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FOREWCORD

This report is a statement of progress during the six-
months' period from December 1, 1956 to May 31, 1957 on
investigations of radicactive materials in the United Btates
and Alaska, undertaken by the U, 8, Geological Survey on
behalf of the Division of Raw Materials and the Division of
Research of the Atomic Energy Commission. The program
sponsored by the Division of Raw Materials, which includes
geologic mapping, geologic topical studies, geophysical
investigations, geochemical investigations, mineralogical
investigations, and laboratory services and research on
techniques in the flelds of radiomctivity, spectrography,
and chemistry is reported on pages 25 to 531. The program
sponsored by the Division of Research, which comprises
fundamental studies relating to the geology of uranium aﬁd

thorium, is reported on pages 532 to STl.
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INTRODUCTION

The broad objective of the Geological Survey's program
on behalf of the Atomic Energy Commission is the investi-
gation of the fundamental geology, mineralogy, and geochem-
istry of uranium and other radiocactive materials, for the
purpose of discovering and delimiting areas favorable for
the future production of uranium and other radiocactive ores.
During the first phase of the program, which began in 1947,
emphasis was placed on the immediate discovery of minable
uranium deposits. In 1954 and 1955, however, the rapid
increase in the Nation's production of uranium made possible
a reorientation of the program toward long-range, funda-
mental studies of the geologic processes that govern the
emplacement of uranium deposits. These long-range studies
involve systematic geologic mapping and research, supported
by appropriate geophysical and geochemical studies, required
to develop information on the size, shape, and mineralogy of
our potential reserves and resources of radioactive materials.
The Survey's present program, therefore, is designed with a

view not so much toward the immediate needs of the United
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States as toward the unknown but certainly large require-
ments of the foreseeable future.

A second and equally important objective of the Survey's
progrem in uranium geology is the dissemination of imformation
by the publication, as expeditiously as possible, of the
results of its investigations. These results afe published
as Geological Survey Professional Papers, Bulletins or
Bulletin chapters, or maps, or as papers in scientific
Journals. During the six months covered by this report,
publications stemming from the program include 12 Bulletins
or Bulletin chapters, 47 maps, and 21 papers and 37 abstracts
in scientific jourmals. During the same period one report
was placed on open file and one report was sent to the
Technical Information Service Extension of the Atomic Energy
Commission for reissue and distribution to the public. 1In
addition, geologists working on the uranium program presented
18 papers at scientific meetings.

Since June 1954--approximately the date when reorientation
of the program began, and when easing of securlty restrictions
made possible the publication of much data that previously

had been classified--three Professional Papers, 56 Bulletins
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or Bulletin chapters, 53 Circulars, and 305 maps have been
published by the Survey, and 129 papers by scientists working
on the program have been published in scientific journals.
During the same period 85 reports have been placed on open
file and 22 reports have been sent to the Technical Infor-
mation Service Extension for reissue and distribution.

The Semiannual Reports, "Geologic Investigations of
Radioactive Deposits,” of which this volume is one, were
prepared originally as administrative reports for use within
the Geological Survey and the Atomic Energy Commission; but
beginning with TEI-330, issued in June 1953, each has been ‘
reissued and made availasble to the public by the Technical
Information Service Extension. These Semiannual Reports have
a8 & rule been confined to the accomplishments of the six-
months' period which they cover, only enough of the work of
preceding perio@sbeing given to provide a proper perspective,
So far as continuing proJjectsare concerned, this practice is
adhered to in the present volume. However, field and lab-
oratory work on a considerable number of'yrojects has been
completed within the past six months, and final reports for
Survey publication have been or are being prepared. Of

necessity considerable time will elapse before all of these
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reports can be published. In order to make available at

this time the more important resultis of these investigationms,
reports in this volume that describe completed projects are
essentially expanded sbstracts of the final report for Survey
publication, and contain as much of the pertinent illustra-
tive and tabular matter as the restrictions inherent in pre-
paring a report of this nature permit. Reporis of this type
are included for the following mapping projects:

Colorado Plateau region

Bull Canyon area S8lick Rock area
Sage Plain area La Sal Creek ares
San Rafael Swell Elk Ridge

East Vermilion Cliffs

Black Hills

Edgemont NE quadrangle Burdock quadrangle
Cascade Springs quadrangle Dewey quadrangle
Flint Hill quadrangle Jewel Cave quadrangle

Carlile quadrangle
Other areas

Southern Powder River Basin, Wyoming

Cave Hills, Harding County, South Dakota

Maybell-lay area, Moffat County, Colorado

Hiland-Clarkson Hill area, Wyoming

Jarbridge quadrangle, Nevada

Thomas Range, Utah

Front Range, Colorado

Phosphate deposits and their "leached zones” in
northern Florida
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Other reports im this volume that describe completed
projects are those on the Permian beds of Texas (p. 425-
427) ; Pennsylvanian sediments of the Mid-continent region
(p. 427-428); Radon and helium studies (p. 535-536); and
Uranium in natural waters (p. 536-54l).

