June 20, 1956

Mr. Robert D. Nininger
Assistant Director for Exploration
Division of Raw Materials
U. S. Atomic Energy Commission
Washington 25, D. C.

Dear Bob:

Transmitted herewith are three copies of TEI-306, "Reconnaissance for radioactivity in the metal-mining districts of the San Juan Mountains, Colorado," by C. T. Pierson, W. F. Weeks, and F. J. Kleinhampf, April 1956.

We are asking Mr. Hosted to approve our plan to publish Part I of this report as a Geological Survey bulletin.

Sincerely yours,

W. H. Bradley
Chief Geologist
RECONNAISSANCE FOR RADIOACTIVITY IN THE METAL-MINING DISTRICTS
OF THE SAN JUAN MOUNTAINS, COLORADO*

By

C. T. Pierson, W. F. Weeks, and F. J. Kleinhampl

April 1956

Trace Elements Investigations Report 306

This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or quotation.

*This report concerns work done on behalf of the Division of Raw Materials of the U. S. Atomic Energy Commission.

When separated from Part II, handle Part I as UNCLASSIFIED.
Distribution (Series A) and No. of copies

<table>
<thead>
<tr>
<th>Location</th>
<th>No. of copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Energy Commission, Washington</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Albuquerque</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Austin</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Butte</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Casper</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Denver</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Ishpeming</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Phoenix</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Rapid City</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, St. George</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Salt Lake City</td>
<td>1</td>
</tr>
<tr>
<td>Division of Raw Materials, Washington</td>
<td>3</td>
</tr>
<tr>
<td>Exploration Division, Grand Junction Operations Office</td>
<td>6</td>
</tr>
<tr>
<td>Grand Junction Operations Office</td>
<td>1</td>
</tr>
<tr>
<td>Technical Information Extension, Oak Ridge</td>
<td>6</td>
</tr>
<tr>
<td>U. S. Geological Survey:</td>
<td></td>
</tr>
<tr>
<td>Fuels Branch, Washington</td>
<td>1</td>
</tr>
<tr>
<td>Geochemistry and Petrology Branch, Washington</td>
<td>1</td>
</tr>
<tr>
<td>Geophysics Branch, Washington</td>
<td>1</td>
</tr>
<tr>
<td>Mineral Deposits Branch, Washington</td>
<td>3</td>
</tr>
<tr>
<td>P. C. Bateman, Menlo Park</td>
<td>1</td>
</tr>
<tr>
<td>A. L. Brokaw, Grand Junction</td>
<td>2</td>
</tr>
<tr>
<td>N. M. Denson, Denver</td>
<td>1</td>
</tr>
<tr>
<td>V. L. Freeman, College</td>
<td>1</td>
</tr>
<tr>
<td>R. L. Griggs, Albuquerque</td>
<td>1</td>
</tr>
<tr>
<td>M. R. Klepper, Spokane</td>
<td>1</td>
</tr>
<tr>
<td>A. H. Koschmann, Denver</td>
<td>2</td>
</tr>
<tr>
<td>J. D. Love, Laramie</td>
<td>1</td>
</tr>
<tr>
<td>L. R. Page, Washington</td>
<td>1</td>
</tr>
<tr>
<td>Q. D. Singewald, Beltsville</td>
<td>1</td>
</tr>
<tr>
<td>A. E. Weissenborn, Spokane</td>
<td>1</td>
</tr>
<tr>
<td>TEPCO, Denver</td>
<td>2</td>
</tr>
<tr>
<td>TEPCO, RPS, Washington, (including master)</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>
CONTENTS

Abstract ... 5
Introduction ... 6
General geology 8
Method of testing for radioactivity 9
Results of reconnaissance 11
General statement 11
Areas of anomalous radioactivity 12
- Cochetopa area 12
- Cebolla district 13
- Upper Uncompahgre district 13
 - General geology 13
 - Results of reconnaissance 16
 - Radioactive localitics 16
- Red Mountain district 21
 - Introductory statement and general geology 21
 - Uranium occurrences 21
- Bonanza district 25
 - General geology and ore deposits 25
 - Uranium occurrences 27
- Other districts 29
 - Lower Uncompahgre (Ouray or Paquin) district .. 29
 - Telluride district 30
 - Sneffels district 30
 - Mount Wilson district 30
 - Rico district 32
 - La Plata district 33
 - Engineer Mountain district 33
 - Burrows Park (Whitecross) district 34
 - Carson Camp district 34
 - Creede district 35
Areas of no anomalous radioactivity 36
- Silverton area 36
- Summitville-Platoro area 36
- Lake City area 37
- Other districts 38
 - Dunton district 38
 - Ophir district 38
 - Needle Mountains area 38
 - Spar City district 38
 - Wanamaker Creek district 39
 - Embargo and Summer Coon districts 39
 - Beidell district 39
Conclusions ... 40
Literature cited 41
Unpublished reports 43
ILLUSTRATIONS

Figure 1. Index map of Colorado showing location of the San Juan Mountains 7

2. Generalized geologic map showing principal structural areas in the San Juan Mountains region, Colorado In envelope

3. Generalized geologic map showing locations of radioactivity tests, Upper Uncompahgre mining district, Ouray County, Colo. 14

4. Map showing mines tested for radioactivity, Red Mountain mining district and vicinity, Ouray and San Juan Counties, Colo. 23

5. Map showing mines tested for radioactivity, Bonanza mining district, Saguache County, Colo. 26

TABLES

Table 1. Localities in the Upper Uncompahgre mining district having maximum radioactivity equal to or greater than 3.0 times maximum background 17

2. Mines or mine dumps in the Red Mountain mining district having maximum radioactivity equal to or greater than 2.1 times maximum background 22

3. Mines or mine dumps in the Bonanza mining district having maximum radioactivity equal to or greater than 2.1 times maximum background 28

4. Mines or mine dumps in the Telluride, Mount Wilson, Rico, La Plata, Engineer Mountain, Burrows Park (Whitecross), Carson Camp, and Creede districts having maximum radioactivity equal to or greater than 2.1 times maximum background 31
RECONNAISSANCE FOR RADIOACTIVITY IN THE METAL-MINING DISTRICTS
OF THE SAN JUAN MOUNTAINS, COLORADO

By C. T. Pierson, W. F. Weeks, and F. J. Kleinhampel

ABSTRACT

Thirty-four metal-mining districts in the San Juan Mountains, Colorado, were checked during 1951-53 in a reconnaissance for radioactive materials. No commercial uranium deposit was found during the reconnaissance, but one deposit has since been discovered and developed in the Cochetopa area by private interests. Except for the Cochetopa deposit, all of the known occurrences of uranium minerals are small or of low grade. Additional prospecting, however, might result in the discovery of small deposits of uranium, or of ores of other metals that contain sufficient uranium to be produced as a byproduct.

Samples collected from the Bonanza, Upper Uncompahgre, La Plata, and Red Mountain districts contain 2.71, 0.53, 0.40 and 0.35 percent uranium respectively, and samples from the Telluride, Lower Uncompahgre, Rico, Engineer Mountain, Burrows Park (Whitecross), Carson Camp, and Creede districts contain smaller though significant amounts of uranium. Radioactivity caused by thorium is known in the Cebolla-Powderhorn district, and in the Burrows Park (Whitecross) district. Radon was largely responsible for the radioactivity measured in the Mount Wilson district.

In the Bonanza district, pitchblende was found on the dump of the caved Whale adit where it is associated with pyrite, galena, chalcopyrite, tetrahedrite, and enargite as fracture coatings in silicified andesite.
of Tertiary age. In the Upper Uncompahgre district, pitchblende was found in the Michael Breen mine in a narrow vein in the San Juan tuff of Tertiary age, and near Bear Creek Falls south of Ouray in a shear zone in slate of the Precambrian Uncompahgre formation. In the La Plata district, small amounts of uranium are contained in limonite in altered Tertiary diorite from a surface trench on the Tomahawk vein. In the Red Mountain district, pitchblende occurs in the pyritic, silver-bearing, galena-sphalerite-chalcopyrite-enargite ores from several chimney and vein deposits of Tertiary age. In the Telluride district, a uranium-bearing hydrocarbon is found in pyritic, silicious galena-sphalerite ore from the footwall of the Montana vein in the San Juan tuff of Tertiary age. The small amounts of uranium in the other districts occur with base-metal sulfide ores from several geologic environments.

