included. As in past production, the reserves are chiefly dependent on the chance that they can be recovered as a by-product of pegmatite mining for other minerals.
Tabulation of domestic production and reserves of columbium-tantalum minerals:

Columbite—Production and reserves (U.S.)
(Jan. 1, 1945)

<table>
<thead>
<tr>
<th>State</th>
<th>Production</th>
<th>Reserves (lbs. columbite)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Period</td>
<td>Wt. lbs.</td>
</tr>
<tr>
<td>Arizona</td>
<td>1943</td>
<td>1,422</td>
</tr>
<tr>
<td>Colorado</td>
<td>1943</td>
<td>1,600</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1943</td>
<td>4,219</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1903-1908</td>
<td>66,000</td>
</tr>
<tr>
<td>South Dakota</td>
<td>1934</td>
<td>50</td>
</tr>
<tr>
<td>Virginia</td>
<td>1934</td>
<td>50</td>
</tr>
<tr>
<td>Totals</td>
<td>1943</td>
<td>73,191</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microlite—Production and reserves (U.S.)
(Jan. 1, 1946)

<table>
<thead>
<tr>
<th>State</th>
<th>Production</th>
<th>Reserves (lbs. columbite)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Period</td>
<td>Wt. lbs.</td>
</tr>
<tr>
<td>Colorado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tantalite—Production and reserves (U.S.)
(Jan. 1, 1945)

<table>
<thead>
<tr>
<th>State</th>
<th>Production</th>
<th>Period</th>
<th>St. lbs.</th>
<th>Reserves (lbs. tantalite)</th>
<th>Measured</th>
<th>Indicated</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Mexico</td>
<td>1942-1944</td>
<td>800</td>
<td>300</td>
<td></td>
<td>750</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>incomplete</td>
<td>1,381</td>
<td>30,000</td>
<td></td>
<td>60,750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>1929-1941</td>
<td>1,390</td>
<td>19,900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>1942</td>
<td>85</td>
<td>13,780</td>
<td></td>
<td>830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>3,658</td>
<td>300</td>
<td></td>
<td>64,430</td>
<td>62,330</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mixed ores—Production and reserves (U.S.)
(Jan. 1, 1945)
(columbite, tantalite, microlite, hatchatolite, samarskite, etc.)

<table>
<thead>
<tr>
<th>State</th>
<th>Production</th>
<th>Period</th>
<th>St. lbs.</th>
<th>Reserves (lbs. tantalite)</th>
<th>Measured</th>
<th>Indicated</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho</td>
<td>?</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New England</td>
<td>1930-1942</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>?</td>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1930-1942</td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,000</td>
</tr>
<tr>
<td>South Dakota</td>
<td>1943</td>
<td>830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,000</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>5,930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary—Production and reserves (U.S.)
of all columbium and tantalum minerals
(Jan. 1, 1945)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Period Produced</th>
<th>Wt. lbs.</th>
<th>Reserves (lbs. of ore mineral)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Measured</td>
</tr>
<tr>
<td>Columbite</td>
<td>1943-1944</td>
<td>73,191</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microlite</td>
<td>1943-1944</td>
<td>10,250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tantalite</td>
<td>1943-1944</td>
<td>3,956</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed ore</td>
<td>1943-1944</td>
<td>5,920</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>93,327</td>
<td>800</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suggestions for Further Investigations

Further investigation should be directed to those minerals that contain columbium and tantalum, and that are treated chemically. Such minerals as rutile and zircon, that are marketed as such, are not possible sources.

Products of tin smelters should be investigated to learn the fate of the columbium and tantalum content of cassiterite during smelting, although the Bolivian ore used at the Longhorn Smelter is presumably low in columbium and tantalum.

The fate of the columbium and tantalum content of wolframite during the recovery of tungsten should be studied.

Products of plants producing titanium dioxide from “ilmenite” sands should be studied, though it seems likely that the columbium and tantalum would probably be concentrated in the final titanium dioxide product.