Inclusion of the comparatively long reports on
completed projects has pecessitated a considerable increase
in the size of this Semiannual Report as compared with other
volumes of the series, It is felt, however, that the
increase is more than justified by the advantages to be
gained by making information on the areas available to the

public at this time.
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GEOLOGIC MAPPING

Colorado Plateau region

Geologic mapping as part of the uranium investigations on the
Colorado Plateag was started in southwestern Colorado early in 1947.
Since that time the original program has been extended and prior to
this report period field work had been completed in the following
areas: Southwestern Colorado; Monument Valley, Arizona; Monument
Valley, Utah; Carrizo Mountains, New Mexico; Capitol Reef, Utah; White
Canyon, Utah; Clay Hills, Utahj; and Deer Flat, Utah.
During the report period field and office work continued in the
following areas: Bull Canyon district, Slick Rock district, Uravan
district, Western San Juan Mountains, Ute Mountains, Colorado; Sage
Plain, La Sal Creek, Lisbon Valley, Utah and Colorado; Moab-Inter-
river, Orange Cliffs, San Rafael Swell, Circle Cliffs, Elk Ridge, Abajo
Mountains, Utah; FEast Vermilion Cliffs, Arizona; Grants, and Laguna,
New Mexico.
During the report period the following papers were published on
geologic work previously completed on the Colorado Plateau:
Finnell, T. L., 1957, Structural control of uranium ore at the
Momument No. 2 mine, Apache County, Arizona: Econ. Geol.,
V. 52, no. 1, pe 25-35.

Smith, J. Fs, Jr., Huff, L. Ce, Hinrichs, E. N., and Luedke, Rs G.,
1957, Preliminary geologic map of the Loa 1 NE quadrangle, Utah:
Us. S. Geol. Survey MF-100.

, 1957, Preliminary geologic map of the Loa 1 SE quadrangle,
Utah: U. S. Geol. Survey MF-10l.
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U. S. Geol. Survey MF-102.

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol. Survey MF-103.,

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol. Survey MF-104.

s 1957, Preliminary geologic map of the

rangle, Utah: U. Se. Geol. Survey MF-105.

s 1957, Preliminary geologic map of the

rangle, Utah: U, S. Geol. Survey MF-106.

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol. Survey MF-107.

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol. Survey MF-108.

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol., Survey MF-109.

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol. Survey MF-110.

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol. Survey MF-111l.

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol., Survey MF-112.

s 1957, Preliminary geologic map of the
rangle, Utah: U. S. Geol. Survey MF-113.

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol. Survey MF-1li.

s 1957, Preliminary geologic map of the

rangle, Utah: U. S. Geol. Survey MF-115.

Dinnehotso NE quadrangle, Arizona-Utah: U.
MF-93.

Smith, Je Fog J]’.‘o, Hu.ff, Lo Co, HinriChS, Eo No’ and Luedke’ R. G‘G’
1957, Preliminary geologic map of the Loa 4 NE quadrangle, Utah:

Notom 1 SW quad-
Notom 2'NE quad-
Notom 2 NW quad-
Notom 2 SW quad-
Notom 2 SE quad-
Notom 3 NE quad-
Notom 3 NW quad-
Notom 3 SW quad-
Notom 3 SE quad-
Notom 4 NE quad-
Notom 4 NW quad-
Notom 4 SW quad-

Notom 4 SE quad-

Witkind, I. J., and others, 1957, Preliminary geologic map of the

Se Geol. Survey
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Witkind, I. J., and others, 1957, Preliminary geologic map of the
Dinnehotso SE quadrangle, Arizona: U. S. Geol, Survey MF-94.

s 1957, Preliminary geologic map of the Dinnehotso NW quad-
rangle, Arizona-Utah: U. S. Geol. Survey MF-92.

