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Preface

This book began as a collection of class notes for a course on applied statistical methods for
hydrologists taught by Dennis Helsel, Robert Hirsch, Ed Gilroy, and others at the U.S. Geological
Survey (USGS) National Training Center. The first course was offered in 1986 and still contin-
ues at the USGS in a modified form more than 30 years later. Course material was formalized
and organized into a textbook, first published in 1992 by Elsevier as part of their Studies in
Environmental Science series. The first hardback contained an actual “floppy disk” in the back!
The paperback that followed contained a 3.5-inch diskette, as technology swiftly changed. In
2002, the text was republished by the USGS in its Techniques of Water-Resources Investiga-
tions series (book 4, chapter A3, version 1.1). The 2002 republished version was made freely
available online in digital form, though initially as individual chapter files in case the full 12 MB
file might overwhelm the reader’s download capability. Both the hardback version published in
1992 and the republished version in 2002 are considered the first edition of this book since the
republished version in 2002 is identical to the 1992 version except for five small errors fixed in
the more recent version.

Our book was originally intended to be a text in an applied statistics course in hydrology, envi-
ronmental science, environmental engineering, geology, or biology. For too long, scientists had
been asked to take examples from business, agronomy, public health, or other areas and apply
them to water resources science. Difficulties in doing so included the fact that water resources
data tend to be more skewed than data from other disciplines, and the common expectation
that “the assumption of a normal distribution is appropriate” was clearly not sufficient. Our
book was never intended to be a stand-alone text on statistics or a text on statistical hydrology.
There were (and are) excellent texts already available on probability theory and the statistics of
extreme events.

For this update, much has changed and much has stayed the same. We again chose to empha-
size topics not always found in introductory statistics textbooks and often not adequately
covered in statistical textbooks for scientists and engineers. We also point scientists toward
robust and nonparametric statistics, and to exploratory data analysis. Major changes are the
result of advances in computer technology now available to scientists. Less familiar but very
important resampling methods such as bootstrap and permutation tests have been added, much
as smoothing and Kendall-based trend methods were new for many readers back in 1992. As
before, exercises are included at the end of chapters.

The textbook now utilizes R, a programming language and free software environment for
statistical computing and graphics (https://www.r-project.org/). Text in the book shown in the
font Consolas denotes commands, functions, inputs, or outputs from R. More specifically,
text shown in the font Consolas and preceded by the cursor symbol (>) are R commands,
followed by R output generated by these commands. When an R command was too long to fit
on one line of text, the next line begins with a “+" symbol to denote the continuation of the R
command. This symbol must be deleted when copying and pasting the full command into R or
the command will fail to execute. Supplemental material (SM) for each chapter are available
at https://doi.org/10.5066/P9JWLEXR to re-create all examples and figures, and to solve the
exercises at the end of each chapter, with relevant datasets provided in an electronic format
readable by R. The SM, defined and referred to in each chapter as SM.X (where X is the chapter
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number) provide (1) datasets as .Rdata files for immediate input into R, (2) datasets as .csv files
for input into R or for use with other software programs, (3) R functions that are used in the
textbook but not part of a published R package, (4) R scripts to produce virtually all of the figures
in the book, and (5) solutions to the exercises as .html and .Bmd files. The suffix .Rmd refers to
the file format for code written in the R Markdown language; the .Rmd file that is provided in
the SM was used to generate the .html file containing the solutions to the exercises. Unless
otherwise noted, all data used in the in-text examples, figures, and exercises are downloaded
from the National Water Information System (U.S. Geological Survey, 2016) by means of the
dataRetrieval R package (De Cicco, 2016).

With a few exceptions of reprints, graphs in the text were plotted in R and are reproduced
exactly as output by the R code published in the SM for this book. The graphics are not always
uniform in their formatting to show variation in graphical options in R. Seeing these different
formats and how they are created may help readers to select the outputs most useful for their
work. Because the graphs are provided as examples of output and for instructional purposes
only, they have not been redrafted to follow the USGS standards for page-size illustrations in
terms of fonts and line weights.

Many contributed to the first edition, including other instructors for the USGS course. Ed Gilroy
critiqued and improved much of the original material, and now has added his own. Tim Cohn
contributed in several areas, particularly to the sections on bias correction in regression and
methods for data below the reporting limit. Richard Alexander added to the trend analysis
chapter, and Charles Crawford contributed ideas for regression and analysis of variance; their
work has undoubtedly made its way into this new edition. Ken Potter (University of Wisconsin)
and Gary Tasker (USGS) reviewed the original manuscript, spending long hours with no reward
except the knowledge that they have improved the work of others. Madeline Sabin carefully
typed original drafts of the class notes on which the first edition was based.

For the second edition, three new authors were added, including Karen Ryberg and Stacey
Archfield, who are presently among the instructors of the current version of the USGS course in
Environmental Data Analysis. Ed Gilroy expanded the book’s reach considerably by teaching it
to more than 1,000 students in Federal and state agencies and private firms after his retirement
from USGS.

Ken Potter (University of Wisconsin) and William Farmer (USGS) provided a review of the book
in its entirety and, as with the first edition, gave countless hours to read and improve the text.
We are also grateful to the numerous reviewers who carefully evaluated individual chapters
and provided invaluable comments: Brian Cade (USGS), Michael Chimney (South Florida Water
Management District), James Durant (Agency for Toxic Substances and Disease Registry),
William Farmer (USGS), Gregory Granato (USGS), Brian Gray (USGS), Tara Gross (USGS),
Margaret Guyette (St. Johns River Water Management District of Florida), Julie Kiang (USGS),
Kelsey Kolars (USGS), Jennifer Kostrzewski (Metropolitan Council of Twin Cities), Sally Letsinger
(Indiana University-Bloomington), Dendy Lofton (LimnoTech), Graham McBride (National Insti-
tute of Water and Atmospheric Research, New Zealand), Doug McLaughlin (National Council
for Air and Stream Improvement), Wesley Newton (USGS), Tom Nolan (USGS), Thomas QOver
(USGS), Valerie Partridge (Washington State Department of Ecology), Matt Pocernich (Oracle
Data Cloud), Nick Procopio (New Jersey Department of Environmental Protection), Emily Read
(USGS), Steven Saiz (Central Coast Regional Water Quality Control Board of California), Mark
Sandstrom (USGS), Keith Sawicz (AIR Worldwide), Lori Sprague (USGS), Paul Stackelberg
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(USGS), Michael Tomlinson (University of Hawai‘i at Manoa), Gregg Wiche (USGS), Aldo

(Skip) Vecchia (USGS), and Helen Yu (San Diego Regional Water Resources Control Board of
California). We also extend our gratitude to lan Willibeek-Lemair (Virginia Polytechnic Institute
and State University), who provided essential support in managing the many in-text citations
and bibliographic records and for converting the text and many equations from the first edition
into modern word-processing formats, and to Benjamin York (USGS), for his help in standardizing
the R code and for his review of the supporting information.

We are indebted to the many hydrologists and hydrologic technicians of the USGS and from
other institutions who have created the data that these methods were designed to analyze, and
to the talented software engineers who have curated many of the datasets we use. We are
indebted to the many students we have taught in our various courses and those who have con-
tacted us over the years asking interesting questions about how to evaluate new and different
types of datasets. Their questions help to keep us on our toes and continuing to seek new and
better approaches to data analysis. As always, the responsibility for all errors is ours alone.



Summarizing Univariate Data

A dataset is a collection of measurements that are used to learn about a population. For example,
the population might be the sodium concentration of all of the water in an aquifer, or the instantaneous
discharge values for river water passing a streamgage over a 50-year period, or the number of a particular
species of invertebrates on a streambed over a reach of river that is 10 kilometers in length. In each case
there is a population, which is very large, and only a part of that population is available to us. Our data
are the measurements that we take—the sample—and we use those data to try to characterize the overall
population. In this chapter we will only consider the univariate problem. That is, we just have one random
variable we are trying to characterize. In later chapters we will extend this topic to multiple variables with
the goal of characterizing how they vary in relation to each other. The choice of statistical methods to be
used to characterize a population based on the data we have in hand should be built on what we know
about the characteristics of the population. This statement involves the scientific process of model building
using both inductive (developing broad generalizations from specific examples) and deductive (deriving
conclusions from a general statement or hypothesis) reasoning. To select the right statistical method we
need to know something about the characteristics of the data. A goal of this chapter is to use common
experiences with hydrologic datasets to point to tools that are likely to work relatively well for certain types
of hydrologic data. We may read in the statistical literature about the optimality of a specific approach to
identifying characteristics of a population, but that optimality depends on an assumption that the population
has certain characteristics (things like normality and independence). Little is gained by employing analysis
procedures that assume the data conform to certain assumptions about their characteristics, when, in fact,
they do not. The result of such false assumptions may be that the interpretations provided by the analysis
are incorrect or unnecessarily inconclusive; therefore, we begin this book with a discussion of the common
characteristics of water resources data. Knowing these basic characteristics of the data is crucial to selecting
appropriate data analysis procedures.

One of the most frequent tasks when analyzing data is to describe and summarize those data in forms
that convey their important characteristics. “What is the sulfate concentration one might expect at this
location?” “How variable is hydraulic conductivity?” “What is the size of the flood that has an annual
probability of 1/100 (often called the 100-year flood)?”” Estimation of these and similar summary statistics
are fundamental to understanding the population we are interested in. Characteristics often described
include a measure of the center of the population, a measure of the variability of the population, a measure
of the symmetry of the probability distribution around its center, and perhaps estimates of extreme quantiles
of the population such as the 10-year low flow or 100-year flood. This chapter discusses methods for
summarizing a univariate dataset for the purposes of shedding light on the characteristics of the population
from which it was sampled.

This first chapter also demonstrates one of the major themes of the book—the use of robust statistical
techniques. A robust technique is one that works reasonably well over a wide range of situations (for
example, populations that have different probability distributions), in contrast to a technique that might be
optimal for some particular situation (for example, a normally distributed population) but works poorly
in other situations that one might encounter in practice. The reasons why one might prefer to use a robust
measure, such as the median, as opposed to a more classical measure, such as the mean, are explained.

In most cases, the hydrologist is given a finite sample (the dataset) to characterize a target population,
which is typically infinite in size. The population might be concentrations in all waters of an aquifer or
stream reach, or all streamflows over some time at a particular site. Rarely are all such data available to the
scientist. An example of a finite population would be the set of all lakes that exist within a geographical
area, but such finite populations are not commonly encountered. In the typical case of an infinite population
it would be physically impossible to collect all data of interest (all the water in a stream over the study
period), or if the population is finite, but very large, it may be too costly to collect a sample that includes
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every member of the population. Typically, a subset of the population, called the sample, is selected and
measured in such a way that conclusions about the sample may be extended to make inferences about the
characteristics of the population, such as its central tendency, variability, or the shape of the distribution.
Measures of central tendency (sometimes called location) are usually the sample mean or sample median.
Common measures of spread include the sample standard deviation and sample interquartile range. Use

of the word “sample” before each statistic conveys the idea that these are only estimates of the population
value. For example, the sample mean is an estimate of the population mean. Generally, we compute
statistics based on a sample and not the whole population. For this reason, the term “mean” should be
interpreted as the sample mean, and similarly for other statistics used in this book. When population values
are discussed they will be explicitly stated as such.

1.1 Characteristics of Water Resources Data

Data analyzed by water resources scientists often have the following characteristics:

1. Alower bound of zero. Negative values are rarely possible. There are certainly examples of variables
that can take on negative values, such as hydraulic heads measured against some datum, temperatures,
or flows in situations where flow reversals are possible (for example, backwater from a larger river or
from tidal waters), but in most cases hydrologic variables have a lower bound of zero.

2. The presence of outliers, observations that are considerably higher or lower than the vast majority of
the data. High outliers (such as flood discharges that are vastly larger than typical annual floods) are
more common in water resources than low outliers.

3. Positive skewness, which is typically a result of the properties listed in points 1 and 2 above.
Skewness can be expected when the values that are farthest from the center of the distribution occur
primarily on one side of the center rather than on both sides. An example of a positive-skewed
distribution, which is often a good representation of the population of some hydrologic variables, is
the lognormal distribution. The probability density function (pdf) of a lognormal distribution is shown
in figure 1.14. In a pdf, the horizontal axis covers the values that the random variable might take on.
The vertical axis is a measure of the probability that a given observation of that random variable will
take on that specific value. Most readers will be familiar with a histogram, which shows the frequency
with which the values of a random sample fall into each of several class intervals. A pdf conveys the
same kind of information, but does so with class intervals that are infinitely narrow and for which the
entire theoretical population is perfectly known. The area under the curve always equals 1, for any
pdf. A cumulative distribution function (cdf) of this same distribution is shown in figure 1.1B. In a cdf,
the vertical axis is a measure of the probability that a given observation of that random variable will
be less than or equal to that specific value. Thus, the vertical axis is bounded by zero and one. The cdf
is the integral of the pdf (or conversely the pdf is the first derivative of the cdf).

4. Non-normal distribution of data. The three points mentioned above (lower bound of zero, outliers, and
positive skewness) constitute one possible set of causes for data to be non-normal. The pdf of a normal
distribution and the cdf of the same distribution are shown in figure 1.2. Many classical statistical
methods assume that the population follows a normal distribution and, although in many fields of
science the assumption of normality is often a very defensible assumption, normality in hydrologic
data may be more the exception than the rule. Even in cases where the pdf is symmetric, the normal
assumption may be poor, because extreme values can be more common than one would expect from a
normal distribution. Such distributions are often called heavy tailed distributions.

5. Data reported only as below or above some threshold. In statistics these are known as censored
data. Examples include concentrations of a chemical or particles that are reported as being below a
laboratory reporting limit (for example, arsenic concentration in this sample is <0.001 milligrams per
liter [mg/L]), annual flood discharges that are known only to be lower than a level that would have
caused the creation of a long-lasting public record of the flood (for example, the annual flood of 1888
is <20,000 cubic meters per second [m?/s]), and hydraulic heads that are known to have been above
the land surface at some point in time because they are shown as flowing artesian wells on old maps
(for example, head >800 meters above mean sea level in 1910).
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6. Seasonal patterns. Values tend to be higher or lower in certain seasons of the year. If these regular
seasonal patterns are not considered in the analysis, this part of the variation is likely to be viewed as
random noise, even though it is highly predictable.

7. Autocorrelation. Observations tend to be strongly correlated with other observations that are nearby.
In the case of time series data the term “nearby” refers to close in time, which means that high values
tend to follow high values and low values tend to follow low values. In the case of time series, this
autocorrelation is also known as serial correlation. In the case of spatial data (for example, water
levels or chemical concentrations in a set of wells) the term “nearby” indicates geographic proximity.
This is the tendency for high values to be near other high values and low values to be near other low
values. One of the consequences of autocorrelation is that the accuracy of any statistical estimates will
be overstated if this property is ignored. For example, 100 observations of a random variable should
provide a fairly accurate estimate of the population mean, but if the samples collected were spaced
very close in time and the serial correlation was strong, the accuracy of the estimate of the population
mean may be no better than what could be derived from a set of only 10 uncorrelated observations
from that population.

8. Dependence on other variables. For example, the probability distribution of chemical concentrations
in a stream can change dramatically with water discharge, or the distribution of hydraulic conductivity
can be very different for lithologies with different particle size distribution. Failure to recognize and
deal with the dependencies can greatly diminish the ability to describe and understand the variation in
the variable of interest.

Methods for analysis of water resources data, whether the simple summarization techniques mentioned
in this chapter or the more complex procedures of later chapters, should be selected based on consideration
of these common properties. Failure to consider them can lead to mistaken conclusions or can result in
analyses that are relatively ineffective at extracting accurate or meaningful inferences from the data.

1.2 Measures of Central Tendency

The mean and median are the two most commonly used measures of central tendency (sometimes
known as location), though they are not the only measures available. What are the properties of these two
measures, and when should one be employed over the other?

1.21 A Classical Measure of Central Tendency—The Arithmetic Mean

The arithmetic mean (X), here referred to simply as the mean, is computed as the sum of all data
values X, divided by the sample size n:

X =

3 |}<

(1.1)

For data that are in one of k groups, equation 1.1 can be rewritten to show that the overall mean depends on
the mean for each group, weighted by the number of observations (n,) in each group:

— L3 — n.
xX=> ; (1.2)

where X, is the mean for group i. The influence of any one observation X on the mean can be seen by
placing all but that one observation in one group, or

= = (n-1) R = 1
X=Xt X (j.)+(X/.—X(j))-;, (1.3)
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where X ) is the mean of all observations excluding X; Each observation’s influence on the overall mean
= . = 1 . . . .
X is (X I X ) ) -—, the distance between the observation and the mean, excluding that observation

T n

divided by the sample size n. Thus all observations do not have the same influence on the mean. An outlier
observation, either high or low, has a much greater influence on the overall mean X than does a more
typical observation, one closer to its X )

Another way of illustrating this influence is to imagine that the mean is the balance point of the data,
when each point is stacked on a number line (fig. 1.3) and is assumed to have equal weight. Data points
further from the center exert a stronger downward force than those closer to the center. If one point near the
center were removed, the balance point would only need a small adjustment to keep the dataset in balance,
but if one outlying value were removed, the balance point would shift dramatically (fig. 1.4). The mean is
a summary statistic that is not resistant to changes in the presence of, or to changes in the magnitudes of,

a few outlying observations. Thus, we may want to use other measures of central tendency that are more
resistant to the influence of outlying observations. It may be the case that we truly want to use the mean as
our measure of central tendency, because we are interested in a variable that is going to be expressed as a
sum. An example is the case where we want to know the mean of the flux of some material (for example,
a nutrient or suspended sediment) into a receiving water body. In this case, we truly want to know the
mean value of the flux. In contrast, where we are looking to characterize typical values of some variable,
we may want to consider other more resistant statistics for the central tendency. The median (discussed

in section 1.2.2.) is a great example of a resistant estimator of central tendency; another is the mode
(section 1.2.3.).

1.2.2 A Resistant Measure of Central Tendency—The Median

The median, or 50th percentile (P ), is the central value of the distribution when the data are sorted
by magnitude. For an odd number of observations, the median is the data point that has an equal number of
observations both above and below it. For an even number of observations, it is the arithmetic mean of the
two central-most observations. To compute the median, first sort the observations from smallest to largest,

so that X(1) is the smallest observation and X(n) is the largest observation. Then

X (HTHJ when n is odd

l X n +X ﬁ+1 when n is even
2 2 2

The median is only minimally affected by the magnitude of any single observation. This resistance
to the effect of a change in value or presence of outlying observations is often a desirable property.
To demonstrate the resistance of the median, suppose the last value of the following dataset (a) of 7
observations was multiplied by 10 to obtain dataset (b):

median = P, ;) = (1.4)

Example 1.1. Resistance of the mean and median
Dataset () 2489111112 X=81 P, =9

Dataset (b)) 2489 1111120 X =236 P, =9

The arithmetic mean increases from 8.1 to 23.6. The median, the (7 + 1) th or fourth lowest data
point, is unaffected by the change. 2

When a summary value of the central tendency is desired that is not strongly influenced by a few
extreme observations, the median is preferable to the arithmetic mean. One such example is the chemical
concentration one might expect to find over many streams in a given region. Using the median, one stream
with unusually high concentration has no greater effect on the estimate than one with low concentration.
The mean concentration may be pulled towards the outlier and be higher than concentrations found in most

of the streams; this would not be the case for the median.
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Figure 1.3. Graph showing the arithmetic mean (triangle) as the balance point of a dataset. The mean is 12.

0 5 10 15 20 25 30 35 40

Figure 1.4. Graph showing the shift of the arithmetic mean (triangle) downward after removal of an outlier. The
mean is 7.67.

1.2.3 Other Measures of Central Tendency

Three other measures of central tendency are less frequently used: the mode, the geometric mean, and
the trimmed mean. The mode is defined as the most frequently observed value. It is more applicable with
discrete data (where the only possible data values are integers). It can be computed for continuous data,
but the user must define a bin size to sort the data into. For example, the bins might be values from 0.5 to
1.499, 1.5 to 2.499, and so forth. Another example might be values from 0 to 9.99, 10 to 19.99, and so on. It
is very easy to obtain, but a poor measure of location for continuous data because its value depends on the
definition of the bins.

The geometric mean (GM) is often reported for positively skewed datasets. It is only defined in cases
where all data values are positive. By definition, it is the nth root of the product of the n values in the
sample.

GM =X X, X, (1.5)

A simple way to calculate it is to take the mean of the logarithms of the data and then transform that
value back to the original units.

GM =exp(Y) , (1.6)

where

-~
I
5
»
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Note, in this book the natural (base e) logarithm will be abbreviated In, and its inverse e* will be
abbreviated exp(x). For positively skewed data, the geometric mean is usually quite close to the median
(not so for negatively skewed data). In fact, when the logarithms of the data are symmetric, the geometric
mean is an unbiased estimate of the median. This is because the median and arithmetic mean logarithms are
equal, as in figure 1.2. When transformed back to original units, the geometric mean continues to have half
the observations below it and half above, and so it is located at the median and is lower than the arithmetic
mean (fig. 1.1). The geometric mean will always be lower than or equal to the arithmetic mean. This point
becomes important in later chapters.

A compromise between the median and mean is the trimmed mean, which is the arithmetic mean
computed after trimming off equal numbers of the lowest and highest observations. Such estimates of
location are not influenced by the most extreme (and perhaps anomalous) ends of the sample, as is the
mean. Yet they allow the magnitudes of most of the values to affect the estimate, unlike the median. A
common trimming is to remove 25 percent of the data on each end—the resulting mean of the central 50
percent of data is commonly referred to the trimmed mean, but is more precisely the 25-percent trimmed
mean. A 0-percent trimmed mean is the arithmetic mean itself, and a 50-percent trimmed mean is the same
as the median. Percentages of trimming should be explicitly stated when used. The trimmed mean is a
resistant estimator of central tendency, as it is not strongly influenced by outliers. It may be considered
a weighted mean, where data beyond the cutoff window are given a weight of 0, and those within the
window, a weight of 1.0.

In R, the function for determining the mean is mean; for the median, the function is median. The
trimmed mean can be computed with the function mean, using the trim argument. For example, a
trimmed mean with 25 percent trimming on each side (or 25-percent trimmed mean) would be computed as
mean(x, trim = 0.25). The computation of the geometric mean is given in the solutions to exercise 1
at the end of this chapter. The mode can be computed in a two-step process.

> y <- table(as.vector(x))
> modeX <- as.numeric(names(y) [y == max(y)])

Take note here that there may be more than one value returned as the mode and also note that
calculation of the mode depends on the extent to which the values are rounded.

1.3 Measures of Variability

It is just as important to know how variable the data are as it is to know their central tendency or
location. Variability in the data is often called spread, and there are several measures of variability that can
be used.

1.3.1 Classical Measures of Variability

The sample variance and its square root, the sample standard deviation, are the classical measures of
variability. Like the mean, they are strongly influenced by extreme values. The sample variance is denoted
as s its square root, denoted s, is the sample standard deviation.

52 =Zn:M (1.7)

i=1 (n - 1)

The values are computed using the squares of deviations of data from the sample mean, so that
extreme values influence their magnitudes even more so than for the mean. When extreme values are
present, these measures are unstable and inflated. They may give the impression of much greater variability
than is indicated by the majority of the dataset. In R, the standard deviation may be computed with the
function sd and the variance can be computed as the square of the value resulting from sd or simply by
using the function var.
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1.3.2 Resistant Measures of Variability

The interquartile range (IQR) is the most commonly used resistant measure of variability. It measures
the range of the central 50 percent of the data and is not influenced at all by the 25 percent on either end.

The IQR is defined as the 75th percentile minus the 25th percentile. The 75th, 50th (median), and 25th
percentiles split the data into equal-sized quarters. The 75th percentile (P, .,), also called the upper quartile,
is a value that exceeds no more than 75 percent of the data and is therefore exceeded by no more than
25 percent of the data. The 25th percentile (P, ,,), or lower quartile, is a value that exceeds no more than
25 percent of the data and is therefore exceeded by no more than 75 percent. Consider a dataset ordered

from smallest to largest: X, i=1,2,...,n. Percentiles (P/) are computed using equation 1.8

P=X,.,., . (1.8)

where 7 is the sample size of X, and j is the fraction of data less than or equal to the percentile value (for the
25th, 50th, and 75th percentiles, j=0.25, 0.50, and 0.75, respectively).

For the datasets used in example 1.1, n=7, and therefore the 25th percentile is X7i1y025 OF X, =4,
the second lowest observation. The 75th percentile is X,, the sixth lowest observation, or 11. The IQR is
therefore 11—4=7. When values of (n+1) -/ are not integers, then some type of interpolation method is
needed to compute the percentiles. There are several different ways to do this computation. The preference
for this book is to use the R function quantile. This function allows the user to specify the type of
interpolation. There are nine possible types of interpolation available in R for this function. With large
sample sizes (greater than about 100 observations), the choice of type is of very little consequence. The
choice preferred here, type = 6, is commonly known as the Weibull plotting position, which has a long
history in hydrology (Weibull, 1939). In hydrology the term “plotting position” comes from the rules for
constructing an empirical cumulative distribution function, which plots the individual observations in the
sample (in ranked order) against an estimated probability of nonexceedance. That estimated probability
is called the plotting position. Hydrologists have historically also used the Hazen plotting position (which
corresponds to type = 5) (Hazen, 1914) and the Blom plotting position (Blom, 1958), (type = 9),
which are both used in flood frequency analysis and in distribution fitting methods (as discussed in chap. 4).
For an extensive discussion of these algorithms, see Hyndman and Fan (1996), which explains each type
using the same system for the numbering for the choices of type that is used in R. Using our preferred
choice, type = 6, the R commands for computing the IQR of a dataset (with the data stored as a vector
called x) are the following:

> quant <- as.numeric(quantile(x, type = 6))
> IQR <- quant[4] - quant[2]

Note that the default for the quantile command is that it returns a set of five values representing,
in this order, the minimum, lower quartile, median, upper quartile, and maximum. One of the arguments
to the quantile function is probs, which can be either a scalar or vector for the probabilities we wish to
estimate. When the argument probs is set equal to some other sequence of values (which are in the range
of 0 to 1), then the function returns a set of values for each specified probability value. An alternative way
to compute the IQR would be in a single line:

> IQR <- quantile(x, probs = 0.75, type = 6) - quantile(x, probs =
0.25, type = 6)
There is a standard R function for the IQR (which is called IQR). When the default values of the
function are used, the function will return a different value than what is defined above because the default

is type = 7, known as the Gumbel plotting position. See section 2.1.2. for a discussion of these choices.
However, it can return exactly the value of the IQR as defined here by calling it in this manner:

> IQR(x, type = 6)

In most cases, the difference between the results will be quite small if the sample size is larger than
about 100 observations.

9
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Another resistant estimator of variability is the median absolute deviation, or MAD. The MAD
is computed by first computing the median of the dataset and then computing the absolute value of all
differences, |d,.|, between each observation (X) and the median. The MAD is the median of these absolute
differences.

MAD(X) = median|d,| , (1.9)

where
d, =X, —median(X) -

In R, the function MAD computes the median absolute deviation of a dataset.

We now compare the estimates of spread for the datasets introduced in example 1.1. First we will
compute the three measures of spread (IQR, MAD, and standard deviation) with dataset (a). The code and
output are shown here:

> x <- c(2, 4, 8, 9, 11, 11, 12)
> quant <- as.numeric(quantile(x, type = 6))
> igR <- quant[4] - quant[2]
> xbar <- mean(x)
> SD <- sqgrt(sum((x - xbar)”2) / (length(x) - 1))
> med <- median(x)
> MAD <- median(abs(x - med))
> cat("IQR =", igR, ", MAD =", MAD, ", Standard Deviation =", SD)
IQR = 7 , MAD = 2 , Standard Deviation = 3.804759
Now we will change the last value in the dataset from 12 to 120 to form dataset (b) and run it again.
> x <- c(2, 4, 8, 9, 11, 11, 120)
> quant <- as.numeric(quantile(x, type = 6))
> igR <- quant[4] - quant[2]
> xbar <- mean(x)
> SD <- sqgrt(sum((x - xbar)”2) / (length(x) - 1))
> med <- median(x)
> MAD <- median(abs(x - med))
> cat("IQR =", igR, ", MAD =", MAD, ", Standard Deviation =", SD)
IQR = 7, MAD = 2 , Standard Deviation = 42.65699

The results show that when we change the last value in the dataset from 12 to 120, the IQR and MAD
do not change at all, but the standard deviation increases from 3.8 to 42.7. This demonstrates that both the
IQR and MAD are resistant to outliers but the standard deviation is highly sensitive to them, suggesting that
the IQR or MAD might be more reliable measures of spread. Note that the value returned here for IQR is
different from the value one would get from the IQR function and the MAD value is also different from the
value one would get from the MAD function in R.

1.3.3 The Coefficient of Variation—A Nondimensional Measure of Variabhility

One more measure of variability is the coefficient of variation (CV). The sample CV is defined as
the standard deviation of the sample divided by the mean of the sample. It is dimensionless and it can
be very useful in characterizing the degree of variability in datasets. For example, when comparing the
distributions of some random variable related to streamflow or stream transport rates we might expect to
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find that mean flow or transport increases with the size of the drainage area. However, we can obtain a more
meaningful perspective by comparing the CV of flow or of transport across multiple sites in order to gain
an understanding of the way that variability changes across multiple stream sites in a region.

1.4 Measures of Distribution Symmetry

Hydrologic data are typically skewed, which means that their distribution is not symmetric around
the mean or median, with extreme values extending out farther in one direction than the other. The density
function for a lognormal distribution, shown in figure 1.1, illustrates an asymmetric distribution; in this
case, one with positive skewness. When extreme values extend the right tail of the distribution, as they do
with figure 1.1, the data are said to be skewed to the right, or positively skewed. Left skewness, when the
tail extends to the left, is called negative skew.

When data are skewed, the arithmetic mean is not expected to equal the median. Rather, the arithmetic
mean is on the side of the median with the longer tail of the distribution. Thus, when data have positive
skewness, the mean typically exceeds more than 50 percent of the data (the mean is larger than the median),
as in figure 1.1. The standard deviation is also inflated by the long tail. Therefore, tables of summary
statistics including only the mean and standard deviation (or variance) are of questionable value for water
resources data. These types of data often have considerable skewness and, thus, the mean and standard
deviation reported may not describe the data very well, as both will be inflated by outlying observations.
Summary tables that include the median and other percentiles have far greater applicability to skewed data.
Skewed data also call into question the applicability of many hypothesis tests (discussed in chap. 4) that
are based on assumptions that the data follow a normal distribution. These tests, called parametric tests,
may be of questionable value when applied to water resources data, as the data are often neither normal nor
symmetric. Later chapters will discuss this in detail and suggest several solutions.

1.41 A Classical Measure of Symmetry—The Coefficient of Skewness

The coefficient of skewness (g) is the skewness measure used most often. In statistical terms, it is the
centralized third moment (moment is generally defined as a sum of the data values raised to some specified
power) divided by the cube of the standard deviation (where the mean and variance are the first and second
moments, respectively):

(%, %)
S3 .

X

(1.10)

)%

i=1

A right-skewed distribution has a positive g; a left-skewed distribution has a negative g. Again, the
influence of a few outliers is important—an otherwise symmetric distribution having one outlier will
produce a large (and possibly misleading) measure of skewness. For the example datasets introduced in
example 1.1, the skewness coefficient increases from —0.84 to 2.6 when the last data point is changed
from 12 to 120. Extensive Monte Carlo testing has been used to explore the accuracy of sample skewness
coefficients (Wallis and others, 1974) and it has shown that with sample sizes typical in hydrology, often
less than 100 observations, the skewness coefficient can be highly biased; this means that the expected
value of the sample statistic is much smaller, in absolute value, than the true value of the statistic, which
we can call the population skewness, and has a great deal of sampling variability. Kirby (1974a) showed
that the skewness coefficient has an algebraic bound, meaning that for any given sample size, the absolute
value of the sample skewness coefficient has a finite upper bound, and this bound may be less than the
absolute value of the true population coefficient of skewness. Only when the population value of skewness
is zero is the sample coefficient of skewness an unbiased estimate. An alternative less biased approach to
describing skewness that is more resistant to outliers is the L-moment approach developed by Hosking
(1990). Discussions of this method are beyond the scope of this book. The important point is that unless
sample sizes are large (well above 100 samples), skewness coefficients computed using equation (1.10) are
not very informative except to the extent that they may distinguish between right-skewed and left-skewed
populations.

1"
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142 A Resistant Measure of Symmetry—The Quartile Skew
A resistant measure of symmetry is the quartile skew gs (Kenney and Keeping, 1954):

(Po.75 _Po,so)_(Po.so _Elzs) (1.11)
P..—P

0.75 0.25

qs =

defined as the difference in distances of the upper and lower quartiles from the median, divided by the IQR.
A right-skewed distribution again has a positive gs; a left-skewed distribution has a negative gs. Similar to
the 25-percent trimmed mean and IQR, gs uses the central 50 percent of the data. For the example dataset,
qs=(11-9)—(9—4)/(11—4)=-0.43 for both datasets (a) and (b). Note that this resistance may be a liability
if sensitivity to a few observations is important.

In R, the gs value can be computed from the data (here stored in a vector called x), with the following
two lines of code.

> pvals <- as.numeric(quantile(x, probs=c(@.25, 0.5, 0.75), type=6))

> gqs <- ((pvals[3]-pvals[2]) - (pvals[2]-pvals[1])) /
(pvals[3]-pvals[1])

1.5 Other Resistant Measures of Symmetry

Other percentiles may be used to produce a series of resistant measures of location, spread, and
skewness. For example, the 10-percent trimmed mean can be coupled with the range between the 10th and
90th percentiles as a measure of spread and a corresponding measure of skewness:

P,—P,)-(P,—PF
5010 :( 0.90 ;1350) 53050 0.10) (1.12)

090 — to.10

to produce a consistent series of resistant statistics. Geologists have used the 16th and 84th percentiles for
many years to compute a similar series of robust measures of the distributions of sediment particles (Inman,
1952). Measures based on quartiles have generally become standard, and other measures should be clearly
defined prior to their use. The median, IQR, and quartile skew can be easily summarized graphically using
a boxplot (see chap. 2) and are familiar to most data analysts.

1.6 OQutliers

Outliers, observations whose values are quite different than others in the dataset, often cause great
interest or alarm. Their presence raises the questions (1) Did they arise as a result of some error (for
example, instrument malfunction or data entry error) or (2) do they represent a reasonably accurate
observation of an unusual situation? Outliers are often dealt with by removing them prior to describing data
or prior to applying some of the hypothesis test procedures discussed in later chapters. One of the goals
of this book is to present methods that are relatively resistant to the influence of outliers so that there is no
need to delete them from the dataset in order to conduct a meaningful analysis. Outliers may be the most
important points in the dataset, and should be investigated further. If outliers are deleted, it creates the risk
that those who use the dataset will only see what they expected to see and may miss gaining important new
information. Outliers typically have one of these three causes:

1. A measurement or recording error;

2. An observation from a different population than most of the data, such as a flood caused by a dam
break rather than by precipitation or a concentration resulting from a brief chemical spill into a river; or

3. Arare event from a single population; for example, if floods are always caused by rainfall events, the
outlier may arise simply because the rainfall was extreme.
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The graphical methods presented in chapter 2 are very helpful for identifying outliers. Whenever
outliers occur, the analyst should first verify that the value recorded is not simply an error in locating
the decimal point or some other kind of transcription error. If this type of error is found then the value
should be corrected, if possible. The effort that should be invested in verification, such as rerunning the
sample in the laboratory, will depend on the benefit gained versus the cost of verification. It may not be
possible to duplicate past events. If no error can be detected and corrected, outliers should not be discarded
based solely on the fact that they appear unusual. Outliers are often discarded in order to make the data
fit nicely to a preconceived theoretical distribution. There is no reason to suppose that they should! The
entire dataset may arise from a skewed distribution, and taking logarithms or some other transformation
may produce quite symmetrical data. Even if no transformation achieves symmetry, outliers need not
be discarded. Rather than eliminating actual (and possibly very important) data in order to use analysis
procedures requiring symmetry or normality, outlier-resistant methods should be employed. If computing a
mean appears of little value because of an outlier, the median is a more appropriate measure of location for
skewed data. If performing a #-test (described later) appears invalidated because of the non-normality of the
dataset, use a rank-sum test instead. In short, let the data guide which analysis procedures are employed,
rather than altering the data in order to use some procedure having requirements too restrictive for the
situation at hand. Sensitivity studies based on multiple alternative values and (or) explanations of the most
extreme values in the dataset may be options for datasets with extreme values.

1.7 Transformations

There are three common reasons to consider transformations of the data (and often more than one of
them are involved):

1. To make data distributions more symmetric,
2. To make relations between variables more linear, and

3. To make variability more constant.

Many effective statistical methods (for example, linear regression or analysis of variance) are only
appropriate when the data (and in some cases, model errors) follow a symmetric distribution, relations
among variables are linear, and errors are homoscedastic (have a constant variance over the range of
predicted values). Transformations of the original data can sometimes produce these characteristics even
when the original data do not possess these qualities. Thus the use of transformed variables enables the
analyst to use a set of useful statistical tools that might not be appropriate if the original data were not
transformed. However, using a transformation requires some special considerations in the interpretation
of results (for example, retransformation bias correction, which is discussed in chap. 9). Selection of
an appropriate transformation is not an arbitrary choice but needs to be guided by the data and by some
theoretical considerations.

Transformations can help to create a variable that has better statistical properties than the original
measured variable. For example, the negative logarithm of hydrogen ion concentration, pH, is as valid a
measurement system of hydrogen ion concentration itself and tends to produce a nearly symmetrical, rather
than skewed, distribution. Transformations, like the square root of depth to water at a well, or cube root of
precipitation volume, should bear no more stigma than does pH. These measurement scales may be more
appropriate for data analysis than the original units. Hoaglin (1988) has written an excellent article on
hidden transformations, consistently taken for granted, which are in common use by everyone. Octaves in
music are a logarithmic transformation of frequency. Each time a piano is played, a logarithmic transform is
employed! Similarly, the Richter scale for earthquakes, graphs of long-term price variations of stock market
indices, and f-stops for camera exposures all employ transformations. In the science of data analysis, the
decision of which measurement scale to use should be determined by the data, not by preconceived criteria.
The objectives for use of transformations are those of symmetry, linearity, and homoscedasticity. This
is discussed more in the chapters on regression and trend analysis (chaps. 9, 11, and 12). We must also
remember that the use of many resistant techniques such as percentiles and nonparametric test procedures
(to be discussed later) are invariant to measurement scale.

13
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1.7.1 The Ladder of Powers

Transforming or re-expressing data in new units is a common approach to making asymmetric
distributions more symmetric. These new units alter the distances between observations on a line plot.

The effect is to either expand or contract these distances between extreme observations on one side of the
median to make it look more like the behavior on the other side. The most commonly used transformation
in water resources is the logarithm. Statistical analyses are performed on the logarithms of water discharge,
hydraulic conductivity, or concentration rather than on the raw data values.

Most other transformations usually involve power functions of the form y=x% where x is the
untransformed data; y, the transformed data; and 6, the power exponent. In table 1.1, the values of 6
are listed in the ladder of powers introduced by Velleman and Hoaglin (1981), a useful structure for
determining a proper value of 6.

As can be seen from the ladder of powers, any transformations with 6 less than 1 may be used to make
right-skewed data more symmetric. Constructing a boxplot or Q-Q plot (see chap. 2) of the transformed
data will indicate whether the transformation was appropriate. Should a logarithmic transformation
overcompensate for right skewness and produce a slightly left-skewed distribution, a milder transformation
with 6 closer to 1 should be employed instead, such as a square-root (6= 1/2) or cube-root (=1/3)
transformation. Transformations with 6 >1 will aid in making left-skewed data more symmetric.

The tendency to search for the best transformation should be avoided. For example, when dealing with
several similar datasets, it is probably better to find one transformation that works reasonably well for all,
rather than using slightly different ones for each. It must be remembered that each dataset is a sample from
a larger population, and another sample from the same population will likely indicate a slightly different
best transformation. Determination of best with great precision is an approach that is rarely worth the effort.

Table 1.1. Ladder of powers as modified from Velleman and Hoaglin (1981).

[6, the power exponent; -, not applicable]

0 Transformation Name Comment

Used for negatively skewed distributions

i X ith power -
3 X3 Cube -
2 X2 Square -
Original units
1 X Original units No transformation.

Used for positively skewed distributions

1/2 Jx Square root Commonly used.

1/3 %/; Cube root Commonly used. Approximates a gamma
distribution.

0 log(x) Logarithm Very commonly used. Holds the place of x°.

—-1/2 -1/ \/; Negative square root The minus sign preserves the order of

observations.

-1 —1/x Negative reciprocal -

-2 —1/x? Negative squared reciprocal -

-1 —1/x Negative ith reciprocal -
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Exercises

1. Yields in wells penetrating rock units without fractures were measured by Wright (1985), and are

given below. Calculate the values for the terms listed below. Then compare these estimates of location.
Why do they differ?

A. Mean
B. Trimmed mean (at 10-percent trimmed and 20-percent trimmed)
C. Geometric mean
D. Median
Unit well yields (in gallons per minute per foot)
0.001 0.030 0.10 0.003 0.040 0.454
0.007 0.51 0.49 0.020 0.077 1.02

2. For the well yield data of exercise 1, calculate the values for the terms listed below. Then discuss the
differences in the values for a through c.

A. Standard deviation

B. Interquartile range

C. Median absolute deviation
D. Skew and quartile skew

3. Ammonia plus organic nitrogen (mg/L) was measured in samples of precipitation by Oltmann and
Shulters (1989). Some of their data are presented below. Compute summary statistics for these
data. Which observation might be considered an outlier? How should this value affect the choice of
summary statistics used?

A. To compute the mass of nitrogen falling per square mile.

B. To compute a typical concentration and variability for these data?

Ammonia plus organic nitrogen
0.3 0.9 0.36 0.92 0.5 1.0 0.7 9.7 0.7 1.3







Graphical Data Analysis

Perhaps it seems odd that a chapter on graphics appears near the front of a text on statistical methods.
We believe this is very appropriate, as graphs provide crucial information that is difficult to obtain in any
other way. For example, figure 2.1 shows four scatterplots, all of which have exactly the same correlation
coefficient (a correlation coefficient is a measure of the degree of association between two variables,
discussed in detail in chap. 8). Computing statistical measures without looking at a plot is an invitation
to misunderstanding data, as figure 2.1 illustrates. Graphs provide visual summaries of data, which more
quickly and completely describe essential information than do tables of numbers. Given the capabilities of
modern statistical software there is no basis for any hydrologist to say, “I didn’t have time to plot my data.”
Plotting the data is an essential step in data analysis.

A good set of graphs is essential for two purposes:

1. To provide the analyst insight into the data under scrutiny, and

2. To illustrate important concepts when presenting the results to others.

The first of these tasks has been called exploratory data analysis (EDA), and is the subject of this
chapter. EDA procedures often are (or should be) the first look at data. Patterns and theories of how the
system behaves are developed by observing the data through graphs. These are inductive procedures—the
data are summarized rather than tested. Their results provide guidance for the selection of appropriate
deductive hypothesis testing procedures.

Once an analysis is complete, the findings must be reported to others. Whether a written report or oral
presentation, the analyst must convince the audience that the conclusions reached are supported by the
data. No better way exists to do this than through graphics. Many of the same graphical methods that have
concisely summarized the information for the analyst will also provide insight into the data for the reader
or audience. The use of graphics for presentation purposes is the subject of chapter 16. For readers of this
text who are interested in following the R scripts provided, we have written the R scripts for our graphics
using commands that provide a polished graphic, which should be suitable for presentations. As a result,
our commands are somewhat lengthy and complex. In many cases, graphics that are entirely suitable for
exploratory data analysis purposes can be done with much simpler versions of the same commands that rely
on default values for many arguments. We have generally not shown these simpler versions. We warn the
readers that a simple graphic, suitable for quick looks in the EDA process, should not be used in making
presentations and for that reason we provide more elaborate scripts here than what might be used for EDA.

This chapter begins with a discussion of graphical methods for analysis of a single dataset. Two
methods are particularly useful, boxplots and probability plots, and their construction is presented in detail.
Next, methods for comparison of two or more groups of data are discussed. Bivariate plots (scatterplots) are
also presented, with an especially useful enhancement called a smooth. The chapter ends with a discussion
of plots appropriate for multivariate data.

Two datasets will be used to compare and contrast the effectiveness of each graphical method
throughout sections 2.1 and 2.2. These are annual streamflow in cubic meters per second (m?/s) for the
James River at Cartersville, Va., for water years 1900-2015, and unit well yields (in gallons per minute per
foot of water-bearing material) for valleys without fracturing in Virginia (Wright, 1985).
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Figure 2.1. Four scatterplots of datasets that all have the same traditional statistical properties of
mean, variance, correlation, and x-y regression intercept and coefficient. These datasets are known
as Anscombe’s quartet (Anscombe, 1973) and are available in R.

2.1 Graphical Analysis of Single Datasets

21.1 Histograms

Histograms are familiar graphics, and their construction is described in numerous introductory texts
on statistics. They portray the central tendency, variability, and symmetry of the dataset. If the sample was
infinitely large then they would converge to being the probability density function of the population (such
as those depicted in figures 1.1 and 1.2). The process of creating a histogram is simple. For a sample of n
values, the data are sorted into a set of categories of equal width and the number of observations falling
in each category (n,) is the number in the ith category. A series of bars are drawn, where the bar height is
either, n, the number of observations in each category, or 7./, the fraction of data falling into each of the
several categories (fig. 2.2). Iman and Conover (1983) suggest that, for a sample size of n, the number of
intervals k should be the smallest integer such that 2 >n.

Histograms have one primary deficiency—their visual impression depends on the number of
categories selected for the plot. For example, compare figures 2.2 and 2.3. Both are histograms of the
same data: annual streamflow for the James River. Comparisons of shape and similarity among these
two figures and the many other possible histograms of the same data depend on the choice of bar widths
and centers. Figure 2.3 shows much higher frequencies in the 270-280 m*/s range as compared to the
260-270 range or 280-300 range, but these differences are simply manifestations of random variations in
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Figure 2.2. Histogram of annual mean discharge for the James River at Cartersville, Virginia,
1900-2015.
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Figure 2.3. Histogram of annual mean discharge for the James River at Cartersville, Virginia,
1900-2015. Annual streamflow data are the same as shown in figure 2.2, but with different interval
divisions.
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the number of events in each of these narrow bins. The primary information in the dataset is best seen in
figure 2.2, which shows that the central tendency is in the bins from 150-250 m?/s, that the distribution is
fairly symmetrical, and it ranges no more than about 200 m?/s either side of the central values. Figures 2.2
and 2.3 were constructed using the R function hist. In the case of figure 2.2, the function set the bin
locations and widths automatically. Note that figure 2.2 uses 7 bins and this is quite consistent with the
guidance mentioned above (27=128 which is fairly close to the sample size of 116 values). Figure 2.3 uses
30 bins, which would only be appropriate if the sample size was in the neighborhood of about a billion
observations! For preliminary data exploration, simply using the hist function with all arguments set to
their default values (that would simply be hist (Q) where Q is the name of the vector of data values) will
generally produce an informative histogram. Only when the goal is to produce a histogram suitable for
presentation or publication is it necessary to add more specific argument values to the command (which
was done to create these figures).

Histograms are quite useful for providing a general impression about the central tendency, variability,
and degree of symmetry of the data. They cannot be used for more precise judgments such as depicting
individual values. For example, from figure 2.2 we do not know the minimum value in the record, but we
do know that it is between 50 and 100 m?/s.

For data measured on a continuous scale (for example, streamflow or concentration) histograms are
not the best method for graphical analysis, as the process of forcing continuous data into discrete categories
may obscure important characteristics of the distribution. However, histograms are excellent when
displaying discrete data (for example, the number of individual organisms found at a stream site grouped by
species type, or the number of water-supply wells exceeding some critical yield grouped by geologic unit)
and they can be valuable for presentation to audiences that are not accustomed to more complex graphical
presentations.

2.1.2 Quantile Plots

As discussed in the previous section, histograms are a sample-based approximation of a probability
density function (pdf). Another way to display information about a distribution is to use the integral of the
probability density function, which is called the cumulative distribution function (cdf). The cdf'is a plot of
the probability that the random variable will be less than some specific quantity. The vertical scale of a cdf
ranges from 0 (for the smallest possible value of the random variable) to 1 (for the largest possible value).
Quantile plots are approximations of the cdf based on the sample data; they are often called empirical
cumulative distribution functions (ecdf) and visually portray the quantiles, or percentiles (which equal
the quantiles multiplied by 100), of the distribution of sample data. Quantiles of importance, such as the
median, are easily determined (quantile, or cumulative frequency = 0.5). With experience, the spread
and skewness of the data, as well as any bimodal character, can be examined. Quantile plots have three
advantages over the alternative methods of portraying a sample such as the histogram and the boxplot
(boxplots are described in section 2.1.3.):

1. Arbitrary categories are not required, as they are with histograms.
2. All of the data are displayed, unlike a boxplot (see section 2.1.3.).

3. Every point has a distinct position without overlap.

Figure 2.4 is a quantile plot of the streamflow data from figure 2.2. Attributes of the data include the
fact that there are three tightly clustered high values (around 350 m?/s) but no single high year that can
be considered extreme. At the low end of the distribution we see that there is one very low value (around
60 m?/s), which is much lower than the second lowest value. The percent of data in the sample less than a
given discharge value can be read from the graph with much greater accuracy than from a histogram.

To construct a quantile plot, the data are ranked from smallest to largest. The smallest data value is
assigned a rank i=1, and the largest is assigned a rank i=n, where 7 is the sample size of the dataset. The
data values themselves are plotted along one axis, usually the horizontal axis. On the other axis is the
plotting position, which is a function of the rank, i, and sample size, n. As discussed in section 1.3.2. of
chapter 1, the Weibull plotting position, p, = (i) / (n+1), is generally used in this book. The first and last 5
of the 116 data pairs used in construction of figure 2.4 are listed in table 2.1. When tied data values are
present, each is assigned a separate plotting position (the plotting positions are not averaged); therefore,
tied values are portrayed as a vertical cliff on the plot.
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Figure 2.4. Quantile plot of annual mean discharge data from the James River, Virginia, 1900-2015.

Table 2.1. Quantile plot values for streamflow data from the
James River, Virginia, 1900-2015.

[x, annual mean discharge in cubic meters per second (m?/s); p, cumulative
frequency values; 7, rank of the obervation; dots indicate data not shown in

table but included in figure 2.4]

i X p;

1 60.2 0.0085

2 84.4 0.0171

3 87.9 0.0256

4 95.0 0.0342

5 101.0 0.0427
112 312.7 0.9573
113 3212 0.9658
114 343.9 0.9744
115 344.2 0.9829
116 351.5 0.9915

Variations of quantile plots are used for three purposes:

1. To compare two or more data distributions (a Q-Q plot),

Graphical Data Analysis

2. To compare data to a normal distribution (a normal probability plot, a specialized form of the Q-Q

plot), and

3. To calculate frequencies of exceedance (for example, a flow-duration curve used to evaluate

streamflow data).
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Historically, in the field of hydrology and in statistics in general, different plotting positions have been
used to construct quantile plots. The choice of plotting positions used depends on these purposes, but also
on tradition or on automatic selection of methods in various statistical software packages. Most plotting
positions have the general formula p=(i—a)/(n—a—f+1) where a and f are constants. Commonly used
formulas are listed in table 2.2.

The Weibull formula has long been used by hydrologists in the United States for plotting flow-
duration and flood-frequency curves (Langbein, 1960). It is used in Bulletin 17C, the standard reference
for determining flood frequencies in the United States (England and others, 2018). The Weibull formula’s
primary advantage over the Parzen and Gumbel formulas (type 4 and type 7) is that it recognizes the
existence of a nonzero probability of exceeding the maximum observed value. As such, the plotting position
of the maximum value is less than 1.0. Positions such as type 4 or R’s default position of type 7 set
the plotting position of the maximum observation to 1.0, implying that the probability of exceeding the
maximum observed value is zero. This is unrealistic unless the entire population is sampled (a census)
and is especially unrealistic with small sample sizes. The Weibull formula (R’s type 6) is therefore our
preferred plotting position and will be used for quantile plots and most other graphs.

One other plotting position used in this text is the Blom (1958) formula (type 9). It is used in the
probability plot correlation coefficient test (introduced in chap. 4) and in graphical comparisons of a dataset
to the normal distribution. It is the standard plotting position for normal probability plots, which use the
inverse of the normal cdf. Excellent discussions of plotting position formulas include Stedinger and others
(1993) and Hyndman and Fan (1996).

2.1.3 Boxplots

A useful and concise graphical display for summarizing the distribution of a dataset is the boxplot
(fig. 2.5). Boxplots provide visual summaries of

1. The center of the data (the median—the centerline of the box);
2. The variation or spread (interquartile range—the box height);
3. The skewness (quartile skew—the relative size of box halves); and

4. The presence or absence of unusual values and their magnitudes (outliers).

Boxplots are even more useful in comparing these attributes among several datasets.

The origin of boxplots traces back to the box-and-whisker plot defined by Tukey (1977) and then
refined by Cleveland (1985). Many variations on the general theme have been defined and used since
that time. This text will not attempt to compare and contrast these variations and will use the operational
definition of the boxplot used in the R function boxplot. The elements of a boxplot include

1. A box that delineates the middle 50 percent of the data;

2. Hinges, the top and bottom of the box that are approximately equal to the 75th and 25th percentiles of
the sample, respectively (there is a slight difference in the definition of the hinges and the definition of
the quartiles see discussion below);

3. A line within the box representing the median of the sample;

4. Whiskers extending outward from the box to indicate the extent of the data beyond the middle
50 percent (see below for a precise definition of how the whisker lengths are determined); and

5. The outside values, observations that lie beyond the limits of the whiskers, shown as individual symbols.

Using the default values in the boxplot function, the whiskers extend to the most extreme data
point that is no more than 1.5 times the length of the box away from the box. The outside values are all
of the data that lie beyond the whiskers. The choice of the value 1.5 is related to the quantiles of a normal
distribution. Specifically, in a very large sample from a normal distribution we expect that about 5 percent
of all observations will be outside values (2.5 percent on the upper end and 2.5 percent on the lower end),
and 95 percent of the observations will fall between the two whiskers. Thus, when the boxplot appears to be
roughly symmetrical and there are roughly an equal number of outside values above and below the box, if
substantially more than 5 percent of the observations are plotted individually, we can infer that the sample
comes from a distribution that has a heavier tail than a normal distribution. If there are substantially fewer
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Table 2.2. Definitions and comments on eight possible plotting position formulas, based on Hyndman and Fan
(1996) and Stedinger and others (1993).

[NA, not applicable; i, rank of the observation; n, sample size; p, , calculated probability for the ith ranked observation; p,, rank of

the largest observation]

_ TypeinR
Reference a B Formula p = quantile function Comments
Parzen (1979) 0 1 iln 4 p,= 1.0, poor choice:
suggests largest
observation can never
be exceeded
Hazen (1914) 1/2 1/2 (i—(1/2))/n Traditional in hydrology
Weibull (1939), also 0 0 )/ (n+1) 6 Unbiased exceedance
Gumbel (1958) probabilities
Gumbel (1958) 1 1 i—1/(n—1) 7 p,= 1.0, poor choice:
suggests largest
observation can never
be exceeded
Reiss (1989) 1/3 1/3 (i—1/3))/(n+(1/3)) 8 Median unbiased quantiles
Blom (1958) 3/8 3/8 (i—(3/8))/(n+(1/4)) 9 Unbiased quantiles for
normal
Cunnane (1978) 2/5 2/5 (i—(2/5)/(n+(1/5)) NA Approximate quantile
unbiased
Gringorten (1963) 0.44 0.44 (i—0.44/(n+0.12)) NA Optimized for Gumbel
distribution
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Figure 2.5. A boxplot of annual mean discharge values from the James River, Virginia,

1900-2015.
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than 5 percent outside values in a symmetrical boxplot, we can infer that the distribution has tails that are
lighter than a normal. The quantitative measure of the heaviness or lightness of the tails of a distribution is
called kurtosis.

The rules for computing the location of the hinges are somewhat complex and for large samples they
are functionally equivalent to the upper and lower quartiles of the sample. To be more precise about the
definitions of the hinges (for a sample size of n), the following can be stated.

» If n is odd, then the hinges are exactly equal to the 25th and 75th percentiles of the sample, as it
would be computed using the quantile function with the plotting position set to type = 7.

 If n is divisible by four (n=4, 8, 12, 16, ...) then the hinges are the average of two adjacent
observations in a ranked list of the observations. For example, if n=12, the lower hinge is the
average of the third and fourth smallest observations. If n=16, it is the average of the fourth and
fifth smallest observations. The upper hinge would be the mirror image of these. For example, if
n=12 the upper hinge would be the average of the third and fourth largest observations.

 If n is divisible by two but is not divisible by four (n=6, 10, 14, 18, ...) then the hinges are exactly
equal to one of the observations. For example, if n=10 the lower hinge would be the third smallest
observation and if n= 14 the lower hinge would be the fourth smallest observation.

In cases where the user wants to see the actual values that are used in plotting the boxplot, those can
be obtained by setting the argument plot = FALSE in the boxplot function. Instead of a plot, R will return
the values on which the boxplots are based.

Boxplots are a valuable means of obtaining a simple overview of data, but they do not provide much
insight on characteristics of the middle portion of the data. For example, if the distribution were bimodal (in
other words, the probability density function has more than one peak), it is unlikely that a boxplot would
give us the slightest hint at this feature of the dataset; in particular, the data between the upper and lower
quartiles would be obscured within the box. Nevertheless, boxplots provide what is generally considered to
be the most effective overall summary of a dataset.

Annual mean discharge data for the James River are shown in a boxplot in figure 2.5; this is the same
data that are plotted as a histogram in figure 2.2 and as a quantile plot in figure 2.4. Several things are made
clear by this plot; the distribution is highly symmetrical, both in terms of the middle 50 percent of the data
(those depicted by the box) and by the tails of the distribution (noting the roughly equal length of the two
whiskers). Also notable is that there are no outside values. Given that the sample size is 116 observations,
if this were a sample from a normal distribution we would expect about 6 outside values. Not all symmetric
data follow a normal distribution, and this dataset appears to have somewhat light tails. Whether this is a
serious departure from normality depends on the purpose of the analysis.

In contrast to this example of a highly symmetrical dataset, we consider well-yield data for unfractured
conditions from Wright (1985). This is a small dataset (n=12), but it is highly skewed, with many values
close to zero. The boxplot for this dataset is shown in figure 2.6.

In figure 2.6, we depart from the usual practice of using the value of zero as the lower limit on the
y-axis, because the lower whisker and the lower hinge would plot virtually on top of the x-axis. The dataset
shows strong signs of asymmetry. The median is far from being midway between the hinges and is very
close to the lower hinge; this suggests a good deal of skewness in the body of the dataset. The fact that the
upper whisker is much longer than the lower whisker is also an indication of asymmetry (in this case in
the tails) and the single outlier is far from the upper whisker. All of this suggests that a normal distribution
would be highly inappropriate for representing the data and that a log transformation may be more suitable.
The boxplot of the transformed data is shown in figure 2.7.

Having made the log transformation, the dataset now appears to be highly symmetrical both in terms
of the middle 50 percent of the data as well as the extremes. Note that this representation of the data is not
the same as taking the original boxplot and simply plotting it using a log transformed scale. The difference
lies in how the upper and lower quartiles, including outliers, are represented. The rules for drawing
the whiskers and the outside values are expressed in relation to the dimensions of the box, and simply
replotting the boxplot with a log scale will cause these features of the boxplot to violate the rules by which
boxplots are drawn. In short—if transformations are to be considered—the data should be transformed and
then the boxplot created from the transformed data. When this is done, it is important that the plot axes
should show both the original units and the transformed units, as is done in figure 2.7. Generally, axes of a
graph should make it possible for the person reading the graph to interpret the data in their original units.
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Figure 2.6. Boxplot of the unit well yields for valleys with unfractured rocks from
Wright (1985).
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Wright (1985).
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There is a good deal of literature about the uses and interpretation of boxplots, and there are many
variations on the basic approach to boxplots described here. Some of the relevant references on this topic
include McGill and others (1978), Chambers and others (1983), Frigge and others (1989), and Krzywinski
and Altman (2014).

2.1.4 Probability (Q-Q) Plots

Two sets of quantiles are plotted against one another in a Q-Q plot, one on the vertical axis and
the other on the horizontal axis. The second set of quantiles in a Q-Q plot can be a cdf for a theoretical
distribution (see fig. 2.9). This type of Q-Q plot is also called a probability plot (discussed in this section).
Another type of Q-Q plot compares two empirical distributions, in order to illustrate their similarity (see
fig. 2.20 presented in section 2.2.4.).

Probability plots are used to determine how well data fit a theoretical distribution such as the normal,
lognormal, or gamma distributions. Determining fit could be attempted by visually comparing histograms
of sample data to the probability density function of the theoretical distributions as seen in figures 1.1 and
1.2. It could also be determined as in figure 2.8, where the quantile plot of the James River annual mean
streamflow data (lower scale) is overlain with the S-shaped quantiles of the standard normal distribution
(upper scale) where a standard normal quantile of 0 is placed at the sample mean and a standard normal
quantile of 1 is placed at the mean plus one standard deviation. However, research into human perception
has shown that departures from straight lines are discerned more easily than departures from curvilinear
patterns (Cleveland and McGill, 1984a; also see several references in chap. 16). By expressing the
theoretical distribution as a straight line, departures from the distribution are more readily apparent, as is
the case with probability plots.

To construct this version of a probability plot, the cumulative frequency values (shown on fig. 2.8)
are re-expressed as standard normal quantiles such that a normal distribution will plot as a straight line.
Figure 2.9 shows a normal probability plot of the James River streamflows. This figure shows that James
River dataset is highly consistent with a normal distribution because the points are so close to the straight
line. One could argue that it departs very slightly from a normal distribution, particularly in the upper tail.
The slight divergence of the highest few data points indicates that the high end of the dataset is slightly
more extreme than we should expect given the mean and standard deviation computed from the dataset,
but in practical terms these are very small departures. In chapter 4, we will introduce a formal hypothesis
test that can be used to examine the assumption that this sample could have been a sample from a normal
distribution.

The construction of this figure can be described as follows (the R code that produced it is shown in the
supplemental material (SM) for chapter 2 [SM.2]). Assume we have n observations Q. where i=1,2,...,n
sorted from the smallest value, O, to the largest, O . The straight line is defined by

0=0+(z-s,) , 2.1)
where Q is the sample mean of the Q, values, and s, is the sample standard deviation of the O, values. The
n individual points are plotted at (Z,0,), where

Z,=F)(p) ,and 2.2)
i
D= , (2.3)
n+l

where F' ( pl.) is the inverse of the cumulative distribution function for the standard normal distribution
(mean = 0, standard deviation = 1). Note that in R this function is called gnorm. The formula used here for
p, follows the Weibull plotting position formula (type = 6 in the quantile function). However, because
the Blom plotting position (type = 9 in the quantile function) is unbiased for the normal distribution,
it can be argued that the Blom plotting position is preferable in this kind of plot. The difference in the
appearance of the graph between these two choices of plotting position is very small.
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Figure 2.9. Probability plot of James River annual mean discharge data (1900-2015).
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215 0-Q plots as Exceedance Probability Plots

In water resources, a second horizontal scale is sometimes added to a probability plot to show the
probability of exceedance on the horizontal axis. This is simply a restatement of the information provided
by the quantiles, so the normal quantile scale can be deleted. An example of such a plot is shown in
figure 2.10. The plot is identical to the probability plot shown in figure 2.9, but a horizontal scale of
exceedance probability has been added. The addition of the exceedances probability scale makes the
graphic more easily understood. This approach can be applied with any distribution. Before statistical
software became common, hydrologists would draw exceedances probability plots using a specialized
probability paper which was designed so that a normal distribution would plot as a straight line.

21.6 Deviations from a Linear Pattern on a Probability Plot

The deviations from a linear pattern on a probability plot can be useful in identifying the nature and
severity of departures from the selected theoretical distribution. In particular, the deviations can identify the
overall asymmetry or skewness of the distribution, the presence of outliers, and the heaviness of the tails
(kurtosis) of the distribution.

The probability plot of the James River annual discharge data in figure 2.10 shows a modest amount
of skewness. It has a slight positive skew, meaning that values in the right tail of the distribution (say
z >+2)are somewhat farther from the mean than the values in the left tail (say z <—2). Positive skewness
is indicated by the concave upward shape of the data as compared to the theoretical normal distribution
that we see in figure 2.10. Negative skewness would be indicated by a convex-upward shape. The
probability plot is another way of seeing the modest asymmetry we saw in the histogram (fig. 2.2), but in
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Figure 2.10. Exceedance probability plot for the James River annual mean discharge
data (1900-2015).
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the probability plot it is directly compared to a normal distribution. Note that in the boxplot of this same
dataset (fig. 2.5) it is nearly impossible to see the asymmetry because the plot does not convey any detailed
information about the distribution shape inside the range of the upper and lower quartiles. However, when
skewness is more pronounced, the boxplot provides good visual evidence for it. Outliers do not appear

to be present in the dataset based on visual appearance of the probability plot, histogram, or boxplot. The
probability plot also shows this by the fact that the maximum and minimum values both plot close to the
theoretical line for the normal distribution. Additionally, we can see that the tails of the distribution are

not significantly heavier or lighter than those of the normal distribution. Data having a slope steeper than
the normal distribution in both the high and low portions would indicate high kurtosis (heavy tails). Data
having a more gentle slope in the extremes at both the high and low ends would indicate low kurtosis (light
tails).

Annual peak discharge values for the Potomac River at Point of Rocks, Maryland, are shown in a
probability plot in figure 2.11. The dataset covers the 122-year period from 1895 to 2016. As before, the
solid line represents a normal distribution with the same mean and standard deviation as the dataset. The
first thing to note about the line is that for reasonable values of z it extends well below zero, yet we know
that negative discharge values are impossible. This alone is a sufficient argument for rejecting the idea that
these data follow a normal distribution. Even if the negative value problem did not exist, we can see that the
normal distribution is a poor fit given the strongly concave-upward shape of the plotted data, which shows
a strong positive skewness. This plot suggests that a transformation is needed to make the data approximate
a normal distribution. A good candidate for such a transformation is the log transformation (indicated by the
concave-upward shape and negative values).
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Figure 2.11. A normal probability plot of the Potomac River annual peak discharge data
(1895-2016).
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A normal probability plot of the natural log of the annual peak discharge data is shown in figure 2.12.
Note that the right axis is modified here to show the discharge values that are equivalent to the log values
used to make the graph. In general, when transformations of any kind are used to make a graphic, the
analyst should present a scale that allows the reader to translate the plotted results in to their original units.
Taking the log eliminates both of the problems: negative values and the asymmetry. The quantile plot
shows a very good fit to a normal distribution except that the seven largest values are all higher than we
would expect from a normal distribution. This suggests that the log discharge data have a small amount
of positive skewness. We can gain similar insights from a boxplot of these log-transformed discharges, as
shown in figure 2.13. What is particularly striking about this boxplot is how close to symmetric it is, both in
terms of the hinges and in terms of the outliers.

Given that both the box and the whiskers are nearly symmetric, the plot suggests that no power
transformation, such as those in the ladder of powers, would produce a more nearly normal distribution.
Although in this case the log transformation results in a good approximation to normality, there are many
cases where transformations that render the sample nearly symmetric have an excess of extreme values
compared to what a normal distribution can be expected to produce. Although transformations can be
helpful, they are not a panacea because of the tendency for datasets to have heavy tails. Consequently, this
book emphasizes the use of nonparametric and permutation tests, both of which are designed to be robust
against departures from normality.

2.1.7 Probability Plots for Comparing Among Distributions

In addition to a normal probability plot, quantiles may be computed and probability plots constructed
for any theoretical probability distribution. A good visual check of the appropriateness of a distribution
is to make probability plots for several distributions, where each plot is designed to show the selected
distribution as a straight line. In general, a distribution can be selected based on the similarity of the data
quantiles to this straight line. This approach is formalized as a hypothesis test, known as the probability plot
correlation coefficient test, which is discussed in chapter 4.

There is a rich literature in hydrology discussing selection of distribution types and parameter
estimation for both flood flows and low flows. This text does not pursue those ideas in any depth. Examples
of the use of probability plots for frequency analysis can be found in references such as Vogel (1986), Vogel
and Kroll (1989), and Stedinger and others (1993).

2.2 Graphical Comparisons of Two or More Datasets

Each of the graphical methods discussed thus far can be, and have been, used for comparing multiple
groups of data. However, each is not equally effective. As the following sections show, histograms are
not capable of providing visual comparisons between datasets at the same level of detail as boxplots
or probability plots. Boxplots excel in clarity and easy discrimination of important distributional
characteristics, even for comparisons among many groups of data. A quantile-quantile (Q-Q) plot (similar
to a quantile plot but for multiple datasets), provides additional information about the relation between two
datasets.

Each graphic will be developed for the same dataset, a comparison of unit well yields in Virginia
(Wright, 1985). These are small datasets: 13 wells are from valleys underlain by fractured rocks, and 12
wells from valleys underlain by unfractured rocks.
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Figure 2.12. Normal probability plot of the natural log of the annual peak discharge data
from the Potomac River at Point of Rocks, Maryland, streamgage (1895-2016).
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221 Histograms

Histograms for the two sets of well yield data from Wright (1985) are shown in figure 2.14. The
right-skewness of each dataset is easily seen, but it is difficult to discern whether any differences exist
between them. Histograms do not provide a good visual picture of the centers of the distributions, and only
a slightly better comparison of spreads. Note that for comparability the bins on the x-axis were designed
to be the same and they are plotted one above the other. Even with these two features designed to facilitate
comparisons, this is a poor way to make a comparison of the two groups. There are also examples where
graphics have been designed to superimpose two histograms on one set of axes, but these tend to be highly
confusing and uninformative. Thus, we will not present any of these multiple histogram approaches.
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Figure 2.14. Histograms of unit well yield data for (A) valleys with fractures, and (B) valleys without
fractures.
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2.2.2 Dot-and-line Plots of Means and Standard Deviations

Dot-and-line plots, used by some to compare datasets, are shown in figure 2.15. We include them
here as a contrast with side-by-side boxplots, which are discussed in the next section. Dot-and-line plots
are much less meaningful than boxplots and fail to show many important features of the datasets. Each
dot represents the mean of a dataset. The bars extend to plus and minus one standard deviation beyond
the mean, though two standard deviations or standard errors of the mean have also been used. This plot
displays differences in mean yields, but little else.

There are also several deficiencies to this plot. First, is the assumption of symmetry; this causes
the lower end of the “Without fractures” line to fall below zero, which is physically impossible. Second,
no information on the symmetry of the data or presence of outliers is available. Third, there is little
information given on the spread of the data, as the same portrayal of standard deviation may represent the
spread of most of the data or may be strongly influenced by skewness and a few outliers.

As will be shown in the next section, these two groups of data are much better described and
contrasted with each other through the use of side-by-side boxplots.
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Figure 2.15. Dot-and-line plot of the unit well yield datasets for areas underlain by either fractured
or unfractured rock.
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223 Side-bhy-side Boxplots

Figure 2.16 presents side-by-side boxplots of the same well yield data used in figure 2.15. The
median well yield is seen to be higher for the areas with fractures. The IQR of wells with fractures is
slightly larger than that for wells without, and the highest value for each group is similar. Both datasets are
seen to be right-skewed. Clearly, a large amount of information is contained in this concise illustration.
The mean yield, particularly for wells without fractures, is undoubtedly inflated owing to skewness, and
differences between the two groups of data will, in general, be larger than indicated by the differences in
their mean values. The same characteristics that make boxplots useful for inspecting a single dataset make
them even more useful for comparing multiple datasets. They are valuable guides in determining whether
central tendency, variability, and symmetry differ among groups of data. At a glance we can determine the
approximate difference between their medians as well as the differences between their upper quartiles or
between their lower quartiles.

Side-by-side boxplots display the essential characteristics of numerous groups of data in a small
space. For example, the 20 boxplots of figure 2.17 were used by Holtschlag (1987) to illustrate the source
of ammonia nitrogen on a section of the Detroit River. The Windmill Point Transect is upstream of the
U.S. city of Detroit, while the Fermi Transect is below the city. Note the marked changes in concentration
(the median lines of the boxplots) and variability (the widths of the boxes) on the Michigan side of the
river downstream of Detroit. A lot of information on stream water quality is succinctly summarized in this
relatively small figure.
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Figure 2.16.  Side-by-side boxplots of the unit well yield datasets for areas underlain by either
fractured or unfractured rock.
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Another appropriate use of side-by-side boxplots is the comparison of observations from different
months or seasons of the year. The example shown in figure 2.18 is a set of dissolved nitrate-plus-nitrite
sample values from the Illinois River at Valley City, Illinois. This is just a subset of the available data
that covers water years 2000 through 2015. The boxplots reveal a number of features. There are large
differences across seasons. The months of December through June have relatively high concentrations
and among those months there are no particularly strong differences. Each of the boxplots is either
approximately symmetrical or has some positive skewness and their outliers are rather symmetric around
the middle 50 percent of the distribution. The concentrations are much lower in the summer and fall, with
July being a transition from the high values of the winter and spring. August and September are the months
with the lowest concentrations and the October and November boxplots show a transition back to the higher
winter values. August and September show some right skewness but the others are relatively symmetrical.
Not surprisingly, the months with the lowest median concentrations also show lower variability. One could
also plot these data again using the logs of the concentration values. The result (not shown) indicates that
the logs of the concentration values have similar interquartile ranges across the months, suggesting that
variability is proportional to the magnitude of the means. The explanation for this pattern is related to the
timing of nitrogen fertilizer application in this watershed (late fall and spring) and the fact that biological
uptake and denitrification, which are both most active in the warm summer months, have a strong effect on
reducing nitrate concentrations in the stream as compared to the winter and spring when these processes are
less effective. This figure is an important reminder that although temperatures (air or water) often are well
approximated by a sinusoidal curve with a period of one year, some hydrologic variables such as nitrate
concentrations can have a seasonal pattern that is more complex because of the dependence on physical
processes, such as rainfall or snowfall, as well as biological processes and timing of human activities in the
watershed.