INTRODUCTION

A reconnaissance for radioactive minerals in the San Juan Mountains, Colo. (fig. 1), was started in the western part by W. S. Burbank and C. T. Pierson in 1951, and continued in 1952 by Pierson, W. F. Weeks, and F. J. Kleinhaml, and in 1953 by Pierson and J. W. Hawley. During 1953 a week was spent by Pierson and T. H. W. Loomis of the U. S. Atomic Energy Commission in the western part of the mountains in reconnaissance and in examination of a pitchblende occurrence found by Loomis. The work on which this paper is based was done by the Geological Survey on behalf of the Division of Raw Materials of the U. S. Atomic Energy Commission.
Figure 1.—Index map of Colorado showing location of the San Juan Mountains.
Thanks are due Mr. V. Robinson of Ouray who accompanied us on some of the underground work, and to the numerous mine owners and operators, who gave assistance during studies of various mines in the region, as well as access to maps and other data. Theodore Botinelly of the Geological Survey provided much data during the microscopic study of the radioactive material.

GENERAL GEOLOGY

The following summary of the general geology and ore deposits of the San Juan Mountains has been taken from published reports by Burbank and others (1947, p. 396-446) and Cross and Larsen (1935). References for the more detailed descriptions of mining districts will be given later in this report in the individual sections. Figure 2, reproduced with some modifications from Burbank and others (1947, pl. 27), shows the general geology of the San Juan Mountains; the mining districts or areas examined are shown by numbered rectangles.

The rocks exposed in the area range in age from Precambrian to Recent and consist of the following rock types and units, not all of which are differentiated on figure 2. Precambrian rocks consisting of schist, gneiss, granite, quartzite, conglomerate, and slate are exposed in the deep valley of the Uncompahgre River south of Ouray, along the Lake Fork of the Gunnison River southwest of Lake City, in the Needle Mountains in the southwest part of the San Juan Mountains, and near the Gunnison River and in the Sangre de Cristo Mountains on the north and northeastern flanks of the San Juan Mountains. Paleozoic and Mesozoic
sedimentary rocks are exposed only on the flanks of the mountains and in the deeper canyons; they underlie the volcanic rocks locally along the margins of the mountains but have been largely removed from beneath the volcanics in the central part of the mountains. Tertiary volcanic rocks, consisting for the most part of bedded lavas, tuffs, and breccias, underlie most of the higher parts of San Juan Mountains. The volcanic rocks have been divided into the following main units, listed in order of decreasing age: the San Juan tuff of Miocene(?) age, the Silverton series of Miocene age, the Beidell latite-andesite and the Tracy Creek andesite of Miocene(?) age, the Potosi series also of Miocene age, the Fisher quartz latite of Miocene(?) age, and the Hinsdale formation of Pliocene(?) age. Early and late Tertiary intrusive rocks, not differentiated in figure 2, consist of dikes, sills, stocks, and volcanic pipes. Only the larger areas of undifferentiated Tertiary and Quaternary sedimentary rocks and alluvium are shown.

The generalized structures shown by figure 2 consist of high- and low-angle faults and monoclinal folds. Areas of cauldron subsidence, near the towns of Silverton and Lake City are outlined by the concentric fault patterns shown on the map. Other structures important in understanding the known uranium occurrences will be described in the sections on individual districts.

METHODS OF TESTING FOR RADIOACTIVITY

A scintillation counter was used in most of the districts to locate areas of abnormal radioactivity; individual radioactivity readings were taken mainly with portable survey meters equipped with 6-inch beta-gamma
probes, though some readings were made with a scintillation counter. The readings taken at anomalously radioactive localities were measured in milliroentgens per hour (mr/hr) and are recorded in tables 1, 2, 3, and 4.

For most anomalously radioactive localities, both the maximum reading obtained on the most radioactive rock found and the range of background readings at that locality are listed in the tables. The maximum readings were obtained by repeated tests during which the probe was held directly against the rock being tested. All maximum readings were made on rocks of hand-specimen size unless the tables indicate that a spot reading was taken with the probe held directly against rock exposure. The background readings were obtained by holding the probe at waist height for about 1 minute and recording the range of readings.

A locality is considered to be anomalously radioactive if the ratio of the maximum radioactivity reading to the maximum background reading is equal to or greater than an arbitrary figure. The figure used was 2.1 for all districts except the Upper Uncompahgre district, where a figure of 3.0 was chosen. This exception was made because most of the radioactivity readings taken in the Upper Uncompahgre district were spot readings, which ordinarily are higher than readings made on hand specimens from corresponding outcrops. The radioactivity readings taken in the other districts were made for the most part on samples of hand-specimen size.
RESULTS OF RECONNAISSANCE

General statement

Twenty-eight areas embracing approximately 34 mining districts in the San Juan Mountains (fig. 2) have been tested for radioactivity. A few of the smaller mining districts, the vanadium-uranium deposits in Mesozoic sedimentary rocks on the west and southwest borders of the mountains (Fisher, Haff, and Rominger, 1947; Bush and Bryner, 1953), and the uranium-bearing hydrocarbon deposits in the Placerville area west of Telluride (Wilmarth and Vickers, 1953) were not examined. Results of work in areas 1 through 7 (fig. 2) have been published (Burbank and Pierson, 1953) but are briefly summarized here to present a complete picture and to include additional data for areas 1, 3, 5, and 6.

Anomalous radioactivity was found in the Cochetopa, Cebolla, Upper Uncompahgre, Lower Uncompahgre, Red Mountain, Telluride, Sneffels, Mount Wilson, Rico, La Plata, Engineer Mountain, Burrows Park (Whitecross), Carson Camp, Creede, and Bonanza districts. Uranium is the chief cause of the radioactivity, thorium is important only in the Cebolla and Burrows Park (Whitecross) districts; and radon was largely responsible for the radioactivity measured in the Mount Wilson district. No anomalous radioactivity was found in the Silverton, Ophir, Eureka, Animas Forks, Mineral Point, Galena, Lake, Spar City, Embargo, Beidell, Summitville, Platoro, or in several other smaller districts.

The amounts of uranium listed in the tables range from 0.001 to 2.71 percent, but none of these occurrences can be classed as commercial at present either because of low grade or small size, or because of lack of information where the sample came from a mine dump and the source is inaccessible or not known.
Pitchblende is the main uranium mineral in the Upper Uncompahgre, Red Mountain, and Bonanza districts and probably contains the uranium in most of the other districts where the radioactive material has not been identified because of fine grain sizes and small amounts.

Areas of anomalous radioactivity

Cochetopa area

The results of a brief reconnaissance in the Cochetopa area (fig. 2, area 1) in 1951 by Burbank have been published (Burbank and Pierson, 1953). Only one minor occurrence of radioactive jaspery vein matter was found near the southern limit of the Precambrian exposures along Cochetopa Creek. Since the time of the 1951 reconnaissance, however, the Thornberg Mining Company of Grand Junction, Colo., has developed a commercial uranium deposit on the Los Ochos claims in the Cochetopa area about 12 miles south of U. S. Highway 50 connecting Gunnison and Salida, Colo.