s 1957, Preliminary geologic map of the Dinnehotso SW quad-
rangle, Arizona: U. S. Geol. Survey MF-95,

, 1957, Preliminary geologic map of the Boot Mesa NW quad-
rangle, Arizona-Utah: U. S. Geol. Survey MF-8L.

s 1957, Preliminary geologic map of the Boot Mesa NE quad~
rangle, Arigzona-Utah: U. S. Geol. Survey MF-85,

, 1957, Preliminary geologic map of the Boot Mesa SE quad-
rangle, Arizona: U. S. Geol. Survey MF-86.

s 1957, Preliminary geologic map of the Boot Mesa SW quad-~
rangle, Arizona: U. S. Geol. Survey MF-87.

s 1957, Preliminary geologic map of the Agathla Peak NW
quadrangle, Arizona-Utah: U. S. Geol, Survey MF-88,

, 1957, Preliminary geologic map of the Agathla Peak NE
quadrangle, Arizona-Utah: U, S. Geol. Survey MF-89,

» 1957, Preliminary geologic map of the Agathla Peak SE
quadrangle, Arizona: U. S. Geol. Survey MF-90.

s 1957, Preliminary geologic map of the Agathla Peak SW
quadrangle, Arizona: U. S. Geol. Survey MF-91. :

Bull Canyon district, Colorado
by

C. He Roach and R. M. Wallace
The Geological Survey has conducted geologic studies in the Bull
Canyon district since 1953. The objective of the studies was to obtain
data concerning the features responsible for localizing the uranium-
vanadium ore deposits in the district and, by means of these guides to

ore, to delineate areas favorable for the discovery of concealed ore
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deposits. The district was divided into two separate project areas,
designated the Jo Dandy area and the Monogram Mesa-Bull Canyon area
(figo 2) .

Mine studies

In the Monogram Mesa-Bull Canyon area, detailed mine-mapping
studies have been completed in three mines that represent the variation
in habits and mineralogy typical of the uranium-vanadium deposits in
the Bull Canyon area. The accumilated data indicate that most ore
deposits in the district are associated with one or more of the fol-
lowing physical characteristics of the host rock:

1) A sandstone-mudstone facies.

2) Areas where the host-rock unit changes greatly in thickness.

3) Pinchout of the host rock.

4) Host-rock units occurring on the flanks of paleostream channels.

5) Mudstone Mlenses™ or layers in the host-rock unit.

6) Mudstone-pebble conglomerates or "trash pockets'.

7) Sandstone with lenticular bedding.

8) Constriction structures formed by the convergence of two dia-

stems.

These physical features have one common characteristic: all repre-
sent parts of the host rock where there is a great reduction in the
volume of sandstone within the host-rock unit. Figure 3a shows an ore
body that has been localized adjacent to a constriction formed by the
convergence of two prominent bedding planes. The side of the deposit
adjacent to the constriction is normally characterized by better-than-
average grade ore and the contact between mineralized and barren rock is
comnonly very sharp. The opposite side of the deposit is commonly
characterized by an assay wall and the mineralized rock grades imper-

ceptively into barren rock. In this example, the host-rock unit, which
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is considered to be the volume of sandstone between the two prominent
bedding planes, thins abruptly at the constriction.

Mine studies have revealed that many so-called roll ore bodies
are localized adjacent to the constrictions where one prominent dia-
stem intersects another, Figure 3b shows a roll ore body localized
near a constriction of this type. The layer of ore cuts sharply
across the bedding of the sandstone between the two prominent diastems,
but nowhere does it traverse the two more prominent surfaces. In some
mines, the spatial relations between rolils and constriction structures
of this type are so consistent in their relative orientation that it
may be possible to infer the genersal direction of movement of the
mineralizing fluid.

Figure 4 shows an ore body localized in mudstone-pebble conglomerate
adjacent to a type of sandstone that is commonly a host to ore, but in
this locality is barren. These mudstone-pebble conglomerates are com-
monly characterized by abundant carbonized plant remains and contorted
bedding, and therefore have come to be known as MWtrash pockets', Commonly
the mudstone pebbles are highly mineralized with vanadium minerals. This
type of host rock is characterized by great litholqgic changes. The
mudstone-pebble conglomerate represents a great reduction in volume of
sandstone relative to the adjacent sandstone units.