2.2.4 Q-QPlots of Multiple Groups of Data

Q-Q plots (first discussed in section 2.1.4. and used to compare an empirical distribution to a
theoretical distribution) are also useful graphics for comparing two empirical distributions. Characteristics
evident in boxplots are also seen using Q-Q plots, though in a different format. Comparisons of each
quantile, not just the boxplot quartiles, can be made.

A probability plot of the two well yield datasets is shown in figure 2.19. The right-skewness of each
dataset is shown by their concave-upward shapes. Wells without fractures have greater skewness, as shown
by their greater concavity on the plot. Quantiles of the wells with fractures are higher than those without,
indicating generally higher yields. Figure 2.19 shows that the lowest yields and the highest yields in each
group are similar even though the middle part of the distributions are rather different from each other.
Comparisons between median values are simple to do—just travel up the normal quantile = 0 line. We see
that the median for the fractured rock group is much higher than the median for the unfractured group.

In general, boxplots summarize the differences between data groups in a manner more quickly
discerned by the viewer. When comparisons to a particular theoretical distribution such as the normal are
important, or comparisons between quantiles other than the quartiles are necessary, Q-Q plots are useful
graphics. Both boxplots and Q-Q plots have many advantages over histograms or dot-and-line plots.

Direct comparisons can be made between two datasets by graphing the quantiles of one versus the
quantiles of the second (Chambers and others, 1983). If the two datasets came from the same distribution,
the quantile pairs would plot along a straight line with Y =X, where p is the plotting position and Y is the
pth quantile of Y. In this case, it would be said that the median, the quartiles, the 10th and 90th percentiles,
and so forth, of the two datasets were equal. If one dataset had the same shape as the second, differing
only by an additive amount (each quantile was 5 units higher than for the other dataset, for example), the
quantile pairs would fall along a line parallel to, but offset from, the Y =X line, also with slope = 1. If the
datasets differed by a multiplicative constant (Y =5 X, for example), the quantile pairs would lie along
a straight line with slope equal to the multiplicative constant. Relations that are more complex will result
in pairs of quantiles that do not lie along a straight line. The question of whether or not datasets differ by
additive or multiplicative relations will become important when hypothesis testing is conducted.
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Figure 2.18. Side-hy-side boxplots by month for dissolved nitrate plus nitrite for
the lllinois River at Valley City, lllinois, water years 2000—-15.
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A Q-Q plot of the two groups of well yield data is shown in figure 2.20. Several aspects of the relation
between the two datasets are immediately clear. First, the lowest nine quantile pairs appear to fall along a
straight line with a slope greater than 1, not parallel to the Y=X line shown as a reference. This indicates
a multiplicative relation between the data, with Y = 4.4- X , where 4.4 is the approximate slope of those
data on the plot. Therefore, the well yields in fractured areas are generally 4.4 times those in unfractured
areas for the lowest 75 percent of the data. The three highest quantile pairs return near to the Y=2X line,
indicating that the higher yields in the two datasets approach being equal. The hydrologist might be able to
explain this phenomenon, such as higher yielding wells are deeper and less dependent on fracturing, or that
some of the wells were misclassified. Therefore, the Q-Q plot becomes a valuable tool in understanding the
relations between datasets before performing any hypothesis tests.

2.3 Scatterplots and Enhancements

The two-dimensional scatterplot is one of the most familiar graphical methods for data analysis and
illustrates the relation between two variables. Of usual interest are three types of questions:

1. What is the shape of the relation? Does it appear to be linear, curved, or piecewise linear?

2. When the data come from two different groups (where a group might be defined by the area from
which the samples were collected, or the time period during which it was collected) does the relation
between the two variables appear to be the same for the two groups or are they different?

3. Is the variability, or spread, in the relation between the two variables constant over the range of data?

In each case, an enhancement called a smooth (short for smooth curve) may enable the viewer to
resolve these issues with greater clarity than would be possible using the scatterplot alone. The following
sections discuss these three uses of the scatterplot, and the enhancements available for each use.

—_
N

-
o
I
]

o
o)
T
|

o
n
T
I

Yields with fractures, in gallons per minute per foot
o
»
I
]

| | | | |
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Yields without fractures, in gallons per minute per foot

o
o

Figure 2.20. Q-Q plot of the well yield data in fractured and unfractured areas.
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231 Evaluating Linearity

A scatterplot of the natural log of the concentration of dissolved nitrate plus nitrite (for simplicity
we will call that “NO23”) for the lowa River, at Wapello, lowa, for the months of June, July, August,
and September of 1990-2008 are plotted against the natural log of the mean daily discharge for the day
on which the sample was collected in figure 2.21. Looking at the scatterplot we can easily see that there
is a strong relation between the two variables. We can also see that it would be inaccurate to describe a
linear relation between the log of concentration and the log of discharge; however, we might consider a
quadratic relation (log of concentration as a linear function of the log of discharge and the square of the
log of discharge). In chapters 9 and 11, other ways to answer this question will be presented, but many
assessments of linearity are appropriately made solely based on a scatterplot. Superimposing a smooth on
the data may also improve the ability to make such assessments.

A smooth is a resistant centerline that is fit to the data whose level and slope varies locally in response
to the data themselves. The word “locally” is intended to imply that the location of the curve for any given
x value is determined by the y values observed at x values that are close to that x and not by those that are
far away. The purpose of the smooth is to highlight the central tendency of the relation and without being
overly influenced by the spread or the extremes of the dataset (either in the x or y direction). This approach
stands in contrast to using linear regression or multiple linear regression on various transformations of x
(for example using x and x? as predictors of y). The regression approach assumes that the relation of x and
v follow a relation that is specified by a particular mathematical function (for example, linear or quadratic).
A consequence of this reliance on the particular functional form selected for the regression is that the fitted
value for any given x value can vary substantially as a result of the y values that are associated with x
values far from the given x value. For example, we might observe that suspended sediment concentrations
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Figure 2.21. Dissolved nitrate plus nitrite concentration as a function of discharge, lowa
River, at Wapello, lowa, for the months of June, July, August, and September of 1990-2008.
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are strongly related to discharge, but in a regression approach our estimate of central tendency of
sediment concentration for a discharge of 1,000 m?/s, could be very much influenced by observations of
concentration that were at discharges such as 1 m*/s or 10 m*/s. Smoothing methods avoid this problem
and base the estimated central tendency of concentration at 1,000 m*/s only on data that are nearby, for
example, between 500 m*/s and 2,000 m?/s.

Many methods are available for constructing this type of centerline, of which the moving average
is probably the most familiar. However, the moving average is very sensitive to the influence of outliers
and thus not very robust. We discuss computation of smooths in chapter 10, but for now we will merely
illustrate their use as aids to graphical data analysis. The smoothing procedure we prefer is called Local
Polynomial Regression Fitting, which is implemented by the function 1oess in R (Cleveland and others,
1992). We refer to it as “loess” because it is not strictly an acronym, but it is often called LOESS. A
closely related method, the predecessor of loess is LOWESS or LOcally WEighted Scatterplot Smoothing
(Cleveland and McGill, 1984a; Cleveland, 1985), which is an iterative process designed to be particularly
robust to extreme outliers. An example of loess is shown in figure 2.22.

Figure 2.22 shows the same dataset as in figure 2.21, but with the addition of the loess smooth. Note
that the relation between In(concentration) and In(discharge) appears relatively linear for discharge values
of as much as about 200 m?/s, then the relation becomes much less steep (but still increasing) to about
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Figure 2.22. Dissolved nitrate plus nitrite concentration as a function of discharge, lowa River, at
Wapello, lowa, water years 1990-2008 for the months of June, July, August, and September. The
curve represents a loess smooth of these data.
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1,000 m*/s, and then at higher discharge values concentrations appear to decline with increasing discharge.
This curvature is easier to see with the superimposed smooth. It is important to remember that no single
model, such as a linear or quadratic function, is assumed before computing a smooth (although smoothing
methods may utilize linear or quadratic functions within the smoothing process). The smoothed pattern

is derived from the pattern of the data and may take on any shape. As such, smooths are an exploratory
tool for discerning the form of the relation between y and x. Seeing the pattern of figure 2.22, the smooth
suggests that the real pattern does not have the symmetry that arises from a quadratic (a perfect parabola)
but rather the upper part (in terms of x) of the relation has a much lower negative slope than the positive
slope that would fit the lower part of the relation.

This kind of plot, which shows the data plus the loess smooth, can be used when analyzing data on
scatterplots and when presenting those data to others. Because no model form is assumed, the plots allow
the data to describe the pattern of dependence of y on x. Smooths are especially useful when large amounts
of data are to be plotted, and several groups of data are placed on the same plot. For example, Welch
and others (1988) depicted the dependence of the log of arsenic concentration on pH for thousands of
groundwater samples throughout the western United States (fig. 2.23). By using smooths (and eliminating
the plotting of the individual data points), the relation between pH and arsenic was seen to differ between
the four western provinces.
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Figure 2.23. Loess smooths representing dependence of log(As) on pH for four
areas in the western United States (from Welch and others, 1988).
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2.3.2 Evaluating Differences in Central Tendency on a Scatterplot

A scatterplot of conductance versus pH for samples collected at low-flow in small streams within the
coal mining region of Ohio is seen in figure 2.24 (Helsel, 1983). Each stream was classified by the type
of land it drained—unmined land, lands mined and later reclaimed, and lands mined and then abandoned
without reclamation.

To see the three groups more clearly, a smooth can be constructed for each group that encloses either
50 or 75 percent of the data. This type of smooth is called a polar smooth (Cleveland and McGill, 1984b).
To construct it, the data are transformed into polar coordinates, a loess smooth is computed and then is
re-transformed back into the original units. A polar smooth enclosing 75 percent of the data for each of
the three types of upstream land uses is plotted in figure 2.25 (from Helsel, 1983). These smooths are not
limited to a prior form, such as an ellipse; their shapes are determined from the data.

Polar smooths can be a great aid in exploratory data analysis. For example, the irregular pattern for
the polar smooth of data from abandoned lands in figure 2.25 suggests that two separate subgroups are
present, one with higher pH than the other. Using different symbols for data from each of the two geologic
units underlying these streams shows, indeed, that the basins underlain by a limestone unit have generally
higher pH than those underlain by sandstone. Therefore, the type of geologic unit should be included in any
analysis or model of the behavior of chemical constituents for these data.

Polar smooths are especially helpful when there is a large amount of data to be plotted on a scatterplot.
In such situations, the use of different symbols for distinguishing between groups will be ineffective, as the
plot will be too crowded to see patterns in the locations of symbols. Indeed, in some locations it will not be
possible to distinguish which symbol is plotted. Plots presenting just the polar smooths, as in figure 2.25,
provide far greater visual differentiation between groups.

Returning to the stream NO23 concentration for the Illinois River, shown in figures 2.21 and 2.22, we
can pose the question: does the relation between NO23 concentration and discharge vary across different
seasons of the year? Here we add in a dataset for the colder months of January, February, March, and April.
Figure 2.26 shows the warm season (solid circles) and cold season (open circles) and the loess smooths
of both groups superimposed on them. The figure demonstrates how different the concentrations are for
discharges below about 150 m?/s, but also the relative similarity of concentrations at discharges between
about 200 and 1,000 m*/s. When dealing with multiple datasets on the same plot, it becomes difficult to
discern the patterns of each because the data points may be very much intermingled. Using smooths for
each dataset can provide a much clearer picture of the differences than what we can perceive from the
two superimposed scatterplots. Recognition of these kinds of differences in patterns can be important for
selecting analysis methods that are more flexible (such as Weighted Regressions on Time, Discharge, and
Season [WRTDS] introduced in chap. 12) and do not assume that similar relations between x and y persist
over time or across different seasons. These plots are a useful tool to identify when such approaches are
needed.

2.3.3 Evaluating Differences in Spread

In addition to understanding where the middle of the data lie on a scatterplot, it is often of interest
to know something about the spread of the data as well. Homoscedasticity (constant variance) is a crucial
assumption of ordinary least-squares regression, as we will see later. Changes in variance also invalidate
parametric hypothesis test procedures such as analysis of variance. From a more exploratory point of view,
changes in variance may be as important, or more important, than changes in central value. Differences
between estimation methods for flood quantiles, or between methods of laboratory analysis of some
chemical constituent, are often differences in repeatability of the results and not of method bias. Graphs can
aid in judging differences in data variability and are often used for this purpose.

A major problem with judging the changing spread on a scatterplot is that the eye is sensitive to seeing
the range of data. The presence of a few unusual values may therefore incorrectly trigger a perception
of changing spread. This is especially a problem when the density of data changes across a scatterplot,
a common occurrence. Assuming the distribution of data to be identical across a scatterplot, and that no
changes in variability or spread actually occur, areas where data are more dense are more likely to contain
outlying values on the plot, and the range of values is likely to be larger. This leads to a perception that
the spread has changed. Another problem is that the correct way to assess variability on a scatterplot is to
measure the vertical distances between the data points and the central value (such as the loess smooth line),
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in figure 2.24, from Helsel (1983).

Chapter2 Graphical Data Analysis

43



44

Statistical Methods in Water Resources

Discharge, in cubic meters per second

50 100 200 500 1,000 2,000 5,000

3 T T T T T T T 20

. -1 10
5oy 5
— - 5 —_
g o
" o
£l :
g 0r 11 £
c -
c
2 H4 05 8
£ -1 ©
S €
: 3
5 -4 02 ¢
&) @]
£ -2 r °

- 0.1

[ ]
-3 | | | | | 005
3 4 5 6 7 8 9

In(Discharge, in cubic meters per second)

Figure 2.26. Dissolved nitrate plus nitrite concentration as a function of discharge, lowa
River, at Wapello, lowa, water years 1990-2008 for the months of June, July, August, and
September (filled circles) or the months of January, February, March, and April (open
circles). The solid curve is a loess smooth of the warm season data; the dashed curve is a
loess smooth of the cold season data.

but the eye has a tendency to see the distances between the points and the line as the normal distance, which
is the shortest distance from the point to the line rather than the vertical distance. Thus, it can be helpful to
have a flexible quantitative method for describing the variability of a dataset shown in a scatterplot.

One graphical means of determining changes in spread has been given by Chambers and others
(1983). First, as in figure 2.22, a smooth is computed using loess or some other smoothing method. For our
purposes here we will call this the middle smooth. The absolute values of differences d, between each data
point and the smooth at its value of x is a measure of spread

di = |yi _lil , (2~4)

where
L is the value for the loess smooth at x, and
vy, isthe true value at x..

By graphing the absolute differences d, versus x,, changes in spread will show as changes in the
central tendency of the absolute differences. A smooth of the absolute differences can be used to make
the pattern clearer, which is done in figure 2.27, a plot of the absolute differences between the log of
concentration and its loess smooth, for the warm season NO23 data from the lowa River at Wapello, lowa.
Note that at low discharge values, below about 200 m*/s, the magnitude of the d, decreases with increasing
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Figure 2.27. Absolute residuals from the loess smooth of In(N023) concentrations
versus In(discharge), lowa River at Wapello, lowa, for the warm season (June, July,
August, and September) 1990-2008.

discharge, but above about 200 m¥/s it is roughly constant. This suggests that any statistical model that
depends on the assumption of homoscedastic errors should not be applied here because the errors are quite
clearly heteroscedastic. Again, the more free-form WRTDS water quality statistical model is one way to
accommodate this departure from the common assumption of homoscedasticity that is fundamental to
ordinary least squares regression.

2.4 Graphs for Multivariate Data

Boxplots effectively illustrate the characteristics of data for a single variable and accentuate outliers
for further inspection. Scatterplots effectively illustrate the relations between two variables and accentuate
points that appear unusual in their x-y relation. Yet, there are numerous situations where relations between
more than two variables should be considered simultaneously. Similarities and differences between groups
of observations based on three or more variables are frequently of interest. Also of interest is the detection
of outliers for data with multiple variables. Graphical methods again can provide insight into these
relations. They supplement and enhance the understanding provided by formal hypothesis test procedures.
Two multivariate graphical methods are widely used in water-quality studies—Stiff and Piper diagrams.
These and other graphical methods are outlined in the following sections. For more detailed discussions on
multivariate graphical methods see Chambers and others (1983) or the textbook by Everitt (2007).
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2.41 Parallel Plots

Parallel plots, also known as profile plots, assign each variable to a separate and parallel axis. One
observation is represented by a series of points, one per axis, which are connected by a straight line forming
the profile. Each axis is scaled independently. Comparisons between observations are made by comparing
profiles.

As an example, Warwick (1971) measured 6 site characteristics for 19 stream locations along the Exe
river estuary. The types of sites can be classified based on the physical and chemical characteristics of those
sites. Of interest were any relations between the 6 site characteristics measured and the types of nematodes
found at each site. A parallel plot for 2 of the 19 sites is shown in figure 2.28. Each of the six characteristics
is internally scaled from highest to lowest, so that the minimum value on the horizontal scale is the
minimum value in the dataset and the maximum values on the horizontal scale is the maximum value for
that characteristic; individual values are interpolated between these two values. These two sites show very
different profiles. The site drawn as a solid line is low in salinity (Interstit.Salinity) and percent organics
(X.Organics), and high in the rest. The site displayed with a dashed line has the opposite profile.

A parallel plot of all 19 sites in figure 2.29 shows why these plots are sometimes called spaghetti plots.
They show two groups of multiple sites with differing profiles (the dashed and dotted line sites), as well
as two outlier sites plotted with solid lines. The effectiveness of this type of plot depends on the order in
which the characteristics are organized. Comparisons of nearby characteristics are easier than comparisons
between those that are far apart.

Stiff diagrams (Hem, 1985) are a specific type of parallel plot sometimes used in water quality
applications. In a Stiff diagram, the milliequivalents of major water-quality constituents are plotted for
a single sample, with the cation profile plotted to the left of the centerline, and the anion profile to the
right. Comparisons among several samples based on multiple water-quality constituents are then done by
comparing the shapes of the Stiff diagrams. One such comparison for 14 groundwater samples from the
Fox Hills Sandstone in Wyoming (Henderson, 1985) is shown in figure 2.30. This facilitates the subjective
grouping of similar water types and identifying gradients between sites.

2.4.2 StarPlots

A second method of displaying multiple axes is to have them radiate from a central point, rather than
aligned parallel as in a profile plot. Again, one observation is represented by a point on each axis, and these
points are connected by line segments. The resulting figures resemble a star pattern and are called star
plots. Angles between rays of the star are 360°/k, where k is the number of axes to be plotted. To provide
the greatest visual discrimination between observations, rays measuring related characteristics should be
grouped together. Unusual observations will stand out as a star that looks quite different from the others,
perhaps having an unusually long or short ray. Site characteristics for stream locations along the Exe River
(Warwick, 1971) are displayed as star plots in figure 2.31. The dramatically different shapes indicate the
differences in site conditions.
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Figure 2.28. Parallel plot of six basin characteristics at a low salinity site (solid line) and a
high salinity site (dashed line) (from Warwick, 1971).
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Figure 2.29. Parallel plot of six basin characteristics at the 19 sites of Warwick (1971).
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Figure 2.30. Stiff diagrams used to display differences in water quality in the
Fox Hills Sandstone, Wyoming (from Henderson, 1985).

2.4.3 Trilinear and Piper Diagrams

Trilinear diagrams have been used within the geosciences since the early 1900s. When three variables
for a single observation sum to 100 percent, they can be represented as one point on a triangular (trilinear)
diagram. An example of a trilinear diagram is shown in figure 2.32, where the cation compositions of the
four geologic zones of the Groundwater Ambient Monitoring and Assessment (GAMA) Program conducted
by the USGS in California. For the Sierra Nevada study unit of GAMA, the groundwater quality data are
plotted against three major cation axes (Shelton and others, 2010). The concentration of cation i, expressed
in milliequivalents, is denoted m, for the three most prevalent cations in the sample study. The percentage
composition of cation i, in the sample, is denoted as c,, which is computed as

c =100-mi/(m1+m2+m3) . (2.5)

For example, if Ca=0.80 meq, Mg=0.26 meq, and Na+K=0.89 meq, the percentages are Ca=41
percent, Mg=13 percent, and [Na+K]=46 percent of total milliequivalents. As points on these axes sum to
100 percent, only two of the variables are independent. By knowing two values, ¢, and c,, the third is also
known: ¢, = (100—c¢,—c,).
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Figure 2.31.  Star plots of site characteristics for 19 locations along the Exe estuary (from Warwick,
1971). Qutliers such as sites 5 and 10 are seen to differ from the remaining sites owing to their low
values for both interstitial salinity (Interstit.Salinty) and percent organics (X.0rganics) composition.
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Figure 2.32. Trilinear diagram for groundwater cation composition in four geologic
zones (each shown with a different symbol) of the Groundwater Ambient and Monitoring
Assessment (GAMA) Program Sierra Nevada study unit (from Shelton and others, 2010).
Units are percent milliequivalents (pct).
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Piper (1944) applied these trilinear diagrams to both cation and anion compositions of water-quality
data. He also combined both trilinear diagrams into a single summary diagram with the shape of a diamond
(fig. 2.33). This diamond has four sides, two for cations and two for anions. However, it has only two
independent axes, one for a cation (say Ca+Mg), and one for an anion (say Cl1+S80,). If the (Ca+Mg)
percentage is known, so is the (Na+K) percentage, as one cation is equal to 100 percent minus the other.
The same is true for the anions. The collection of these three diagrams in the format shown in figure 2.33 is
called a Piper diagram.

Piper diagrams have an advantage over Stiff and star diagrams in that observations are shown as
points on a measured scale rather than as polygons. Therefore, similarities and differences in composition
between numerous observations are more easily seen with Piper diagrams. Stiff and star diagrams have two
advantages over Piper diagrams: (1) they may be separated in space and placed on a map or other graph,
and (2) more than four independent attributes (two cation and two anion) can be displayed at one time.
Thus, the choice of which diagram to use will depend on their intended purpose.

24.4 Scatterplot Matrix

When there are multiple (p) variables, all of their pairwise relations can be visualized by plotting
a scatterplot for each of the p- (p—1)/2 possible pairs of variables. These are then displayed together in
a matrix. Obviously little detail can be discerned on any single plot within the matrix, but variables that
are related can be grouped, linear versus nonlinear relations discerned, and so forth. Chambers and others
(1983) describe the production and utility of scatterplot matrices in detail. They can be produced using the
pairs function in base R.

Figure 2.33. Piper diagram of groundwater from the Sierra Nevada study unit of
the Groundwater Ambient Monitoring and Assessment (AMA) Program (Shelton
and others, 2010).
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A scatterplot matrix for the site characteristic data of Warwick (1971) is shown in figure 2.34. In
the plot of median particle diameter (Med.Part.Diam) versus depth to sulfide layer (Dep.H2S.layer)—the
two variables shown to have the highest correlation—there is a group of sites with low values for both
variables. There is also a larger group of sites with varying, but generally higher, values for both median
particle diameter and depth to sulfide layer. The Dep.H2S.layer could perhaps be modeled as two groups
rather than as a continuous variable. The plot of Med.Part.Diam and percentage organics (X.Organics)
appears to show an inverse relation between the variables rather than a linear one.

245 Biplots of Principal Components

One method for viewing observations on multiple axes is to reduce the number of axes to two, and
then plot the data as a scatterplot. An important dimension reduction technique is principal components
analysis, or PCA (Borcard and others, 2011; Everitt and Hothorn, 2011). The following discussion provides
an introduction on the use of principal components but does not describe how they are calculated. There are
several R functions that serve this purpose; a simple one is prcomp in the base R package.

0 5 10 20 1 2 3 4 5 20 60
[*]
o o ol 12
1.0
b @ o o © & 08
Med.Part.Diam o 0.6
° o g ° o 9 4 o o% 0:4
E o o © P o o o o® 0.2
o QO 0 o o o |
20 [e=o] [ ] o [}
15 o q d o o
10 Dep.Water.Tab
5 @ ° o
. ° ° > a o ; E;@_m.a_a m_cx(;ﬂ
0 b® (o] an fo] o
O ooW 09 P 00 ] O O O [ w 20
15
Dep.H2S.layer 10
o o o
5
Bo © Bo B 8 8 °ce® %84 [o® o®
5 [ [} [}
4 po o0 O b ao ® O [« o o @
3 p o o b o o |o o Shore.height o o o o m
2 po o o b o q |o 9 o q | o oo
1 o) fo} | foXle) o) o al
[e] <] 8
co o o o
g > o ° 3 o 6
X.Organics 4
oo @ ° o P 2
[ o® @ od o @ |° © 8 b o o 8 d -] °® o
§ a0 &® o ) o d ) @ F ¢ 8 8
80 p° o ° ) b © o o o & °
60 Interstit.Salinity
40
P e o © Sle}
0 F ° P b © o o9
02 06 1.0 5 10 15 20 0 2 4 6 8

Figure 2.34. Scatterplot matrix showing the relations between six site characteristics from Warwick (1971).
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Principal components are linear combinations of the p original variables to form a new set of
variables or axes. These new axes are uncorrelated with one another, and have the property that the first
principal component is the axis that explains more of the variance of the data than any other axis through
multidimensional space. The second principal component explains more of the remaining variance than any
other axis that is uncorrelated with (orthogonal to) the first. The resulting p axes are thus new variables,
the first few of which often explain the major patterns of the data in multivariate space. The remaining
principal components may be treated as residuals, measuring the lack of fit of observations along the first
few axes.

Each observation can be located on the new set of principal component (pc) axes. For example,
suppose principal components were computed for four original variables, the cations Ca, Mg, Na, and K.
The new axes would be linear combinations of these variables, such as:

pcl=0.75 Ca+0.80 Mg+0.10 Na+0.06 K a calcareous axis?
pc2=0.17 Ca+0.06 Mg+0.60 Na+0.80 K a Na+K axis?
pc3=0.40 Ca—0.25 Mg—0.10 Na+0.10 K a Ca versus Mg axis?
pc4=0.05Ca—0.10 Mg+0.10 Na+0.20 K residual noise

An observation that had milliequivalents of Ca=1.6, Mg=1.0, Na=1.3, and K=0.1 would have a
value on pcl equal to (0.75-1.6+0.8-1.0+0.1-1.3+0.06-0.1)=2.136, and similarly for the other new
variables. At this point no reduction in dimensions has taken place, as each observation still has values
along the p=4 new pc axes, as they did for the four original axes.

Now, however, plots can be made of the locations of the observations (also called scores) oriented
along the first two principal components axes. This is considered the most important view of data in
multivariate space. A principal components biplot of the site characteristics data from Warwick (1971) is
shown in figure 2.35. Two types of data are shown, hence the name biplot. The first type is the locations
of observations on the plot, as shown by the numbers plotted for each observation. Observations near each
other on the biplot have similar characteristics in multivariate space. For example, sites 5 and 10 are located
near each other on the plot, and far away from the other locations. They were the outliers identified in the
star chart of figure 2.31.

The second type of information on the biplot is the vector representing the direction of variables
used in the analysis. Six attributes of each location were recorded in the field or were the result of
lab measurements. These six variables are the basis for the similarities and differences between sites
represented on the plot. The PCA biplot represents a slice through six-dimensional space, as defined by
the six axes. Variables whose vectors are close to each other are strongly correlated, such as depth to the
sulfide layer (Dep.H2S.layer) and median particle diameter (Med.ParDiam). Axes point in the direction
of increasing value, so that as depth to the sulfide layer increases at the sites, so does the median particle
diameter of the substrate. These two variables are also reasonably correlated with the percent organics
(X.Organics) at the site, though the vector for percent organics is heading at an angle almost 180 degrees
from the previous two, indicating a negative correlation. All three variables are correlated with each other,
and so form one principal component or major direction for the data. Plotting both types of information
on the same plot illustrates their relations—points (site locations) listed in the same direction the vector
for percent organics is pointing have high percent organics compared to the other sites, in this case sites
1 through 4. These sites are in the opposite direction from the median particle diameter and depth to the
sulfide layer variables because sites 1 to 4 have relatively low values for those variables. Sites 1 to 4 are
organic rich silt/clay substrate locations that go quickly anoxic (high H,S) with depth.

246 Nonmetric Multidimensional Scaling

Nonmetric multidimensional scaling (NMDS) was developed by Kruskal (1964) for application to
psychology, but has found frequent use in recent years in the discipline of ecology (Borcard and others,
2011). It is an alternative to, and often similar to, a PCA biplot. Its advantage over the PCA biplot is that
all of the information in all of the variables is used to construct the plot, rather than using only the two best
axes as defined by two principal components (Everitt and Hothorn, 2011). Its disadvantage in comparison
to a PCA biplot is that distances are not measured in original scales, but in their ranks. This results in scales
for the x and y axes that are arbitrary and may not even be shown on the plot. Because of this, NMDS is
often considered a sketch of data relations rather than a scatterplot with defined scales.
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Figure 2.35. Principal component analysis (PCA) biplot of site characteristics along the Exe estuary
(Warwick, 1971).

An NMDS for the site characteristic data of Warwick (1971) is shown in figure 2.36. Variable names
indicate the direction of highest values for those variables, similar to the point of each vector shown on a
biplot. The NMDS clearly shows sites 5 and 10 as outliers in terms of depth to the water table (Dep. Water.
Tab). It shows the cluster of sites 1 to 4 as locations with high percentage organics. Data towards the center,
near the (0,0) point on the map, are average in most variables. Clusters of sites indicate similarities in
characteristics among those sites, and differences from characteristics at the other sites. NMDS and a PCA
biplot are two of the best ways to visualize data in multivariate space, and together provide a valuable first
look at complex datasets. They can both be computed using the vegan package of R (Oksanen and others,
2016).

24.7 Three-dimensional Rotation Plots

If only three variables are under consideration, software packages often will plot data in pseudo-three
dimensions, and allow the axes to be rotated in space along all three dimensions. In this way the inter-
relations between the three variables can be visually observed, data can be visually clustered into groups
of similar observations, and outliers discerned. In figure 2.37, two of the many possible orientations for
viewing three of the Exe site characteristic variables from Warwick (1971) are presented. The figures were
generated using the R command scatter3d from the car package (Fox and Weisberg, 2011) which
requires the rgl package (Adler and others, 2018). By rotating data around their three axes, patterns may
be seen which would not be evident without a three-dimensional perspective and greater insight into the
data is obtained.
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Figure 2.36. Nonmetric multidimensional scaling showing the relations among sites, and between
sites and variables, using the six site characteristics of Warwick (1971).
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Figure 2.37. Two three-dimensional plots of the site characteristics data of Warwick (1971).
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248 Methods to Avoid

Two commonly used methods should generally be avoided, as they provide little ability to compare
differences between groups of data; these are stacked bar charts and multiple pie charts. Both methods
allow only coarse discrimination to be made between segments of the plot. For example, figure 2.38 is a
stacked bar chart of the GAMA water-quality data previously shown as a trilinear plot (fig. 2.32). Note
that only large differences between categories within a bar are capable of being discerned. Only the lowest
anion (percent HCO3+CO3) and cation (percent Ca) categories have a common datum, so judgment of
relative heights for the others is difficult for the human eye. For example, any difference in magnitude
of percent K+ Na in the G and S lithologic zones cannot be differentiated using the stacked bar chart. In
addition, stacked bar charts provide much less visual distinction when comparing differences among many
sites, as in figure 2.32. In figure 2.38 the mean values for each lithologic zone were computed, not for
individual locations. Showing a separate bar for each of the many dozen locations in a given lithologic zone
would be confusing. Multiple pie charts require similarly imprecise and difficult judgments of differences.
Both stacked bar charts and pie charts can be replaced by any of the other methods shown in this chapter,
improving insight and usefulness for data analysis.

O Percent SO4 & Percent K+Na
(] Percent Cl (] Percent Mg
3 Percent HCO3+CO3 =] Percent Ca

200 —

7777

Percent cations plus percent anions

50 —

Lithologic zones

Figure 2.38. Stacked bar charts of mean percent milliequivalents of anion and cations within the
four Groundwater Ambient Monitoring and Assessment (GAMA) Program lithologic zones of Shelton
and others (2010).
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Exercises

1.

Annual peak discharges for the Otter Creek, at Middlebury, Vermont, are provided in the dataset
OtterCreek.RData. For these data, draw the following plots.

A. A histogram
B. Aboxplot

C. A quantile plot using the Weibull plotting position k/(n+1).
What transformation, if any, would make these data more symmetric?

Arsenic concentrations (in parts per billion) were reported for groundwaters of southeastern New
Hampshire. For the data shown below, draw the following plots.

A. Aboxplot

B. A probability plot

Based on these plots, describe the shape of the data distribution. What transformation, if any, would
make these data more symmetric?

Arsenic concentration, in parts per billion

1.3 1.5 1.8 2.6 2.8 3.5 4.0 4.8

8 9.5 12 14 19 23 41 80
100 110 120 190 240 250 300 340
580

Feth and others (1964) measured chemical compositions of waters in springs draining different rock
types. Compare chloride concentrations from two of these rock types using a Q-Q plot. Also, plot
another type of graph. Describe the similarities and differences in chloride between these two rock
types. What characteristics are evident in each graph?

Chloride concentration, in milligrams per liter

Granodiorite

6.0 0.5 0.4 0.7 0.8 6.0

5.0 0.6 1.2 0.3 0.2 0.5

0.5 10 0.2 0.2 1.7 3.0
Quartz monzonite

1.0 0.2 1.2 1.0 0.3 0.1

0.1 0.4 3.2 0.3 0.4 1.8

0.9 0.1 0.2 0.3 0.5




Describing Uncertainty

The mean nitrate concentration in a shallow aquifer under agricultural land was calculated as
5.1 milligrams per liter (mg/L). How reliable is this estimate? Is 5.1 mg/L in violation of a health advisory limit
of 5 mg/L? Should it be treated differently than another aquifer having a mean concentration of 4.8 mg/L?

Thirty wells over a five-county area were found to have a mean specific capacity of 1 gallon per
minute per foot, and a standard deviation of 7 gallons per minute per foot. A new well was drilled and
developed with an acid treatment. The well produced a specific capacity of 15 gallons per minute per foot.
To determine whether this increase might be a result of the acid treatment, we wonder how unusual is it
to have a well with a specific capacity of 15 gallons per minute per foot given our observations about the
distribution of specific capacity values we see in the wells we have sampled?

An estimate of the 100-year flood, the 99th percentile of annual flood peaks, was determined to be
1,000 cubic meters per second (m*/s). Assuming that the choice of a particular distribution to model these
foods (log-Pearson Type I11) is correct, what is the reliability of this estimate?

In chapter 1 several summary statistics were presented that described key attributes of a dataset,
including sample estimates such as X and s of true and unknown population parameters, such as g,
the population mean, and 62, the population variance. In this chapter, descriptions of the uncertainty or
reliability of sample estimates are presented. As an alternative to reporting a single estimate, the utility of
reporting a range of values called an interval estimate is demonstrated. Both parametric and nonparametric
interval estimates are presented. These intervals can also be used to test whether the population parameter
is significantly different from some prespecified value.

3.1 Definition of Interval Estimates

The sample median and sample mean are two types of estimates of the central tendency of a
population. Such estimates are called point estimates. By themselves, point estimates do not portray the
reliability, or lack of reliability (variability), of these estimates. For example, suppose that two datasets—X
and Y—exist, both have a sample mean of 5 and contain the same number of observations. The Y data all
cluster tightly around 5; the X data are much more variable. The point estimate of 5 for dataset X is less
certain than the point estimate for dataset Y because of the greater variability in the X data. Reporting only
the sample (point) estimate of 5 fails to give any hint of this difference.

As an alternative to point estimates, interval estimates are intervals that have a stated probability
of containing the true population value. In general, we will be presenting two-sided intervals (where the
probability of the true value being higher than the upper limit is assumed to be equal to the probability
of its being lower than the lower limit). There are also one-sided intervals and these are discussed in
later sections of this chapter. The intervals are wider for datasets having greater variability and the same
number of data points. Thus, in the above example, an interval between 4.7 and 5.3 may have a 95-percent
probability of containing the (unknown) true population mean of dataset Y. It would take a much wider
interval, say between 2.0 and 8.0, to have the same probability of containing the true mean of dataset X.
The difference in the reliability of the two estimates is therefore clearly stated using interval estimates.
Interval estimates can provide two pieces of information which point estimates cannot:

1. A statement of the probability or likelihood that the interval contains the true population value (its
reliability).

2. A statement of the likelihood that a single data point with specified magnitude comes from the
population under study.
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Interval estimates for the first purpose are called confidence intervals; intervals for the second purpose
are called prediction intervals. Though related, the two types of interval estimates are not identical, and
cannot be interchanged.

In sections 3.3 and 3.4, confidence intervals will be developed for both the median and mean.
Prediction intervals, both parametric and nonparametric, will be used in sections 3.5 and 3.6 to judge
whether one new observation is consistent with existing data. Intervals for percentiles other than the median
(often called tolerance intervals) will be discussed in section 3.7.

3.2 Interpretation of Interval Estimates

Suppose that the true population mean p of concentration of chloride in an aquifer was 5 milligrams
per liter (mg/L). Also suppose that the true population variance 6> equals 1. As these values in practice are
never known, samples are taken to estimate them by the sample mean X and sample variance s*. Sufficient
funding is available to take 12 water samples (roughly 1 per month) during a year, and the days on which
sampling occurs are randomly chosen. From these 12 samples X and s (the square root of s?) are computed.
Although in reality only one set of 12 samples would be taken each year, using a computer simulation that
has the true population characteristics and an assumption of normality, 12 days can be selected multiple
times to illustrate the concept of an interval estimate. For each of 10 independent sets of 12 randomly
selected samples, a two-sided confidence interval on the mean is computed using equations given in section
3.4.1. The results are shown in table 3.1 and figure 3.1. Note that just as the sample mean varies from
sample to sample, so will the end points of the interval.

These 10 intervals are 90-percent confidence intervals on the true population mean. That is, the true
mean will be contained in these intervals an average of 90 percent of the time. Thus, for the 10 intervals in
the table, 9 are expected to include the true value and 1 is not. As shown in figure 3.1, this is in fact what
happened. The sixth dataset drawn has a confidence interval from 5.23 to 5.97 and thus does not include
the true mean of 5. When a one-time sampling occurs, the computed interval may or may not include the
true, unknown population mean. The probability that the interval does include the true value is called the
confidence level. The probability that this interval will not cover the true value is called the significance
level, a, which is computed as

« =1-confidence level | 3.1

The width of a confidence interval is a function of the shape of the data distribution (its variability and
skewness), the sample size, and the confidence level desired. As the confidence level increases, the interval
width also increases because a larger interval is more likely to contain the true value than is a smaller
interval. Thus, a 95-percent confidence interval will be wider than a 90-percent interval for the same data.

Symmetric confidence intervals on the mean are commonly computed when it is assumed that the
data follow a normal distribution (see section 3.4.1). Even if the data are not normally distributed, the
distribution of the sample mean will be approximately normal as long as sample sizes are large (say >70
observations for typical highly skewed environmental data; see U.S. Environmental Protection Agency
[2002] or Boos and Hughes-Oliver [2000]). Confidence intervals assuming normality will then include the
true mean 100 - (1 —a)-percent of the time. In the above example, the data were generated from a normal
distribution so the small sample size of 12 is not a problem. However, when data are highly skewed and
sample sizes are <70, symmetric confidence intervals may not contain the mean 100 - (1 —a)-percent of the
time. Symmetric confidence intervals are computed for a skewed distribution as illustrated by the boxplot
in figure 3.2.

Plots constructed from 10 datasets of 12 samples of chloride concentration, each sampled from a log
normal distribution, show that the confidence intervals miss the true value of 1 more frequently than they
should (4 times in 10 trials) in figure 3.3. The greater the skewness, the larger the sample size must be
before symmetric confidence intervals can be relied on. As an alternative, asymmetric confidence intervals
can be computed for the common situation of skewed data; they are also presented in the following
sections.



Table 3.1. Ten replicate datasets of 12 samples each of chloride concentrations,
each with mean =5 and standard deviation = 1. All units are in milligrams per liter.

[Xbar, sample mean; sd, sample standard deviation; Icl, lower confidence limit for the mean;

ucl, upper confidence limit for the mean, where the confidence interval is a 90-percent two-sided

Chapter 3 Describing Uncertainty

interval]

Replicate xbar sd lel ucl
1 5.21 1.072 4.66 5.77
2 5.23 0.754 4.84 5.62
3 5.30 1.314 4.62 5.98
4 5.19 1.182 4.58 5.80
5 5.26 0.914 4.79 5.73
6 5.60 0.713 5.23 597
7 4.93 0.917 4.45 5.40
8 5.34 0.871 4.89 5.79
9 491 1.132 432 5.50

10 5.32 1.098 4.75 5.89
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Figure 3.1. Ten 90-percent confidence intervals for normally distributed data with true

Chloride concentration, in milligrams per liter

6.0

mean =5 and standard deviation = 1, in milligrams per liter. Dots indicate the sample mean

from each sample.
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0

Figure 3.2. Boxplot of a random sample of 1,000 observations from a lognormal
distribution. Population mean =1, population coefficient of variation = 1. The horizontal line
that crosses the entire plot is the true population mean value. For definition of the boxplot
features see chapter 2, section 2.1.3.

Throughout our discussion of confidence intervals we will only describe two-sided confidence
intervals. For two-sided confidence intervals it is always assumed that the probability of the true value lying
below ¢, will be equal to the probability of the true value lying above C,pr There can also be one-sided
confidence intervals, where our concern is strictly with trying to determine whether the true value is greater
or less than some particular value. When we determine a one-sided confidence interval, the critical values

we use are the cumulative distribution function evaluated at either a or 1 —a rather than at % or | _ &.
2 2
A distribution that is commonly used in the definition of confidence intervals is the Student’s

t-distribution, which is based on the sampling properties of sample mean values. The Student’s
t-distribution has a parameter called the degrees of freedom which is generally n—1 where 7 is the sample
size. Several of the formulas used in this chapter reference the critical levels of the #-distribution. For
example, £ | denotes the critical value of the Student’s ¢-distribution for n—1 degrees of freedom, for

,n—1
which the probability of that variable being less than this value is £. We can think of it as being the point

on the distribution at which the tail area to the left of it is . 2
2
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Figure 3.3. Ten 90-percent confidence intervals around a true mean of 1, each one based

on a sample size of 12. Data are from a log normal distribution of mean = 1.0 and coefficient
of variation = 1.0. Dots indicate the sample mean values. Four out of the 10 intervals do not

include the true value.

3.3 Confidence Intervals for the Median

A confidence interval for the true population median may be computed in two ways: (1) without
assuming the data follow any specific distribution (nonparametric; section 3.3.1.), or (2) assuming they
follow a distribution such as the lognormal (parametric; section 3.3.2.).

3.3.1 Nonparametric Interval Estimate for the Median

We will consider two nonparametric approaches to interval estimates for the median. The first is based
on the binomial distribution and the second is a bootstrap method, which is a general approach to many
estimation problems. Neither approach requires assumptions about the distribution of the random variable.

For the binomial approach we start by selecting the desired significance level o, which is the
acceptable risk of not including the true median. One-half of this risk (a/2) is assigned to each end of the
interval. To compute the confidence interval for the median we use the cumulative distribution function
(cdf) of the binomial distribution (in R that is the function gbinom). To determine the 100 - (1 —a)-percent
confidence interval we use the gbinom function to determine the critical values of the ranks of the dataset
that correspond to /2 and 1 —(a/2) points on the binomial cumulative distribution function. These critical
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values of the ranks are then associated with their data values to form the upper and lower confidence limits
for the median. We use the binomial distribution to answer the following question: How likely is it that
the true population median, ¢, would be such that k of the n observed data would be above ¢, and n—k
below ¢, ., where for example, & could be 0, 1, 2, 3,..., 25 out of n=25? The binomial distribution with
prob = 0.5 is used because the probability of being above the population median is 0.5. The resulting
confidence interval will reflect the shape (skewed or symmetric) of the original data. Nonparametric
intervals cannot exactly produce the desired confidence level when the sample sizes are small. This

is because the possible values are discrete, jumping from one data value to the next at the ends of the
intervals. However, confidence intervals close to those desired are available for all but the smallest sample
sizes. The process of computing the confidence interval is best illustrated with an example.

Example 3.1. Nonparametric interval estimate of the median.

The 25 arsenic concentrations in table 3.2 were reported for groundwaters of southeastern New
Hampshire (Boudette and others, 1985). A boxplot of the data is shown in figure 3.4. Compute the a=0.05
interval estimate of the median concentration.

Table 3.2. Arsenic concentrations (in parts per billion) for groundwaters of southeastern New Hampshire (from
Boudette and others, 1985), ranked in ascending order.

Rank Value Rank Value Rank Value
1 1.3 10 9.5 19 120
2 1.5 11 12 20 190
3 1.8 12 14 21 240
4 2.6 13 19 22 250
5 2.8 14 23 23 300
6 3.5 15 41 24 340
7 4.0 16 80 25 580
8 4.8 17 100
9 8.0 18 110
A. Concentration B. In(Concentration)
600 S 7 3 1,000
- ; -4 500
§ 500 1 &°7 : 5
5 2 4 200 B
g g 5 ' 8
2 400 T £ 4 100 e
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Figure 3.4. Boxplots of the (A) original and (B) log-transformed arsenic data from Boudette and others (1985)
used in example 3.1.
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The sample median ¢, =19, which is the 13th observation ranked from smallest to largest in this
sample size of 25. The binomial distribution is used to determine the 95-percent confidence interval
for the true median concentration, ¢, .. We obtain the critical values from the gbinom function as
gbinom(p=c(0.025,0.975), size=25, prob=0.5). Because we are focused on the median here,
the prob value is always 0.5 for this calculation. For the population median, half the population values
are above the median and half below. The o value here is 0.05 and thus the end points of the confidence
intervals are at a/2 and at 1 —(a/2), which are 0.025 and 0.975, respectively. The values returned by this
function are 8 and 17, which are the ranks of the two end points. We can then compute the concentration
values that are associated with these two ranks as follows.

> x <- ¢(1.3, 1.5, 1.8, 2.6, 2.8, 3.5, 4.0, 4.8, 8.0, 9.5, 12, 14,
+ 19, 23, 41, 80, 100, 110, 120, 190, 240, 250, 300, 340, 580)
> indexRanks <- gbinom(c(©.025, ©.975), length(x), prob = 0.5)

> indexRanks

[1] 8 17

> X <- sort(x) # not actually needed, values are sorted already

> X[indexRanks]

[1] 4.8 100.0

This code indicates that the lower and upper confidence intervals are at ranks 8 and 17, and that these
translate to concentration values of 4.8 and 100 (the 8th and 17th values on the sorted list of concentration
values in table 3.2). Because the sample size is relatively small (n=25) we know that the interval will not
be an exact 95-percent confidence interval. We can compute the probability that the interval will contain
the true value using the dbinom function. This function returns the probability density of the binomial
distribution, and we can sum the density values from 8 through 17 to determine the probability of the true
median being in the range of the 8th through 17th values in the sorted vector of values.

> sum(dbinom(8:17, 25, 0.5))
[1] ©.9567147

The result tells us that the true probability for this range is 0.9567, which is very close to the desired
probability of 0.95. Thus, one could say the closed interval [4.8, 100] is the best approximation to a
95-percent confidence interval for the median. Note that the bracket notation ([) means greater than or equal
to, whereas an open parenthesis is used to indicate greater than values. This means that the probability that
¢, ; will be less than the 8th ranked sample value is <0.025 and similarly the probability that c, . will be
greater than the 17th ranked sample value is also <0.025. Thus, we can state that a 95-percent confidence
interval for the median is [4.8, 100] because 4.8 and 100 are the 8th and 17th ranked values in the sample.
The results of these computations are shown in figure 3.5; note the substantial amount of asymmetry in the
confidence interval, which is what we would expect given the asymmetry of the full sample.

An alternative to the binomial distribution-based approach is to use bootstrapping. Bootstrapping
(Efron and Tibshirani, 1994) is one of many computer-intensive methods that uses the observed data to
represent the probability distribution from which the data were drawn, rather than assuming a normal
or other theoretical distribution. Because of its robustness and coverage accuracy, the bootstrap method
is commonly preferred for computing a confidence interval, especially when data are skewed or the
distribution is unknown. The method also works well for data that do follow a specific distribution—in that
case it returns interval endpoints very similar to those based on a distribution, for example #-intervals for
the normal distribution (discussed in section 3.4).

The bootstrap method consists of repeatedly resampling from the dataset, with replacement. The term
“with replacement” means that each observation that has been selected is replaced in the dataset, which
means that it can be selected multiple times in the sampling process. Two thousand to 10,000 resamples
of the data are commonly used, and for many statistics it takes a small amount of computational time.
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Figure 3.5. Plot of the 95-percent confidence interval for the true median in example 3.1. The dots
represent the 25 observations in the arsenic dataset on a logarithmic scale. The sample median

(19 parts per hillion [ppb]) and upper (cup) and lower (c,,) bounds on the confidence interval for the
true median (4.8 and 100 ppb) are shown. The confidence interval is computed using a=0.05. Thus,
the probability that the population median will be greater than C, is 0.025 and the probability that the
population median is less than ¢, is also 0.025.

For more complex problems, the bootstrap process can take substantial amounts of time and selecting the
number of resamples entails a trade-off between computer time and accuracy. Each resample is a random
selection (with replacement) of the identical number of observations found in the original data. Each
observation in the dataset has an equal probability of being chosen for each resample. For example, with
25 observations a bootstrap replicate is generated consisting of 25 observations, all of which came from
the original 25. Some of the original 25 may have been chosen more than once and some may not have
been chosen at all. The difference between the original data and the many resampled datasets becomes

a representation of the noise in the data. For each resample, the median, mean, or other statistic to be
estimated is calculated and stored, resulting in 2,000—10,000 estimates of the desired statistic. These
estimates represent the sampling distribution of that statistic and from the entire set a confidence interval
can be computed.

The bootstrap method discussed here is the percentile bootstrap; there are also other variations of
bootstrap intervals. The percentile bootstrap gets it name because it uses a percentile of the thousands
of estimates of the desired statistic for its final estimate. For example, suppose we want to estimate the
two-sided 95-percent confidence interval for the median and that we chose to use 2,000 bootstrap replicate
estimates of the median. We would compute the 2,000 estimates and sort them from smallest to largest. In
this situation the lower confidence limit (c, ) would be the 50th ranked value (because 50=0.025 - 2,000)
and the upper confidence limit (c,) would be the 1,950th ranked value (because 1,950=0.975 - 2,000).
These values can be determined using the quantile function in R. The selection of a plotting position
(set by the type argument in the quantile function) has a very small effect on the result. Note that for a
variable that is always positive the ¢, A will always be positive.

Bootstrapping requires no assumption of a distributional shape, but it does require sufficient data to
represent the population well. The data itself becomes the estimate of the distribution, and like all statistics,
it performs better with more data.

When there is a high positive skewness the percentile bootstrap value for ¢, is often too low. This can
be corrected by using an adjustment for skewness and bias called the bca bootstrap (Efron and Tibshirani,
1994); see the book for a description of the method for adjustment. Here we will demonstrate bootstrapping
using the percentile bootstrap.
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A bootstrap method for obtaining confidence intervals for the median uses the BootMedian code
found in the supplemental material for chapter 3 (SM.3). The BootMedian code is designed to simplify
obtaining the bootstrap confidence interval for the median by calling the boot. ci function in the R boot
package in a manner that is tailored to the problem of obtaining confidence intervals for the median. The
boot.ci function is very general and can be used to estimate confidence intervals on many different
statistics. Below is an example for determining the 95-percent confidence interval using the arsenic data
from example 3.1.

Example 3.2. Bootstrap confidence interval for the median.

v

library(boot)

v

source("BootMedian.R")
> arsenic <- c(1.3, 1.5, 1.8, 2.6, 2.8, 3.5, 4.0, 4.8, 8, 9.5, 12, 14,
+ 19, 23, 41, 80, 100, 110, 120, 190, 240, 250, 300, 340, 580)

v

BootMedian(arsenic)

Bootstrap Confidence Intervals of the Median of arsenic

Using boot package in R

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = B, conf = Conf, type = TYPE)

Intervals :

Level Percentile

95% ( 4.8, 110.0 )

Calculations and Intervals on Original Scale

In this particular case the bootstrap produces a result that is very close to the nonparametric interval
estimate calculated in example 3.1.

3.3.2 Parametric Interval Estimate for the Median

As mentioned in chapter 1, the geometric mean of x (GM ) is an estimate of the median in original (x)
units when the data logarithms y=I1n(x) are symmetric. The mean of y and confidence interval on the mean
of y become the geometric mean with its (asymmetric) confidence interval after being retransformed back
to original units by exponentiation (eqs. 3.2 and 3.3). These are parametric estimates of the median and its
confidence interval because they are made using an assumption about the underlying distribution (in this
case, the assumed distribution is lognormal). When the data are truly lognormal, the geometric mean and
interval would be more efficient (a shorter interval) measures of the median and its confidence interval
than the nonparametric sample estimates of section 3.3.1. The sample median and its interval are more
appropriate and more efficient if the logarithms of the data still exhibit skewness and (or) outliers.
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Let GM, =exp(y), (3.2)

where

= _Z'LI Vi ,and
n

y, = In(x;) :

then the lower and upper confidence intervals for median are

EXP(T (412,013 s?/n)<GM, < eXP(F 1412, 13 /sj /n), (3.3)

where si is the sample variance of y, and Laian) is the critical value of the ¢-distribution with n—1 degrees
of freedom and a cumulative probability value of a/2 (see section 3.4.1. for more discussion of the use of
the ¢-distribution). Using the same arsenic concentration dataset as in table 3.2, we now take the natural
logarithms of each value (table 3.3).

The mean of the log-transformed data is 3.17, with a standard deviation of 1.96. Box plots of the
original and log-transformed data are shown in figure 3.4. Clearly, the log-transformed data are much closer
to being symmetric and are well approximated by a normal distribution.

From equations 3.2 and 3.3, the geometric mean and its 95-percent confidence interval are

GM, =exp(3.17)=238
exp(3.17—2.064- 1.962/25)£GMCSexp(3.17+2.064~ 1.962/25),

exp(2.36) < GM,. <exp(3.98) | and

10.6<GM, <535 .

The scientist must decide whether it is appropriate to assume a lognormal distribution. If not, the
nonparametric interval of section 3.3.1. would be preferred.

Table 3.3. Log-transformed arsenic concentrations (in parts per billion) for groundwaters of southeastern
New Hampshire (from Boudette and others, 1985), ranked in ascending order.

Rank Value Rank Value Rank Value
1 0.262 10 2.251 19 4.787
2 0.405 11 2.485 20 5.247
3 0.588 12 2.639 21 5.481
4 0.956 13 2.944 22 5.521
5 1.030 14 3.135 23 5.704
6 1.253 15 3.714 24 5.829
7 1.387 16 4382 25 6.363
8 1.569 17 4.605
9 2.079 18 4.700
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3.4 Confidence Intervals for the Mean

Interval estimates may also be computed for the true population mean u. These are appropriate if the
center of mass of the data is the statistic of interest (see chap. 1). Intervals symmetric around the sample
mean X are computed most often. For large sample sizes a symmetric interval adequately describes the
variation of the mean, regardless of the shape of the data distribution; this is because the distribution of the
sample mean will be closely approximated by a normal distribution as sample sizes increase, even though
the data may not be normally distributed. This property is called the Central Limit Theorem (Conover,
1999) and it holds for data that follow a distribution having finite variance. As such, the theorem includes
most distributions of interest in water resources. For smaller sample sizes, however, the mean will not
be normally distributed unless the data themselves are normally distributed. As skewness of the data
increases, more data are required before the distribution of the mean can be adequately approximated by
a normal distribution. For highly skewed distributions or data containing outliers, it may take as many as
100 observations before the mean will be sufficiently unaffected by the largest values to assume that its
distribution will be symmetric.

3.41 Symmetric Confidence Interval for the Mean

Symmetric confidence intervals for the mean are computed using equation 3.4.

— S2 — S2
X +t[%’"’1) \/; Spu<x +t[17§,n71] o (3.4)

If 1 —a were the desired confidence level and the sample size was 7, then the critical #-values would be

t[a 1] and ¢ e ) For example, if one wanted a 95-percent confidence interval, then a=0.05. The critical
= 3

VE:IHGS can be found on #-distribution tables or could be computed with the qt function in R. If the sample
size, n, was 25, they would be qt (0.025, 24) and qt(0.975, 24) which are —2.064 and +2.064
respectively. The width of the confidence interval is a function of these critical values, the sample standard
deviation of the data, and the sample size. When the sample size is small (#<70) and the data are highly
skewed or contain outliers, the assumptions behind the #-interval do not hold. The resulting symmetric
interval will be so wide that most observations will be included in it. In some cases, the lower limit of the
confidence interval may be less than zero. A negative endpoint for a confidence interval for data that cannot
be negative is a clear signal that the assumption of a symmetric confidence interval is not appropriate. For
such data, assuming a lognormal distribution as described in section 3.4.2. will probably result in more
realistic confidence intervals.

Example 3.3. Symmetric confidence interval for the mean.

Using the data from example 3.1, the sample mean arsenic concentration, X = 98.4 parts per billion
(ppb), is the point estimate for the true unknown population mean, . The standard deviation of the arsenic

concentrations, s, is 144.7 ppb. Using equation 3.4, a 95-percent confidence interval (¢ =0.05) for the true

mean, i, is
2 2
98.4—2.064'1’144'7 <u<984+ 2.064-1/144'7 ,
25 25

387<u<158.1

Thus, there is a 95-percent probability that the interval between 38.7 and 158.1 ppb contains the true
population mean assuming that a symmetric confidence interval is appropriate. Note that this confidence
interval is, like the sample mean X, sensitive to the highest data values. If the largest value of 580 ppb were
changed to 380 ppb, the median and its 95-percent confidence interval would be unaffected. However, x
would change to 90.4 ppb, with a 95-percent interval estimate for x from 40.7 ppb to 140.1 ppb.
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34.2 Asymmetric Confidence Interval for the Mean (for Skewed Data)

Means and confidence intervals may also be computed for the case where the logarithms y=1n(x)
approximate a normal distribution. If the logarithmically transformed data are approximately normal, this
approach will give a more reliable (lower variance) estimate of the mean than will computation of the usual
sample mean without transformation. There may be other transformations available that can be considered
if the logarithm doesn’t cause the data to be approximately normal.

An estimate of the mean of the original x variable is & =exp(y +0.5- si) where y is the sample mean
of the logarithms of x, and si is the sample variance of the logarithms of x (Aitchison and Brown, 1981).
This only holds true when the logarithms are normally distributed. For small sample sizes and (or) large
estimated variances this estimate of the mean is biased (Bradu and Mundlak, 1970). However, for small sﬁ
and large sample sizes the bias is negligible. See chapter 9 for more information on the bias of this estimator.

The confidence interval around 4 is not the interval estimate computed for the geometric mean in
equation 3.3. It cannot be computed simply by exponentiating the end points of the interval around y. An exact
confidence interval in original units for the mean of lognormal data can be computed, though the equation is
beyond the scope of this book, see Land (1971) and (1972) for details. A better estimator of the confidence
interval about the mean for skewed data is given by bootstrapping, which is discussed in section 3.4.3.

3.43 Bootstrap Confidence Interval for the Mean for Cases with Small Sample
Sizes or Highly Skewed Data

Just as we used the bootstrap to develop confidence intervals for the median, in section 3.3.1., we can
also use the bootstrap to develop confidence intervals for the mean. The following example illustrates how
that is done.

Example 3.4. Confidence intervals for the mean, using the bootstrap method.

Using the boot library in R, 25 values from the 25 observations in the arsenic dataset used in example
3.1 are selected and their mean is computed (sampling with replacement). This is repeated 2,000 times and
a two-sided 95-percent confidence interval for the mean is the 0.025 - 2,000th and 0.975 - 2,000th ordered
resample estimates for the mean.

The R code that could be used to develop the percentile estimate of the confidence interval is as follows.

> X <- c(1.3, 1.5, 1.8, 2.6, 2.8, 3.5, 4.0, 4.8, 8, 9.5, 12, 14,

+ 19, 23, 41, 80, 100, 110, 120, 190, 240, 250, 300, 340, 580)
> library(boot)

> meanl <- function(x, i) {mean(x[i])}

> set.seed(1)

> bootl <- boot(x, statistic = meanl, R = 2000)

> boot.ci(bootl, conf = 0.95, type = "perc")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = bootl, conf = 0.95, type = "perc")

Intervals :
Level Percentile
95% ( 47.78, 159.70 )

Calculations and Intervals on Original Scale
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Bootstrap estimation is an important, but complex, tool in statistics. There are many options and
variations on the technique and this text will not attempt to cover these, but this small example may
help demonstrate the value of the bootstrap concept for highly skewed data, which are common in
environmental and water resources data. The bootstrap method can be applied to any function of the data.

3.5 Nonparametric Prediction Intervals

The question is often asked whether one new observation is likely to have come from the same
distribution as previously collected data, or alternatively from a different distribution. This can be evaluated
by determining whether the new observation is outside the prediction interval computed from existing data.
The scientist must select an « level for the interval (the probability that a value falls outside the interval).
Prediction intervals contain 100 - (1 —a) percent of the data distribution where 100 - « percent are outside of
the interval. If a new observation comes from the same distribution as previously measured data, there is a
100 - o percent chance that it will lie outside of the prediction interval. Therefore, being outside the interval
does not prove the new observation is different, just that it is likely to be so under certain assumptions about
the distribution. How likely this is depends on the choice of & made by the scientist. Prediction intervals
should never be used to exclude data points from an analysis, they merely help to indicate whether the data
points are unusual in light of some existing set of data.

Prediction intervals are computed for a different purpose than confidence intervals—they deal with
individual data values as opposed to a summary statistic such as the mean. A prediction interval is wider
than the corresponding confidence interval, because an individual observation is more variable than a
summary statistic computed from several observations. Unlike a confidence interval, a prediction interval
takes into account the variability of single data points around the median or mean, in addition to the error in
estimating the center of the distribution. When methods for estimating confidence intervals are mistakenly
used to estimate a prediction interval, new data are asserted as being from a different population more
frequently than they should.

In this section, nonparametric prediction intervals are presented. Nonparametric intervals do not
require the data to follow any particular distributional shape. Prediction intervals can also be developed
assuming the data follow a particular distribution, such as the normal distribution. Both two-sided and
one-sided prediction intervals are described in section 3.6. It may also be of interest to know whether the
median or mean of a new set of data differs from that for an existing group. Such comparisons require
hypothesis tests, which are introduced in chapter 5.

351 Two-sided Nonparametric Prediction Interval

The nonparametric prediction interval is simply the interval between the a/2 and 1—(a/2) percentiles
of the distribution (fig. 3.7). This interval contains 100 - (1 —a) percent of the data, where 100 - o percent lies
outside of the interval. Therefore, if the new additional data point comes from the same distribution as the
previously measured data, there is a (100 - a)-percent chance that it will lie outside of the prediction interval.
The interval will reflect the shape of the data it is developed from and no assumptions about the distribution
need be made. In R we can use the quantile function to compute the prediction interval directly from the
data. For instance, using the arsenic data from example 3.1 with a=0.1 and the Weibull plotting position
(type = 6, as discussed in chap. 1, section 1.3.2., and chap. 2, section 2.1.1.), the interval can be computed
as

> quantile(x, prob = c(0.05, 0.95), type = 6)

With the arsenic dataset, the lower limit of the prediction interval is 1.36 ppb and the upper limit of
the prediction interval is 508 ppb. If we conclude that any value that is less than 1.36 ppb or greater than
508 ppb comes from a different distribution than our original data, then there is a 10 percent chance of
drawing that conclusion if, in fact, all of the values did come from the same population.

Figure 3.8 uses the James River discharge data introduced in chapter 2 to show the histogram of the
dataset as well as the 98-percent prediction interval for annual mean discharge. The sample median is
195 cubic meters per second (m?/s) (shown with the solid line in fig. 3.8). The prediction interval includes
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the interval from 64 to 350 m*/s. This implies that values less than 64 m*/s have a probability of about

1 percent of occurring in any given year and values greater than 350 m*/s also have a probability of about
1 percent of occurring in any given year. The prediction interval is the range of values between the two
vertical dashed lines computed with quantile(Q, prob = c(0.01, 0.99), type = 6). Note that
the prediction interval is not symmetrical around the median.

Example 3.5. Nonparametric prediction interval for the median.

Compute a 90-percent (a=0.10) prediction interval for the arsenic data used in example 3.1 without
assuming the data follow any particular distribution. This can be computed in R as

> predInt <- quantile(x, prob = c(0.05, 0.95), type = 6)

The results (stored in predInt) are 1.36 ppb and 508 ppb. Note the high degree of asymmetry in
this case. The median is 19 ppb, so the difference between the median and the lower prediction limit is
about 18 ppb, but the difference between the median and the upper prediction limit is 489 ppb. Thus, a
new observation less than 1.36 ppb or greater than 508 ppb can be considered as coming from a different
distribution at a 10-percent significance level (¢=0.10).

352 One-sided Nonparametric Prediction Interval

One-sided prediction intervals are appropriate if the scientist is interested in whether a new
observation is larger than existing data or smaller than existing data, but not both. The decision to use a
one-sided interval must be based entirely on the question of interest. It should not be determined after
looking at the data and deciding that the new observation is likely to be only larger, or only smaller, than
existing information. One-sided intervals use a rather than /2 as the error risk, placing all the risk on one
side of the interval (fig. 3.9).

If the 90-percent prediction interval is on the right tail, it would be the interval from PTI to co, where PI
is determined as:

> PI <- quantile(Q, prob = 0.9, type = 6)

If the 90-percent prediction interval is on the left tail, it would be the interval from 0 to PI, where PT
is determined as:

> PI <- quantile(Q, prob = 0.1, type = 6)

90-percent prediction interval
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Figure 3.9. Example of a probability distribution showing the one-sided 90-percent prediction
interval (a=0.10). The shaded area in the right tail has a probability of 0.10.
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Example 3.6. One-sided nonparametric prediction interval.

An arsenic concentration of 350 ppb is found in a southeastern New Hampshire groundwater
sample. Does this indicate a shift in the distribution to larger values as compared to the distribution of
concentrations for this dataset (from example 3.1)? Use a=0.10.

As only large concentrations are of interest, the new data point will be considered larger than the
original dataset if it exceeds the @=0.10 one-sided prediction interval, or the upper 90th percentile of the
existing data. Using the quantile function in R we compute this upper 90th percentile as quantile(x,
prob = 0.9, type = 6), which has a value of 316 ppb.

A concentration of 350 ppb is considered to come from a different distribution than the existing data
at an a level of 0.10. However, 316 ppb or greater will occur approximately 10 percent of the time if the
distribution of data has not changed; therefore, a concentration of 350 ppb is considered larger than the
existing data at an a level of 0.10.

3.6 Parametric Prediction Intervals

Parametric prediction intervals are also used to determine whether a new observation is likely to come
from a different distribution than previously collected data. However, an assumption is made about the
shape of that distribution. This assumption provides more information with which to construct the interval
as long as the assumption is valid. If the data do not approximately follow the assumed distribution, the
prediction interval may be quite inaccurate.

3.6.1 Symmetric Prediction Interval

If the assumption is that the data follow a normal distribution, prediction intervals are then constructed
to be symmetric around the sample mean and wider than the confidence intervals on the mean. The
equation for this interval (3.5) differs from that for a confidence interval around the mean (eq. 3.4) by

adding a term \/s_2 = s, the standard deviation of individual observations around their mean:
PI= X+t(a/2’n71) WJsP+(s*/n) to X+t[1,z, H] J$P+ (s> n) . (3.5)
2

One-sided intervals are computed as before, using « rather than /2 and comparing new data to only
one end of the prediction interval.

Example 3.7. Two-sided parametric prediction interval.

Using the arsenic data from example 3.1, we will proceed as if the data were symmetric (which we
know is a poor assumption). Using that assumption and a=0.10, how would we answer the question:
Is a concentration of 370 ppb different (not just larger) than what would be expected from the previous
distribution of arsenic concentrations?

The parametric two-sided o=0.10 prediction interval is

2 2
98,4415 5011447 +14;'57 10 98.4+1,y5 5, -4 [144.7° +% ;

98.4-1.711-147.6 to 98.4+1.711-147.6 | and

—-154.1 to 350.9 .

3
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The simple answer would be that it falls outside of the 90-percent prediction interval, and as such we
would consider 370 ppb to be an unlikely value if it came from the same distribution at ¢ =0.10. However,
the interval we compute is seriously flawed because it includes values less than zero. This is a clear
indication that this prediction interval based on symmetry is not appropriate because concentrations can
never be negative. To avoid an endpoint as unrealistic as this, an asymmetric prediction interval (discussed
above) should be used instead. Another alternative would be to make the computations for a symmetrical
interval based on the logarithms of the data.

On the other hand, if we were evaluating a prediction interval for the James River discharge data from
chapter 2—which we can see in figure 3.8 is approximately symmetric—the computation of the 98-percent
prediction interval would be as follows

2 2
198.8—2.361/60.62 + 60-6 to 198.8+2.36, 160.62 + 60-6 ,
116 116

198.8-2.36-60.86 to 198.8+2.36-60.86  and

55.2 to 3424 |

These results are rather similar to the nonparametric prediction interval presented above, which was
64 to 350.

3.6.2 Asymmetric Prediction Intervals

Asymmetric intervals can be computed either using the nonparametric intervals of section 3.5, or
by assuming symmetry of the logarithms and computing a parametric interval on the logs of the data.
Either asymmetric interval is more appropriate than a symmetric interval when the underlying data are not
symmetric, as is the case for the arsenic data in example 3.1. As stated in chapter 1, most water resources
data and indeed most environmental data show positive skewness. Thus, datasets should be modeled
using asymmetric intervals. Symmetric prediction intervals should be used only when the data are highly
consistent with a normal distribution because prediction intervals deal with the behavior of individual
observations. Therefore, the Central Limit Theorem does not apply. Data must be assumed to be non-
normal unless shown otherwise. It is difficult to disprove normality using hypothesis tests (chap. 4) owing
to the small sample sizes common to environmental datasets. It is also difficult to see non-normality with
graphs unless the departures are strong. It is unfortunate that though most water resources datasets are
asymmetric and small, symmetric intervals are commonly used.

An asymmetric (but parametric) prediction interval can be computed using logarithms. This interval
is parametric because percentiles are computed assuming that the data, x, follow a lognormal distribution.
Thus from equation 3.5

PI:exp[)7+t(a/2,n71) S§+(sj/n)} to exp{f+t(1_a _1) si+(s}2, /n) , (3.6)

where
= In(x),

is the mean, and

<=l <

=

is the variance of y.
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Example 3.8. Asymmetric prediction intervals.

An asymmetric parametric prediction interval is computed using the logs of the arsenic data from
example 3.1. A 90-percent prediction interval becomes

2 2
PI:exp|:3.172—1.71,/1.962+1'2956 } to exp{3.172+1.71 1.962+1'2956 } ,

PI =exp[3.172-1.71-2.00] to exp[3.172+1.71-2.00] |

PI =exp(—0.248) to exp(6.592) | and

PI=0.78 to 729.2 .

As percentiles can be transformed directly from one measurement scale to another, the prediction
interval in log units can be directly exponentiated to give the prediction interval in original units. This
parametric prediction interval differs from the one based on sample percentiles in that a lognormal
distribution is assumed. The parametric interval (shown above) would be preferred if the assumption of a
lognormal distribution is believed. The nonparametric interval would be preferred when a robust interval is
desired, such as when a lognormal model is not believed, or when the scientist does not wish to assume any
model for the data distribution.

3.7 Confidence Intervals for Quantiles and Tolerance Limits

Quantiles have traditionally been used in water resources to describe the frequency of flood events
and flow-duration curves. They differ from percentiles only by being on a scale from 0 to 1 rather than 0 to
100. Thus the 100-year flood is the 99th percentile (0.99 quantile) of the distribution of annual flood peaks.
It is the flood magnitude having an annual probability of exceedance of 1 percent. The 20-year flood is of a
magnitude having an annual probability of exceedance of 5 percent and so is the 95th percentile of annual
peaks. Similarly, the 2-year flood is the median or 50th percentile (0.50 quantile) of annual peaks. Flood
quantiles are determined assuming that peak flows follow a specified distribution. The log-Pearson Type 111
is often used in the United States (see England and others [2018]). Historically, European countries have
used the Gumbel (extreme value) distribution, though the generalized extreme value (GEV) distribution is
now more common (Ponce, 1989; Stedinger and others, 1993).

The most commonly reported statistic for analyses of low flows is also based on quantiles, the 7-day
10-year low flow, or 7Q10. The 7Q10 is the 10th percentile of the distribution of annual values of Y, where
Y is the lowest average of mean daily flows over any consecutive 7-day period for that year. Y values are
commonly fit to log-Pearson Type III or Gumbel distributions in order to compute the percentile. Often a
series of duration periods is used to better define flow characteristics, for example the 30Q10, 60Q10, and
others (Ponce, 1989).

Percentiles of water-quality records are becoming more important in a regulatory framework. Crabtree
and others (1987) have reported an increasing reliance on percentiles for developing and monitoring
compliance with water quality standards. In light of the ever-increasing use of percentiles in water
resources applications, understanding their variability is quite important, especially when comparing
percentiles to a health criterion or legal standard. In section 3.7.1., confidence intervals on percentiles will
be differentiated from tolerance intervals. In section 3.7.2., two-sided confidence intervals on percentiles
are discussed. In section 3.7.3. the uses of one-sided lower confidence limits on a percentile, also known
as lower tolerance limits, are discussed. In section 3.7.4. the uses of one-sided upper confidence limits
on a percentile, also known as upper tolerance limits, are discussed. In each section both nonparametric
and distributional intervals or limits are demonstrated. The usefulness of one-sided tolerance limits when
comparing percentiles to criterion or standards is included in sections 3.7.3. and 3.7.4.

15
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3.71 Confidence Intervals for Percentiles Versus Tolerance Intervals

A two-sided tolerance interval is an interval computed to contain, with a specified confidence (1 —a),
a certain proportion, P, of the population between its two limits. P is called the coverage of the tolerance
interval. Note that tolerance intervals involve two proportions, the coverage and the confidence level. This
can be confusing. A two-sided tolerance interval covering the central 90 percent of total dissolved solids
data (90-percent coverage) with 95-percent confidence from the Cuyahoga River, at Independence, Ohio, is
shown in figure 3.10. The central 90 percent of observed data is between the 5th to the 95th percentiles—
this 90 percent of the data is within the 90-percent tolerance interval. As with other types of statistical
intervals, tolerance intervals also consider the sampling error, the error resulting from measuring a few
observations from a much larger population, by using a confidence coefficient. An interval with 95-percent
confidence of containing 90 percent of the population’s values is a bit wider than the range of the observed
Sth to 95th percentiles and depends on the number of observations sampled. Applications of two-sided
tolerance intervals are few in water resources, although they are used in quality control and industrial
applications.