The geology of the Los Ochos deposit has been described by Stafford and Derzay (1955) who found that the vein follows a major east-trending fault that cuts steeply across Precambrian granite, schist, and gneiss, as well as sedimentary rocks of the Morrison formation of Jurassic age. The ore consists of sooty uraninite and secondary uranium minerals which are localized where the main fault is intersected by northeast-trending cross fractures. The Precambrian rock is the most favorable host rock for the ore.
The thorium-bearing quartz-carbonate-pyrite-sphalerite-galena veins in the Precambrian rocks of the Cebolla district (fig. 2, area 2) were studied briefly in 1951 by Burbank (Burbank and Pierson, 1953). Although local samples containing as much as 0.28 percent thorium were obtained, none of the veins studied seemed to be of economic value. Olson and Wallace (1954) later made a detailed study of the thorium and rare-earth minerals in the Powderhorn district south of the Cebolla district. Thorium-bearing veins and mineralized shear zones are found in or near alkalic igneous rocks. Although selected samples of high-grade material contain as much as 4 percent ThO\textsubscript{2}, the ThO\textsubscript{2} content of the veins is generally less than 1 percent and is only 0.05 to 0.1 percent in many of the veins. The age of the thorium deposits is not known more closely than pre-Jurassic.

Upper Uncompahgre district

General geology.—The generalized geology of the Upper Uncompahgre district (fig. 2, area 3), which lies south of the town of Ouray, is shown in figure 3. The geology shown on figure 3 and summarized below has been taken from published reports by Cross and Howe (1907), Burbank (1940), and Kelley (1946). The rocks exposed in the area, which includes most of the Upper Uncompahgre district, comprise: 1) steeply dipping quartzites and slates of the Precambrian Uncompahgre formation; 2) moderately dipping limestones, shales, and sandstones of Paleozoic age; and 3) nearly horizontal Telluride conglomerate and San Juan tuff of
Figure 3.—GENERALIZED GEOLOGIC MAP SHOWING LOCATIONS OF RADIOACTIVITY TEST, UPPER UNCOMPAHRE MINING DISTRICT, OURAY COUNTY, COLO.
Tertiary age. Quaternary deposits, and pre-Tertiary and Tertiary dike rocks are not shown. The Uncompahgre formation and the San Juan tuff are of interest to this report because they are the host rocks of pitchblende-bearing veins.

The Uncompahgre formation consists of interbedded slate and quartzite units, ranging in thickness from 20 feet to several thousand feet, and aggregating about 9,000 feet in exposed thickness. Neither the top nor the bottom of the formation is exposed; in the northern part of the district the Ouray fault has thrown the Uncompahgre formation against the Paleozoic formations, and in the southern part of the district the Uncompahgre formation passes beneath the San Juan tuff. The Uncompahgre formation has been folded into a broad anticline trending N. 65° W., with the crest near the Dunmore vein. The most common values of dips on the limbs lie between 55° and 70°.

The Paleozoic formations, not differentiated on figure 3, consist of the Elbert formation and the Ouray limestone of Late Devonian age, the Leadville limestone of Mississippian age, and the Molas and Hermosa formations of Pennsylvanian age.

The Telluride conglomerate of Oligocene(?) age is chiefly a coarse conglomerate containing pebbles and boulders of granite, schist, quartzite, porphyritic igneous rocks, and Paleozoic and Mesozoic sedimentary rocks. The overlying San Juan tuff of Miocene(?) age, a bedded, 1,800 to 3,000-foot thick, gray to purplish-gray tuff breccia and conglomerate composed of coarse, angular andesitic and latitic fragments in a tuffaceous matrix, forms the higher parts of the steep-walled Uncompahgre River gorge and comprises an important part of the bedrock of the Upper Uncompahgre district.
The ore deposits of the district occur in the Uncompahgre forma-
tion, the Paleozoic formations, and the San Juan tuff. The most impor-
tant deposits in the Uncompahgre formation and in the San Juan tuff are
fissure veins, which consist mainly of quartz with pyrite, sphalerite,
galena, chalcopyrite, native gold, argentiferous tetrahedrite, rhodo-
chrosite, and barite. A few veins have ore shoots with tungsten, usually
huebnerite, and a few others contain sulfobismuthites of lead and silver,
such as the mineral alaskaite. The ore deposits in the Paleozoic rocks
are found mainly in the Mineral Farm area (fig. 3) as silver-lead re-
placement deposits in the upper part of the Leadville limestone.

Results of reconnaissance.—Rocks were tested for radioactivity
along about 16 miles of linear-traverse and one-fourth square mile of
area-traverse of the slate and quartzite bands of the Uncompahgre
formation, and about 5 miles of linear-traverse along the Ouray fault.
Several mines in the Precambrian, Paleozoic, and Tertiary formations,
and approximately one-fifth square mile of area-traverse of the Paleozoic
formations in the vicinity of the Ouray hot spring deposit (fig. 3, loc. 1)
were tested.

Although no uranium deposit of commercial size or grade was found
in the district, anomalous radioactivity occurs at the hot spring
deposit (fig. 3, loc. 1) near Ouray, at Bear Creek Falls (fig. 3, locs.
2 and 3), and at the Michael Breen mine (fig. 3, locs. 4 and 5). Table
1 gives data for samples from the anomalously radioactive localities.

Radioactive localities.—The radioactivity in calcareous tufa
the Ouray hot spring (Burbank and Pierson, 1953), which has been mined
for manganese and tungsten, is caused mainly by radium and other daughter
Table 1. Localities in the Upper Uncompahgre mining district having maximum radioactivity equal to or greater than 3.0 times maximum background 1/.

<table>
<thead>
<tr>
<th>Map number</th>
<th>Field number</th>
<th>Radioactivity (mr/hr)</th>
<th>Background (mr/hr)</th>
<th>Equivalent uranium (percent)</th>
<th>Chemical uranium (percent)</th>
<th>Sample description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/ K-43-1</td>
<td>1.0</td>
<td>0.05</td>
<td>0.11</td>
<td>0.001/</td>
<td>Manganese-stained tufa and manganese ore from Ouray hot spring deposit.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>52-F-20</td>
<td>0.70</td>
<td>0.02-0.06</td>
<td>0.15</td>
<td>0.099/</td>
<td>Chip sample of highly radioactive slate from the shear zone near Bear Creek Falls; spot reading 1.30 mr/hr.</td>
</tr>
<tr>
<td>3</td>
<td>52-F-6</td>
<td>0.35</td>
<td>0.04-0.07</td>
<td>0.029</td>
<td>0.019</td>
<td>2-foot channel sample across a quartz-pyrite-sphalerite-galena-rhodochrosite vein; from the north the face of an 18-foot drift 140 feet from portal of adit.</td>
</tr>
<tr>
<td>4</td>
<td>53-F-22</td>
<td>20/</td>
<td>0.02-0.04</td>
<td>69.53</td>
<td>Handpicked, botryoidal, arborescent pitchblende (identified by X-ray analysis) intermixed with about 15 percent megascopically visible galena, native bismuth, calcite, and quartz; from fracture filling in San Juan tuff, No. 9 level drift, Michael Breen mine, approximately 245 feet east of main haulage crosscut.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>53-F-28</td>
<td>0.40</td>
<td>0.01-0.03</td>
<td>0.16</td>
<td>0.14</td>
<td>Malachite-stained chalcopyrite-tetrahedrite(?)-quartz-barite vein material from outcrop above portal of Michael Breen mine.</td>
</tr>
</tbody>
</table>

More than 10

Mn
Ba,Ca,Fe,Si,Sr,W
Al,As,Mg,Na
Be,Cu,Mn,Mo,Sb,Ti,U,V,Zn
Co,Pb,Zr
Cr

More than 10

Fe,Sn
Al,Mg
Mn,Ti
Ca,Si
Be,Cu,Mo,Sb,Sn,Ag
Ga,Co,Ge,La,Ni,Sc,V,Y

More than 10

Si
Al,Fe
Ca,Mg,Mn,Pb,Ti,Zn
Ba,Ca,La
Ag,Co,Ge,La,Ni,Sc,V,Y
Bi,Ca,Ge

More than 10

U
Ba,Ca,Fb
Cu,K,Mn,Pb,Sc,Sn
Y
Ba,Sr
Ag,Co,Ge,La,Ni,Sc,V,Y

More than 10

Si
Al,Ba,Fe
Ca,K,Pb,Mn,Sn,Sc,Si
Ag,Mg,Ni,Sn,Ti
Ga,Mn,Mo,Na,Sc,Sr
Co,Cr,Fe

Trace
Bi,Na,Sc

(Greater than 1 percent Bi)

(Usual sensitivities not attained because of high percentage of uranium.)