Figure 5 shows a generalized cross section of two ore bodies
localized on the flanks of a paleostream channel., Here, the host-rock
unit is defined as the unit of sandstone bounded at the bottom by the

mudstone-sandstone contact at the base of the channel, and at the top by
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the first prominent diastem above the base of the channel. The ore
bodies occur on the flanks of the paleostream channel where the host-
rock unit is greatly thinned.

Geologists familiar with uranium ore deposits in the Morrison
formation are well aware of the importance of gray-green mudstone -
Malteration® at the base of the host rock as a guide to ore. Weir
(1952) has shown that the thickest Maltered" mudstone commonly occurs
near the ore deposits and that the thickness decreases laterally from
the deposit. In the vicinity of ore deposits in the Bull Canyon dis-
trict, it is common to find similar although slightly different spatial
relations between these features. The paleostream channel shown on
figure 5 has been extensively drilled on 50-foot centers and a great
amount of data on the distribution of green Maltered" mudstone at the
base of the host rock is available. The areas of thickest Maltered™
mudstone do not coincide in detail with the position of the ore bodies
but have a slight lateral displacement away from the ore bodies and are
more distant from the channel axis. Some of the drill holes which
penetrated thick ore-grade material found no green mudstone at the base
of the host rock. All drill holes penetrating more than four feet of
Maltered" mudstone are located beyond the limits of the ore bodies,
Detailed observations in mines and on outcrops indicate that lateral
displacement between areas of maximum mudstone M"alteration" and the
position of the adjacent ore body may be more common than previously

noticed.
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Hypothesis of ore deposition

It has been mentioned above that the uranium ore deposits in the
Bull Canyon district occur in places where there is a great reduction
in the volume of sandstone within the host-rock unit. Such physical
changes should modify appreciably the hydraulic characteristics of an
ore fluid moving through the host rock, and the following hypothesis
is offered in an attempt to show how the physical features might have
influenced deposition of ore metals. Figure 6 shows a uranium ore body
that has been localized near a constriction of the host-rock unit formed
by the convergence of two prominent bedding planes. Permeability measure-
ments of sandstone adjacent to the bedding planes indicate. that the
permeability is much less in a direction normal to the bédding planes
than parallel to them. These relations suggest that prominent bedding
planes would serve to channelize the movement of any fluid through the
host rock. If it is assumed that an ore fluid was moving under steady
flow conditions, the velocity vectors on figure 6 show qualitatively the
increase in velocity of the ore fluid that must occur as it approaches
the constriction. Bernoullits principle states, in part, that under such
conditions "pressure on the ﬁQVing solution varies inversely as the square
of the wvelocity". The graph of the hydraulic grade line at the top of
the figure shows that the pressure on the moving ore fluid would be the
least where the velocity is the greatest; that is, at the constriction,
As all of the other physical features previously discussed can be
analyzed similarly, it appears that most ore deposits in the Bull Canyon

district may have been localized in areas where a decrease in pressure on

the ore fluid occurred.
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A decrease of pressure might cause deposition of ore metals from an
ore fluid. Ie Chatlier's principle states, in part, "a solution in
equilibrium undergoes tﬁat change, following pressure decrease, which
is accompanied by an increase in volume." Since the volume of most
solutions is less than the sum of the solute and solvent, a decrease
in pressure might be expected to cause precipitation of the solute. In
most systems, the increase of volume as a result of a decrease in pres-
sure probably would be small; however, in systems in which one or more
of the components are volatile, the change in volume created by a de-
crease of pressure may be very great. Garrels (written communication,
1957), Pommer (written communication, 1957), Gruner, 1956, p. 498), and
others, have pointed out the ease with which carbonate or bicarbonate
solutions can transport uranium and vanadium in solution. If such a
solution should move into an area where the decrease in pressure is less
than that needed to keep CO, in solution, ™boiling off™ of volatile CO,
would occur. This loss of COp could be accompanied by large changes in the
pH of the fluid remainder and by a drop in temperature., The exsolution
of CO, from such an ore fluid might cause deposition of the ore metals
by loss of solvent capacity; and as Garrels and Richter (1955, p. 456)
have suggested, "the 'bleached! shales that so often underlie or overlie
ore bodies might be the result.of slow solution of CO, in the pore waters
of the rock, with concomitant removal of hematite cement and solution
and recrystallization of calcite™, If these changes occur under dynamic
conditions, as here proposed, this mechanism could easily explain the

common lateral displacement between the ore deposits and areas of maximum
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mudstone "alteration®", Exsolution of COp from the ore fluid might also

explain the observed (Archbold, 1957) sparsity of carbonate cement within
ore bodies where COo concentrations might have been relatively high, and
a concentration of carbonate cement in adjacent barren sandstone where
the concentration of COp might have been relatively low.