A two-sided confidence interval around a percentile (dashed line in fig. 3.10) expresses the precision
with which the percentile of the population has been estimated, similar to a confidence interval around a
mean or median. An example application would be when the observed 10-year flood (90th percentile of
annual peak flows) is compared to a design value X derived from a regional frequency analysis. If X is
inside the (say 95 percent) confidence interval around the 90th percentile, then the observed percentile
appears not to differ significantly from the design value. As shown in figure 3.10, two-sided tolerance
intervals differ from two-sided confidence intervals on a percentile.

90-percent tolerance
interval with
95-percent confidence

90th percentile

95—percent confidence interval
on the on 90th percentile

0 100 200 300 400 500 600 700

Total dissolved solids, in milligrams per liter

Figure 3.10. A two-sided tolerance interval with 90-percent coverage (solid line), and two-sided
confidence interval on the 90th percentile (dashed line). Both were computed using a 95-percent
confidence coefficient. The solid vertical line is the sample 90th percentile. The data are total
dissolved solids concentrations for the Cuyahoga River, at Independence, Ohio (70 observations
from 1969-73).
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One-sided tolerance limits are far more commonly used than two-sided tolerance intervals in water
resources and water quality applications; they are discussed in detail in sections 3.7.3 and 3.7.4. One-
sided limits are used when the interest is only in how high or low the population percentile might be,
but not both. They would appear as either the upper or lower half of the dashed confidence interval line
in figure 3.10. One-sided tolerance limits are identical to one-sided confidence limits on a percentile.
Examples of the use of one-sided limits include an upper confidence limit on a flood percentile to be used
for culvert or bridge design, or to compare the tolerance limit for concentration or load against a water
quality standard to determine whether the standard has been exceeded in more than (1 —P) - 100 percent of
measurements.

3.7.2 Two-sided Confidence Intervals for Percentiles

A two-sided confidence interval around a percentile (fig. 3.10) expresses the precision with which
the percentile of the population has been estimated, similar to a confidence interval on a mean or median.

It may be computed without assuming a distribution by counting out to observations on either side of the
percentile, just as was computed in section 3.3.1 for the median. However, to do this requires a large sample
size, with more data required for more extreme percentiles. Alternatively, a distribution may be used as a
model for the shape of the data distribution, allowing an upper limit of the interval to perhaps extend higher
than the largest current observation. The validity of the distributional model depends on whether values in
the population actually follow that distribution. For smaller sample sizes, using a distributional model may
be the only choice available if an interval around a high percentile must be made.

Nonparametric confidence intervals can be developed for any percentile analogous to those developed
in section 3.3 for the median. Lower (R,) and upper (R ) ranks corresponding to data points at the ends of
the confidence interval are found using the gbinom function in R by entering the probability associated
with the percentile (p=0.75 for the 75th percentile and so forth). A value of 1 should be added to the lower
rank, as the desired confidence coefficient (say 95 percent) is the probability of exceeding the lower ranked
observation, not including it.

Example 3.9. Nonparametric two-sided confidence interval around the 20th percentile.
For the arsenic concentrations of Boudette and others (1985) used in example 3.1, we determine

a 95-percent confidence interval on C_,, the 20th percentile of concentration (p=0.2). This percentile

was chosen for illustration because it is not too extreme. A sample size of n=25 would be insufficient to
compute a 95-percent nonparametric interval around a high percentile such as the 90th.

> x <- ¢(1.3, 1.5, 1.8, 2.6, 2.8, 3.5, 4.0, 4.8, 8, 9.5, 12, 14, 19,
+ 23, 41, 80, 100, 110, 120, 190, 240, 250, 300, 340, 580)
> quantile(x, 0.2, type = 6)
20%
2.94

The sample 20th percentile CAO.20:2.94 ppb, the 0.20 - (25+ 1)=>5.2th smallest observation, or two-

tenths of the distance between the 5th and 6th smallest observations. The order statistics corresponding to
% =0.025 are at ranks 1 and 9 in the dataset.

> gbinom(c(0.025, 0.975), length(x), 0.2)

[1] 1 9
Adding 1 to the lower rank produced by the gbinom function and summing the probabilities of inclusion
for the 2nd through 9th ranked observations yields

> sum(dbinom(2:9, length(x), 0.2))

[1] ©.9552784

The interval between and including the 2nd and 9th ranked observations (1.5 ppb to 8 ppb) contains the
true population 20th percentile of arsenic with confidence 95.5 percent. Note that the asymmetry around

C,,,=2.94 reflects the asymmetry of the data.

1
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An alternate method to compute a nonparametric interval is bootstrapping. The function BootTOL,
provided in SM.3, will bootstrap this 20th percentile. It requires the package boot.

> library(boot)

> BootTOL(x, p = 20, conf = 95, R = 10000, TYPE = "perc")

Bootstrap Confidence Intervals of the 20-th percentile of x

Using boot in R

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = B, conf = Conf, type = TYPE)

Intervals :

Level Percentile

95% ( 1.56, 9.20 )

Calculations and Intervals on Original Scale

The bootstrap endpoints 1.56 to 9.20 are similar to the previous nonparametric estimate.

For sample sizes larger than 20, a large-sample (normal) approximation to the binomial distribution is
a third method to obtain nonparametric interval estimates for percentiles. Ranks corresponding to the upper
and lower confidence limits are determined by equations 3.7 and 3.8 using quantiles of the standard normal
distribution, z_,, and z, Those ranks are

> “al2
R, =np+z,,\np(1—p)+0.5 , (3.7)

[1-a/2]"

R, =np+z, ,m\np(l=p)+0.5 | (3.8)

whereas in example 3.9, n is the sample size and p is the quantile value for the percentile around which the
interval is computed.

The 0.5 terms added to equations 3.7 and 3.8 reflect a continuity correction (see chap. 5) of 0.5 for the
lower bound and —0.5 for the upper bound (which otherwise would be a value of +1). The computed ranks
R, and R, are rounded to the nearest integer.

R, =25-02+(-1.96)-4/25-0.2(1-0.2) +0.5=5-1.96-2+0.5=1.6

R;=25-02+196-25-02(1-0.2) +0.5=5+1.96-2+0.5=94

After rounding, the 2nd and 9th ranked observations are found to be the approximate a=0.05
confidence limit on C, ,, agreeing with the exact confidence limit computed above.

For a test of whether a percentile significantly differs (either larger or smaller) from a prespecified
value X, simply compute a (1—a)-percent two-sided confidence interval for the percentile. If X falls within
this interval, the percentile does not significantly differ from X, at a significance level « (fig. 3.114). If X is

not within the interval, the percentile significantly differs from X at the significance level of « (fig. 3.115).
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Figure 3.11. Confidence interval on the pth percentile Xp as a test for H;. Xp:Xa. A. X, inside
the interval estimate, X not significantly different from X. B. X, outside the interval estimate, Xp
significantly different from X..

Example 3.10. Nonparametric test for whether the 80th percentile of annual peak flows differs from a
design value.

In the R dataset Saddle located in SM.3 are annual peak discharges for the Saddle River at Lodi,
New Jersey from 1925 to 1989 in cubic meters per second. Of interest is the 5-year flood, the flood that is
likely to be equaled or exceeded once every 5 years (20 times in 100 years), and so is the 80th percentile
of annual peaks. Let’s assume that using some method of calculation (such as a regional statistical model
or a deterministic rainfall-runoff model) it has been determined that the 5-year design flood is 37 m*/s. We
would like to consider if the actual data are consistent with this estimate, at a=0.05. The 5-year flood is
equivalent to the 80th percentile of the population of floods because 0.8=1—(1/5).

The 80th percentile is estimated from the 65 values between 1925 and 1989 as follows

> load("Saddle.RData")

> Q <- Saddle$Q

> n <- length(Q)

> quantile(Q, probs = 0.8, type = 6)
80%

69.7727

1
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Therefore, 0, ,=69.77 m¥s. Following equations 3.7 and 3.8, a two-sided confidence interval on this
percentile is

R =np+z,, np(l—p)+0.5 ,

R, =np+z_,,np(1—p)+0.5 .

The R commands and results are as follows
> RL <- n * 0.8 + gnorm(0.025) * sqrt(n * 0.8 * 0.2) + 0.5
> RL
[1] 46.17931
> RU <- n * 0.8 + gnorm(0.975) * sqrt(n * 0.8 * 0.2) + 0.5
> RU
[1] 58.82069
> quantile(Q, probs = c(RL/n, RU/n), type = 6)
71.04509% 90.49338%
60.28367 90.27553

Thus, the 95-percent confidence interval for the 5-year flood lies between the 46.2th and 58.8th ranked
peak flows, or 60.3 < O, < 90.3. The interval does not include the design value X, =37 m’/s. Therefore the
20-year flood does differ from the design value at a significance level of a=0.05.

Smaller datasets may not have sufficient numbers of observations to estimate intervals around high
or low percentiles without assuming a distributional shape. When used with too few observations, the
nonparametric methods described above can incorrectly default to the minimum and (or) maximum values
as interval endpoints (be careful to watch for this if your software does not warn you of this situation). In
that case a distribution must be assumed. Adding information contained in the distribution will increase
the precision of the estimate as long as the distributional assumption is a reasonable one. However,
when the assumed distribution does not fit the data well, the resulting estimates are less accurate than
if no distribution were assumed. Unfortunately, the situation in which an assumption is most needed,
that of small sample sizes, is where it is most difficult to determine whether the data follow the assumed
distribution.

Similar to the nonparametric intervals described above, determining if the distribution-based
confidence interval around a percentile includes a design value X is a parametric test for whether the
observed percentile significantly differs from X. As an example, the computation of point and interval
estimates for percentiles assuming a lognormal distribution is straightforward. Let y=In(x) where the x
values are the original units. The sample mean of the y values is denoted y and sample standard deviation
of the y values is S, The point estimate of any percentile is then

Xp:exp(37+zp-sy) , (3.9)

where z, is the pth quantile of the standard normal distribution.
For percentiles other than the median, confidence intervals are computed using the noncentral
t-distribution (Stedinger, 1983). The confidence interval onX is

2

cdxﬁz{wpbx-ﬁﬂzba]%}ﬁq%y—ﬁufwﬂsﬁ , (3.10)

where {,, is the a/2 quantile of the noncentral ¢-distribution with n—1 degrees of freedom and
noncentrality parameter —#'> -z, for the desired percentile with sample size of n. Using R, the z, values are
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computed with the function gnorm and the £, values are computed with the function qt. The EnvStats
package in R (Millard, 2013) will compute percentiles and their confidence intervals for several other
commonly used distributions.

Example 3.11. Two-sided confidence interval for percentiles assuming a lognormal distribution.

Compute a 90-percent confidence interval for the 90th percentile of the arsenic concentrations found in
example 3.1, assuming the data are lognormal.
The 90th percentile, assuming concentrations are lognormal, is as given in equation 3.9:

Cooo =exp (7 +2y90 -5, ) = exp(3.173+1.282-1.960)

=294.1ppb .

Note this is lower than the sample estimate of 316 ppb obtained without assuming the data are
lognormal. The noncentrality parameter is —5 - 1.282 =—6.4.
The corresponding 90-percent confidence interval estimate from equation 3.10 is

exp(3.173—%-—4.489~1.96j <Cyop < exp[3.173—%~—9.19'1.96j _and

138.7 < Cy,y <8753 .

This estimate would be preferred over the nonparametric estimate if it is believed that the data were
truly lognormal, otherwise a nonparametric interval would be preferred when there are sufficient numbers
of observations (doubtful for n=25). Using the bootstrap approach, the 90-percent confidence interval is
210 ppb to 580 ppb. The upper bound in this case is the highest data value, indicating that there are too few
observations to use a nonparametric estimation method. With parametric approaches, interval endpoints can
extend well beyond the data. In the SM.3 we have included an R function called CIqt1LN that computes
confidence intervals for a lognormal random variable. It computes a two-sided interval as well as one-
sided intervals. Interval estimates for percentiles of the log-Pearson Type III distribution are computed in a
similar fashion, see Stedinger (1983) for details on that procedure.

3.7.3 Lower One-sided Tolerance Limits

A (1—a) lower tolerance limit (LTL) with coverage = p is identical to a one-sided lower (1 —a)
confidence limit on the pth percentile. Lower tolerance limits for any percentile are computed in the same
way as for the two-sided confidence limits of section 3.7.2., except that the entire error probability a is
assigned to the lower end. Computing an LTL declares that the upper side is of no interest and no upper
bound is computed (software often represents it as positive infinity). Lower tolerance limits are often used
in water resources to determine if a percentile has significantly exceeded a stated standard or guidance
criterion. If the LTL exceeds the criterion there is evidence with (1 —a) confidence to state that more than
(1—=p)-100 percent of concentrations in the population (stream, aquifer) exceed the criterion.

A nonparametric (1 —a)-percent lower tolerance limit on the pth percentile can be computed using the
large-sample approximation. The rank of the observation corresponding to the lower confidence limit on the
percentile (lower tolerance limit) is

R, =np+z,\np(1-p)+0.5 . (3.11)

Equation 3.11 is just equation 3.7 using « instead of a/2.

To test whether a percentile X, significantly exceeds a specified criterion or standard X, compute
the lower tolerance limit on the percentlle X, will be considered significantly higher than X if its lower
tolerance limit lies entirely above X (fig. 3. 12)
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Figure 3.12. Lower tolerance limit as a test for whether the percentile Xp>X0. A. X, above lower limit
X Xp not significantly greater than X. B. X, below lower limit X;: Xp significantly greater than X,

Example 3.12. Nonparametric lower tolerance limit as a test for whether the 90th percentile exceeds a

standard.

A water-quality standard states that the 90th percentile of arsenic concentrations in drinking water

shall not exceed 10 ppb. Has this standard been violated at the & =0.05 confidence level by the New

Hampshire arsenic data in example 3.1?
The 90th percentile of the arsenic concentrations is

> x <- ¢(1.3, 1.5, 1.8, 2.6, 2.8, 3.5, 4.0, 4.8, 8, 9.5, 12, 14, 19,

+ 23, 41, 80, 100, 110, 120, 190, 240, 250, 300, 340, 580)
> quantile(x, 0.9, type = 6)
90%
316
or by hand

Cyo0 = (25+1)-0.9 = 23 4th data point
=300 +0.4(340 — 300)

=316 ppb .
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Following equation 3.11, the rank of the observation corresponding to a one-sided 95-percent lower
confidence bound on C, is

R, =np+z, \np(1-p)+0.5
=25-0.9+2z,,-4/25-0.9(0.1) + 0.5

=225+ (-1.64)2.25+0.5
=205 |

thus, the lower confidence limit is the 20.5th lowest observation—or 215 ppb—halfway between the 20th
and 21st observations. This confidence limit is greater than X, =10 and therefore the standard has been
proven to be exceeded at the 95-percent confidence level. The lower tolerance limit may also be computed
using the eqnpar function in the EnvStats package (Millard, 2013). The function uses a nonlinear
interpolation between two observations, providing a slightly different answer (211.88 ppb) than the 215 ppb
computed above.

> egnpar(conc, p = 0.9, type = 6, ci = TRUE, ci.type = "lower")

Results of Distribution Parameter Estimation

Assumed Distribution: None

Estimated Quantile(s): 90°th %ile = 316

Quantile Estimation Method: Nonparametric

Data: conc

Sample Size: 25

Confidence Interval for: 90°th %ile

Confidence Interval Method: interpolate (Nyblom, 1992)

Confidence Interval Type: lower

Confidence Level: 95%

Confidence Limit Rank(s): 20 21 NA NA

Confidence Interval: LCL = 211.8822
UCL = Inf

Parametric lower tolerance limits are computed by assuming that data follow a specific distribution.
They are particularly helpful for smaller datasets where nonparametric estimates may simply stop at the
lowest observation in the dataset, resulting in an incorrect o if that observation is used as the lower limit.
Parametric limits will be accurate when data follow the assumed distribution, but may be quite inaccurate
when data do not follow the assumed distribution. A probability plot and goodness-of-fit test such as the
probability plot correlation coefficient (PPCC) test (see chap. 4) of the assumed distribution should be used
to check the fit of the distribution to the data.

Parametric lower tolerance limits are used to conduct a parametric test for whether a percentile
exceeds a specified value X|. The error level a is placed entirely on the lower side before conducting the
(one-sided) test, and if the lower tolerance limit exceeds X then the percentile significantly exceeds X, at
the (1 —a)-percent confidence level.
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Example 3.13. Parametric lower tolerance limit as a test for whether the 90th percentile exceeds a
standard.

Test whether the 90th percentile of arsenic concentrations in example 3.1 exceeds 10 ppb at the
a=0.05 significance level, assuming the data are lognormal.

The 90th percentile of arsenic concentration was previously computed as 294.1 ppb assuming a
lognormal distribution. The one-sided 95-percent lower confidence limit for the 90th percentile is the same
as a two-sided 90-percent lower limit, as the same 5-percent error probability is below this estimate. The
two-sided 90-percent value was previously computed as 138.7 ppb. This limit exceeds 10 ppb, therefore
the standard has been proven to be exceeded at the 95-percent confidence level. This same result can
be computed using the eqlnorm function in the EnvStats package of R (Millard, 2013). The package
includes functions for other standard distributions as well.

> eqlnorm (conc, p = 0.9, ci = TRUE, ci.type = "lower")

Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal
Estimated Parameter(s): meanlog = 3.172667
sdlog = 1.959582
Estimation Method: mvue
Estimated Quantile(s): 90°th %ile = 294.1155
Quantile Estimation Method: gmle
Data: conc
Sample Size: 25
Confidence Interval for: 90’ th %ile
Confidence Interval Method: Exact
Confidence Interval Type: lower
Confidence Level: 95%
Confidence Interval: LCL = 138.6747
UCL = Inf

3.7.4 Upper One-sided Tolerance Limits

A (1—a) upper tolerance limit (UTL) with coverage = p is identical to a one-sided upper (1 —a)
confidence limit on the pth percentile. Computing a UTL declares that the lower side is of no interest and no
lower bound is computed (software often represents it as negative infinity). UTLs are often used in natural
resource studies to define a limit above which only (1—p) - 100 percent of new observations are expected
to occur with (1 —a)-percent confidence. Multiple new observations are compared to the single UTL as
opposed to the singular or few observations that can be compared to a prediction limit. An exceedance
of the UTL by more than (1 —p) - 100 percent of new observations indicates that conditions have changed
from those used to compute the tolerance limit. One example of its use has been to compute a baseline 90th
percentile criterion for sediment loads or chemical concentrations in total maximum daily load studies.
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A nonparametric (1 —a)-percent upper tolerance limit on the pth percentile can be computed using the
large-sample approximation. The rank of the observation corresponding to the upper confidence limit on the
percentile (upper tolerance limit) is

R, =np+z, np(l—p)+0.5 . (3.12)

Equation 3.12 is just equation 3.8 using a instead of a/2.

To test whether a percentile X, is significantly less than X, compute the upper confidence limit,
placing all error a on the side above X (fig. 3.13). X will be con51dered as significantly less than X if its
upper confidence limit (upper tolerance limit) is entirely below X .

1-o0 o

A Interval estimate

Data value

1-o o

B. Interval estimate

A
0 XP Xu XO

Data value

Figure 3.13. Upper tolerance limit as a test for whether percentile Xp<X0. A. X, below the upper
tolerance limit X ; Xp not significantly less than X. B. X above the upper tolerance limit X ; Xp
significantly less than X
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Example 3.14. Nonparametric upper tolerance limit as a test for whether the 90th percentile is below
the regional Q, .

We have 68 values of the annual 7-day minimum flows for climate years 1942—-2009 (a climate year
runs from April 1 to March 31) on the Little Mahoning Creek at McCormick, Pennsylvania, expressed in
cubic meters per second (in the SM.3 dataset LittleMA.RData). We can load and view the data and then
estimate the 7-day, 10-year, low flow (,Q, ) as follows

> load("LittleMA.RData")
> Q <- sort(Little$Q)
> n <- length(Q)

>Q

[1] ©.0194 0.0227 0.0368 0.0392 0.0413 0.0429 0.0498 0.0522

[9] ©.0603 0.0704 0.0708 0.0801 0.0825 0.0841 0.0858 0.0874
[17] ©.0926 ©.0930 0.1048 0.1080 0.1141 0.1157 0.1201 0.1205
[25] ©.1230 ©.1258 0.1270 0.1359 ©.1388 0.1418 0.1598 0.1622
[33] ©.1634 0.1683 0.1707 0.1711 0.1731 0.1744 ©0.1748 0.1853
[41] ©.2013 0.2225 0.2253 0.2265 0.2421 0.2468 0.2557 0.2629
[49] ©.2743 0.2767 0.2840 0.2880 0.3014 0.3107 0.3236 0.3277
[57] ©.3600 0.3803 0.4284 0.4450 0.4482 0.5582 0.5663 0.6392

[65] ©.6432 ©.7484 0.8050 1.1735
> xHatP <- quantile(Q, probs = 0.1, type = 6)
> xHatP
10%
0.04911

The estimate of the .Q, based on the data (with no distributional assumptions) is 0.04911 m’/s. However,
based on a regional regression model of |Q, values versus watershed characteristics the .Q,, was expected
to equal 0.06 m*/s (call that X, =0.06 m’/s). The question is: Should we reject at a=0.05 the null hypothesis
that the .Q, is 0.06 m*/s versus the alternate hypothesis that it is below 0.06 m*/s? To answer this question
we need to compute the 95-percent upper confidence limit for the true 0.1 percentile of the distribution of
annual minimum 7-day low flows. We can compute that as follows

R, =np+z_, np(l—p) +0.5

R, = 68~O.1+1.644,/68~O.1~(O.9) +0.5

R, =11.369 .
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The rank of the upper 95-percent confidence bound on the 10th percentile of the distribution of annual
7-day minimum flows is the 11.369th rank out of the 68 observed values. The R code to determine that is

>p = 0.1
> 295 <- gnorm(@.95)
>RU <- n *p+ 295 * sgrt(n * p * (1 - p)) + 0.5
> RU
[1] 11.36914
We calculate the discharge associated with this fractional rank as xUpper:
> xUpper <- quantile(Q, probs = RU/n, type = 6)
> xUpper
16.71933%
0.07578793

Our best estimate based only on the quantiles of the data at the site is 0.04911 m*/s. We cannot reject
the hypothesis that the true value of the .Q, is 0.06 m’/s because the upper 95-percent confidence bound for
the .Q,, is above 0.06, at 0.076 m?/s. These calculations could also have been performed using the eqnpar
function in the EnvStats package (Millard, 2013):

> eqnpar(Q, p = 0.1, type = 6, ci = TRUE, ci.type = "upper")

Results of Distribution Parameter Estimation

Assumed Distribution: None

Estimated Quantile(s): 10°th %ile = 0.04911
Quantile Estimation Method: Nonparametric

Data: Q

Sample Size: 68

Confidence Interval for: 10°th %ile

Confidence Interval Method: interpolate (Nyblom, 1992)
Confidence Interval Type: upper

Confidence Level: 95%

Confidence Limit Rank(s): NA NA 12 11

Confidence Interval: LCL = -Inf

UCL = 0.07546245

Parametric UTL computations are beneficial with smaller sample sizes, but are accurate only when the
data closely follow the assumed distribution. The EnvStats package in R contains functions to compute
tolerance limits on percentiles for several standard distributions.
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Example 3.15. Parametric upper tolerance limit as a test for whether the 90th percentile is below the
regional Q.

Using the annual 7-day minimum flows for climate years 1942-2009 on the Little Mahoning Creek at
McCormick, Pennsylvania, should we reject, at a=0.005, the hypothesis that .Q, is 0.06 m*/s versus being
below 0.06 m*/s? Assume that flows follow a lognormal distribution.

The 95-percent upper tolerance bound on the 10th percentile is computed for a lognormal distribution
of flows with the eqlnorm function of EnvStats (Millard, 2013):

> eqlnorm (Q, p=0.1, ci=TRUE,ci.type="upper")

Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal

Estimated Parameter(s): meanlog = -1.8065945
sdlog = 0.8580029
Estimation Method: mvue

Estimated Quantile(s): 10°th %ile = 0.0546848

Quantile Estimation Method: gmle
Data: Q
Sample Size: 68

Confidence Interval for: 10°th %ile
Confidence Interval Method: Exact
Confidence Interval Type: upper
Confidence Level: 95%

Confidence Interval: LCL = ©0.00000000

UCL = 9.06746206

Assuming a lognormal distribution of lows, the best estimate of the site’s 10th percentile is 0.0547
m’/s. We cannot reject the hypothesis that the true value of the .Q, is 0.06 m*/s because the upper
95-percent confidence bound for the .Q, is just above 0.06, at 0.067 m’/s.

3.8 Other Uses for Confidence Intervals

Confidence intervals are used for purposes other than interval estimates. Three common uses are (1)
to detect outliers, (2) for quality control charts, and (3) for determining sample sizes necessary to achieve
a stated level of precision. However, the implications of data non-normality for the three applications are
often overlooked; these issues are discussed in the following sections.

3.8.1 Implications of Non-normality for Detection of Qutliers

An outlier is an observation that appears to differ in its characteristics from the bulk of the dataset to
which it is assigned. It is a subjective concept; different people may define specific points as either outliers
or not. When an outlier is observed in a dataset, the analyst must make an effort to try to evaluate what the
observed value represents. There are three possibilities. The first is that it represents what actually happened
and that it is simply a very extreme value from the same population as all the other values in the dataset.

An example of the first possibility is the annual peak discharge record for Rapid Creek at Rapid City,
South Dakota. This is a record of 73 years in which the largest flood was estimated to be about 1,400 m?/s
(in 1972), the second largest flood was less than 100 m*/s, and the vast majority of annual floods were less
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than 25 m¥/s. It is quite clear that the extreme 1972 flood is real (not some data processing or measurement
error) and the result of a stalled storm system over this watershed. The observation needs to be considered in
any flood risk analysis. The second possibility is that the reported value represents what actually happened,
but the circumstances under which it occurred would cause us to consider it to be outside of the population
represented by the bulk of the data. An example of this second possibility is an extreme flood caused not by
a precipitation event or snow melt event, but rather by a dam failure upstream. Another example would be a
measured concentration of a solute that is the direct result of a catastrophic accident at an upstream facility.
We may decide to leave these data out of the analysis, but we need to be clear that the analysis only considers
events that were not a result of a catastrophic failure of some engineered system (a dam, a treatment plant,
or a factory). The third case is one where the recorded value is simply one that is greatly in error. Examples
of this could include instrument failure or transcription error (for example a series of pH measurements that
are mostly around 6.0 followed by one that is recorded as 60). The process of determining the nature of the
outlier will not always result in a clear determination of the cause and a clear determination of the proper
course of action for the analyst, but it is important to take thoughtful steps to make such determinations.

Outliers are sometimes deleted from a dataset in order to use procedures based on the normal
distribution. One of the central themes of this book is that this is a dangerous and unwarranted practice. It
is dangerous because these data may well be valid. There is no law stating that observed data must follow
some specific distribution. Outlying observations are often the most important data collected, providing
insight into extreme conditions or important causative relations. Deleting outliers (unless they can clearly
be shown to be in error) is unwarranted because procedures not requiring an assumption of normality are
both available and powerful. Many of these tools are discussed in the following chapters.

In order to delete an outlier, an observation must first be declared to be one. Rules or tests for outliers
have been used for years, as surveyed by Beckman and Cook (1983). The most common tests are based
on a f-interval and assume that data follow a normal distribution. Points beyond the prediction interval
calculated using equation 3.5 are declared as outliers only because they were unlikely to originate from a
normal distribution.

Real world data may not follow a normal distribution. Even though the mean of a large dataset
is generally approximately normal, there is no reason to assume that the data themselves are normal.
Rejection of points by outlier tests may not indicate that data are in any sense in error, but only that they do
not follow a normal distribution (Fisher, 1922). We repeat—designation as an outlier by a statistical outlier
test does not mean that the data are necessarily bad. Deletion of points only on this basis, without any
corroboration from scientific knowledge, is what we have called dangerous.

To illustrate this concept, a boxplot of 25 observations generated from a lognormal distribution, as
well as the upper and lower a=0.05 prediction interval limits assuming a normal distribution are shown
in figure 3.14. Many water resources datasets appear similar in shape to a lognormal distribution. All data
outside of these limits will be designated as outliers by this prediction limit outlier test.

First note that the lower limit is less than zero, yet we know that the data have a lower bound of zero
by virtue of being from a lognormal distribution. The outlier test (prediction limit) boundary is unrealistic at
the lower end. Next note that the largest observation greatly exceeds the upper prediction limit and thus the
test would declare it an outlier, yet we know it to be a valid observation generated from the same lognormal
distribution as generated the remaining observations. Outlier tests only check for whether data are likely to
have been produced by the distribution (almost always the normal distribution) assumed by the test. Outlier
tests cannot in themselves test for bad data.

Multiple outliers cause additional problems for outlier tests based on normality (Beckman and Cook,
1983). They may inflate the estimated standard deviation such that no points are declared as outliers. When
several points are spaced at increasingly larger distances from the mean, the first may be declared an outlier
upon using the test once, but retesting after deletion causes the second largest to be rejected, and so on.
Replication of the test may eventually discard a substantial part of the dataset. The choice of how many
times to apply the test is entirely arbitrary. A variation on this approach has been developed for hydrologic
applications (Cohn and others, 2013) that tests multiple outliers together rather than deleting them one at
a time. This method, called the multiple Grubbs-Beck test, has proven useful in flood frequency analysis,
where for some streams (particularly in arid regions) the annual peak discharge is zero or very close to
zero and thus not truly a member of the population of flood events to begin with. This procedure separates
the population of nonfloods from true floods in the annual peak streamflow series so that the frequency
estimation for the population of true floods can be carried out without being contaminated by the presence
of these nonflood events.
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3.8.2 Implications of Non-normality for Quality Control

One visual presentation of confidence intervals used extensively in industrial processes is a control
chart (Montgomery, 1991). A small number of products are sampled at a given point in time and their mean
is calculated. The sampling is repeated at regular or random intervals, depending on the design, resulting in
a series of sample means. These are used to construct a specific type of control chart called the xbar chart.
This chart visually detects when the mean of future samples become different from those used to construct
the chart. The decision of difference is based on exceeding the parametric confidence interval around the
mean given in section 3.4.1.

Suppose a chemical laboratory measures the same standard solution at several times during a day
to determine whether the equipment and operator are producing consistent results. For a series of n
measurements per day over m time intervals (for example, weeks where one day per week is sampled), the
total sample size N=n-m. The best estimate of the concentration for that standard is the overall mean

N
=M

o N
X is plotted as the centerline of the chart. A t-confidence interval on X (eq. 3.4) uses the sample size n of
each daily mean value. Those intervals are added as parallel lines to the quality control chart. Daily mean
values will, on average, plot outside of these boundaries only o - 100 percent of the time if the means are
normally distributed. Means falling outside the boundaries more frequently than this are taken to indicate
that something in the process has changed.

If n is large (say 70 or more) the Central Limit Theorem states that the means will be normally
distributed even though the underlying data may not be. However, if # is much smaller, as is often the case,
the means may not follow this pattern. In particular, for skewed data (data with outliers on only one side),
the distribution around the mean may still be skewed. The result is a large value for the standard deviation
and wide confidence bands. Therefore, the chart will have very limited ability to detect departures from the
expected mean value more frequently than if the data were not skewed.
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Control charts are also produced to illustrate process variance and use either the range (R chart) or
standard deviation (S chart). Both charts are even more sensitive to departures from normality than is the X
chart (Montgomery, 1991). Both charts will also have a difficult time in detecting changes in variance when
the underlying data are non-normal and the sample size n for each mean is small.

In water quality studies the most frequent application of control charts is to laboratory chemical
analyses. As chemical data tend to be positively skewed, control charts on the logs of the data are usually
more applicable than those in the original units. Otherwise, large numbers of samples must be used to
determine mean values. Use of logarithms results in the centerline estimating the geometric mean (an
estimate of the median for lognormal data) in original units, with multiplicative variation represented by the
confidence bands of section 3.2.

Nonparametric control charts may be utilized if sample sizes are sufficiently large. These could
use the confidence intervals for the median rather than the mean, as in section 3.3. Alternatively, limits
could be set around the mean or median using the F-pseudosigma of Hoaglin (1983); this was done by
Schroder and others (1987). The F-pseudosigma is the interquartile range divided by 1.349. It equals the
standard deviation for a normal distribution but is not as strongly affected by outliers. It is most useful
for characterizing symmetric data containing outliers at both ends, providing a more resistant measure of
spread than does the standard deviation.

3.8.3 Implications of Non-normality for Sampling Design

The t-interval equations are also used to determine the number of samples necessary to estimate a
mean with a specified level of precision. However, such equations require the data to approximately follow
a normal distribution. Before proceeding with this type of process, the analyst must first decide whether the
mean is the most appropriate characteristic to measure for skewed data.

To estimate the sample size sufficient for determining an interval estimate of the mean with a specified
width, equation 3.4 is solved for n to produce

2
n= (_’a/z’"lj , (3.13)
A

where s is the sample standard deviation and A is one-half the desired interval width. Sanders and others
(1983) and other authors have promoted this equation. As discussed above, this calculation may have large
errors for sample sizes () less than about 70 with strongly skewed data. Estimates of s will be inaccurate
and strongly inflated by any skewness and (or) outliers; the resulting estimates of n will therefore be large.
For example, Hakanson (1984) estimated the number of samples necessary to provide reasonable interval
widths for mean river and lake sediment characteristics, including sediment chemistry. Based on the
coefficients of variation reported in the article, the data for river sediments were quite skewed, as might be
expected. Necessary sample sizes for rivers were calculated at 200 and higher.

Before using such simplistic equations, skewed data should be transformed to something closer to a
symmetric distribution, if not a normal distribution. For example, based on equation 3.13 logarithms will
drastically lower estimated sample sizes for skewed data. Resulting samples sizes would allow the median
(geometric mean) to be estimated within a multiplicative tolerance factor equal to £2A in log units.

Kupper and Hafner (1989) point out a second problem with using equations like 3.13 for estimating
sample size even when data follow a normal distribution. They show that equation 3.13 underestimates
the true sample size needed for a given level of precision, even for estimates of n > 40. This is because
equation 3.13 does not recognize that the standard deviation s is only an estimate of the true value c. They
suggest adding a power criterion to equation 3.13 so that the estimated interval width will be at least as
small as the desired interval width with some stated probability (say 90 or 95 percent). For example, when
n would equal 40 based on equation 3.13, the resulting interval width will be less than the desired width
2A with only about 0.42 probability! The sample size should instead be 53 in order to ensure the interval
width is within the expected range with 90 percent probability. Kupper and Hafner conclude that equation
3.13 and similar equations that do not consider a power criteria “behave so poorly in all instances that their
future use should be strongly discouraged.”
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Sample sizes necessary for interval estimates of the median or to perform the nonparametric tests of
later chapters may be derived without the assumption of normality required above for #-intervals. Noether
(1987) describes these more robust sample size estimates, which do include power considerations and so
are more valid than equation 3.13. However, neither the normal-theory or nonparametric estimates consider
the important and frequently observed effects of seasonality or trend, and so may never provide estimates
sufficiently accurate to be anything more than a crude guide. More discussion of power and sample size is
given in chapter 13.

Exercises

1. Compute both nonparametric and parametric 95-percent interval estimates for the median of the
granodiorite data of chapter 2, exercise 3 in the dataset grano.RData located in the supplemental
material for chapter 2 (SM.2). Which interval estimate is more appropriate for these data? Why?

2. A well yield of 0.85 gallons/min/foot was measured in a well in Virginia. Is this yield likely to
belong to the same distribution as the data in the SM.3 dataset VAwells.Rdata or does it represent
something larger? Answer by computing appropriate 95-percent parametric and nonparametric
intervals. Which intervals are more appropriate for these data?

3. Construct the most appropriate 95-percent interval estimates for the mean and median annual
streamflows for the Conecuh River at Brantley, Alabama (dataset Conecuh.Rdata in SM.3).
Include a bootstrap approach for the median in addition to the standard method using the binomial
distribution. Use the parametric method for the mean. Also consider a bootstrap approach for the
mean.

4. A water intake is located on the Potomac River at Little Falls, just above Washington, D.C. We want to
select a design discharge for this water intake so that in only 1 year out of 10 does the 1-day minimum
discharge of the river go so low that the intake becomes inoperable because it is not submerged in
the river. But, we want to be conservative in our selection of this design discharge because we know
that an estimate of the 0.1 frequency annual minimum flow is somewhat uncertain. We want to set
the design discharge such that there is only a 5-percent probability that the true 0.1 frequency annual
minimum flow is below the design discharge. Our dataset (PotomacOneDayLow.RData in SM.3)
consists of the annual 1-day minimum discharge at this site for the 84-year period 1932-2015. Use
the concept of a nonparametric one-sided confidence interval for the 0.1 quantile on the distribution of
annual minimum discharges.



Hypothesis Tests

Scientists collect data in order to learn about the processes and systems those data represent. Often
they have prior ideas, called hypotheses, of how the systems behave. One of the primary purposes of
collecting data is to test whether those hypotheses can be substantiated with evidence provided by the data.
Statistical tests are a quantitative framework to determine objectively whether or not a signal (nonzero
difference between groups, correlation between variables) is present in the data.

One important use of hypothesis tests is to evaluate and compare groups of data. Water resources
scientists have made such comparisons for years, sometimes without formal test procedures. For example,
water quality has been compared between two or more aquifers, and some statements made as to which are
different. Historical frequencies of exceeding some critical surface-water discharge have been compared
with those observed over the most recent 10 years. Rather than using hypothesis tests, the results are
sometimes expressed as the author’s educated opinions. Hypothesis tests have at least two advantages over
educated opinion:

1. They ensure that every analysis of a dataset using the same methods will arrive at the same result
because computations can be checked and agreed upon by others.

2. They present a quantitative measure of the strength of the evidence (the p-value), allowing the
decision to reject a hypothesis to be augmented by the risk of an incorrect decision.

In this chapter, we introduce the basic structure of hypothesis testing and classifications for appropriate
usage and application. The rank-sum test is used to illustrate this structure, as well as to illustrate the origin
of p-values for exact test results. Tests for normality are also discussed. Concepts and terminology found
here will be used throughout the rest of the book. Finally, we end the chapter by discussing some of the
criticisms, misuse, and misinterpretation of hypothesis tests.

4.1 Classification of Hypothesis Tests

The choice of which test to use among the numerous hypothesis tests available to scientists often
causes unnecessary confusion. Tests can be classified into the five types shown in figure 4.1, based on
the measurement scales of the data being tested. Within these classes there are three major divisions of
hypothesis tests: parametric, nonparametric, and permutation tests. These classes differ in the way that their
p-values are computed. The nature of the data and the objectives of the study largely determine which class
and division of hypothesis test should be employed.

The terms response variable and explanatory variable are used in the following discussion. A response
variable is one whose variation is being studied. In the case of regression, for example, the response
variable is sometimes called the dependent variable or y variable. An explanatory variable, sometimes
called an independent variable, is one used to explain why and how the magnitude of the response variable
changes. When testing for a difference in central tendency between two populations, for example, the
explanatory variable designates the population from which a sample was drawn.

41.1 Classification Based on Measurement Scales

The five classes of test procedures are represented by the five graphs in figure 4.1. Each differs only in
the measurement scales of the response and explanatory variables under study. The scales of measurement
may be either continuous or categorical, and continuous data can be grouped into categories (for example,
the analysis of covariance graph in fig. 4.1B). Parametric, nonparametric, and permutation tests may be
found within a given class of hypothesis tests.
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Chapter 4 Hypothesis Tests

Hypothesis tests represented by the three graphs in figure 4.14—C are all similar in that the response
variable is measured on a continuous scale. Examples of variables having a continuous scale are
concentration, streamflow, porosity, and many of the other properties and concentrations measured by
water resources scientists. In contrast, tests represented by the two graphs in figure 4.1D—E have response
variables measured only on a categorical or grouped measurement scale. These variables can only take on
a finite, usually small, number of values. Categorical variables used as response variables include above/
below a reporting limit (perhaps recorded as 0 or 1), presence or absence of a particular species, and low/
medium/high risk of contamination. Categorical variables used primarily as explanatory variables include
aquifer type, month, land-use group, and station number, and are often character variables.

The boxplots in the figure 4.14 represent the two- and multi-sample hypothesis tests such as the
rank-sum test, the #-test, and the Kruskal-Wallis test. These tests determine whether a continuous response
variable (such as concentration) differs in its central value among two or more grouped explanatory
variables (such as aquifer unit).

The graph in figure 4.1C represents two often-used methods—Ilinear regression and correlation,
including their variations and alternatives. Both relate a continuous response variable (the dependent
or y variable) to a continuous explanatory variable (the independent or x variable). Examples include
regression of the 100-year flood magnitude versus basin characteristics and correlations between
concentrations of two chemical constituents. Analysis of trends over time is a special case of this class of
methods, where the explanatory variable of primary interest is time, and is discussed in chapter 12.

The graph in figure 4.1B is a blend of these two approaches, called analysis of covariance (ANCOVA).
A continuous response variable is related to two or more explanatory variables, some of which are
continuous and some categorical.

The graph in figure 4.1D represents a situation similar to that for use of #-tests or analysis of variance,
except that the response variable is categorical. Contingency tables appropriately measure the association
between two such categorical variables. One example is to determine whether the probability of finding a
volatile organic compound above the reporting limit (y) varies by land-use group (x).

The graph in figure 4.1E shows that a regression-type relation can be developed for the case of a
categorical response variable. Probabilities of occurrence are modeled using logistic regression. For
example, perhaps the proportion of concentrations of a pesticide or other constituent below the reporting
limit exceeds fifty percent, and it makes little sense to try to model mean or median concentrations.
Instead, the probability of finding a detectable concentration can be related to continuous variables such
as population density, percent of impervious surface, or irrigation intensities. Logistic regression can also
incorporate categorical explanatory variables in a multiple regression context, making it the equivalent of
analysis of covariance for categorical response variables.

4.1.2 Divisions Based on the Method of Computing a p-value

The three major divisions of hypothesis tests—parametric tests, nonparametric tests, and permutation
tests—differ in how they obtain p-values. All hypothesis tests have underlying assumptions that should
be reviewed before performing the tests. Parametric tests typically assume that the data have a particular
distribution (such as a normal distribution, as in fig. 1.2), the data are independent and identically
distributed (the data are not serially correlated, see chap. 8), and that when comparing multiple groups
the groups have the same variance (there are statistical adjustments one can make if they do not). These
assumptions were very helpful in creating statistical tests that were practical to implement before the
advent of modern computers. Test statistics and p-values for the tests could be calculated based on a set of
easily computed parameters such as the sample mean or variance, or the co-variance between two different
variables. Parametric tests are appropriate when their distributional assumptions are met by the data.
However, when the data substantially depart from the distributional assumptions of the test, parametric tests
can fail to represent what is actually occurring in the data and thus they may lack sensitivity (power) to
detect signals (effects) in the data.
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The greatest strength of parametric procedures is in modeling and estimation, especially for complex
designs. Relations among multiple variables can be described and tested that are difficult, if not nearly
impossible, to describe and test with nonparametric methods. Parametric analysis of variance (ANOVA)
studies more complex than what we cover in this text can be designed and tested in ways not yet possible
for nonparametric or permutation methods. Parametric multiple-regression equations (chap. 11) can model
more complex situations than what methods from the other two divisions currently accomplish. Time
series models, kriging, and other parametric methods outside of the scope of this book model correlation
structures in space and time that are difficult to otherwise compute (permutation methods are gradually
encroaching into these areas). As always, care must be taken to use data that meet the requirements of the
methods, and this often involves transforming variables. Aho (2016), among other texts, provides a good
description of parametric tests, including some complex ANOVA designs.

Transformations are used to make data more normally distributed or linear in pattern before
performing a parametric test. A possible pitfall in using transformations is that they change the parameter
being tested. Testing in log units, for example, produces tests on the geometric means in original units,
rather than means. Regression equations using the log of the response (y) variable predict the geometric
mean (median) of y, not the mean. As transformations change the parameter being tested, the investigator
must be careful to match the test’s objectives to what they want.

Nonparametric tests represent the observed data by their ranks. Ranks are a transformation of
percentiles; these tests answer frequency questions like, “Does the frequency of exceeding a standard differ
between groups?” or “Do high values occur more frequently in one group than the other?”” No assumption
of the shape of the data distribution is required—the tests are distribution-free methods. However, that
does not mean that there are no underlying assumptions to the test of choice. Nonparametric tests assume
independent, random samples, as do parametric tests, and may be subject to additional assumptions.

The p-value in nonparametric tests is computed by determining all possible outcomes of the test
and determining the probability of obtaining the single observed outcome or a more extreme outcome.

A common misconception is that nonparametric tests lose information in comparison to parametric tests
because nonparametric tests discard the data values. Bradley (1968, p. 13) responded to this misconception:
“Actually, the utilization of the additional sample information [in the parameters] is made possible by
the additional population ‘information’ embodied in the parametric test’s assumptions. Therefore, the
distribution-free test is discarding information only if the parametric test’s assumptions are known to be
true.” Nonparametric tests efficiently extract information on the relative magnitudes (ranks, percentiles)
of data, providing the same answer both before and after data transformations for transformations that
preserve the order of the data, such as logarithmic transformations. They are most useful for simpler
hypothesis tests between groups or regression type relations between two (but not easily with more
than two) variables. Hollander and Wolfe (1999), among other texts, provide a detailed overview of
nonparametric methods.

Permutation tests compute p-values by randomly selecting several thousand outcomes from the many
larger number of outcomes possible that represent the null hypothesis. The p-value is then the proportion
of outcomes that are equal to, or more extreme than, the one obtained from your data. Their greatest use
is perhaps to test for differences in means without assuming a normal distribution as permutation tests
are also distribution-free. However, like nonparametric tests, this does not mean permutation tests are
free of underlying assumptions, including that the data are random. Permutation tests may be used to test
any null hypothesis, so they can also test for differences in standard deviations or for the contingency
table setup of chapter 14. These computer-intensive methods, envisioned by the pioneers in statistics in
the early 1900s, require computing power that was not available until the late 1980s. Good (2005) and
Manly (2007) provide an overview of permutation test methods. All three divisions of tests are presented in
the upcoming chapters.
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4.2 Structure of Hypothesis Tests

All hypothesis tests follow the same six steps, which are discussed in the following sections:

1. Choose the appropriate test and review its assumptions.
2. Establish the null and alternative hypotheses, /7, and H .
3. Decide on an acceptable error rate, o.

4. Compute the test statistic from the data.

5. Compute the p-value.

6. Reject the null hypothesis if p < a; do not reject if p > a.

421 Choose the Appropriate Test

Test procedures should be selected based on the data characteristics and study objectives. Figure 4.1
presents the first selection criterion—the measurement scales of the data. The second criterion is the
objective of the test. Hypothesis tests are available to detect differences between central values of two
groups, three or more groups, between spreads of data groups, and for covariance between two or more
variables, among others. For example, to compare central values of two independent groups of data, the
two-sample #-test, the rank-sum test, or a two-sample permutation test might be selected (see table 4.1). Of
importance is whether the central value is better defined by the mean (center of mass) or median (center
of frequency). Subsequent chapters are organized by test objectives, with several alternate tests discussed
in each.

Table 4.1. Guide to the classification of some hypothesis tests with continuous response variables.

[-, not applicable]

Parametric Nonparametric Permutation

Two independent data groups (chap. 5)

Two-sample 7-test Rank-sum test (two-sample Wilcoxon; Two-sample permutation test
Mann-Whitney test)

Matched pairs of data (chap. 6)

Paired #-test Signed-rank test, sign test Paired permutation test

Three or more independent data groups (chap. 7)

Analysis of variance Kruskal-Wallis test One-way permutation test

Three or more dependent data groups (chap. 7)

Analysis of variance Friedman test, aligned-rank test -
without replication

Two-factor group comparisons (chap. 7)

Two-factor analysis of Brunner-Dette-Munk (BDM) test Two-factor permutation test
variance

Correlation between two continuous variables (chap. 8)

Pearson’s r (linear Spearman’s p or Kendall’s 7 (monotonic correlation) Permutation test for Pearson’s
correlation)

Model of relation between two continuous variables (chaps. 9 and 10)

Linear regression Theil-Sen line Bootstrap of linear regression
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The third selection criteria is the choice between parametric, nonparametric, or permutation tests.

This should again be based on the objectives of your study—parametric and nonparametric tests look at
different characteristics. For example, parametric tests that assume data follow a normal distribution are
built around the mean as the measure of center. The mean is a standardized measure of the total and is
most appropriate when you are interested in summing the data. For example, if the interest is in the total
load transported down a river or the cumulative exposure to a contaminant that an organism or human has
experienced over time, the mean is the appropriate per-sample or per-time unit of measurement to represent
that total (Helsel and Griffith, 2003). On the other hand, if typical or commonly occurring differences were
of interest, a test based on frequency statistics is more relevant. Tests between groups would determine if
concentrations are generally the same in all groups or if they are generally higher in some. Nonparametric
tests address this question of difference in frequencies. Finally, if a mean is of interest but the data
distribution is asymmetrical or prone to outliers, the power (probability of making the correct decision if
the alternative hypothesis is true) of parametric tests to reject /, when H, is false can be quite low and type
IT errors (failing to reject H, when H, is false) commonly result (Bradley, 1968). This loss of power is the
primary concern when using parametric tests. The loss of power in parametric tests is avoided by using a
permutation test on differences in means.

Arguments for and against use of parametric versus nonparametric tests have been around for decades.
Texts such as Hollander and Wolfe (1999), Conover (1999), and Bradley (1968) base the advantages of
nonparametric tests on considerations of power and invariance to measurement scale. We provide a further
discussion of power in chapter 13. The importance of potential for loss of power when using parametric
tests is not always fully appreciated by some in water resources, ecology, or other applied disciplines.

For example, Johnson (1995) argues for a wide use of parametric methods over nonparametric methods
in ecology.

The first argument is that “parametric methods do not require data to follow a normal distribution,
because their sample means will have a distribution that follows a normal distribution for most data”
(Johnson, 1995). This argument relies upon the Central Limit Theorem. The number of observations
required for the Central Limit Theorem to hold true is a function of the data’s asymmetry, also called
skewness. The more skewness, the more observations are necessary to expect sample means to follow a
normal distribution (Boos and Hughes-Oliver, 2000). Johnson (1995) used the example of a symmetric
uniform distribution to support the use of the Central Limit Theorem. For water resources, symmetry
is uncommon and asymmetric data distributions prevail. The assessment by Singh and others (1999)
for data skewed to the extent commonly found in water resources showed that sample sizes of about
100 observations were required for the Central Limit Theorem to hold, and for correct coverage of z-based
confidence intervals to be obtained. A similar result for asymmetric data in a completely different field was
found by Pocock (1982). In other words, most water resources projects do not have sufficient numbers
of observations to rely on the Central Limit Theorem in order to say “it’s not normally distributed, but it
doesn’t matter.” Using asymmetric data in a test requiring a normal distribution will often result in a loss of
power and a failure to see differences that are present.

Johnson’s second argument is that “nonparametric tests require an assumption of equal variance of
groups, just as parametric tests do, to test for differences in means.” Rank-based nonparametric tests do not
test for differences in means, but percentiles, a shift in the distribution of the two datasets. A nonparametric
test could be used to test for difference in means only if the distributions of both groups are symmetric
and the mean and median are the same in each group. The nonparametric test itself does not require an
assumption of equal variance, but if the intent is to test for differences in means, differing variance will
affect any and all tests because of the strong effects of outliers on the mean. The scientist must decide
whether the mean of asymmetric data with outliers is the appropriate statistic for which to test.

The third argument is that when variances differ, “the Welch-Satterthwaite version of the #-test
performs well.” We agree that the Welch-Satterthwaite correction to the ¢-test can perform well and state in
chapter 5 that the Welch-Satterthwaite adaptation of the #-test for differing variances should always be used
whenever a #-test is performed. This adaptation of the #-test is the default in statistics software and far better
than the original #-test, which can lead to incorrect outcomes when variances differ. The adaptation does,
however, have a power cost—p-values can be quite high in comparison to a permutation test for differences
in means on the same data. We give an illustration of this in chapter 5.
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The fourth argument for parametric tests is that the #-test is robust and this is true. However,
nonstatisticians may understand robust to be a general term meaning that it is applicable in a variety of
situations. Its technical meaning in statistics is that type I errors (false positives, rejecting H, when H, is
true) occur no more often than expected. Robustness as a statistical term does not address the loss of power
(false negatives) such as when applying parametric tests to skewed data. This misunderstanding of the
definition of robust was discussed in the 1980s by Blair and Higgins (1980) and Helsel and Hirsch (1988).

One question that often arises is how non-normal a data distribution must be in order for
nonparametric tests to be preferred over tests that rely on an assumption of normality. Blair and Higgins
(1980) gave insight into this question by mixing data from two normal distributions, 95 percent from a
normal distribution and 5 percent from a second normal distribution with a different mean and standard
deviation. Such a situation could easily be envisioned when data result from low to moderate discharges
with occasional storm events or from a series of wells where 5 percent are affected by a contaminant plume.
A blending of two normal distributions with 5 percent from one and 95 percent from another may not be
detectable by a graph or test for normality. Yet, when comparing two groups of this type, Blair and Higgins
found that the rank-sum test exhibited large advantages in power over the ¢-test. As a result, data groups
correctly discerned as different by the rank-sum test were found to be not significantly different by the
t-test. Blair and Higgins (1980) is recommended for additional details and study.

The final argument given against use of nonparametric tests is that, “By their very nature,
nonparametric methods do not specify an easily interpreted parameter...Parameters are generally of
most interest, so we should provide estimates of those parameters that are meaningful and applicable to
making real decisions.” Johnson (1995) then recommends transformations followed by parametric tests for
skewed data so that the results can still be interpreted using parameters. However, a median is a parameter,
as are median differences between groups (the nonparametric Hodges-Lehmann estimator in chap. 5).
Nonparametric tests compute parameters, just not moment statistics (means and standard deviations). If you
transform data using a transformation that preserves the order of the values (logarithmic transformation,
for example) and perform a #-test on the transformed units, this is not a test for difference in means in the
original units (chap. 1) but the geometric means, and therefore medians of the untransformed values. Know
what parameters you are actually testing and make sure what you test for fits the goals of your study.

Our approach in this book agrees with E.J.G. Pitman’s 1948 paper in the Annals of Mathematical
Statistics (quoted in Salsburg, 2001), who found that, “...with only slight deviations from the parametric
model, the nonparametric tests were vastly better than the parametric ones.” We provide an example of
this in chapter 10. Our approach agrees with Higgins (2003), who stated in regard to the two-sample tests
of chapter 5, “...the Wilcoxon [rank-sum] test can never be much less efficient than the #-test, but it has
the potential of being infinitely more efficient.” Given that we discuss relatively simple situations in this
book as compared to complex statistical models, the quote from Hahn and Meeker’s (1991) classic text on
computing intervals (see chap. 3) applies: “One might ask “When should I use distribution-free statistical
methods?’ The answer, we assert, is “Whenever possible.” If one can do a study with minimal assumptions,
then the resulting conclusions are based on a more solid foundation.”

Older guidance documents often used a flowchart recommending the choice of test be based on a
prior test of whether data follow a specific distributional shape (usually a normal distribution). However,
different divisions of tests have different objectives and one needs to carefully note the null and alternative
hypotheses. If the interest is in testing whether one group tends to have higher values than the others, a
nonparametric test addresses that objective. If the interest is in testing to determine whether the means
(total amounts) are the same in all groups, a parametric test or a permutation test on the mean addresses that
objective. A parametric test after taking logarithms of the data does not test for differences in means of data
in their original units. In short, your choice should be informed by your objective, not just a reflection of the
distributional shape of your data.

Select test procedures that have greater power for the types of data expected to be encountered.

To obtain a test for means when data are asymmetric or contain outliers, a permutation test should be
strongly considered, as the parametric test may suffer from a loss of power. Comparisons of the power of
two test procedures, one parametric and one nonparametric, can be based on the tests’ asymptotic relative
efficiencies (ARE; the computation of which is beyond the scope of this text), a property of their behavior
with large sample sizes (Bradley, 1968). A test with larger ARE will have generally greater power. For
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many cases with data that do not meet distributional assumptions, especially the common situation where
data are highly asymmetrical or prone to outliers, the ARE of nonparametric tests can be many times those
of parametric tests (Hollander and Wolfe, 1999). Thus, the power of nonparametric tests to reject /, when
it is truly false is generally much higher (as much as 3 times, or 300 percent) in the presence of outliers

or skew. For example, the rank-sum test has a larger ARE (more power) than the #-test for distributions
containing outliers (Conover, 1999). Permutation tests also will have greater power than parametric

tests when data do not meet specific distributional assumptions. When data follow a normal distribution,
nonparametric tests have slightly lower (5—15 percent) ARE than parametric tests (Hollander and Wolfe,
1999). Therefore, in the presence of skewness and outliers—precisely the characteristics often shown

by water resources data—nonparametric and permutation tests commonly exhibit greater power than do
parametric tests.

4.2.2 Establish the Null and Alternate Hypotheses

The null and alternate hypotheses should be established before collecting data when one has designed
the study or, in the case where one is using retrospective data, before analysis of the data. The hypotheses
are a concise summary of the study objectives and will keep those objectives in focus during data collection
and analysis without being affected by unconscious bias arising from the data or desired results.

The null hypothesis (/) is what is assumed to be true about the system, before collection of new data.
It usually states the null situation—no difference between groups, no relation between variables. One may
suspect, hope, or root for either the null or the alternative hypothesis, depending on one’s vantage point.
However, the null hypothesis is what is assumed true until the data indicate that it is likely to be false. For
example, an engineer may test the hypothesis that wells upgradient and downgradient of a hazardous waste
site have the same concentrations of some contaminant. They may hope that downgradient concentrations
are higher (the company gets a new remediation project) or that the concentrations are the same upgradient
and downgradient (the company did the original site design and hazardous waste has not contaminated
downgradient wells). In either case, the null hypothesis assumed to be true is the same: concentrations are
similar in both groups of wells.

The alternate hypothesis (/7,, sometimes represented as /7,) is the situation anticipated to be true if
the evidence (the data) show that the null hypothesis is unlikely. In some cases, H , is the negation of H,
such as “the 100-year flood is not equal to the design value.” /, may also be more specific than just the
negation of H, such as “the 100-year flood is greater than the design value.” Alternate hypotheses come in
two general types: one-sided and two-sided. The associated hypothesis tests are called one-sided and two-
sided tests.

Two-sided tests occur when evidence in either direction from the null hypothesis (larger or smaller,
positive or negative) would cause the null hypothesis to be rejected in favor of the alternate hypothesis. For
example, if evidence suggests that the 100-year flood is different from the design value in either direction
(larger or smaller), this would provide evidence against the null hypothesis of the 100-year flood equaling
the design flood, thus the test is two-sided. Most tests in water resources are of this kind.

One-sided tests occur when departures in only one direction from the null hypothesis would cause
the null hypothesis to be rejected in favor of the alternate hypothesis. With one-sided tests, it is considered
supporting evidence for / if the data indicate differences opposite in direction to the alternate hypothesis.
For example, suppose only evidence that the 100-year flood is greater than the previous design value is
of interest, as only then must a specific culvert be replaced. The null hypothesis would be stated as “the
100-year flood is less-than or equal to the design flood,” and the alternate hypothesis is that “the 100-year
flood exceeds the design value.” Any evidence that the 100-year flood is smaller than the design value is
considered evidence for /.

If, before looking at any data, it cannot be stated that departures from / in only one direction are of
interest, a two-sided test should be performed. If one simply wants to look for differences between two
streams or two aquifers or two periods, then a two-sided test is appropriate. It is not appropriate to look at
the data, find that group A is considerably larger in value than group B, and perform a one-sided test that
group A is larger. This would be ignoring the real possibility that had group B been larger there would have
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been interest in that situation as well. Examples in water resources where the direction of the alternative
hypothesis is specified as one-sided tests include testing for (1) decreased annual floods or downstream
sediment loads after completion of a flood-control dam; (2) decreased nutrient loads or concentrations
because of a new sewage treatment plant or a newly incorporated best management practice; and (3) an
increase in concentration when comparing a suspected contaminated site to an upstream or upgradient
control site.

423 Decide on an Acceptable Type | Error Rate, o

The a-value, or significance level, is the probability of incorrectly rejecting the null hypothesis
(rejecting H when it is in fact true). This is one of four possible outcomes of a hypothesis test, as shown
in figure 4.2. The significance level is the risk of a type I error deemed acceptable by the decision maker.
Statistical tradition uses a default of 0.05 (5 percent) or 0.01 (1 percent) for o, but there is no reason why
other values should not be used. For example, suppose that an expensive cleanup process will be mandated
if the null hypothesis that there is no contamination is rejected. The a-level for this test might be set very
small (such as 0.01) in order to minimize the chance of needless cleanup costs. On the other hand, suppose
the test was simply a first cut at classifying sites into high and low values before further analysis of the high
sites. In this case, the a-level might be set to 0.10 or 0.20, so that all sites with high values would likely be
retained for further study.

Given than «a represents one type of error, why not keep it as small as possible? One way to do this
would be to never reject H,. The chance of making a type I error, a, would then equal zero. Unfortunately,
this would lead to a large probability of error of a second type—failing to reject /, when it was in fact
false. This type of error is called a type II error (a false negative), and the probability of a type II error is
designated by f (fig. 4.2). The power of a test is the probability of making a correct decision when H, is
false, or 1 — 4. Both type I and type II errors are of concern to practitioners and both will have some finite
probability of occurrence. Once a decision is made as to an acceptable type I error probability, a, two steps
can be taken to concurrently reduce the probability of a type II error, £:

1. Increase the sample size, n, or

2. Use the test procedure with the greatest power for the type of data being analyzed.

H, is true H, is false

Correct decision

Fail to Reject | Prob(correct decision) = Type 11 error
Hy 1—«a Prob(type Il error) = 8
g Confidence
3 Correct decision
A Type I error
Prob(correct decision) =
Reject H Prob(type I error) = «
1-8
Significance level
Power

Figure 4.2. Four possible results of hypothesis testing.
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For water quality applications, null hypotheses are often stated as “no contamination” or “no
difference” between groups. Situations with low power mean that actual contamination may not be
detected. This happens with simplistic formulas for determining sample sizes (Kupper and Hafner, 1989).
Instead, consider type II error when determining the sample size (see chap. 13). Power is also sacrificed
when data having the characteristics outlined in chapter 1, such as outliers and skewness, are analyzed with
tests requiring a normal distribution. With parametric tests, test sensitivity decreases as skewness and the
number of outliers increase.

424 Compute the Test Statistic and the p-value

Test statistics summarize the information contained in the data. If the test statistic is not substantially
different from what is expected to occur if the null hypothesis is true, the null hypothesis is not rejected.
However, if the test statistic is a value unlikely to occur when H | is true, the null hypothesis is rejected. The
p-value measures how unlikely the test statistic is when H| is true. Note that in R software, test statistics are
often adjusted by subtracting the lowest possible value for the test statistic with the current sample size(s).
This is of no consequence whatsoever, besides that R’s reported statistic may differ from that output by
commercial software. The p-values are not affected.

The p-value is the probability of obtaining the computed test statistic, or one even more extreme, when
the null hypothesis is true. It is derived from the data and concisely expresses the evidence against the
null hypothesis contained in the data. The p-value measures the believability of the null hypothesis;
the smaller the p-value, the less likely the observed test statistic is when H is true, and, therefore, the
stronger the evidence for rejection of the null hypothesis. The p-value is also referred to as the “attained
significance level.”

How do p-values differ from a-levels? The a-level does not depend on the data but states the risk of
making a type I error that is acceptable to the scientist or manager. The a-level is the critical value that
allows a yes/no decision to be made—the treatment plant has improved water quality, nitrate concentrations
in the well exceed standards, and so forth. The p-value provides more information—the strength of the
scientific evidence. Reporting the p-value allows analysts with different risk tolerances (different «) to make
their own decision.

For example, consider a one-sided test of whether downgradient wells have higher contaminant
concentrations than upgradient wells. If downgradient wells show evidence of higher concentrations,
some form of remediation will be required. Data are collected, and a test statistic calculated. A decision
to reject at @ =0.01 is a statement that remediation is warranted as long as there is less than a 1-percent
chance that the observed data would occur when upgradient and downgradient wells actually had the same
concentration. This level of risk was settled on as acceptable; there is 1-percent probability that remediation
would be performed when in fact it is not required. Reporting only reject or do not reject would prevent the
audience from distinguishing a case that is barely able to reject (p=0.009) from one in which H is virtually
certain to be untrue (p=0.0001). Reporting a p-value of 0.02, for example, would allow a later decision
by someone with a greater tolerance of unnecessary cleanup (less concern about making a type I error;
0.=0.05, perhaps) to decide for or against remediation.

It should be noted that there are three methods of computing p-values for nonparametric tests:

1. Exact test. Exact versions of nonparametric tests provide p-values that are exactly correct. They are
computed by comparing the test statistic to a table of all possible results for the sample sizes present.
In the past, an extensive set of tables was required, one for every possible combination of sample
sizes. Today, software can compute these until sample sizes become very large. When sample sizes
are small, the exact version provides the most accurate results.

2. Large-sample approximation (LSA). To avoid computing test statistics for large datasets (lots of
computing time), approximate p-values are obtained by assuming that the distribution of the test
statistic can be approximated by some common distribution, such as the chi-square or normal
distribution. This does not mean the data themselves follow that distribution, but only that the test
statistic does. A second reason for using an LSA is that when ties occur in the data, exact tests cannot
be computed. The test statistic is modified if necessary (often standardized by subtracting its mean
and dividing by its standard deviation), and then compared to a table of the common distribution to
determine the p-value. Commercial computer software predominantly uses large sample approximations
when reporting p-values, whether or not the sample sizes are sufficient to warrant using them.
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3. Permutation test. Large datasets may require enumerating many thousands to millions of possible
outcomes to define the exact distribution of the test statistic. Permutation tests compute a smaller
random sample of all the possible outcomes, representing the null hypothesis by the random sample.
The p-value is the probability of the single observed test statistic, or one more extreme, being
produced when the null hypothesis is true. This method approximates the p-value and is considered a
more accurate way to approximate than assuming that the test statistic follows a specific distribution.

425 Make the Decision to Reject H, or Not

When the p-value is less than or equal to the decision criteria (the a-level), H is rejected. When the
p-value is greater than a, H is not rejected. The null hypothesis is never accepted or proven to be true, it is
assumed to be true until proven otherwise and is not rejected when there is insufficient evidence to do so. In
short, reject H, when the p-value <a. However, it is good practice to report the p-values for those that may
want to make decisions with a different significance level and type I error rate.

4.3 The Rank-sum Test as an Example of Hypothesis Testing

Suppose that aquifers X and Y are sampled to determine whether the concentrations of a contaminant
in the aquifers are similar or different. This is a test for differences in location or central value and will be
covered in detail in chapter 5. Two samples, x,, are taken from aquifer X (n=2), and five samples, y,, from
aquifer ¥ (m=>5) for a total of seven samples (N=n+m="7). Also suppose that there is a prior reason (that
likely motivated the sampling) to believe that X values tend to be lower than Y values: aquifer X is deeper
and likely to be uncontaminated. The null hypothesis (/) and alternative hypothesis (/) of this one-sided
test are as follows:

H,: x andy, are samples from the same distribution, or

H; Prob(x>y)=0.5,i=1,2,...,n;j=1,2,...,m.

0

H,: x,is from a distribution that is generally lower than that of y, or

H,: Prob(x,2y)<0.5.

A

Remember that with one-sided tests such as this one, data indicating differences opposite in direction
to H, (x, frequently larger than y) are considered supporting evidence for /. With one-sided tests, we can
only be interested in departures from /4 in one direction.

Having established the null and alternate hypotheses, an acceptable type I error probability, a, must be
set. As in a court of law, innocence is assumed (concentrations are similar) unless evidence is collected to
show beyond a reasonable doubt that aquifer ¥ has higher concentrations (that is, differences observed are
not likely to have occurred by chance alone). The reasonable doubt is set by a, the significance level.

If mean concentrations are of interest and the #-test is chosen as the test procedure, each data group
should be tested for normality. However, sample sizes of two and five are too small for a reliable test of
normality. Here the objective is instead to test whether concentrations in one group are higher than the
other, so the nonparametric rank-sum test is more appropriate. This test procedure entails ranking all seven
values (lowest concentration has rank = 1, highest has rank = 7) and summing the ranks of the two values
from the population with the smaller sample size (X). This rank-sum is the statistic # used in the exact test.

Next, W would be computed and compared to a table of test statistic quantiles to determine the p-value.
Where do these tables come from? We will derive the table for sample sizes of two and five as an example.

What are the possible values /' may take, given that the null hypothesis is true? The collection of
all the possible outcomes of 1 defines its distribution, and therefore composes the table of rank-sum test
statistic quantiles. Shown below are all the possible combinations of ranks of the two x values.

12 13 14 15 1,6 1,7
23 24 25 2,6 2,7
34 35 3,6 3,7

45 46 47

5,6 5,7

6,7
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If H is true, each of the 21 possible outcomes must be equally likely. That is, it is just as likely for the
two xs to be ranks 1 and 2, or 3 and 5, or 1 and 7, and so on. Each of the outcomes results in a value of 7,
the sum of the two ranks. The 21 ¥ values corresponding to the above outcomes are

3 4 5 6 7 8

5 6 7 8 9
7 8 9 10
9 10 11
11 12
13

The expected value of ¥ is the mean (and in this case, also the median) of the above values, or 8.
Given that each outcome is equally likely when H| is true, the probability of each possible /¥ value is listed
in table 4.2 where probability is expressed as a fraction. For example, of 21 W values, one is equal to three,
therefore, the probability that W=3 is 1/21.

What if the data collected produced two x values having ranks 1 and 4? Then  would be 5 (or 2 using
R, as in table 4.2), lower than the expected value E[W]=8. If H were true rather than H, W would tend
toward low values. What is the probability that W would be as low as 5, or lower, if H were true? It is the
sum of the probabilities for W=3, 4, and 5, or 4/21 = 0.190 (see fig. 4.3). This number is the p-value for the
test statistic of 5. It says that the chance of a departure from E[W] of at least this magnitude occurring when
H, is true is 0.190, which is not uncommon (about 1 chance in 5). Thus, the evidence against /4 is not too
convincing. If the ranks of the two xs had been 1 and 2, then W = 3 (0 using R) and the p-value would be
1/21=0.048. This result is much less likely than the previous case but is still about 5 percent. In fact, owing
to such a small sample size the test can never result in a highly compelling case for rejecting H,,.

The one-sided rank-sum test performed in R using the Wilcoxon rank-sum test, wilcox.test
function, on randomly generated data looks like the following:

> # x is a random normal variable with mean 40 and standard
> deviation of 5
> # y is a random normal variable with mean 50 and standard

#
#

> # deviation of 5
# set.seed ensures that the authors and users will
#

have the same set of randomly generated numbers
> set.seed(100)
> X <- rnorm(2, mean=40, sd=5)

>y <- rnorm(5, mean=50, sd=5)

> wilcox.test(x, y, alternative="less")
Wilcoxon rank sum test

data: x and y

W = 0, p-value = 0.04762

alternative hypothesis: true location shift is less than ©
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Table 4.2. Probabilities and one-sided p-values for the rank-sum test with n=2 and m=>5.
w Rescaled Wfrom R Prob(W) Prob(<W)
3 0 1/21 0.048
4 1 1/21 0.095
5 2 2/21 0.190
6 3 2/21 0.286
7 4 3/21 0.429
8 5 3/21 0.571
9 6 3/21 0.714
10 7 2/21 0.810
11 8 2/21 0.905
12 9 1/21 0.952
13 10 1/21 1.00
T T T T T T T T T T T
3 r - 0.143
) 0]
&) o
c c
o o
2 2
S 2 - - 0.095 8
© ©
> >
S =
;
o 1F -4 0.048 2
L o
O 1 1 1 1 1 1 1 1 1 1 1 0
3 4 5 6 7 8 9 10 11 12 13
Value of W
Figure 4.3. Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5. The p-value

for a one-sided test equals the area shaded.
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Figure 4.4. Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5. The
p-value for a two-sided test equals the area shaded.

This example has considered only the one-sided p-value, which is appropriate when there is some
prior notion that X tends to be smaller than Y (or the reverse). Quite often, the situation is that there is no
prior notion of which should be lower. In this case a two-sided test must be done. The two-sided test has the
same null hypothesis as was stated above, but /, is now that x, and y, are from different distributions, or

H,: Prob(x>y)#0.5 .

Suppose that ¥ for the two-sided test were found to be 5. The p-value equals the probability that W
will differ from E[W] by this much or more, in either direction (see fig. 4.4). It is

Prob(W<5) + Prob(W=>11) .

Where did the 11 come from? It is just as far from E[W]=8 as is 5. The two-sided p-value therefore
equals 8/21=0.381, twice the one-sided p-value. Symbolically we could state

Prob(|W-E[W]|>3)=8/21 .

The two-sided rank-sum test performed in R using the wilcox.test function, on the same randomly
generated data as the previous example but with a different alternative (/) yields

> wilcox.test(x, y, alternative="two.sided")
Wilcoxon rank sum test
data: x and y

W = @, p-value = 0.09524

alternative hypothesis: true location shift is not equal to ©
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This example used a symmetric distribution, but the test can also be used with asymmetric
distributions, in which case the probabilities in the two tails would differ. Fortunately, modern statistical
software can handle symmetric or asymmetric distributions for us and reports two-sided p-values as the
default, with a user option to select a one-sided alternative. For the alternative group A > group B, the
optionin Ris alternative = "greater" forwilcox.test. For the reverse, alternative =
"less" is the option.

To summarize, p-values describe the probability of calculating a test statistic as extreme or more
extreme as the one observed, if | were true. The lower the p-value the stronger the case against the
null hypothesis.

Now, let us look at an a-level approach. Return to the original problem, the case of a one-sided
test. Assume a is set equal to 0.1. This corresponds to a critical value for W, call it W", such that
Prob(W<W") = a. Whenever W<W", H, is rejected with no more than a 0.1 frequency of error if H
were always true. However, because W can only take on discrete integer values, as seen above, a /"
which exactly satisfies the equation is not usually available; instead the largest possible " such that
Prob(W<W") < a is used. Searching table 4.2 for possible W values and their probabilities, W*=4 because
Prob(W<4)=0.095<0.1. If =0.09 had been selected then " would be 3.