However, none of the foregoing possibilities appears now to offer a good chance for supplying important quantities of columbium. No better source is evident than the granitic pegmatites, such as now supply nearly all of the columbium. Furthermore the general distribution and mode of occurrence of these rocks in the United States appears to be quite well known and their content of columbium-bearing minerals is seldom more than one pound of mineral per ton of pegmatite material. In most cases it is much less. Therefore, the prospect for finding large quantities of columbium is not good. Probably an increase of price would stimulate production from known sources but, because most columbium is a by-product anyway the effect would undoubtedly be limited unless the price increase was very great.
Table I. Best columbium values resulting from mill products spectrography
(Unpublished data of the Geological Survey).

<table>
<thead>
<tr>
<th>Name of plant or occurrence</th>
<th>Location</th>
<th>Product</th>
<th>Columbium-bearing material</th>
<th>Percent Cb₂O₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sierra Diablo Intrusive</td>
<td>Van Horn, Texas</td>
<td>none</td>
<td>Gray porphyry</td>
<td>0.2</td>
</tr>
<tr>
<td>Wind Mtn. Intrusive</td>
<td>Gomudes Peaks, N.E.</td>
<td>none</td>
<td>Altered limestone cut by dikes</td>
<td>0.2</td>
</tr>
<tr>
<td>Alaskan placer</td>
<td>Yentna dist., Alaska</td>
<td>Gold</td>
<td>Placer concentrates</td>
<td>0.2</td>
</tr>
<tr>
<td>Sierra Diablo Intrusive</td>
<td>Van Horn, Texas</td>
<td>none</td>
<td>Gray-green porphyry</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>none</td>
<td>Purplish-gray porphyry</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manganese-bearing vein</td>
<td>0.05</td>
</tr>
<tr>
<td>Vitro Mfg. Co.</td>
<td>Cannonsburg, Pa.</td>
<td>Radium</td>
<td>Radioactive sludge</td>
<td>0.02</td>
</tr>
<tr>
<td>Alaskan placer</td>
<td>Yentna dist., Alaska</td>
<td>Sand</td>
<td>Placer concentrates</td>
<td>0.01</td>
</tr>
<tr>
<td>Leyden Coal Mine</td>
<td>Golden, Colo.</td>
<td>Coal</td>
<td>Quartz-carbonate veins</td>
<td>0.01</td>
</tr>
<tr>
<td>Lincoln mine (mill)</td>
<td>Hiko, Nev.</td>
<td>Tungsten</td>
<td>Composite conc. (scheelite)</td>
<td>0.01</td>
</tr>
<tr>
<td>Reynolds Metals Co.</td>
<td>Listerhill, Ala.</td>
<td>Aluminum</td>
<td>Slimes from filter</td>
<td>0.01</td>
</tr>
<tr>
<td>Hess Mineral Co.</td>
<td>Vero Beach, Fla.</td>
<td>Titanium</td>
<td>Rutile concentrates</td>
<td>0.01</td>
</tr>
<tr>
<td>Titanium Alloy Co.</td>
<td>Malvern, Ark.</td>
<td>Titanium</td>
<td>Rutile concentrates</td>
<td>0.01</td>
</tr>
<tr>
<td>Leyden Coal Mine</td>
<td>Golden, Colo.</td>
<td>Coal</td>
<td>Silicoxydous coal</td>
<td>0.008</td>
</tr>
<tr>
<td>Hess Mineral Co.</td>
<td>Melbourne, Fla.</td>
<td>Titanium</td>
<td>Tails, magnetic separation</td>
<td>0.008</td>
</tr>
<tr>
<td>Vitro Mfg. Co.</td>
<td>Cannonsburg, Pa</td>
<td>PbS sludge (African ore)</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Amer. Cyanamid Co.</td>
<td>Lakeland, Fla.</td>
<td>Phosphate</td>
<td>Pebble concentrates</td>
<td>0.007</td>
</tr>
</tbody>
</table>
Table I (continued)