If exsolution of COo from the ore fluid did occur during mineral-
ization, the concentration of COp probably would be related to the degree
of pressure reduction. It seems possible that the rate of precipitation
of vanadium and uranium from a bicarbonate ore fluid could be delicately
controlled by the amount of COp evolved from the ore fluid. Possibly
the variation in V305-U30g ratios commonly noted for individual mines or
mining districts might be‘explained as zoning due to differing degrees
of exsolution of CO2 from the ore fluid, This mechanism might also
explain the previously reported zoning, within individual ore bodies,
of certain trace elements (Shawe, 1956, Botinelly and Fischer, written
communication, 1955).

Geochemists have stressed the importance of carbonaceous material
in causing a reduction of Eh and thereby causing precipitation of the
ore metals from solution. The fact that much carbonaceous material is
commonly associated with the ore deposits in the Bull Canyon district
would seem to lend support to this hypothesis. However, within a
cluster of ore deposits, carbonaceous material is nearly ubiquitoqs'
Abundant carbonaceous material occurs both in lenses of mineralized sand-
stone and in adjacent lenses of barren sandstone., Furthermore, some ore

deposits have been localized in lenses of sandstone containing little or
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no visible carbonaceous material, while adjacent lenses contain abundant
carbonaceous material but no ore. Close inspection of these occurrences
reveals that the ore bodies are consistently related to one or more of
the physical features which cause a reduction in the volume of the sand-
stone within the host-rock unit., Data obtained from mine studies in the
Bull Canyon district indicate that although carbonaceous material is one
feature that, by a reduction in Eh, could have influenced the deposition
of ore metals, it is not the only, or necessarily major, factor causing
precipitation of ore minerals. It is possible that highly reducing
volatiles such as HpS might, in some places, have "boiled off" from the
ore fluid due to a decrease in pressure. Such reducing volatiles could
induce precipitation of ore metals. It seems reasonasble to assume,
however, that the physical features so consistently associated with the
ore deposits had at least an equal role in causing precipitation of ore
metals. The ore deposits in the Bull Canyon district may have been
localized by a combination of: (1) exsolution of volatiles caused by
a pressure reduction on the ore fluid, and (2) the reducing action of
carbonaceous materials.

The following reports on mine studies in the Monogram Mesa-Bull
Canyon area have been published:

Thompson, M. E., Roach, C. He, and Braddock, William, 1956, New

occurrences of native selenium: Am., Mineralogist, v. 41,
p. 156-157.
Thompson, M. E. and Roach, C. H., 1955, Mineralogy of the Peanut

mine, Montrose County, Colorado (abstract): Geol. Soc.
America Bull., v. 66, p. 1625-1626.
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Slick Rock distriet, Colorado
by

D, R. Shawe, G. C. Simmons, and N. L. Archbold
The Slick Rock district comprises about 570 square miles in the
western part of San Miguel and Dolores Counties, Colorado (fig. 7). The
Geological Survey began geologic work in the district in 1953, with the
objectives of evaluating previous diamond drilling in the district, ex-
tending exploratory drilling to areas where possible uranium deposits
are deeply buried, synthesizing previous geologic studies pertaining to
the district, and undertaking additional studies. The purpose was to
present a comprehensive picture of the geology and ore deposits of the

Slick Rock district, and to discern the origin and genesis of the deposits,
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Stratigraphy

Consolidated sedimentary rocks cropping out in the Slick Rock
district range in age from Permian to Cretaceous. Older sedimentary
rocks which underlie these are known to rest on igneous and metamorphic
rocks of a probable Precambrian basement, Maximum thickness of exposed
sedimentary rocks in the district is about 4,700 feet and the total
section of sedimentary rocks underlying the district is about 13,000
feet. Only one igneous intrusive rock is kﬁown in the distriet, but
several igneous sills and dikes probably related to the San Juan volcanic
province lie not far to the east,

Data on consolidated sedimentary rocks in the district are sum~
marized in table l.

Structure

The Slick Rock district is in the Paradox Basin at the southwest
edge of the salt anticline region. Major folds in the district trend
about N. 55° W. and parallel the collapsed Gypsum Valley anticline
(figs 7). The Dolores anticline is about nine miles southwest of the
Gypsum Valley anticline; the Disappointment syncline lies between the
two anticlines, In the southeast part of the district the Glade anti-
cline branches eastward from the Dolores anticline.