For a two-sided test a pair of critical values, W; and WL* , are needed, where

Prob(W <W,)+ Prob(W >2W,)<a and

W~ EW)=EW]-w;

These upper and lower critical values of # are symmetrical around E[ ] such that the probability of W
falling on or outside of these critical levels is as close as possible to a, without exceeding it, under the
assumption that /7 is true. In the case at hand, if =0.1, then WL* =3 and I, =13 because

Prob(W<3)+Prob(W=>13)=0.048+0.048=0.095<0.1 .

Note that for a two-sided test, the critical values are farther from the expected value than in a one-sided test
at the same a-level.

It is important to recognize that p-values are also influenced by sample size. For a given magnitude of
difference between the x and y data, and a given amount of variability in the data, p-values will tend to be
smaller when the sample size is large. In the extreme case where vast amounts of data are available, it is a
virtual certainty that p-values will be small even if the differences between x and y are what might be called
of no practical significance.

4.4 Tests for Normality

If the objectives of a study are such that the analyst desires to use a parametric test that relies on an
assumption of a normal distribution, a normality test should be used to determine whether data meet the
test’s requirements or whether a permutation test might be preferred. The null hypothesis for all tests of
normality is that the data are normally distributed. Rejection of /| says that this is doubtful. Failure to
reject [, however, does not prove that the data follow a normal distribution, especially for small sample
sizes. It simply says normality cannot be rejected with the evidence at hand.

Two tests for normality are used in this book, the probability plot correlation coefficient (PPCC)
test introduced by Filliben (1975) and discussed by Looney and Gulledge (1985), and the Shapiro-Wilk
test (Shapiro and others, 1968), as modified by Shapiro and Francia (1972). Both tests are related to
and illustrated by a probability plot, a plot of data quantiles versus quantiles of the assumed theoretical
distribution. These are two of the more powerful tests for normality available and both are reasonable
choices for testing for normality. The PPCC requires the installation of an additional R package and can
test hypotheses related to a number of other statistical distributions (Pohlert, 2017). The Shapiro-Wilk test
(shapiro.test) is included in the base R installation (R Core Team, 2016).
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Remember from chapter 2 that the more normal a dataset is, the closer it plots to a straight line on
a normal probability plot. To determine normality, this linearity is tested by computing a PPCC test or
a slightly modified R? (Shapiro-Wilk test) between data and their standard normal quantiles (or normal
scores, the linear scale on a probability plot). Samples from a normal distribution will have a correlation
coefficient and R’ very close to 1. As data depart from normality, these statistics will decrease below 1. To
perform a test of H the data are normally distributed) versus H (the data are not normally distributed), the
statistics are analyzed to see if they are significantly less than 1. These tests for normality use the Blom
plotting position (see chap. 2 for more on plotting positions).

To illustrate these tests, table 4.3 and figure 4.5 show the unit well-yield data from chapter 2 and their
probability plots. For the wells in unfractured rock, the probability plot correlation coefficient »*=0.805
(fig. 4.54; see chap. 8 on correlation). This is the correlation coefficient between the yields (y,) and their
associated plotting positions. For wells in fractured rock, the probability plot correlation coefficient
r*=0.943 (fig. 4.5B).

The R code used to calculate the two tests for normality is given below. The ppccTest reports the
probability correlation coefficient, the sample size, and a p-value. Using a 5-percent significance level,
0=0.05, and with a sample size of 12, the hypothesis that the yield of unfractured wells is normally
distributed is rejected, p-value <0.05. We can see this visually in figure 4.54. Using the same significance
level and with a sample size of 13, the hypothesis that the yield of fractured wells follows a normal
distribution is not rejected, p-value >0.05.

The function shapiro.test reports a test statistic, /¥, and a p-value. At a 5-percent significance
level, the results are the same as for the PPCC test—the hypothesis that the yield of unfractured wells is
normally distributed is rejected and the hypothesis that the yield of fractured wells is normally distributed is
not rejected.

> library(ppcc)
> unit.well.yields <- data.frame(y = c(0.001, 0.003, 0.007, 0.020,

+ 0.030, 0.040, 0.041, 0.077, 0.100, 0.454,
+ 0.490, 1.02, 0.020, 0.031, 0.086,

+ 0.130, 0.160, 0.160, 0.180, 0.300,

+ 0.400, 0.440, 0.510, 0.720, 0.950),

+ frac = c(rep(0, 12), rep(1, 13)))

>

> unfrac <- subset(unit.well.yields, frac == 0)
> frac <- subset(unit.well.yields, frac == 1)

> ppccTest(unfrac$y, gfn = "gnorm")

Probability Plot Correlation Coeficient Test

data: unfrac$y

ppcc = 0.80508, n = 12, p-value = le-04

alternative hypothesis: unfrac$y differs from a Normal distribution

> ppccTest(frac$y, gfn = "gnorm")

Probability Plot Correlation Coeficient Test
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data: frac$y
ppcc = 0.94258, n = 13, p-value = 0.0886

alternative hypothesis: frac$y differs from a Normal distribution

> shapiro.test(unfrac$y)

Shapiro-Wilk normality test

data: unfrac$y
W = 0.66039, p-value = 0.0003593

> shapiro.test(frac$y)

Shapiro-Wilk normality test

data: frac$y
W = 0.88531, p-value = 0.08418

The PPCC and Shapiro-Wilk tests have an important graphical analog, the probability plot, which
illustrates the test results. The probability plot provides information on how the data depart from normality,
such as whether a transformation for skewness will improve the fit (or not), something not provided by any
test statistic. A plot can be worth a thousand test statistics! Note the nonlinearity of the data on the normal
probability plots of figure 4.5. The probability plot for the well yields in fractured rock (fig. 4.5B) shows
a closer adherence to a straight line (normality not rejected) than for the well yields in unfractured rock
(fig. 4.54) where normality is rejected at a=0.05.

Table 4.3. Unit well yields (y,) from Virginia, in gallons per minute per foot (Wright, 1985).

[-, no data]
Wells in unfractured rock Wells in fractured rock
(y) (y,)
0.001 0.020
0.003 0.031
0.007 0.086
0.020 0.13
0.030 0.16
0.040 0.16
0.041 0.18
0.077 0.30
0.10 0.40
0.454 0.44
0.49 0.51
1.02 0.72

- 0.95
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Figure 4.5. Probability plots for yields of wells in (A) unfractured and (B) fractured rock,

with probability plot correlation coefficient (PPCC) correlation coefficient (r). Data from
Wright (1985).
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The most common test for normality is the Shapiro-Wilk test, as its power to detect non-normality is
as good or better than other tests (Thode, 2002). A table of quantiles for this test statistic is available for
n<50 (Conover, 1999). Shapiro and Francia (1972) modified the Shapiro-Wilk test for all sample sizes and
statistical software usually performs this form of the test, including the shapiro.test command in R. In
this book, we have adopted the common practice of calling the Shapiro-Francia modification produced by
the shapiro.test command the Shapiro-Wilk test. Power characteristics and p-values for the Shapiro-
Wilk and PPCC tests should be similar.

Tests for normality not related to probability plots include the Kolmogorov-Smirnov (one-sample
ks.test in R) and chi-square tests (chi-sq.test with x as a numeric vector and no y in R), described
in more detail by Thode (2002). Both tests have lower power than the Shapiro-Wilk test to detect non-
normality when data are continuous (Thode, 2002). Kolmogorov-Smirnov and chi-square tests are more
useful for data that are ordinal (data recorded only as low/medium/high, for example), but this makes
them less powerful than the probability plot tests for testing continuous data for normality (Shapiro and
others, 1968). The Anderson-Darling test (Thode, 2002) is useful for testing a wide variety of distributions
in addition to the normal. The Anderson-Darling test is not based on probability plots, but its power
characteristics are similar to the PPCC and Shapiro-Wilk tests.

4.5 Other Hypothesis Tests

Many other hypothesis tests exist for questions beyond central tendency and distribution; table 4.1 of
this chapter lists some other tests and the chapters in which they are introduced. Additional tests include
tests for proportions, tests of independence, tests related to variance or spread, and tests related to skew
and kurtosis, among many others. There is an extensive discussion of tests for equality of variances in
chapter 5. Readers may consult specialized texts such as Sheskin (2011) for details about many more
hypothesis tests.

4.6 Considerations and Criticisms About Hypothesis Tests

Though widely used, hypothesis tests and p-values are subject to misinterpretation and much criticism.
Over the decades many have tried to discourage the use of p-values in published research, yet they remain
widely reported because they are simply an expression of strength of evidence shown by the data. In some
instances, if authors do not report a p-value with their results, reviewers will ask for a p-value as a measure
of the statistical significance of the results.

46.1 Considerations

The p-values reported when performing hypothesis tests are an indicator of statistical, or probabilistic,
significance but are not a measure of hydrologic importance. Authors should consider both statistical and
hydrological (or practical) significance. As McCuen (2016) stated, “Widely accepted criteria are usually
not available to assess hydrological significance, which unfortunately means that greater weight is often
placed on statistical decision criteria; however, efforts should always be made to assess hydrological
significance.” For example, one may find a statistically significant difference in the concentration of
calcium in stream samples collected at two different sites. However, that difference might not have human
or aquatic health effects.

The p-value is often misused and misinterpreted (Wasserstein and Lazar, 2016), sometimes as the
probability of the null hypothesis being true, sometimes as the probability of some event, or sometimes
as the likelihood of an outcome. The p-value is the probability of calculating a test statistic as extreme or
more extreme as the one observed, if H were true. It is the probability of declaring that there is a signal
in the data when one does not exist (a false positive). “The smaller the p-value, the greater the statistical
incompatibility of the data with the null hypothesis, if the underlying assumptions used to calculate the
p-value hold true” (Wasserstein and Lazar, 2016); however, there is no definitive point at which statistical
incompatibility can be declared the truth.
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When reporting hypothesis test results, analysts should also report sample size (as results can be
sensitive to sample size and in some cases small samples require a special hypothesis test or a modification
to a hypothesis test); the null and alternative hypotheses (so that readers know explicitly what is being
tested); the significance level used to determine results, such as a=0.05; and the actual p-value, not just
p<0.05, so that readers may make their own judgments about significance.

46.2 Criticisms

P-values have been “vigorously excoriated” (Rozeboom, 1960; Nuzzo, 2014) for decades, yet remain
widely used. Some of these criticisms are discussed below.

1. P-values do not convey the magnitude or importance of an effect.
2. P-values do not provide the range of plausible values that confidence or prediction intervals do.

3. There can be a bias against publishing results that fail to reject the null hypotheses. A nonstatistically
significant result may be considered by some to be nonsignificant scientifically; however, a result of
no change can tell us something important about the environment.

4. Researchers sometimes try multiple hypothesis tests, removal of outliers, or collection of more data
to achieve statistically significant results. This process was termed “p-hacking” by Uri Simonsohn
(Nuzzo, 2014).

In response to criticisms to 1 and 2, p-values were never designed to estimate the effect size.

Other methods, such as the Hodges-Lehmann estimator (Hodges and Lehmann, 1963; Hollander and
Wolfe, 1999; discussed in chap. 5) have been designed to estimate effect size. Estimators and p-values
are complementary and both insufficient by themselves. The problem with estimating a mean effect and
leaving it at that, is that no one knows whether the magnitude of the reported effect is anything other
than noise.

We agree with criticism 3 entirely. No change is sometimes the most welcome result or can inform
those in water resources that some action did not have the hoped-for results. There is a growing interest
in science in general in publishing nonsignificant results because this can still inform future work
(Charlton, 2004; Kotze and others, 2004; Levine, 2013; Goodchild van Hilten, 2015; World Health
Organization, 2015; Lederman and Lederman, 2016).

We agree that criticism 4 is a problem but banning p-values is not the solution. A humorous illustration
of the all-too-common problem of multiple hypothesis tests is shown in figure 4.6. Always remember that
a=0.05 states that rejection of the null hypothesis can be expected 1 out of 20 times (5 percent) simply
by chance.

There are many ways that researchers can misrepresent their data, sometimes on purpose, but often
through ignorance. The authors of this book have never advocated removing outliers to obtain a desired
result; the discipline of statistics does not advocate this either. The remedy for the problems with p-values
and hypothesis testing is better education on statistical theory and methods for environmental scientists.
Hypothesis tests are just the inverse of confidence intervals, so the call to ban tests on one hand while
advocating more reporting of confidence intervals on the other hand is ironic. A p-value is simply one
minus the confidence level for the widest possible confidence interval showing a nonzero effect size.

46.3 Discussion

Because of criticisms and concerns summarized above, the American Statistical Association (ASA)
for the first time ever took a position on specific matters of statistical practice and published a statement on
statistical significance and p-values (Wasserstein and Lazar, 2016). Wasserstein and Lazar did not call for
a ban on the use of p-values, but instead chose to clarify widely agreed upon principles underlying the use
and interpretation of p-values, quoted directly here:

1. P-values can indicate how incompatible the data are with a specified statistical model;

2. P-values do not measure the probability that the studied hypothesis is true, or the probability
that the data were produced by random change alone;
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Figure 4.6. Cartoon showing what can easily happen
when running multiple hypothesis tests, p-hacking or
p-fishing. Figure from xkcd.com (Munroe, 2016), used
under creative commons attribution-noncommercial
license.
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3. Scientific conclusions and business or policy decision should not be based only on whether a
p-value passes a specific threshold,

4. Proper inference requires full reporting and transparency;

5. A p-value, or statistical significance, does not measure the size of an effect or the importance
of a result;

6. By itself, a p-value does not provide a good measure of evidence regarding a model or
hypothesis.

We agree with these principles and have provided a few examples to consider the role of p-values
in hydrological studies. Statistical tests often are conducted to help make a decision about the need for
action. For example, we may be interested in determining if exposure to some chemical at a particular
concentration has an impact on reproductive success in a fish species. Let us say that the p-value from
a one-sided test is 0.20. Generally, one might set a at 0.05, but the 0.20 value is telling us that there is
reasonably strong evidence that the chemical has a negative effect although we still have some degree
of doubt about it. The precautionary principle might suggest action to control the level of that chemical
because it is more likely than not that it has a negative effect.

Another example in which the use of p-values can be harmful to the interpretation of results is the
case when many similar hypothesis tests are being conducted and we want to use them to evaluate many
sites. We may be conducting similar tests at many locations, such as trends in chloride in rivers, trends in
nitrate in wells, or trends in floods at many streamgages. It may be the case that few or even none of the
sites in the study may have significant trends (p <a), but it may be that many sites had trends in the same
direction and many of those where of a moderate level of significance (say p<0.2). It is common in such
situations that when the results are not statistically significant the author does not provide information
about the magnitude, sign, or p-value. The consequence is a considerable loss of information to the reader
of the report. The full results from the test (magnitude, sign, and p-value) are all very useful information.
For example, knowing that most or all test statistics were of one sign is a useful piece of information even
though no individual test statistic is significant. See Hirsch and Ryberg (2012) for an example of such
an analysis. There are formal tests for tests conducted across many sites (see chap. 12, Regional Kendall
test for example), but even informally, showing all results regardless of significance is a good practice.
However, one should consider the spatial correlation in the data. If one has many sites and some are on
the same river or near each other, they may be spatially correlated and the results for 10 such sites do not
contain as much unique information as 10 independent sites scattered across the country would.

As the ASA’s statement on p-values says, “The validity of scientific conclusions, including their
reproducibility, depends on more than the statistical methods themselves” (Wasserstein and Lazar, 2016).
Graphical analyses can complement quantitative assessments that include statistical hypothesis tests.
Consider how the graphics shown throughout this text may support a finding of statistical significance or
nonsignificance or may support the hydrologic importance of a finding.
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Exercises

1. The following are annual streamflows, in cubic feet per second, for the Green River at Munfordville,
Kentucky. Beginning in 1969 the stream was regulated by a reservoir.

Test both before and after datasets for normality using the PPCC test. If either is non-normal,
transform the data and retest in order to find a scale that appears to be close to a normal distribution.

Year Value Year Value
Before After

1950 4,910 1969 1,350
1951 3,660 1970 2,350
1952 3,910 1971 3,140
1953 1,750 1972 3,060
1954 1,050 1973 3,630
1955 2,670 1974 3,890
1956 2,880 1975 3,780
1957 2,600 1976 3,180
1958 3,520 1977 2,260
1959 1,730 1978 3,430
1960 2,340 1979 5,290
1961 2,600 1980 2,870
1962 3,410
1963 1,870
1964 1,730
1965 2,730
1966 1,550
1967 4,060
1968 2,870

2. Test the arsenic data and transformed data of chapter 2, exercise 2 for normality.






Testing Differences Between Two Independent
Groups

Wells upgradient and downgradient of a hazardous waste site are sampled to determine whether the
concentrations of some toxic organic compound known to reside in drums at the site are greater in the
downgradient wells. Are the concentrations greater at the a.=0.01 significance level? Does the magnitude
of the difference warrant the expense of cleanup?

Measurements of a biological diversity index are made on 16 streams. Eight of the streams represent
natural conditions and the other eight have received urban runoff- Is the biological quality of the urban
streams estimated to be degraded in comparison to the natural streams?

Unit well yields are determined for a series of bedrock wells in the Piedmont region. Some wells tap
bedrock where fracturing is prevalent, whereas other wells are drilled in largely unfractured rock. Does
fracturing affect well yields, and if so, how?

The examples given above compare two independent groups of data to determine if one group tends to
contain larger values than the other. The data are independent in the sense that there is no natural structure
in the order of observations across groups—there are no pairings of data between observation 1 of group
1 and observation 1 of group 2, and so forth. Where such a pairing does exist, methods for matched pairs
discussed in chapter 6 should be used. Data should also be independent in the sense that the two groups
represent different conditions—neither observations nor the population they represent should be in both
groups.

This chapter will discuss nonparametric, permutation, and parametric tests for whether two
independent groups differ in central location (see chap. 4 for a definition of these three classes of hypothesis
tests). Graphical presentations of the test results will be quickly surveyed, methods for estimating the
magnitude of the difference between the two groups provided, and methods for testing differences in the
variability of two groups described. An overview of the types of tests considered in this chapter is given in
table 5.1.

Table 5.1. Hypothesis test methods in this chapter and their characteristics. H, is the alternative hypothesis, the
signal to be found if it is present.

_ Distributional Estimator of
Objective (H,) Test Class of test iSTibttiona S imator 0
assumption difference
Data values in Wilcoxon rank-sum test ~ Nonparametric None Hodges-Lehmann
one group are estimate
frequently higher
than those in the
other group
One group has a Two-sample #-test Parametric Normal distribution. Mean difference
higher mean Differences additive
Two-sample permuta- Permutation Same distribution as in Mean difference
tion test the other group
One group has higher Fligner-Killeen Nonparametric None Difference in median
variability absolute distance

from the median

Levene’s Parametric Normal distribution Difference in group
variance
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5.1 The Rank-sum Test

The rank-sum test goes by many names. The test was developed by Wilcoxon (1945) and so is
sometimes called the Wilcoxon rank-sum test. It is equivalent to a test developed by Mann and Whitney
(1947) and the test statistics can be derived one from the other; thus the test is also known as the Mann-
Whitney test. The combined name of Wilcoxon-Mann-Whitney rank-sum test has also been used, as has
the Two-sample Wilcoxon test. Regardless of the many names, two end results are important. Does the test
conclude there is a significant difference between the two groups for a given level of significance? If so,
what is the magnitude of that difference? Answers to these questions for the rank-sum test are given in the
following discussion.

5.1.1 Null and Alternate Hypotheses for the Rank-sum Test

In its most general form, the rank-sum test is a test for whether one group tends to produce larger
observations than the second group. It has as its null hypothesis

H, Prob(x,>y)=0.5,i=1,2,...,n;j=1,2,...,m,
where the x, are from one group and the y, are from a second group. In words, this states that the probability

of an x value being higher than any given y value is one-half. The alternative hypothesis is one of three
statements

H,: Prob(x,>y)#0.5 (Two-sided test, x might be larger or smaller than y).
H, . Prob(x,>y)>0.5 (One-sided test, x is expected to be larger than y).
H,: Prob(x,>y)<0.5 (One-sided test, x is expected to be smaller than y).

The rank-sum test is often presented as a test for difference in group medians. This follows from the
form of the hypotheses above when the two groups have the same distributional shape. However, the test
is more general than a test for differences in medians. For example, suppose the lower half of two sites’
concentration distributions were similar, but a contaminant elevated the upper 40 percent of one site’s
concentrations. Group medians might not significantly differ, but the rank-sum test may find a significant
difference because the upper 40 percent of concentrations at the contaminated site were higher than the
upper 40 percent at the uncontaminated site.

5.1.2 Assumptions of the Rank-sum Test

There are three assumptions for the rank-sum test (Conover, 1999):

1. Data in both groups are random samples from their respective populations.

2. In addition to independence of data within each group, there is mutual independence between
the two groups. For example, data from the same sampling unit (and certainly the exact same
observations) should never be present in both groups.

3. The measurement scale is at least ordinal.

There is no requirement of equal variances or normality of the distribution of data. No assumptions
are made about how the data are distributed in either group. They may be normal, lognormal, exponential,
or any other distribution. They may be uni-, bi- or multi-modal. In fact, if the only objective is to determine
whether one group tends to produce generally higher observations than the other, the two groups do not
even need to have the same distribution.

Usually however, the test is used for a more specific purpose—to determine whether the two groups
come from the same population (same median and other percentiles), or alternatively, whether they differ
only in location (central value or median). If both groups of data are from the same population, about
half of the time an observation from either group could be expected to be higher than that from the other,
so the above null hypothesis applies. However, now it must be assumed that if the alternative hypothesis
is true, the two groups differ only in their central value, though not necessarily in the units being used.
For example, suppose the data are shaped like the two lognormal distributions of figure 5.14. On the
original scale, the data have different sample medians and interquartile ranges (IQRs), as shown by the
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Figure 5.1. Box plots of (A) concentration data for two groups and (B) the logarithms of the same data. The
pattern in Ais typical of lognormal distributions (on the original scale) showing a multiplicative difference
between groups. This produces the additive relation seen in B.

two boxplots. A rank-sum test performed on these data has a p-value of <0.001, leading to the conclusion
that they do indeed differ. But is this test invalid because the variability, and therefore the shape, of the
two distributions differs? The logarithms of the data appear to have different medians (fig. 5.18) but
similar IQRs, and thus the logs of the data appear to differ only in central tendency. The test statistic and
p-value for a rank-sum test computed on these transformed data is identical to that for the original scale!
Nonparametric tests possess the useful property of being invariant to positive power transformations such
as square and cube roots, as well as logarithms. Only the data, or any power transformation of the data,
need be similarly shaped (except for their central location) to use the rank-sum test, so it is applicable in
many situations. Unlike the #-test, the rank-sum test can discern multiplicative differences between groups,
such as y=3-x (see section 5.3.2.).

5.1.3 Computation of the Rank-sum Test

For sample sizes n and m where n <m, and x,i=1,2,..,n andy].,j=1,2, ...,m are the two data groups,
compute the joint ranks R,: ‘

R, =1 to (N=n+m), using average ranks in case of ties. Then the test statistic

W_=sum of ranks for the group having the smaller sample size, or
=XR from i=1,2,...,n (using either group with equal sample sizes n=m).

A one-sided or one-tailed alternative should be chosen when one group is expected to be higher or
lower (but not both!) than the second group prior to observing the data. For example, y is a background site
with lower concentrations expected than for a possibly higher-concentration site x. Determine the p-value
associated with I . Reject H when p <a.
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R provides the exact p-value for small to moderate sample sizes unless there are ties, in which case the
large-sample approximation is provided. Commercial statistics packages typically report p-values using the
large-sample approximation for all sample sizes.

Example 5.1. Precipitation nitrogen—Rank-sum test.

Precipitation quality was compared at sites with different land uses by Oltmann and Shulters (1989).
Ten concentrations of organic plus ammonia nitrogen (NH4orgN) at each site are listed below, along
with their group location as the variable "where". The rank command below computes the joint ranks of
concentrations from 1 to 20 only to illustrate what is performed internally by the wilcox. test rank-sum
command. Note that three pairs of concentrations (at 0.7, 1.1, and 1.3 milligrams per liter [mg/L]) are tied,
and so are assigned tied ranks equal to the average of their two individual ranks.

> load (precipn.RData)
> attach (precipn)
> precipn$rankN <- rank(precipn$NH4orgN)

> print (precipn)

NH4orgN where rankN

1 0.59 indust 4.0
2 0.87 indust 7.0
3 1.10 indust 11.5
4 1.10 indust 11.5
5 1.20 indust 13.0
6 1.30 indust 14.5
7 1.60 indust 16.0
8 1.70 indust 17.0
9 3.20 indust 18.0
10 4.00 indust 19.0
11 0.30 residen 1.0
12 0.36 residen 2.0
13 0.50 residen 3.0
14 0.70 residen 5.5
15 0.70 residen 5.5
16 0.90 residen 8.0
17 0.92 residen 9.0
18 1.00 residen 10.0
19 1.30 residen 14.5

20 9.70 residen 20.0

Boxplots for the groups are shown in figure 5.2.
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Figure 5.2. Boxplots of ammonia plus organic nitrogen from the precipn data. Data
from Oltmann and Shulters (1989) by land use type: industrial or residential.

Median concentrations for the industrial and residential sites are 1.25 and 0.80 mg/L, respectively. The
rank-sum test determines if ammonia plus organic nitrogen concentrations (NH4orgN) differ significantly
(2=0.05) between the industrial (indust) and residential (residen) sites. The null (/) and alternate (/)
hypotheses are

H,:  Prob(concentration [industrial] > concentration [residential]) = 0.5.

H,: Prob(concentration [industrial] > concentration [residential]) # 0.5.

The test statistic is the sum of ranks in the group with fewer observations. Here either group could be
used because sample sizes are equal. Choosing the residential group, the sum of ranks is 78.5. An exact test
cannot be computed with a fractional test statistic, so the large-sample approximation form of the test will
automatically be computed. Note that R subtracts the smallest possible test statistic prior to reporting the
result. Here the smallest possible value for W _equals 2, so the test statistic reported by R equals 76.5.
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>wilcox.test(NH4orgN~where,conf.int=TRUE)
Wilcoxon rank sum test with continuity correction

data: NH4orgN by where
W = 76.5, p-value = 0.04911
alternative hypothesis: true location shift is not equal to ©
95 percent confidence interval:

3.948029e-05 1.099984e+00

sample estimates:
difference in location

0.5040993

The conclusion is that ammonia plus organic nitrogen concentrations from industrial precipitation
differ significantly from those in residential precipitation at these locations by a median difference of 0.504.
This estimate is the Hodges-Lehmann estimate discussed later in section 5.5 and is presented along with its
confidence interval when specifying the option conf.int=TRUE.

5.1.4 The Large-sample Approximation to the Rank-sum Test

For the rank-sum test, the distribution of the exact test statistic /¥ _is closely approximated by a normal
distribution when the sample size for each group is 10 or more (fig. 5.3). With n=m =10, there are 184,756
possible arrangements of the data ranks (this can be computed with the choose(20,10) command in
R). The sum of ranks for one of the two groups for all arrangements comprises the exact distribution of
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Figure 5.3. Histogram showing the distribution of the exact test statistic /_and its fitted
normal approximation for =10 and m=10.
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W, shown as bars in figure 5.3, with a mean of 105. Superimposed on the exact distribution is the normal
distribution that closely approximates the exact values. This demonstrates how well the p-values can be
approximated even for relatively small sample sizes. The approximation does not imply that the data are, or
must be, normally distributed. Rather, it is based on the near normality of the test statistic at large sample
sizes. If there are no ties and the assumptions of H are valid, W_has a mean, x,, and standard deviation,
oy »of

ty, =n-(N+1)/2 (5.1)

o, =yn-m-(N+1)/12 , (5.2)

where
N =n+m.

The p-value from the large-sample approximation is computed by standardizing ¥ and making a
continuity correction. The continuity correction shifts the normal distribution to fit halfway through the
top of the bars of the exact test statistic distribution. The correction moves the probability of occurrence
from the outer edge of each bar to its center prior to using the normal curve. It therefore equals d/2, where
d is the minimum difference between possible values of the test statistic (the bar width). For the rank-sum
test d=1, as the test statistic values change by units of one. Z_, the standardized form of the test statistic, is
therefore computed as

d
VS_E_MW
2w, >u,
o-W
er = 0 lf‘VVrs = /’lW > (53)
VVrs+ _uW
GW

Z _is the quantile of the standard normal distribution from which the p-value is computed. For the
precipitation nitrogen in example 5.1 the approximate p-value is 0.0491 (see the R output in the previous
section). Reporting the p-value shows how close the risk of type I error is to 0.05.

Note that a tie correction for the standard deviation of the large-sample test statistic o, is necessary
when ties occur and tied ranks are assigned (Conover, 1999). The formula below for o, should be used
for computing the large-sample approximation rather than the uncorrected o, whenever ties occur. This is
done for you in statistical software, including R.

z\/LiRzk (N1 (5.4)

where
N =n+m.

5.2 The Permutation Test of Difference in Means

Permutation tests solve the long-standing riddle of how to test for differences between means for
skewed, moderately sized datasets. They compute the p-value using computer-intensive methods (see
section 5.2.2.) rather than assuming data follow normal distributions (see section 4.1.2.). Permutation tests
are also called resampling methods (Good, 2001), randomization tests (Manly, 2007), and observation
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randomization tests (Brown and Rothery, 1993). Although they were conceived of in the early 1900s,
software for quickly computing them became available around the late 1980s.

A user-friendly way to compute the two-sample permutation test in R is provided by the script perm2
provided in supplemental material (SM.5). The test can also be computed using the permTS command
in the perm package of R (Fay and Shaw, 2010). If you are selecting a commercial software program,
the authors of this book strongly recommend that you look for one that provides permutation tests as
alternatives to traditional parametric methods.

5.2.1 Assumptions of the Permutation Test of Difference in Means

A two-sample permutation test for differences in means avoids the assumptions of the parametric #-test
(section 5.3). The ¢-test requires that the data from each group follow a normal distribution and that the
groups have the same variance. Violation of these assumptions leads to a loss of power, raising p-values
and failing to find differences between group means when they occur. These assumptions are avoided by
using a permutation test. The permutation test assumes only that the data from the two are exchangeable
(Good, 2001). The exchangeable assumption is that any value observed in one group may belong in the
population of either group.

5.2.2 Computation of the Permutation Test of Difference in Means

Permutation tests calculate either all of the possible test results that could be computed for the
observed data or a large random selection of those results, and then determine what proportion of the
computed results are equal to or more extreme than the one result obtained using the dataset tested. That
proportion is the p-value of the test.

For a two-sample permutation test of means, the test statistic is the observed difference in the
two group means, X —y . If the null hypothesis is true, the group assignment is arbitrary, as there is no
difference in the means and the data in essence come from the same population. Therefore, the data are
rearranged regardless of group assignment in either all possible rearrangements or in several thousand
randomly selected rearrangements. This produces a different set of numbers assigned to the two groups
in each rearrangement. The difference in group means is computed and stored after each rearrangement,
representing the distribution of differences to be expected when the null hypothesis is true. The proportion
of differences from the rearrangements that equal or exceed the one observed difference from the original
data is the permutation p-value of the test.

Example 5.2. Precipitation nitrogen—Permutation test of difference in means.

With n=m=10, there are 184,756 possible rearrangements of assigning data to groups. As an example,
one rearrangement for the precipitation nitrogen data is found in the third column of R output below.
Instead of computing all of these assignments, the permutation procedure will randomly rearrange the
group assignment many thousands of times and compute the difference in the resulting means.

NH4orgN where rearrangement of where

1 0.59 indust indust
2 0.87 indust indust
3 1.10 indust residen
4 1.10 indust residen
5 1.20 indust residen
6 1.30 indust indust
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7 1.60 indust residen
8 1.70 indust indust
9 3.20 indust residen
10 4.00 indust residen
11 0.30 residen indust
12 0.36 residen indust
13 0.50 residen indust
14 0.70 residen residen
15 0.70 residen residen
16 ©.90 residen indust
17 0.92 residen residen
18 1.00 residen residen
19 1.30 residen indust
20 9.70 residen indust

The default number of rearrangements used in the perm2 script is R = 100080. Increasing the number
of permutations increases the precision of the reported p-value.

> perm2(NH4o0rgN,where)

Permutation Test of Difference Between 2 Group Means
Data: NH4orgN by where

Number of Possible Permutations is greater than 1000

R = 10000 pvalue = 0.9955

Alt Hyp: true difference in means is not equal to ©

sample estimates:
mean of indust = 1.666 mean of residen = 1.638
Diff of means = 0.028
95 percent confidence interval
-2.052 1.445

Out of 10,000 possible rearrangements of the where column, 99.5 percent of the absolute value
of the estimated differences equaled or exceeded the observed difference of 0.028 (fig. 5.4). Therefore,
the observed difference in means is not unusual at all and the permutation p-value is far greater than any
reasonable significance level. The conclusion is to fail to reject H,. There is little evidence that the group
means differ. The advantage of this test over a #-test is that there is no concern that the nonsignificant result
might be a result of the unfulfilled requirement that the input data follow a normal distribution.
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Figure 5.4. Histogram showing 10,000 permuted differences in group means for the precipn dataset, computed
by rearrangement of the group assignments. The observed difference in means from the original data is the solid

vertical line.

5.3 The t-test

The #-test has been the most widely used method for comparing two independent groups of data and
is familiar to most water resources scientists. However, there are five often-overlooked problems with the
t-test that make it less applicable for general use than the rank-sum or permutation tests. These are

1. Lack of power when applied to skewed data,

4. Dependence on an additive model,

5. Lack of applicability for censored data,

6. Assumption that the mean is a good measure of central tendency for skewed data, and

7. Difficulty in detecting non-normality and inequality of variance for the small sample sizes common
to water resources data.

These problems were discussed in detail by Helsel and Hirsch (1988).

5.3.1 Assumptions of the t-test

In order to compute an accurate p-value the ¢-test assumes that both groups of data are normally
distributed around their respective means. The test originally also assumed that the two groups have
the same variance—a correction for unequal variance was added later. The #-test is a test for differences
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in central location only, and assumes that there is an additive difference between the two means, if any
difference exists. These assumptions of normality and equal variance are rarely satisfied with water
resources data. The null hypothesis is stated as

Hy w=p, the means for groups x and y are identical.

If rejected, the alternative hypothesis is either two-sided or one-sided:
Hpy: u#u, (two-sided)

0

Hyow, >p, (one-sided)

0

53.2 Computation of the Two-sample t-test Assuming Equal Variances

Two independent groups of data are to be compared. Each group is assumed to be normally distributed
around its respective mean value, with each group having the same variance. The sole difference between
the groups is that their means may not be the same—one is an additive shift from the other.

The test statistic (¢ in eq. 5.5) is the difference in group means, divided by a measure of noise:

1. (5.5)
Sy|—+—
n m

is the sample mean of data in the first group x, from i=1,2,...,n, and

is the sample mean of data in the second group Yy from j=1,2,...,m.

is the pooled sample standard deviation and is estimated by assuming that each group’s
standard deviation is identical (eq. 5.6).

where

v <l |

S:\/(n—l)sf+(m—1)sj _ 5.6)

n+m-—2

If the null hypothesis of equal group means, H: = , is rejected because the two-sided p-value
< a, the two-sided alternative that the group means do not differ is H,: u # e Similarly, the one-sided
alternative H @ u # A, is employed when the mean of group X is expected to be greater than the mean of
group Y prior to seeing any data. The null hypothesis is rejected in favor of the one-sided alternative when
the one-tailed p-value is less than a. These p-values are accurate if the data from each group follow the
test’s assumptions. If data are skewed or of unequal variance the p-values are expected to be too large and a
false tendency to not find differences occurs.

53.3 Adjustment of the t-test for Unequal Variances

When two groups have unequal variances, the 7-test’s degrees of freedom should be adjusted using
Satterthwaite’s approximation (here called the Welch’s #-test), which was developed in the 1940s. The
degrees of freedom will be lowered, changing the p-value and penalizing the test because it is being
applied to data that do not meet the #-test’s assumptions. Statistics software correctly performs the Welch/
Satterthwaite version of the test by default. Unless you have a clear reason for doing so (and we doubt that
there is one), do not remove this adjustment by performing the #-test using the pooled standard deviation
or with the option to assume equal variance. Always assume unequal variances. There is no benefit to
performing the pre-1940s unadjusted test, as the adjustment goes to zero when sample variances are
identical. Using the unadjusted test on data with unequal variance will likely provide an incorrect p-value
that may be either too small or too large.
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Example 5.3. Precipitation nitrogen—The Welch’s #test (with Welch correction).

The Shapiro-Wilk test of normality for each of the two groups of ammonia plus organic nitrogen from

example 5.1 show that neither group follows a normal distribution at the a=0.05 level.

> shapiro.test(NH4orgN[where == "indust"])

Shapiro-Wilk normality test
data: NH4orgN[where == "indust"]
W = 0.80346, p-value = 0.01597

> shapiro.test(NH4orgN[where == "residen"])
Shapiro-Wilk normality test

data: NH4orgN[where == "residen"]

W = 0.46754, p-value = 1.517e-06

As this dataset is small and nowhere near the requirement for the Central Limit Theorem to hold, we
should expect some loss of power, inflating the p-value of the #-test. Testing for unequal variance, both the
parametric Levene’s and nonparametric Fligner-Killeen tests (Aho, 2016)—discussed in section 5.6.1—
find no difference in the variances of the two groups, though 10 observations is a small amount of data to

work with.
> require(car)

> leveneTest(NH4orgN, where, center = median)

Levene’s Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 1 0.2242 0.6415
18

fligner.test(NH4orgN, where)

Fligner-Killeen test of homogeneity of variances
data: NH4orgN and where
Fligner-Killeen:med chi-squared = 0.067548,
df = 1, p-value = 0.7949

The #-test is computed with the default two-sided alternative using the t.test command in R. The

Welch’s r-test is used by default:
> t.test(NH4orgN~where, alternative = "two.sided")

Welch Two Sample t-test

data: NH4orgN by where
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t = 0.029044, df = 11.555, p-value = 0.9773s
alternative hypothesis: true difference in means is not equal to ©
95 percent confidence interval:
-2.081479 2.137479
sample estimates:
mean in group indust mean in group residen
1.666 1.638

From the p-value of 0.977, the null hypothesis of no difference cannot be rejected. There is essentially no
evidence that the means differ using the -test. However, because the test assumptions were violated the
t-test may not be able to find differences that are there. To obtain a definitive answer to whether the group
means differ, perform a permutation test instead.

53.4 The t-test After Transformation Using Logarithms

A t-test on logarithms of data has been a popular approach to use when data are skewed. Water
resources data more often appear closer to the shape of a skewed lognormal distribution than to a normal
distribution. In log units, skewed data often appear close to a normal distribution with equal group variance.
Not all who use it realize that by transforming with logs, the test determines whether the geometric
means, and not arithmetic means, of the two groups differ. When the logarithms of data follow a normal
distribution, the geometric mean estimates the sample median of the data. If a different transformation
produces a distribution similar in shape to the normal, the #-test on transformed units can be considered a
test for difference in group medians. Results of the #-test on data transformed to symmetry are often similar
to those of the rank-sum test, as both are tests for differences in medians. However, the rank-sum test does
not require the analyst to spend time determining what an appropriate transformation to symmetry might
be.

Example 5.4. Precipitation nitrogen—+-test on logarithms.

A t-test on the natural logarithms of the nitrogen data concludes that the difference in group means is
not significant at a=0.05.

> t.test(log(NH40orgN) ~ where)
Welch Two Sample t-test

data: log(NH4orgN) by where

t = 1.3578, df = 14.684, p-value = 0.195

alternative hypothesis: true difference in means is not equal to ©
95 percent confidence interval:

-0.275160 1.236132

sample estimates:
mean in group indust mean in group residen

0.3518488 -0.1286373
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5.3.5 Conclusions as lllustrated by the Precipitation Nitrogen Example

Several tests were run on the precipitation nitrogen data from example 5.1, with varying outcomes.
This is because not all of the tests have the same objectives, and not all of the tests have the same
requirements.

1. The most important decision to make, before running a statistical test, is to determine what the
correct statistic is for the question being asked. Does one group have higher values than the other?
This is a frequency question and is best answered by a test on frequency measures (percentiles)
such as medians. Concentrations in the industrial group are more often higher than those in the
residential group. This is what was tested by the rank-sum test and seen in the boxplots of figure
5.2. Running #-tests on logarithms may approximately test the same hypothesis, but there is no
advantage to using them versus the actual rank-sum test.

2. When the interest is in means, because the objective is to test the cumulative amounts in each group
(mass, volume, cumulative exposure), use a permutation test instead of the ¢-test. The lack of
power encountered when a ¢-test is applied to non-normal and unequal variance data is overcome
by permutation methods. Skewness and outliers inflate the sample standard deviation used in the
t-test and it often fails to detect the differences present that could be seen with a permutation test.

3. Both permutation tests and #-tests determine whether the total amounts (standardized by sample size
n) are the same or different. For the precipitation nitrogen data, the total in each group is about the
same owing to the one large value in the residential group. Most of the nitrogen present came in
that one precipitation event, such data often deserve closer scrutiny and may provide information
about the processes occurring. Don’t throw away outliers in order to meet the requirements of a
substandard test. Use a better test and learn from the entire dataset.

4. Decide which type of test to use based on the study objectives rather than on the shape of the data
distribution. For questions of whether one group has higher values than the other, compute the
rank-sum test. For concerns about totals or mass, use a permutation test to judge differences in
group means while protecting against the 7-test’s potential loss of power due to non-normal and
unequal variance data.

5. A t-test cannot be easily applied to censored data, such as data below the detection limit. That
is because the mean and standard deviation of such data cannot be computed without either
substituting some arbitrary values or making a further distributional assumption about the data.
Helsel (2012) provides several better methods for examining censored data. If the question is
whether one group shows higher values than another, all data below the highest reporting limit
can be assigned a tied rank and the rank-sum test computed, without making any distributional
assumptions or assigning arbitrary values to the data (see section 5.6).

5.4 Estimating the Magnitude of Differences Between Two
Groups

After completion of a hypothesis test comparing the central tendency of two groups of data, the
logical next step is to determine by how much the two groups differ. This can then be compared to the
effect size, the amount the investigator believes is scientifically important. It should always be remembered
that statistical significance is not the same as practical significance. Having a significant test result with
an observed difference smaller than what is important may indicate the observed difference is actually
unimportant. Of course it also may indicate a valuable early warning that the difference is trending towards
a level of importance. And the level of importance for another purpose may be smaller than for the current
study, making the small difference important for that other purpose. Therefore reporting the observed
difference is always a good idea.
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54.1 The Hodges-Lehmann Estimator of Difference in Medians

One nonparametric estimate of the difference between two independent groups is a Hodges-Lehmann
estimator, A (Hodges and Lehmann, 1963; Hollander and Wolfe, 1999). This estimator is the median of all
possible pairwise differences between the x values and y values:

A

A = median|x, —yj]forxl.,i =12,...,n andyj,forj =12,...m . (5.7

There will be n-m pairwise differences. The A estimator is related to the rank-sum test, in that if A
were subtracted from each of the x observations, the rank-sum statistic //_ would provide no evidence
for rejection of the null hypothesis. In other words, a shift of size A makes the data appear devoid of any
evidence of difference between x and y when viewed by the rank-sum test.

The estimator is a median unbiased estimator of the difference in the medians of populations x and y.
That is, the probability of underestimating or overestimating the difference between the median of x and
the median of y is exactly one-half. If the populations were both normal, it would be a slightly less efficient
estimator of differences in medians (or means) than would the parametric estimator ¥ —y . However, when
one or both populations is substantially non-normal, it is a more efficient (lower variance) estimator of this
difference.

There is another logical nonparametric estimator of the difference in population medians—
the difference between the sample medians (x, ,—y, ). For the hand computation example below,

(X s ™ Vea) =10.5. Note that the difference in sample ‘medians is not necessarily equal to the median of the
differences A. In addition, (x, ,—y, ) is always somewhat more variable (less efficient) than is A and so
has a larger confidence interval than that of the Hodges-Lehmann estimate.

Example 5.5. Precipitation nitrogen—Hodges-Lehmann estimator.

The Hodges-Lehmann estimate of the median difference in ammonia+organic nitrogen between the
industrial and residential groups from example 5.1 is computed by specifying conf.int = TRUE when
performing the wilcox.test command. The Hodges-Lehmann estimate of median difference between the
two groups is 0.504.

> wilcox.test(NH4orgN\ ~ where, conf.int = TRUE)

Wilcoxon rank sum test with continuity correction

data: NH4orgN by where
W = 76.5, p-value = 0.04911
alternative hypothesis: true location shift is not equal to ©
95 percent confidence interval:

3.948029e-05 1.099984e+00

sample estimates:
difference in location

0.5040993
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Example 5.6. Hand computation of the Hodges-Lehmann estimator.

Suppose we had a sample of 3 values for the x group and they were values of 15, 17, and 25, and
we had a sample of 4 values for the y group and they were the values 8, 27, 3, and 5. We can compute the
Hodges-Lehmann estimate by hand by enumerating all possible values of the differences as shown here.

X; y; All possible differences (x,.—yl.)
15 8 7 9 17
17 27 -12 -10 -2
25 3 12 14 22
5 10 12 20

Ranked in order from smallest to largest, the 3-4=12 pairwise differences are
-12,-10,-2,7,9,10, 12, 12, 14, 17, 20, 22.

The median of these is the average of the 6th and 7th smallest values, or A=11. Note that the unusual y
value of 27 could have been any number greater than 14 and the estimator A would be unchanged; thus Ais
resistant to outliers.

5.4.2 Confidence Interval for the Hodges-Lehmann Estimator, A

A nonparametric interval estimate for A illustrates how variable the median difference between groups
might be. No distribution is assumed for this interval; it is computed using the process for the binomial
confidence interval on the median described in chapter 3 by finding appropriate rank positions from among
the ordered n'm pairwise differences that represent the ends of the confidence interval.

When the large-sample approximation to the rank-sum test is used, a critical value, z_,, from a
function for standard normal quantiles determines the upper and lower ranks of the pairwise differences

corresponding to the ends of the confidence interval. Those ranks are

N(n+m+1)
N=z,," (5.8)
R = 3 '
b 2
R,=N-R+1. (5.9)

When the exact test is used for smaller sample sizes, the quantiles for the rank-sum test statistics
having a p-value nearest to a/2 and 1—(a/2) are used to find the lower and upper ends of the confidence
limit for A. The lower limit uses the lower a/2 quantile. The upper limit uses the upper /2 quantile plus 1.

The confidence interval around A, regardless of sample size, is computed by the same option
conf.int = TRUE to the wilcox.test command that computed the estimate itself. R will compute
the appropriate version regardless of whether the exact test (smaller sample sizes) or large-sample
approximation (larger sample sizes) was used.

Example 5.7. Precipitation nitrogen—Confidence interval for the Hodges-Lehmann estimator.

The confidence interval on the median difference in nitrogen between the residential and industrial
groups was determined in example 5.5 by the wilcox.test command with the option conf.int =
TRUE.

95-percent confidence interval:
3.948029e-05 1.099984e+00
or 0.00004 to 1.1 mg/L.
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Example 5.8. Hand computation of the confidence interval for the Hodges-Lehmann estimator.
The N=12 possible pairwise differences between x and y are
-12,-10,-2,7,9, 10, 12, 12, 14, 17, 20, 22.

To determine an & = 0.10 confidence interval for A, the quantiles for the rank-sum statistic at
0/2=0.05 and 1—(a/2)=0.95 can be provided by the qwilcox command with n=3 and m=4.

> qwilcox(c(0.05,0.95),3,4)
[1] 1 11

The ranks 1 and (11+1)=12 are the ranks of the ordered differences representing the endpoints of the
confidence limit. With such a small dataset, the =0.10 confidence limit for A is the entire range of the
differences, or —12 < A <22. It is easier to use the wilcox.test command:

> X.ex2=c(15, 17, 25)
> y.ex2=c(8, 27, 3, 5)
> wilcox.test(x.ex2, y.ex2, exact = TRUE, conf.int = TRUE)

Wilcoxon rank sum test

data: x.ex2 and y.ex2
W =9, p-value = 0.4
alternative hypothesis: true location shift is not equal to ©
95 percent confidence interval:
-12 22
sample estimates:
difference in location

11

5.4.3 Estimate of Difference Between Group Means

Where group means are of interest, the difference between the means of the two groups x —y is
the most efficient estimator of the mean difference between groups. This value is output by the t.test
command in R. For the precipitation nitrogen data from example 5.1, the output in the #-test example in
section 5.3.3. shows that an estimated difference in group means equals 1.666—1.638=0.028, which was not
significantly different from zero.

Perhaps it is obvious that when x and y are transformed prior to performing the #-test the difference
in means in the transformed units does not estimate the difference between group means on their original
scale. Less obvious is that the retransformation of the difference back to the original scale also does not
estimate the difference between group means, but is closer to a function of group medians. For the log
transformation, the difference in group means in log units when retransformed would equal the ratio of the
geometric means of the two groups. How close any retransformation comes to estimating the ratio of group
medians depends on how close the data are to being symmetric in their transformed units.
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54.4 Parametric Confidence Interval for Difference in Group Means

A t-confidence interval around the mean difference between groups X —y is output by the t.test
command. It is appropriate in situations where the ¢-test may be used—when both data groups closely
follow a normal distribution. For the most common situation, where the standard deviations of the two
groups are dissimilar and should not be pooled, the confidence interval is

_ s s
Cl=X-y*tl,, ;+Zy (5.10)

where dfis the degrees of freedom used in the Welch’s #-test. For the uncommon situation, where the
variances of the two groups can be assumed to be similar and the pooled standard deviation s is used in the
test, the confidence interval simplifies to

Cl=X=V 40,05 /l+l . (5.11)
: n m

For the precipitation nitrogen data in example 5.1, the output in section 5.3.3. shows that the
95 percent ¢-confidence interval on the estimated difference in group means of 0.028 spans from
—2.081 to 2.137.

5.4.5 Bootstrap Confidence Interval for Difference in Group Means

Regardless of the distribution of data in either group, the computer-intensive method of bootstrapping
can compute a confidence interval around the difference in group means. This should be the preferred
method of obtaining an interval when a permutation test is used to test for a difference in group means or
when data do not appear to come from a normal distribution. Bootstrap intervals also work well for data
that follow a specific distribution. For example, bootstrap intervals will be quite similar to t-intervals when
data follow a normal distribution. Bootstrap confidence intervals were described in chapter 3, where the
percentile bootstrap method was introduced.

To compute the bootstrap interval, observations are repeatedly and randomly resampled from the
original data with replacement for each group. Each resample contains only values found in the group’s
original data, but not necessarily in the same proportions—observations may be randomly selected in
different frequencies than they originally occurred. The process is repeated thousands of times, each time
resulting in an estimate of the difference in group means. An a=95-percent bootstrap confidence interval is
found by going to the 2.5 and 97.5 percentiles of the thousands of resampled differences. This is called the
percentile bootstrap method (Efron and Tibshirani, 1994). A bootstrap confidence interval on the difference
between group means is computed using the perm2 script. For the precipitation nitrogen data from example
5.1, the perm2 script output in section 5.2.2., repeated below, gave a 95-percent confidence interval on the
mean difference from —2.041 to 1.443.

Permutation Test of Difference Between 2 Group Means
Data: NH4orgN by where

Number of Possible Permutations is greater than 1000

R = 10000 pvalue = 0.9954

Alt Hyp: true difference in means is not equal to ©

sample estimates:
mean of indust = 1.666 mean of residen = 1.638

Diff of means = 0.028
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95 percent confidence interval

-2.041 1.443

5.4.6 Graphical Presentation of Results

In chapter 2 a detailed discussion of graphical methods for comparisons of two or more groups of
data was presented. Overlapping and side-by-side histograms and dot-and-line plots of means and standard
deviations inadequately portray the complexities commonly found in water resources data. Probability plots
and quantile plots allow complexity to be shown, plotting a point for every observation, but often provide
too much detail for a visual summarization of hypothesis test results. Two methods, side-by-side boxplots
and Q-Q plots, are very well suited to describing the results of hypothesis tests and visually allowing
a judgment of whether data fit the assumptions of the test being employed. This is illustrated using the
precipitation nitrogen data.

5.4.7 Side-by-side Boxplots

The best method for illustrating results of the rank-sum test is side-by-side boxplots. With boxplots
only a few quantiles are compared, but the loss of detail is compensated for by greater clarity. Boxplots
of the precipitation nitrogen data from example 5.1 were presented in figure 5.2. Note the difference
in medians is clearly displayed, as well as the similarity in spread (IQR). The rejection of normality
by Shapiro-Wilk tests is seen in the presence of skewness (industrial group) and the one large outlier
(residential group). Side-by-side boxplots are an effective and concise method for illustrating the basic
characteristics of data groups and of differences between those groups.

54.8 0Q-QPlots

Another method for illustration of rank-sum results is the quantile-quantile (Q-Q) plot described in
chapter 2, where quantiles from one group are plotted against quantiles of the second data group. Chapter 2
has shown that when sample sizes of the two groups are identical the values from each sample can be sorted
separately from 1 to n, and the Q-Q plot is simply a scatterplot of the ordered data pairs (x,,))...(x,»,)
where x and y designate the two samples. When sample sizes are not equal (n <m), the quantiles from the
smaller dataset are used as is, and the m corresponding quantiles for the larger dataset are interpolated.

It is always helpful in a Q-Q plot to graph the y=x line, the line with identical values for x and y and
therefore having a slope of 1. A Q-Q plot of the precipitation nitrogen data is shown in figure 5.5, where
two important data characteristics are apparent. First, the data are not parallel to the y=x line, and therefore
quantiles do not differ by an additive constant. Instead, they increasingly depart from the line of equality,
indicating a multiplicative relation. The Q-Q plot shows that a ¢-test would not be applicable without a
transformation, because it assumes an additive difference between the two groups. The rank-sum test does
not make this assumption and is directly applicable to groups differing by a multiplicative constant (rank
procedures will not be affected by a power transformation).

The magnitude of this relation between two sets of quantiles on a Q-Q plot can be estimated using
the median of all possible ratios (y],/x,.), i=1,2,...,nand j=1,2,...,m. This is a type of Hodges-Lehmann
estimator, as discussed in the previous section. The median ratio equals 0.58, and the line y=0.58 - x (or
residential = 0.58 - industrial) is shown in figure 5.5. Note the resistance of the median ratio to the one large
outlier.

Second, the data are crowded together at low concentrations but spread further apart at higher
concentrations—a pattern indicating right-skewness. To remedy both skewness and nonadditivity a power
transformation was chosen, the natural logarithmic transform. A Q-Q plot of data logarithms is shown in
figure 5.6. Note that the data are now more constant in variance from low to high concentrations, indicating
skewness has decreased. The slope of the quantiles is now parallel to the y=x line. Thus, a multiplicative
relation on the original scale has become an additive relation in logarithmic units, with the Hodges-
Lehmann estimate of the difference between the natural logarithm of x and the natural logarithm of y,

D, equal to —0.5447. Note that D is the natural logarithm of the Hodges-Lehmann estimate of the ratios
on the original scale, In(0.58)=—0.5447. The dashed line plotted in figure 5.6 is parallel to y=x, with an
offset in intercept of —0.545. A t-test would now be appropriate for the logarithms, assuming each group’s
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Figure 5.5. (Q-Q plot of the precipitation nitrogen data from example 5.1.
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Figure 5.6. Q-Q plot of the logs of the precipitation nitrogen data from example 5.1.
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transformed data were approximately normal, if estimating the difference in geometric means (medians)
was desired.

In summary, Q-Q plots of the quantiles of two data groups illustrate the level of adherence to the
assumptions of hypothesis tests (#-test or rank-sum), providing additional insight on which test procedures
might be reasonable to employ. Q-Q plots can demonstrate skewness, the presence of outliers, and
inequality of variance to the data analyst. Perhaps most importantly, the presence of either an additive or
multiplicative relation between the two groups can easily be discerned.

5.5 Two-group Tests for Data with Nondetects

The two-sample #-test, after substituting one-half the reporting limit for nondetects, has unfortunately
been a common procedure in water resources for testing differences between groups. This procedure may
not find differences between groups that are there or may find differences that are not there (Helsel, 2012).
There are better methods. The rank-sum test on data with one reporting limit provides much more power
to detect differences than would substitution followed by a #-test. When there are multiple reporting limits,
the data must first be recensored to show all data below the highest reporting limit as tied, both detected
and nondetected observations, turning the data into a one-reporting limit format. The rank-sum test is then
performed on the recensored values. Even with recensoring, this is a better procedure than using the #-test
after substitution, as it avoids the consequences of falsely stating that the exact value for each nondetect
is known.

As an example, a rank-sum test is computed on trichloroethylene (TCE) concentrations in groundwater
measured by Eckhardt and others (1989) given in the dataset TCE2a. The original data had five reporting
limits, at 1, 2, 3, 4, and 5 micrograms per liter (ug/L). Concentrations have been recensored so that all
values below 5 are designated as <5. In TCE2a the column TCECONC contains both concentrations at and
above 5 pg/L, and the reporting limit value of 5 for any data below 5. The indicator column LT5 is a 0/1
variable, where a 1 indicates a censored <5 and a 0 indicates a detected concentration. In the column HALF.
DL one-half the reporting limit has been substituted for all nondetects.

The t-test on HALF . DL does not find a significant difference between the groups (p=0.91). Primarily
this is a result of the non-normality of any dataset with many values (here about 80 percent) so close to
zero. However, the test also presumes that the analyst believes that 80 percent of the values are all at
the same concentration of 2.5, and so the estimate of standard deviation used by the test is definitely not
realistic.

> attach(TCE2a)
> t.test(HALF.DL ~ Density)

Welch Two Sample t-test

data: HALF.DL by Density
t = -0.11205, df = 200.79, p-value = 0.9109
alternative hypothesis: true difference in means is not equal to ©
95 percent confidence interval:
-8.185681 7.305413
sample estimates:

mean in group High mean in group Medium
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8.752174 9.192308

The rank-sum test on the recensored data assigns all values below 5 as the same low rank, tied with
one another and below the lowest detected value at or above 5 pg/L. This is an accurate representation
of what is known about the data. The test indicates a significant difference in the distributions of the two
groups; the medians of both groups are <5, but the upper ends differ. There are about 10 percent of values
detected at or above 5 pg/L in the medium density group, whereas 20 percent of the high density group is at
that level. This difference in the upper ends of the distribution is seen as significant by the rank-sum test.

> wilcox.test(HALF.DL ~ Density)
Wilcoxon rank sum test with continuity correction

data: HALF.DL by Density
W = 6599.5, p-value = 0.02713
alternative hypothesis: true location shift is not equal to ©

The difference in these two test results is convincing evidence that a nonparametric test using
recensored data is more powerful when compared to a #-test with half the reporting limit substituted for
nondetects. Although better and more powerful tests are available from the field of survival analysis
(Helsel, 2012) for censored data, when a simple test for group differences is needed the rank-sum test for
data with one reporting limit or for data recensored at the highest reporting limit is a much better choice
than the #-test.

5.6 Tests for Differences in Variance Between Groups

Differences in central location (mean, median) are not the only type of difference between groups
that is of interest. Often important is whether the variability of data is the same in each group. Differences
in variance are a violation of the assumption of the uncorrected #-test, so some analysts incorrectly test
the variance of groups using Bartlett’s test for unequal variance (sometimes called the F-test) prior to
conducting a #-test, and if the variance is found to be significantly different, the Welch version of the
t-test is used. If the variance is not significantly different, they use the uncorrected version. As stated in
section 5.3, this is flawed reasoning as the Welch’s correction can always be used to perform the #-test. As
the difference in variance goes to zero, Welch’s correction is minimized and the corrected test negligibly
differs from the uncorrected version. Unfortunately, Bartlett’s test is one of the most sensitive tests to the
assumption of a normal distribution. Conover and Iman (1981) note that in several studies comparing tests
for heteroscedasticity (unequal variance), Bartlett’s test “is well known to be nonrobust and that none of the
comparative studies recommends [it] except when the populations are known to be normal.” Bartlett’s test
will too often lead to the conclusion that variances differ when in fact they do not. There are better tests for
heteroscedasticity (changing variance) than Bartlett’s test; these tests are discussed in the next two sections.
To demonstrate the deficiency of Bartlett’s test, the short script mcbart below will compute
thousands of repetitions of using Bartlett’s test on data generated from a single lognormal distribution. It
is a simple example of scripting in R that may be a guide for that topic, but we focus on the results here.
The distribution from which data are generated have a mean logarithm of 0.7 and a standard deviation of
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Figure 5.7. Box plots of two groups of 50 samples each of randomly generated data from a single
lognormal distribution (and so have the same variance). Bartlett's test declares the variances
different. The non-normality of the data is a violation of the test's (strict) assumption of a normal
distribution.

logarithms of 1. The data generated (sample size of 50 observations in each group) have characteristics very
similar to water quality and other water resources data, as shown in figure 5.7.
The Bartlett’s test results for the data generated for figure 5.7 are

> set.seed(1832)

> val.expl <- rlnorm(100, 0.7, 1.0)

> group <- c(rep("First", 50), rep("Second", 50))
> b.result <- bartlett.test(val.expl ~ group)

> b.result

Bartlett test of homogeneity of variances

data: val.expl by group
Bartlett’s K-squared = 23.16, df = 1, p-value = 1.491e-06
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The rejection of the null hypothesis of equal variance is incorrect because the data for both groups
were randomly generated from the same lognormal distribution. We would expect a test to incorrectly
produce this result with a 5 percent probability if conditions for the test are followed by the data. To show
the sensitivity of Bartlett’s test to non-normality, the Monte Carlo script mcbart generates 2,000 sets of
data from the lognormal (0.7, 1) distribution and runs the test on each set. The result of TRUE means that
the test’s p-value was below 0.05 and equality of variance is rejected. This is expected in 5 percent (or
100) of the 2,000 sets. We see that Bartlett’s test rejects the null hypothesis in 1,114 out of 2,000 sets, or 56
percent of the cases generated! Bartlett’s test rejects equal variance incorrectly far more than it should when
data do not follow a normal distribution.

> mcbart # a Monte Carlo evaluation of Bartlett’s test
function(nrep = 2000, lnmean = 2, lnstd = 1.5) {
group <- c(rep("First", 50), rep("Second", 50))
num.reject <- rep(1l, times=nrep) # initializes num.reject
for (i in 1:nrep) {
val.expl <- rlnorm(100, lnmean, lnstd)
b.result <- bartlett.test(val.expl ~ group)
num.reject[i] <- b.result$p.value < 0.05
}
ftable(num.reject) }
> # run the mcbart function, with mean of logs = 0.7
> # standard deviation of logs = 1.0
> set.seed(1832)
> mcbart(lnmean = 0.7, lnstd = 1.0)

num.reject (%] 1

886 1114

Tests for equal variance are often used to determine important characteristics of the data, such as
whether the precision (usually defined as the inverse of standard deviation) of groups is changing. The
tests of the next two sections are better able to do this than Bartlett’s test and can test for changing variance
among two or more groups; they should therefore be used instead of Bartlett’s test, and are appropriate for
more than two groups as well as for a two-group test.

5.6.1 Fligner-Killeen Test for Equal Variance (Nonparametric)

Out of the 56 tests evaluated by Conover and Iman (1981), the Fligner-Killeen test was found to
be the most robust for unequal variance when data are non-normally distributed. It begins by computing
the absolute value of the residuals (AVR) from each group median. For j=1 to & groups and i=1 to n,
observations

AVR, = |x, — median,| . (5.12)

The test then ranks the AVR and weights each rank to produce a set of scores. A linear-rank test (a
nonparametric test of location) is computed on the scores. The null hypothesis is that the average score is
the same in all groups, indicating that the variances are the same in all groups. The alternative hypothesis is
that at least one group’s variance differs.
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The Fligner-Killeen test correctly does not find a difference in variance between the two lognormal
groups generated from the same lognormal (0.7,1) distribution.

> fligner.test(val.expl, as.factor(group))
Fligner-Killeen test of homogeneity of variances

data: val.expl and as.factor(group)

Fligner-Killeen:med chi-squared = 0.27908, df = 1, p-value = 0.5973

5.6.2 Levene’s Test for Equal Variance (Parametric)

Levene’s test (Conover and others, 1981) determines whether the average distance from the median is
the same in all groups. Though it assumes that data follow a normal distribution, it is much less sensitive to
that assumption than is Bartlett’s test. It behaves as most parametric tests do, losing power (an increase in
the p-value) when applied to data that are not shaped like a normal distribution. This is more acceptable to
statisticians than the too-frequent rejections made by Bartlett’s test.

Levene’s test also computes the AVR for each observation. It then performs an analysis of variance
(ANOVA, see chap. 7) on the AVRs. ANOVA computed for only two groups is very similar to a ¢-test.

The null hypothesis is that the average absolute residual is the same in all groups because the variance is
the same in all groups. The alternative hypothesis is that at least one group’s variance differs. Levene’s
test is commonly found in statistics software and is recommended for use in many guidance documents,
including U.S. Environmental Protection Agency (2009). Conover and others (1981) found that Levene’s
test performed better than other parametric tests of heteroscedasticity evaluated in their study.

Levene’s test is found in the car package of R (Fox and Weisberg, 2011). Unlike Bartlett’s test, it
(appropriately) does not find a difference in variance between the two lognormal (0.7, 1) groups generated
in the example above (p=0.238).

> leveneTest(val.expl, as.factor(group))

Levene’s Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 1 1.4094 0.238
98

M



142

Statistical Methods in Water Resources

Exercises

1. We wish to test for a change in concentration between sites of differing land uses. The rank-sum test
will be used. Should the test have a one-sided or two-sided alternative?

2. A shallow aquifer is contaminated by molybdenum leachate from mine tailings. A remediation effort
was begun to reduce the molybdenum concentrations in waters leaving the site. Post-remediation
concentrations (in pg/L) from 13 wells downgradient of the remediation process are listed below. Also
shown are concentrations at 3 wells upgradient from, and unaffected by, the remediation process. Test
whether the wells downgradient of remediation are significantly lower in molybdenum than are the
upgradient wells. Also test whether the mean concentration has changed with remediation.

downgradient upgradient

.850 6.900
.390 3.200
.320 1.700
.300
.300
.205
.200
.200
.140
.140
.090
.046
.035

© ©®© ©®© ®© © 0O 0O ®O ®O ®O0 ®O O ©®

3. Annual streamflows for the Green River at Munfordville, Kentucky, were listed in exercise 4.1.
Beginning in 1969 the stream was regulated by a reservoir.

A.

Construct a Q-Q plot that compares the distributions of the two groups. Indicate whether the
flows exhibit an additive or multiplicative relation, or neither.

Does there appear to be an additive or multiplicative change in the magnitude of annual flow
itself? If so, explain why this might occur.

Test whether flows after the reservoir began operations differ from flows beforehand. (Any
differences may be attributable to the effect of the reservoir, to climatic differences between the
periods, and likely to both. This simple exercise will not allow you to separate the two possible
causes).

Unit well yields, in gallons per minute per foot of water-bearing material, were contrasted for
wells within valleys containing fractured rock versus valleys with no fracturing (Wright, 1985).
Perform the appropriate a=0.05 test to discern whether fracturing is associated with higher mean
unit well yield.
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Well yields in fractured Well yields in unfractured

rock rock
0.95 1.02
0.72 0.49
0.51 0.454
0.44 0.10
0.40 0.077
0.30 0.041
0.18 0.040
0.16 0.030
0.16 0.020
0.13 0.007
0.086 0.003
0.031 0.001
0.020 -

Well yields in fractured rock have a probability plot correlation coefficient (PPCC) of 0.943
(p >0.05). Well yields in unfractured rock have a PPCC of 0.806 (p <0.05).

Assume that the unit well yield data are now trace organic analyses from two sampling sites and that
all values below 0.050 were reported as <0.05. Retest the hypothesis that H: u =u versus H : u >u
using the rank-sum test. By how much does the test statistic change? Are the results altered by the
presence of a detection limit? Could a #-test be used in this situation?

y
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To determine the effectiveness of an acid solution in developing wells in carbonate rock, yields of 20
wells were measured both before and after treatment of the wells with acid. Factoring out the differences
in yield between wells, have the yields changed as a result of using the acid? What is the magnitude of this
change?

Annual sediment loads are measured at two sites over a period of 24 years. Both drainage basins
are of essentially the same size and have the same basin characteristics. However, logging has occurred
in one basin during the period but not in the other. Can the portion of year-to-year variation in load due
to differences in precipitation be compensated for in determining whether the site containing logging
produced generally higher loads than the other?

Two laboratories are compared in a quality assurance program. Each lab is sent one of a pair of 30
samples split into duplicates in the field to determine if one lab consistently over- or under-estimates the
concentrations of the other. If no difference between the labs is seen, then we should be able to do our
analysis using data from both laboratories. The differences between labs must be discerned beyond the
sample-to-sample differences.

Each of the example situations mentioned above is addressed by using the matched-pair tests of this
chapter. As opposed to the tests of chapter 5, we now consider data having a logical pairing of observations
within each group. There may be a great deal of variability from one pair to another, as with the year-
to-year pairs of sediment data in the second example above. Both basins may exhibit low yields in dry
years and higher yields in wet years. This variability among pairs of observations is noise that would
obscure the differences between the two groups being compared if the methods of chapter 5 were used.
Instead, blocking is used to eliminate the influence of this noise by basing the analysis on the pairwise
differences between the groups. Tests are then conducted on the set of differences to determine whether
the two groups differ significantly (table 6.1). Two nonparametric tests, the sign test and the signed-rank
test, determine whether one group’s paired observation is generally higher than the other group’s paired
observation. Also presented is the paired #-test, the parametric test of whether the mean difference between
the groups equals zero. The #-test is used when the mean is of interest and requires that the differences
between paired observations be normally distributed. A permutation test for determining whether the mean
difference equals zero is also presented as a more powerful and flexible alternative to the paired ¢-test when
differences do not follow a normal distribution. After surveying graphical methods to illustrate the test
results, estimators for the difference between the two groups are discussed.

Table 6.1. Paired difference tests of this chapter and their characteristics.

[For the sign test and the signed-rank test, the data from one group are frequently higher than the data from the other group. For the
paired #-test and the permutation test on mean difference, one group has a higher mean. H, is the alternative hypothesis, the signal to
be found if it is present]

Permutation test on

Characteristic Sign test Signed-rank test Paired t-test .
mean difference
Class of test Nonparametric Nonparametric Parametric Permutation
Distributional assumption ~ None Symmetry Normal distribution ~ Symmetry

for differences

Estimator of difference Median difference Hodges-Lehmann Mean difference Mean difference
estimate
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For paired observations (x,, y,), their differences
D, =x-y,, (6.1)

where
i =1,2,...,n

are computed. The tests in this chapter determine whether x, and y, are from the same population—the null
hypothesis—by analyzing D,. If the median or mean paired difference, D, significantly differs from zero,
the null hypothesis is rejected.

As with the tests of chapter 5, the most important determinant of which test to use is the study
objective. If the study is trying to determine if the conditions represented by the two groups are the same,
this is a frequency question and best answered by a nonparametric test. If groups are similar (the null
hypothesis, f), then the observation from one group in the pair will be higher than the paired observation
in the other group approximately half the time. If groups are not the same, the observation from one group
will be higher than the paired observation from the other group at a frequency greater than 50 percent, and
the nonparametric test will pick up on this difference. We discuss two nonparametric tests: the sign and
signed-rank tests. The sign test examines whether within an (x, y) pair, does x tend to be higher (or lower,
or different) than y? The sign test is very useful when the magnitude of the paired differences cannot be
computed but one observation can be determined to be higher than the other, as when comparing a <1
to a 3. It is quite useful with censored data (exercises 4 and 5 at the end of this chapter). The sign test is
often less powerful than the signed-rank test because the sign test uses only the algebraic sign (+ or —) of
the difference, ignoring the magnitude. It treats a large difference as no different than a small difference.
The signed-rank test is generally more powerful than the sign test because it uses the magnitudes of
differences—a larger difference has more weight than a smaller difference. The signed-rank test’s null
hypothesis is that the frequency of x >y for pairs is 50 percent, and so the median of x equals the median of
y. The alternative (two-sided) hypothesis is that the frequency of x >y is not 50 percent, and therefore the
medians of x and y differ.

When the D, values follow a normal distribution, a paired #-test can evaluate a different null
hypothesis: The mean of the differences (x,—y)=0, and therefore the mean of x, differs from the mean of
.. This is also equivalent to testing that the sums of the x, and the y, are the same, as both groups of paired
data have the same sample size. Permutation tests (see section 4.1.2.) on the mean difference are often more
powerful alternatives to the paired ¢-test, as permutation tests are not impaired when the shape of the D,
distribution fails to follow a normal distribution.

Nonparametric tests determine whether differences in frequencies occur, such as the frequency of
x,>y.. The paired -test determines whether measures of mass (means) of two groups are the same or
not. Tests on means and tests on frequencies address two different objectives. Consider the question of
whether one laboratory method tends to report higher concentrations than the second method for a given
bottle of water. For a series of submitted water samples, one method reported moderate concentrations,
while the second reported mostly lower concentrations plus a few high values. The mean concentration
for each method could be about the same, and the #-test and permutation test on means would find no
difference between the two methods. A nonparametric test on the frequency of which method has higher
concentrations would likely find a difference—for most pairs of measurements the method reporting
moderate concentrations was higher than the method with lower concentrations plus a few outliers.

6.1 The Sign Test

For data pairs (x,, y), i=1,2,...,n, the sign test determines whether x is frequently larger (or smaller, or
different) than y, without regard to whether that difference is additive or to the distributional shape of the
differences.

6.1.1 Null and Alternative Hypotheses

The null and alternative hypotheses may be stated as
H,: Prob[x >y]=0.5,
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versus one of the three possible alternative hypotheses:

H,: Prob[x >y]#0.5 (Two-sided test—x might be larger or smaller than y). Reject /; when the two-
sided p-value < a.

H ,: Prob[x >y] >0.5 (One-sided test—x is expected to be larger than y). Reject H when the one-sided
p-value < a.

H ,.: Prob[x >y] <0.5 (One-sided test—x is expected to be smaller than y). Reject //, when the one-
sided p-value < a.