2/ All readings made on samples of hand-specimen size.

4/ Disequilibrium caused by excess daughter products of uranium; no Th232 detected.
products of uranium. The deposit, located just north of the Ouray fault, rests on Paleozoic rocks and is overlain by glacial gravels of Pleistocene age. Most of the deposit was tested for radioactivity. A sample of tufa from the deposit contains 0.11 percent equivalent uranium, but only 0.001 percent uranium. Spectrographic analysis shows relatively high manganese, silicon, iron, calcium, barium, strontium, and tungsten.

Small amounts of uranium ranging from 0.003 to 0.099 percent are found in the Precambrian rocks at Bear Creek Falls in the wall rock of a quartz-pyrite-sphalerite-galena-rhodochrosite vein in quartzite (fig. 3, loc. 3) and in a shear zone in slate (fig. 3, loc. 2). The uranium-bearing vein is the easternmost of the two veins shown on figure 3; no anomalous radioactivity was found along the other vein. The radioactivity of the easternmost vein is confined mainly to the pyritized quartzite of the footwall at the north face of an 18-foot drift 140 feet from the portal of the northernmost adit; however, moderate radioactivity was noted at several places along the outcrop of the vein approximately 50 feet above the adit level. A 2-foot channel sample containing 0.029 percent equivalent uranium and 0.019 percent uranium was taken from the north face of the drift; the sample included 8 inches of pyritized quartzite from the footwall, 4 inches of vein material, and 12 inches of quartzite from the hanging wall.

The uranium-bearing shear zone crops out near Bear Creek Falls (fig. 3, loc. 2). The shear zone is exposed over a length of about 70 feet, but the total length is at least 125 feet and may be as much as 500 feet. The width of the zone ranges from 5 to 15 feet.
Although chip samples of radioactive slate from the zone contain as much as 0.099 percent uranium, the percentages of uranium in 4 channel samples and 1 chip-channel sample across the strike of the zone are generally lower and range from 0.003 to 0.014.

The uranium mineral or minerals in the radioactive samples from the Bear Creek Falls area have not been identified. Attempts to concentrate the uranium minerals sufficiently for X-ray or other studies have not been successful, probably because the initial amounts and grain sizes of the uranium minerals have been too small. Examination of the most radioactive specimens of slate under ultra-violet light indicates that a mineral fluorescing yellow green, probably a secondary uranium mineral, is present on some of the radioactive surfaces. Some radioactive surfaces, however, do not contain any fluorescent mineral, and the uranium mineral may be pitchblende in these cases.

Sample 2 (table 1) was analyzed for Th232 and for radium and other daughter products of uranium. No Th232 was detected, and the analyses show that the difference between total radioactivity and uranium content is caused by radium and other daughter products of uranium. Leaching of uranium by supergene processes is the probable cause of this disequilibrium.

Pitchblende in veins cutting San Juan tuff was discovered at the Michael Breen mine by T. H. W. Loomis and W. A. Hammond of the Atomic Energy Commission in 1953, and was studied by Loomis, Pierson, and Hammond, in 1953 (Loomis, Pierson, and Hammond, 1953). Two radioactive localities were found, one on the No. 9 level of the mine (fig. 3, loc. 4), and the other at a hillside outcrop above the mine (fig. 3, loc. 5). At the
underground locality, pitchblende is found in a narrow vein which strikes N. 15° to 20° W., and dips 85° SW. The pitchblende-bearing vein is offset about 4 feet where it crosses the main, east-trending Michael Breen vein.

The pitchblende of locality 4 (fig. 3) is found as a one-half- to three-fourths-inch wide seam in a 2- to 3-inch wide quartz-chalcopyrite-pyrite vein. The wall rock, in contrast to its usual dark-gray color, is pink or cream for widths up to half an inch on either side of the vein. The pitchblende occurs both in arborescent and botryoidal masses and is associated with chalcopyrite, pyrite, galena, native bismuth, hematite, malachite, and quartz. The pitchblende, at least in part, appears to be earlier than the pyrite; age relations to the other minerals are not clear.

The uranium content of a 2-inch wide chip-channel sample along approximately 2 feet of dip length of the pitchblende-bearing vein was only 0.53 percent uranium because of the spotty distribution of pitchblende which pinches out upward in less than 20 feet and appears to occur in lenses along the strike of the vein. Several channel samples 2 feet in length, taken across the fracture, by T. H. W. Loomis (1953, oral communication) each contains less than 0.02 percent uranium.

The radioactivity noted at the hillside outcrop approximately 200 feet above the No. 9 level of the Michael Breen mine (fig. 3, loc. 5) is in a narrow chalcopyrite-tetrahedrite(?)-quartz-barite vein in San Juan tuff. The vein strikes north and dips 80° E. A selected sample from the most radioactive part of the 2- to 4-inch wide vein contains 0.14
percent uranium. The radioactive part of the vein has a strike length of about 15 feet and a dip length of about 7 feet. This radioactive vein is probably distinct from the pitchblende vein of locality 4 (fig. 3) but is generally parallel to it.

Red Mountain district

Introductory statement and general geology.—In 1951, pitchblende (?) was found (Burbank and Pierson, 1953) in the Red Mountain district (fig. 2, area 5) near Red Mountain pass between Ouray and Silverton. Most mine dumps and accessible mines in the district were examined for radioactivity in 1952. The radioactivity readings and laboratory data are presented together with the previously published information (table 2, fig. 4) to give a more complete picture of the uranium occurrences. The uranium occurrences are at the northwest border of the Silverton caldera (Burbank, 1941, p. 148) and are associated with chimneylike ore bodies in volcanic breccia pipes, veins, and adjacent wall rocks. Many of the deposits have been mined extensively for rich copper-lead-silver ore, and all except one are in Silverton volcanic series of Miocene age. The exception, locality 1 (fig. 4), is in the underlying San Juan tuff-breccia of Miocene (?) age.

Uranium occurrences.—No commercial deposit of uranium was found in the Red Mountain district, but specimens from 17 mine dumps are anomalously radioactive and locally contain as much as 0.35 percent uranium. The sample containing 0.35 percent uranium is pyritic, siliceous, galena-enargite (?) ore from a 2-foot wide shear zone at the border of a
Table 2. Mines or mine dumps in the Red Mountain mining district having maximum radioactivity equal to or greater than 2.1 times maximum background.

<table>
<thead>
<tr>
<th>K-38</th>
<th>13a/</th>
<th>0.20</th>
<th>0.02-0.06</th>
<th>Lead-zinc ore from dump of Koehler tunnel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14a</td>
<td>52-P-7</td>
<td>0.50</td>
<td>0.02-0.05</td>
<td>0.058</td>
</tr>
<tr>
<td>14b</td>
<td>52-P-8</td>
<td>0.18</td>
<td>0.02-0.05</td>
<td>0.026</td>
</tr>
<tr>
<td>15</td>
<td>52-P-3</td>
<td>0.19</td>
<td>0.07-0.08</td>
<td>0.025</td>
</tr>
<tr>
<td>16</td>
<td>J-26-2</td>
<td>0.13</td>
<td>0.04-0.06</td>
<td>Cherty, limonite-stained, brecciated rock from dump of caved adit; in Corkscrew Gulch southeast of Carbonate King mine.</td>
</tr>
<tr>
<td>17</td>
<td>52-P-30</td>
<td>0.50</td>
<td>0.02-0.04</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Data all or in part from table 3, U. S. Geol. Survey Circ. 236 (Burbank and Pierson, 1953).

1/ All readings on samples of hand-specimen size unless noted that a spot reading, such as a reading taken with probe held directly against a rock exposure, was made.

3/ More than 10 Fe, Pb, Cu, Zn, As, Sb, Sn, Sr, Ag, Cd, In, Sn, Ti, Zr, Mo, Sn, Y, Al, Fe, Si, P, As, Bi, Ca, Mg, Sb, V, Zr, Co, Cr, Ga, Mn, Ni, Sc, Mo, Sn.