A zone of faults bounding the southwest edge of the collapsed core
of the Gypsum Valley anticline occurs along the southwest limb of the
anticline, The Dolores fault zone is about two miles northeast of and
parallel to the axis of the Dolores anticline. Individual faults in

the zone strike N. 60° to 85° W, and form a séries of small en echelon
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grabens, The zone extends northwestward toward the Lisbon Valley anti-
cline in Utah. A few faults normal to the Dolores fault zone in the
northwest part of the district form a conjugate system. The south part
of the distriet is cut by the Glade fault zone, which trends about

N. 80° E. and extends westward into the Verdure graben in Utah.
Individual faults in the zone strike about N. 60° to 70° W.; depres-
sion of a long narrow block between two of these faults has formed the
Glade graben.

A major set of fractures is oriented parallel to the principal
faults in the district; a less prominent set, approximately parallel
to the fault zone normal to the Dolores fault zone, is oriented about
normal to the major set.

Sandstone dikelets in the Navajo sandstone along fractures striking
about N. 30° W. in the area of thg Dolores fault zone, may have formed
when the Navajo was partly unconsolidated, suggesting initiation of
fracturing in Early Jurassic time, At least two stages of fracturing
are shown in the distridt; some fractures pre-~date epigenetic alteration
of the rocks and have controlled the alteration, whereas some post-date
epigenetic alteration.

Sedimentary petrology

Some accessory heavy minerals in the rocks exposed in the Slick
Rock district contain appreciable amounts of some of the elements known
in the ore deposits in the Morrison formation. The rocks of Late
Cretaceous age contain traces of elements that may be related to the
advent of wvolcanism in the region of the Colorado Plateau near the end

of the Cretaceous period.
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All the clastic sedimentary rocks in the Slick Rock district older
than the Mancos shale and younger than the Rico formation contain several
hundredths to a few tenths of a percent heavy detrital minerals including
zircon, tourmaline, and leucoxene. Some of the rocks contain traces of
garnet, staurolite, and rutile. Heavy minerals that are authigenic in
most of the rocks include carbonates, leucoxene, barite, and anatase.
All the reddish rocks in the stratigraphic sequence contain in the order
of a tenth of a percent black opague minerals including hematite,
magnetite, and ilmenite. These black opaque minerals constitute about
half of the total heavy minerals in the rocks. Almost all the light-
gray, greenish-gray, and light-brown rocks in the stratigraphic sequence
contain little if any ilmenite, magnetite, and hematite, but do contain

These ‘

light-colored rocks have about half as much total heavy mineral content

pyrite or limonite that has probably been altered from pyrite.

as do the reddish rocks.

Black opaque heavy minerals in reddish rocks of the Morrison forma-
tion average about 0.017 percent copper, 0,004 percent lead; 0.006 per-
cent nickel, O.l13 percent vanadium, 0.24 percent chromium, 0.20 percent
zirconium, and 0,019 percent niobium. Magnetites commonly contain
vanadium, and as much as 4.8, percent vanadium in magnetite has been
reported (Palache, Berman, and Frondel, 1944, p. 702). Spectrographic
analyses of black opaque heavy minerals from reddish rocks of the Morrison
formation have not detected uranium in these minerals. However, some
vanadium~rich ilmenites contain a few tenths to several percent uranium,

as well as lead, chromium, zirconium, and other elements (Bannister and
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Horne, 1950; R. G. Coleman, written communication, 1956; Lawrence, 1957;
Mawson, 1944). Some non-vanadiferous ilmenites contain a few hundredths
to 0,20 percent U30g (Palache, Berman, and Frondel, 194k, p. 537). It
is possible that black opaque heavy minerals in reddish rocks of the
Morrison contain a few hundredths of a percent uranium that could not

be detected by spectrographic analysis.

Spectrographic analyses of many samples of pyrite sepafated from
the Mancos shale show that pyrite from rocks about 300 feet above the
base of the Mancos, at the base of the Later Carlisle fossil zone, con-
tains anomalous amounts of metallic elements including copper, chromium,
silver, gold, zine, tin, vanadium, yttrium, nickel, and zirconium. The
trace element content in pyrite decreases upward from that horizon, and
pyrite about 600 feet above the base of the formation contains about the
same amount of the metallic elements as does pyrite in the lower 300
feet of the Mancos.