6.1.2 Computation of the Exact Sign Test

If the null hypothesis is true, about half of the differences (D) will be positive x, >y, and about half
negative (x, <y,). If one of the alternative hypotheses is true instead, more than half of the differences will
tend to be either positive or negative. The significance level, a, reported by software is the probability of
obtaining the observed test statistic, or a result more extreme, when the null hypothesis is true (chap. 4)

The exact form of the sign test is given below. It is the form appropriate when comparing 20 or fewer
pairs of samples. With larger sample sizes, the large-sample approximation may be used. R defaults to
using exact tests for small sample sizes. Unfortunately, commercial software generally performs large
sample approximations regardless of sample size.

Computation: Compute D =x,—y,. Ignore all tied data pairs (all D,=0). Reduce the sample size of the
test to the number of nonzero differences n=N—[number of D,=0]. Assign a + for all D, >0, and a — for all
D, <0.

Test statistic: S+ = the number of pluses, the number of times x, >y, i=1,2, ...,n.

Decision rule: To reject H: Prob[x >y]=0.5, either

1. H,: Prob[x>y]#0.5 (the x measurement tends to be either larger or smaller than the y measurement).
Reject H when the two-sided p-value associated with S* <a.

2. H,,: Prob[x>y] >0.5 (the x measurement tends to be larger than the y measurement). Reject /, when
the one-sided p-value associated with S* <a.

3. H: Prob[x >y] <0.5 (the x measurement tends to be smaller than the y measurement). Reject /, when
the one-sided p-value associated with S* <a.

Example 6.1. Mayfly nymphs—Exact sign test, small samples.

Counts of mayfly nymphs were recorded in 12 small streams at low flow above and below industrial
outfalls. The mayfly nymph is an indicator of good water quality. The question to be considered is whether
effluents from the outfalls decreased the number of nymphs found on the streambeds of that region. A type I
risk level o of 1 percent is set as acceptable.

> Above <- c(12, 15, 11, 41, 106, 63, 296, 53, 20, 110, 429, 185)
> Below <- c(9, 8, 38, 24, 48, 17, 11, 41, 14, 60, 53, 124)

> signdiff <- sign(Above-Below)

> nymph.list <- data.frame(Above, Below, signdiff)

> nymph.list

Above Below signdiff

1 12 9 1
2 15 9 1
3 11 38 -1
4 41 24 1
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5 106 48 1
6 63 17 1
7 296 11 1
8 53 41 1
9 20 14 1
10 110 60 1
11 429 53 1
12 185 124 1

Figure 6.14 presents a separate boxplot of the counts for the Above and Below groups. Both groups
are positively skewed. There is a great deal of variability within these groups due to the differences from
one stream to another, though in general the counts below the outfalls appear to be smaller. A rank-sum test
as in chapter 5 between the two groups would be insufficient, as it would not block out the stream-to-stream
variation (no matching of the pair of above and below counts in each stream). Variation in counts among
the streams could obscure the difference for which one is testing. The natural pairing of observations at the
same stream can be used to block out the stream-to-stream variability by computing the difference in counts
for each stream (fig. 6.1B). Two outliers are evident.

The null hypothesis H, is that the mayfly counts above the outfalls are equally likely to be higher or
lower than counts below the outfalls. The one-sided alternative hypothesis /, is that the counts above the
outfalls are expected to be higher, so the Above-Below S* statistic would be significantly greater than ’/ .

Of the 12 pairs (trials), 11 are pluses, so S*=11. Note that this statistic is very resistant to outliers, as
the magnitudes of the differences are not used in computing the test statistic. R computes the exact sign test
with the binom. test command, along with the observed proportion of pluses (probability of success) of
0.917 (or 11/12). The one-sided lower 95-percent confidence bound on that proportion is 0.66—the lower
limit on the expected proportion of occurrences where Above is greater than Below in the population (the
real world). There is no upper bound—1.000 is used here because this is the highest proportion possible
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Figure 6.1. Boxplots of (A) mayfly nymph counts at two different sites, Above and Below, and (B)
the differences (D = Above, - Below,).
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representing that no endpoint was determined. Using the alternative (alt = "greater") option means
that you are not asking for an upper bound. In routines where the scale is not bounded, a one-sided test or
interval will report a value of infinity rather than 1.000 to represent that no endpoint was computed.

> binom.test(11, 12, alt = "greater")
Exact binomial test

data: 11 and 12
number of successes = 11, number of trials = 12, p-value
= 0.003174
alternative hypothesis: true probability of success is greater than 0.5
95 percent confidence interval:
0.6613193 1.0000000
sample estimates:
probability of success
0.9166667

The exact one-sided p-value for S"=11 is 0.003. Therefore reject that counts above and below the
outfall are the same for the stated a of 0.01.

6.1.3 The Large-sample Approximation to the Sign Test

For sample sizes of n >20, the exact sign test statistic can be modified so that its distribution closely
follows a normal or chi-square distribution, depending on the form of the approximation used. Again, this
does not mean that the data or their differences require normality. It is only the modified test statistic that
approximately follows a standard distribution.

The large-sample approximation for the sign test using a standard normal distribution takes the form

.1
Y TaTHe
—2—if S >u

O'S+

7 0 irSt =p. 6.2)

S* +l—,u5+
2— U(‘SJr <‘uS+

o

where

The 1/2 in the numerator of Z* is a continuity correction (see section 5.1.4). Z* is compared to
quantiles of the standard normal distribution to obtain the approximate p-value. The square of Z is used
when compared to a chi-square distribution with 1 degree of freedom. The chi-square approximation is
available in R using the prop.test command.
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Example 6.2. Mayfly nymphs—Large-sample approximation for the sign test.
> prop.test(11, 12, alternative = "greater")

1-sample proportions test with continuity correction
data: 11 out of 12, null probability 0.5
X-squared = 6.75, df = 1, p-value = 0.004687
alternative hypothesis: true p is greater than 0.5
95 percent confidence interval:

0.6482637 1.0000000

sample estimates:

p = ©0.9166667

The approximation p-value of 0.0046 is reasonably close to the exact p=0.003, though the exact test
should be preferred with these small sample sizes. The availability of exact p-values in R software makes
approximate methods far less necessary than in the past—there is no reason to use them if an exact test can
be computed. If commercial software produces approximate p-values close to the agreed-upon risk a, and
the sample size is generally 20 or smaller, perform the exact test to get accurate p-values. Otherwise, an
approximate procedure should be fine.

6.2 The Signed-rank Test

The signed-rank test was developed by Wilcoxon (1945) and is sometimes called the Wilcoxon signed-
rank test. It is used to determine whether the median difference between paired observations equals zero. It
may also be used to test whether the median of a single dataset is significantly different from zero.

6.2.1 Null and Alternative Hypotheses for the Signed-rank Test

For D,=x,~y,, the null hypothesis for the signed-rank test is stated as
H: median[D]=0.
The alternative hypothesis is one of three statements:

H , : median[D]#0 (Two-sided test—x might be larger or smaller than y).
H ,: median[D] >0 (One-sided test—u is expected to be larger than y).

H ,.: median[D] <0 (One-sided test—x is expected to be smaller than y).

The signed-rank test is usually stated as a determination of whether data from the two groups come
from the same population (same median) or alternatively that they differ in location (median). If both
groups are from the same population, regardless of the shape for both distributions, about half of the
time their difference will be above 0 and half of the time their difference will be below 0. In addition, the
distribution of data above 0 will, on average, mirror that below 0, so that given a sufficient sample size
the differences will be symmetric. Symmetry of the differences is a requirement of the signed-rank test,
but they do not need to be anything like a normal distribution. If the alternative hypothesis is true, the
differences will be symmetric when x and y come from the same shaped distribution (whatever the shape),
differing only in central value (median). This is called an additive difference between the two groups,
meaning that the variability and skewness within each group is the same for both. Boxplots for the two
groups would have a similar shape, with the only difference being that one box is offset from the other by
the median difference between paired observations. The signed-rank test determines whether this offset
is significantly different from zero. For an additive difference between groups, the assumption that the
distribution of differences will be symmetric is valid, and the signed-rank test has more power to detect
differences than does the sign test.
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In addition, the signed-rank test is also appropriate when the differences are not symmetric in the
original scale, but symmetry in the differences can be achieved by a transformation of both datasets. If
the transformation is with logarithms, a multiplicative relation on the original scale results in an additive
relation in the logs. The y group has a higher median and variance, whereas the x (background) group
has a lower median and variance. This is quite common in water-resources data. In the original scale, the
differences between pairs are asymmetric. By taking logs prior to calculating differences, a symmetric
distribution of data often results. The log transformation changes a multiplicative relation y =c-x,,
to an additive one: log(y,) =log(c)+log(x). The variances of the logs are often made similar by the
transformation, so that the logs of the two groups differ only in central value (median). The transformed
differences in log units are therefore much more symmetric than the differences in the original scale. The
median difference in the logs can then be retransformed to estimate the median ratio on the original scale,

¢ = median {%} = exp(median[log(y‘. )—log(x, )]) . (6.3)

6.2.2 Computation of the Exact Signed-rank Test

The exact form of the signed-rank test is the best form for comparing 15 or fewer pairs of samples.
With larger sample sizes, the large-sample approximation (section 6.2.3.) may be used.

Computation: Compute the absolute value of the differences |D, i=1,2,...,N. Rank the |D| from
smallest to largest. Delete any D,=0 and adjust the sample size to n=N—[number of D,=0]. Compute the
signed rank R =i=1,2,...,n

R =rank of [D] for D, >0, and

= —(rank of | D) for D, <0.

When two nonzero differences are tied, assign the average of the ranks involved to all tied values.
Test statistic: The exact test statistic " (or V in the output from R’s wilcox.test command) is the
sum of all signed ranks R having a positive sign:

n

w=>(RI|R >0) . (6.4)

i=l1
where
| signifies “given that.”
Decision rule: To reject H: median[D]=0 when the p-value for I¥”, either one- or two-sided as
appropriate, is less than a.

Example 6.3. Mayfly nymphs—Exact signed-rank test.

> D.i <- Above - Below

> SR.i <- rank(abs(D.i))*sign(D.1i)

> nymph.sr <- data.frame(Above, Below, D.i, SR.i)
> nymph.sr

Above Below D.i SR.i

1 12 9 3 1
2 15 8 7 3
3 11 38 -27 -6
4 41 24 17 5
5 106 48 58 9
6 63 17 46 7
7 296 11 285 11
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8 53 41 12 4
9 20 14 6 2
10 110 60 50 8
11 429 53 376 12
12 185 124 61 10

> wilcox.test(Above, Below, alternative = "greater", paired = TRUE,
exact = TRUE)

Wilcoxon signed rank test

data: Above and Below
V = 72, p-value = 0.003418
alternative hypothesis: true location shift is greater than ©

The test statistic ¥, the sum of the positive SR, values, is 72. The R command for the signed-rank test is
wilcox.test, specifying paired = TRUE. The exact test will be computed for small sample sizes unless
there are ties in the differences. Here the exact test was specified by exact = TRUE to be sure the exact
p-value, shown as 0.003, is produced.

6.2.3 The Large-sample Approximation for the Signed-rank Test

The large-sample approximation is computed by standardizing the exact test statistic; this is
accomplished by subtracting its mean and dividing by its standard deviation. The distribution of the
test statistic (not the data) was designed to be approximated by a standard normal distribution. This
approximation is valid for sample sizes of n >15. The large-sample approximation for the signed-rank test
takes the form

.1
VT
fW:>u,,
o,
Zsr+ = 0 !fW+ :.uW+ H] (65)
.1
W +E_MW+ . .
fwo<up,.
o,

where
u, =n~(n+1) and
4
o B n{n+1)(2n+1)
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The 1/2 in the numerator of Z_, is the continuity correction (chap. 4). Z_ is compared to quantiles of
the standard normal distribution, a normal distribution with mean of 0 and standard deviation of 1, to obtain
the approximate p-value for the signed-rank test. The large-sample approximation can be specified in R
using the exact = FALSE option. There is no reason to do this other than for demonstration purposes.
This is the version of the test that most commercial statistics software will run.

Example 6.4. Mayfly nymphs—Large-sample approximation to the signed-rank test.

> wilcox.test(Above, Below, alternative = "greater", paired = TRUE,
exact = FALSE)

Wilcoxon signed rank test with continuity

correction

data: Above and Below
V = 72, p-value = 0.005394
alternative hypothesis: true location shift is greater than ©

The large-sample approximation p-value of 0.005 is similar to the exact test results (p=0.003). If
sample sizes are small and p-values are close to where a decision may change if the p-value changes
by small amounts, use the exact test. Generally, let R perform the appropriate test automatically by not
specifying the exact= option.

6.2.4 Permutation Version of the Signed-rank Test

A permutation version of the signed-rank test (wilcoxsign_test command using the
distribution = "approximate" option) can be computed using the coin package of R (Hothorn
and others, 2008). There is no advantage to this over using the exact test, but it will likely be a better
approximation than the large-sample approximation of the previous section.

Example 6.5. Mayfly nymphs—Permutation version of the signed-rank test.
> require(coin)
> wilcoxsign_test(Above ~ Below, alternative = "greater",

+ distribution = "approximate")
Approximative Wilcoxon-Pratt Signed-Rank Test

data: y by
x (pos, neg)
stratified by block
Z = 2.5897, p-value = 0.0036
alternative hypothesis: true mu is greater than ©

The permutation p-value of 0.0036 is much closer to the exact p-value (p=0.003) than was the large-
sample approximation. Note the somewhat nonstandard input structure: for wilcoxsign_test, the ~ sign
does not indicate that a grouping variable follows, but that the paired columns are placed on either side of
the ~ symbol.
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6.2.5 Assumption of Symmetry for the Signed-rank Test

When the signed-rank test is performed on asymmetric differences, it rejects /7, slightly more often
than it should. The null hypothesis is essentially that symmetric differences have a median of zero, and
asymmetry favors rejection as does a nonzero median. Some authors have in fact stated that it is a test
for asymmetry. However, asymmetry must be severe before a substantial influence is felt on the p-value.
Although even one outlier can disrupt the #-test’s ability to detect differences between two groups of
matched pairs, most of the negative differences must be smaller in absolute value than the positive
differences before a signed-rank test rejects /7, due solely to asymmetry. Outliers generally will have little
effect on the signed-rank test, as it uses their rank and not their actual values for the computation. Violation
of the symmetry assumption of the signed-rank test produces p-values only slightly lower than they should
be, whereas violating the #-test’s assumption of normality can produce p-values much larger than what is
correct. Add to this the fact that the assumption of symmetry is less restrictive than that of normality, and
the signed-rank test is seen to be relatively insensitive to violation of its assumptions as compared to the
t-test. The permutation form of the test should be run if the symmetry assumption is strongly violated.

Example 6.6. Mayfly nymphs—Signed-rank test on logarithms.

The Above—Below differences are asymmetric in figure 6.1B, violating one of the signed-rank test’s
assumptions and indicating that the differences between the two groups may not be an additive one.
Asymmetry can be expected when large values tend to produce large differences and smaller values smaller
differences. This indicates that a multiplicative relation between the data pairs is more realistic. Here the
natural logs of the data are calculated, and a new set of differences D/,=log(x)—log(y,) are computed and
shown in figure 6.2. Comparing figure 6.2 and 6.1B, note that differences in natural log units are much
more symmetric than those in the original scale.

> 1diff <- log(Above)-log(Below) # log = natural logs in R
> boxplot(1ldiff, ylab = "1ln(Counts Above) -1n(Counts Below)")
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Figure 6.2. Boxplot of the differences of the natural logarithms of the mayfly data from
example 6.1.
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Computing the signed-rank test on the DI, the exact p-value is 0.008.

> wilcox.test(log(Above),log(Below), paired = TRUE, alt = "greater",
+ exact = TRUE)

Wilcoxon signed rank test

data: log(Above) and log(Below)
V = 69, p-value = 0.008057
alternative hypothesis: true location shift is greater than ©

Inaccurate p-values for the signed-rank test are not the primary problem caused by asymmetry. The
p-values for the mayfly data, for example, are not that different (p=0.003 on the original scale and p=0.008
for the natural logs) before and after a transformation to achieve symmetry. Both are similar to the p-value
for the sign test, which does not require symmetry. However, inappropriate estimates of the magnitude
of the difference between data pairs will result from estimating an additive difference when the evidence
points towards a multiplicative relation. Therefore, symmetry is especially important to check if the
magnitude of the difference between data pairs is to be estimated. If there is a belief that a multiplicative
change is more realistic than an additive change, using logarithms would model that relation. Checking
the form of the relation between the two sets of data can be done using the scatterplots of section 6.4. If an
additive difference is more realistic, use the permutation version of the test to avoid the consequences of
asymmetry.

6.3 The Paired t-test

The paired r-test evaluates whether the mean difference, D, of matched pairs is zero. The test requires
the paired differences, D,, to follow a normal distribution. Logarithms may be taken to reduce asymmetry in
the differences prior to running a paired #-test, but the results will not indicate whether means in the original
scale are similar or not. Transformations change the meaning of a mean. After a log transformation, the
t-test instead evaluates whether the ratio of the two geometric means on the original scale equals 1. If the
means on the original scale are of interest and the paired differences do not follow a normal distribution,
use a permutation test instead of a transformation.

6.3.1 Null and Alternate Hypotheses

The null hypothesis can be stated as

Hpyp=p, the means for the x, and y, are identical, or

Hy:p, =0 the mean difference between the x, and y, equals 0.

The three possible alternative hypotheses are

H,:pn#Fu, the two group means differ, and both possible directions are of interest. Reject /) if the
two-sided p-value is less than a;

H,op >p, prior to seeing any data, _is expected to be greater than 1y Reject H, if the one-sided
p-value is less than o; and

H, o <p prior to seeing any data, 1, is expected to be greater than u . Reject /1 if the one-sided
p-value is less than a.
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6.3.2 Computation of the Paired t-test

For two sets of_ data, x, and y,, paired by the attribute i=1,2,...,n, compute the paired differences
D ,=x—y, and then D, the sample mean of the differences.
Test statistic: The paired z-statistic is

Dn , (6.6)

P

N

where
s is the standard deviation of the differences.

Example 6.7. Mayfly nymphs—Paired z-test.

As the t-test requires that the paired differences follow a normal distribution, test for normality
of the differences (D)) prior to running the paired #-test. The null hypothesis for the Shapiro-Wilk test
for normality is that data follow a normal distribution and a small p-value rejects this hypothesis (see
section 4.4).

> shapiro.test(D.i)

Shapiro-Wilk normality test

data: D.i
W = 0.68339, p-value = 0.0005857

The very small p-value indicates that the paired differences of the mayfly data do not come from a normal

distribution at an a of 0.05.
The #-test is run below for demonstration purposes only, as the assumptions of the test are violated.

> t.test(Above, Below, paired = TRUE, alternative = "greater")

Paired t-test

data: Above and Below
t = 2.0824, df = 11, p-value = 0.03072
alternative hypothesis: true difference in means is greater than ©
95 percent confidence interval:
10.24942 Inf
sample estimates:
mean of the differences
74.5

The p-value produced is likely to be pushed upwards by the non-normality. Note that it is an order of
magnitude higher than that for the signed-rank test.

In an attempt to obtain a distribution closer to normal, the logarithms of the data are computed. As
with the signed-rank test, this implies that a multiplicative rather than an additive relation exists between
the two sets of data. The Shapiro-Wilk test for normality of the differences between the logarithms has a
p-value of 0.083, higher than the a of 0.05, so normality in these units is not rejected. A paired #-test on the
difference in logarithms should work well enough, but it will test whether the geometric means of the x, and
Vs and not their arithmetic means, are similar.
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> shapiro.test(1diff)

Shapiro-Wilk normality test

data: 1diff
W = 0.87824, p-value = 0.08321

> t.test(log(Above), log(Below), paired = TRUE, alternative =
"greater")

Paired t-test

data: log(Above) and log(Below)
t = 2.4421, df = 11, p-value = 0.01635
alternative hypothesis: true difference in means is greater than @
95 percent confidence interval:
0.2054557 Inf
sample estimates:
mean of the differences
0.7764593

The one-sided p-value for t, is 0.016. Therefore, reject that i, = Hy in favor of H ), the mean of the
natural log of the x, is greater than the mean of natural log of the y,. Equivalently, reject the null hypothesis

that the ratio of geometric means of the groups is 1.

6.3.3 Permutation Test for Paired Differences

Although the paired ¢-test assumes normality of the paired differences, a permutation test on the
differences can be used to test whether the mean difference equals zero regardless of the distributional
shape of the differences. Sutton (1993) found that these tests perform better than traditional #-tests in the
presence of asymmetry. The use of paired differences in the original scale still assumes that an additive
difference is appropriate, and that the mean difference is the best measure of difference between the two
groups. If the variances of the two groups differ, and if the group with higher variance is also the group
with the higher mean, a multiplicative difference is probably a better model. That appears to be the case for
the mayfly data in figure 6.1, so we have taken natural logarithms prior to computing the paired differences
to more accurately model the variation seen in the data.

The permutation test equivalent to the paired f-test assumes that the differences are symmetric because
a mean is being tested, though a normal distribution is not required. The difference in logs of the mayfly
data seems relatively symmetric (see fig. 6.2). An R script for the permutation test of mean differences of
matched pairs (permMatched.R) is available in the supplemental material (SM.6). The permMatched
script randomly assigns an algebraic sign to each of the observed differences and computes the test statistic,
which is simply the mean difference. A distribution of test statistics representing the null hypothesis (H,;: the
mean difference equals zero) is constructed by repeating this process several thousand times. The observed
mean difference is compared to the distribution of test statistics, and the proportion of the distribution that
is outside (above or below for a one-sided test) the observed mean difference is the permutation p-value of
the test.
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Figure 6.3. Histogram of permuted differences (representing the null hypothesis) and the observed
mean difference from the logs of mayfly data from example 6.1. The proportion of the entire area at
and to the right of the dashed line is the p-value of the test, which equals 0.013.

Example 6.8. Mayfly nymphs—Permutation test of paired differences.
> permMatched(log(Above), log(Below), alt = "g")

Permutation Matched-Pair Test R= 10000
log(Above) - log(Below) alternative = g
p-value = 0.0131

mean difference = 0.7764593

The permutation test p-value of 0.013 is slightly less than the normal-theory result of p=0.017, both
of which reject the null hypothesis at a 5-percent significance level. A histogram of the permuted difference
in means (fig. 6.3) shows that the distribution of differences between log counts looks fairly symmetric,
though with a broader peak than a normal distribution would have. Even when differences appear to follow
a normal distribution the permutation test works well, producing p-values similar to the paired #-test.

6.3.4 The Assumption of Normality for the Paired t-test

The paired ¢-test assumes that the paired differences (D,) are normally distributed around their mean.
The two groups of data are assumed to have the same variance and shape. Thus if the groups differ, it is
only in their mean (central value).

When the D, are not normally distributed, and especially when they are not symmetric, the p-values
obtained from the #-test will not be accurate. Sutton (1993) states that it has been known since the 1920s
that tests based on the #-statistic suffer from a loss of power when the data distribution has positive
skewness. This effect is more severe for one-sided tests than two-sided tests but is present for both.
When the D, are asymmetric the mean will also not provide a good estimate of the center, as discussed in
chapter 1.

To illustrate the importance of defining your objective for a test, a #-test on the original scale was
computed above to see if the first group had more counts than the second, while ignoring the non-normality
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of the differences. The test statistic of 7=2.08 had a one-sided p-value of 0.03. This is one order of
magnitude above the exact p-value for the (nonparametric) sign test of 0.003. Had an « of 0.01 been
chosen, the t-test would be unable to reject H whereas the sign test would easily reject it. It is important
to clearly state your objective in order to choose the appropriate test. Even if the difference in means were
the objective, the non-normality of the differences confuses the #-test by inflating the estimate of standard
deviation, s, and making deviations from a zero difference more difficult to discern. The measure of the
confusion for any dataset is the difference in p-values between the normal-theory ¢-test and its permutation
alternative. As permutation tests work well when data do follow a normal distribution, there is little reason
to use the #-test when the mean difference is your objective.

The mean difference, D, of 74.5 counts for the mayfly data is larger than 10 of the 12 paired
differences listed in table 6.3. The mean is often not a typical value with skewed data—it has little
usefulness as a measure of how many more mayfly nymphs are typically found above outfalls than below.
If the objective is to determine whether one group is generally higher than the other, use a nonparametric
test, with the associated Hodges-Lehmann estimate of median difference (section 6.5.2.) providing a more
typical measure of difference between groups. Another drawback to the mean is that when transformations
are used prior to computing a /-test, retransforming the estimate of the mean difference back into the
original scale does not provide an estimate of the mean difference in the original scale.

6.4 Graphical Presentation of Results

Methods for illustrating matched-pair test results are described in chapter 2 for illustrating a single
variable, as the differences between matched pairs are a single variable. A probability (Q-Q) plot of the
paired differences shows whether or not those differences follow a normal distribution. Here we discuss two
plots that illustrate both the test results and the degree of conformity to the test’s assumptions.

6.41 Boxplots

The best method for directly illustrating the results of tests in this chapter is a boxplot of the
differences as in figure 6.1B, or as in figure 6.2 for the natural logarithms. The number of data above and
below zero and the nearness of the median difference to zero are clearly displayed, as is the degree of
symmetry of the D,. Although a boxplot is an effective and concise way to illustrate the characteristics of
the test for differences, boxplots of the original data for both groups are more intuitive (fig. 6.14) and might
be a good addition for presentations.

6.4.2 Scatterplots with a One-to-one Line

Scatterplots illustrate the relations between paired data (fig. 6.4). Each (x,, y) pair is plotted on the
scatterplot as a point. Similarity between the paired data is shown by the x=y line. If the variable plotted
on the x axis is generally greater than the variable on the y axis, most of the data will fall to the right of, or
below, the line. When y generally exceeds x, the data will lie largely to the left of, or above, the line.

The scatterplot illustrates that the Above data (x) are generally greater than the Below data (y), as
all but one point falls to the right of the solid line. If there were an additive difference between data pairs,
points would fall along a line pattern parallel to the x=y line. A line x=y+d is also plotted on the figure to
illustrate the magnitude of the difference between x and y, where d is the mean or median estimate of the
difference between data pairs, depending on objective. In figure 6.4 the dashed line y=x—31.5 shows the
median difference of 31.5 counts. For an additive relation the data points would scatter around this line.

Note that the dashed line in figure 6.4 also has a slope of 1, but not an intercept of 0. Determining
whether a fitted line (say, a regression line) has slope equal to 1 is not the same as checking for similarity
of paired data. A fitted line could have a slope equal to 1, but be offset by a significant difference from
the x=y line—an additive difference that estimates the offset between group means or medians. The #-test
and permutation tests look for an additive difference between paired observations. The sign and signed-
rank tests evaluate differences more generally—whether one group tends to have higher values than the
other. Thinking through the objective of your study is important when plotting data, just as much as when
performing an numerical test.
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Figure 6.4. Scatterplot of the mayfly data from example 6.1. Solid line is the x=yline. Dashed line is
the y=x-median difference line, y=x - 31.5. Here x values generally fall to the right of the x=y line,
showing that mayfly counts above the outfall are frequently greater than those below the outfall.

140 7

120 ‘

100 |- /

Mayfly counts below outfall

40 |- o /v

. o

0 | | | |

0 100 200 300 400 500

Mayfly counts above outfall

Figure 6.5. Mayfly data from example 6.1. The multiplicative relation y=0.555- xis shown as the
dashed line. For reference, the solid line is the x=yline.
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A multiplicative difference between the two datasets appears to be a better fit, and therefore using
logarithms may be more appropriate. The line x=y - f~'(d) where d is an additive difference in transformed
units can be plotted as an aid in visualizing the relation. For natural logs, / ~'(d)=exp(d). This model is
illustrated in figure 6.5, where d=A, the Hodges-Lehmann estimator of group difference (see section 6.5.2.)
in natural log of counts, which for the mayfly data equals —0.589. Converting to the original scale and
plotting, the equation for the fitted dashed line is y=0.555 - x.

6.5 Estimating the Magnitude of Differences Between Two
Groups

After testing for differences between matched pairs, a measure of the magnitude of that difference is
usually desirable. If outliers are not present and the mean difference is considered a good central value, an
efficient estimator is the mean difference, D. This estimator is appropriate whenever the paired #-test, or its
permutation test equivalent, is used. When outliers or non-normality are suspected, a more robust estimator
is the Hodges-Lehmann estimator, A, the median of all possible pairwise averages of the differences. It is
the appropriate measure of difference when the signed-rank test is used. When the D, are not symmetric and
the sign test is used, the associated estimate of difference is simply the median of the differences, D, .

6.5.1 The Median Difference (Following the Sign Test)

For the mayfly data, the median difference in counts, D, equals 31.5. As these data are asymmetric,
there is no assumption that the two groups are related in an additive fashion. But subtracting the median
value from the x data (the sites above the outfalls) would produce data having no evidence for rejection of
H, as measured by the sign test. Therefore, the median is the most appropriate measure of how far from
equality the two groups are on the original scale. Half of the differences are larger and half are smaller than
the median.

A confidence interval on the median indicates the precision with which the difference between groups,
as measured by the sign test, is known. It is simply the confidence interval on the median, which was
previously presented in chapter 3.

6.5.2 The Hodges-Lehmann Estimator (Following the Signed-rank Test)

The estimate of difference between groups associated with the signed-rank test is the Hodges-
Lehmann difference, A. When outliers or non-normality are suspected, it is a more robust estimator of the
difference between groups than is the difference in means. Hodges-Lehmann estimators are computed as the
median of all possible appropriate combinations of the data; they are associated with many nonparametric
test procedures. For the matched-pairs situation, A is the median of the n - (n+1)/2 possible pairwise
averages:

A= median[Aij] ) (6.7)

where

4;  =[(D,+D,)/2] foralli<j.
Note that this version differs from the equation in chapter 5 because this estimator is based on paired
differences. Chapter 5 presented a Hodges-Lehman estimator for two independent datasets.

The estimator is related to the signed-rank test in that subtracting A from all paired differences (or
equivalently, from the x, or y,, whichever is larger) would cause the signed-rank test to have a test statistic
W+ close to 0 and find no evidence of difference between data pairs. For the cases of symmetric differences
where the signed-rank test is appropriate, the Hodges-Lehmann estimator A more efficiently measures
the additive difference between two data groups than does the sample median of the differences, D, ..

R computes A, calling it the (psuedo)median, when the conf. int option is specified as TRUE for the
wilcox.test command. For the mayfly data, A of the natural logarithms = 0.589.
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> wilcox.test(log(Above), log(Below), alternative = "greater",

+ paired = TRUE, conf.int = TRUE)
Wilcoxon signed rank test

data: log(Above) and log(Below)

V = 69, p-value = 0.008057

alternative hypothesis: true location shift is greater than ©
95 percent confidence interval:

0.3566749 Inf

sample estimates:

(pseudo)median

0.5891098

> exp(-0.5891098)
[1] @.554821

The log of upstream counts minus A models the log of the counts below the outfalls. Thus, the
counts above the outfalls multiplied by e *3%°=0.555 models the counts below the outfalls (the dashed line
y=0.555-x in fig. 6.5).

The nonparametric confidence interval around A is computed by finding the ranks of the data points
representing the ends of the interval. These are a function only of the sample size and a. The pairwise
average differences, 4, are ordered from smallest to largest, and those corresponding to the computed
ranks are the ends of the confidence interval.

For small sample sizes, quantiles for the signed-rank test at the o nearest to /2 and 1 —a/2 (two-sided
interval) or at & (one-sided interval) give the ranks R and R, corresponding to the 4 at the upper and (or)
lower confidence limits for A. These limits are the R th ranked 4, going from one or both ends of the sorted
list of n-(n+1)/2 differences. In R, the wilcox.test command with conf.int = TRUE does this for
you

For larger sample sizes where the large sample approximation is used, quantiles of standard normal
distribution provide the upper and lower ranks of the pairwise average differences, A,y’ corresponding to the
ends of the confidence interval. Those ranks are

n(n+1)(2n+1
N=z,,- (Zf) ,and (6.8)
R = 5
n(n+1)(2n+1
N+z,,- —( )6( ) , (6.9)
R, = 2 +1=N-R +1

where
N  =n-(nt+1)/2.
For one-sided intervals, choose the appropriate lower or upper limit using o instead of a/2.

Example 6.9. Mayfly nymphs—Estimate of median difference and two-sided confidence interval.

For the n=12 logarithms of the mayfly data in example 6.1, there are N=78 pairwise averages. For an
a = 0.05 two-sided confidence interval on the difference between groups, the 14th and 65th ranked averages
(the 14th average in from either end) form the ends of the two-sided 95-percent confidence interval. For
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the difference Above-Below in log units the interval is from 0.307 to 1.442, and the Hodges-Lehmann
estimate at its center is 0.589.

> wilcox.test(log(Above), log(Below), paired = TRUE, conf.int=TRUE)
Wilcoxon signed rank test

data: log(Above) and log(Below)
V = 69, p-value = 0.01611
alternative hypothesis: true location shift is not equal to ©
95 percent confidence interval:
0.3066974 1.4417015
sample estimates:
(pseudo)median

0.5891098

6.5.3 Mean Difference (Following a t-test)

For the situation where the differences are not only symmetric but also normally distributed and the
t-test is used, the most efficient (precise) estimator of the difference between the two groups is the mean
difference, D. However, D is in this case only slightly more efficient than is A, so that when the data depart
from normality even slightly the Hodges-Lehmann estimator is just as efficient as D. This mirrors the
power characteristics of their associated tests, as the signed-rank test is as efficient as the #-test for only
slight departures from normality (Lehmann, 1975). Therefore, when using field data, which is never exactly
normal, D has little advantage over A, whereas A is more appropriate in a wider number of situations—for
data that are symmetric but not normal.

A confidence interval on D is computed exactly like any confidence interval for a mean. For a two-
sided interval

Cl=D+t, r2() % ,
n

where s is the standard deviation of the differences, D,. A one-sided interval uses a instead of a/2. These are
output by the t.test command in R.

(6.10)

Example 6.10. Mayfly nymphs—Estimate of mean difference and two-sided confidence interval.
> t.test(log(Above), log(Below), paired = TRUE)

Paired t-test

data: log(Above) and log(Below)

t = 2.4421, df = 11, p-value = 0.0327

alternative hypothesis: true difference in means is not equal to ©
95 percent confidence interval:

0.07665364 1.47626496

sample estimates:

mean of the differences

0.7764593
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Exercises

1. Which of the following are not matched pairs?

Analyses of a series of standard solutions, each sent to two different laboratories.

w

Same-day evaluations of sediment toxicity over several years at two different sites.
C. Nitrate analyses from randomly selected wells in each of two aquifers.

D. Contaminant concentrations measured above and below stormwater retention basins on several
urban streams.

2. Specific conductance was measured on the two forks of the Shenandoah River in Virginia and the
resulting data are included in the file Shenandoah. rda. Does the North Fork, which drains terrain
with calcareous (more soluble) minerals have higher conductance than the South Fork, which drains
terrain with quartz-rich (less soluble) minerals?

A. State the appropriate null and alternative hypotheses to see if conductance values are the same in
the two forks.

Determine whether a parametric or nonparametric test should be used.
Compute an ¢=0.05 test and report the results.

Estimate the amount by which the forks differ in conductance, regardless of the test outcome.

m O O w

lustrate and check the results with a plot.

3. Atrazine concentrations in shallow groundwaters were measured by Junk and others (1980) before
(June) and after (September) the application season and the data are paired by well. Determine if
concentrations of atrazine are higher in groundwater following surface application than before. All
values of <0.01 have been set to —0.01 so that they can easily be ranked as the lowest values and tied
with one another.

> June <- c(0.38, 0.04, -0.01, 0.03, 0.03, 0.05, 0.02, -0.01,
-0.01, -0.01, 0.11, 0.09, -0.01, -0.01, -0.01,
-0.01, 0.02, 0.03, 0.02, 0.02, 0.05, 0.03, 0.05, -0.01)

> Sept <- c(2.66, 0.63, 0.59, 0.05, 0.84, 0.58, 0.02, 0.01,
-0.01, -0.01, 0.09, 0.31, 0.02, -0.01, 0.5, 0.03,
0.09, 0.06, 0.03, 0.01, 0.1, 0.25, 0.03, 88.36)

> well.num <- c(1:24)

4. Compare mean atrazine concentrations of the data in exercise 3 using a #-test, setting all values below

the detection limit to zero (not recommended here, just as an exercise!). Compare the results with
those of exercise 3. Discuss why the results are similar or different.



Comparing Centers of Several Independent
Groups

Concentrations of volatile organic compounds are measured in shallow ground waters across a
multi-county area. The wells sampled can be classified as being contained in one of seven land-use types:
undeveloped, agricultural, wetlands, low-density residential, high-density residential, commercial, and
industrial/transportation. Do the concentrations of volatiles differ between these types of surface land-use,
and if so, how?

Alkalinity, pH, iron concentrations, and biological diversity are measured at low flow for small
streams draining areas mined for coal. Each stream drains either unmined land, land strip-mined and
then abandoned, or land strip-mined and then reclaimed. The streams also drain one of two rock units, a
sandstone or a limestone formation. Do drainages from mined and unmined lands differ in quality? What
effect has reclamation had? Are there differences in chemical or biological quality owing to rock type
separate and distinct from the effects owing to mining impacts?

Three methods for field sampling and extraction of an organic chemical are to be compared at
numerous wells. Are there differences among concentrations produced by the three processes? These must
be discerned above the well-to-well differences in concentration that contribute considerable noise to
the data.

The methods of this chapter, comparing centers of several independent groups, can be used to answer
questions such as those above. These methods are extensions of the ones introduced in chapters 5 and 6; in
this chapter more than two groups of data will be compared. The parametric technique in this situation is
analysis of variance (ANOVA). More robust nonparametric and permutation techniques are also presented
for the frequent situations where data do not meet the assumptions of ANOVA.

First consider the effect of only one grouping variable, also called a factor. A factor is a categorical
variable suspected of influencing the measured data, analogous to an explanatory variable in regression.
The factor is made up of more than one level and each level is defined by a group of observations. Levels
may be an ordered low-medium-high change in intensity or unordered categories such as different locations
or times that represent a change in underlying influences. The factor consists of a set of k£ groups, with
each data point belonging in one of the & groups. For example, the data could be calcium concentrations
from wells in one of k aquifers, and the objective is to determine whether the calcium concentrations differ
among the aquifers. The various aquifers are the groups or levels. Within each group (aquifer) there are
n, observations (the sample size of each of the j groups is not necessarily the same). Observation Yy is the
ith of n, observations in group j, so that i=1,2, - for the jth of k groups j=1,2,...,k. The total number of
observations N is thus

N=>n, (7.1)

k
J=1

which simplifies to N=k-n when the sample size n=n for all k£ groups (equal sample sizes per group, also
called a balanced design).

When data within each of the groups are normally distributed and possess identical variances, classical
ANOVA can be used. Analysis of variance is a parametric test, determining whether all group means are
equal. ANOVA is analogous to a 7-test between three or more groups of data and is restricted by the same
assumptions as the #-test. When data in each group do not have identical variance, an adjustment similar
to the one for the 7-test will improve on classical ANOVA (Welch, 1951). When data in each group do not
follow a normal distribution a permutation test can check differences between group means. When the
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objective is to determine whether some groups have higher or lower values than others and is not focused
on the mean as a parameter, nonparametric tests such as the Kruskal-Wallis (KW) and Brunner-Dette-Munk
(BDM) tests will have more power than parametric ANOVA methods (table 7.1).

When the null hypothesis is rejected, these tests do not state which group or groups differ from the
others! We therefore discuss multiple comparison tests—tests for determining which groups differ from
others. These methods are then expanded to evaluating the effects of two factors simultaneously (table 7.2).
These factorial methods determine whether neither, or one or both of two factors significantly affect the
values of observed data. Although higher numbers of factors can be evaluated, the design of those studies
and the tests that follow are beyond the scope of this book.

We finish the chapter by discussing repeated measures designs, the extension of the matched-pairs
tests of chapter 6 to situations where three or more related observations are taken on each subject or block
(table 7.3).

Table 7.1. Hypothesis tests with one factor and their characteristics.

[ANOVA, analysis of variance; BDM, Brunner-Dette-Munk test; MCT, multiple comparison test. /1, is the alternative hypothesis, the
signal to be found if it is present]

Objective of test (H)

Data from at least one group is

frequently higher than the other Mean of at least one group is higher than the mean of the

th
groups other groups
Test Kruskal-Wallis BDM test ANOVA Welch's adjusted ~ Permutation
test ANOVA test on group
means
Class of test Nonparametric Nonparametric ~ Parametric Parametric Permutation
Distributional  None None Normal Normal Exchangeable
assumption for distribution; distribution
group data equal variances
Multiple Pairwise rank- Pairwise rank- Tukey’s MCT Tukey’s MCT Tukey’s MCT
comparison test sum tests or sum tests or
Dunn’s test Dunn’s test

Table 7.2. Hypothesis tests with two factors and their characteristics.

[ANOVA, analysis of variance; BDM, Brunner-Dette-Munk test; MCT, multiple comparison test. /1, is the alternative hypothesis, the
signal to be found if it is present]

Objective of test (H)

Data from at least one group is

frequently higher than the other Mean of at least one group is higher than the mean of

the other groups

groups
Test BDM two-factor test Two-factor ANOVA Two-factor permutation
test
Class of test Nonparametric Parametric Permutation
Distributional ~ None Normal distribution; equal ~ Exchangeable
assumption for variances
group data
Multiple com-  Pairwise rank-sum tests Two-factor Tukey's MCT  Two-factor Tukey’s MCT

parison test
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Table 7.3. Hypothesis tests for repeated measures and their characteristics.

[ANOVA, analysis of variance; MCT, multiple comparison test. /7, is the alternative hypothesis, the signal to be found if it is present]

Objective of test (H)

Mean of at least one group

Data from at least one group is frequently higher than the is higher than the mean of

other groups the other groups
Test Friedman test Aligned-rank test ANOVA without
replication
Class of test Nonparametric Nonparametric Parametric
Distributional assumption None Symmetry Normal distribution; equal
for group data variances
Multiple comparison test  Paired Friedman Tukey's MCT on aligned Pairwise paired ¢-tests
comparison tests ranks

7.1 The Kruskal-Wallis Test (One Factor)

7.1.1  Null and Alternate Hypotheses for the Kruskal-Wallis Test

The Kruskal-Wallis (KW) test objectives are stated by the null and alternate hypotheses:
H,: All groups of data have identical distributions.

H,: At least one group differs in its distribution.

For the tests of this chapter, the alternate hypothesis /7, is always two-sided; no prior direction of
difference is hypothesized, but only whether group differences exist or not.

7.1.2  Assumptions of the Kruskal-Wallis Test

For the general objective of determining whether all groups are similar in value, or alternatively that
one or more groups more frequently have higher or lower values than the other groups, no assumptions
are required about the shape of the distributions. They may be normal, lognormal, or anything else. If the
alternate hypothesis is true, they may have different distributional shapes. This difference is not attributed
solely to a difference in median, though that is one possibility. The test can determine differences where, for
example, one group is a control group with only background concentrations, whereas the others combine
background concentrations with higher concentrations owing to contamination. For example, 35 percent of
the data in one group may have concentrations indicative of contamination and yet group medians remain
similar. The KW test can see this type of change in the upper 35 percent as dissimilar to the control group.

The test is sometimes stated with a more specific objective—as a test for difference in medians. This
objective requires that all other characteristics of the data distributions, such as spread or skewness, be
identical—though not necessarily on the original scale. This parallels the rank-sum test (section 5.1). As a
specific test for difference in medians, the Kruskal-Wallis null and alternate hypotheses are

H,: The medians of the groups are identical.

H,: Atleast one group median differs from the others.

As with the rank-sum test, the KW test statistic and p-value computed for data that are transformed
using any monotonic transformation give identical test statistics and p-values to those using data on the
original scale. Thus, there is little incentive to search for transformations (to normality or otherwise) as the
test is applicable in many situations.
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7.1.3 Computation of the Exact Kruskal-Wallis Test

The exact method determines a p-value by computing all possible test statistics when the observed
data are rearranged, calculating the probability of obtaining the original test statistic or those more extreme.
It is needed only for quite small sample sizes—three groups with 7, <5, or with four or more groups of size
n <4 (Lehmann, 1975). Otherwise, the large sample approximations are very close to their exact values.

To compute the test, all NV observations from all groups are jointly ranked from 1 to N, smallest to
largest. These ranks R, are used to compute the average rank R . for each of the j groups, where n, is the
number of observations in the jth group:

"R,
— il T (7.2)

n;

=|

Compare R . to the overall average rank Ii.j =(N+1)/2, squaring and weighting by sample size, to form
the test statistic K:

L - N+1
e

When the null hypothesis is true, the average rank for each group should be similar to one another and
to the overall average rank of (NV+1)/2. When the alternative hypothesis is true, the average rank for some
of the groups will differ from others, some higher than (N+1)/2 and some lower. The test statistic K will
equal 0 if all groups have identical average ranks and will be positive if average group ranks differ. The null
hypothesis is rejected when K is sufficiently large. Conover (1999) provided tables of exact p-values for
K for small sample sizes. An example computation of K is shown in table 7.4. In past years, K would have
been compared to the 0.95 quantile of the chi-squared distribution with k—1 degrees of freedom, which
for these data would be 7.815 (3 degrees of freedom). Because K in table 7.4 does not exceed the 7.815,
the null hypothesis is not rejected at an o of 0.05. Today, software will compute the proportion of the chi-
square distribution that equals or exceeds the test statistic value of 2.66. That proportion is the p-value, here
0.44. Because 0.44 is higher than a, the null hypothesis is not rejected and the values in each group are not
considered to be different.

Table 7.4. Kruskal-Wallis test statistic computation for fecal coliform counts (Lin and Evans, 1980).

Ranks R.. R,
ij J
Summer 6 12 15 18 21 24 16
Fall 5 8.5 11 14 19.5 22 13.3
Winter 2 4 8.5 13 16 19.5 10.5
Spring 1 3 7 10 17 23 10.2
R, _l6+133+1054102 .
4
K= 241(225) Y6(16-12.5)" +6(13.3-12.5)" +6(10.5-12.5)" +6(10.2-12.5)°

K =2.66 x5 ;) =7.815 p=0.44.
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1.1.4 The Large-sample Approximation for the Kruskal-Wallis Test

The distribution of K when the null hypothesis is true can be approximated quite well at small sample
sizes by a chi-square distribution with k—1 degrees of freedom. The degrees of freedom is a measure of
the number of independent pieces of information used to construct the test statistic (section 3.2). If all data
are divided by their overall mean to standardize the dataset, then when any k—1 average group ranks are
known, the final (kth) average rank can be computed from the others as

- N Mn, _
R =—-1-> LR |. (7.4)
, n, [ jZ::‘N ’j

Therefore, there are actually only £—1 independent pieces of information as represented by k—1
average group ranks. From these and the overall average rank, the kth average rank is fixed. This is the
constraint represented by the degrees of freedom.

The null hypothesis is rejected when the approximate p-value is less than a. The R command
kruskal.test computes the large-sample approximation results. Because of the precision of the
approximation, most software does not compute an exact test.

Example 7.1. Specific capacity—The Kruskal-Wallis test.

Knopman (1990) reported the specific capacity (discharge per unit time per unit drawdown) of wells
within the Piedmont and Valley and Ridge Provinces of Pennsylvania. Two hundred measurements from
four rock types were selected from the report—see the specapic.rda dataset.

Boxplots for the four rock types are shown in figure 7.1. The fact that the boxes are flattened as a
result of high outliers is important—the outliers may strongly affect the means and parametric tests, just
as they affect your ability to see differences on the figure. Based on the outliers alone it appears that the
variance differs among the groups, and all but the siliciclastic group are clearly non-normal. The null
hypothesis H for the KW test on these data is that each of the four rock types has the same distribution
(set of percentiles) for specific capacity. The alternate hypothesis /7, is that the distributions are not all the
same, with at least one shifted higher than another (a two-sided test).
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Figure 7.1. Boxplots of specific capacity of wells in four rock types (Knopman, 1990).
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To run the Kruskal-Wallis test, use the kruskal.test command in R.
> kruskal.test(spcap~rock)

Kruskal-Wallis rank sum test

data: spcap by rock
Kruskal-Wallis chi-squared = 11.544, df = 3,
p-value = 0.00912

The small p-value leads us to reject the null hypothesis of similarity of group percentiles. At least one
group appears to differ in its frequency of high versus low values. A graph that visualizes what the Kruskal-
Wallis test is testing for is the quantile plot (fig. 2.4 in chap. 2). A quantile plot for natural logarithms of the
four groups of specific capacity data is shown in figure 7.2. The dolomite group stands apart and to the right
of the other three groups throughout most of its distribution, illustrating the Kruskal-Wallis conclusion of
difference. Moving to the right at y=0.5, three groups have similar medians but the dolomite group median
is higher. An experienced analyst can look for differences in variability and skewness by looking at the
slope and shapes of each group’s line. Boxplots are more accessible to nontechnical audiences, but quantile
plots provide a great deal of detail while still illustrating the main points, especially for technical audiences.

Alternative nonparametric tests, none of which have significant advantages over Kruskal-Wallis,
include computing Welch’s ANOVA on the ranks of data (Cribbie and others, 2007); the normal-scores
test, of which there are two varieties (Conover, 1999); and a one-factor version of the BDM test (Brunner
and others, 1997). The Cribbie and others (2007) procedure is similar to a #-test on ranks and is only an
approximate nonparametric test. The normal-scores tests perform similarly to Kruskal-Wallis with a slight
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Figure 7.2. Quantile plots of the natural log of specific capacity for the four rock types from
Knopman (1990). Three rock types have similar medians, but the dolomite group median is higher.
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advantage over KW when data are normally distributed—water resources data rarely are. We discuss the
two-factor version of the BDM test in section 7.6 as a nonparametric alternative to ANOVA.

7.2 Analysis of Variance (One-factor)

Analysis of variance (ANOVA) determines whether the mean of at least one group differs from the
means for other groups. If the group means are dissimilar, some of them will differ from the overall mean,
as in figure 7.3. If the group means are similar, they will also be similar to the overall mean, as in figure 7.4.

Why should a test of differences between means be named analysis of variance? In order to determine
if the differences between group means (the signal) can be seen above the variation within groups (the
noise), the total noise in the data as measured by the total sum of squares is split into two parts:

Total sum of squares _ Factor sum of squares Residual sum of squares
(Overall variation) ~  (Group means-overall mean) * (Variation within groups)
ko 2 k o\ L _\2
22 (% -7) - 2 (7,-7) fXXneT)
J=li= = Jj=li=
therefore,
kon \2 k _ \2 kooni \2
Z;Vl(yi/’_y) :Z;nj(y.i_y) +Z;Zl:(yz/_y.f) ’ (7.5)
Jj=li= Jj= Jj=li=

where Yy is the ith observation in the jth group, there are k groups, and n, designates that sample sizes within
the jth group may or may not be equal to those in other groups.
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Figure 7.3. Hypothetical data for three groups. Factor mean square > residual mean square, and
group means are found to differ.
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Figure 7.4. Hypothetical data for three groups. Factor mean square = residual mean square, and
group means do not significantly differ.

If the total sum of squares is divided by N—1, where N is the total number of observations, it equals
the variance of the ;s Thus, ANOVA partitions the variance of the data into two parts, one measuring the
signal (factor mean square, representing differences between groups) and the other measuring the noise
(residual mean square, representing differences within groups). If the signal (factor mean square) is large
compared to the noise (residual mean square), the means are found to be significantly different.

7.21 Null and Alternate Hypotheses for Analysis of Variance

The null and alternate hypotheses for the analysis of variance are

H,: The group means are identical p, =, =...= .

H: At least one mean is different.

This is always a two-sided test.

1.22 Assumptions of the Analysis of Variance Test

ANOVA extends the #-test to more than two groups. It is not surprising then, that the same assumptions
apply to both tests:

1. All samples are random samples from their respective populations.
2. All samples are independent of one another.
3. Departures from the group mean (y; —¥,) are normally distributed for all / groups.

4. All groups have equal population variance, o>, estimated for each group by sjz..

2 _ le(yij _J_}f )2 (7.6)

nj—l

S;
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Violation of either the normality or constant variance assumptions results in a loss of ability to see
differences between means (a loss of power). Welch (1951) proposed an adaptation for unequal variance (or
heteroscedasticity) in ANOVA analogous to that for the #-test, which should become the standard parametric
procedure for one-factor ANOVA. We discuss Welch’s procedure in section 7.2.4., and strongly prefer it
over the classic ANOVA.

The power of ANOVA (classic or Welch’s variety) to detect differences will decrease with non-normal
data. Scientists often transform data by taking logarithms or a power function and then applying ANOVA.
ANOVA on transformed data (using an order-preserving transformation such as logarithms, resulting
in data that are approximately symmetric) determines differences in medians on the original scale, not
means, which changes the objective. It is also often difficult to find a single transformation which, when
applied to all groups, will result in each becoming normal with constant variance. The best alternative for
testing means of non-normal data is the permutation test, and it should be the default method (rather than
ANOVA) to test differences between group means. If data were normally distributed with equal variances,
permutation tests would give very similar results to those of ANOVA, so there is no penalty for routine use
of permutation tests. If the objective is to determine if one or more groups have higher or lower values than
others, this is a frequency objective, which is tested directly by the Kruskal-Wallis test, not ANOVA. Define
your objective and then run the most appropriate test to meet that objective.

7.23 Computation of Classic ANOVA

Each observation, ¥,» can be written as

yy=y+aj +€,.j , (7~7)

where
Y, is the ith individual observation in group j, j=1,2,...,k;
U is the overall mean (over all groups);
o, is the group effect, or (uj_ —u), and

;  are the residuals or error within groups.

If H, is true, all j groups have the same mean equal to the overall mean, , and thus a=0 for allj. If
group means differ, o, #0 for some ;. To detect a difference between means, the variation within a group
around its mean must be sufficiently small in comparison to the difference between group means so that the
group means may be seen as different (see fig. 7.3). The noise within groups is estimated by the residual or
error mean square (MSE), and the signal between group means is estimated by the factor or treatment mean
square (MSF). Their computation is shown below.

The residual or error sum of squares

SSE = Zk:i(yi/ -V )2 ’ (7.8)

j=li=1

estimates the total within-group noise using departures from the sample group mean, y;- Error in this
context refers not to a mistake, but to the inherent noise within a group. The factor or treatment sum of
squares

SSF=n,(7,-7) . (7.9)

J=1

estimates the factor effect using differences between group means, y;, and the overall mean, y, weighted by
sample size.

Each sum of squares has an associated number of degrees of freedom, or the number of independent
pieces of information used to calculate the statistic. For the factor sum of squares this equals k—1, as
when £—1 of the group means are known, the kth group mean can be calculated. The total sum of squares
has N—1 degrees of freedom. The residual sum of squares has degrees of freedom equal to the difference
between the above two, or N—%.
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Dividing the sums of squares by their degrees of freedom produces variance estimates: the total
variance, the MSF, and the MSE. The MSF estimates the variance as a result of any signal between groups
plus the residual error variance. If the MSF is similar to the MSE, there isn’t much signal and /| is not
rejected (fig. 7.4). If the MSF is sufficiently larger than the MSE, the null hypothesis will be rejected and
at least one group has a mean different from the others (fig. 7.3). The test to compare the two estimates of
variance, MSF and MSE, is whether their ratio equals 1:

F=MSF/MSE.

The test statistic /" is compared to quantiles of an F*-distribution and /7, is rejected for large F.
Equivalently, reject /1 if the p-value for the test < a.

The computations and results of an ANOVA are organized into an ANOVA table. Items usually
provided in a one-way ANOVA table are shown in table 7.5. Note that the R summary command for
analysis of variance does not display the Total row.

Example 7.2. Specific capacity—Classic ANOVA.

Classic ANOVA is run on the specific capacity data of example 7.1 (Knopman, 1990) to illustrate the
effects of its non-normality and unequal variance. There are 50 observations in each of the four groups.

> summary (aov(spcap~rock))

Df Sum Sq Mean Sq F value Pr(>F)
rock 3 6476 2158.5 2.512 0.0599 .
Residuals 196 168450 859.4

The F-statistic of 2.51 is not significant (»p=0.0599) at an a of 0.05. The temptation is to declare that
no difference has been found. However, neither of the requirements of normality or equal variance was
met. The data analyst should be worried about the effects of failing to meet these assumptions when using
ANOVA, even with a dataset of 50 observations per group. Using the preferred Welch adjustment instead
would address the issue of unequal variance, but not non-normality.

724 Welch's Adjusted ANOVA

Recognition of the loss of power for ANOVA as a result of heteroscedasticity has slowly made its
way into statistics software—for example, Minitab® version 17 chose the Welch (1951) adjustment as
its default for one-way ANOVA designs (Frost, 2016). This mirrors standard practice for the z-test, where
Welch’s adjustment is the default (see chap. 6). In R, Welch’s adjustment is performed with the command
oneway .test. The adjustment should be the default method for one-way ANOVA with water resources
data, because heteroscedasticity is common.

Welch’s F-statistic is computed by weighting each group’s contribution to the MSF by n/s?, so that
groups with greater variability have lower weight. The MSE (or residual mean square) is computed using
an adjusted degrees of freedom whose value decreases from the ANOVA residual degrees of freedom as
group variances become dissimilar. The resulting F-test is more accurate for heteroscedastic data. There
is little disadvantage to using the Welch adjustment as its correction to the classic ANOVA F-statistic is
negligible when heteroscedasticity is not present.

Table 7.5. Schematic of a one-factor ANOVA table.

[df, degrees of freedom; &, number of groups; N, number of observations in all groups together; SS, sum of squares; SSF, SS for factor;
SSE, SS for error; MS, mean square; MSF, MS for factor; MSE, MS for error; F, F test statistic; -, not applicable]

Source df SS MS F p-value
Factor/Treatment  (k—1) SSF MSF MSF/MSE p
Residual error (N—k) SSE MSE - -

Total N—1 Total SS - - -
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Example 7.3. Specific capacity—Welch’s adjusted ANOVA.

The nonparametric Fligner-Killeen test of equal variance (section 5.6.1) rejects the null hypothesis that
variances are equal, finding a difference between the group variances. Then the Welch adjusted ANOVA is
performed using the oneway . test command.

> fligner.test(spcap, rock)

Fligner-Killeen test of homogeneity of variances
data: spcap and rock
Fligner-Killeen:med chi-squared = 39.458, df = 3, p-value
= 1.388e-08

> oneway.test(spcap~rock)

One-way analysis of means (not assuming equal variances)
data: spcap and rock
F = 3.4397, num df = 3.000, denom df = 82.541, p-value =
0.02052

Welch’s adjustment increases the F-statistic signal to 3.4 from the classic ANOVA’s 2.5 by reducing
the residual MS originally inflated by unequal variance. The cost of adjustment is that the denominator
(residual) degrees of freedom decreases from 198 to 82. The cost is small compared to the benefit, as the
adjusted p-value of 0.02 is sufficiently lower than the unadjusted p-value to reject the null hypothesis,
finding a difference between group means. This illustrates the power loss for this dataset by using
classic ANOVA on data with unequal group variances. Even with the relatively large sample size of
50 observations per group, violation of the two primary assumptions of classical ANOVA can lead to a loss
of power.

Water resources and other environmental data are known for their strong skewness, leading to
violations of both normality and constant variance. If a test on means is the appropriate objective, use the
Welch’s adjusted ANOVA to correct for violation of equal variance, or use a permutation test (section 7.3)
to avoid the interferences of both unequal variance and non-normality. If the objective is to determine
whether at least one group has higher values than another, the Kruskal-Wallis test (section 7.1) addresses
that frequency objective directly.

7.3 Permutation Test for Difference in Means (One-factor)

Permutation tests allow the means of skewed datasets to be tested without the loss of power inherent
in parametric ANOVA procedures. One-factor permutation tests in R are provided by the permKS
command in the perm package (Fay and Shaw, 2010). An R script for a more user-friendly version of the
permutation test is permlway . R, found in the supplemental material (SM.7) for this chapter. Permutation
tests determine whether group means differ without requiring the assumption of normality and without
suffering the same consequences of unequal variance that parametric tests have. Permutation tests require
exchangeability (chap. 4)—any observation found in one group could have come from another group
because they originate from the same population. This is simply a restatement of the null hypothesis—there
is only one population from which all groups are sampled. Permutation tests on means do not require a
mathematical adjustment for unequal variance as do parametric tests because they do not use a standard
deviation or variance parameter to compute the test statistic. However, if the observed variances are
unequal, the larger variance spills over into all groups during the permutation process. In short, permutation
tests are less susceptible to loss of power caused by unequal variance than are parametric tests, but the
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Figure 7.5. Histogram of F-statistics for 10,000 permutations of the specific capacity group
assignments from example 7.1. The vertical dashed line at 2.51 is the F-statistic of the analysis of
variance for the original data.

observed variability of a single group will be spread to all groups. There is really no way around this if the
goal is to perform a test of means.

1.3.1 Computation of the Permutation Test of Means

Permutation tests compute either all test results possible for rearrangements of the observed data
(exact test), or thousands of test results for a large random selection of possible rearrangements. The
proportion of computed results equal to, or more extreme than, the one result obtained from the original
data is the p-value of the test. For a one-factor permutation test, the simplest visualization is that the
column of group assignments is randomly reordered thousands of times, and the ANOVA F-test statistic
computed for each reordering. By reordering group assignments the number of observations per group stays
the same, but the observations assigned to groups differ for each randomization. If the null hypothesis is
true, each group has the same data distribution; each has the same mean and variance. Therefore, for the
null hypothesis the group assignment is basically random—any observation from one group could have
just as easily come from another group. The F-statistics from the thousands of random group assignments
represent the distribution of F-statistics expected when the null hypothesis is true. This distribution may
or may not resemble any specific shape, the data determine the shape of the test statistic distribution.

A histogram of 10,000 F-statistics from permutations of the specific capacity data from example 7.1
representing the null hypothesis of no group differences are shown in figure 7.5.

Example 7.4. Speci ic capacity—Permutation test on means.

The permutation test for differences in mean specific capacity is computed using the permlway script.
This script also produced figure 7.5.

> permlway(spcap, rock)

Permutation One-Factor Test
spcap ~ rock

F= 2.51153 Permutation pval= 0.0429 Nrep= 10000
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The p-value of 0.0429 states that 4.29 percent of the permutation F-test statistics equaled or exceeded
the original observed F of 2.51. Therefore, the mean specific capacity is declared significantly different for
the four rock types in example 7.1. Running the procedure again will produce a slightly different p-value,
but using 10,000 rearrangements ensures that the variation in p-values will be small. A permutation test
can always be used instead of classic (or Welch’s) ANOVA when violations of normality or equal variance
assumptions occur. Here the similarity between permutation and Welch’s adjustment results indicates that
unequal variance was the more important violation of assumptions for this dataset, pushing the classic
ANOVA'’s p-value above 0.05.

714 Two-factor Analysis of Variance

Often more than one factor may simultaneously be influencing the magnitudes of observations. Multi-
factor tests can evaluate the influence of all factors simultaneously, in a similar way to multiple regression.
The influence of one factor can be determined while compensating for the others. This is the objective of a
factorial analysis of variance and its nonparametric alternatives.

A factorial ANOVA occurs when none of the factors is a subset of the others. If subset factors do
occur, the design includes nested factors and the equations for computing the F-test will differ from those
here; see Aho (2016) for more information on nested ANOVA. We discuss two-factor ANOVA here—more
than two factors can be incorporated but that is beyond the scope of this report.

7.41 Null and Alternate Hypotheses for Two-factor ANOVA

The first page of this chapter presented a two-factor ANOVA, the determination of chemical
concentrations among stream basins at low flow. The objective was to determine whether concentrations
differed as a function of mining history (whether or not each basin was mined, and if so, whether it was
reclaimed) and of rock type.

Call the two factors A and B. There are i=1 to a >2 categories of factor A, and j=1 to b >2 categories
of factor B. Treatment groups are defined as all the possible combinations of factors A and B, so there are
a - b treatment groups. Within each treatment group there are 7, observations. The test determines whether
mean concentrations are identical among all the a - b treatment groups or whether at least one differs.

H,:  All treatment group means, M, are equal. u, =g ,,....=H,,

H,: Atleast one ; differs from the rest.

Forthe k=1,2, ..., n, observations in treatment group ij, the magnitude of any observation, Vi differs
from the overall mean, u, by being affected by several possible influences:

Vi =,u+yl+6 +y5 +€

ijk >

where
2 is the influence of the ith category of factor A;
is the influence of the jth category of factor B;
is the interaction effect between factors A and B beyond those of y, and 9, individually for
the ijth treatment group; and
[ is the residual error, the difference between the kth observation (k=1,2, ...,ni/.) and the
treatment group mean u,;=g+y,+9,+yd,.

j
Y0 .

y

The null hypothesis states that treatment group means , all equal the overall mean, u. Therefore y,
5 and y5 all equal O—there are no effects resulting from either of the factors or from their interaction. If
any one of the Vs 5 or y5 effects are sufficiently nonzero, the null hypothesis is rejected and at least one
treatment group mean s1gn1ﬁcantly differs from the others.

74.2 Assumptions of Two-factor ANOVA

In two-factor ANOVA, the residuals € from each treatment group mean 1 (each combination of
factors A and B) are assumed to be normally distributed with identical variance o°. The normality and

1717



178

Statistical Methods in Water Resources

constant variance assumptions could be checked by inspecting separate boxplots of data for each treatment
group, but more powerfully by testing the ANOVA residuals from all groups together, € using the
Shapiro-Wilk test and plotting them on one normal probability plot or boxplot. The effect of violating these
assumptions is the same as for one-way ANOVA, a loss of power leading to higher p-values and failure

to find significant differences that are there. No convenient version of a Welch’s adjustment exists for two
or more factor designs. Brunner and others (1997) state that Welch adjustments to factorial ANOVA are
“cumbersome.” Instead, permutation tests are the primary method for computing factorial ANOVA on non-
normal or heteroscedastic data.

743 Computation of Two-factor ANOVA

The influences of factors A, B, and their interaction are evaluated separately by partitioning the total
sums of squares into component parts for each effect. After dividing by their respective degrees of freedom,
the mean squares for factors A (MSA), B (MSB), and their interaction (mean square for interaction, MSI)
are produced. As with a one-way ANOVA, these are compared to the MSE using F-tests to determine their
significance.

The sums of squares for factor A (SSA), factor B (SSB), interaction (SSI), and error (SSE), assuming
constant sample size n,=n per treatment group, are presented in table 7.6.

Dividing the sums of squares by their degrees of freedom produces the mean squares MSA, MSB,
MSI, and MSE as in table 7.7. If H is true and y, 5]., and yéi/. all equal 0, all variation is simply around the
overall mean, . The MSA, MSB, and MSI will then all approximate the MSE, and all three F-tests will

Table 7.6. Sums of squares definitions for two-factor ANOVA.

[SS, sum of squares; SSA, SS for factor A; SSB, SS for factor B; SSE, SS for error; SSI, SS for interaction]

Sums of squares formula Effect
n 2 a n 2
584= i(zhz y) - (Z P y) HH
bn abn

\ (zazny)z (zazbzny)z

B = — n—H
55 z an abn !
SSI =Total SS — SS4— SSB — SSE Hy = () +
(=)
a n a y)
SSE = z sz (y)2 —z sz Vi~ Hy
a b n 2
a n ( y) —
TotalSSzz sz (y)z_Z:Z:aan: Vi~ H

Table 7.7. Schematic for a two-factor ANOVA table.

[SS, sum of squares; SSA, SS for factor A; SSB, SS for factor B; SSE, SS for error; SSI, SS for interaction; MS, mean square; MSA,
MS for factor A; MSB, MS for factor B; MSE, MS for error; MSI, MS for interaction; df, degrees of freedom; F, F-test statistic; -, not
applicable]

Source df SS MS F p-value
Factor A (a—1) SSA MSA=SSA/(a-1) F,=MSA/MSE pIF,]
Factor B b-1) SSB MSB=SSB/(b—1) F,=MSB/MSE plF,]
Interaction (a—1) (b-1) SSI MSI=SSI/(a—1)(b—1) F=MSI/MSE PlF]

Error ab(n—1) SSE MSE=SSE/[ab(n—1)] - -

Total abn—1 Total SS - - -
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have ratios similar to 1. However, when the alternate hypothesis / is true, at least one of the mean squares
in the numerators will be significantly larger than the MSE, and the ratio MS_ , /MSE (F-statistic) will be
larger than the appropriate quantile of the F distribution. /| is then rejected and that factor is considered
significant at a risk level a.

The formulae in the two-factor ANOVA table (table 7.7) are for an equal number of observations in
each treatment group (all n; = n). More complex formulae are involved when there are unequal numbers
of observations (an unbalanced design). Note that the output for summary (aov) in R does not include the
Total row at the bottom of table 7.7.

Example 7.5. Iron at low flows—Two-factor ANOVA.

Iron concentrations were measured at low flow in numerous small streams in the coal-producing areas
of eastern Ohio (Helsel, 1983). Each stream drains either an unmined area, a reclaimed coal mine, or an
abandoned coal mine. Each site is also underlain by either a sandstone or limestone formation. The data
are found in iron.rda. Are iron concentrations at low flow influenced by upstream mining history, by the
underlying rock type, or by both?

Boxplots for total iron concentrations are shown in figure 7.6, where three outliers greater than
100 milligrams per liter in the sandstone, abandoned (sand_ab) group are not shown. Note the skewness
evidenced by the larger upper portions of several boxes. Also note the differences in variance as depicted by
differing box heights. This exercise illustrates the problems incurred when parametric ANOVA is applied to
data with (commonly occurring) non-normal, heteroscedastic characteristics.

There are six treatment groups, combining the three possible mining histories (unmined, abandoned
mine, and reclaimed mine) and the two possible rock types (sandstone and limestone). Subtracting the
group mean from each group’s data, the Q-Q plot of residuals clearly shows the three high outliers and
several large negative residuals resulting from subtracting the large mean of the abandoned sandstone group
from its lower concentration data (fig. 7.7). The pattern is not consistent with a normal distribution. The
ANOVA table is shown below. Tests are computed for the factors of mining history alone, rock type alone,
and their interaction (Mining:Rocktype).
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Figure 7.6. Boxplots of iron concentrations at low flow from Helsel (1983). Three outliers greater
than 100 milligrams per liter are not shown. Lime_ab, limestone, abandoned mine; lime_re, limestone,
reclaimed; lime_un, limestone, unmined; sand_ab, sandstone, abandoned mine; sand_re, sandstone,
reclaimed; sand_un, sandstone, unmined.
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Figure 7.7. Q-Q plot showing the non-normality of the ANOVA residuals of the iron data from
example 7.5.

> fe.aov<-aov(Fe ~ Mining * Rocktype)

> shapiro.test(residuals(fe.aov))
Shapiro-Wilk normality test

data: residuals(fe.aov)

W = 0.33507, p-value < 2.2e-16

> summary(fe.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Mining 2 32282 16141  2.493 0.0898 .
Rocktype 1 15411 15411 2.380 0.1273
Mining:Rocktype 2 25869 12934 1.997 0.1431
Residuals 72 466239 6476

> gqgnorm(residuals(fe.aov)) #Figure 7.7

> fligner.test(residuals(fe.aov)~group)

Fligner-Killeen test of homogeneity of variances

data: residuals(fe.aov) by group
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Fligner-Killeen:med chi-squared = 23.781, df = 5,
p-value = 0.0002392

Neither factor nor the interaction appears significant at the a=0.05 level, as their p-values are all larger
than 0.05. However, the gross violation of the test’s assumptions of normality, shown by the Shapiro-Wilk
test and Q-Q plot (fig. 7.7), and of equal variance, shown in the boxplots (fig. 7.6) and by the Fligner-
Killeen test, must not be ignored. Perhaps the failure to reject / is due not to a lack of an influence, but to
the parametric test’s lack of power to detect these influences because of the violation of test assumptions.
We will examine that possibility in section 7.4.5. using a permutation test.

7.4.4 Interaction Effects in Two-factor ANOVA

Interaction is a synergistic or antagonistic change in the mean for a combination of the two factors,
beyond what is seen from individual factor effects. Without interaction, the effect of factor B is identical for
all groups of factor A, and the effect of factor A is identical for all groups of factor B. Plotting the means
of all a - b groups, with factor A on the x axis and factor B represented by different connecting lines (an
interaction plot—fig. 7.8), the lines are parallel, showing that there is no change in the effect of one factor
based on the levels of the second factor and thus there is no interaction.

When interaction is present (y&ifqéO), the treatment group means are not determined solely by the
additive effects of factors A and B alone. Some of the groups will have mean values larger or smaller
than those expected from the individual factors. The effect of factor A can no longer be discussed without
reference to which group of factor B is of interest, and the effect of factor B can likewise not be stated
apart from a knowledge of the group of factor A—the lines are not parallel. This is the pattern exhibited by
the mining history and rock type effects of the example 7.5 data (fig. 7.9). To create the interaction plot in
figure 7.9, use the R command

> interaction.plot(mining, rocktype,fe)

Unless it is known ahead of time that interactions are not possible, interaction terms should always be
included and tested for in multi-factor ANOVA models.

100
Factor.B

--- High
— Low

9.0

85 -

Mean of data

75

Group 1 Group 2 Group 3

Factor A

Figure 7.8. Interaction plot presenting the means of data in the six treatment groups from
example 7.5 showing no interaction between the two factor effects.
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Figure 7.9. Interaction plot showing interaction by the large nonparallel increase in the mean for
the combination of abandoned mining history and sandstone rock type.

745 Two-factor ANOVA on Logarithms or Other Transformations

A common approach for analysis of the two-way design with non-normal and heteroscedastic data
is to perform ANOVA on data transformed by a power transformation such as the logarithm. The purpose
of the power transformation is to produce a more nearly normal and constant-variance dataset. Using
logarithms models a multiplicative influence of each factor on the original scale, as the influences in log
units are additive. However, an ANOVA on transformed data is no longer a test for differences in means
on the original scale. Using logarithms, it is a test for differences in geometric means, an estimator of the
median of data on the original scale. Transforming data requires the analyst to understand that the test no
longer looks for differences in means. If the means are of interest, then a permutation test is a much better
approach than altering the data scale with a transformation. ANOVA on logarithms is often a very good
test for typical (median) differences between groups, though the assumptions about residuals for the log-
transformed data should always be checked.