4/ Data all or in part from table 3, U. S. Geol. Survey Circ. 236 (Burbank and Pierson, 1953).

5/ Disequilibrium caused by excess daughter products of uranium; no Th detected.
EXPLANATION

Adit Adit dump Shaft Shaft dump

Mine workings or dump tested for radioactivity. Numbers, where shown indicate location of anomalous radioactivity referred to in Table 2.

(Maximum radioactivity equal or greater than 2.1 times background)

Mine working or dump not tested for radioactivity

Elevation above sea level in feet

Figure 1. Map showing mines tested for radioactivity, Red Mountain mining district and vicinity, Ouray and San Juan counties, Colo.
chimney deposit in the Lark mine (fig. 4, loc. 17). The length and thickness of the shear zone, which strikes N. 14° W. and dips 73° SW., are not known.

The ratios of percent uranium to percent equivalent uranium for the 16 analyzed samples from the Red Mountain district range from 0.02 (table 2, loc. 8b) to 0.97 (table 2, loc. 17); the average value is 0.49. Samples 2, 3b, 8a, 8b, 9, 11, and 14a, all of which have ratios lower than the 0.49 average, were analyzed for Th 232 and for radium and other daughter products of uranium. No Th 232 was detected, and all of the analyses show that the differences between the total radioactivity and the uranium content are caused by radium and other daughter products of uranium. As Phair and Levine (1952) have shown in their studies of the leaching of pitchblende, the most probable cause for these differences is the leaching of uranium by supergene processes.

In the Red Mountain district the radioactivity is usually associated with pyritic base-metal sulfide ore, such as at the Genessee mine (table 2, 8a, b, c) and the Carbon Lake mine (14b). In a few places, however, as at the Vanderbilt (9) and Carbon Lake (14a) mines, pyritized, silicified latite is radioactive.

Sooty pitchblende has been identified as the cause of radioactivity in some of the anomalously radioactive locations. In some of the other areas the uranium-bearing material has been concentrated somewhat in the laboratory, but none has been obtained in pure enough form to permit X-ray identification.
Bonanza district

General geology and ore deposits.—The geology and ore deposits of the Bonanza district (fig. 2, area 27), which lies in the northeastern part of the San Juan Mountains, have been described by Burbank (1932; 1947a). The following general description of the district as well as the base map for figure 5 have been taken from these reports.

Tertiary volcanic rocks cover most of the district and lie on a basement of Precambrian granite, gneiss, and schist, and Paleozoic sedimentary rocks. The volcanic rocks are chiefly andesite, rhyolite, and latite flows and breccias intruded by many dikes and irregular masses of quartz latite and rhyolite. The volcanic rocks are intensely altered locally and are silicified, pyritized, and altered to clay minerals, sericite, and carbonate minerals. Moderate doming of the crust may have accompanied the intrusive activity, subsequent collapse of the crust resulted in the formation of numerous small, tilted fault blocks. In general, movements on the faults were downward in successive steps toward the central area of subsidence.

All of the known metallic ore deposits are veins formed either along fault fissures bounding the blocks or in subsidiary tension fissures in the walls of large faults.

The ore deposits of the district are chiefly complex base metal ores containing pyrite, sphalerite, galena, chalcopyrite, bornite, enargite, tennantite, and stromeyerite in a gangue of quartz, calcite, rhodochrosite, and barite. Some ores contain a little bismuth which occurs in part as the mineral cosalite. Quartz veins of relatively high sulfide content containing lead, zinc, copper, silver, and a little
Porphyry Peak
11653
JOE WHEELER
MINE

Rawley Drainage Tunnel
COCOMONGO MINE

EXPLANATION

MINE WORKING OR DUMP
TESTED FOR RADIOACTIVITY
(MINES NOT TESTED
ARE NOT SHOWN)

2
ANOMALOUS RADIOACTIVITY
(MAXIMUM RADIOACTIVITY
EQUAL TO OR GREATER THAN
2.1 TIMES MAXIMUM BACKGROUND;
NUMBER REFERS TO DESCRIPTION
IN TABLE 3)

Figure 5.--Map showing mines tested for radioactivity,
Bonanza Mining District, Saguache County, Colo.
gold are found chiefly in the northern part of the district, whereas
quartz-rhodochrosite-fluorite veins, with only minor quantities of
sulfides valuable mainly for their silver content, are found in the
southern part of the district.

Uranium occurrences.—Approximately 60 percent of the mines or
mine dumps in the Bonanza district were tested for radioactivity. Figure
5 shows mines or groups of mines checked. The anomalously radioactive
mines are designated on figure 5 by numbers which refer to the descriptions
in table 3. All of the anomalously radioactive localities are concen-
trated in the north-central part of the district in the vicinity of
Rawley Gulch. No anomalous radioactivity was detected in the northern
or southern parts of the district.

Samples from the radioactive localities have uranium contents ranging
from 0.033 to 2.71 percent. The highest grade samples came from the dump
of the caved Whale adit (fig. 5, loc. 3), but significant amounts of
uranium were found in samples from the Old Rawley mine (fig. 5, locs. 1
and 2). Lesser though significant amounts of uranium were found in
samples from the dump of a caved adit south of the Whale mine (fig. 5,
loc. 5), and from the dump of the Rawley drainage tunnel (fig. 5, loc. 6).
A few specimens from the dump of the caved Whale shaft (fig. 5, loc. 4),
showed radioactivity of 4 times background.

The uranium in samples from the dump of the Whale adit is contained
in hard, lustrous, noncolloform pitchblende, which occurs as very small
discrete grains disseminated throughout sulfide vein material, or as
fracture coatings, vug fillings, and late-stage veinlets in limonite-
stained, siliceous vein material or silicified andesitic wall rock.
Table 3. Mines or mine dumps in the Bonanza mining district:
having maximum radioactivity equal to or greater than 2.1 times maximum background.

<table>
<thead>
<tr>
<th>Sample description</th>
<th>Radioactivity (mr/hr)</th>
<th>Back-ground (mr/hr)</th>
<th>Equivalent chemical number</th>
<th>Chemical number</th>
<th>Spectrographic analysis of sample (percent)</th>
<th>Spectrographic analysis of sample (mr/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 53-P-20</td>
<td>0.40</td>
<td>0.05-0.09</td>
<td>0.27</td>
<td>0.24</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
</tr>
<tr>
<td>2a 53-P-16</td>
<td>1.00</td>
<td>0.05-0.08</td>
<td>0.75</td>
<td>0.39</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
</tr>
<tr>
<td>2b 53-P-17</td>
<td>2.00</td>
<td>0.06-0.07</td>
<td>0.62</td>
<td>0.61</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
</tr>
<tr>
<td>3a 53-P-4</td>
<td>2.80</td>
<td>0.04-0.08</td>
<td>0.064</td>
<td>0.072</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
</tr>
<tr>
<td>3b 53-P-10</td>
<td>15.00</td>
<td>0.06-0.08</td>
<td>2.3</td>
<td>2.71</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
</tr>
<tr>
<td>3c 53-P-15</td>
<td>4.00</td>
<td>0.06-0.08</td>
<td>2.3</td>
<td>2.71</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
</tr>
<tr>
<td>3d 53-P-15</td>
<td>4.00</td>
<td>0.06-0.08</td>
<td>2.3</td>
<td>2.71</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
</tr>
<tr>
<td>4 53-P-29</td>
<td>0.50</td>
<td>0.02-0.05</td>
<td>0.22</td>
<td>0.093</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
</tr>
<tr>
<td>6 53-P-5</td>
<td>0.50</td>
<td>0.02-0.05</td>
<td>0.068</td>
<td>0.023</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
<td>SiO₂, CaO, Pb greater than 1 percent Pb</td>
</tr>
</tbody>
</table>

2/ All readings made on samples of hand-specimen size unless noted that a spot reading, a reading taken with probe held directly against a rock exposure, was made.

3/ Disequilibrium caused by excess daughter products of uranium; no Th detected.