<table>
<thead>
<tr>
<th>Name of plant or occurrence</th>
<th>Location</th>
<th>Product</th>
<th>Columbium-bearing material</th>
<th>Percent Cb₂O₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacksonville Beach</td>
<td>Jacksonville, Fla.</td>
<td>none</td>
<td>Rutile, from black sand</td>
<td>0.007</td>
</tr>
<tr>
<td>Leyden Coal Mine</td>
<td>Golden, Colo.</td>
<td>Coal</td>
<td>Grab sample from dump</td>
<td>0.007</td>
</tr>
<tr>
<td>Amer. Cyanamid Co.</td>
<td>Swamp Poodle, Ark.</td>
<td>Aluminum</td>
<td>Iron tails</td>
<td>0.008</td>
</tr>
<tr>
<td>Reynolds Metals Co.</td>
<td>Listerhill, Ala.</td>
<td></td>
<td>Sand from thickener</td>
<td>0.006</td>
</tr>
<tr>
<td>Alaskan placer</td>
<td>Yentna dist., Alaska</td>
<td>Gold</td>
<td>Placer concentrates</td>
<td>0.005</td>
</tr>
<tr>
<td>Dulin Bauxite</td>
<td>Sweet Home, Ark.</td>
<td>Aluminum</td>
<td>Iron tails</td>
<td>0.005</td>
</tr>
<tr>
<td>Jacksonville Beach</td>
<td>Jacksonville, Fla.</td>
<td>none</td>
<td>Ilmenite</td>
<td>0.006</td>
</tr>
<tr>
<td>Lincoln mine (mill)</td>
<td>Hiko, Nev.</td>
<td>Tungsten</td>
<td>Sulfide flotation tails</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Annotated Bibliography of Occurrences of Columbium and Tantalum

Descriptions of individual deposits are not included.

Note: The original papers were seen except those for which reference to an abstract journal is given.

 A brief review of methods of extraction from ores is included.

2. Bohnstedt, E. M. Sphene from the Khibine tundrae.
 (in English 77-78) (1936).
 Eight analyses of sphene from nepheline syenites of the Kola Peninsula,
 U.S.S.R., show CeO₂₅ contents up to 2 percent.

3. Borovick, S. A. and Gotman, J. D. Content of rare and other elements in
 cassiterites of different genesis from U.S.S.R. deposits according to
 spectrum analysis data.
 Qualitative spectrographic study of 27 cassiterites showed strong tests
 for columbium in pegmatite vein samples, moderate to none in samples from sul-
 fide-cassiterite veins.

 Gazz. chim. Ital. 54, 59-64 (1924); mineralog. Abstracts 3, 106 (1926).
 Analysis of scheelite from Traversella, Piedmont, gave CeO₂₅ 0.08, Ta₂O₅
 0.02%, but these results have been questioned, see (22).

 The average content of igneous rocks is estimated, from scanty data, to be
 0.0003% Ce-Ta. Earlier, widely diverging, estimates are summarized.

 Sons (1944).

7. Edwards, A. E. A note on some tantalum-columbium minerals from Western
 Australia.
 This includes optical and chemical study that indicates some solid solution
of tantalum and columbium in cassiterite.

A description of pneumatolytic deposits in the Kola Peninsula, U.S.S.R. The deposits are stated to contain the largest reserves in the world in total columbium content.

A description of the loparite deposits.

A summary of data on Russian deposits, including the loparite deposits, syenite pegmatites containing ilmenorutile and ilmenite, and columbite-tantalite deposits.

A general account. The average content of columbium in the earth's crust is stated to be 0.0015%, from unpublished work. The following data on the Cb_2O_5 content of rocks are also from unpublished work: gabbro 0.001%, diorite, 0.003%, granite 0.005%, and nepheline syenite 0.02%.

The estimates by von Hevesy (15) of the columbium and tantalum contents of the igneous rocks are considered to be too low. Unpublished work gives approximately 0.002% columbium for eruptive rocks and for clay-sand sediments. No data were obtained for tantalum, but if von Hevesy's $\text{Cb}:\text{Ta}$ ratio is accepted, the content of tantalum would be 0.0015%. In many rocks, the columbium content varies with the zirconium content.
From a discussion of the data in the literature, it is concluded that the amounts of columbium and tantalum in the earth's crust are approximately equal, and are related most closely to the titanium content.