Natural logarithms of the low-flow iron concentrations from example 7.5 are shown in figure 7.10.
Most of the treatment groups remain distinctly right-skewed even after the transformation, whereas the
unmined limestone (lime un) group appears less symmetric following transformation! There is nothing
magic in the log transformation. Any other transformation going down the ladder of powers (see chap. 1)
might, or might not, remedy positive skewness or unequal variance. It may instead alter a symmetric group
into one that is left-skewed, as with the lime un group here. The result could be that the assumptions of
ANOVA are no better met after transformation. If a test on means is desired, use a permutation test instead.

Example 7.6. Iron at low flows—Two-actor ANOVA using logarithms.

A two-factor ANOVA on iron concentrations was previously not found to be significant, with
obvious non-normality and unequal variance. To deal with these violations of assumptions, the ANOVA is
performed on the logarithms (fig. 7.10), testing differences in effects on geometric means instead of means
(on the original scale) for each factor.

> a2way=aov(log(fe)~mining*rocktype)

> summary(a2way)
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Figure 7.10. Boxplots of the natural logarithms of the iron data from example 7.5. Lime_ab,
limestone, abandoned mine; lime_re, limestone, reclaimed; lime_un, limestone, unmined; sand_ab,
sandstone, abandoned mine; sand_re, sandstone, reclaimed; sand_un, sandstone, unmined.

Df Sum Sq Mean Sq F value Pr(>F)
mining 2 69.75 34.87 15.891 1.92e-06
rocktype 1 26.31 26.31 11.990 0.000904
mining:rocktype 2 2.44 1.22 ©.556 0.575759
Residuals 72 158.01 2.19

Both mining and rock type factors are significant, showing that some combinations of the two factors
demonstrate higher geometric means, even though differences in means were not significant.

7.4.6 Fixed and Random Factors

An additional requirement of the previously given F-test equations is that both factors are fixed. With
a fixed factor, the inferences to be made from the results extend only to the treatment groups under study.
For the iron data, differences in chemistry are between the three specific mining histories. In contrast, a
random factor would randomly select several groups out of the larger possible set to represent the overall
factor. Inferences from the test results would extend beyond the specific groups being tested to the generic
factor itself. With random factors there is no interest in attributing test results to a specific individual group,
but only in ascertaining a generic effect caused by that factor.

As an example, suppose soil concentrations of a trace metal are to be compared between three particle
size fractions statewide to determine which of the three fractions is most appropriate as a reconnaissance
medium. Particle size is a fixed effect in this case—there is interest in those three specific sizes. However,
there could also be a second, random factor. Suppose that there is only enough funding to sample sparsely
if done statewide, so instead a random factor is incorporated to determine whether spatial differences occur.
Seven counties are selected at random and intensive sampling occurs within those counties. No sampling
is done outside of those counties. The investigator will determine not only which size fraction is best, but
whether this is consistent among the seven counties (the random effect), which by inference is extended to the
entire state. There is no specific interest in the counties selected, but only as they represent spatial variability.
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F-tests where all factors are random use the mean square for interaction as the denominator rather
than the mean square for error. Designs with a mix of random and fixed factors (called a mixed effects
design), as in the example above, have a mixture of types of mean squares as denominators. In general, the
fixed factors in the design use the interaction mean squares as denominators, and the random factors use
the error mean square, the reverse of what one might intuitively expect! However, the structure of mixed
effects F-tests can get much more complicated, especially for more than two factors. A good discussion of a
variety of ANOVA designs including mixed-effects models can be found in Aho (2016).

1.5 Two-factor Permutation Test

For two-factor and more complex ANOVA’s where the data within one or more treatment groups
are not normally distributed and may not have equal variances, permutation (also called randomization)
tests can evaluate both factor effects and interactions. Manly (2007) evaluated several proposed methods
for randomizing observations or randomizing residuals by subtracting the @ - b group means, producing
p-values more robust to violations of assumptions than classic ANOVA F-tests. The two most versatile
of the tests evaluated by Manly (2007) are implemented in the asbio package of R (Aho, 2019). These
methods randomize the original observations while preserving the number of observations allocated to each
factor, generalizing the method used in the permlway script. As with the permlway script, they compute
thousands of F-statistics after rearranging observations, and the proportion of F-statistics equal to or greater
than the observed F-statistic from ANOVA is the permutation p-value for each factor. Tests for interactions
as well as the primary factors are produced. Unlike nonparametric tests or ANOVA tests on logarithms,
permutation tests can determine whether group means differ as a result of factor effects rather than group
percentiles or geometric means. If the factor effects on group means are of interest, the permutation test
should be preferred over classical two-factor ANOVA when non-normality or unequal variance appear. For
water resources data, that is often the case.

Example 7.7. Iron at low flows—Two-actor permutation test.

A two-factor permutation test on iron concentrations is performed using the perm.fact.test
function in the asbio package. The current (v. 3.4 default of 100 permutation rearrangements is much too
small. Using 5,000 rearrangements only takes a few seconds, yet it provides much greater precision and
therefore repeatability of the resulting p-values.

> require(asbio)

> perm.fact.test(fe, mining, rocktype, perm=5000)

$Table

Initial.F Df pval
X1 2.492636 2 0.0008
X2 2.379906 1 0.0118
X1:X2 1.997428 2 0.0332
Residual NA 72 NA

X1 is the generic name assigned to the first factor listed in the input command (mining). X2 is the
generic name assigned to the second factor listed (rocktype). The interaction term is listed as X1:X2.
Although ANOVA was unable to find significance for either factor or for the interaction, all three tests
are significant using the permutation test. This agrees with what was obvious to the eye in figures 7.6 and
7.9, where group boxplots clearly differ for the three mining history categories, and the interaction plot of
figure 7.9 exhibited a large difference in mean concentration for sandstone as compared to limestone for the
abandoned mine sites. The loss in power resulting from the assumptions required for classic ANOVA is real
and common for water resources data, as our field data is usually much more strongly skewed and non-
normal than those of more controlled experiments in other disciplines. Permutation tests are vital, therefore,
to not miss effects that are actually present in data.



Chapter 7 Comparing Centers of Several Independent Groups

7.6 Two-factor Nonparametric Brunner-Dette-Munk (BDM) Test

The BDM test is a nonparametric test for multi-factor ANOVA designs that is particularly adept
at dealing with heteroscedastic data. The test determines whether the frequencies of high versus low
values have dissimilar patterns attributable to two or more factors. As with other nonparametric tests, no
assumptions of distributional shape are required. The test can evaluate one-factor and three-or-more-factor
designs, but is applied here to the two-factor layout. It is more powerful than the two-way ANOVA on
ranks method of Conover and Iman (1981) that was for many years the nonparametric test most familiar to
scientists for evaluating two factors simultaneously.

In their simulation study, Brunner and others (1997) found that when all assumptions of ANOVA
held, the BDM test had nearly the same power to detect factor effects as did classic ANOVA. When there
is heteroscedasticity or non-normality, BDM has greater power. It works well even when there are small
sample sizes in some combinations of the factors. Brunner and others summarize by saying that the test
“represents a highly accurate and powerful tool for nonparametric inference in higher-way layouts.”

The null hypothesis of the BDM test is that there are no changes in the cumulative distribution
function of data attributable to factor A, factor B, or to an interaction. After some interesting yet
computationally simple matrix algebra on ranks (in essence, distribution percentiles), a shift in the
distribution function attributable to factor A or B will cause an increase in the F-test statistic and rejection
of the null hypothesis. A shift beyond what is a result of either factor in one or more of the a - b group cells
will cause the test for interaction to be significant. The procedure is quite analogous to ANOVA, with the
difference that shifts in group distribution functions are being evaluated rather than shifts in group means.
The BDM test in implemented in the asbio package of R (Aho, 2019) with command BDM. 2way.

Example 7.8. Iron at low flows—Two-actor BDM test.
The BDM test is conducted on the iron dataset from example 7.5.

> BDM.2way(fe, mining, rocktype)

Two way Brunner-Dette-Munk test

df1 df2 F* P(F > F*)
X1 1.981511 64.36822 17.740921 7.885850e-07
X2 1.000000 64.36822 13.375242 5.152032e-04
X1:X2 1.981511 64.36822 3.709541 3.023646e-02

Again, X1 is the first factor listed in the command (mining), and X2 is the second (rocktype). The
interaction term is listed as X1:X2. Although ANOVA was unable to find significance for either factor or for
the interaction, all three tests are significant using the nonparametric procedure.

BDM is a better choice than ANOVA if data violate the normality and constant variance assumptions
of ANOVA, and if the objective is to determine whether data values of groups differ from one another. If
the objective is specifically to determine whether mean values differ between groups, a permutation test is a
better choice than ANOVA when ANOVA assumptions are violated.

7.1 Multiple Comparison Tests

In most cases the analyst is interested not only in whether group medians or means differ, but which
groups differ from others. This is information not supplied by the tests presented in the previous sections,
but by methods called multiple comparison tests (MCTs). MCTs compare (often, all possible) pairs of
treatment group medians or means; there are both parametric and nonparametric MCTs. With all possible
comparisons, interest is in the pattern of group medians or means, such as

mean(group A)=mean(group B) <mean(group C).
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However, if each pair of groups is tested using an A— of 0.05 (the pairwise error rate), the overall
probability of making at least one error, called the overall or family error rate, o iy will be much higher
than 0.05. With comparisons among all k groups, the number of pairwise comparisons made is c=k(k—1)/2

and the family error rate is
afamily = 1 - (1 - apairwise )C N (7 1 0)

For example, when comparing six group means, there are (6 -5)/2=15 pairwise comparisons.

If O imise — 0-05 Were used for eachtest, the probability of making at least one error in the pattern is
L pm.rw,,se)”: 0.54. There’s about a 50 percent chance that at least one of the comparisons shown
in the pattern of the six groups is incorrect. MCTs set the o Camity AL the desired level such as 0.05, making the

 airwise much smaller than 0.05. Each individual test must produce a p-value smaller than O irise in order
for the difference to be significant. The much-older Duncan’s multiple range, Student-Newman-Keuls
(SNK), and Least Significant Difference (LSD) MCTs incorrectly used the pairwise a for each comparison,
increasing the probability of finding false differences in the group pattern. This led to the recommendation
that MCTs should be used only after a significant ANOVA or Kruskal-Wallis test was first found. That
recommendation is not necessary for MCTs using the family error rate, though it is the typical order of
testing even now.

Different MCTs have differing formulae to correct from the family to the pairwise error rate.

a Samily

The simplest is the Bonferroni correction, where =a For 6 group means, to achieve a

pairwise *

Bonferroni family error rate of 0.05, each of the 15 pairwise group comparisons would need a p-value
below (0.05) /15=0.003 to find a significant difference between each pair of group means. Most MCT
software reports the result of pairwise tests after converting the p-value to the family rate equivalent, for
this example by multiplying by 15. For example, if one of the 15 tests comparing 2 of the 6 group means
achieved an o of 0.01, it would be reported as p=0.15 on the output so that the user could compare it

directly to the?arwgm of 0.05, and know to not reject the null hypothesis.

family

If prior to testing it is known that only a few pairwise tests are of interest, for example, sites B, C,
and D will be compared only to control site A but not to each other, the number of comparisons made
(c=3) is fewer than all possible, and Rty will be more similar to [CA— These more specific tests are
called contrasts.

Aho (2016) and Hochberg and Tamhane (1987) review many types of parametric MCTs. Hollander
and Wolfe (1999) discuss nonparametric multiple comparisons. Benjamini and Hochberg (1995) developed
a now widely used correction minimizing the false discovery rate rather than the family error rate. First
developed for genomics, their approach is applicable to water resources, and environmental studies in
general. It is discussed further in section 7.7.2.

1.11 Parametric Multiple Comparisons for One-factor ANOVA

Parametric MCTs compare treatment group means by computing a least significant range or LSR,
the distance between any two means that must be exceeded in order for the two groups to be considered

significantly different at a family significance level, a,, . If |)71 —§2| >LSR =Qv/s’ /n , then ¥, and y, are
significantly different.

The statistic Q is analogous to the t-statistic in a ¢-test. Q depends on the test used (and is some
function of either a #- or studentized range statistic, g, the error degrees of freedom from the ANOVA, and
., The variance, 5%, is the mean square for error (residual) from the ANOVA table.

A few MCTs are valid only for the restrictive case of equal sample sizes within each group. In
contrast, the Tukey’s Honest Significant Difference (HSD), Scheffe, and Bonferroni tests can be used
with both equal and unequal group sample sizes. These MCTs compute one least significant range for all

pairwise comparisons. The harmonic mean sample size
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. 2nn
harmonic meanof n, and n, = ——=2- , (7.11)
n +n,

is substituted for # in the case of unequal group sample sizes. Of these tests, Tukey’s has the most power
as its correction from family to pairwise error rates is the smallest. Thus, Tukey’s has become the standard
procedure for parametric MCTs.

All parametric MCTs require the same assumptions as ANOVA—data within each group are normally
distributed and have equal variance. Violations of these assumptions will result in a loss of power to detect
differences that are actually present.

Example 7.9. Specific capacity—Tukey’s multiple comparison test.

The specific capacity data from Knopman (1990) were found to be non-normal and unequal in
variance. The natural logs y=In(specific capacity) better met these two critical assumptions. Boxplots of the
natural logs of the data are shown in figure 7.11. The ANOVA on logarithms found a significant difference
between the four rock types (p=0.0067). To determine which groups differ from others, Tukey’s MCT is
now computed.

> AnovaSC <-aov(log(spcap) ~ rock)

> summary (AnovaSC)
Df Sum Sq Mean Sq F value Pr(>F)
rock 3 54.0 18.010 4.192 0.00667 **

Residuals 196 842.2 4,297

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = log(specapic$spcap) ~ rock.type)

$rock.type
diff Iwr upr p adj

Lime-Dolo -1.09640600 -2.1706416 -0.02217037 0.0434850
Meta-Dolo -1.30175201 -2.3759876 -0.22751638 0.0104395
Sili-Dolo -1.16632001 -2.2405556 -0.09208439 0.0274778
Meta-Lime -0.20534601 -1.2795816 ©.86888962 0.9600526
Sili-Lime -0.06991401 -1.1441496 1.00432161 0.9982893
Sili-Meta ©.13543200 -0.9388036 1.20966762 0©.9879283

Pairwise p-values are presented in the p adj column after adjusting them to compare to the a amily of
0.05. For the six pairwise tests, Tukey’s p-values are <0.05 for differences between dolomite and the other
three groups. The other three pairwise group comparisons were not significant. The diff column lists the
differences in mean(log), where values for the nonsignificant tests are not different from zero. The results of
Tukey’s test can be summarized using the letters “b” for dolomite and “a” for limestone, metamorphic, and

siliciclastic rock types (fig. 7.11).
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Figure 7.11. Natural logs of specific capacity of wells in four rock types in Pennsylvania. Letters
below rock type names designate group. Data from Knopman (1990).

Dolomite has a letter “b” which differs from the other groups to show that dolomite has a mean log
significantly different from the other groups. The other group mean logarithms do not significantly differ
from one another, and so receive the same letter “a”. Another way to present these results is by plotting the
confidence intervals around differences in group means (fig. 7.12). If the confidence intervals include zero
there is no significant difference between group means.

1.1.2 Nonparametric Multiple Comparisons Following the Kruskal-Wallis Test

A conceptually simple nonparametric MCT to evaluate group patterns following a Kruskal-Wallis
test is to compute all possible pairwise Wilcoxon rank-sum tests, setting the tests’ error rates to achieve
the family error rate, LT~ of 0.05. This option is available in the pairwise.wilcox.test command
of R. This MCT creates separate rankings for each test of group pairs, which occasionally could lead to
inconsistent results such as A>B, B>C, but A» C. A strength of using separate ranks is that it allows
specific contrasts to be easily computed.

A second common nonparametric MCT is Dunn’s test (Dunn, 1964). This test differs from pairwise
rank-sum tests by using one set of joint (all-group) ranks to test each pairwise difference between groups.
These are the same ranks used in the Kruskal-Wallis test. Joint ranking avoids the inconsistent test result
pattern of the pairwise ranking scheme, and has slightly better power to detect extreme group differences,
although the rank-sum approach has slightly better power to detect differences in adjacent groups
(Hochberg and Tamhane, 1987). Critchlow and Fligner (1991) list several desirable attributes of MCTs,
determining that the separate rankings of pairwise rank-sum tests exhibit more of these attributes than
does Dunn’s test. Hochberg and Tamhane (1987) note that “separate rankings are still generally preferred
in practice.”

Of great importance is how a family error rate is translated into individual pairwise error rates. Dunn’s
test may be the most commonly available nonparametric MCT in software, but it is not the most powerful
of the nonparametric MCTs because it uses the Bonferroni correction. The R package PMCMR (Pohlert,
2014) computes the original Dunn’s test and a few modifications, including using the BH correction of
Benjamini and Hochberg (1995) instead of the Bonferroni correction.
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Figure 7.12. The 95-percent Tukey family confidence intervals on differences in group
means (log scale) of the data from Knopman (1990). Lime, limestone; dolo, dolostone;

meta, metamorphic; sili, siliciclastic.
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Benjamini and Hochberg (1995) developed a correction that controls the false discovery rate, the
expected proportion of false positives among the rejected hypotheses. The false discovery rate is equivalent
to the family error rate when all null hypotheses are true but is smaller otherwise. This criterion is less
stringent than the family error rate but is perhaps a more logical objective than « i because it focuses only

amily

on comparisons that significantly differ. The resulting benefit is that the BH correction is more powerful
than Bonferroni or other methods of adjusting p-values.
Here is how the BH correction works. Suppose we set the false discovery rate, g*, to 0.05. If there

are 6 groups there will be ¢ = @ or 15 pairwise comparisons. Compute all 15 compariSf)ns and sort
them by their p-values from low to high, i=1,2,...,15. Compare each p-value to the limit i(q*), starting
at i=135, the largest p-value. The largest p-value is compared to a limit of %(0.05) =0.05.cThe second
largest p—Value1 is compared to a limit of %(0.05)=0.0467, and on down to the smallest p-value, which is
compared to E(O.OS) =0.0033. The first computed p-value to fall below its limit is considered significant,
as are all smaller p-values. Suppose this is at the i= 4th lowest p-value of 0.010, which had been compared
to %(0.05) =0.0133. The pairwise comparisons with the four lowest p-values are therefore found to be

significant at the false discovery rate of 0.05. In contrast, the Bonferroni correction would have compared

all 15 p-values to a limit of E(O.OS)=0.OO33, resulting in fewer significant differences.

Controlling the false discovery rate is a reasonable goal for water resources. We recommend that the
false discovery rate (the BH correction in R) should be the prevalent adjustment method for pairwise rank-
sum or other nonparametric MCTs.

Example 7.10. Specific capacity—Nonparametric multiple comparisons.

The pairwise rank-sum test is computed for the specific capacity data using the BH false-discovery
rate p-value adjustment:

> pairwise.wilcox.test(spcap, specapic$rock, p.adjust.method = "BH")
Pairwise comparisons using Wilcoxon rank sum test
data: spcap and specapic$rock

Dolomite Limestone Metamorphic
Limestone 0.043 - -
Metamorphic  0.013 0.806 -
Siliciclastic 0.013 0.896 0.589

P value adjustment method: BH

The p-values for each paired comparison in the triangular format output have been adjusted to be
comparable to the desired &, . For this o, . 0f 0.05, medians for dolomite differ from all three of the
other rock types because they are lower than %y NO other significant differences are observed. Though
the output does not provide a letter diagram as did Tukey’s MCT, these test results would match those of
the Tukey’s letter diagram previously given for the mean logarithms.

To compute Dunn’s test using R, first load the PMCMR package. Execute the posthoc.kruskal.
dunn.test command and select the p.adjust.method="bonferroni" option to run the 1964 test.
Do not omit this option, or it will set a (default = 0.05) as the uncorrected a, instead of the a an

: : airwise family?
incorrect setting for an MCT.



Chapter 7 Comparing Centers of Several Independent Groups 191

> library(PMCMR)
> posthoc.kruskal.dunn.test(spcap,specapic$rock,

+ p.adjust.method="bonferroni")

Pairwise comparisons using Dunn’s-test for multiple

comparisons of independent samples

data: spcap and specapic$rock

Dolomite Limestone Metamorphic
Limestone 0.066 - -
Metamorphic ©0.011 1.000 -
Siliciclastic 0.072 1.000 1.000

P value adjustment method: bonferroni

Two-sided p-values for each pairwise comparison are seen in the triangle of results. The p-values are
adjusted to compare to the o, . . Medians for dolomite differ from metamorphic at the 5 percent level. No
other significant differences are observed. Fewer comparisons are significant than with pairwise rank-sum
tests using the BH adjustment. To directly compare the Dunn’s test results to pairwise rank-sum tests, use
the BH adjustment for Dunn’s test as well:

> posthoc.kruskal.dunn.test(spcap, specapic$rock, p.adjust.method =
"BH")

Pairwise comparisons using Dunn’s-test for multiple

comparisons of independent samples

data: spcap and specapic$rock

Dolomite Limestone Metamorphic
Limestone 0.024 - -
Metamorphic 0.011 0.689 -
Siliciclastic ©.024 0.973 0.689

P value adjustment method: BH

Using the BH false discovery rate provides more power to see pairwise differences than the original
Bonferroni correction, as seen by the lower BH p-values. The pattern of results with the BH adjustment is
the same as with the rank-sum MCT and the Tukey’s MCT on logarithms. It is the same pattern shown by
the quantile plots in figure 7.2. Although there are other nonparametric MCTs within R, the pairwise rank-
sum tests with BH correction for family error rate and Dunn’s test using the BH correction seem to have the
most power over a range of conditions.
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1.1.3 Parametric Multiple Comparisons for Two-factor ANOVA

Tukey’s MCT can be computed for one of two factors in a two-factor ANOVA by first adjusting the
data for the other factor. If A is the factor to be tested, the data are first adjusted for factor B by subtracting
the mean, 5/_, of the jth category of factor B from each of the y values.

yadjijk = Vg — 5‘,' s (7.12)

where
(SJ, is the influence (mean) of the jth category of factor B.

Tukey’s MCT is then computed on the adjusted y (yadjl.jk). The error degrees of freedom of the
pairwise one-factor tests are also reduced to that of the two-way ANOVA to acknowledge the presence of
factor B.

Tukey’s MCT for a two-factor layout requires the same assumptions as the two-factor ANOVA
itself—data within each of the a - b treatment groups are required to be normally distributed and have
equal variance. Violations of these assumptions will result in a loss of power to detect differences that are
actually present.

Example 7.11. Iron at low flows—Tukey’s multiple comparisons for two-factor ANOVA.

A two-factor ANOVA on the logarithms was previously computed in example 7.6, finding that both
factors (mining and rock type) were significant. Tukey’s MCT is now performed for the primary factor
of interest, mining. To focus on this effect only, the name of the primary factor is listed as input to the
TukeyHSD function below. The function then (internally) subtracts the mean In(fe) for a rock type from all
data of that rock type, to adjust for the effect of rock type. It then performs the MCT on the adjusted values
by mining category, producing the results.

> TukeyHSD(a2way, "mining")

Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = log(fe) ~ mining * rocktype)
$mining
diff lwr upr
Reclaimed-Abandoned -1.247771 -2.231040 -0.26450281
Unmined-Abandoned -2.313903 -3.297172 -1.33063505
Unmined-Reclaimed -1.066132 -2.049401 -0.08286381
p adj
Reclaimed-Abandoned ©.0092200
Unmined-Abandoned ©.0000010
Unmined-Reclaimed ©.0304423

From the p-values and the direction of differences (diff column), the Tukey tests determine that each
of the three mining categories have significantly different geometric means, in the order Abandoned >
Reclaimed > Unmined.

The TukeyHSD function is part of the base R package. There are other Tukey tests for a variety of
complicated ANOVA designs available in the TukeyC (Faria and others, 2019) package of R.
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1.1.4 Nonparametric Multiple Comparisons for Two-factor BDM Test

A nonparametric MCT analogous to the Tukey’s MCT of the previous section for parametric two-
factor ANOVA is to compute all possible pairwise Wilcoxon rank-sum tests for the primary factor after
subtracting medians of y for the secondary factor. Subtraction of medians defined by the second factor
adjusts for differences attributable to that factor. This is an adjustment for rocktype in the next example.

Example 7.12. Iron at low flows—Factorial pairwise rank-sum tests.

Using R, first compute a numeric group indicator for rocktype, then compute median iron
concentrations for each rocktype, and finally subtract the medians from the iron concentrations to
produce the adjusted iron concentrations (feadj). The relative effects (Rel. effects) indicate the relative
levels of adjusted iron concentrations for the three mining categories, in the order Abandoned > Reclaimed
> Unmined.

> Gpind = 1 + as.numeric(rocktype == "sandstone")

> rockmed <- c(median(fe[Gpind == 1]), median(fe[Gpind == 2]))
> feadj = fe - rockmed[Gpind]

> BDM.test(feadj, mining) $Q

Levels Rel.effects
1 Abandoned ©.6760355
2 Reclaimed  ©.5140533
3  Unmined 0.3099112

Pairwise Wilcoxon rank-sum tests on the adjusted concentrations using the BH correction for
the family error rate show that the three mining categories all significantly differ in their adjusted iron

concentrations at «, . =0.05.
family

> pairwise.wilcox.test(feadj, mining, p.adjust.method = "BH")

Pairwise comparisons using Wilcoxon rank sum test

data: feadj and mining

Abandoned Reclaimed
Reclaimed 0.01608 -
Unmined ©0.00012 0.00511
P value adjustment method: BH

1.8 Repeated Measures—The Extension of Matched-pair Tests

In chapter 6, tests for differences between matched pairs of observations were discussed. Each pair
of observations had one value in each of two groups, such as before versus after. The advantage of this
design was that it blocks out the differences from one matched pair (row) to another and so removes
unwanted noise. Such matching (or blocking) schemes can be extended to test differences among more
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than two groups. One observation is available for each combination of factor (columns) and block (rows)
to test for factor effects. This commonly used design is called repeated measures, as well as a randomized
complete block design, and in the case of parametric assumptions it is called the two-way ANOVA without
replication.

One example at the beginning of this chapter—detecting differences between three sampling or
extraction methods used at numerous wells—illustrates this design. The factor tested is the sampling or
extraction method, of which there are three types. The blocking effect is the well location; the well-to-
well differences are to be blocked out. One sample is analyzed for each sampling or extraction method at
each well.

With this design, observations, Y,» are broken down into four contributions:

yij,:u+yj+6i+eij , (7.13)
where
Yy is the individual observation in block 7 and group j;
u is the overall mean or median (over all groups),
Y; is the jth group effect, j=1,2,...,k;
J, is the ith block effect, i=1,2,...,n; and
€, is the residual difference between the individual observation and the combined group and

<

block effects.

Median polish provides resistant estimates of group and block effects. It is an exploratory technique,
not a hypothesis test. Related graphical tools determine whether the two effects are additive or not, and
whether the ¢, are normally distributed, as assumed by an ANOVA. If not, a transformation should be
employed to achieve additivity and normality before an ANOVA is performed. The Friedman and median
aligned ranks tests (sections 7.8.2. and 7.8.5.) are nonparametric alternatives for testing whether the median
factor effect is significant in the presence of blocking.

781 Median Polish

Median polish (Hoaglin and others, 1983) is an iterative process which provides a resistant estimate
of the overall median, n, as well as estimates o, of the group effects, %, and estimates b, of the block
effects, B. The usefulness of median polish lies in its resistance to the effects of outliers. The polishing
begins by subtracting the medians of each block (shown as the rows in table 7.8) from the data, leaving the
residuals. The median of these row medians is then computed as the first estimate of the overall median
and subtracted from the row medians. The row medians are now the first estimates of the row effects. Then
the median of each column is subtracted from the residual data and set aside. The median of the column
medians is subtracted from the column medians and added to the previous estimate of overall median.

The column medians now become the first estimates of the column effects. The entire process is repeated
a second time, producing an estimated overall median, m, row and column departures from the overall
median (estimates o, and b)), and a table of residuals, € estimating the €

Table 7.8. Mercury concentrations, in micrograms per gram, in periphyton (Walpole and Myers, 1985).

Date Site
1 2 3 4 5 6
1 0.45 3.24 1.33 2.04 3.93 5.93
2 0.10 0.10 0.99 431 9.92 6.49
3 0.25 0.25 1.65 3.13 7.39 4.43
4 0.09 0.06 0.92 3.66 7.88 6.24
5 0.15 0.16 2.17 3.50 8.82 5.39
6 0.17 0.39 4.30 291 5.50 4.29
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Figure 7.13. Boxplots showing mercury concentrations in periphyton along the South
River, Virginia, from upstream (site 1) to downstream (site 6). Data from Walpole and
Myers (1985).

Example 7.13. Mercury in periphyton—Median polish.

Mercury concentrations were measured in periphyton at six sites along the South River, Virginia,
above and below a large mercury spill (Walpole and Myers, 1985). Measurements were made on six
different dates. Of interest is whether the six sites differ in mercury concentration. Is this a one-way
ANOVA setup? No, because there may be differences among the six dates—the periphyton may not take
up mercury as quickly during some seasons as others. The dates are not randomly selected within each site
but are the same for each site. Differences between the six sampling dates are unwanted noise that should
be blocked out, hence date is a blocking effect. The data are presented in table 7.8 and boxplots by site in
figure 7.13. Median polish will provide an estimate of the magnitude of row (block) and column effects,
providing a magnitude of effects for the test results to follow. There appears to be a strong increase in

mercury concentration going downstream from site 1 to site 6, reflecting an input of mercury along the way.

The first step in computing median polish is to compute the median of each row (Date), and subtract
it from that row’s data. The residuals remain in the table (table 7.9). Next the median of the row medians
(2.64) is computed as the first estimate of the overall median, m. This is subtracted from each of the
row medians in table 7.10. The median of each column (Site) is then computed and subtracted from that
column’s data (table 7.11). The residuals from the subtractions remain in the table. Then the median of the
column medians (—0.16) is subtracted from each of the column medians and added to the overall median.
The result is shown in table 7.12.
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Table 7.9. Data from table 7.8 aligned by subtraction of row medians.

Site
Date i
1 9 3 4 5 6 Row median

(b)
1 =2.190 0.600 -1.310 —0.600 1.290 3.290 2.64
2 —2.550 —2.550 —1.660 1.660 7.270 3.840 2.65
3 —2.140 -2.140 —0.740 0.740 5.000 2.040 2.39
4 —2.200 —2.230 -1.370 1.370 5.590 3.950 2.29
5 —2.685 —-2.675 —0.665 0.665 5.985 2.555 2.84
6 —3.430 -3.210 0.700 -0.690 1.900 0.690 3.60

Table 7.10. Data from table 7.9 after subtraction of the median of row medians.
[-, no data]
Site
Date i
1 9 3 4 5 6 Row median

(b)
1 -2.19 0.60 -1.31 —0.60 1.29 3.29 0.00
2 -2.55 -2.55 —1.66 1.66 7.27 3.84 0.01
3 —-2.14 —-2.14 -0.74 0.74 5.00 2.04 —0.25
4 —2.20 —2.23 -1.37 1.37 5.59 3.95 -0.35
5 —2.69 —2.68 —0.67 0.67 5.99 2.56 0.20
6 —3.43 -3.21 0.70 -0.69 1.90 0.69 0.96

Overall median m=2.64

Table 7.11. Data from table 7.10 after subtractions of column medians from their respective column’s data.

Site
Date 1 ) 3 4 5 6 Row effect
(h)

1 0.19 2.99 —0.29 —1.31 —4.01 0.37 0.00
2 -0.17 —0.16 —0.64 0.95 1.97 0.92 0.01
3 0.24 0.25 0.28 0.03 —0.30 —0.88 —0.25
4 0.18 0.16 —0.35 0.66 0.29 1.03 —0.35
5 —0.31 —0.29 0.35 —0.04 0.69 —0.36 0.20
6 —1.05 —0.82 1.72 —1.40 —3.40 —2.23 0.96
Column 238 239 ~1.02 0.71 530 2.92

effect
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Table 7.12.  First polish of the periphyton data of Walpole and Myers (1985).

Site
Date 1 ) 3 4 5 6 Row effect
(b)
1 0.19 2.99 —0.29 —1.31 -4.01 0.37 0.00
2 —0.17 —0.16 —0.64 0.95 1.97 0.92 0.01
3 0.24 0.25 0.28 0.03 -0.30 —0.88 —0.25
4 0.18 0.16 —0.35 0.66 0.29 1.03 -0.35
5 —0.31 —0.29 0.35 —0.04 0.69 —0.36 0.20
6 —1.05 —0.82 1.72 —1.40 —3.40 —2.23 0.96
Column —2.22 —2.23 —0.86 0.87 5.46 3.08 m=2.48

effect

The first polish of the data from Walpole and Myers (1985) is shown in table 7.12. Two or more
polishes are performed in order to produce more stable estimates of the overall median m, as well as row
and column effects. For a second polish, the above process is repeated on the table of residuals from the
first polish (table 7.12). Median polish is accomplished in R by

> medpolish(Merc)

1: 31.28
2: 26.71
Final: 26.71

Median Polish Results (Dataset: "Merc")

Overall: 2.428438

Row Effects:
Datel Date2 Date3 Dated Date5 Dateb
-0.0031250 0.3612500 -0.0946875 0.0031250 0.0528125 -0.2446875

Column Effects:
Sitel Site2 Site3 Site4d Site5 Site6
-2.2075000 -2.2025000 -0.8895313 ©0.9075000 5.2523438 3.2067187

Residuals:

Sitel Site2 Site3 Sited Site5 Site6
Datel ©.23219 3.01719 -0.20578 -1.29281 -3.74766 ©0.29797
Date2 -0.48219 -0.48719 -0.91016 ©0.61281 1.87797 0.49359
Date3 ©.12375 ©0.11875 ©0.20578 -0.11125 -0.19609 -1.11047
Date4 -0.13406 -0.16906 -0.62203 0.32094 0.19609 0.60172
Date5 -0.12375 -0.11875 ©0.57828 ©.11125 1.08641 -0.29797
Date6 ©.19375 ©0.40875 3.00578 -0.18125 -1.93609 -1.10047
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The overall, row, and column effects are those after several polishes were computed. The Merc format
used is a data matrix, see the commands file in SM.7 to set up data in this format. The median polish shows
that

1. The site (column) effects are large in comparison to the date (row) effects.

2. The site effects show a generally increasing pattern going downstream (Site 1 to Site 6), with the
maximum at Site 5.

3. Alarge negative residual (—3.75) occurs at Site 5 on Date 1. This is a smaller concentration than
expected for this site if the site effect was consistent across all dates.

A boxplot of residuals, e (fig. 7.14) provides a look at the distribution of errors after the factor and
block effects have been removed; the figure shows that the residuals from median polish are relatively
symmetric. This is true after subtracting medians, but may not be true when subtracting group means using
ANOVA. Median polish is helpful in deciding whether to use an aligned-ranks test (see section 7.8.5.),
where symmetry is assumed.

182 The Friedman Test

The Friedman test is an extension of the sign test and reduces to the sign test when comparing only
two treatment groups. Its advantages and disadvantages in comparison to analysis of variance are the same
as that of the sign test to the z-test. When the residuals, e,, can be considered normal with equal variance
in each group, ANOVA will have more power. For the many situations where the residuals are not normal,
the Friedman test will generally have greater power to detect differences between treatment groups and
should be performed. The Friedman test is especially useful for ordinal data—data that can be ranked but
differences between observations cannot be computed, as when comparing a <I to a 5.

The Friedman test is used to determine whether

H,:  The median values for all treatment groups are identical.

H,: At least one treatment group median is significantly different.
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Figure 7.14. Residuals from the median polish of periphyton mercury data from
Walpole and Myers (1985).
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As with the Kruskal-Wallis test, the test does not provide information on which medians are
significantly different from others. That information must come from the associated multiple comparison
test presented in section 7.8.4.

1.8.3 Computation of the Friedman Test

Understanding the test statistic provides insight into how the Friedman test works. Data are ranked
only within each block, not by making any cross-rankings between blocks. With & treatment groups
(columns), rank the data within each of the n blocks (rows) from 1 to &, from smallest to largest. If the null
hypothesis is true, the ranks within each row will vary randomly with no consistent pattern. Second, sum
the ranks for each group (column). When the null hypothesis is true, the average rank for each group will
be close to the overall average rank of (k+1)/2. When the alternative hypothesis is true, the average group
rank will differ from one another and from the overall average rank. Third, compute the test statistic X7,
which squares the differences between the average group rank, Ej, and the overall rank to determine if the &
groups differ in magnitude:

Xf = i[}@ —ﬂ} ) (7.14)

Iman and Davenport (1980) state that the exact test should be used for all cases where the number
of treatment groups plus the number of blocks (k+n) is <9. For larger sample sizes a large-sample
approximation is sufficient. When observations are tied within a block, assign the average of their ranks to
each. Xf must be corrected using equation 7.15 when ties within a block occur:

12n FT k1T
1 J— s = , 7.15
k(k+l)_n(k_l)zz':lzj':l(tij(j _]))F 2 ( :

where 7, equals the number of ties of extent j in row i. When ties occur, the large-sample approximation
using a chi-squared distribution with £—1 degrees of freedom must be used. R computes the test as
friedman.test.

Example 7.14. Mercury in periphyton—Friedman test.

Does the median mercury concentration in periphyton differ for the six sites along the South River
of Virginia (fig. 7.13 and table 7.8)? There are sufficient columns and rows to employ the large-sample
approximation, and because ties are present the approximation is required. The friedman.test function
has the following order of arguments: (Data values, groups, blocks).

> friedman.test(Hg, Site.hg, Date.hg)

Friedman rank sum test
data: Hg, Site.hg and Date.hg
Friedman chi-squared = 25.577, df = 5, p-value = 0.0001078

The median mercury concentration differs significantly between the six sites.

1.8.4 Multiple Comparisons for the Friedman Test

The decision of which groups’ data differ from others can be determined using a multiple comparison
test. The MCT associated with Friedman’s test (Hollander and Wolfe, 1999) controls the family error rate
using Bonferroni’s adjustment, so it will have less power than previous MCTs using the BH adjustment.
The test uses the difference in the mean group rank, rejecting the null hypothesis (/: No difference in mean
rank) when differences are larger than expected. As with Dunn’s MCT, Friedman ranks are joint ranks,
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so values for data in the (k—2) groups not being compared do affect the computation of each test. For this
situation where there is only one observation per cell, an MCT using separate rankings for each pairwise
comparison, such as a series of sign or signed-rank tests, would have little power unless there were many
rows (blocks). For the mercury data in table 7.8, a sign test between the first and fifth columns would have
only six pairs of observations to use. Even though the fifth column has concentrations higher than the first
column for all six pairs, the resulting p-value will not be below 0.05 as a result only of the small sample
size. For a two-factor analysis without replication, the joint Friedman ranks provide more information to
determine group differences than would separate pairwise rankings.

Example 7.15. Mercury in periphyton—Pairwise Friedman comparison test.

The pairw.fried function in the asbio package (Aho, 2019) scales the reported p-values to

compare to the family error rate, whose default Rty is 0.05.

> pairw.fried(Hg, Site.hg, Date.hg, 6)

95% confidence intervals for Friedman’s comparisons

Diff Lower Upper Decision Adj. P-value
Site 1-Site 2 -0.66667 -3.83704 2.50371 FTRHO 1
Site 1-Site 3 -1.83333 -5.00371 1.33704 FTRHO 1
Site 2-Site 3 -1.16667 -4.33704 2.00371 FTRHO 1
Site 1-Site 4 -2.33333 -5.50371 0.83704 FTRHO 0.461303
Site 2-Site 4 -1.66667 -4.83704 1.50371 FTRHO 1
Site 3-Site 4 -0.5 -3.67038 2.67038 FTRHO 1
Site 1-Site 5 -4.5 -7.67038 -1.32962 RejectHo 0.000465
Site 2-Site 5 -3.83333 -7.00371 -0.66296 RejectHo 0.005801
Site 3-Site 5 -2.66667 -5.83704 0.50371 FTRHO 0.20332
Site 4-Site 5 -2.16667 -5.33704 1.00371 FTRHO 0.672934
Site 1-Site 6 -3.66667 -6.83704 -0.49629 RejectHo 0.010307
Site 2-Site 6 -3 -6.17038 ©0.17038 FTRHO 0.082178
Site 3-Site 6 -1.83333 -5.00371 1.33704 FTRHO 1
Site 4-Site 6 -1.33333 -4.50371 1.83704 FTRHO 1
Site 5-Site 6 ©.83333 -2.33704 4.00371 FTRHO 1

For the periphyton mercury data from table 7.8, Site 5 differs from Sites 1 and 2, and Site 6 differs
from Site 1.

1.85 Aligned-ranks Test

The Friedman test is the multi-treatment equivalent of the sign test. In chapter 6 the signed-rank test
was presented in addition to the sign test, and was favored over the sign test when the differences between
the two treatment groups were symmetric. An extension to the signed-rank test for three or more treatment
groups is the Aligned-ranks test (ART), one of several possible extensions—Quade’s test (Conover, 1999)
and Doksum’s test (Hollander and Wolfe, 1999) are others. Groggel (1987) and Fawcett and Salter (1984)
have shown that an aligned-rank method has substantial advantages in power over other signed rank
extensions. For more information on ART methods, see the textbook by Higgins (2003), as well as papers
by Mansouri and others (2004), Richter and Payton (2005), and Wobbrock and others (2011). Discussion of
the MCT for the two-way design without replication is found in Barefield and Mansouri (2001).
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Friedman’s test computes within-block ranks, avoiding the confusion produced by block-to-block
differences. ART instead allows comparisons across blocks by first subtracting the within-block mean
from all of the data within that block. This adds additional information and degrees of freedom to tests,
increasing the power over the Friedman within-block only approach. Subtracting the block mean aligns the
data across blocks to a common center.

To compute aligned ranks, first subtract the ith block mean, 8, i=1,2,...,n, from each observation, Yy

0,=(y,-8) . (7.16)

where j=1,2, ...,k is the number of groups. Then the 0, are jointly ranked from 1 to N, where N=n -k is the
number of observations, forming aligned ranks, AR . A one-way ANOVA or BDM test is then performed on
the AR,

Aligned ranks are equivalent to the ranking of magnitudes of row-to-row differences in the signed
ranks test. To derive the benefits of these cross-block comparisons, a cost is incurred. The cost is an
assumption that the residuals, €5 from the ANOVA are symmetric. Symmetry can be evaluated by
estimating the residuals using median polish, or by computing them in the ANOVA process and plotting
them on a boxplot, as in figure 7.14.

The null and alternate hypotheses are identical to those of the Friedman test:

H,: The median values for all groups are identical.

H,: Atleast one group median is significantly different.

Though a one-way ANOVA on the aligned ranks is computed, the correct F-test will differ from
the one determined for the group effect by ANOVA software. Instead, the error degrees of freedom must
be (k—1) - (n—1) because of blocking, not k- (n—1) as for a one-way ANOVA. Variations of the test are
available in the R package ARTool (Kay and Wobbrock, 2016).

Richter and Payton (2005) have shown that performing a BDM test on aligned ranks has greater power
than using ANOVA on either the original data or on aligned ranks, though to date (2018) it has been less
commonly used than ANOVA on aligned ranks.

Example 7.16. Mercury in periphyton—Aligned-ranks test.

The periphyton mercury data in table 7.8 are first aligned by subtracting block (row) means. These
aligned concentrations (ac) are then ranked from 1 to N=36 to form aligned ranks (table 7.13). Tied
aligned concentrations are given tied ranks.

> ac = Merc
> for (i in 1:1length(levels(Date.hg))) {
+ ac[i,] = Merc[i,] - mean(Merc[i,]) }

> alrk = rank(ac) # alrk are shown in Table 7.12

Table 7.13.  Aligned ranks (alrk) of the aligned periphyton mercury data from table 7.8.

Date Site

1 2 3 4 5 6
1 12.0 21.0 14.0 17.0 24.0 32.0
2 1.5 1.5 8.0 23.0 36.0 30.0
3 9.5 9.5 15.0 20.0 33.0 27.0
4 6.0 5.0 13.0 22.0 34.0 31.0
5 3.0 4.0 16.0 19.0 35.0 28.0
6 7.0 11.0 26.0 18.0 29.0 25.0
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A one-way analysis of variance is conducted on the aligned ranks. However, the standard ANOVA
F-test from the summary command is incorrect, as its error degrees of freedom are 7 - (k—1)=30 and it does
not correctly reflect the alignment process. The error degrees of freedom for ART should be (n—1) - (k—1)=25
rather than 30. To calculate the correct p-value, get the probability of equaling or exceeding the test statistic
from the F-distribution (pf function), setting 25 as the degrees of freedom for the MSE:

> summary(aov(alrk ~ Site.hg))

Df Sum Sq Mean Sq F value Pr(>F)
Site.hg 5 3222 644.5 29.22 1.12e-10 ***
Residuals 30 662 22.1

> Ftest = (644.5)/(662/25)
> pf(c(Ftest), dfl = 5, df2 = 25, lower.tail = FALSE)
[1] 7.342276e-09

The small p-value of 7.3e-9 shows that H can be strongly rejected, concluding that median mercury
concentrations in periphyton differ among the six sites. To avoid the manual computation above, the
ARToo1 package will use the correct degrees of freedom for each test without requiring the above manual
adjustment. ARTool also computes aligned-rank tests as a nonparametric alternative to two-factor ANOVA
when there are replicates in each cell, and for other ANOVA designs.

The BDM test on aligned ranks is an alternative to using ANOVA on aligned ranks. The tests provide
similar results for the periphyton mercury data. Both are nonparametric alternatives to the parametric ANOVA
of section 7.8.7. Neither aligned-ranks test provides information on which group medians significantly differ
from others, that must come from a multiple comparison test.

> BDM.test(alrk, Site.hg)

One way Brunner-Dette-Munk test
df1 df2 F* P(F > F*)
3.580639 20.0602 29.22015 6.914315e-08

1.8.6 Multiple Comparisons for the Aligned-ranks Test

Group multiple comparisons following ART take advantage of the data alignment by not requiring
paired tests to be performed. A sequence of paired ¢-tests or paired Wilcoxon tests would be less powerful
because there are few blocks (pairs) with which to conduct those tests. By using aligned-ranks, the block
effect is factored out and the relations across blocks can be utilized, increasing degrees of freedom and the
power of the test. Tukey’s tests on aligned ranks are the natural follow-up to ANOVA on aligned ranks to
determine which group levels differ from others.

> TukeyHSD(aov(alrk ~ Site.hg))

Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = alrk ~ Site.hg)
$Site.hg
diff Iwr upr p adj
Site 2-Site 1 2.166667 -6.0804028 10.413736 0.9654676
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Tukey’s tests find that four of the five adjacent site pairings do not differ—Site 4 does differ from
Site 5. All nonadjacent sites differ from one another. If instead of ANOVA the BDM test was performed on
aligned ranks, the natural follow-up is a series of Wilcoxon rank-sum tests to determine which groups differ

from others.

> pairwise.wilcox.test(alrk, Site.hg, p.adjust.method = "BH")

3-Site
4-Site
5-Site
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3-Site
4-Site
5-Site
6-Site
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5-Site
6-Site
6-Site
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333333
333333
333333
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500000
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Q.
5.
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-1.
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0862639
0862639
0862639
5804028
9195972
9195972
9195972
7470695
2529305
2529305
7529305
7529305
. 2470695

21.
33.
30.
14.
19.
31.
28.
12.
24.
21.
20.
17.

5.

580403
580403
580403
913736
413736
413736
413736
747069
747069
747069
247069
247069
247069

5862639 17.080403 0.0302535
.0003898
.0000000
.0000000
.1689032
.0034203
.0000000
.0000004
.5675393
.0000153
.0003289
.0014989
.0261206
.8748662

Pairwise comparisons using Wilcoxon rank sum test

data:

Site
Site
Site
Site
Site

alrk and Site.hg

Site 1 Site 2

0.8095

0.0130

2
3
4 0.0046
5

0.0046

6 0.0046

.1074 -

Site 3

0
0.0354 0.0812
0

.0046 0.0072

0.0046 0.0072

Site 4

0.0046
0.0046

P value adjustment method: BH

The Wilcoxon tests find the same pattern of differences and similarities as did Tukey’s test. Both are
determining whether medians or cumulative distribution functions of the groups differ, as ranks were taken
before computing the tests. The Wilcoxon MCT on aligned ranks has a bit more power than Tukey’s MCT

on aligned ranks (Barefield and Mansouri, 2001).

Site 5

(4]

7.8.7 Two-factor ANOVA Without Replication

The parametric alternative to a Friedman’s test for a complete block design is a two-factor ANOVA
with only one observation per factor-block combination. The first factor is the effect of interest and the
second factor is the block effect. The block effect is of no interest except to remove its masking of the factor
effect, so no test for its presence is required. Because there is only one observation per cell, it is impossible

to test for an interaction.

.1925
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The hypotheses are similar to those of the Friedman and ART tests, except that treatment group means,
rather than medians, are being tested.

H,: The treatment group means are identical, u,=u,=... =4,.
H,: Atleast one mean is significantly different.

The ANOVA model without replication is

Yy =Mty +6 te; (7.17)

where
Yy is the individual observation in block i and group J;
U is the overall mean;
Y, is the jth group effect, j=1,2,...,k;
. is the ith block effect, i=1,2,...,n; and
is the residual between the individual observation and the combined group and block
effects.

It is assumed that the residuals, € follow a normal distribution. ANOVA does not provide information
on which means differ from others; that must come from a multiple comparison test.

1.88 Computation of Two-factor ANOVA Without Replication

Sums of squares for factor, block, and error are computed using the following formulae (table 7.14).
These are divided by their appropriate degrees of freedom to form mean squares.

The factor F-test is the MSF divided by the MSE, to be compared to quantiles of the F-distribution for
evaluation of its significance. We aren’t interested in the block effect, so its test can be ignored. The general
structure for a two-factor ANOVA table without replication is found in table 7.15.

Reject the null hypothesis for the factor effect when the F-test with statistic MSF/MSE has a p-value
less than the desired a.

Table 7.14.  Sums of squares definitions for two-factor ANOVA.

[SS, Sum of squares; SSF, SS for factor; SSB, SS for block; SSE, SS for error]

Sums of squares formula Effect
o P e -2
DD I .
n kn
nl k 7T k n 72
RN
k kn

SSE = Total SS — SST — SSB ¥y h

k n 2
Total S = ZkZ”y2 _@ Y, H
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Table 7.15. Analysis of variance (ANOVA) table for two factors without replication.

[df, degrees of freedom; SS, sums of squares; SSF, SS for factor; SSB, sum of squares for block; SSE, sum of
squares for error; MS, mean square; MSF, mean square for factor; MSE, mean square for error; F, F-test statistic;

-, not applicable]

Source df SS MS F p-value
Factor/treatment  k—1 SSF SSF/(k—1) MSF/MSE -
Block n—1 SSB SSB/(n—1) - -
Error (k—1)-(n—1) SSE SSE/[(k—1) - (n—1)] - -

Example 7.17. Mercury in periphyton—ANOVA without replication.

A two-factor ANOVA without replication is calculated directly on the periphyton mercury
concentrations from table 7.8. The null hypothesis for the group (Site.hg) effect is soundly rejected.
Note that no test for interaction is performed as there is only one observation per cell. The residuals are
sufficiently normal—their Shapiro-Wilk test null hypothesis was not rejected.

> Hg.aov=(aov(Hg~Site.hg+Date.hg))

> summary(Hg.aov)

Df Sum Sq Mean Sq F value Pr(>F)
Site.hg 5 230.13 46.03 26.14 3.54e-09 ***
Date.hg 5 3.26 0.65 0.37 0.864
Residuals 25 44.02 1.76

> shapiro.test(residuals(Hg.aov))

Shapiro-Wilk normality test
data: residuals(Hg.aov)

W = ©0.9469, p-value = 0.08354

1.8.9 Parametric Multiple Comparisons for ANOVA Without Replication

Pairwise paired ¢-tests will take the blocking structure into account (the blocks form matched pairs)
while comparing all pairs of group means. Because no alignment was performed, Tukey’s test is not
appropriate, as it doesn’t take the blocking structure into account. The BH adjustment is used to minimize
the false positive error rate.
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Example 7.18. Mercury in periphyton—Pairwise paired #-tests.

> pairwise.t.test(Hg, Site.hg, p.adjust.method = "BH", paired=TRUE)

Pairwise comparisons using paired t tests

data: Hg and Site.hg

Site 1 Site 2 Site 3 Site 4 Site 5

Site 2 0.32796 - - - -
Site 3 0.03132 0.19636 - - -
Site 4 0.00227 0.03132 0.11517 - -
Site 5 0.00253 0.00962 0.01181 0.00358 -
Site 6 0.00061 0.00227 ©0.01383 0.00608 0.11189

P value adjustment method: BH

Because the residuals follow a normal distribution and variances are not too dissimilar, the pattern
of group differences and similarities is essentially the same for pairwise paired #-tests as they were for the
nonparametric aligned-rank MCTs.

7.9 Group Tests for Data with Nondetects

The methods quickly described in this section extend those given for two groups in chapter 5 and are
described in far more detail in the textbook by Helsel (2012). The most convenient and powerful procedure
is to recensor data so that all observations below the highest detection limit (HDL) are noted as <HDL.

No alterations are needed if only one detection limit is present, then any of the nonparametric methods

of this chapter can be computed with little loss of information. This method has far more power to detect
differences than would substitution followed by a parametric test, as observations small enough to be below
detection are certainly nearing the lower bound of zero, resulting in an overall skewed distributional shape.
The ranks of all <HDLs will be tied, so software must include tie corrections (as does R) to obtain accurate
p-values.

For example, table 7.16 presents the mercury concentrations of table 7.8 where concentrations below
0.20 have been censored as <0.20. These could have come from data measured with detection limits of
0.10, 0.15, and 0.20.

Table 7.16. Mercury concentrations, in micrograms per liter, in periphyton (Walpole and Myers, 1985), altered to
have a detection limit of 0.20.

Date Site
1 2 3 4 5 6
1 0.45 3.24 1.33 2.04 3.93 5.93
2 <0.20 <0.20 0.99 431 9.92 6.49
3 0.25 0.25 1.65 3.13 7.39 4.43
4 <0.20 <0.20 0.92 3.66 7.88 6.24
5 <0.20 <0.20 2.17 3.50 8.82 5.39
6 <0.20 0.39 4.30 291 5.50 4.29
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The Friedman test can be run on these data using any value less than 0.20 to represent each nondetect.
This preserves any detected 0.20 values as higher than the nondetects. A suggested practice is to use
something like a value of negative one so that this unusual value is not mistaken later for a numerical
laboratory measurement.

> Hg.nd = Hg
> Hg.nd[Hg < 0.20] = -1
> friedman.test(Hg.nd, Site.hg, Date.hg)

Friedman rank sum test

data: Hg.nd, Site.hg and Date.hg
Friedman chi-squared = 25.825, df = 5, p-value = 9.648e-05

The p-value is within 0.00001 of that for the Friedman test on the mercury data without censoring
(»=0.0001). This demonstrates that the tied ranks obtained from the nondetects made little difference in the
overall test result. Substitution followed by ANOVA, on the other hand, results in non-normality resulting
from many tied and low concentrations and inaccurate measures of variance that change depending on
which number below the detection limit is substituted (Helsel, 2012).

Although better and more powerful tests are available from the field of survival analysis for data
with nondetects (Helsel, 2012), simple nonparametric tests for data with one reporting limit, or for data
recensored to the highest reporting limit, perform much better than ANOVA and are simple to explain
to others.
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Exercises

Discharge from pulp liquor waste may have contaminated shallow groundwater with caustic, high pH
effluent (Robertson and others, 1984). Determine whether the pH of samples taken from three sets

of piezometers are identical. One piezometer group is known to be uncontaminated. If not identical,
which groups are different from others? Which are contaminated? Be sure to check the normality and
equal variance assumptions of ANOVA if using this parametric method.

pH of samples taken from piezometer groups

BP-1 7.0 7.2 7.5 7.7 8.7 7.8
BP-2 6.3 6.9 7.0 6.4 6.8 6.7
BP-9 8.4 7.6 7.5 7.4 93 9.0

Feth and others (1964) measured chloride concentrations of spring waters draining three different rock
types in the Sierra Nevada—granodiorites, quartz monzonites, and undifferentiated granitic rocks.
Determine whether chloride concentrations differ among springs emanating from the three rock types.
Check the assumptions of ANOVA before using it. Try the permutation test as well. The data are in
feth. rda. If differences occur, which rock types differ from the others?

The number of Corbicula (bottom fauna) per square meter for a site on the Tennessee River was
presented by Jensen (1973). The data from Jensen’s Strata 1 are found in Corb. rda. Test the
Corbicula data to determine whether either season or year are significant factors for the number of
organisms observed. If significant effects are found, test for which levels of the factor differ from
others.

Stelzer and others (2012) conducted fecal-indicator quantitative polymerase chain reaction (QPCR)
assays to determine if three laboratories were providing similar results. Splits of 15 river samples
and 6 fecal-source samples were sent to each of the 3 laboratories. Data for AllBac, a general fecal-
indicator assay are found in allbac.rda. With the samples as blocks, perform Friedman’s test, the
ART, and two-way ANOVA without replication to decide whether at least one laboratory provided
higher/lower results than the others. Use a multiple comparison test to determine which labs differ
from others.



Correlation

Concentrations of atrazine and nitrate in shallow groundwaters are measured in wells over an area
of several counties. For each sample, the concentration of atrazine is plotted versus the concentration of
nitrate. As atrazine concentrations increase, so do nitrate. How might the strength of this association be
measured and summarized? Can nitrate concentrations be used to predict atrazine concentrations?

Streams draining the Sierra Nevada in California usually receive less precipitation in November than
in other months. Has the amount of November precipitation gradually changed over the past 70 years?

Streamflow observations at two streamgages appear to respond similarly to precipitation events over
the same period of time. If one streamgage has more observations than the other, can the observations from
that streamgage be used to fill in portions of the streamflow record missing from the other streamgage?

These examples require a measure of the strength of association between two continuous variables.
Correlation coefficients are one class of measures that can be used to determine this association. Three
correlation coefficients are discussed in this chapter. Also discussed is how the significance of an
association can be tested to determine whether the observed pattern differs from what is expected entirely
owing to chance. For measurements of correlation between noncontinuous or grouped variables, see
chapter 14.

Whenever a correlation coefficient is calculated, the data should first be plotted on a scatterplot. No
single numerical measure can substitute for the visual insight gained from a plot. Many different patterns
can produce the same correlation coefficient, and similar strengths of relations can produce differing
coefficients depending on the curvature of the relation. Recall that in figure 2.1, eight plots showed the
relation between two variables, all with a linear correlation coefficient of 0.70; yet the data were radically
different! It is important to never compute correlation coefficients without plotting the data first.

8.1 Characteristics of Correlation Coefficients

Correlation coefficients measure the strength of association between two continuous variables. Of
interest is whether one variable generally increases as the second increases, whether it decreases as the
second increases, or whether their patterns of variation are totally unrelated. Correlation measures observed
covariation between two variables; that is, how one varies by the other. It does not provide evidence for
causal relation between the two variables. A change in one variable may cause change in the other, for
example, precipitation changes cause runoff changes. Two variables may also be correlated because they
share the same cause, for example, changes to concentrations of two constituents measured at a variety
of locations are caused by variations in the quantity or source of the water. In trend analysis (chap. 12),
correlation is used to measure the change in one variable respective to time. Evidence for causation must
come from outside the statistical analysis, through knowledge of the processes involved.

Measures of correlation have the characteristic of being dimensionless and scaled to lie between
values of —1 and 1. When there is no correlation between two variables, correlation is equal to zero. When
one variable increases as the second increases, correlation is positive. When the variables vary together but
in opposite directions, correlation is negative. When using a two-sided test, the following statements about
the null, /1, and alternative hypotheses, /7, are equivalent:

H,: No correlation exists between x and y (correlation = 0), or x and y are independent.

H,: xandy are correlated (correlation # 0), or x and y are dependent.
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8.1.1 Monotonic Versus Linear Correlation

Data may be correlated in either a linear or nonlinear fashion. When y generally increases or decreases
as x increases, the two variables are defined as possessing a monotonic correlation. This correlation may
be nonlinear; for example, when plotted they have exponential patterns, linear patterns, or patterns similar
to power functions when both variables are nonnegative. A special case of monotonic correlation is linear
correlation, where a plot of y versus x has a linear pattern.

Three measures of correlation are in common use—product moment or Pearson’s r, Spearman’s rho
(p), and Kendall’s tau (z). The more commonly used Pearson’s 7 is a measure of linear correlation, whereas
Spearman’s p and Kendall’s  measure monotonic correlation. The last two correlation coefficients are
based on ranks and measure monotonic relations such as that in figure 8.1. These two metrics are also
resistant to the effects of outliers because they are rank-based. Pearson’s r is only appropriate when plots
of x and y indicate a linear relation between the two variables, such as shown in figure 8.2. None of the
measures are appropriate to assess nonmonotonic relations where the pattern doubles back on itself, like
that in figure 8.3.

A monotonic, but not linear, association between two variables is illustrated in figure 8.1. If the
Pearson’s r correlation coefficient were calculated to measure the strength of the association between the
two variables, the nonlinearity would result in a low value that would not reflect the strong association
between the two variables that is apparent in the figure. This illustrates the importance of plotting the data
before deciding which correlation measure would appropriately represent the relation between data.
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Figure 8.1. Plot showing monotonic, but nonlinear, correlation between x and y.
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8.2 Pearson'sr

Pearson’s r is the most commonly used measure of correlation and sometimes called the linear
correlation coefficient because » measures the linear association between two variables. If the data lie
exactly along a straight line with a positive slope then »=1; if the straight line has a negative slope then
r=—1. When considering the use of Pearson’s r, this assumption of linearity makes inspection of a plot even
more important for » than for other correlation metrics, because a small value of Pearson’s » may be the
result of curvature or outliers. As in figure 8.1, x and y may be strongly related in a nonlinear fashion and
the value of the Pearson’s » measure may not be statistically significant.

8.2.1 Computation

Pearson’s r is computed from equation 8.1:
1 &G(x,—=x )|y -y
. i i , 8.1
n—1 Z:‘( s j( s ] @D

n is the number of observations;
X andy are the means of x and y, respectively;
s ands ~ are the standard deviations of x and y, respectively; and
' ¥ is a dimensionless value that is not affected by scale changes in the x and y observations,
for example, converting streamflows in cubic feet per second into cubic meters per
second.

where

This dimensionless property results from dividing by s_and S, the sample standard deviations of the x and y
variables, respectively (eq. 8.1).

8.2.2 Hypothesis Tests

Pearson’s r is not resistant to outliers because it is computed by using nonresistant measures—means
and standard deviations. Pearson’s r also assumes that the variability in y cannot increase (or decrease)
with increasing x. In linear regression (chaps. 9 and 11), variables with the property of having constant
variability in y with increasing x are said to be homoscedastic. Skewed variables often demonstrate outliers
and increasing variance; thus 7 is often not useful for describing the correlation between skewed hydrologic
variables. Transforming the data to reduce skewness and linearize the relation between x and y in order to
compute Pearson’s » is a common practice that is often used in hydrologic data analysis and is explored
further in chapter 9. If these assumptions are met, the statistical significance of 7 can be tested under the
null hypothesis that 7 is not significantly different from zero (that is, there is no correlation) or, in terms of
the null and alternate hypothesis, H: #=0 or H : r#0. The test statistic ¢ is computed by equation 8.2 and
compared to a table of the #-distribution with n—2 degrees of freedom.

,: (8.2)

Example 8.1. Pearson’s r

Ten pairs of x and y variables are used in this example and shown in order of increasing x. The data are
then plotted in figure 8.4.

> load("example.RData")
> print(example.data)

X y
1 21.22



2 24 2.20
3 99 4.80
4 197 1.28
5 377 1.97
6 544 1.46
7 632 2.64
8 3452 2.34
9 6587 4.84
106 8271 2.96

Compute the means and standard deviations of x and y:

> mean(example.data$x)
[1] 2018.5

> sd(example.data$x)
[1] 3052.459

> mean(example.data$y)
[1] 2.571

> sd(example.data$y)
[1] 1.314504
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Figure 8.4. Plot of example 8.1 data showing one outlier present (the third value in the
dataset (99, 4.80)).
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These values can be used with equation 8.1 to compute Pearson’s 7,

O (x —2018. - —2.571
po Ly (X 2018500y, 22571 ) sy
94\ 3052.459 )\ 1.314504
or using the command
> cor(example.data$x, example.datag$y, method = "pearson®)

[1] ©.4578309

To test for whether r is significantly different from zero, and therefore y is linearly dependent on x,

| _04578309,[(10-2)

= 1456563 ,
J1-(0.4578309)’

with a p-value of 0.18 from a table of the ¢-distribution or by using the command
> 2 * pt(1.456563, 10-2, lower.tail = FALSE)
[1] ©.1833357

where pt is the function that returns the area of the ¢-distribution that is greater than ¢, the test statistic
value. The value returned by pt is doubled because the function pt returns the area under the tail for one
side of the ¢-distribution.

In this example, a two-sided hypothesis test is used because the null hypothesis is simply that the
correlation is not equal to zero. The hypothesis is not that the correlation is positive or negative, as that
would be a one-sided test. Because this is a two-sided test, the area under both tails of the ¢-distribution
must be included. In practice, the computation of the Pearson’s » value and its significance can be evaluated
using the following command:

> cor.test(example.data$x, example.data$y, method = "pearson")
Pearson’s product-moment correlation

data: example.data$x and example.data$y
t = 1.4566, df = 8, p-value = 0.1833
alternative hypothesis: true correlation is not equal to @
95 percent confidence interval:
-0.2413747 0.8441271
sample estimates:
cor
0.4578309

If our alpha was selected as 0.1, /: =0 is not rejected because the p-value is > 0.1, and, therefore we
should conclude that y is not linearly dependent (or related) to x.

8.3 Spearman’s Rho (p)

Spearman’s p is a nonparametric, rank-based correlation coefficient that depends only on the ranks of
the data and not the observations themselves. Therefore, p is resistant to outliers and can be implemented
even in cases where some of the data are censored, such as concentrations known only as less than an
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analytical detection limit. These properties are important features for applications to water resources. With
p, differences between data ranked further apart are given more weight, similar to the signed-rank test
discussed in chapter 6; p is perhaps easiest to understand then as the linear correlation coefficient computed
on the ranks of the data rather than the data themselves.

8.3.1 Computation of Spearman’s p

To compute p, the data for the two variables are separately ranked from smallest to largest. Ties in x
or y are initially assigned a unique rank. The average rank is then computed from these unique ranks and
assigned to each of the tied observations, replacing the unique ranks. Using the ranks of x and ranks of y, p
can be computed from the equation

n n+l1 :
2Ry f)_"(zj : (83)

n(nz—l)/lZ

p:

where Rx, is the rank of x, Ry, is the rank of y,, and (n+1)/2 is the mean rank of both x and y. This equation
can be derived from substituting Rx, and Ry, for x, and y, in the equation for Pearson’s r (eq. 8.1) and
simplifying.

If there is a positive correlation, the higher ranks of x will be paired with the higher ranks of y, and
their product will be large. For a negative correlation, the higher ranks of x will be paired with lower ranks
of y, and their product will be small. When there is no correlation there will be nothing other than a random
pattern in the association between x and y ranks, and their product will be similar to the product of their
average rank, the second term in the numerator of equation 8.3. Thus, p will be close to zero.

8.3.2 Hypothesis Tests for Spearman’s p

To compute the test statistic, S, for the significance of the p value, the rank transform method is used.
The values for each variable are ranked separately and the Pearson’s 7 correlation is computed from the
ranks. The test statistic, S, is then given by equation 8.4

S = i(Rx,. ~Ry) . (8.4)

i=l1

where Rx, is the rank of x, and Ry, is the rank of y . The statistical significance of p can be tested under the
null hypothesis that p is not significantly different from zero (that is, there is no correlation) or, in terms
of the null and alternate hypothesis, H: p=0 or H,: p#0. For large sample sizes (n >20), S follows a
t-distribution with n—2 degrees of freedom (the same distribution as the Pearson r test statistic). However,
for small sample sizes (n <20), the rank-transformed test statistic does not fit the distribution of the
Pearson’s r test statistic well. There has been some work to define the exact probabilities associated with p
values for small sample sizes (see Franklin [1988]) and Maciak [2009] as examples), and in the example
below one such implementation is used in the base R function cor.test.

Example 8.2. Spearman’s p

Using the same data in example 8.1, rank the x and y data separately in ascending order and assign
ranks to each observation or use the rank function:

> Rx<-rank(example.data$x, na.last = NA, ties.method "average")

> Ry<-rank(example.data$y, na.last = NA, ties.method "average")
> print(Rx); print(Ry)
[1] 1 2 3 4 5 6 7 8 910

[1] 1 5 9 2 4 3 7 610 8
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To solve for p, multiplying the ranks above gives,
> Rx * Ry
[1] 1 1@ 27 8 20 18 49 48 90 890
> sum(Rx * Ry)
[1] 351
The sums of Rx, multiplied by Ry, can then be substituted into equation 8.3 to obtain the value of p:

351-10(5.5)" 485

p= =222 0.588
990/12 82.5

Note that there are fewer than 20 samples in this example, so an exact test should be used in
determining the significance of the result. Fortunately, the R function cor.test can ensure that the
exact p-value is returned when dealing with small samples by using the arguments exact = TRUE and
continuity = TRUE.

> cor.test(example.data$x, example.data$y, method = "spearman",

+ exact = TRUE, continuity = TRUE)

Spearman’s rank correlation rho

data: example.data$x and example.data$y
S = 68, p-value = 0.08022
alternative hypothesis: true rho is not equal to ©
sample estimates:
rho
0.5878788

Note that using the large sample test statistic (named t.distr.teststat below) and the
t-distribution, the approximate p-value for the Pearson’s 7 based on the data ranks has a p-value = 0.074 and
is different from the p-value obtained using the exact test:

> t.distr.teststat <- 0.588 / sqrt((1 - (0.58872))/(10-2))
> 2 * pt(t.distr.teststat, 10-2, lower.tail = FALSE)
[1] ©.07380343

where pt is the R function that returns the density function for a #-distributed value with n—2 degrees of
freedom. We can also see this result using the R function cor.test with the argument exact = FALSE.

> cor.test(example.data$x, example.data$y, method = "spearman",

+ exact = FALSE, continuity = TRUE)
Spearman’s rank correlation rho
data: example.data$x and example.data$y

S = 68, p-value = 0.07237

alternative hypothesis: true rho is not equal to ©
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sample estimates:
rho
0.5878788

In this example, the argument continuity = TRUE is made. The continuity = TRUE argument
is used with exact = TRUE to correct for the fact that the exact test uses a test-statistic distribution that
is not continuous (see section 5.1.4. for more information). The authors recommend that this argument be
added any time cor.test is used to compute the Spearman’s p or Kendall’s 7 (section 8.4) correlation.

To see the documentation for this argument, type ?cor.test in the R command window. If the alpha was
selected as 0.1, H: p=0 is rejected because the p-value is less than 0.1, and therefore we can conclude that
v is monotonically dependent (or related) to x.

8.4 Kendall's Tau (7)

Kendall’s 7 (Kendall, 1938, 1975), much like Spearman’s p, measures the strength of the monotonic
relation between x and y and is a rank-based procedure. Just as with p, 7 is resistant to the effect of outliers
and, because 7 also depends only on the ranks of the data and not the observations themselves, it can be
implemented even in cases where some of the data are categorical, such as censored observations (for
example, observations stated as less than a reporting limit for concentrations or less than a perception
threshold for floods). See chapter 14 for more detail on analysis of categorical data. Despite these
similar properties, p and 7 use different scales to measure the same correlation, much like the Celsius and
Fahrenheit measures of temperature. Though 7 is generally lower than p in magnitude, their p-values for
significance should be quite similar when computed on the same data.

In general, 7 will be lower than values of » for linear associations for any given linearly related data
(see fig. 8.2). Strong linear correlations of »=0.9 (or above) typically correspond to 7 values of about
0.7 (or above). These lower values do not mean that 7 is less sensitive than 7, but simply that a different
scale of correlation is being used. As it is a rank correlation method, 7 is unaffected by monotonic power
transformations of one or both variables. For example, 7 for the correlation of log(y) versus log(x) will be
identical to that of y versus log(x), and of y versus x.

8.41 Computation of Kendall's =

Kendall’s  examines every possible pair of data points, (x,, y) and (xj, yj), to determine if the pairs
have the same relation to one another—that is, if x, is greater than y, and X, is greater than Y, or if x is less
than y, and X, is less than Ve Each pair is assessed in this way, keeping track of the number of pairs that have
the same relation to one another versus the number of pairs that do not.

Kendall’s 7 is most easily computed by ordering all data pairs by increasing x. If a positive correlation
exists, the y observations will increase more often than decrease as x increases. For a negative correlation,
the y observations will decrease more often than increase as x increases. If no correlation exists, the y
observations will increase and decrease about the same number of times. Kendall’s 7 is related to the sign
test in that positive differences between data pairs are assigned +1 without regard to the magnitude of those
differences and negative differences are assigned —1.

The calculation of 7 begins with the calculation of Kendall’s S, the test statistic (eq. 8.5). Kendall’s S
measures the monotonic dependence of y on x and the formula is

S=P-M - (8.5)

The S statistic is simply the number of concordant pairs (denoted as P) minus the number of discordant
pairs (denoted as M). We can think of this conveniently as “P for plus” when the slope between the two
points is a positive value. We can think of “M for minus” when the slope between the two points is a minus
value. A concordant pair is a pair of observations where the difference between the y observations is of the
same sign as the difference between the x observations. A discordant pair is a pair of observations where the
difference in the y observations and the difference in the x observations is of the opposite sign.

Correlation
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The computation can be simplified by rearranging the data pairs, placing the n observations in order
based on the x observations with x, being the smallest x to x_ being the largest x. After this rearrangement
we consider all pairwise comparisons of the y observations, where the pairs are sorted by their x rank. If we
compare (x,,y,) to (xj,yj) where i <j, then a concordant pair is the case where y, <, and a discordant pair is
the case where y, >y

Note that there are n-(n—1)/2 possible comparisons to be made among the n data pairs. If all y
observations increased along with the x observations, S=n-(n—1)/2. In this situation, the Kendall’s 7
correlation coefficient should equal +1. When all y observations decrease with increasing x, S=—n-(n—1)/2
and Kendall’s 7 should equal —1. Therefore, dividing S by n-(n—1)/2 will give a value always falling
between —1 and +1. This is the definition of Kendall’s z, which measures the strength of the monotonic
association between two variables

S
R (8.6)

8.4.2 Hypothesis Tests for Kendall’s =

To test for the significance of 7, S is compared to what would be expected when the null hypothesis
is true for a given n. For a two-sided test, H: 7=0, or H : t#0. If 7 is further from 0 than expected, H, is
rejected. When 7 <10, the table of exact p-values using the S and » values should be used; this is because
the distribution of S for a given n at small sample sizes is not easily approximated. Such a table can be
found in Hollander and Wolfe (1999).