6/ All readings made on samples of hand-specimen size unless noted that a spot reading, a reading taken with probe held directly against a rock exposure, was made.

7/ Disequilibrium caused by excess daughter products of uranium; no Th detected.

Associated minerals are pyrite, galena, chalcopyrite, tetrahedrite, tennantite, enargite, covellite, quartz, chalcedony, barite, anglesite, hematite, malachite, and small amounts of an unidentified secondary uranium mineral.

The uranium mineral from the other localities probably is also pitchblende but is not readily separable for identification.

Other districts

Lower Uncompahgre (Ouray or Paquim) district.—The geology and ore deposits of the Lower Uncompahgre district (fig. 2, area 4), defined to include the mineral deposits of early Tertiary age that lie chiefly near and north of Ouray in the Paleozoic and Mesozoic sedimentary rocks, has been described by Burbank (1940). The ores comprise base-metal and precious-metal veins and blanket bodies. The results of reconnaissance for radioactive minerals in the Lower Uncompahgre district described by Burbank and Pierson (1953) included tests of the Syracuse, Wedge, Bachelor, Sunbeam, J. V. Dexter, Calliope, El Mahdi, Pony Express, Slide and Newsboy, Senorita, and Black Girl mines or mine dumps.

Slight radioactivity was noted in Jurassic shale from the wall of the Pony Express vein in the Pony Express mine north of Ouray. The uranium content was only 0.010 percent. Small amounts of radon ranging from 34 to 910 micromicrocuries per liter of air at mine temperature and pressure were measured by H. Faul (1952, written communication) of the Geological Survey in the Senorita, Black Girl, and Slide and Newsboy mines.

T. H. W. Loomis (1953, oral communication) of the U. S. Atomic Energy Commission made tests in the Lower Uncompahgre district in 1953 but found no anomalous radioactivity.
Telluride district.—The geology of the Telluride district (fig. 2, southern part of area 9) has been described by Burbank (1941). Only one mine in the district, the Smuggler Union near the town of Telluride, was tested for radioactivity. About 20 percent of the accessible parts of this mine were checked, and one anomalously radioactive locality was found (table 4, loc. 1). At this locality a small area in the footwall of the Montana vein contains a viscous uranium-bearing hydrocarbon as disseminations and fracture fillings associated with galena and pyrite in silicified San Juan tuff. The radioactive zone is approximately 8 feet long and 2 feet wide, the thickness is not known.

Sneffels district.—The geology of the Sneffels district (fig. 2, northern part of area 9) has been described by Burbank (1941). Several mine dumps shown in the northwest part of figure 4, as well as the dumps of the Mountain Top and Keystone mines, not shown by any map in this report, were tested for radioactivity. Except for several slightly radioactive localities in the Campbird mine, no anomalous radioactivity was found. Only about 5 percent of the Campbird mine was tested for radioactivity, but four small occurrences were found at which the maximum radioactivity of spot readings was about twice maximum background. The radioactive zones, determined by the projection of the occurrences appear to be roughly parallel to the ore shoots of the Campbird vein.

Mount Wilson district.—The geology of the Mount Wilson district (fig. 2, area 10) has been described by Varnes (1947a). The main mass of the mountains within the district is a stock of Tertiary age, which ranges in composition from diorite to monzonite. All the mines tested
Table 4. Mines or mine dumps in the Telluride, Mount Wilson, Rico, La Plata, Engineer Mountain, Burrows Park (Whitecoss), Carson Camp, and Creede districts having maximum radioactivity equal to or greater than 2.1 times maximum background.

<table>
<thead>
<tr>
<th>Sample description</th>
<th>Spectrographic analysis of sample (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip sample of uranium-bearing hydrocarbon in pyrite, siliceous galena-sphalerite ore from footwall of Montana vein, on 1,950 level approximately 50 feet north of No. 700 assay, Snuffer Hill mine, Telluride district.</td>
<td>More than 10 Pb, Bi</td>
</tr>
<tr>
<td></td>
<td>More than 2-10 Al, K, Pb, Sn</td>
</tr>
<tr>
<td></td>
<td>0.2-1.0 Ca, Be, Mg, Na, Ti</td>
</tr>
<tr>
<td></td>
<td>0.02-0.1 Na, Zn, Sr, U</td>
</tr>
<tr>
<td></td>
<td>0.000-0.002 Ag, Cu, Pb, Bi</td>
</tr>
<tr>
<td>(1/) Disequilibrium caused by excess daughter products of uranium; no Th detected.</td>
<td>(2/) All readings made on samples of hand-specimen size unless noted that a spot reading, a reading taken with probe held directly against a rock exposure, was made.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Field number (col/row)</th>
<th>Radioactivity (percent)</th>
<th>Background (percent)</th>
<th>Equivalent chemical reading (spot reading)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52-P-3-2</td>
<td>0.20</td>
<td>0.02-0.06</td>
<td>0.063</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>52-P-12</td>
<td>0.30</td>
<td>0.02-0.06</td>
<td>0.013</td>
</tr>
<tr>
<td>4</td>
<td>0-3-4</td>
<td>0.40</td>
<td>0.02-0.10</td>
<td>0.017</td>
</tr>
<tr>
<td>5</td>
<td>53-P-29</td>
<td>0.40</td>
<td>0.02-0.05</td>
<td>0.32</td>
</tr>
<tr>
<td>6</td>
<td>52-P-19</td>
<td>0.45</td>
<td>0.02-0.06</td>
<td>0.068</td>
</tr>
<tr>
<td>7</td>
<td>A-9-4</td>
<td>0.18</td>
<td>0.03-0.04</td>
<td>0.025</td>
</tr>
<tr>
<td>8</td>
<td>A-9-8</td>
<td>0.18</td>
<td>0.06-0.06</td>
<td>0.061</td>
</tr>
<tr>
<td>9</td>
<td>53-P-3</td>
<td>0.60</td>
<td>0.03-0.05</td>
<td>0.032</td>
</tr>
<tr>
<td>10</td>
<td>53-P-1</td>
<td>0.18</td>
<td>0.04-0.05</td>
<td>0.035</td>
</tr>
<tr>
<td>11</td>
<td>A-5-1</td>
<td>0.17</td>
<td>0.02-0.05</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A-5-3</td>
<td>0.18</td>
<td>0.02-0.06</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>53-P-2</td>
<td>0.17</td>
<td>0.02-0.07</td>
<td>0.064</td>
</tr>
<tr>
<td>14</td>
<td>A-4-4</td>
<td>0.18</td>
<td>0.02-0.06</td>
<td></td>
</tr>
</tbody>
</table>

\(1/\) Radioactivity back to equivalent chemical reading.

for radioactivity except the Independence mine, lie within the stock. The Independence mine is in the Telluride conglomerate of Oligocene(?) age. Most of the mines or mine dumps in Silver Pick, upper Bilk, and Navajo Basins were tested for radioactivity. Mines in lower Bilk, Elk, Magpie, and several unnamed basins were not tested. The maximum radioactivity found at any of the 29 mines tested was only 1.7 times maximum background, except for a mine (table 4, loc. 2) in Navajo Basin, where radon was detected.

Rico district.—The geology and ore deposits of the Rico district (fig. 2, area 12) have been described by Cross and Ransome (1905), and by Varnes (1947b). The ore deposits consist of base metal and precious metal vein and blanket deposits; the main ore horizon is the Hermosa formation of Pennsylvanian age.

The A. B. G. and C. V. G. mine dumps, and the Silver Swan and Blaine tunnels were checked for radioactivity in conjunction with T. H. W. Loomis of the Atomic Energy Commission. No anomalous radioactivity was noted at the C. V. G. or Silver Swan mines, but moderately strong radioactivity previously discovered by E. N. Harshman (1952, oral communication) of the Geological Survey was noted at the A. B. G. mine, and anomalous radioactivity was found in the Blaine tunnel.