Rock alteration

Color differences in the sedimentary rocks of the Slick Rock dis~
trict are related to the position of the uranium-vanadium deposits; to
clarify the relations a special study was made of the causes of color
differences. At least four types of post-depositional changes that
involve color differences have taken place; two of these changes are
thought to be diagenetic and two are considered epigenetic,

One type of change that is considered to be diagenetic took place
where sediments were deposited in an oxidizing environment in which no

carbonaceous material was present., Detrital magnetite and ilmenite were
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partly oxidized to form hematite and leucoxene respectively. Iron
was redistributed and redeposited as hematite coatings on sand grains
and clay fragments, imparting a reddish color to the rocks. This
change probably brought the "red beds™ as such into being (see also
Miller and Folk, 1955).

A second type of diagenetic change took place under reducing con-
ditions where abundant carbonaceous material was deposited with the
sediments., Magnetite and ilmenite were partly destroyed, and pyrite
apparently developed from the liberated iron. Sedimentary rocks
formed in this environment are light greenish gray to gray in color,

A third type of post-depositional change was epigenetic. It con-
sisted of almost complete destruction of magnetite, ilmenite, and
hematite (including hematite coatings on grains), and entailed forma-
tion of pyrite from liberated iron and recrystallization of barite and
leucoxene., Rocks affected by this epigenetic alteration are light
greenish gray to gray. They are similar in gross aspect to light
greenish-gray to gray rocks formed where abundant carbonaceous
material was deposited. For convenience in mapping, the two types have
been grouped and called "altered"™ rocks.

The epigenetic alteration described above is associated with at
least two major structural feaﬁures in the Slick Rock district. It
is found in rocks within and near the Dolores fault zone, and occurs
along the axial part of the Dolores anticline in the upper part of the
Entrada sandstone and adjacent to joints in sandstone of the Entrada

and Salt Wash.
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A fourth type of post-depositional change took place where Maltered®
rocks were exposed to weathering. The epigenetic change resulted as
pyrite oxidized to limonite; light greenish-gray to gray rocks became
light brown to buff.

Geologic history

Little is known of the Precambrian history of the Slick Rock
district, but the area was probably base-leveled by Paleozoic time.
The first known sediments-~carbonate rocks of the Ouray(?) (Devonian?)
and leadville (Mississippian) limestones and the arenaceous Molas |
formation (Pennsylvanian)-~were deposited in a shallow Sea. With
development of the Paradox Basin dﬁring the Pennsylvanian periocd,
carbonate and evaporite rocks of the Hermosa formation were deposited,
followed by the coarse clastic rocks of the Cutler formation of Permian
age.

From Early Triassic to Late Cretaceous time fluvial deposition
‘predominated in the region .around the Slick Rock district. During
this period the Dolores anticline was periodically folded, acquiring
several hundred feet of structural relief relative to the Disappointiment
syncline. Folding was accelerated during or shortly after the deposition
of the Navajo sandstone and again during the deposition of the Morrison
and Burro Canyon formations. Faulting and fracturing along the Dolores
fault zone probably began during one of these periods of accelerated
folding of the Dolores anticline.

In Late Cretaceous time gradual encroachment of the sea covering

eastern Colorado brought a change in sedimentation, and clay size
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material was deposited to form the Mancos shale. Periodically during
early Late Cretaceous time volcanic ash falls from volcanic eruptions
in the San Juan and Rocky Mountains to the east of the distriet were
buried in the Mancos shale. By the end of deposition of the Mancos
structural relief between the Disappointment syncline and the Dolores
anticline was.probably at least 1,500 feet at the horizon of the
Catler and Chinle contact and more than 1,000 feet at the top of the
Salt Wash member of the Morrison formation,

At the start of Later Carlisle time, during deposition of the
Mancos, unique and numerous volcanic eruptions, possibly submarine, may
have introduced abnormal amounts of several heavy metals into sea water.
These elements apparently were precipitated in diagenetic pyrite forming
in the Mancos. ‘

After deposition of the Mancos shale several thousand feet of
sedimentary rocks of the Mesaverde, Wasatch, and Green River formations
of latest Cretaceous and Eocene age probably were deposited in the
district. Erosion, accompanied by a recurrent rise of the Dolores anti-
cline and a second period of faulting and fracturing, possibly started
near the middle of the Tertiary. During the last part of the Tertiary
and in Pleistocene time an additional 2,000 feet of structural relief
developed between the Dolores anticline and the Disappointment syncline.