When n >10, a large-sample approximation can be used because the test statistic Z (a rescaled version
of ) closely approximates a normal distribution with mean, x, equal to zero and variance, o (eq. 8.7). For
the large-sample approximation,

S-1

Oy

if$>0

Z, =1 0 ifS=0 (8.7)

S+1

Oy

if §<0

where o, = \/(n /18){(n—1){(2n+5), n is the number of samples and S is defined in equation 8.5. Here the
null hypothesis is rejected at significance level a if |Z| >Z  , where Z__ is the value of the standard normal
distribution with a probability of exceedance of /2 (for a two-sided test). Recall that a is selected by the
user and is the probability at which they think the null hypothesis can be rejected.

Just as when computing the test statistic for the rank-sum test (chap. 5), a continuity correction must
be applied. This is reflected in equation 8.7 by the —1 or +1. In R, if the cor.test function is used, the
argument continuity = TRUE must be written in the command line to include the continuity correction.
The cor.test function will give the exact p-values for n <50; for n >50, cor.test will give the p-value
resulting from the large-sample approximation unless the argument exact = TRUE is specified.

It is worth noting that there is another package in R named Kendall (McLeod, 2011), which always
includes the continuity correction in the calculation of the p-value for the test statistic. Additionally, the
Kendall package will always give the exact p-value, even for large samples. The Kendall package
is most useful in the case where some of the x or y observations are tied, which requires additional
modification of the test statistic and because cor.test provides no such adjustment. This is discussed in
the next section.
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Recall the 10 pairs of x and y in example 8.1, ordered by increasing x:

> load("example.RData")

> print(example.data)

X
2
24
99
197

1
2
3
4
5 377
6 544
7 632
8 3452
9 6587
10 8271

NODR NN R R R AN R

y

.22
.20
.80
.28
.97
.46
.64
.34
.84
.96

To compute S, first compare y, =1.22 with all subsequent y, values where i >1.

2.20>1.22, score as+
4.80>1.22, score as+
1.28>1.22, score as +

1.97>1.22, score as +

...continue through until i=n

All subsequent y, observations are larger, so there are nine pluses for i=1.
Move on to the next y (i=2) and compare y,=2.20 with all subsequent y, observations where i >2.

4.80>2.20, score as+
1.28 <2.20, score as —

1.97 <2.20, score as —

1.46 <2.20, score as — and then continue to next i until i=n

There are five pluses and three minuses for i=2. Continue in this way, until the final comparison of
v, ,=4.84toy . Itis convenient to write all pluses and minuses below their respective y,, as below:

v, 122 220

+ +
+ J—
+ J—
+ J—
+ +
+ +
+ +
+ +
+

4.80 1.28
- +
- +
- +
- +
- +
+ +

1.97

+ o+ 4+

1.46

+

+ o+ +

2.64 2.34 4.84 2.96
J— + J—

+ +

+

In total there are 33 pluses (P=33) and 12 minuses (M= 12). Therefore, according to equation 8.5,
§=33 —12=21. There are 10-9/2=45 (that is, n(n—1)/2) possible comparisons, so 7=21/45=0.47.
This example could be considered a small sample size and it would therefore be advisable to use the
table containing the exact p-values for a given S and n. For n=10 and S=21, the exact p-value is

2-0.036=0.072.
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For the purposes of this example, we wish to compare the exact p-value with the large-sample
approximation. We compute the test statistic for the large-sample approximation

(21-1) 20

- \/Gg)-(w—l)-(zms) (11.18)

From a table of the standard normal distributions and a value of 1.79, the lower tail probability is
0.963, so that the p = 2- (1 —0.963) =0.074, slightly larger than the exact p-value of 0.072. The p-value
is the compared to the significance level to determine if the null hypothesis should be rejected. For a
significance level of 0.1, the null hypothesis can be rejected.

In R, these calculations are performed using the commands

> cor.test(example.data$x, example.data$y, alternative =

+ "two.sided", method = "kendall", continuity = TRUE)
Kendall’s rank correlation tau

data: example.data$x and example.data$y
T = 33, p-value = 0.07255
alternative hypothesis: true tau is not equal to ©
sample estimates:
tau
0.4666667

Note that although the argument exact = TRUE is not specified, the exact p-value is returned. This
is because cor.test will compute an exact p-value if there are less than 50 paired samples regardless of
whether or not this argument is specified. This is not the case for Spearman’s p.

8.43 Correction for Tied Data when Performing Hypothesis Testing Using
Kendall's

When tied observations of either x or y are present in the data, they will produce a 0 rather than +
or — when counting the number of P’s and M’s. If the ties are not accounted for when determining the
significance of 7, the variability of S (represented by o) will be an overestimate of the actual o and an
underestimate of the test statistic. Therefore, an adjustment is needed for o in the equation for the test
statistic Z (eq. 8.7) to account for the presence of ties in the data. Details of the adjustment to o can be
found in Kendall (1975). This adjustment is only applicable to the large-sample approximation.

There is no exact test for r when ties are present. When the cor. test function in R is given small
(n <50) datasets with ties and attempts to compute the exact test, it reports an error stating "Cannot
compute exact p-value with ties". It then computes the large-sample approximation test and
p-value. This is similar to other nonparametric tests; the large-sample approximation test is the only
available method and so the error message is actually just an informational message.
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Exercise

1. The Ogallala aquifer was investigated to estimate relations between uranium and other concentrations
in its waters. Below are the concentrations of uranium and total dissolved solids. This set of data is
also available in the supplementary material for chapter 8 (SM.8) and is called urantds2.RData.

Total dissolved solids, Uranium, Total dissolved solids, Uranium,
in milligrams per liter in parts per billion in milligrams per liter in parts per billion
682.65 0.93 1,116.59 7.24
819.12 1.94 301.20 5.72
303.76 0.29 265.45 4.74
1,151.40 11.90 295.88 2.81
582.42 1.57 442.36 5.63
1,043.39 2.06 342.71 3.09
634.84 3.89 361.30 3.58
1,087.25 0.98 262.07 1.77
1,123.51 1.94 546.22 11.27
688.09 0.44 273.39 4.98
1,174.54 10.11 281.38 4.08
599.50 0.76 588.86 14.63
1,240.81 6.86 574.11 12.38
538.35 0.48 307.09 1.53
607.75 1.15 409.37 4.46
705.89 6.09 327.07 2.46
1,290.57 10.88 425.69 6.30
526.09 0.15 310.05 4.54
784.68 2.67 289.75 0.97
953.14 3.09 408.18 2.16
1,149.31 0.76 383.04 8.38
1,074.22 3.71

A. What are the best correlation metric(s) to use in describing this relation?

Are uranium concentrations correlated with total dissolved solids in the groundwater samples? If
so, describe the strength of the relation.

C. s the relation significant for a=0.1?






Simple Linear Regression

The relation between two continuous variables, sediment concentration and stream discharge, is to be
investigated. Of interest is the quantification of this relation into a model form for use as a predictive tool
during days in which discharge was measured but sediment concentration was not. Some measures of the
significance and quality of the relation are desired so that the analyst can be assured that the predictions
are meaningful.

Sediment concentrations in an urban river are investigated to determine if installation of detention
ponds throughout the city have decreased sediment concentrations. Linear regression is first performed
between sediment concentration and river discharge to remove the variation in concentrations owing to
flow variations. After subtracting this relation from the data, the residual variation before and after the
installation of ponds can be compared to determine their effect.

Regression of sediment concentration versus stream discharge is performed to obtain the slope
coefficient for the relation. This coefficient is tested to see if it is significantly different than the slope
coefficient obtained 5 years ago.

The examples involve performing a linear regression between the same two variables, sediment
concentration and water discharge, but for three different and commonly used objectives. This chapter will
present the assumptions, computation, and applications of linear regression, as well as its limitations and
common misapplications by the water resources community.

This chapter focuses on the analysis of the linear relation between one continuous variable of interest,
called the response variable, and one other variable, called the explanatory variable, by simple linear
regression. The name simple linear regression (SLR) is applied because one explanatory variable is the
simplest case of regression models. The case of multiple explanatory variables is dealt with in chapter 11
(Multiple Linear Regression). If the data are not found to be linearly related to one another, then one must
decide whether to apply a transformation of the data or seek an alternate approach, discussed in chapter 10.
In general, regression is performed to

1. Learn something about the relation between the two variables;

2. Remove a portion of the variation in one variable (a portion that is not of interest) in order to gain a
better understanding of some other, more interesting, portion of the variation; or

3. Estimate or predict values of one variable based on knowledge of another variable, for which more
data are available.

SLR is an important tool for the statistical analysis of water resources data. It is used to describe the
covariation between some continuous variable of interest and some other continuous variable.
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9.1 The Linear Regression Model

The model for simple linear regression is

Yi :.BO +ﬁ1xi +¢€ 0.1
fori=1,2,...,n,
where
v, is the ith observation of the response variable,
x. s the ith observation of the explanatory variable,
B, s the intercept,
B, is the slope (the change in y with respect to x),
€ is the random error or residual for the ith observation, and
n is the sample size.

The error around the linear model, ¢, is a random variable. That is, its magnitude is the unexplained
variability in the data. The values of ¢, are assumed to have a mean of zero, and a constant variance, ol
that does not depend on x. The ¢, values are assumed to be independent of x..

Regression is performed by estimating the unknown true intercept, 3, and slope, f,, with estimates
b,and b, respectively, that are computed from observed data. As an example, in figure 9.1 a solid line
represents the true linear relation between an explanatory variable, x, and the response variable, y. Around
the line are 10 observed data points that result from observing this relation, plus the random error, €,
inherent in the natural system and the process of measurement. In practice, the true line is never known,

20

Response variable
—
o
I

5 I
—— True relation
© O  Observed data
0 I I I
0 5 10 15 20

Explanatory variable

Figure 9.1. Plot of the true linear relation between the response variable and the
explanatory variable, and 10 observations of the response variable for explanatory variable
values at integer values from 1 through 10. Observations are the true relation plus random
error with mean of zero and standard deviation of 2.
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instead the analyst uses the observed data points to estimate a linear relation between x and y. The linear
regression estimate developed from the 10 measurements is shown as the dashed line in figure 9.2. Note
that the random error results in an estimate of the relation that differs from the true relation.

If 10 new data points were collected to estimate the true (solid line) relation and their linear regression
line was computed, slightly different estimates of b and b, would result. If the process is repeated several
times, the results will look like figure 9.3. Some of the line estimates will fall closer to the true linear
relation than others. This example illustrates that a regression line should always be considered as a sample
estimate of the true, but unknown, linear relation.

Another way of describing the SLR model is that it provides an estimate of the mean, also called
the expected value, £[], and variance, Var(], of y, given some particular value of x. Conceptually, for a
particular value of x,, there is a distribution of y values having a mean and variance that described this
distribution. In statistical notation, this is expressed as E[ylx,] and Var{y|x ], which are called the conditional
mean and variance, respectively, of the y values given a value of x,. SLR estimates the conditional mean
given for a given value of x, and the condition variance of the distribution for all values of x is .

9.1.1 Computations

Linear regression estimation is nothing more than a minimization problem; that is, linear regression
is the process of estimating the line that minimizes some measure of the distance between the line and the
observed data points. In ordinary least squares (OLS) regression, the estimated line minimizes the sum of
the squared vertical distances between the observed data and the line. OLS is by far the most common way
to obtain the linear regression line. For this reason, in both this chapter and chapter 11, the linear relation
between y and x is determined by OLS. Other computational methods exist to define the relation between x
and y and are useful in certain circumstances (see chap. 10).
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Figure 9.2. Plot showing true and estimated linear relation between the explanatory and
response variables using the observations from figure 9.1.
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Figure 9.3. Plot of true and estimated linear relations between x and y from different sets
of 10 observations all generated using the true relation and sampling error.

The OLS solution can be stated as follows: find two estimates, b and b, such that the sum of the
squared differences between the estimates and the observations is minimized. In mathematical terms,

n

A 2
Z(y ) is minimized, where p, is the OLS estimate of y:

i=1
3, = b, +bx,. 9.2)

The minimization problem can be solved using calculus, and the solution is referred to as the normal
equation. From the solution comes an extensive list of expressions used in regression analysis that are
shown in table 9.1. Nearly every statistical software program, including R, calculates these statistics. They
form the basis for many of the statistical tests associated with linear regression.
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Table 9.1. Formulas utilized in ordinary least squares (OLS) linear regression.
Formula Explanation
X = X Mean of x.
-1 n
y= i Mean of y.
-1 n

v (%_fx%_ﬂ:z%%_mi

i=1 i=1

b =—
SS.
b __—b)_c—z;(xi_)_c)yi Z:l:]xiyi_@
0 N = o = -
> (x-x) ., _(Zl_zlxl.
=11 "
j},- :bg +b1xl.
Q:%—ﬁ
SSE =Y
im1

K
SE =
(5) SS.
1 =2
SE(ﬂO):S ;+;—Sx

. [SS}, -5’ (n—l)] ZI—ESS—EJ=7’2
SS SS

Sum of squares (SS) of y = Total sum of squares.

Sum of squares (SS) of x.

Sum of x, y cross products.

The estimate of 8, (slope).

The estimate of f3, (intercept).

The estimate of y given x,.

The estimated residual for observation i.

Error sum of squares.

The estimate of 2, also called mean square error

(MSE).

Standard error of the regression or standard deviation

of residuals.

Standard error of 3.

Standard error of

The (Pearson) correlation coefficient between x and y.

The coefficient of determination, or the fraction of the

variance explained by regression.
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Table 9.2. Assumptions necessary for the purposes to which ordinary least squares (OLS) regression is applied.

[X, the assumption is required for that purpose; -, assumption is not required]

Purpose
. . Test hypotheses,
Assumption Predict y Predictyanda Obtain bost —  stimate confidence
. variance for the linear unbiased .
given x L . or prediction
prediction estimator of y .
intervals
Model form is correct: y is linearly X X X X
related to x.
Data used to fit the model are X X X X
representative of data of interest.
Variance of the residuals is constant - X X X
(homoscedastic). It does not
depend on x or on anything else
such as time.
The residuals are independent of x. - - X X
The residuals are normally - - - X

distributed.

9.1.2 Assumptions of Linear Regression

There are five assumptions associated with OLS linear regression, which are listed in table 9.2. The
necessity of satisfying them is determined by the intended purpose of the regression equation. The table
indicates which conditions must be met for each purpose. Each assumption is described in detail in later
sections of this chapter.

Note that the assumption of a normal distribution is involved only when testing hypotheses, where
the residuals from the regression equation are required to be normally distributed. In this sense, linear
regression is a parametric procedure; however, no assumptions are made concerning the distributions of
either the explanatory (x) or response () variables. Normality of residuals is also required for the most
important hypothesis test in regression—whether the slope coefficient is significantly different from zero,
meaning the linear relation between y and x is significant. Normality of the residuals should be checked by
a boxplot or probability plot. It should be noted that although the residuals must follow the condition of
normality, there is no requirement that the distribution of x or y are normal. However, the regression line,
because it is a conditional mean, is sensitive to the presence of outliers in much the same way as a sample
mean is sensitive to outliers.

9.1.3 Properties of Least Squares Solutions

If the first four assumptions of table 9.2 are all met, then the following is true:

1. The estimators b and b, are the minimum variance unbiased estimators of 8 and f8, respectively. This
means that 5 and b, are not only unbiased estimators but also have the smallest variance of any other
unbiased estimator of b and b,.

2. The mean of the residuals (e, values) is exactly zero.
3. The mean of the predictions (J, values) equals the mean of the observed responses (y, values).
4. The regression line passes through the centroid of the data (X, ).

5. The variance of the predictions ( J; values) is less than the variance of the observed responses
(v, values) unless R*=1.0.
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9.2 Getting Started with Linear Regression

A common first step in performing regression is to plug the data into a statistics software package and
evaluate the results using the value of R’ (table 9.1), which is a measure of the variance explained by the
model. R? is ubiquitous in the environmental literature as a measure of the quality of a regression model
because of its ease of understanding and simplicity; however, this could lead one towards a dangerous,
blind reliance on the computer software values. For example, values of R? close to 1 are often incorrectly
deemed an indicator of a good model; it is possible for a poor regression model to result in an R’ near 1,
and there are cases for which models resulting in low R? values may often be preferable to models with
higher R? values. For example, a model may result in a low R? value; however, the model may still be useful
in determining the significance of the change in y for a given change in x.

To avoid reliance solely on R?, this chapter outlines a series of steps that will generally lead to a good
regression model. These steps will also help determine if the assumptions in table 9.2 are met by both the
data and resulting model and, if they are not met, offer solutions for mitigation. One example is carried
through the chapter to demonstrate these steps in practice.

The first step in regression model development is always to plot the data! Note from table 9.2 that the
correct model form is critical to every application of linear regression. When viewing the plot of y versus
x, there are two properties that must be evident before proceeding with the development of a regression
model:

1. The relation must appear to be linear. If this is not the case and the problem is with the curvature of
the data only, try to identify a new x which is a better linear predictor either through a transform of the
original x or use another explanatory variable altogether. When possible, use the best physically based
argument in choosing the correct x. It may be appropriate to resort to empirically selecting the x that
works best (highest R?) from among a set of equally reasonable explanatory variables.

2. The relation must exhibit homoscedasticity (constant variance) in y across all values of x. If
heteroscedasticity is present—in other words, the variance is not constant—or if both curvature and
heteroscedasticity are present, then transforming y, or x and y, may mitigate this issue. Mosteller and
Tukey (1977) provided a guide to selecting power transformations using plots of y versus x called the
bulging rule (fig. 9.4). By comparing the curvature of a dataset to figure 9.4, one can determine what
type of transformation may help linearize the relation between x and y and mitigate heteroscedasticity.
Going “up” means exponentiating the x or y value by a power greater than 1 (for example, using
x? rather than x). Going “down” means exponentiating the x or y value by a power less than 1 (for

example, using the natural logarithm of x, 1/x, or Jx rather than X).

Until these conditions are met, it is not advisable to proceed with the development of a linear
regression model. Additional information on the implications of variable transformation is provided in
section 9.6.

Example 9.1. Plotting the relation.

The example used in the following sections will relate the total dissolved solids (TDS) concentrations,
in milligrams per liter (mg/L) to stream discharge at the U.S. Geological Survey monitoring site Cuyahoga
River at Old Portage, Ohio, for the period 1969-73 as an example dataset. The TDS data are provided with
the report as an .RData file but can also be downloaded from the U.S. Geological Survey National Water
Information System using the site number 04206000 and parameter code 70300.

We load the data for the Cuyahoga River and then plot discharge versus TDS concentration:

> load("CuyaTDS.RData")

> par(tck = 0.02, las = 1, xaxs = "i", yaxs = "i")

> plot(cuya.tds$discharge_cms, cuya.tds$tds mgL, xlim = c(@, 60),

+ xlab="Discharge, in cubic meters per second",
+ ylab="Total dissolved solids concentration, in milligrams per
liter",

+ ylim=c(0,800))
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Figure 9.4. The bulging rule for transforming curvature to linearity (based on Mosteller
and Tukey, 1977).

The nonlinearity of the TDS data as a function of discharge is obvious from figure 9.5, and some
type of transformation—in this case, on discharge, O—could be applied to attempt to linearize the relation
and minimize heteroscedasticity before continuing. In this example, the plot in figure 9.5 has the shape of
the lower left quadrant of the bulging rule (fig. 9.4). This means that a good transformation of Q would
be one in which we exponentiate Q with an exponent less than 1. The most common transformation for
environmental data with this nonlinear pattern is the logarithm transformation. In this example, we will
choose to take the natural log of Q to linearize the relation and so we want to plot the natural logarithm of
discharge versus TDS concentration to determine if this has the desired effect (recall that in R, the function
log computes the natural (base ¢) logarithm as the default base):

> par(tck = 0.02, las = 1, xaxs = "i", yaxs = "i")

> plot(cuya.tds$discharge_cms, cuya.tds$tds_mglL,

+ xlim=c(1,100),

+ xlab="Discharge, in cubic meters per second",

+ ylab="Total dissolved solids concentration, in milligrams per
liter",

+ ylim=c(0,800), log = "x")
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Figure 9.5. Scatterplot of discharge versus total dissolved solids concentrations for the
Cuyahoga River, Ohio, over the period 1969-73.

The TDS data versus the natural log of Q are presented in figure 9.6, and we observe that approximate
linearity is achieved. There is some hint of decreased variance in the higher Q values; however, based
on the first set of plots, this transformation appears acceptable. Although examining the assumption of
homoscedasticity is important, the most important assumption of simple linear regression is that the relation
is linear. The analyst must first determine the case for linearity before proceeding with any regression
model. As an exercise beyond this example, the reader is encouraged to try other transformations.

9.3 Describing the Regression Model

Recall that the regression model had two parameters that must be estimated, the slope, 8, and the
intercept, S, (eq. 9.2); however, the estimated values of 8, and 8 alone will not provide any information
as to their usefulness. Fortunately, there are several hypothesis tests that can be used to evaluate b, and b,
(the estimates of 8, and f) and the resulting p, values. Note that all assumptions in table 9.2 must be met in
order to apply hypothesis tests to the regression model. Section 9.4 describes in detail how to check these
assumptions.
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Figure 9.6. Scatterplot of discharge versus total dissolved solids concentrations after the
transformation of discharge using the natural log.

Example 9.2. Fitting the regression model.

A regression line is fitted to the data using the natural log transformation of the discharge values and
the summary output is shown below. The values for b, and b are shown in the summary output under the
Coefficients section. The value of b ==111.631 and b;=609.549.

> cuya.lm <- 1lm(tds_mgL ~ log(discharge_cms), data = cuya.tds)

> summary(cuya.lm)

Call:
Im(formula = tds_mgL ~ log(discharge_cms), data = cuya.tds)

Residuals:
Min 1Q Median 3Q Max
-109.89 -42.95 -10.65 13.32 356.91

Coeficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 609.549 22.800 26.73 <2e-16 ***
log(discharge_cms) -111.631 9.227 -12.10 <2e-16 ***
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Signif. codes: @ “***’ 9,001 “**’ 9.01 ‘*’ ©0.05 ‘.’ 0.1 <’ 1

Residual standard error: 72.57 on 68 degrees of freedom
Multiple R-squared: 0.6828, Adjusted R-squared: 0.6781
F-statistic: 146.4 on 1 and 68 DF, p-value: < 2.2e-16

9.3.1 Test for Whether the Slope Differs from Zero

The hypothesis test of greatest interest in regression is the test as to whether j, is significantly different
from zero. The null hypothesis for this test is

and the alternative hypothesis is
H,:B, #0.

If the null hypothesis is true, equation 9.2 reduces to 3, = b,. In other words, the value of y does
not vary as a linear function of x if the null hypothesis is true. In the case of SLR only (one explanatory
variable), there are two additional interpretations of the model results that follow from this hypothesis
test: (1) whether the regression model has statistical significance, and (2) whether the linear correlation
coefficient significantly differs from zero. Both interpretations will have the identical answers because
the significance for (1) and (2) are identical in SLR. These latter two interpretations are not applicable for
linear regression equations with multiple explanatory variables, which are discussed in chapter 11.

The test statistic computed is the #-ratio (the fitted coefficient divided by its standard error):

. b, _rn=2 ©3)
/\/S*SY - .

H,is rejected if [f|>¢ , where ¢ is the point on the t-distribution with n—2 degrees of freedom and
with a probability of exceedance of a/2. If we select a=0.05, then ¢, =1.96. A handy rule of thumb is
to consider |¢|>2 to be significant and [f| <2 to be nonsignificant. To compute the value of ¢ _ in R, enter
qt(1-(a/2), n-2), where a is the a level and n is the number of observations.

This test for nonzero slope can also be generalized to testing the null hypothesis that 5, = B where
B, is some prespecified value, although this test is used far less frequently in statistics. For this test, the
statistic is defined as

s . (9.4)

9.3.2 Test for Whether the Intercept Differs from Zero

Hypothesis tests on the intercept, £, can also be computed. The null and alternative hypotheses are
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The test statistic is

by
x

7+7
n SS,

=
2

N

H, is rejected if |¢|>¢ , where ¢ _ is defined as in the previous test.

It can be dangerous to delete the intercept term from a regression model. The fact that the intercept
term in a fitted model is not significantly different from zero is not a justification for removing the intercept
term from the model (that is, setting it equal to zero). Regression statistics such as R? and the #-ratio for
B, lose their usual meaning when the intercept term is dropped (set equal to zero); this is because R’
is comparing the linear regression model to an intercept-only model. If there is no intercept, then the
comparison does not make sense. Recognition of a physical reason why y must be zero when x is zero is
not a sufficient argument for setting B, =0. The only appropriate situation for fitting a no-intercept model is
when all of the following conditions are met:

1. The x data cover several orders of magnitude.
2. The relation clearly looks linear from zero to the most extreme x values.
3. The null hypothesis that =0 is not rejected.

4. There is some economic or scientific benefit to dropping the intercept.

It is worth noting again that even if all conditions are met, one cannot report the R? value or do further
statistical testing on b, when the intercept is not statistically different from zero.

Example 9.3. Evaluating the slope and intercept.

The summary output for the Cuyahoga River TDS example provides the #-statistics and corresponding
p-values for both b and b

Coeficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 609.549 22.800 26.73 <2e-16 ***
log(discharge_cms) -111.631 9.227 -12.10 <2e-16 ***

Observe that ¢-values for b, and b, were much greater than £2 (26.73 and —12.10, respectively).
Therefore, the p-values were small and when compared to the predetermined o level, both b, and b were
significant. Assuming the conditions in table 9.2 are met, these results indicate that there is a statistically
significant linear, negative correlation between TDS and the natural log of discharge. Section 9.4 will
discuss how to check if the assumptions of table 9.2 are met.

9.3.3 Confidence Intervals on Parameters

Confidence intervals for the individual parameters 8, ,, and o’ indicate how well they can be
estimated. The meaning of the (1 —a)-100 percent confidence interval is that, in repeated collection of new
data and subsequent regressions, the frequency with which the true parameter value would fall outside
the confidence interval is a. For example, a=0.05 confidence intervals around the estimated slopes of the
regression lines in figure 9.3 would include the true slope 95 percent of the time.

For the slope, f,, the confidence interval (CI), as a function of the standard error of £, is

(b, —tSE(B,).b +1SE(B,)) (9.5)
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or by substituting the equation for SE(f,) from table 9.1

(9.6)

b —t—e b+t — |,
Jss. T ss,

where ¢ is the point on the #-distribution having n—2 degrees of freedom with a probability of exceedance
of a/2 and s is the standard error of the regression (also referred to as the standard deviation of the
residuals; see table 9.1).

For the intercept, f,, the CI, as a function of SE(f)—the standard error of —is

[bo_t_ZI_SSE(ﬁo) b, +1 sSE(ﬁO)J , 9.7)

}'1—2,Z
2

where ¢ is the point on the #-distribution having n—2 degrees of freedom with a probability of exceedance
of o/2 and s is the standard error of the regression, or by substituting the equation for SE() from table 9.1:

—2 =2
TR LN P L ©8)
n—2,1—E n SSX "—2,5 n SSX

For the variance, o, of the residuals, e, the CI is

(9.9)

where

L is the quantile of the chi-square distribution having n—2 degrees of freedom with
exceedance probability of a/2.

Example 9.4. Computing confidence intervals on the slope, intercept, and error variance.

The 95-percent confidence intervals for 8, and f, using the Cuyahoga River dataset from example 9.1
are

Forﬁl:(—111.631—M,—111.631 Mj (—130.0443,-93.21767)
\/61.85 \61.85

2
For B, :| 609.549-1.99572.57 L 228 ,609.549 +1.99572.57 e 285°
0" 70 6185

564 0643,655. 0337)
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In R, both calculations can be made using one command, with differences between the results above
and those from the R command only the result of rounding:

> confint(cuya.lm, level = 0.95)

2.5 % 97.5 %
(Intercept) 564.0529 655.04457
log(discharge_cms) -130.0436 -93.21855

The 95% confidence intervals foro’:

= (3863.6,7472.5)

Or in R,

> alpha <- 0.05

>n<- 70

> s <- 72.57

> mse <- s”2

> CIlower <- ((n - 2) * mse) / gchisq(1 - (alpha/2), n - 2)
> CIupper <- ((n - 2) * mse) / gchisq(alpha/2, n - 1)

9.4 Regression Diagnostics

One common mistake in regression analysis is to base decisions about model adequacy solely on the
regression summary statistics. R” is a measure of the percent of the linear variation in the response variable
(y) that is accounted for by the variation in the explanatory variable (x). The s term—the standard error of
the regression or standard deviation of the residuals (table 9.1)—is a measure of the dispersion of the data
around the regression line. Most regression programs also perform an overall hypothesis test to determine
if the regression relation is statistically significant; that is, that the apparent linear relation between y and x
is sufficiently strong that it is not likely to arise as a result of chance alone. As described in section 9.3, in
SLR, this test is the same as a test to determine if the slope coefficient is significantly different from zero,
and also the same as a test if the correlation coefficient between x and y is significantly different from zero.

These statistics provide substantial information about regression results. A regression equation
that accounts for a large amount of the variation in the response variable and has coefficients that are
statistically significant is highly desirable. However, decisions about model adequacy cannot be made on
the basis of these criteria alone. A large R? or significant regression coefficients alone do not guarantee that
the data have been fitted well by the model, as illustrated by figure 9.7 (Anscombe, 1973).

The data in the four graphs shown in figure 9.7 have exactly the same summary statistics and
regression line (same b, b, s, and R°). The figure 9.74 is a perfectly reasonable regression model, an
evidently linear relation having an even distribution of data around the least-squares line; however, the
other models are not. The strong curvature in figure 9.78 suggests that a linear model is highly inadequate
and that some transformation of x is necessary or that an additional explanatory variable is required.

With these improvements perhaps more of the variance could be explained, but in its current state, it is
not a valid model. The effect of a single outlier on regression is illustrated in figure 9.7C. The line does
not properly fit the data, as the line is drawn towards the outlier. Such an outlier must be recognized and
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Figure 9.7. Plots of four different datasets fit with a simple linear regression. All plots have the same regression
summary statistics and regression line (based on Anscombe, 1973).

carefully examined to verify its accuracy if possible. If it is impossible to demonstrate that the point is
erroneous, a more robust procedure than OLS should be utilized (see chap. 10). The regression slope in
figure 9.7D is strongly affected by a single point (the large x value), with the regression simply connecting
a single point plus a small cluster of points all at the same x value. Such situations often produce R? values
close to 1, yet may have little if any predictive power because the slope and R’ are totally controlled by
the position of one point—an unstable situation. Had the outlying point been in a different location, the
resulting slope would be totally different. Regression should not be used in this case because there is no
possible way to evaluate the assumptions of linearity or homoscedasticity without collecting more data in
the gap between the point and cluster.

Using statistical terminology, the plots in figure 9.7 demonstrate three situations that create problematic
regression models for which summary statistics alone cannot characterize: curvature (fig. 9.7B), outlier
or large residual (fig. 9.7C), and high influence and leverage (fig. 9.7D). These cases are generally easy
to identify from plots of y versus x or residuals versus predicted y values in a linear regression with one
explanatory variable. However, in multiple linear regression (chap. 11) they are much more difficult
to visualize or identify, requiring plots in multi-dimensional space. Thus, numerical measures of their
occurrence, called regression diagnostics, have been developed to overcome this challenge.
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Regression diagnostics, which particularly relate to the behavior of the residuals, are required to
meet the assumptions of table 9.2 and to ensure that regression coefficients represent a good estimate of
the relation of x and y. This section describes the metrics and manner in which additional diagnostics are
computed and evaluated. In assessing a regression model, it is important to remember that regression is an
iterative and interpretive process that requires the evaluation of many different aspects of the regression
model before one can determine if they have a good model or not. The analyst must weigh how the
regression model will be used versus how strictly to enforce required assumptions (table 9.2). Graphical
methods are essential tools for evaluating regression relations. Each of the following diagnostics and
metrics are given here in terms of one explanatory variable but can be generalized using matrix notation to
a larger number of dimensions for multiple linear regression, which is described in chapter 11.

9.41 Assessing Unusual Observations

There are several metrics, all based on residuals, that are used to assess the effects of individual
observations on the regression model. Recall from table 9.1 that the model residual, e, is the difference
between the observed and predicted value:

€ =) _.i}i

The values of the residuals in a regression model are critical to understanding the underlying model
and ensuring the assumptions of the model are met (table 9.2). There are different formulations of the
model residuals, all with their own advantages and purposes, which are discussed further in this section.

9411 Leverage

Leverage is a function of the distance from an individual x value to the middle (mean) of the x values.
Leverage for a given x, is usually denoted as &,

ho=opi ) (9.10)

An observation with high leverage is one where 4, > 2P , where p is the number of coefficients in the

n
model. In SLR, p=2 because there are two coefficients to be estimated: b and b,. Although leverage is
concerned only with the x direction, an observation with high leverage has the potential for exerting a
strong influence on the regression slope. Observations with high leverage should be examined for errors;
however, an observation with high leverage is not reason enough to remove this observation from the
analysis.

9.41.2 Influence

Observations identified as having high influence should lead to a very careful examination of the data
value for possible errors or special conditions that might have prevailed at the time it occurred. If it can be
shown that an error occurred, the observation should be corrected if possible, or deleted if the error can’t
be corrected. If no error can be proven, two options can be considered. A more complex model that better
fits the observation is one option—either through transformation or the addition of multiple explanatory
variables. The second option is to use a more robust procedure such as that based on Kendall’s z or
weighted least squares. Methods for robust regression are discussed in chapter 10. Weighted least squares
regression is discussed in section 9.8. There are two commonly used statistics for identifying observations
with high influence: Cook’s D and DFFITS. They serve similar functions, although DFFITS is possibly
easier to work with because the critical value is more easily computed.

Leverage and influence statistics provide a means to identify x and y values that lie outside of the bulk
of the data and, therefore, have the potential to produce an unstable regression model, such as those shown
in figure 9.7. Leverage is a measure of an outlier in the x direction, as shown in figure 9.8. Observations
that exhibit high leverage may not necessarily affect the regression estimates much, such as shown in



figure 9.84. Here, even though one observation is clearly further away from the others, the regression line
does not change much when that observation is removed. Observations with high influence are those that
have both high leverage and, when the observation is removed, substantially affect the estimated regression
line (fig. 9.8B). In regression terminology, figure 9.84 shows an outlier with high leverage but low
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influence; figure 9.8 B shows an outlier with both high leverage and high influence.

10

10

Figure 9.8.
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Influence of location of a single point on the regression slope. (A) The effect

on the fitted line resulting from an outlier with high leverage but low influence; (B) the
effect on the fitted line resulting from an outlier with high leverage and high influence.
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9.4.1.3 Prediction, Standardized and Studentized (Deleted-1) Residuals

To compute the metrics that determine the influence of a particular observation, an alternative
formulation of the residuals has been developed, which can be used in conjunction with other metrics to
assess influence or as an additional metric to assess unusual observations.

The prediction residual, €y
based on a regression equation computed by leaving out the ith observation. Prediction residuals provide a

is computed as ey =Y~ j)(i) where j;(l_)is the regression estimate of y,

means to assess how well the model performs in a prediction capacity because each observation is removed
and not considered in fitting the model coefficients. Prediction residuals can also be calculated using
leverage statistics, eliminating the need to perform a separate regression for each of the i observations:

e(,-) = - (911)

where
h, is the leverage of observation i and
e, is the residual.

Another measure of outliers in the y direction is the standardized residual, e; , which is the actual
residual e, = y, —J, standardized by its standard error:

. e,

e, =——
i S\/q s (9.12)

is the leverage of observation i,
is the residual, and
is the standard deviation of the residuals.

where

The studentized residual (also called the deleted z-residual), Loy is also used as an alternate measure of
outliers by some texts and computer software:

e .
P B— (9.13)

where

wepst=]

n—p-1

is the number of observations,

is the leverage of observation i,

is the residual,

is the number of estimated parameters in the model (for SLR, p=2),
is the variance of the residuals,

is the prediction residual, and

is the standard deviation of the prediction residuals.

LN RS

i0)
S0
Studentized residuals are often similar to the standardized residuals, e;, but are computed using a
variance, s(zl.), that does not include their own observation. Therefore, an unusually large observation does
not inflate the estimate of variance that is used to determine whether the deleted observation is unusual,

thus allowing outliers to be more easily detected.
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9414 Cook's D

The most widely used measure of influence is Cook’s D (Belsley and others, 1980):

eh ezi h,
D =— = U (9.14)
ps*(1-h)  ps

where
h, is the leverage of observation i,
e, is the residual,
p is the number of estimated parameters in the model (for SLR, p=2), and
s? is the variance of the residuals (table 9.1).

An observation, x,, is considered to have high influence if D>F' inp A =01 where p is again the
number of coefficients estimated in the regression (for SLR, p=2), n is the number of observations, and
Fo is the value of the F-distribution for p+1 and n—p degrees of freedom. Note that, for SLR with
more than about 30 observations, the critical value for D, would be about 2.4, and with several explanatory

variables, the critical value would be in the range of 1.6 to 2.0.

9.4.1.5 DFFITS
Another influence diagnostic is the DFFITS measure (Belsley and others, 1980):

DFFITS, = enlh =e(’)ﬁ, (9.15)

h. s the leverage of observation i,

the prediction residual, and

S, 1s the standard deviation of the prediction residuals.

An observation is considered to have high influence if |DFFITS,.| > 2\/E (Belsley and others, 1980).
n

Example 9.5. Leverage and influence statistics.

There are a number of functions and plots in R that can be used to evaluate leverage and influence. In
working on regression problems, it is useful to know where certain statistics are stored or how they can be
created. This example uses the Cuyahoga River dataset from example 9.1 to illustrate the ways variables
can be stored and accessed. The residuals of the model, e, are stored as part of the regression model output
in the vector cuya.lm$residuals. The predicted values, y,, are stored in the vector cuya.lm$fitted.
values, and the coefficients are stored in the vector cuya.lm$coeficients. The leverage, Cook’s D,
and DFFITS for each residual value can be computed using the output from the stored cuya.1m model.
The commands to compute leverage, Cook’s D, and DFFITS values are hatvalues(cuya.1lm), cooks.
distance(cuya.lm), and dfits(cuya.1lm), respectively. To obtain the values for n and p, use the
following R code with the stored cuya.lm model:

> n <- length(cuya.lm$residuals)
> p <- length(cuya.lm$coeficients)

To find any observations that exceed the criteria for having high leverage, use the command
> subset(hatvalues(cuya.lm), hatvalues(cuya.lm) > 3 * (p / n))

> named numeric(9)

yZ|
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In this case, no values were returned exceeding the criteria. To assess whether any observations exceed
the criteria for Cook’s D with a=0.1, use the command

> subset(cooks.distance(cuya.lm), cooks.distance(cuya.lm) > gqf(0.1, p,
+ n - p, lower.tail = FALSE))

> named numeric(9)

Again, no values were returned exceeding the criteria. However, for DFFITS, we find two
observations—observations 2 and 29—are identified as being influential:

> subset(dfits(cuya.lm), dfits(cuya.lm) > 2 * sqrt(p / n))
2 29
0.7500530 0.6290945

9.42 Assessing the Behavior of the Residuals

Examination of the behavior of the regression model residuals is necessary to ensure that the
regression equation meets the assumptions required for most applications of regression (table 9.2;
assumptions 3-5). In general, the residuals must possess the following properties: (1) unbiased, (2)
homoscedastic, (3) normally distributed, and (4) independent. This section discusses the ways in which
residuals can be evaluated to explore their behavior and test whether the assumptions have been met.

9.421 Assessing Bias and Homoscedasticity of the Residuals

Bias and homoscedasticity of the residuals can be evaluated visually by examining a plot of the
residuals (or standardized residuals) versus predicted values (e versus y). Plotting the residuals in this way
enhances the opportunity to more clearly evaluate the behaviors of the residuals as compared to plotting
the original data, y, versus the predictions, y. A plot of the residuals versus predicted values will allow
for visual inspection of homoscedasticity (that is, that the variability in the residuals does not vary over
the range of predicted values) and bias (e values generally plot equally above and below zero). For ideal
regression model behavior, this plot should show a horizontal cloud of data rather than a pattern that has
curvature, and the variability of that cloud of data should not substantially change as one scans from left
to right across the graph. Examples of such graphs are given in example 9.6 that follows. We can also
apply a formal test, the Breusch-Pagan test (Breusch and Pagan, 1979), to evaluate homoscedasticity. In
this test, the null hypothesis is that the square of the residuals is independent of the fitted value. It can be
run in R, using the ncvTest function in the car package (Fox and Weisberg, 2011). This test is applied in
example 9.6.

There are two commonly used solutions that can mitigate poorly behaved residuals: (1) a
transformation of the data (discussed in section 9.6), or (2) the use of a different independent variable to
explain the variation in y. It is possible to read too much into these plots, however. Beware of apparent
curvature produced by a couple of odd points or of error variance seeming to both grow and shrink one or
more times over the range of . Probably neither of these can or should be fixed by transformation, but may
indicate the need for the robust procedures of chapter 10.

Example 9.6. Assessing bias and homogeneity of residuals.

Continuing with the example, the residuals can be plotted to determine if homogeneity exists and
there is no relation between the residuals and the explanatory variable. Note that R has several plotting
options available to assess a regression model. These plots are accessed by specifying a value for the
which argument. When which = 1, a plot of the residuals versus the fitted data is created and this plot
is useful for assessing the bias and homogeneity of the residuals. In the line of code below, the argument
ask = FALSE prevents the user from being asked each time they would like to see the plot. For more
information on this command, type ?plot. 1m at the R command prompt.
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> plot(cuya.lm, which = 1, ask = FALSE)

In this example, the open circles are the residuals, the solid line is the loess-smoothed (see sections 2.3
and 10.3) line through the residuals, and the dashed line is horizontal at zero Note that in the R output,
the solid line will be colored red. The fitted values resulting in the three largest absolute standardized
residuals are shown with an observation number. Notice that there is a curvature to the residuals (a pattern
of high-low-high residual values going from low fitted values to high fitted values). This lack of fit is
slightly worrisome but not egregious. In chapter 11 we will consider the possibility that a more complex
model may improve the behavior of the residuals, such as using two explanatory variables. Other aspects
of the regression diagnostics should be evaluated to determine if an alternate model should be pursued.
To evaluate heteroscedasticity, we can look at the variability of the residuals across the fitted values.
Homoscedastic residuals will have no trend in the variability of the points across the fitted values. In this
example, aside from the outliers, the residuals have similar variability across the fitted values and are
generally homoscedastic. An additional graphic that can help identify problems of heteroscedasticity is a
plot of the square root of the absolute value of the standardized residuals versus the fitted values. This can
be obtained with the command

> plot(cuya.lm, which = 3, ask = FALSE)

and results in the plot below, where the open circles are the residuals and the solid line is the smoothed line
through the residuals. Note that in the R output, the solid line will be colored red.
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Although we see some tendency for these values to rise and then fall, the smooth curve does not

show a strong relation between fitted values and residual variance, we can apply the Breusch-Pagan test to
evaluate homoscedasticity. The commands are

> install.packages(car) # To install the car package
> library(car) # To load the car package

> ncvTest(cuya.lm)

Non-constant Variance Score Test
Variance formula: ~ fitted.values

Chisquare = 2.652948 Df =1 p = 0.103358

Thus, we see that although there is some indication of nonconstant variance, if we had selected a=0.05,

we would not reject the null hypothesis of constant variance. Although at a=0.10, we would consider
rejecting the null hypothesis and consider a transformation of y, a different transformation of x, or test a
different explanatory variable. But, the violation of assumption of homoscedastic residuals is not so severe
and we should not feel that it is a problem that must be solved in this case.

9.4.22 Assessing Normality of the Residuals

Recall from table 9.2 that, in addition to ensuring that the residuals are unbiased and homoscedastic,

the residuals must also be normally distributed in order to apply hypothesis tests and prediction and
confidence intervals to the regression results. If the residuals depart substantially from a normal
distribution, then the various confidence intervals, prediction intervals, and hypothesis tests will be
inappropriate. Specifically, (1) hypothesis tests will have low power (slopes or explanatory variables may
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falsely be declared insignificant), and (2) confidence or prediction intervals will be too wide, as well as
giving a false impression of symmetry. The determination of the normality of the residuals can be assessed
graphically or through formal hypothesis tests. To determine if the residuals are normally distributed, most
software programs, including R, use the standardized values of the residuals. The values of the standardized
residuals are ranked and an empirical probability is computed based on each ranked value. These values are
compared to the expected probabilities of the residuals if they had resulted from a normal distribution. The
example, continued below, provides additional information as to how to interpret a probability plot of the
residuals.

In addition to probability plots, other guidelines can be applied to determine if the residuals follow a
normal distribution. If the residuals are normally distributed, values of |e |>3 should happen about 3 times
in 1,000 observations and values of [e_|>2 should happen about 5 times in 100 observations. Under a
correct model with normal residuals, the deleted- residuals, Loy have the theoretical advantage in that they
should follow a #-distribution with (n—/)—p degrees of freedom. Simple boxplots of the residuals can also
indicate if the distribution of the residuals is skewed and, therefore, do not follow a normal distribution.
There are formal statistical tests for normality that are discussed elsewhere in the text; however, small
deviations from these assumptions are not likely to affect results and only severe violations of the
normality of the residuals should be cause to abandon or change the regression model (Montgomery and
others, 2012). For this reason, a graphical assessment of the values plotted on a normal probability plot is
generally adequate.

Example 9.7. Assessing normality of the residuals.

The most common way to assess the normality of the residuals in a regression model is to plot the
residuals on a normal probability plot:

> plot(cuya.lm, which = 2, ask = FALSE)
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The resulting plot shows the standardized residuals plotted as circles, and the dashed line indicates
where they would fall if the residuals were normally distributed. We see that this is not the case for all data
points. There are several positive residuals that are far higher than we would expect given the sample size.
In a case like this, we need to think carefully if we plan to use the regression results for hypothesis testing,
prediction, or confidence intervals (table 9.2).

9.42.3 Assessing Serial Correlation of the Residuals

Another assumption of regression is that the residuals, e, are independent (table 9.2). Many hydrologic
datasets on which regression is performed are actually pairs of data observed at the same time, for example
precipitation and flow, flow and concentration, concentration of one constituent versus concentration of
another. These individual time series (flow, concentration, precipitation) often exhibit some level of serial
correlation, which is the correlation of one observation point in time with another observation point of the
same series at some time apart. The important question for a regression application is whether the residuals
are serially correlated. When two time series are regressed against one another and the sampling frequency
is high enough, serial correlation of the residuals is virtually certain to exist. If serial correlation occurs, the
following two problems ensue:

1. The estimates of the regression coefficients are no longer estimates that provide the smallest possible
variance (in statistical terms, this means the estimates of the coefficients are no longer the most
efficient estimates possible), though they remain unbiased.

2. The value of s> may seriously underestimate the true . This means that the test statistics underlying
the hypothesis tests are not correctly estimated and the confidence and prediction intervals will be
incorrect as well.

9.4.2.4 Detection of Serial Correlation

Correlation between residuals over time will not be evident from the e, versus y, residuals plot but
will stand out on a plot of e, versus time. If there is a tendency for the residual values to clump in such a
plot—positive residuals tending to follow positive residuals, negative residuals tending to follow negative
residuals—this may mean there is serial dependence present in the residuals. The clumping could arise for
four different reasons: (1) the presence of a long-term trend or cyclic patterns in the relation between the
two variables, (2) dependence on some other serially correlated variable which was not used in the model,
(3) serial dependence of residuals, or (4) some combination of these reasons. These correlation issues
can also exist when the observations are distributed spatially. In these cases, a plot of e, versus the spatial
coordinate system can be used to identify spatial correlation patterns. This text will not deal with these
spatial issues; they are similar to the temporal issues considered here, but the tools to detect and address
this issue are more complex.

One can use graphical methods to explore the possibility that the residuals vary as a function of time
(including time of day or season of the year). It is often the case that what may appear to be serial correlation
is actually an artifact of these time or trend components. A good residuals pattern, one with no relation
between residuals and these measures of time, will look like random noise. If time is measured as a
categorical variable (for example, month or season), boxplots of residuals by category can be evaluated for
patterns of regularity. If we see that the residuals are related to these time-related variables or categories,
then more sophisticated modeling approaches may be called for (see chaps. 11 and 12) to attempt to remove
this source of variability before dealing with any remaining serial correlation.

If plots of residuals versus time show a clumpy behavior (in other words, long runs of consecutive
positive residuals alternating with long negative runs) there may be an additional explanatory variable
that can remove this pattern (see chap. 12). The residuals from these new regressions can be plotted again
to see what effect the additional variables had. The use of multiple explanatory variables is explained in
chapter 11.

Serial dependence is generally quantified by the correlation coefficient between a data point and its
adjacent point. The procedure described here is only appropriate when the data collected are truly a time
series, that is, observations are equally spaced in time (for example, hourly, daily, weekly, monthly, or annual)
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although it can be applied if there is a modest departure from regularity of sample collection (for example, if
samples are approximately weekly but sometimes the spacing between samples is 5 days, or 6 days, or 8 days
and so forth, or if the sampling is regular but there are a modest number of missing values). A lag-one serial
correlation coefficient can be used to assess serial dependence. This is typically done using the Pearson’s
correlation coefficient, but a more robust approach to evaluating serial dependence could be done with
Kendall’s or Spearman’s correlation coefficients (see chap. 8). To compute whether this serial dependence

is in fact significant for the case of a regularly spaced time series

1. Compute the regression between y and x;

2. Order the resulting residuals by the relevant time variable ¢, to ¢ ;

3. Offset or lag the vector of residuals to form a second vector, the lagged residuals;
4. The residuals pairs then consist of (e, e,_,) for all ¢, from 7, to ¢ ; and

5. Compute a measure of correlation between the pairs (e, e, ).

In R, this can be done as follows. Assume that the vector, e, is the time-ordered set of residuals. The
lag-one serial correlation can be computed (and the associated hypothesis test done) with the commands

> n <- length(e)
> cor.test(e[2 : n], e[l : n - 1], method = "kendall")

The words spearman or pearson could also be specified in the method argument to use the
Spearman’s p or Pearson’s » correlation, respectively.

If the correlation is significant, the residuals are likely not independent, violating one of the
assumptions listed in the last column of table 9.2. This does not mean that the regression analysis should
not be carried through, but it does limit the kinds of questions the regression analysis can address.

A related statistic to assess serial correlation of the residuals is the Durbin-Watson statistic (Durbin and
Watson, 1950). The statistic is

2
d= M .
Zi:lei

A small value of d is an indication of serial dependence. The /1 that the e, are independent is rejected
in favor of serial correlation when d <d,. The value of d, depends on the size of the dataset, the number
of explanatory variables, and a. However, a low value of d will not give any clue as to its cause. Thus,
the graphical approach is vital, and the test should only be used as a check. The Durbin-Watson statistic
requires data to be evenly spaced in time and with few missing values. Thus, the statistic is not always
ideally suited for use with environmental data. In R, the function for this test is durbinWatsonTest in the
car package (Fox and Weisberg, 2011).

The important point here is that when residuals show strong serial correlation the hypothesis tests and
confidence intervals used in regression are no longer valid (see table 9.2). The information content of the
dataset is lower than what we would derive from the sample size, and therefore uncertainties are larger than
what is suggested by the dataset alone. This can become particularly problematic for datasets collected at
daily time steps or at hourly or shorter time steps. If we considered a dataset of TDS concentrations and
discharges collected at a daily interval for 20 years, we would have about 7,300 samples, but doing any of the
computations for significance tests or confidence intervals using an n value of 7,300 would grossly
overstate the true degree of certainty in our results.

The effect of serial correlation on estimation and hypothesis testing has a long history in the field of
hydrology and is commonly referred to as “equivalent independent sample size” (Matalas and Langbein,
1962; Lettenmaier, 1976). For datasets that have high frequency sampling these issues become very
important and require the use of time series methods that are beyond the scope of this book.
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9.4.25 Strategies to Address Serial Correlation of the Residuals

There are several ways to address the presence of serial correlation in the residuals in a linear-
regression framework:

1. Sample from the dataset. For example, if the dataset is quite large and the data are closely spaced in
time (say less than a few days apart), then simply discard some of the data in a regular pattern. The
dependence that exists is an indication of considerable redundancy in the information, so not a great
deal of information is lost in doing this.

2. Group the data into time periods (for example, weeks or months) and compute a summary statistic for
the period, such as a time- or volume-weighted mean or median, and then use these summary statistics
in the regression. This tactic should only be applied when the sampling frequency has remained
unchanged over the entire period of analysis. This ensures that each summary statistic was computed
using the same number of observations for each period and, therefore, that the summary statistic has
approximately equal variance across each period.

3. [If a pattern over time is evident, add additional terms to the regression equation to account for
seasonality or a long-term trend (see chap. 12).

Much more sophisticated approaches such as transfer function models (Box and others, 2015),
regression with autoregressive errors (Johnston, 1984), or generalized additive models (GAMs) (Wood,
2017), are beyond the scope of this text and not discussed here.

9.43 A Measure of the Quality of a Regression Model Using Residuals: PRESS

One of the best measures of the quality of a regression equation is the PRediction Error Sum of
Squares (PRESS statistic):

. 2
PRESS=Y¢!, . (9.16)

i=1

PRESS is a validation-type estimator of error that uses the deleted residuals to provide an estimate
of the prediction error. When comparing alternate regression models, selecting the model with the lowest
value of the PRESS statistic is a good approach because it means that the equation produces the least
error when making new predictions. It is particularly valuable in assessing multiple forms of multiple
linear regressions (see chap. 11), but it is also useful for simply comparing different options for a single
explanatory variable in SLR.

9.5 Confidence and Prediction Intervals on Regression Results

If all assumptions in table 9.2 are met, one can then compute a confidence interval and prediction
interval for a specified value of x.

9.5.1 Confidence Intervals for the Mean Response

If x, is a specified value of x, then the estimate of the conditional mean of y, at x, is obtained by simply
substituting x into the regression equation: j, = b, +b,x,, the value predicted from the regression equation.
SLR estimates the mean response of y given x and, because the regression model is an estimate of the true
relation between x and y, there is some uncertainty in the resulting values of $ which arise owing to the
uncertainty in the regression parameters 8 and §,.

The (1-a) 100 percent confidence interval for the condition mean, j, for a specified x is then

, (9.17)
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where ¢ is the quantile of the Student’s #-distribution having n—2 degrees of freedom with probability of
exceedance of a/2. The other variables are the same as those defined in table 9.1. The 95-percent confidence
interval is shown in figure 9.9. It is two-sided and symmetric around j, . Also note from the formula

that the farther x, is from x, the wider the interval becomes. This is because the model will have less
uncertainty near the central location of the x values than at the extremes. Note that this bow shape of the
confidence interval shown in figure 9.9 agrees with the pattern seen in figure 9.3 for randomly generated
regression lines, where the positions of the line estimates are more tightly clustered near the center than
near the ends.

Example 9.8. Computing the confidence interval.

To continue with the Cuyahoga River data from example 9.1, the 95-percent confidence interval for
the mean response, y, is calculated for two values of In(x,), 3.05 (a value near the mean computed from the
natural log of values, Zizl In (x") , which is 2.29) and 4.03 (a value much farther from the mean). Recall

n
that values of x are the natural logarithm of the discharge and not the discharge values themselves because

we transformed the x data. The sample size, n, is 70.

Written out, the confidence intervals for In(x,) 3.05 (observation #37 in the Cuyahoga River
dataset) are

269.03 —1.9972.04,| +(3.05—2.29)2
TN T 6185 | =(246.94,291.12) mg/L,

\/ 1 (3.05-229)
269.03+1.9972.04|— +~—— 2
70 61.85
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Figure 9.9. Plot of 95-percent confidence intervals for the mean total dissolved solids
concentration resulting from the regression model fit between total dissolved solids and
the log of discharge for the Cuyahoga River data from example 9.1.
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and for In(x,) = 4.03 (observation #62 in the Cuyahoga River dataset) are

160.06—1.99:72.04 1+(4.o3—z.29)2
o —\70 61.85 =(123.6, 196.5) mg/L.

\/ 1 (4.03-2.29)
160.06+1.9972.04 | — +~———
70 6185

Notice that the confidence interval has a width of approximately 44 mg/L at In(x,)=3.05, and a width of
approximately 72 mg/L at In(x,)=4.03.

In R, the predict function can be used to obtain the confidence intervals. Using the stored cuya.
1m regression model and the Cuyahoga River dataset, one could enter the following for In(x;)=3.0
(observation #37 in the Cuyahoga River dataset):

> data.point.far <- cuya.tds$discharge_cms[37]

> predict(cuya.lm,
+ newdata = data.frame(discharge_cms = xdata.point.far),
+ interval = "confidence", level = 0.95)

fit lwr upr

1 269.0263 246.7076 291.3449
and for In(x)) = 4.03 (observation #62 in the Cuyahoga River dataset):

> xdata.point.close <- cuya.tds$discharge cms[62]

> predict(cuya.lm,

+ newdata = data.frame(discharge_cms = xdata.point.close),
+ interval = "confidence", level = 0.95)
fit lwr upr

1 160.0602 123.6231 196.4974

9.5.2 Prediction Intervals for Individual Estimates of y

The prediction interval for y,, the y-value associated with a specified value of x, the confidence
interval for prediction of an estimate of an individual point, is often confused with the confidence interval
for the conditional mean. This is not surprising, as the same regression model equation is used to obtain the
best estimate for both the conditional mean of y given x, and for an individual y, value given x. However,
in addition to uncertainties in the parameter estimates f8, and f,, the prediction interval includes an extra
term that incorporates the unexplained variability in y. The conditional mean results in an estimate of y
given the x values used to develop the regression; prediction intervals provide an estimate of a future y,
value given the x, value that has been observed. This means that the variability of both x and y need to
be accounted for in the prediction interval computation. The (1—a)-100 percent prediction interval for a

specified x, value is
1 (% -%) 1 (x,-%)
Po—tr, Syl —tt Dot s [l ) (9.18)
(5-2) n.SS, (&) n SS,

where 7 is the quantile of the Student’s ¢-distribution having n—2 degrees of freedom with probability of
exceedance of a/2. The other variables are the same as those defined in table 9.1. The term inside the
square root is the same as in the confidence interval formula, except for the addition of the value 1 in the
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prediction interval formula, which adds a width of s to the overall width of the interval. This term increases
the interval by the amount of the unexplained variability in y.

Note that the intervals widen as x, departs from the center of the x values (fig. 9.10), but not nearly as
markedly as the confidence intervals do. This is because the second and third terms inside the square root
are small in comparison to the first term, provided the sample size is large. In fact, for large sample sizes a
simple rough approximation to the prediction interval is just ( 7, _t(ﬁ,,,,z] S, P+t o -5 ), two parallel

n—

2
straight lines. The prediction intervals should contain approximately 1—a-100 percent of the data within

them, with g-IOO percent of the data beyond each side of the intervals. They will do so if the residuals are
approximately normal, independent of x, and homoscedastic.

Example 9.9. Computing prediction intervals.

The 95-percent prediction intervals for the Cuyahoga River dataset from example 9.1 are computed
below for In(x,)=3.05 and 4.03. For In(x,)=3.05 (observation #37 in the Cuyahoga River dataset):

269.03-1.9972 04\/1+ L, (3:05-229)
R 70 6185 =(122.5,415.5) mg/L,

\/ 1 (3.05-2.29)
269.03+1.9972.04 14+ —+——— 2
70 6185
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Figure 9.10. Plot of 95-percent prediction intervals for an individual estimate of total
dissolved solids concentration resulting from the regression model fit between total
dissolved solids and the log of discharge for the Cuyahoga River data from example 9.1.
Confidence intervals are shown for reference.
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and for In(x,)=4.03 (observation #62 in the Cuyahoga River dataset)

1 (4.03-229)

160.06-1.99-72.044 |1 + — + —+——"—,
\/ i 70 ’ 61.85 =(10.7, 309.4) mg/L.

1 (4.03-229)
160.06 +1.9972.04 |1+ — +——— L
70 61.85

The 95-percent prediction interval has a width of approximately 293 mg/L at In(x)=3.05 and a
width of approximately 299 mg/L at In(x,)=4.03. Notice that the prediction intervals are much wider
than the confidence intervals and that there is only a small difference in width between the two prediction
intervals. In R, the predict function can again be used to obtain the prediction intervals. Using the stored
cuya. lm regression model and the Cuyahoga River dataset, one could enter the following for In(x,)=3.05
(observation #37 in the Cuyahoga River dataset)

> xdata.point.far <- cuya.tds$discharge _cms[37]

> predict(cuya.lm,

+ newdata = data.frame(discharge_cms = xdata.point.far),
+ interval = "prediction”, level = 0.95)
fit lwr upr

1 269.0263 122.5077 415.5449
and for In(x,)=4.03 (observation #62 in the Cuyahoga River dataset)

> xdata.point.close <- cuya.tds$discharge cms[62]

> predict(cuya.lm,

+ newdata = data.frame(discharge _cms = xdata.point.close),
+ interval = "prediction”, level = 0.95)
fit lwr upr

1 160.0602 10.7376 309.3829

The small differences between the R results and the results obtained by hand are because of rounding.

Note that all of the observations that are outside the prediction interval lie above the interval and
none fall below it. This happens because the residuals for this model are clearly not normal (as we saw in
section 9.4.2.2.). The prediction intervals computed here are not good representations of the behavior of the
data because the assumptions of normality are not met (table 9.2). The next section provides one approach
for developing a more robust prediction interval for cases like this.

9521 Nonparametric Prediction Interval

There is a nonparametric version of the prediction interval, which can be used when the x, y data
display a linear relation and residuals have constant variance (homoscedastic), but the distribution of the
residuals appears non-normal. Typically, such departures from normality result in an excessive number
of outside or far outside values or in the asymmetry of the distribution of residuals. Parametric prediction
intervals are not able to capture these behaviors.

The nonparametric prediction interval is

(5 +e.-dy+e,) ©9.19)
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Figure 9.11. Plot of 95-percent parametric and nonparametric prediction intervals for an
individual estimate of total dissolved solids concentration resulting from the regression
model fit between total dissolved solids and the log of discharge for the Cuyahoga River
data from example 9.1.

where
e, is the 1—a/2 (lower limit) of the ranked residuals, and
e is the a./2 (upper limit) of the ranked residuals.

To corlrjlpute the nonparametric prediction intervals, order the residuals from smallest to largest and
assign a rank to each value (with the smallest value having rank 1 and the largest value having rank ). Then
compute the rank associated with e, and e, using the formulas: L=(n+1)-a/2 and U=(n+1)-(1-a/2).
Choose the ¢, and e, values associated with the ranks L and U. When L and U are not integers, either the
integer values closest to L and U can be chosen or the values of ¢, and e, can be interpolated between
adjacent residuals. In figure 9.11, the nonparametric prediction interval is compared to the one previously
developed assuming normality of residuals. Note that e, and e, will not change for any value of x, once o
is chosen and the calculation of e, and e, is only dependent on n and a. For this reason, the nonparametric
interval follows parallel to the J values and the intervals are asymmetric around the central regression line,

reflecting the asymmetry of the residuals themselves.

Example 9.10. Computing nonparametric prediction intervals.

The 95-percent nonparametric prediction intervals for the Cuyahoga River dataset in example 9.1 are
computed below for n=70 and In(x)=3.05 and 4.03. Values for L and U are calculated as

L=(70+1)~O'—§5=1.78

U:(70+1).(1_¥j:69.2 .
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Either the 1st- and 69th-ranked residual can be selected, or values interpolated between the 1st- and
2nd-ranked residuals and the 69th- and 70th-ranked residuals. In R, the function as.integer will select
the integer values of L and U:

> # This line saves the residuals from the regression model
> cuya.residuals <- as.vector(resid(cuya.lm))

> # This line sorts the residuals and stores them

> sort.residuals <- sort(cuya.residuals)

> # Compute L and U

> L <- as.integer((70 + 1) * (0.05 / 2))

> U <- as.integer((70 + 1) * (1 - (0.05 / 2)))

The values of L and U are then added to the estimate of j, at x, for x,=3.05 with prediction intervals
of (50.16, 365.30).

> 269.03 + sort.residuals[L]
[1] 159.1353
> 269.03 + sort.residuals[U]
[1] 474.2847

with prediction intervals of (159.14, 474.28) and for x, =4.03
> 160.06 + sort.residuals[L]

[1] 50.16534
> 160.06 + sort.residuals[U]
[1] 365.3047

9.6 Transformations of the Response Variable, y

The primary reason to transform the response variable, y, is because the residuals are heteroscedastic—
their variance is a function of x. This situation is very common in hydrology. For example, suppose a
rating curve between stage (x) and discharge (y) at a stream gage has a standard error of 10 percent. This
means that whatever the estimated discharge, the standard error is 10 percent of that value. The absolute
magnitude of the variance around the regression line between discharge and stage therefore increases as
estimated discharge increases. In this case, a transformation could improve the behavior of the residuals.
The two topics that require careful attention when transforming y are

1. Deciding if the transformation is appropriate, and

2. Interpreting the resulting estimates.

9.6.1 To Transform or Not to Transform

The decision to transform y should generally be based on graphs. The first step is to develop the best
possible nontransformed model. The next step is to apply the methods outlined in section 9.4 to examine
the behavior of the residuals: plot e, versus ¥, to check for heteroscedasticity, make a probability plot for e,
to check for normality, and examine the function for unreasonable results such as predictions of negative
values for variables for which negative values are physically impossible. If serious problems arise in any of
these tests, then transformation of y according to the bulging rule and ladder of powers should proceed and
the behavior of the residuals reevaluated. If both the transformed and untransformed scales have problems,
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then either look for a different transformation or accept the limits of the regression model according to the
assumptions met in table 9.2.

There are additional methods available to select the best transformation of y. This involves testing of
a series of transformations and choosing the transformation that maximizes the probability plot correlation
coefficient (PPCC) of the regression residuals. The implementation of this approach is beyond the scope
of this text; however, regardless of the method used to transform the data, the final choice should be made
only after looking at residuals plots, as described in section 9.4. Attempting to find the ideal transformation
is not appropriate and one should be satisfied with simple ones such as the logarithm, square root, or
reciprocal.

It is important to note that in the case of transformed y-variables, comparisons of R?, s, or F-statistics
between transformed and untransformed models (or between two different transformations) should not be
used to choose among them. Each model is attempting to predict a different variable (for example, y, log(y),
or 1/y). The above statistics measure how well these different dependent variables are predicted and so
cannot be directly compared. Instead, the appropriate response variable is one that best fits the assumptions
of regression (table 9.2). Once a hydrologist has developed some experience with certain kinds of datasets,
it is quite reasonable to go directly to the appropriate transformation without a lot of investigation. One
helpful generalization in deciding to transform the y variable is that any inherently positive y variable that
covers more than an order of magnitude of values in the dataset probably needs to be transformed.

9.6.2 Using the Logarithmic Transform

A logarithmic transformation is the most common transformation used in hydrology. A common form
of this transformation is to use the natural logarithm on both x and y:

In(y)=5,+bIn(x)+¢ >

where In is the natural log. Often in hydrology, a regression is performed on the log-transformed values;
however, results need to be communicated in the original units. When this equation is expressed in terms of
y, notice that the terms become multiplicative and not additive:

In transforming from logarithmic units back to the original units, there are important properties to
note, the implications of which are described below and in the following sections.

1. When the y values are appropriately log-transformed, the conditional distribution will be
approximately normal and, for this reason, the mean and median of the log-transformed variable will
be approximately equal to one another. However, this is not the case when the values are transformed
back to their original units. This is because the transformed values follow a conditional normal
distribution even though the original values do not. When back-transformed to the original units,
the conditional mean will be greater than the conditional median because data that are log-normally
distributed are positively skewed (the right tail is longer than the left).

2. Inregressions, the regression line estimates the mean response. Therefore, when the values are log-
transformed, the regression equation estimates the mean response of In(y) conditioned on the value
of In(x). The resulting equation does not estimate the mean response of y conditioned on x but rather,
the median response of y conditioned on x. When the dependent variable is transformed back from
log space to real space, the resulting conditional distribution of y will be skewed to the right (because
it follows an approximately log-normal distribution) and as such the mean will be greater than the
median. Thus, simply back-transforming the estimates from log space to real space will result in
underestimation of the true conditional mean.

9.6.3 Retransformation of Estimated Values

Simply transforming estimates from a log-regression equation back into the original units provides
estimates of the medians of the y values, which are underestimates of the conditional means. This is
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particularly important when mass conservation is relevant, such as when the estimates of y are to be
summed to obtain an estimate of an aggregate value. For example, when summing daily estimates of a
constituent flux to obtain a monthly flux value, the conditional mean is preferred. Ferguson (1986) points
out for some very realistic cases where using this estimate for sediment loads will result in underestimates
of the aggregated flux by as much as 50 percent.

Note that in some cases, the median value may be the appropriate measure of the typical response, but
for cases where an estimate of the mean is deemed to be the preferred quantity, one must determine how to
compensate or adjust for the back-transformation bias. The two methods described below attempt to correct
for this bias of the estimate. The first method assumes that the log-transformed values follow a normal
distribution, and the second method provides a nonparametric method that does not assume a distribution of
the log-transformed values.

9.6.3.1 Parametric or the Maximum Likelihood Estimate (MLE) of the Bias
Correction Adjustment
If the residuals in the log-transformed units are known to be normal and the parameters of the fitted

regression model (B, B,, o,) are known without error, the theory of the lognormal distribution (Aitchison
and Brown, 1981) provides the following results:

Median of L given Q, = exp”*/ "% = (9:20)
=exp™Qff
Mean of L given Q, = E[L|Q, ] = exp™*” g, +030° (9.21)
=L exp®”
Variance of L givenQ, = Var[L|Q,] (9.22)
= (Lmexpo's"z )? exp"z'] -

These equations would differ if base 10 logarithms were used, as was done in the first paper to address this
topic in hydrology (Ferguson, 1986), but our presentation assumes natural logarithms.

Unfortunately, the true population values 8, 8, and o are never known in practice. All that is
available are the estimates b, b, and s,. Ferguson (1986) assumed these estimates were the true values for
the parameters. His estimate of the mean, which we call the maximum likelihood estimate (MLE), is then

l’:MLE _ eXpb0+q InQy+0.55% (9.23)

When 7 is large (>30) and s? is small (<0.25), iML . 1s a very good approximation. However, when n
is small or s? is large, it can overestimate the true mean, in other words it overcompensates for the bias.
There is an exact unbiased solution to this problem, which was developed by Bradu and Mundlak (1970).
It is not given here owing to the complexity of the formula, but it has been implemented in the R package
EnvStats (Millard, 2013) in the function elnormAlt and is denoted as the minimum variance unbiased
estimate (MVUE) method. Its properties are discussed in Cohn (1988). This method has also been extended
by Cohn (2005) to address the issue of censored data, a specific form of categorical data common in water
quality sampling and is implemented in the software package LOADEST (Runkel and others, 2004).

9.6.3.2 Nonparametric or Smearing Estimate of the Bias Correction Adjustment

Even with the improvements to the parametric MLE method provided by the MVUE method, the
validity of any parametric approach depends on normality of the residuals. There is an alternative approach
that only requires the assumption that the residuals are independent and homoscedastic; they may follow
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any distribution as well. This approach is the smearing estimate of Duan (1983). In the case of the log
transform it is

by+b InQ, Z:I:lexp[ei] . (9.24)
n

i, =exp

The smearing estimate is based on each of the residuals being equally likely, and smears their
magnitudes in the original units across the range of x. This is done by re-expressing the residuals from the
log-log equation into the original units and computing their mean. This mean is the bias-correction factor
to be multiplied by the median estimate for each x,. Even when the residuals in log units are normal, the
smearing estimate performs nearly as well as Bradu and Mundlak’s (1970) unbiased MVUE estimator. It
also avoids the overcompensation of Ferguson’s approach. As it is robust to the distribution of residuals, it
is the most generally applicable approach.

The smearing estimate can also be generalized to any transformation. If Y=f{y) where y is the response
variable in its original units and f'is the transformation function (for example, square root, inverse, or
log), then

5 = z;f'l (bo +bx, +e,.) ’ 9.25)

n

where b, and b, are the coefficients of the fitted regression, and e, are the residuals (y,=b,+b x, +e,), [ is
the inverse of the selected transformation (for example, square, inverse, or exponential, respectively), and
x, is the specific value of x for which we want to estimate y. Unlike the MVUE approach, no way has been
developed to generalize the smearing estimate to work in cases where there are censored data.

Example 9.11. Log transformation of y.

In previous examples in this chapter using the Cuyahoga River total dissolved solids dataset, only the
x values were log-transformed. To show the potential impact of the transformation bias issue we will switch
to a different dataset: total phosphorus (TP) concentrations for the Maumee River (Waterville, Ohio).
The dataset consists of 117 samples collected by the U.S. Geological Survey from October 2010 through
December 2015. The data are shown in figure 9.124 with neither discharge nor concentration transformed,
then with a logarithm transformation on the discharge only (fig. 9.12B), and finally with a logarithm
transformation on both concentration and discharge (fig. 9.12C).

With no transformation (fig. 9.124) of either variable, the data strongly violate the requirements for
linearity and homoscedasticity. When only the x values are transformed (fig 9.12B) the data continue to
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Figure 9.12. Comparison of the relation between discharge and total phosphorus concentration for the
Maumee River (Waterville, Ohio), in original units (A), with a logarithmic transformation of the discharge values
(B), and with a logarithmic transformation of the discharge and total phosphorus concentration values (C).
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show considerable curvature and heteroscedasticity. However, when both the x and y values are transformed
(fig. 9.12C), it appears that the data exhibit fewer and less extreme outliers, the errors appear roughly
homoscedastic but the relation still exhibits some curvature. We will proceed with estimating a regression
relation using transformed x and y values. In R, the regression resulting from the transformation of both the
x and y values is shown in the following lines of code. The resulting model is called tpMod. Note that tp is
the concentration of TP.