A sample of radioactive galena-sphalerite replacement ore in siliceous limestone (table 4, loc. 3) from the dump of the A. B. G. mine contained 0.013 percent equivalent uranium and 0.010 percent uranium.
The radioactivity in the Blaine tunnel (table 4, loc. 4) occurs in a 20-square-foot area along the Blackhawk vein approximately 1,750 feet from the portal. A sample of radioactive pyrite-quartz vein material submitted by T. H. W. Loomis (1953, written communication) contains 0.017 percent equivalent uranium and 0.009 percent uranium.

La Plata district.—The La Plata district (Eckel, 1949), (fig. 2, area 13), is known best for its gold production, but it also has produced silver, lead, copper, and zinc. The chief ore minerals are native gold, gold and silver tellurides, galena, chalcopyrite, and sphalerite, which occur in quartz-pyrite veins and replacement deposits. Small amounts of palladium and platinum are associated with chalcopyrite in one deposit.

Only brief check was made in 1953 in the La Plata district, in conjunction with T. H. W. Loomis of the Atomic Energy Commission. A chip sample of highly silicified, limonite-stained, kaolinized diorite was collected from the Tomahawk vein (table 4, loc. 5), and found to contain 0.32 percent equivalent uranium and 0.40 percent uranium. However, the highest uranium content of seven channels taken across the vein by T. H. W. Loomis (1953 written communication) contained only 0.11 percent uranium.

Reconnaissance of part of the Tomahawk vein disclosed several localities where readings, 2 to 4 times background, were obtained.

Engineer Mountain district.—The geology of the Engineer Mountain district (fig. 2, area 16) has been described by Kelly (1946). The dumps of two mines in this area, the Frank Hough and the Syracuse Pride,
were tested for radioactivity. No anomalous radioactivity was found on the dump of the Frank Hough mine, but a sample of siliceous galena-pyrite-sphalerite ore containing 0.051 percent uranium was obtained from the dump of the caved Syracuse Pride adit (table 4, loc. 6).

Burrows Park (Whitecross) district.—The geology of the Burrows Park (Whitecross) district (fig. 2, area 19) is discussed in a following section on the Lake City area.

The dumps of three mines in the Burrows Park district were tested, and anomalous radioactivity was found at two of them. The radioactive localities are both in volcanic rocks of the Silverton series. The third, nonradioactive locality, is a mine in Precambrian granite.

The radioactivity of one of the specimens (table 4, loc. 7) is caused by a small amount of uranium, but the radioactivity of the other specimen (table 4, loc. 8) is probably caused mainly by 0.1 percent or less thorium shown by spectrographic analysis.

Carson Camp district.—The economic geology of Carson Camp (fig. 2, area 20), south of the Lake City area, has been discussed by Larsen (1911). The ore deposits occur mainly as veins and fracture fillings in altered zones in the lavas of the Silverton volcanic series near quartz diorite intrusive rocks of late Tertiary age. The vein minerals are barite, quartz, enargite, pyrite, marcasite, chalcopyrite, sphalerite, and galena. The chief values were in silver, with some gold and copper.

The dumps of nine mines or prospects, including the Batchelor mine, were tested for radioactivity. No anomalous radioactivity was found except for a small amount of limonite stained siliceous gouge(?),
containing 0.032 percent equivalent uranium and 0.015 percent uranium from the dump of a caved adit (table 4, loc. 9) just north of Carson Pass in the southern part of the district.

Creede district.-- The geology and ore deposits of the Creede district (fig. 2, area 22), in the central part of the San Juan Mountains, has been described by Emmons and Larsen (1923), and by Larsen (1929).

The ore deposits of the district consist mainly of veins carrying sphalerite, galena, silver, gold, pyrite, chalcopyrite, amethystine quartz, barite, and fluorite. The veins occupy faults in rhyolite and quartz latite of the Potosi volcanic series of Miocene age. Secondary enrichment has been important in the district.

Approximately 20 mines or mine dumps including the Silver Horde, Magnusson, Alpha, Corsair, Solomon, Emperius, Amethyst, Commodore, Holy Moses, Outlet, Phoenix, Colewood, and Equity mines, were tested for radioactivity. The locations and descriptions of most of these mines are found in the above publications.

Anomalous radioactivity was noted at five places (table 4, locs. 10-14) in the Commodore, Holy Moses, Amethyst, and Phoenix mines. However, the uranium contents of the two analyzed samples were only 0.055 and 0.020 percent. These were for vein material from the Phoenix mine (loc. 13), and altered wall rock of the Amethyst vein from the Commodore No. 3 level (loc. 10).
Areas of no anomalous radioactivity

Silverton area

The geology of the Silverton area and the nearby Arrastre Basin, Eureka, Animas Forks, and Mineral Point districts (fig. 2, areas 6, 7, and 15) has been described in reports by Cross, Howe, and Ransome (1905), Burbank (1933), Burbank (1951), Burbank and others, (1947), and Kelly (1946). The ore deposits consist mainly of base-and precious-metal veins in Tertiary volcanic rocks.

The following mines or mine dumps, most of which are shown or described in the above references, were tested, but no anomalous radioactivity was detected. In the Silverton area and Arrastre Basin district (area 6) the Lone Extension claim, Blackhawk tunnel, American tunnel (Gold King), Empire tunnel, Ezra R. Mine, A. S. and R. tunnel, and Highland Mary mine were checked. In the Eureka, Animas Forks, and Mineral Point districts (area 15) the Columbus tunnel, Frisco tunnel, and the Lucky Jack, London, and Bill Young mines were tested. The Bandora mine (area 7), 8 miles westerly from Silverton, showed no anomalous radioactivity.

Summitville-Platoro area

The geology and ore deposits of the Platoro, Summitville, Axell, Stunner, Gilmore, and Jasper mining districts (fig. 2, area 28) have been described by Patton (1917). Most of the mines mentioned below are referred to by his report. The districts have produced chiefly gold and silver from quartz-bearing veins in Tertiary volcanic rocks of the Conejos quartz latite and the Fisher quartz latite. Radioactivity tests were made in all districts except the Gilmore district, but no anomalous radioactivity was found.
In the Summitville district, in the northwest part of the area, 15 mines or mine dumps, including the Aztec, Golconda, Bob Tail, Esmond, Highland Mary, Winchester, Chandler, Ida, French, Dexter, Science, Iowa, Copper Hill, Narrow Gauge, and Reynolds mines were tested for radioactivity. The Forest King and Mammoth mine dumps were tested in the Platoro district; Wilker's and Glacier mines were tested in Axell district, just east of Platoro district. The Pass-Me-By, Asiatic, Red Mountain No. 1, Louisa, Helper, No. 10, Apex, and Victor mines were tested in the Stunner district, and the Sanger, Guadaloupe, and Miser mines were tested in the Jasper district.

Lake City area

The geology and ore deposits of the Lake City area including the Galena district along Henson Creek (fig. 2, area 17), the Lake district along the Lake Fork of the Gunnison River (fig. 2, area 18), and the Burrows Park (Whitecross) district (fig. 2, area 19) has been described by Burbank (1947b). Irving and Bancroft (1911) described the geology and ore deposits of the Lake and Galena districts.

Most of the volcanic rocks of the Lake City area belong to the Silverton volcanic series. The ore deposits are concentrated near the border of an oval-shaped, down-faulted block or caldera located between Henson Creek and the Lake Fork of the Gunnison River, and apparently are controlled by the marginal faults of the caldera. The ore deposits consist mainly of quartz-bearing base and precious metal veins. Silver is particularly important where the veins are enriched near the surface. Gold and silver tellurides occur locally. Precambrian granite is exposed along the south side of the caldera and on the west near the old town of Whitecross in Burrows Park. A few small ore deposits are found in the granite of the Burrows Park district.
The dumps of 11 mines or prospects, including the Ute and Ulay, Lucky Strike, and Golden Fleece mines, in the Galena, Lake, and Burrows Park districts were tested for radioactivity. No anomalous radioactivity was noted in the Galena or Lake districts; the radioactive specimens from 2 of the 3 dumps tested in the Burrows Park district have been described previously.

