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A NOTE ON THE TRANSIENT GAS FLOW PROBLEM 

By A. Y. Sakakura

ABSTRACT

Expressions have been obtained for pressure distribution, velocity, 

volume flux, and total cumulative production of a gas well as a function of time 

after opening of a closed-down well. Static conditions prevail initially, and 

after opening,the well produces at constant well bottom pressure. The effect 

of the nonlinearity in Muskat's isothermal gas flow equation is shown to be 

negligible. The calculations can be applied to problems involving short-term 

transient flow of gases, such as in experiments with radioactive tracers.

INTRODUCTION

In the course of studies made by the U. S. Geological Survey on 

the transport of radon by natural gas through a reservoir to a gas well, it 

became necessary to re-examine the transient behavior of gas flow after the 

opening of a closed-down well. This problem was treated approximately by 

Muskat (1937), but our interests require more detailed knowledge of the periods 

less than an hour after opening.

CALCULATIONS

The phenomenological theory of gas flow through a porous medium 

was developed by Muskat (1937), and, in the case of isothermal flow of gas, 

the relevant equations are -

at



with the boundary conditions, in the case of radial flow, that 

p = nc when r- b and "b >0 

P = PW when r=t3 and
when "t" = O and

w

(2) V «   P- - V

where: p = pressure in atmospheres 

p^= reservoir pressure 

&,= well pressure 

3 = well radius 

b = effective reservoir radius 

M = viscosity in centipoises 

p s porosity 

k = permeability in darcies

= velocity of gas in centimeters per second.

2 2.
With the change of variable (p » pc ~ p equation (1) becomes

2 \ d«|>131 v

with the boundary conditions that

cp » o when a^r^b, t =0 
y = o when r = b , t > 0 

<p-Ap*-p|-p£, r-a, t > 0
An examination of (3) reveals that it closely resembles the equation of heat

A

conduction. As (|> <T p c and as the strongest singularity of C|> 

is a step function at Y* ** 3 ? "t = O. it is evident that the nonlinearity 

introduces no new singularities in the equation of heat conduction. In fact, 

the only effect of nonlinearity will be a change in the "diffusivity". By 

utilizing the two extreme values of "diffusivity" the bounds of the actual 

solution can be found.

The linear problem (with the radical equal to 1) was solved by means 

of Laplace Transforms (Carslaw and Jaeger, 1950, p. 280) and by the use of



Fourier-Bessel Series (Muskat. 1937, p. 632) and has a solution of the form:

oo -kcc n

where Cp o is the steady state solution, and where- (J (OC If) S are 

certain combinations of Bessel functions which satisfy the boundary conditions. 

The OC M 5 are the roots of the equation -

(5) Y. («  a) J0 («  b) - J0 («n a) Y0 (<xn b) = 0

where the Jo S and the Yo S are the zero order Bessel functions of first 

and second kinds.

The above solution is useless for our purpose, as too many terms 

must be retained for small values of time when typical values of b * 500 feet and 

a = 1/4 foot are used. We therefore consider a problem more suitable for our 

purpose. All physical disturbances are propagated at a finite velocity, so that 

the external boundary of the reservoir has no effect on the solution until the 

disturbance arrives there. Thus we may consider the problem of the infinite 

reservoir up to the time when the disturbance reached the boundary.

The analogous heat conduction problem was treated thoroughly by 

Ritchie (1949) who modified Carslaw and Jaeger's general method of solution. 

We shall only briefly indicate this method. Taking the Laplace transform, with 

respect to t, of the gas flow equation (with the radical equal to 1) results in a 

subsidiary differential equation of Bessel's form and is satisfied by the function

where: 2 is the transform variable with respect to

k.
=   oT~ t '^ 2XlO seconds

is a modified Bessel function of the second

kind, zero order

?- £ 
CU (cyis obtained by applying the complex inversion integral to the above function:



Similarly, the other functions may be represented as:

< 8> -fc ^LE! /
-*-, z/ua 2TTi / .H-   ^

the volume production rate (per unit thickness) is: 

 /TT k ^ IP I
pw Zin

and the accumulated volume production (per unit thickness) is 

(10)

o
where the K,s are modified Bessel functions of the second kind, first order. It 

is to be noted that even when f is quite large, "t remains relatively small. Also, 

large values of T correspond to small values of "2. . Therefore, K o and K| 

may be replaced by their convergent series for small Z and the indicated division 

performed. We evaluate the Laplace contour integral by transforming to a positive 

circuit about the negative real axis of the z -plane. We find -

<z

s? U 2 ?4 ( '««  ? - 3/2; -
8 f(kgf -2) - \3 + 

261<**|6] I 2 ., (f) + 32



and

- 21,.,

26] l z>t (?) - 3Z I,,,

2304

, and T = Euler's constant = . 57721.