Near the close of the Tertiary period and during the Quaternary

period a variety of surficial deposits were deposited in the district.



5T

Stratigraphic and areal distribution of the uranium-vanadium deposits

. Most of the known uranium-vanadium deposits in the Slick Rock dis-
trict are in the Salt Wash member of the Morrison formation. Scattered
deposits occur in the Brushy Basin member of the Morrison and in the
lowest unit of the Chinle formation. The topmost sandstone unit of the
Salt Wash is the principal ore-bearing horizon.

Most of the known ore deposits are in the north part of the Slick
Rock district in a belt called the Dolores ore zone, which trends about
N. 55° W. The zone is about 20 miles long, 10 miles wide near the
northwest corner of the district, and narrows to about two miles south-
eastward. It lies within, and normal to, the southern end of the Uravan
mineral belt as defined by Fischer and Hilpert (1952). The only known
deposits in the district outside the Dolores ore zone are small deposits
along the Dolores River Canyon east of Dove Creek and newly discovered
deposits west of Egnar. Within the Dolores ore zone are narrower zones
to which the ore deposits are confined; these zones are a few thousand
feet wide and generally trend abbut N. 70° W. to east-west.

In the Slick Rock district uranium;vanadium deposits are chiefly
tabular to lenticular and parallel roughly the sedimentary bedding.
Some ore bodies, however, are narrow, elongate, and curve sharply across
bedding; these bodies have been called "rolls" by the miners (Fischer,
1942). Tabular deposits seem to be localized in massive sandstones
where clay and mudstone are interstitial, in scattered and streaked
gall and pebble accumlations, and in discontinuous lenses, whereas

roll deposits appear to be confined to sandstones where clay and mudstone
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are in numerous thin well-defined connecting layers. Most of the ore

deposits are in the lower part of the principal ore-bearing unit where
crossbedding is more prevalent.

Narrow zones of ore deposits within the Dolorés ore zone are
oriented almost parallel to sedimentary trends, which average about
Se. 70° E., as shown by current lineations in the principal ore-bearing
sandstone unit., Individual ore bodies within a single deposit also
follow this trend.

A11 ore deposits occur where abundant carbonaceous material was
deposited with the sediments.

Relations of the uranium-vanadium deposits to structural features

The Dolores ore zone coincides with the Dolores fault zone and is
widest where the fault zone is intersected by the northeasterly trending ‘I\
fault set to form a conjugate fault system. Ore deposits along the
Dolores River Canyon east of Dove Creek lie in the Glade fault zone.
Narrow zones of ore deposiis within the Dolores ore zone are oriented
almost parallel to the trend of principal faults and fractures in the
district but do not seem to be directly associated with individual faults.

Mineralogical and chemical composition of the ores

The mineralogy of the uranium~vanadium deposits in the Slick Rock
district is similar to that of deposits in other districts in the Uravan
mineral belt (Weeks, 1956). Copper-bearing minerals are more abundant
in some deposits in the district than in deposits elsewhere in the belt.

Gangue minerals that have been introduced during formation of the

uranium-vanadium ore bodies include carbonates and barite. Carbonate




59

in mineralized rock appears to be more magnesium-rich than carbonate

in barren rock near ore bodies., Barite in mineralized rock is pale
yellow and contains traces of several metallic elements, whereas
barite in barren rock is colorless and contains lesser amounts of the
metallic elements.,

Mineral zoning is evident in some oxidized ore bodies in the Slick
Rock district, and is similar to zoning noted in some oxidized and
unoxidized deposits in other parts of the Colorado Plateau. Roll ore
bodies with C~shaped cross sections are paralleled by carbonate-rich
zones close to the concave side of the roll, or near both sides
(Archbold, 1955). In some places a thin layer or concentric layers
of goethite, altered from pyrite, are found in barren rock near the .
concave edge of the roll. .Selenides and sulfides are concentrated in
a thin layer along the concave edge of the roll. Vanadium appears to
be contained largely in chlorite on the concave side of the roll,
whereas it is in both chlorite and mixed-layered mica-montmorillonite
on the convex side (J. C. Hathaway, written communication). Barite
is more abundant in the roll ore bodies than in barren rocke.

Uranium-vanadium deposits mined in the Slick Rock district to
date average about 0.22 percent U30g, 1.7 percent V05, and 0.07 per-
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