Other districts

Dunton district.—The gold and silver deposits of the Dunton district (fig. 2, area 11) are found mainly in Tertiary veins in Mesozoic sedimentary rocks. Dumps of the lower adit of the Modern Gold Mines Company, and of the main adit of the Free Coinage group were checked and no anomalous radioactivity was found.

Ophir district.—The geology of the Ophir district (fig. 2, area 8) has been described by Varnes (1947c). Seven mines or mine dumps, in the district, including the Carbonero, Attica, Badger, Silver Bell, and Butterfly, were tested but no anomalous radioactivity was found.

Needle Mountains area.—The Precambrian slates and quartzites exposed along an old road east of U. S. Highway 550 in the Needle Mountains (fig. 2, area 14) were spot-checked along a 2-mile length of the road, but no anomalous radioactivity was detected. However, radioactivity has been reported in the Needle Mountains district to the south, and additional testing is needed before any conclusions can be drawn.

Spar City district.—The Spar City district south of Creede (fig. 2, area 21) contains sparsely mineralized veins in Fisher quartz latite. One mine and two mine dumps were tested, but no anomalous radioactivity was found.
Wanamaker Creek district.--The ore deposits of the Wanamaker Creek district (fig. 2, area 23), probably mainly valuable for gold and silver, occur in pyrite-chalcopyrite-quartz veins in andesite of the Potosi volcanic series, near an intrusive of Potosi age.

The dumps of eight mines or prospects in the district were checked, but no anomalous radioactivity was detected.

Embargo and Summer Coon districts.--The Embargo district (fig. 2, area 24) and possibly the Summer Coon district (fig. 2, area 25) in the east-central part of the San Juan Mountains were small producers of gold, silver, lead, and copper. In the Embargo district the ore deposits occur in fissure veins which cut bedded andesites and quartz latite intrusive rocks of late Tertiary age. The vein minerals are galena, sphalerite, pyrite, and quartz. No ore minerals were observed in the Summer Coon district.

Checks of the dumps of 5 small mines or prospects in the Embargo district, and of 6 prospects in the Summer Coon district did not disclose any anomalous radioactivity.

Beidell district.--The ore deposits of the Beidell district (fig. 2, area 26) consist of gold in limonite-cemented, crudely bedded andesite breccia of pre-Potosi age; some open pits were dug in a zone of strong clay alteration. The dumps of 11 prospects, including a few of the cuts in the altered zone and the face of a large, open-cut gold mine in the andesite breccia were tested, but no anomalous radioactivity was found.

The Crystal Hill district just south of the Beidell district was not examined.
CONCLUSIONS

A reconnaissance for radioactive minerals in 34 mining districts in the San Juan Mountains has disclosed significant though not commercial uranium occurrences in the Bonanza, Upper Uncompahgre, La Plata, Red Mountain, Telluride, Lower Uncompahgre, Rico, Engineer Mountain, Burrows Park (Whitecross), Carson Camp, and Creede districts. A commercial pitchblende deposit is known in the Cochetopa area. Additional prospecting in most of these districts as well as in the Needle Mountains district might disclose some small commercial uranium deposits, although the probability does not seem high for the Telluride, Lower Uncompahgre, Carson Camp, or Creede districts. Additional reconnaissance in the Sneffels, Mount Wilson, Silverton, Eureka, Animas Forks, Mineral Point, Poughkeepsie, Summitville, Platoro, Lake, Galena, Dunton, Ophir, Spar City, Wanamaker Creek, Embargo, Summer Coon, and Beidell districts probably would not be profitable because of the generally low level of radioactivity in these districts. Exploration in the Bonanza, Upper Uncompahgre, La Plata, and Red Mountain districts might result in finding small amounts of uranium ore but probably would be excessively costly.

__________, 1940, Structural control of ore deposition in the Uncompahgre district, Ouray County, Colorado, with suggestions for prospecting: U. S. Geol. Survey Bull. 906-E, p. 189-266.

__________, 1947a, The San Juan region (Colorado), the Bonanza (Kerber Creek) mining district, Saguache County, in Mineral resources of Colorado: State of Colorado Mining Res. Board, Part II, Summaries of mining districts and mineral deposits, p. 443-446.

RESULTS OF RECONNAISSANCE FOR RADIOACTIVITY IN THE METAL-MINING
DISTRICTS OF THE SAN JUAN MOUNTAINS, COLORADO

By C. T. Pierson, W. F. Weeks, and F. J. Kleinhammer

PLANS AND RECOMMENDATIONS

The U. S. Geological Survey has no plans for further reconnaissance
for radioactive deposits in the San Juan Mountains at this time. With
the exception of the Los Ochos pitchblende property in Saguache County
(Stafford and Dersay, 1955), the known uranium occurrences are of sporadic
distribution, small size, and for the most part of low grade. A reconnais­sance
survey in the western part of the San Juan Mountains in 1953 by
T. H. W., Loomis (1953 oral communication) of the U. S. Atomic Energy
Commission yielded similar results for the Telluride, Silverton, Ophir,
Poughkeepsie, Rico, Mineral Point, and Upper and Lower Uncompahgre districts.

However, many of the uranium occurrences have been subjected to
considerable supergene leaching, and the present uranium concentrations
may represent only part of the original concentrations. Therefore, if in
the future it is desirable to resume work, the following localities are
considered most favorable for further investigations by reconnaissance and
by physical exploration.
The following districts are discussed roughly in the order of preference for additional reconnaissance: 1) Bonanza, 2) La Plata, 3) Red Mountain, 4) Engineer Mountain, 5) Rico, and 6) Needle Mountains.

1. Bonanza district: Much of the district has been tested for radioactivity (fig. 5); however, the 300 and 400 levels of the Old Rawley mine were not checked. Tests of these levels may be desirable because of the several uranium-bearing samples taken from this mine (table 3, loc's 2a, b, c).

2. La Plata district: The only radioactivity tests made in the district were in the vicinity of the Tomahawk mine. As a chip sample from the Tomahawk vein (table 4, loc. 5) contained 0.40 percent uranium, more reconnaissance in the district might be desirable.

3. Red Mountain district: Most of the district has been adequately tested for radioactivity (fig. 4). However, more reconnaissance might be worthwhile in: 1) the vicinity of the Lark mine, from which a sample containing 0.35 percent uranium was taken (table 2, loc. 17); 2) the northern part of the district in the vicinity of Brooklyn Gulch, because of the Michael Breen pitchblende occurrence 2-1/2 miles to the northeast (fig. 3, table 1, loc. 4); and 3) a recently discovered "chimney" deposit, currently being mined, just south of the Koehler tunnel (fig. 4, loc. 13) near Red Mountain Pass.

4. Engineer Mountain district: Only two mine dumps, those of the Syracuse Pride adit, and the Frank Hough shaft have been checked. As the sample from the Syracuse Pride dump (table 4, loc. 6) contained 0.068 percent equivalent uranium and 0.051 percent uranium, and as the Michael Breen
pitchblende occurrence is only about 2 miles to the southwest, spot checks of some of the mines between Engineer Mountain and the Michael Breen mine are probably desirable.

5. Rico district: Only four mines have been checked in the Rico district. Low anomalous radioactivity was noted at two of the mines (table 4, loc.'s 3 and 4). The priority for further reconnaissance is not high, but spot checks of some of the more important mines might be worthwhile.

6. Needle Mountains: Mr. Paul Blackstock of Falls Church, Va., and Mr. H. W. Jacobson of Durango, Colo. have both informed the Geological Survey that they have noted strong radioactivity at the Aetna mine in the Needle Mountains district. These reports are probably worth investigating.

Physical exploration

Except for the Los Ochos claims in the Cochetopa area, which have not been visited by the present authors, physical exploration for commercial pitchblende deposits in the San Juan Mountains does not appear to be warranted with the possible exception of the Bonanza district. In the Bonanza district, pitchblende in samples containing as much as 2.71 percent uranium was found in the dump of the caved Whale adit (table 4, fig. 8, loc. 3). Reopening of the Whale adit might reveal a commercial pitchblende shoot, and provide geologic information.

UNPUBLISHED REPORT