Analyses were made by chemical concentration followed by x-ray spectroscopic determination of 6 rutiles (0.22 to 3.1% $\text{Cb}_2\text{O}_5+\text{Ta}_2\text{O}_5$), 10 sphene (1.37 to less than 0.006% $\text{Cb}_2\text{O}_5+\text{Ta}_2\text{O}_5$), 1 brockite (0.23% $\text{Cb}_2\text{O}_5+\text{Ta}_2\text{O}_5$), perovskite (0.095% $\text{Cb}_2\text{O}_5+\text{Ta}_2\text{O}_5$), 3 ilmenites (0.006 to 0.001% $\text{Cb}_2\text{O}_5+\text{Ta}_2\text{O}_5$) and two "black sands" (0.18 and 0.02% $\text{Cb}_2\text{O}_5+\text{Ta}_2\text{O}_5$).

A "synthetic" eruptive rock was made by mixing 133 granites, 9 quartz-diorites, 35 diorites, 82 gabbros and norites, and 23 ultrabasic rocks. Analysis by chemical concentration followed by x-ray spectroscopic determination gave $3.2 \times 10^{-5} \text{Cb}$, $2.4 \times 10^{-5} \text{Ta}$. Biotite from Hittero", Norway, contained $6 \times 10^{-5} \text{Cb}+\text{Ta}$; phlogopite from Baale, Norway, contained $3.2 \times 10^{-5} \% \text{Cb}+\text{Ta}$.

Analyses of 9 wolframites from New South Wales showed that 6 contained $\text{Cb}_2\text{O}_5+\text{Ta}_2\text{O}_5$, the contents being 0.26 to 1.95%. It is suggested that most earlier analysts missed the presence of columbium and tantalum.

Qualitative spectrographic study showed columbium to be present in 5 pegmatitic cassiterites, present in traces in 2 hydrothermal cassiterites.
A review of occurrences of columbium and tantalum minerals.

19. Meller, J. V. A comprehensive treatise on inorganic and theoretical chemistry. Vol. IX. Pages 837 to 925 deal with columbium and tantalum.

The deposits are described. They contain rutile (ilmeno-rutile) with 6-17% \(\text{Ce}_2\text{O}_3 \), 1-3% \(\text{Ta}_2\text{O}_5 \), and ilmenite with 0.5-1.3% \(\text{Ce}_2\text{O}_3 \) and 0.1% \(\text{Ta}_2\text{O}_5 \).

The occurrences of columbium and tantalum are discussed, with the general conclusions that they are most closely related to titanium in occurrence, and that the greatest concentrations occur in pegmatite veins of aenitic and maskeitic natures.

Chiefly analytical chemistry. The determination of 0.1% \(\text{Ce}_2\text{O}_3+\text{Ta}_2\text{O}_5 \) in scheelite by Carobbi (4) is doubted, because he used an unreliable method of analysis.

23. Stevens, R. H. New analyses of lepidolite and their interpretation. Am. Mineral. 23, 607-628 (1938). Two analyses of polyliothonite showed 0.14 and 1.82% \(\text{Ce}_2\text{O}_3 \).

Quantitative spectrographic study of many samples. No details are given, but it is stated that as far as evidence is available, the columbium content
Parallels the zirconium content. A rough approximation is Zr: Cb = 10:1, which gives 0.001% Cb₂O₅ for the average content.

26. Yurk, Y. Y. and Breser, V. N. Geochemistry of rare elements in the granitic pegmatites of the western Azov seacoast region.

The ilmenite sands of the Azov seacoast contain 0.25% Cb₂O₅ and traces of Ta₂O₅.

Recovery and utilization are discussed.

Ilmenite from syenite pegmatite contained up to 0.4% Cb₂O₅-Ta₂O₅.