These results are the same as those obtained by Ritchie (1949), except 

that he has neglected terms with k> I . These Laplace inversion integrals were 

obtained rather ingeniously by him for specific values of k and "Z. . The present author 

has derived the general formula for these integrals:

<»> I H/crr^ t (s*k-l)! if
k'v= [lof(^)J k 3 ! (k- o ! ' *

where:

where the limit (s-l)/2 is to be used when s is odd, and (s-2)/2 when s is even. 

and (14) ,_nk«.1»M

*V"V * Pi_^/4rMK /elS!
s*o



The numerical coefficients of these series, for a few values of K and V 

are given by Ritchip (1 Q4P). It should be noted that these series are asymptotic, 

and as such, the error cannot be made as small as one likes by taking N very large 

but N must be so chosen that the error becomes minimum for a given value of £ *

At this point we shall discuss the concept of "radius of drainage" 

(Muskat, 1937, p. 708). For large values of t? from equations (11) and (14)

(15)

]O Q"2

which approximates the steady state form except that the radius of the reservoir 

changes with time. The steady state value is -

Thus, we see that the pressure distribution approximates a steady state distribution 

when -

which agrees with Muskat 's value numerically. However, the concept of "radius of 

drainage" is misleading, for the general behavior of the pressure distribution is 

given by equation (11). It should be noted that the velocity also becomes approximately 

the steady state velocity at the same value of ^f as when the pressure reaches a 

steady state value, so that we can have a smooth joining of the solutions for the infinite 

and the finite reservoir problems.

We now consider the cumulative volume production per unit thickness, and 

find from equation (10) -

where T /^j _ ^ / . O42278
"-* y

y



as given by Ritchie (1^49). This approximation is good for - 

f > tOO or -b > 0. 1 seconds.

It may be assumed that any contribution fromf-^. IOO may be ignored with the 

possible exception of ^s O where a step function discontinuity in the initial 

condition will introduce a singularity in the velocity and consequently the flux. 

However, the production is shown to be finite at £"=O by evaluating equation 

(10) for large 2-

t

'O

For the sake of discussion of the errors involved in neglecting the

nonlinearity of the equation, we list here the leading terms of the functions of 

interest to us.

(20)

where

(21)

-k &?*~ I f \ 0.57721 i
^ p9 Jor4S ^

-K,
-2Tfk ^p2 -£ /, 0.42278 -f-



As mentioned earlier, the only effect the nonlinear it y has on the equation 

is in the change in effective "diffusivity", which is

z 
z,

.7.where the extreme values of (1) are 0 and Ap . We have defined VC when <1) * O by

K= ~j^r- pc
rt

When takes on the other extreme value of

Therefore,

*K p<z a
The diffusivity enters the above equations through f , and the dominating term

A-tf 
containing f is log' "yj Thus, the maximum effect of variation in diffusivity is

.4f
(23) ' ^^'

If we take the hypothetical'case of pc =lOOj pw =75 atmospheres, the diffusivity 

varies 25 percent. Then

.03

In other words, the fractional error in this ratio is 3 per cent at T= IO or "t * lO sec. 

with correspondingly smaller errors for larger values of time. Thus, the effect 

of nonlinearity is small.



SUMMARY AND CONCLUSIONS

We now summarize the result of this investigation. The expressions 

for the various quantities are -

when

when >; -^ _J~!_~ > 4 v ay

, 25a, V - 2 I,,., W + J;{[-2?H^9-0 -23 I,,

-4I1<0 (WJ + ££ {[4p4 (4"-2/or5>>8_pz (zlo^? -3>6]^ 

+ [26- I6 p2 (2lo^p-l)]l 2| , Cr;-32 I 3 , (1

0(-^1 v V ?^ 3 /J

when 2<^<^

(25b)

r ^ <r n ~^u ^ T1
4

by definition, 

(26)

 f. - T



<"a) / O.^f _ "2Tfk ^ P* ±_ fl . Q- 42278 ftjg.6* 9 -

 h  

when

where »/

.*

(27b) f 
J

when

The equations denoted "a" refer to the transient state, and those denoted "b" to 

the steady state, as given by Muskat (1937).

The fractional error due to nonlinearity is -

\Qg

which is shown to be small or negligible in most actual cases. It must be 

remembered that all these quantities are evaluated at well bottom pressure and 

temperature.
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