> load("maumeeTP.RData")

> tpMod <- 1Im(log(tp) ~ log(Q), data = maum)
> y(tpMod)

Call:
Im(formula = log(tp) ~ log(Q), data = maum)

Residuals:
Min 1Q Median 3Q Max
-0.78108 -0.23052 -0.01374 0.20224 1.05776

Coeficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -3.07003 0.11484 -26.73 <2e-16 ***
log(Q) 0.31146  0.02487 12.53  <2e-16 ***

Signif. codes: © “***’ @9.,001 ‘**’ 9.01 ‘*’ ©0.05 .’ 0.1 ¢’ 1

Residual standard error: 0.3939 on 115 degrees of freedom
Multiple R-squared: ©.577, Adjusted R-squared: ©.5733
F-statistic: 156.9 on 1 and 115 DF, p-value: < 2.2e-16

> plot(p tpMod, which = 1, ask = FALSE)
> plot(tpMod, which = 2, ask = FALSE)
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The relation of the logarithm of concentration to the logarithm of streamflow is highly significant (note
the ¢-value of 12.53). The residuals still show some problems: some curvature of the relation and a right tail
of the distribution of the residuals that is somewhat thicker than a normal distribution, but the regression is
reasonable and we will use it here. Methods described in the following two chapters could improve on it to
a modest degree.

To illustrate the bias in total phosphorus concentrations, the mean resulting from each estimate is
compared to the mean of the observed concentrations. We can complete these calculations in R using the
results from the tpMod regression model.

The mean of the observed total phosphorus concentrations is 0.223 mg/L:

> mean(maum$tp)

[1] ©.2234103

We would like to have the estimates from the fitted model result in a mean value that is quite close to
this true mean (recall that without a transformation of y, the mean of the estimates will exactly equal the
mean of the observed y values). If one simply exponentiated the J values and took the mean with no bias
correction adjustment, the estimated mean concentration would be 0.202 mg/L:

> yhat <- exp(tpMod$fit)
> mean(yhat)
[1] ©.2023018

As expected, this is an underestimate of the mean of the observed data (about 10 percent below the
observed mean). Applying the MLE estimate, the bias correction adjustment is a multiplier of 1.08 applied
to each of the previous estimates, results in an estimated mean concentration of 0.219 mg/L:

> sse <- sum(tpMod$residuals”2)
> sSquared <- sse / (length(tpMod$residuals) - 2)
> biasAdj <- exp(@.5 * sSquared)
> biasAdj
[1] 1.080672
> ymle <- yhat * biasAdj
> mean(ymle)
[1] ©.2186219
This estimate is about 2 percent smaller than the observed mean. Applying the smearing estimate

of the bias correction adjustment gives almost exactly the same result as the previous estimate, a mean
concentration of 0.219 mg/L:

> smearAdj <- sum(exp(tpMod$residuals)) / length(tpMod$residuals)
> smearAdj

[1] 1.081462

> ysmear <- yhat * smearAdj

> mean(ysmear)

[1] @.2187817

The fact that the smearing estimate and the MLE are so similar is because the residuals conformed
well to a normal distribution. In this example either the MLE or the smearing estimate is a reasonable
choice. The simple back transformation from the estimates in log space is not a good choice. If the residuals
were strongly non-normal, then the smearing estimate would be preferred.
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9.6.4 Special Issues Related to a Logarithm Transformation of y

When communicating about the quality of a regression, a common metric is the standard error of the
residuals, the value denoted as s in table 9.1. In the usual case of regression where the y variable is not
transformed, the units of s are the same as the units of y, and one can obtain an immediate understanding
of the magnitude of the errors. But if y is the natural logarithm of the variable of interest, then s is the
difference between the log of two numbers and, therefore, will be the log of the ratio of these two numbers.
In this case, it is not easy to interpret the magnitude of the actual regression error. There is, however,
another way to express s when the y variable is a log-transformation of the variable of interest. Assuming
that the errors in the regression model of the natural logarithm of y are homoscedastic, we can express the
standard error as a percent:

Spot =100- V 652 -1 (926)

For example, if s is 0.1, then Sp is 10.025 percent, and if s is 0.5 then S .1 53.29 percent. Given
that for a normal distribution, about two-thirds of values are within plus or mlnus 1 standard deviation of
the mean, then we can say that if s were 0.1, about two-thirds of the errors will be within a band of about
10 percent above or below their predicted values, and if s is 0.5 that about two-thirds of the errors will be
within a band of about 53 percent above or below their predicted values.

Another question that comes up frequently is the appropriateness of using log-transformed regressions
to compute river loads when discharge is the explanatory variable, for example, in equation 9.27:

In(L) =B, +B,-In(Q)+e¢ (9.27)

where the load L is defined as C- Q- k where C is concentration, Q is discharge, and £ is a unit conversion
(for example, if C were in mg/L and Q in cubic meters per second [m*/s] and L were in kilograms per day
[kg/day], then £=86.4, which is the unit conversation needed to obtain kg/day). The argument is often
made that this regression model is somehow inappropriate because the explanatory variable, O, appears on
both sides of the equation. This is often known as the problem of spurious correlation (Benson, 1965). The
response to this concern is somewhat nuanced, depending upon the intended application of the regression
equation.

Table 9.3. Comparison of results of regression of In(C) on In(Q) versus In(L) on In(Q).

[C, concentration; Q, discharge; L, load]

Statistic Model: In(C) versus In(Q) Model: In(L) versus In(Q)

Intercept -3.07 -1.39

Standard error of intercept 0.11 0.11

t-value of intercept -26.7 12.1

Slope 0.31 1.31

Standard error of slope 0.025 0.025

t-value of slope 12.53 52.7

Residual standard error 0.39 0.39

R? 0.58 0.96

261
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Let’s consider the total phosphorus data from the Maumee River that is discussed in example 9.11. We
can compute L, in kg/day, and apply linear regression to estimate the natural logarithm of L as a function of
the natural logarithm of Q.

> maum$L <- maum$Q * maum$tp * 86.4
> tpLoadMod <- 1m(log(L) ~ log(Q), data = maum)
> summary(tpLoadMod)

Call:
Im(formula = log(L) ~ log(Q), data = maum)

Residuals:
Min 1Q Median 3Q Max
-0.78108 -0.23052 -0.01374 0.20224 1.05776

Coeficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.38896 0.11484 12.10 <2e-16 ***
log(Q) 1.31146 0.02487 52.74 <2e-16 ***

Signif. codes: @ “***’ 9,001 “**’ 9.01 ‘*’ ©0.05 ‘. 0.1 °° 1

Residual standard error: 0.3939 on 115 degrees of freedom
Multiple R-squared: 0.9603, Adjusted R-squared: ©.9599
F-statistic: 2781 on 1 and 115 DF, p-value: < 2.2e-16

Several statistics from the two regression models, (1) the model using QO to estimate C, and (2) the
model using Q to estimate L, are shown in table 9.3.

Several aspects of table 9.3 are worth commenting on. The estimated slope coefficient of the second
model is greater than the slope of the first model and they differ by exactly 1. In fact, all of the statistics of
the second model can be derived from the first model. The #-values on both of the coefficients are different
for the models because ¢-values are a ratio of the coefficient to its standard error, and the coefficients differ
between the two models. Therefore, a test for the significance of the slope coefficient may have a different
outcome for the two models (in this case, the slope coefficients are highly significant in both models).

One outcome that can arise from fitting one regression model to concentration versus streamflow and
another model to load versus streamflow (but not in this case) is that we find a slope in the In(C) model that
is not significantly different from zero, but the slope in the In(Z) model is significantly different from zero.
This makes sense if we imagine a case where concentration was truly unrelated to discharge, and it is only
when we multiply the concentration by discharge to determine load, that the load is significantly related to
discharge (the truly spurious case). Another outcome that can arise is when the slope coefficient in the In(C)
model is near a value of -1 (this would happen if the relation between concentration and discharge was
simply a dilution relation). This could be considered significant, but the slope of the In(Q) model would
then be close to zero and it might turn out not to be significant. This underscores the importance of being
specific about the question being asked in a hypothesis test before deciding which form of the model to use.
The question of whether concentration is significantly related to discharge is different than whether load is
significantly related to discharge. One simply needs to be specific about which question is being posed.
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The residual standard errors are exactly the same (s=0.39 in both models), the residual for each
individual observation is exactly the same in both models, and the standard errors of the slopes are exactly
the same. These measures of the quality of the regression will always be exactly the same for the In(L)
model and the In(C) model. In fact, the percent standard error approach described above would result in the
same answer. Using the tpLoadMod results we can compute the standard error in percent.

The mean square error is 0.155 and the standard error in percent is 40.97 percent for both models. One
can verify the results using the residuals from the In(C) model (called tpMod in the previous example). In
words, we can say the standard error of concentration estimates expressed in percent is 40.97 percent and
the standard error of load estimates expressed in percent is also 40.97 percent.

The R? values are very different in the two models (0.58 versus 0.96). Recall that R? is a ratio of
variance explained by the model to the total variance in the data. We can express R’ as

2 Var(y)—s2

K Var ( y)

In the case of the In(C) model, the Var(y) is 0.36, but the variance of In(L) values is much larger, 3.87.
We might say that for estimating concentrations the model does only moderately well (R*=0.58), but for
estimating loads the model has very good performance (R>=0.96). This result is not surprising, given that
load is computed as a function of discharge. Therefore, the reporting of the R? value of a In(L) model is not
a very meaningful representation of the quality of the model, and only reporting the R? value for such may
undermine the credibility of the analysis being described. The best number to report for either model is the
standard error in percent, in this case about 41 percent, which provides a clear indication that the errors in
estimates of individual values are quite large, even though we can clearly show that the model improves
estimates of either load or concentration, as compared to using no regression model at all.

To summarize this issue, fitting the In(Z) model will look, to some readers of a report, as a form of
cheating because L is, by definition, a function of O, which means Q is both an independent and dependent
variable in the regression. In actuality, there are good reasons to estimate L from Q using a regression
equation, but the appearance of cheating is a good reason to avoid using it. Therefore, reporting is best done
using the concentration model. Also, presenting scatter plots of In(C) versus In(Q) will make it easier to
evaluate the quality of a model (for example, judging curvature or heteroscedasticity) because in plots of
In(L) versus In(Q) the steepness of the curve can easily overwhelm more subtle effects that may be present.

9.7 Summary Guide to a Good SLR Model

The following is a brief guide to getting started on developing a good SLR model:

1. Should x be transformed, and if so, how?—Considerable help can come from a statistic such as
R? (maximize it), or s (minimize it), but these numbers alone do not ensure a good model. Many
transformations can be rapidly checked with such statistics, but always look at a residual versus
predicted plot before making a final decision. Transform x if the residuals plot appears nonlinear but
constant in variance, always striving for a linear relation between y and x.

2. Should y be transformed, and if so, how?—Visually compare the transformed-y model to the
untransformed-y model using their residuals plots (residual versus predicted). The better model will be
more linear, homoscedastic, and normal in its residuals.

The statistics R?, s, and -statistics on £, and /8, will not provide correct information for deciding if a
transformation of y is required.

Should an estimate of the conditional mean of y be desired using SLR with transformed y units, the
transformation bias must be compensated for by use of the smearing estimate or MLE estimate. However,
no bias correction is required when an estimate of percentiles is the objective—the median of the natural
log(v) when exponentiated estimates the median of y, for example. Objectives where percentiles are
of interest include estimating the conditional cumulative distribution function of y, or when a typical
or median y is desired. This applies to any power function transformation of the data, as long as the
residuals in transformed y units reasonably follow a normal distribution. Upon retransformation of the
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regression fitted equation, fitted values estimate the median of y, though they will be biased estimates of
the conditional mean of y. Upon retransformation of the percentiles of the assumed normal distribution of
transformed values for a given x, the result is the cdf of y for that value of x.

When there are multiple explanatory variables, more guidelines are required to choose between the
many possible combinations of adding, deleting, and transforming the various x variables. These guidelines

are discussed in chapter 11.

Exercises

1. Drainage area is often used to estimate a streamflow property of interest at an unmeasured river. This
is accomplished by computing the streamflow property from a set of streamgages in the study area
and then regressing the streamflow values against the drainage area contributing to the streamgage.
This exercise asks you to explore the relation between drainage area and the Q90 streamflow value,
the daily streamflow value expected to be exceeded about 90 percent of the time, and to determine if
this relation has the potential to be a useful model for the northeastern United States. The Q90 is often
used as a measure of low streamflow frequency in practice.

A. Determine if a linear relation between drainage area and Q90 is present. Try transformations
of the two variables to see if this improves the relation.

B. Using the results from (A), create a regression equation that can be used to estimate Q90. Is
drainage area a significant predictor of the Q90 streamflow? Provide evidence. Does the sign
of the coefficient on drainage area match your intuition? Explain.

C. [Is it appropriate to use the regression equation to make predictions?

Q90 streamflow,

Observation Streamgage _Drainage ar_ea, in cubic feet per
number in square miles second

1 01073000 12.2 1.2

2 01082000 67.0 16

3 01086000 146.0 19

4 01091000 104.0 13

5 01096000 64.1 15

6 01097300 12.8 1.2

7 01108000 261.0 71

8 01109000 43.6 6.8

9 01111300 15.6 1.7

10 01111500 91.2 26

11 01117500 99.3 50

12 01117800 352 16

13 01118000 74.2 35

14 01118300 4.0 0.56

15 01118500 293.9 126

16 01121000 27.1 4

17 01123000 29.6 8.8

18 01154000 72.2 11

19 01162500 19.2 2.4

20 01169000 89.7 22

21 01171500 54.0 14

22 01175670 8.8 1
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Observation

Drainage area,

Q90 streamflow,

number Streamgage in square miles in cubic feet per
second
23 01176000 149.5 38
24 01181000 94.0 18
25 01187300 20.7 2.4
26 01188000 4.1 1.3
27 01193500 104.7 18
28 01194500 22.4 3.4
29 01198000 51.3 7.3
30 01199050 29.6 8.9
31 01200000 200.0 38
32 01333000 42.4 11

Simple Linear Regression
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Concentrations of a contaminant appear linearly related to distance down-dip in an aquifer. Regression
residuals appear to be of generally constant variance. However, several outliers in the dataset inflate the
standard error, and what appears graphically as a strong linear relation tests as being insignificant due to
the influence from outliers. How can a more robust linear fit be obtained that is not overly sensitive to a few
outliers, yet describe the linear relation between contaminant concentration and distance?

A water supply intake is to be located in a stream so that water elevation (stage) is below the intake
only 5 percent of the time. Monitoring at the station is relatively recent, so a regression relating this and
a nearby site having a 50-year record is used to generate a simulated 50-year stage record for the intake
station. The 5th percentile of the simulated record is used as the intake elevation. Given that regression
estimates are reduced in variance compared to actual data, this elevation estimate will not be as extreme as
it should be. What alternatives to regression would provide better estimates?

Plots of concentration versus time are drawn for several regional watersheds. A summary of each
relation is desired, but the best fit is a straight line on some plots and a curve on others. Transforming the
concentration axis on some plots but not others is not an option. Is there some way to visually represent
these relations that does not assume that each must be linear?

The three examples above demonstrate characteristics of regression that are undesirable in specific
situations. First, outliers may unduly influence both the estimated slope and the ordinary least squares (OLS)
regression test for significance. Second, non-normality of residuals may cause a nonsignificant test result
to be questioned. Third, OLS regression inherently reduces the variance of estimates as compared to the
variance of the original data. When the variability of multiple estimates or an estimate of percentiles is
required, OLS regression predictions will underestimate the variability and extremes that would have been
found with original observations. Fourth, relations may be nonlinear, requiring a more flexible model than a
straight-line relation. In these situations, alternative methods to OLS regression are better suited for fitting
lines to data.

10.1 Theil-Sen Line

The Theil-Sen line (referred to as the Kendall-Theil line in the first edition) is a robust nonparametric
model of the median of y given x. This line does not depend on the normality of residuals for validity of
significance tests, and is not strongly affected by outliers, in contrast to OLS regression. However, the data
should have a linear relation in order to use the Theil-Sen model.

The robust estimate of slope, b,, for this nonparametric median line was first described by Theil
(1950). Estimates of the intercept, b,, are also available (Theil, 1950; Dietz, 1989; Conover, 1999).
Together, the slope and intercept estimate the median of y using a complete linear equation of the form:

by +hox (10.1)

The Theil-Sen line is closely related to Kendall’s 7 (see chap. 8), in that the significance of the test for
H,: slope #,=0 is identical to the test for H: 7=0. In addition, the estimated slope, l;l, will always have the
same sign as the Kendall § statistic. Its primary application in water resources has been for trend analyses,
where the hypothesis test associated with the line is called the Mann-Kendall test for trend (see chap. 12).
The associated confidence interval for the slope and an adjustment for ties were defined by Sen (1968). The
slope is sometimes referred to as the “Sen slope” though it seems more properly attributed to Theil, and so
we call it the Theil-Sen slope in this text.
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The Theil-Sen line has been regularly rediscovered as a useful method in many disciplines, including
decision theory (Vannest and others, 2012) and chemistry (Lavagnini and others, 2011). The benefits it
offers for data with non-normal error distributions and outliers, as well as those for small datasets—all
characteristics common to water-resources data—have been known for some time. For example, Dietz
(1987) found that Theil-Sen had far better error characteristics than did OLS regression for data with
non-normal error residuals and outliers. Nevitt and Tam (1997) reaffirmed the “poor performance of OLS
estimation” and “the merits of alternatives to OLS regression under non-ideal conditions.” Wilcox (1998)
established the benefits of Theil-Sen—it is more resistant to the effect of multiple outliers and has a better
efficiency (smaller confidence interval on the slope) for small datasets than several other robust methods of
regression.

Various types of multivariate extensions to Theil-Sen have been proposed to produce a nonparametric
analog to multiple regression. These include Dang and others (2008) and Libiseller and Grimvall (2002).
The most common and important extension to Theil-Sen has been a blocking procedure associated with
the Seasonal Kendall test (Hirsch and others, 1982); it is discussed in detail in chapter 12. Khalil and
others (2012) proposed a version of Theil-Sen to address the issue of preservation of estimation variance,
searching for a method to use for record extension that is also robust. Their simulations were limited to
mixtures of normal distributions and found that the new method was more robust than the line of organic
correlation (LOC, see section 10.2.2) in the presence of outliers, but required a hefty sample size in order to
improve on LOC'’s results. Not surprisingly, both LOC and the new method preserved estimation variance
better than OLS regression or Theil-Sen.

Theil-Sen is computed in some commercial software packages, in several R packages (rkt
[Marchetto, 2017]; Kendall [McLeod, 2011)]; and EcoGenetics [Roser and others, 2017)]), and was
made freely available in a Visual Basic program by Granato (2006).

10.1.1 Computation of the Line

The Theil-Sen slope estimate, 51, is computed by comparing each data pair to all others in a pairwise
fashion. A dataset of n (x,y) pairs will result in n-(n—1)/2 pairwise comparisons. For each of these
comparisons a slope, Ay/Ax, is computed (fig. 10.14). The median of all pairwise slopes is taken as the
nonparametric slope estimate, b, (fig. 10.15).

51 = medianM (10.2)

(x/'_xf)
foralli< j, i=12,.,(n-1), j=23,..,n .

The most common form of the intercept is defined as

by = Yiea =brXpea (10.3)
where x,  andy  are the medians of x and y, respectively (Conover, 1999). This formula assures that the
fitted line goes through the point (x_ , » ). This is analogous to OLS, where the fitted line always goes
through the point (X,y).

Other estimates of intercept have been evaluated in simulation studies. In studies, Dietz (1989) found
both the Conover estimator (eq. 10.3) and the median of the residuals, y —b, - x,, to have small mean square
errors in the presence of outliers and non-normal residuals. The Conover estimator is recommended here,
because of its robustness and efficiency, simplicity of computation, analogy to OLS, and historically
wide use. If a confidence interval on the intercept is required, compute the intercept as the median of the
residuals, and its confidence interval as that for the median (residual) as shown in chapter 3.
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A. B.
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Figure 10.1. Computation of the Theil-Sen slope. A, Plot of the 15 possible pairwise slopes between
6 data points. In B, the ordered slopes are arranged to meet at a common origin. The thick line is the
Theil-Sen slope, the median of the 15 slopes.

Example 10.1. Computation of the Theil-Sen line.

For example, review the following seven (x,y) data pairs:

y: 1 2 3 4 5 16 7
X: 1 2 3 4 5 6 7
Slopes: +1 +1 +1 +1 +11 -9

+1 +1 +1 +6 +1

+1 +1 +4.3 +1

+1 +3.5 +1

+3 +1

+1

There are (7)(6)/2=21 pairwise slopes. Comparing points 2 and 1, the slope=+ 1. Going down the
column under point 1, comparing points 6 and 1, the slope=+3. After computing all possible slopes, they
are ranked in ascending order:

-9 41 41 +1 +1 41  +1 +1 +1  +1  +1
+1  +1 +1  +1 +1 43 435 +43 +6 +11
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The median of these 21 values is the 11th smallest, or +1, so that I;l = +1. The intercept is computed
as in equation 10.2 fromx =4 andy =4,so that b, =4—1-4=0. The line is easily computed using the
senth R script in the supplemental material for chapter 10 (SM.10):

>y <-c(1, 2, 3, 4, 5, 16, 7)
> X <- ¢(1:7)

> senth(x,y)

Theil-Sen line

y=0+1%x

95 % Confidence interval on the slope

LCL = 1 Theil slope = 1 UCL = 4.333

Kendall’s rank correlation tau
data: x and y
T = 20, p-value = 0.002778
alternative hypothesis: true tau is not equal to ©
sample estimates:
tau

0.9047619

10.1.2 Properties of the Estimator

OLS regression for the data in example 10.1 produces a slope, b,, of 1.71 (fig. 10.2). This differs
substantially from the Theil-Sen slope, b, of 1, because of the strong effect on the regression slope of the
one outlying y value of 16. This effect can be seen by changing the 6th y value from 16 to 6. The regression
slope would change from 1.71 to 1, but b, would be unchanged. Similarly, if the data value were changed
from 16 to 200, the OLS slope b, would be greatly inflated, but the Theil-Sen slope 5, would again remain
at 1. The Theil-Sen slope b, is clearly resistant to outliers and responds to the bulk of the data.

The Theil-Sen slope I;l is an unbiased estimator of the slope of a linear relation, as is the OLS slope
b,. However, the variance of the estimators differs. When the departures from the true linear relation (true
residuals) are normally distributed, the OLS slope is slightly more efficient (slightly lower variance and
smaller confidence interval) than the Theil-Sen slope. When residuals depart from normality (are skewed
or prone to outliers), then 131 can be much more efficient than the OLS slope. The Theil-Sen line has the
desirable properties of a nonparametric estimator: it is almost as good (efficient) as the parametric estimator
when all assumptions of normality are met, and much better when those assumptions are not met. It is less
affected by the common problems of water-resources data (skewness, outliers) than is regression, and so
provides a robust estimate of the typical slope, when the typical and not the mean slope is of interest. The
efficiency of the Theil-Sen slope to the OLS slope is the same as that for the Hodges-Lehmann estimator
(see chap. 5) in comparison to the mean, as the Theil-Sen slope estimate is in the class of Hodges-Lehmann
estimators.

How much of a departure from a normal distribution is required before a nonparametric test has an
advantage over its parametric counterpart? In the case of the Theil-Sen and OLS slope estimates, how non-
normal must residuals be before the Theil-Sen estimate should be used? Are there advantages even in cases
where the departure from normality is so small that visual inspection of the data distribution, or formal tests
of normality, are unlikely to provide evidence for the lack of normality? Hirsch and others (1991) tested the
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15

X

Figure 10.2.  Plot of the Theil-Sen (solid) and ordinary least-squares (OLS) regression
(dashed) fits to the example data. Note the effect of one outlier on the OLS regression line.

two slope estimators under one type of departure from normality—a mixture of two normal distributions.
The two individual distributions are shown in figure 10.3; one distribution had a mean of 10 and a standard
deviation of 1, and the second distribution had a mean of 11 and a standard deviation of 3. A mixture of
the distributions—95 percent from the first distribution and 5 percent from the second—are shown in
figure 10.4. Visual examination of figure 10.4 reveals only the slightest departure from symmetry.

Given sampling variability that would exist in an actual dataset, it would be exceedingly unlikely
that samples from this distribution would be identified as non-normal. A more substantial departure
from normality, a mixture of 80 percent of the first distribution and 20 percent of the second, is shown
in figure 10.5. There is a difference in the shape of the two tails of the distribution, but again the non-
normality is not highly noticeable.

Random samples were generated from each of several different distribution mixtures containing
between 0 and 20 percent of the second distribution. Data from each mixture were treated as a separate
response variable in a regression versus an explanatory variable of random order. The true population slope
is therefore zero. Both OLS and the Theil-Sen slope estimators were computed, and their errors around zero

, 2(b-0 . . .
recorded as root mean square error (RMSE), RMSE = L j, where b is the estimated slope using
n

Theil-Sen or OLS, and 7 is the number of random samples.

The results are presented in figure 10.6 as the ratio of the RMSE for the Theil-Sen estimator to the
RMSE of the regression estimator (Hirsch and others, 1991). A value larger than 1 shows an advantage to
OLS; smaller than 1 indicates the Theil-Sen estimate to be superior.

For the larger sample size (=36, solid line) the OLS estimator was more efficient (by less than 5
percent) when the data are not mixed and therefore normally distributed. With even small amounts of
mixtures the Theil-Sen estimator quickly becomes more efficient. At a 20 percent mixture the Theil-Sen
estimator was almost 20 percent more efficient. When the sample size was very small (n=6, dashed line),
efficiencies of the two methods were within 5 percent of each other, though the Theil-Sen estimator had the
advantage for all but very small amounts of non-normality.

These results reinforce that the two methods will give nearly identical results when the data or their
transformations exhibit a linear pattern, constant variance, and near-normality of residuals. The advantages
of familiarity and availability of diagnostics may favor using OLS regression in that case. However, when

2n
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Figure 10.3. Probability density functions of two normal distributions used by
Hirsch and others (1991), the first with mean=10 and standard deviation=1; the
second with mean=11 and standard deviation=3.
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Figure 10.4. Probability density function of a mixture of data (95 percent from

distribution 1 and 5 percent from distribution 2) from Hirsch and others (1991).
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Figure 10.5. Probability density function of a mixture of data (80 percent from
distribution 1 and 20 percent from distribution 2) from Hirsch and others (1991).

residuals are not normally distributed, and especially when outliers are present, the Theil-Sen line has
greater efficiency (lower variability and bias) than does OLS. Even small departures from normality (not
always sufficient to detect with a test or boxplot of residuals) favor using Theil-Sen.

As a matter of course, one should check all outliers for error, as discussed in chapter 1. Do the outliers
represent a condition different from the rest of the data? If so, they may be the most important points in
the dataset. Outliers cannot and should not be automatically deleted -- often no error in them can be found.
Robust methods like Theil-Sen provide protection against disproportionate influence by these distinctive,
but perhaps perfectly valid and meaningful data points.

Possibly the two greatest uses for the Theil-Sen line are (1) in a large study where multiple equations
representing multiple locations or variables are fit, without the capability for exhaustive checking of
distributional assumptions or evaluations of the sensitivity of results to outliers; and (2) by users not trained
in residuals plots and use of transformations to stabilize skewness and heteroscedasticity. A third use is
for fitting lines to data where one does not wish to transform the y variable, perhaps due to the resulting
transformation bias (chap. 11).

Theil-Sen estimates a median rather than a mean of y, which is a disadvantage when the latter is
desired. A second possible disadvantage of Theil-Sen as compared to OLS is that there is currently no
Theil-Sen line for multiple explanatory variables analogous to multiple regression.

Example 10.2. Theil-Sen line for trends in total phosphorus.

OLS and Theil-Sen lines for total phosphorus concentrations from 1975 to 1989 in the St. Louis
River at Scanlon, Minnesota (see chap. 12 for more on trend tests), are shown in figure 10.7. The outliers
are accurate values from floods and should not be ignored or deleted. The question is whether there is a
significant linear trend in concentration over this 14-year period. We test this hypothesis using both the
Theil-Sen line and OLS regression.
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Figure 10.6. Relative efficiency of the Theil-Sen slope estimator as compared with
the ordinary least squares (OLS) slope represented as the ratio of the root mean
square error (RMSE) of the Theil-Sen estimator to the OLS estimator. When the RMSE
ratio is greater than 1, OLS is more efficient. When RMSE ratio is less than 1, Theil-
Sen is more efficient. Solid line: n=36. Dashed line: n=6. From Hirsch and others
(1991).

> head(stLouisTP)
Date DecYear TP

1 1974-10-30 1974.829 0.04
2 1974-12-09 1974.938 0.04
3 1975-01-21 1975.056 0.05
4 1975-03-03 1975.168 0.04
5 1975-04-07 1975.264 0.07
6 1975-05-27 1975.401 @.03

> # to compute the Theil-Sen line

> senth(DecYear,TP)

Theil-Sen 1line

TP = 4.494457 -0.002248922 * DecYear
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95 % Confidence interval on the slope

LCL = -0.003 Theil slope = -0.002 UCL = -0.001

Kendall’s rank correlation tau
data: x and y
z = -4.4638, p-value = 8.052e-06
alternative hypothesis: true tau is not equal to ©
sample estimates:
tau

-0.3170606

> # to compute the OLS regression

> summary(1lm(TP ~ DecYear))

Call:
Im(formula = TP ~ DecYear)

Residuals:
Min 1Q Median 3Q Max
-0.04374 -0.02422 -0.01298 ©0.00191 0.45527

Coeficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.500856 3.354874 0.745 0.458
DecYear -0.001236 0.001693 -0.730 0.467

Residual standard error: 0.06784 on 100 degrees of freedom
Multiple R-squared: ©0.005297, Adjusted R-squared: -0.00465
F-statistic: ©0.5325 on 1 and 100 DF, p-value: 0.4673

The estimated slopes are both negative, with the Theil-Sen estimate being twice the OLS regression
slope estimate. The Theil-Sen slope is —0.0022 milligrams per liter per year (mg/L/yr) and OLS regression
slope is —0.0012 mg/L/yr. The OLS regression slope is not significantly different from zero (p=0.467). This
is a result of the influence of the two extreme residuals on the standard error of the trend slope estimate.
However, the Theil-Sen slope is highly significant (p==8e-06)—the significance test for the Theil-Sen slope
is identical to the significance test for Kendall’s 7 (see next section). The Theil-Sen line is not dependent
on assumptions of normality that are strongly violated in this dataset and the line is highly resistant to the
magnitude of the two extreme values in the dataset.
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Figure 10.7. Scatterplot of total phosphorus concentrations for the St. Louis River at Scanlon,
Minnesota, 1975-89 with ordinary least squares regression (dotted) and Theil-Sen (solid) fitted
lines.

10.1.3 Test of Significance for the Theil-Sen Slope

The test for significance of the Theil-Sen slope is identical to the test for Kendall’s 7, H: 7=0 (see
chap. 8). The Theil-Sen slope, b, is closely related to Kendall’s S and 7 in the following ways.

1. Sis the sum of the algebraic signs of the pairwise slopes.

2. If the product (l;1 -x) is subtracted from every y value, the new y values will have an S and 7 equal to
zero, indicating no correlation.

If x is a measure of time, as it is for a trend test, subtracting (l;1 -x,) yields a trend-free version of the y
dataset.

Example 10.3. Exact and approximate tests for the Theil-Sen slope and .

For the dataset used in example 10.1, the test of significance is computed as follows. S equals the sum
of the signs of pairwise slopes. There are n -(n —1) / 2 =21 slopes, 20 of which are positive and 1 is negative,
so that § =20 —1 = 19. Kendall’s t correlation coefficient equals 19/21 or 0.90. Using R, the exact two-sided
p-value (here S=19and n=7)is0.0028:

> cor.test(x, y, method = "kendall")
Kendall’s rank correlation tau
data: x and y

T = 20, p-value = 0.002778

alternative hypothesis: true tau is not equal to ©
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sample estimates:
tau
0.9047619

Thus, y is significantly related to x in a linear fashion. In chapter 4 the benefits of exact tests over
large-sample approximations for small sample sizes were discussed. Other software packages besides R
often inappropriately use the large-sample approximation for all sample sizes, reporting a p-value of 0.0068
for this small sample size. This can be demonstrated (but should not be used) in R by forcing computation
of the approximate test with the exact=FALSE option:

> cor.test(x, y, method = "kendall",exact=FALSE,continuity = TRUE)
Kendall’s rank correlation tau

data: x and y
z = 2.7034, p-value = 0.006864
alternative hypothesis: true tau is not equal to ©
sample estimates:
tau

0.9047619

10.1.4 Confidence Interval for the Theil-Sen Slope

Confidence intervals for the Theil-Sen slope, 131, can be computed for small sample sizes from a tabled
distribution of the test statistic, such as table A30 in Hollander and Wolfe (1999). The critical value, X ,
for Kendall’s 7 having a p-value nearest to a/2 is used to compute the ranks R and R, of the n(n—1)/2=N
pairwise slopes representing the upper and lower confidence limits for b,, respectively. These limits are the
R, ranked data points going in from either end of the sorted list of pairwise slopes (egs. 10.4 and 10.5). The
resulting confidence interval will reflect the shape (skewed or symmetric) of the original data.

r _NtX) (10.4)

! 2
(N-X,)
2
For sample sizes where n>10 the large-sample approximation can be used. If computing by hand,
upper and lower limits are found corresponding to critical values at one-half the desired o level. The critical

value, z_,, from quantiles of the standard normal distribution determines the upper and lower ranks of the
pairwise slopes corresponding to the ends of the confidence interval. Those ranks are

R, = +1. (10.5)

n(n—l)(2n+5)
Ntzoy—% . (10.6)

AT (10.7)
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As an example, for n=20 pairs of data there would be N=20-19/2=190 possible pairwise slopes.
Therefore b is the average of the 95th and 96th ranked slopes. For a 95-percent confidence interval on bl,
z,,=1.96 and the upper and lower bounds are

190+1.96-v950

R = =126.2,
2

u

- 190-1.96v950 _ ., ’

2
the 64.8th ranked slope from either end. Rounding to the nearest integer, the 126th and 65th ranked slopes
are used as the ends of the «=0.05 confidence limit on b,. The senth script much more easily computes
large-sample confidence intervals for the Theil-Sen slope. Further discussion of these equations is in
Hollander and Wolfe (1999; p. 424-26).

Example 10.4. Computing the confidence interval for the Theil-Sen slope by hand.
The N=21 possible pairwise slopes between the n="7 data pairs for example 10.1 were:
-9 +1 +1 +1 +1 +1 +1 +1 +1  +1  +1
+1  +1 +1 +1 +1 +3 +35 +43 +6 +11

The Theil-Sen slope, I;I’Awas the median or 11th largest slope. To determine an exact (small-sample)
confidence interval for b, with @ = 0.05, the critical value, X, nearest to a/2=0.025 is found to be 15 (using
p=0.015, where 0.015 is as close to /2 as we can get). The rank, R , of the pairwise slope corresponding
to the upper confidence limit is therefore

(21415)
u 2 -

The rank R, of the pairwise slope corresponding to the lower confidence limit is

(21-15)

Therefore, an a/2=2-0.015=0.03 confidence limit for I;l is the interval between the 4th and 18th
ranked pairwise slope (the 4th slope in from either end), or

<h <

The large-sample approximate confidence interval was previously computed by the senth script as
+1< b, <+44.33. The asymmetry around the estimate b, =1 reflects the low probability that the slope is less
than 1, based on the data.

10.2 Alternative Linear Equations for Mean y

Hirsch and Gilroy (1984) described additional methods for estimating the mean of y by fitting straight
lines to data whose slopes and intercepts are computed using moment statistics. These lines differ from
the OLS line of chapter 9 and are more appropriate than that line for certain situations. For example, when
x is to be predicted from y using OLS, the resulting line differs from the OLS line predicting y from x.
This has implications for applications such as calibration. When many predictions are to be made and the
distribution of those predictions is important (predicted percentiles or spreads are more of interest than
the predicted mean), the line of organic correlation (LOC) should be used instead of OLS. Either LOC or
least normal squares (LNS) more appropriately incorporates the errors in both x and y when describing the
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intrinsic relation between two variables without trying to predict one from the other. LNS is recommended
when a geographic trajectory is to be computed.

1021 OLSof xony

The OLS regression of chapter 9 considered the situation where a response variable, y, was to be
modeled, enabling estimates of y to be predicted from values of an explanatory variable, x. Estimates of
slope and intercept for the equation were obtained by minimizing the sum of squares of residuals in the
direction of y only, without regard to errors in the x direction. The equation may be written as

S
y =T+ (%), (1038)

x

where 7 is Pearson’s linear correlation coefficient, s and s _are the standard deviations of the y and x
variables, SS, and SS, are the sums of squared deviations from the means of y and x, respectively, and

(r-sy /s, ) = (r1 /SSy /JSS, ) =b,, the OLS estimate of slope (see chap. 9). Assuming the linear form of the

model is correct, x is measured without error and the distribution of observations around the line follows a
normal distribution. OLS will lead to estimates of y, for any given x, that are unbiased and have minimum
variance. In this situation OLS is the preferred method of estimating an expected mean y given x.

In contrast, situations occur where it is just as likely that x should be predicted from y, or that the
two variables are equivalent in function. An example is in geomorphology, where the depth and width
of a stream channel are to be related. It is as reasonable to perform a regression of depth on width as it is
of width on depth. A second example is the relation between two chemicals in a sample, say for copper
and lead concentrations. Either could be chosen to be predicted as a function of the other, and usually a
description of their bivariate relation is what is of most interest.

It is easy to show, however, that the two possible OLS lines (y on x and x on y) differ in slope and
intercept. Following equation 10.8, reversing the usual order and setting x as the response variable, the
resulting OLS equation will be

x.:f+r-%(yi—)7) , (10.9)
which when solved for y becomes

y=F+—2(x-%)- (10.10)

, s
Let b, = [l—vj, the slope of x on y re-expressed to compare with slope b,. Contrasting equations

X

10.8 and 10.10, the slope coefficients b, # b,. The two regression lines will differ unless the correlation
coefficient » equals 1.0. In figure 10.8, the two regression lines are plotted relating two measures of
dissolved inorganic content, both measured from the same water sample (Hirsch and Gilroy, 1984). These
two measures are total dissolved solids (TDS) and residue on evaporation (ROE). There is no reason to
predict only one from the other, so it is unclear which of the two OLS lines is the true relation. Unless the
correlation coefficient »=1, neither is the true relation.

The choice of which, if either, of the OLS lines to use follows a basic guideline. If one variable is to
be predicted from the other, the predicted variable should be assigned as the response variable, y. Errors
in this variable are being minimized by OLS. However, when only a single line describing the intrinsic
relation between the two variables is of interest, neither OLS line is the appropriate approach. Neither OLS
line uniquely describes that relation, as the OLS slope is dampened (decreased by a factor equal to the
correlation coefficient) to reduce error variance in predictions of y.. A different linear model having a unique
solution incorporating errors in both x and y should be used instead—either LOC or LNS.
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10.2.2 Line of Organic Correlation (or Reduced Major Axis)

The line of organic correlation (LOC) has been discussed and used in many disciplines over many
years. Samuelson (1942) presented its use in economics when both x and y variables were measured
with error. Its theoretical properties were discussed by Kruskal (1953). It was proposed as a linear fitting
procedure in hydrology by Kritskiy and Menkel (1968) and applied to geomorphology by Doornkamp and
King (1971). The line of organic correlation also goes by many other names. In biological applications it
is usually called the reduced major axis or RMA (Kermack and Haldane, 1950), or the standardized major
axis or SMA (Warton and Weber, 2002). It has also been called the geometric mean functional regression
(Halfon, 1985), the allometric relation (Teissier, 1948), impartial regression (Strémberg, 1940; Tofallis,
2002), and maintenance of variance-extension or MOVE (Hirsch, 1982).

LOC minimizes the sum of the areas of right triangles formed by horizontal and vertical lines
extending from observations to the fitted line (fig. 10.9). By minimizing errors in both directions, it lies
between the two OLS lines on a plot of y versus x (fig. 10.8). The LOC equation is

Yy (10.11)

i

v, = b, +sign[r]-

_y
Sx

where the slope of the LOC line &, equals the geometric mean of the y on x and x on y OLS slopes:

b =\l b = signr]- = (10.12)
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Figure 10.8. Plot of three straight lines fit to the same data. Ordinary least squares
(OLS) y: residue on evaporation (ROE) is the usual regression with ROE as the y
variable (eq. 10.8). LOC is the line of organic correlation (eq. 10.11). OLS y: total
dissolved solids (TDS) is a regression using TDS as the yvariable (eq. 10.10).
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LOC replaces the correlation coefficient in the equation for OLS slope with just the algebraic sign
(+ or —) of the correlation coefficient. The magnitude of the LOC slope, bI"’ is determined solely by the ratio
of standard deviations s /s , and so performing LOC of x on y produces the identical line (once converted
back to the original scale) as the LOC of y on x.

The intercept of the LOC line b, is solved for by placing ¥ and ¥ into the LOC equation (eq. 10.11).

LOC possesses three characteristics preferable to OLS in specific situations:

1. LOC minimizes errors in both x and y directions,
3. LOC provides a single line regardless of which variable, x or y, is used as the response variable, and

4. The cumulative distribution function of the predictions, including the variance and probabilities of
extreme events such as floods or percent exceedances of a numerical standard, estimates those of
the actual records they are generated to represent.

LOC is therefore used for two purposes, corresponding to the three previously mentioned
characteristics:

1. To model the intrinsic functional relation between two variables, both of which are measured with
error, and

2. To produce a series of estimates, ,, from observed x, whose distributional properties are similar to
those expected had the y, been measured (filling in missing record). Such estimates are important
when multiple predictions are made, and it is the probability distribution (variance or percentiles)
of the estimates, not just mean y or an individual estimate, which are to be interpreted and used.

Examples of the first use for LOC include the geomorphic relations cited above, describing the relation
between bioaccumulation and octanol-water partition coefficients (Halfon, 1985), or other applications
where the slope is to take on physical meaning. OLS slopes are not the physically intrinsic values but
dampened toward zero to minimize the error in prediction of the mean.

Method Minimizes Slope Scale change Rotation
S .
OLS yonx s b = r- Sy Invariant Changes
! &
OLS xony b = 1S5y, Invariant Changes
% -2
1T 3
—e
LOC by =si gn[r]z_y Invariant Changes
X
LNS h=—A+ Vri+42 Changes Invariant
T
where A =
1 <5_ _ S_y)
2\S, Sy

Figure 10.9. Characteristics of four parametric methods to fit straight lines to data.

least squares; LOC, line of organic correlation; LNS, least normal squares.

OLS, ordinary
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The second use for LOC is for record extension, which has been the major application of LOC to
water resources thus far. As an example, suppose two nearby sites overlap in their gaged record. The
streamflow for the site with the shorter record is related to that at the longer (the base) site during the
overlap period. Using this relation, a series of streamflow data at the shorter record site is estimated during
an ungaged period from flows at the base site. If the OLS equation were used to estimate streamflows, the
variance of the resulting estimates would be smaller by a factor of 7 than it should be. Only when |7|=1 do
OLS estimates possess the same variance as would be expected for the original data.

To see this more clearly, take the extreme case where »=0 and there is no relation between y and x.
The slope then equals 0 and all OLS estimates would be identical and equal to y. The variance of these
estimates is also zero. As r? decreases from 1 to 0, the variance of OLS estimates is proportionately
reduced. This variance reduction is eliminated from the LOC by eliminating the correlation coefficient from
the equation for slope. The estimates resulting from the LOC have a variance in proportion to the ratio of
the variances s> / s from the original data. The reduction in variance in predictions of ROE by regression in
comparison to those for the original data and for LOC predictions is shown in figure 10.10.

When multiple estimates are to be generated and statements made about probabilities of exceedance,
such as flood-flow probabilities, probabilities of low-flows below a water supply intake, or probabilities of
exceeding a water-quality guideline, inferences are made that depend on the probability distribution of the
estimated data. In these cases LOC, rather than OLS, should be used to generate predictions. OLS estimates
would substantially underestimate the variance because they do not include the variability of individual
values around the regression line (Hirsch, 1982). Consequently, the frequency of extreme events such as
floods, droughts, or exceedance of standards would be underestimated by OLS.

There are several variations on this technique that have been proposed and applied to hydrologic
records, generally known as MOVE (maintenance of variance-extension) methods. These have been
published by Vogel and Stedinger (1985) and Grygier and others (1989). There are differences in the details
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Figure 10.10. Boxplot of the original residue on evaporation data in comparison

to boxplots of predicted values from the line of organic correlation (LOC) and
regression lines. The smaller box for regression predictions illustrates its reduction
in variance.
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of the various MOVE techniques, but all have the same goal, which is creating an estimated record that
does not cause a reduction in the variance for the part of the record that has been estimated. In hydrology,
where the behavior of the extremes of the distribution can be important, it is critical that the methods

used be designed to correct for the tendency of any regression method to produce estimates that regress to
the mean. The decision between using OLS or Theil-Sen versus MOVE should be based on whether the
researcher is primarily interested in getting the best estimate of a single specific missing value, or primarily
interested in getting the best collection (for several missing values) of estimates that preserves the overall
properties of the dataset. If the goal is the former then OLS or Theil-Sen are best, but if it is the latter then
the MOVE technique should be the preferred approach.

Marquet (2000) recommended using LOC rather than OLS to establish the intrinsic relation between
body size and population density in ecological systems when neither is considered an independent
variable appropriate to predict the other. Miller and Tans (2003) used LOC to obtain realistic estimates of
uncertainty in the relation between CO, concentrations to isotopic fraction of carbon-13. In an important
extension, Draper and Yang (1997) generalized LOC to more than two variables as an alternative to OLS
multiple regression. Applying this, Lasi and others (2011) used multivariate LOC to model relations
between turbidity, chlorophyll-a, and color (predictor variables) to the light extinction coefficient, K, in
lakes. All four variables were measured with error, and predictions for any one variable could be made from
specific critical values of the other three. A robust version of LOC was proposed by Khalil and Adamowski
(2012) which performed better than LOC itself for data with outliers, though not unless sample sizes were
large. As simulations for the robust version of LOC used only mixtures of normal distributions, further
evaluation on distributions more similar to hydrologic records (lognormal or gamma distributions) is
needed before replacing LOC with its robust cousin.

All three of the parametric lines discussed thus far (LOC, OLS y on x, and OLS x on y) have two
identical characteristics. First, they are invariant to scale changes, so that changing the y or x scale (from
English to metric units, for example) will not change the estimates of slope or intercept after re-expressing
them back into their original scales. Second, if the x and y axes are rotated in space and lines recomputed,
the new lines when re-expressed into the original orientation will differ from the first. This change following
rotation is not desirable when the original axes are of arbitrary orientation, such as for latitude and
longitude. The line discussed in the next section can be fit when invariance to spatial orientation is desired.

10.2.3 Least Normal Squares (Major Axis)

Least normal squares (LNS) is the line which minimizes the squared distances between observed
points and the line, where distances are measured perpendicular (normal) to the line. It has also been called
the major axis or orthogonal regression, and is identical to the first principal component for the two-
dimensional dataset. The slope can be expressed as in equation 10.13:

po g YA (10.13)
r

where

a5 5
2|5, s

y X

Though differing from LOC, the LNS line also lies between the two possible OLS lines (fig. 10.11),
and in graphics experiments has been shown to be similar to a line drawn by eye when humans estimate
the center of a linear field of data (Mosteller and others, 1981; Bajgier and others, 1989). An appealing
property of LNS is its invariance to rotation of axes. This is desirable when the coordinate system in which
the data are measured is arbitrary. The most common example of this is where x and y are measures of
physical locations, such as latitude and longitude. If the axes are rotated, the x and y coordinates of the data
recomputed, and the LNS line recomputed, it will coincide exactly with the LNS line for the data prior to
rotation. This is not so with OLS or LOC. However, the LNS line is not invariant to scale changes. The
LNS line expressed in any scale will differ depending on the scale in which the calculations were made.
Where LNS is appropriate is in computing trajectories minimizing distances between observed points in
space. Kirby (1974b) used LNS to compute the straight-line traverse of a ship from a set of coordinate
locations taken along its trip. LNS is identical to the first principal component, so is easily extended to
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Figure 10.11.  Plot of four straight lines fit to the same data. Least normal squares
(LNS) line added to the three lines from figure 10.8. LOC, line of organic correlation;
OLS, ordinary least squares; ROE, residue on evaporation; TDS, total dissolved solids.

multivariate applications, and is available in any software performing principal component analysis. The
LNS intercept is also solved for by placing the mean of y and x into their respective places in the linear
equation. Therefore, all four parametric lines in figure 10.11 go through the point ()_c , )7).

10.24 Summary of the Applicability of OLS, LOC, and LNS

The application of each of the four parametric procedures is summarized as follows.

1. To estimate the expected (mean) value of one variable from another variable, use OLS (assuming
the data are linear and homoscedastic). This holds regardless of causality, and regardless of
whether there are errors in measurement of the explanatory variable.

2. To estimate multiple values of one variable from another variable in order to make statements
about the probability distribution or percentiles of the predicted data, use LOC. This preserves the
characteristics of the entire distribution, avoiding the downward bias in variance of OLS estimates.

3. To describe the intrinsic relation between two variables with the primary interest in the slope
coefficient, use LOC. The OLS slope will generally be biased towards zero compared to what is
expected from physical or theoretical models between the variables.

4. To determine the geographic trajectory that minimizes differences from observed data, use LNS.

The four sets of slopes and intercepts relating ROE to TDS for each of the four lines discussed in this
section are shown in table 10.1.
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Table 10.1. Intercepts and slopes for the four lines of figure 10.11.

[OLS, ordinary least squares; ROE, residue on evaporation; TDS, total dissolved solids; LOC, line of organic correlation; LNS, least
normal squares]

Method Intercept Slope
OLS y:ROE
(estimate ROE from TDS) 21.27 0.688
Loc ~0.621 1.150
OLS »:TDS B
(estimate TDS from ROE and reconvert coefficients) 37.21 1.923
LNS —1.446 1.168

10.3 Smoothing Methods

Smoothing methods have been in use in statistics for decades. A smooth is a resistant centerline that
is fit to the data whose level and slope varies locally in response to the data themselves (chap. 2). Some
techniques make it possible to create a smooth in multiple dimensions (using several explanatory variables),
although the discussion here will be limited to those using a single explanatory variable.

There are two primary reasons for creating a smooth of the dataset. The first is purely to create a
visual representation of the dominant pattern to the data. This representation helps to remove incorrect
impressions of the relation between x and y when extremes of y dominate the pattern. A smooth highlights
the central tendency without giving excessive weight to the more extreme values of y; it offers a great
advantage over parametric methods such as linear regression because these methods require an assumed
functional form (for example, y is linearly related to x, or y is related to x by a quadratic or cubic relation).
Smoothing algorithms allow the shape of the relation to be dictated by the data and not some arbitrarily
selected functional form. A second reason for constructing a smooth is to compute residuals that can then be
studied as variables in their own right. For example, we may know that peak discharge from a storm varies
strongly as a function of the maximum 6-hour intensity of the rainfall. But our research interest may be in
determining if the peak-discharge for a given rainfall intensity changed over the period of record as a result
of land-cover changes. We can examine that by building a smooth of discharge () as a function of rainfall
intensity (x). Then we can take the residuals from this relation and see if they are changing over time or
changing as a function of some land-cover variable (such as percent impervious surface). These techniques
are discussed in chapter 12 in the context of trend analysis.

Before introducing a smoothing algorithm here, it is worth considering why we might want to use
one as an alternative to regression. An example of nitrate concentrations and the associated daily mean
discharge on the day the sample was collected is shown in figure 10.12. The data are from the months June
through September of the years 1990-2008 for the Iowa River at Wapello, lowa (shown in chap. 2 as well).
The figure shows the data along with a linear fit of log(C) to log(Q) and a quadratic fit of log(C) to log(Q)
and (log(Q)’.

The linear fit is clearly inappropriate; it is unable to accommodate the obvious curvature of the
data and thus it seriously overestimates concentrations at low and high discharges, and underestimates
concentrations in the middle discharge range. Estimates of the error variance (mean squared departure of
observed minus predicted) will be too high, and any subsequent analysis of the residuals will likely be
very misleading. The quadratic fit is certainly an improvement on the linear fit, but how appropriate it is
will need to be determined. At the lower discharge values (say less than 90 cubic meters per second [m?/s])
virtually all of the residuals are negative. This is because the quadratic model doesn’t have the flexibility
to depict the rather steep positive slope that is apparent in the scatterplot at discharge values below about
150 m¥/s. The reason for the poor fit in this range is that the quadratic model must be symmetrical, and it
must also accommodate the small negative slope that is apparent at discharges above about 1,000 m?/s. In
fact, we can argue that it may be seriously overstating the steepness of the relation at high discharges. This
gets at one of the fundamental problems of any regression relation: the pattern of the data in a particular
range of x values will influence the location of the fitted curve in a range of x values far removed from it.
Simply put, in terms of this example, the extreme low concentration values at discharges around 75 m?/s are
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actually influencing the location of the fitted curve at discharges of such as 2,000 or 5,000 m*/s. Smoothing
techniques are designed to defeat this inadequacy of regression and assure that estimates at one extreme of
the range of x values are not influenced by data from the other extreme, but rather are primarily influenced
by those that are nearby. For example, Helsel and Ryker (2002) compared a multivariate loess smooth

to kriging, finding that the loess surface was far less susceptible to the influence of distant outliers than
was kriging.

How might we make such a smooth representation of y as a function of x? Some of the first methods
developed were the moving average (in R this is implemented in the function rollmean in the zoo
package of Zeileis and Grothendieck [2005]) and moving median (in R this is implemented in the function
runmed in R). These techniques are conceptually simple to explain but some of their properties are not
highly desirable. They may result in a curve that can be quite jagged and they also have deficiencies in how
they handle the end points of the curve. The methods have been replaced by a set of techniques that are
generally known as locally weighted scatterplot smoothing.

The most widely used smoothing algorithm is loess (an acronym of LOcal regrESSion). It was first
introduced by Cleveland (1979) and expanded by Cleveland and Devlin (1988) as a tool to compute
both bivariate (one explanatory variable) and multivariate (multiple explanatory variables) surfaces. The
loess function in R computes a loess smooth. A related method is called lowess (an acronym of LOcally
WEighted Scatterplot Smoothing) with an associated function in R called 1owess. The function called
lowess is more complex than 1oess, employing an iterative method that weights the data based on the
size of their residuals. In this text we describe both methods and make some observations about their proper
use and variations, as well as extensions of the concept. There continues to be some confusion between the
two methods, as both have been developed largely by the same group of people, and particularly because
the pronunciation of the two names is identical.
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Figure 10.12. Nitrate concentrations as a function of daily mean discharge during the months of June through

September of the years 1990-2008 for the lowa River at Wapello, lowa, showing linear (solid line) and quadratic
(dashed line) fit, estimated as the natural log of concentration as a function of natural log of discharge.
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10.3.1 Loess Smooths

Assume we have a set of n measurements of the dependent variable, y, over a range of values of the
explanatory variable, x. The n data pairs are sorted from the lowest x to the highest x. We will index the
values as x, X,, ..., x , from lowest to highest values. The y values associated with these x values are y , y,,
..., »,. If there are any ties in the set of x values they can be placed into the vector of x values in any order
and it will have no consequences for the result of the computation. Now, let’s assume we want to estimate
the value of y, call it y*, that would be associated with a value of x denoted as x* (where x* may be a vector
of values for multiple explanatory variables). The values for x* may be any arbitrary value within the range
(x,, x,) and need not be equal to any specific observed x, value. Conceptually, x* could lie outside the range
of the observed x values, inappropriately taking loess from the category of a smoothing algorithm into
the realm of extrapolation, estimating y at values of x outside the range of our dataset. Given that loess is
entirely empirical and has no fundamental connection to physical or chemical principles, the use of it for
extrapolation is not recommended.

The estimate, y*, is determined by the use of weighted regression, where each observation has a
weight that determines its influence on the computed regression equation. For loess the weights on each of
the n observations are determined by their distance from x*. An observation at x* (if such an observation
exists) has a weight of 1, and weights decrease for observations further away in units of the explanatory
variable(s).

The default in the 1oess function in R is that this weighted regression is a quadratic of y as a function
of x, so we would write the model for one explanatory variable as

Vv, =B+ Bx + X} +eé (10.14)

In estimating a y* for x* there is a set of weights applied to all of the x values based on their proximity
to x*. The weights are determined using the tri-cubed weight function, although other weight functions are
sometimes used. This function has a shape similar to that of a normal distribution, but it differs from the
normal in that it goes to zero at large distances, rather than asymptotically approaching zero, and it is rather
flat in the vicinity of its maximum value. The weight function requires the specification of a maximum
distance, d, , which is the distance at which the weight function goes to zero. This maximum distance, d, ,
is sometimes called the half-window width. The form of the weight function is defined as the distance from
observation i to x* as d,

d,=|x, x| (10.15)
The weight for observation i is w,
3 3
=41 d if d. <d
W=yl o i di<d (10.16)
O lf di dem’

The shape of the tri-cube weight function, in this case where d, _is set to a value of 10, is illustrated in
figure 10.13.

Using those weights to estimate the parameters of the regression shown in equation 10.14, we can then
take the estimated values of the three parameters and set x=x* and determine the value of y*. The process
is repeated for a large set of x* values, covering the full range from x, to x , estimating new weights and
new regression coefficients for each value of x* in order to estimate a new value of y* for each x*. The
weights and coefficients will all change with any change in x*. Because the weight function is one that
tapers gradually to zero, it guarantees that the set of values of y* for a set of closely spaced x* values will
be quite smooth.

To implement this approach, we need some method for selecting the value of @ . This value is set
using a smoothing parameter called the span, which is denoted as span in the loess function of R. If
span<1.0, then d__will be set so that n-span observations have weights that are >0, where 7 is the sample
size of the dataset. Note that d _ will vary as a function of x*. The default value for span is 0.75. Using
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Figure 10.13.  Graph of the tri-cube weight function, where d__ =10 and x*=20.

the example dataset shown in figure 10.12, with sample size 76, the d_,_values will be set so that 57 of the
76 values will have distances of less than d, _from the given value of x* and the remaining 19 observations
will have zero weight. In the case where span>1, the ¢ ,_value is span times the maximum d, value in
the dataset, which means that all observations are given some weight. The entire loess smooth curve is
constructed by implementing this weighted regression process at a large number of x values that cover the
range of the observed x values, and the curve is drawn by connecting the consecutive (x*, y*) pairs with
straight lines.

An obvious question is how one should select the argument span. The selection of the span value
is subjective. The larger the span value is, the smoother the curve will be. The goal should be to achieve
a curve that is faithful to the overall shape of the dataset but devoid of oscillations which (in the opinion
of the data analyst) are simply artifacts of the specific random set of observations (noise). Two panels are
shown in figure 10.14, the left panel (4) uses a span value of 0.25 and the right panel (B) uses a span
value of 0.75. The span value of 0.25 is clearly too small and results in a set of minor oscillations in the
curve that are unlikely to be meaningful. In particular, it depicts a substantial upturn in the curve near the
maximum x value. This is a result of the fit being too dependent on a few values that fall near that edge.
The loess with span=0.75 looks reasonable. The default value often works very well but users can be
more specific about finding the best span by trying a range of values and selecting the smallest value not
subject to a series of wiggles caused by random artifacts of the sample.

10.3.2 Lowess Smooths

Originally named “robust locally weighted regression” (Cleveland, 1979), lowess begins by
computing the loess smooth for every point x. Residuals from the loess estimates 7, in the y direction
are then computed (eq. 10.17) and the bi-square weight function is used to compute robustness weights,
R, (eq. 10.18).

r=|y, -y (10.17)
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Figure 10.14. Graphs of smooths of nitrate concentration as a function of daily mean discharge during the
months of June through September of the years 1990-2008 for the lowa River at Wapello, lowa. A, a loess smooth
with span=0.25; B, a loess smooth with span =0.75 (the default value).
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where », =6-median|r | (or 6:-MAD, where MAD is the median absolute deviation). Multiplying the
loess weights w, (eq. 10.16) by the robustness weights R, (from eq. 10.18) produces final weights used in a
second tier of weighted regressions, one new weighted regression for every x, in the dataset. The result of
this second tier of weighted regressions is a lowess smooth of estimated y values. The purpose of lowess
is to diminish the effect of outlying observations in the y direction as compared to their effect on a loess
smooth (Chambers and others, 1983).

Commercial statistics software commonly includes lowess smooths. The biggest drawback of lowess
is that it has never been extended beyond bivariate applications, whereas loess has. A second drawback of
lowess is that estimates are not provided for observations other than for the original x.. People have linearly
interpolated between the predicted lowess values for each x, but the loess formula allows more direct
computation of somewhat smoother estimates for new x values. For the case of one explanatory variable,
and without noticeable outliers, loess and lowess will be nearly identical.

10.3.3 Upper and Lower Smooths

In addition to plotting the central smooth of the dataset, one may want a representation of the
changing spread or symmetry of the data around the smooth. This is done with an upper and lower smooth
(Cleveland and McGill, 1984b). These elements represent a smoothed version of upper and lower quartiles
of the conditional distribution of y as a function of x. They are computed by separately smoothing the
positive and negative residuals from the loess or lowess smooth, and adding these smooths to the central
smooth. An example of this, a loess smooth of the annual mean daily discharge for the years 1922 through
2016 for the Colorado River at Lees Ferry, Arizona, is shown in figure 10.15.
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The decreased mean flow over time is a function of increased consumptive use of water and climate
change (decreasing snowpack in particular). The very low values in the early 1960s represent the years
just after the completion of Glen Canyon Dam, located just upstream of the Lees Ferry streamgage, when
a large part of the flow of the river was allowed to remain in storage behind the dam in order to build
capacity for hydropower production. The upper and lower smooths are asymmetrical around the middle
smooth, particularly since the dam was completed. This reflects the degree to which the dam is augmenting
the flow of the river in low-flow years. Also notable is that during the most recent years (say 2000—16) not
only is the middle smooth declining (a decrease in mean flow) but the variability has markedly decreased.
This indicates that the reservoir is being used to control the delivery of water downstream during dry years,
whereas wetter years continue to be more variable. Most recently, the interannual variability of discharge
(as represented by the upper and lower smooths) has become much lower than in previous years and is
converging on the smooth of the annual mean discharge. In short, streamflow is becoming less plentiful but
also much less variable through time. This presentation of the data helps capture some of those details.

10.3.4 Use of Smooths for Comparing Large Datasets

A valuable use of smooths is to compare and contrast multiple, large datasets. Plotting all the data
points in a scatter plot and using different symbols to represent different groups of data generally does
not provide the clarity necessary to distinguish similarities and differences among groups. Plotting the
individual data group’s loess smooth curves (with some way of distinguishing between groups) without
showing the actual data points, may provide insights into the group characteristics. For example, Welch and
others (1988) used lowess to describe the relation between arsenic and pH in four physiographic regions
of the western United States (fig. 2.23). Thousands of data points were involved; a scatterplot would have
shown nothing but a blob of data. The smooths clearly illustrated that arsenic concentrations increased with
increasing pH in three regions, and no increase was observed in the fourth. Schertz and Hirsch (1985) also
used smooths to illustrate regional patterns in atmospheric precipitation chemistry. They used one smooth
per station to display simultaneous changes in sulfate and other chemical concentrations occurring over
broad regions of the country (fig. 10.16). These relations would have gone unnoticed using scatterplots—
the underlying patterns would have been obscured by the proliferation and scatter of the data.
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Figure 10.15. Graph of annual mean daily discharge of the Colorado River at Lees Ferry, Arizona, for
water years 1922-2016. The graph shows the loess smooth for the data (solid curve) and the upper
and lower smooths (dashed lines).
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Figure 10.16. Plot of lowess smooths of sulfate concentrations at 19 stations, 1979-83
(Schertz and Hirsch, 1985).

10.3.5 Variations on Smoothing Algorithms

There are many appropriate types of variations on the general idea of smoothing that can be considered.
Data analysts should be careful to describe the variations that they may use in their applications. One
possible variation is to base ¢, , not on some type of span parameter (a proportion of the dataset), but
rather to set it based on distance in the units in which the x variable is measured. For example, in measuring
some type of biogeochemical process for which rates vary with temperature, one might want to do a loess
where d_ _is set by the distance as measured by temperature, rather than simply using a standard fraction of
the dataset. The analyst would state that the smoothing is done with weighted regressions with a half width
of 2° C (for example). One would have to write a specialized function to do this, but the loess concept is
simple enough that this can be done by repeated use of the 1m function in R.
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Another example of a departure from the standard loess model is where the x variable is cyclic, such as

hour of the day or day of the year. A standard loess approach would not be appropriate if one of these were
used as the x value. This is because the loess model would see values, say from late December, as being
very distant from those in early January, or 11:59 PM being very distant from 12:01 AM, when in fact they
are quite close together. Specialized code can be written that measures time distances in a circular manner
rather than linear in order to achieve the desired continuity through the entire year. The weighted regression
on time, discharge, and season (WRTDS) method (Hirsch and others, 2010) introduced in chapter 12 uses
both of these types of variations on the basic principles of loess.

Exercises

For the data below,

A. Compute the Kendall slope estimator.
B. Compute Kendall’s 7.

C. Compute the Theil-Sen equation.

D

Compute the significance level of the test.

10 40 30 55 62 56
X 1 2 3 4 5 6

<

One value has been altered from the first exercise. Again, compute the slope estimate, intercept, 7, and
significance level. By how much have these changed in response to the one (large) change in y? Also
compute a 95-percent confidence interval on the slope estimate.

10 40 30 55 200 56
1 2 3 4 5 6

Williams and Wolman (1984) relate the lowering of streambed elevation downstream of a major dam
to the number of years following its installation. Calculate a linear least-squares regression of bed

lowering (L) as the response variable, versus years (Yrs) as the explanatory variable, and compute its
R

>

Yrs (L!-?:vn'::t:gs) Yrs L Yrs L
0.5 —0.65 8 —4.85 17 =5.05
1 -1.20 10 —4.40 20 -5.10
2 -2.20 11 —4.95 22 —-5.65
4 —2.60 13 =5.10 24 =5.50
6 -3.40 15 —4.90 27 —5.65

Now compute either a lowess or loess smooth of the data. Plot the smooth and regression line along
with a scatterplot of the data. Describe how well each represents the data.

Record Extension

Monthly discharges in million cubic meters per month for September at two rivers are given in
Joint1@_4.RData. Data are for years 31 to 50 for “Short” and “Base”. The two sites are close
enough that the data are reasonably well correlated with each other. Using the 20 years of joint record,
compute a regression line and an LOC, saving the slopes and intercepts (regression parameters are
stored for you within the regression object in R). Using these two linear models, estimate the early 30
years of record at “Short” from the 30 years of early record at “Base” found in Early1@ 4.RData.
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you estimate

Short | i I |

Base I I I

Year | | |
0 30 50

Take the estimated 30-year record at “Short” produced by both methods and plot them to illustrate
the differences (a boxplot or probability plot are recommended). Compare these to each other and to a
plot of the flows that actually occurred (the Actual.Short.streamflow column in Early10_4.RData).
Which technique, regression or LOC, most closely matches the observed streamflow characteristics at
“Short™?

The pulp liquor waste contamination of shallow groundwater (see exercise 7.1) is revisited. Of interest
is now the relation between pH and chemical oxygen demand (COD) in samples taken from all three
piezometers. Calculate a straight line which best describes the innate relation between these two
chemical constituents (either pH or COD could be predicted from the other).

pH cob pH cob pH CcoD
7.0 51 6.3 21 8.4 283
7.2 60 6.9 17 7.6 2,170
7.5 51 7.0 34 7.5 6,580
7.7 3,600 6.4 43 7.4 3,340
8.7 6,900 6.8 34 9.3 7,080

7.8 7,700 6.7 43 9.0 10,800

293






Multiple Linear Regression

The flood with a 1-percent annual exceedance probability (AEP) is to be estimated for locations
without streamflow gages using basin characteristics at those locations. A regression equation is first
developed relating the 1-percent AEP flood to several basin characteristics at sites that have a streamgage.
Each characteristic used is known to influence the magnitude of the 1-percent AEP flood, has already been
used in adjoining states, and thus will be included in the equation regardless of whether it is significant
for any individual dataset. Values for the basin characteristics at each ungaged site are then input to the
multiple regression equation to produce the I-percent AEP flood estimate for that site.

Residuals from an ordinary least squares regression of concentration versus streamflow show a
consistent pattern of seasonal variation. To make better predictions of concentration from streamflow,
additional explanatory variables are added to the regression equation, modeling the pattern seen in
the data.

As an exploratory tool in understanding possible mechanisms of groundwater contamination, data on
numerous potential explanatory variables are collected. Each variable is plausible as an influence on nitrate
concentrations in the shallowest aquifer. All-subsets regression or similar procedures are performed to select
the most important variables, and the subsequent regression equation is then used to predict concentrations.

Multiple linear regression (MLR) is the extension of simple linear regression (SLR) to the case of
multiple explanatory variables. The goal of this relation is to explain as much as possible of the variation
observed in the response (v) variable, leaving as little variation as possible to unexplained noise. In this
chapter, methods for developing a good MLR model are explained, as are the common pitfalls, such as
multicollinearity and relying on R*. The mathematics of MLR—best handled by matrix notation—will not
be extensively covered here, see Kutner and others (2004) or Davis (2004) for that. In this chapter we refer
to SLR and MLR to distinguish between regressions with only one explanatory variable versus those with
two or more explanatory variables. In either case these methods both use an ordinary least squares (OLS)
approach to estimation.

11.1  Why Use Multiple Linear Regression?

When are multiple explanatory variables required? The most common situation is when scientific
knowledge and experience tells us they are likely to be useful. For example, average runoff from a variety
of mountainous basins is likely to be a function both of average rainfall and of altitude; average dissolved
solids yields are likely to be a function of average rainfall, percent of basin in certain rock types, and
perhaps basin population. Concentrations of contaminants in shallow groundwater are likely to be functions
of both source terms, such as application rates of fertilizers or pesticides, and subsurface conditions, such as
soil permeability or depth to groundwater.

The use of MLR might also be indicated by the residuals from an SLR. Residuals may indicate there is
a temporal trend (suggesting time as an additional explanatory variable), a spatial trend (suggesting spatial
coordinates as explanatory variables), or seasonality (suggesting variables which indicate the season the
data point was collected in). Analysis of a residuals plot (described in chap. 9) may also show that patterns
of residuals occur as a function of some categorical grouping representing a special condition, for example,
on the rising limb of a hydrograph, at cultivating time, during or after frontal storms, in wells with PVC
casing, or measurements taken before 10:00 a.m. These special cases will only be revealed by plotting
residuals versus a variety of variables—in a scatterplot if the variable is continuous, in grouped boxplots
if the variable is categorical. Seeing these relations should lead to definition of an appropriate explanatory
variable and its inclusion in the model if it significantly improves the fit.
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11.2 Multiple Linear Regression Model

The MLR model will be denoted

y=p+Bx,+fx,+ -+ fx +¢&, (11.1)

where

is the response variable,

is the intercept,

is the ith explanatory variable,

is the slope coefficient for the first explanatory variable,

is the slope coefficient for the second explanatory variable,
is the slope coefficient for the kth explanatory variable, and
is the remaining unexplained noise in the data (the error).

D = Do

o 2

There are k explanatory variables, some of which may be related or correlated to each other (such as the
previous 5-day’s total rainfall and the previous 1-day rainfall). Sometimes the explanatory variables are
referred to as independent variables; however, it best to avoid calling them independent because they may
not be independent of each other. Calling them explanatory variables describes their purpose: to explain the
variation in the response variable.

In SLR, the regression function is a line. In MLR, the regression function describes a plane (when
there are two explanatory variables) or a hyperplane (when there are more than two explanatory variables)
and is sometimes called a regression surface.

11.21 Assumptions and Computation

The assumptions necessary for MLR are the same as those for SLR described in table 9.2 of chapter 9,
except that there are now multiple explanatory variables. As described in chapter 9 for SLR, estimation of
the parameters in MLR is a minimization problem. MLR uses maximum likelihood methods to estimate
parameters describing a regression surface. The estimates that meet the least squares criterion minimize the
squared distances between the observed response data and the regression surface. The solution has the same
properties listed in chapter 9 for the least squares solution.

11.3 Hypothesis Tests for Multiple Regression
11.3.1 Nested F-Tests

The most important hypothesis test for MLR is the F-test for comparing any two nested models. Let
model “s” (eq. 11.2) be the simpler MLR model:

V. =B+ Bx X, + -+ X, +6E, (11.2)

It has k+1 parameters including the intercept, with degrees of freedom (df,) of n—(k+1), where k is the
number of explanatory variables and » is the sample size. As in SLR, the degrees of freedom equals the
number of observations minus the number of parameters estimated. The error sum of squares (defined in
table 9.1) is SSE..

Let model “c” (eq. 11.3) be the more complex regression model (meaning it has more explanatory
variables than model s):

Ye :ﬁo +ﬂ1x1 +16)2x2 +"'+ﬂkxk +ﬂk+1xk+l +"'+ﬂmxm té. - (11'3)

It has m+1 parameters and residual degrees of freedom (df)) of n—(m+1). Its error sum of squares is SSE .
The test of interest is whether the more complex model provides a sufficiently better explanation of

the variation in y than does the simpler model. In other words, do the extra explanatory variables x,,, to x_

add any new explanatory power to the equation? The models are nested because all of the & explanatory
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variables in the simpler model are also present in the complex model, and thus the simpler model is nested
within the more complex model. The null hypothesis is

Hy:f,=p,==4,=0,

and the alternative hypothesis is
H, : at least one of these m—k coeficients is not equal to zero.

If the slope coefficients for the additional explanatory variables are all not significantly different
from zero, the variables are not adding any explanatory power in comparison to the cost of adding them
to the model. This cost is measured by the loss in the degrees of freedom (m —k), the number of additional
variables in the more complex equation.

The test statistic is

o (SSE, ~SSE.)/(df, ~df.) ’ (11.4)
SSE_/df

where (df, —df))=m—k (Neter and others, 1985).

If F exceeds the tabulated value of the F-distribution with (df, —df)) and df, degrees of freedom for
the selected significance level (say a=0.05), then H| is rejected. Rejection indicates that the more complex
model should be chosen in preference to the simpler model. If £ is small, the additional variables are
adding little to the model, and the simpler model would be chosen over the more complex.

Note that rejection of /| does not mean that all of the k+1 to m variables have coefficients
significantly different from zero. It merely states that one (or more) of the additional coefficients in the
more complex model is significant, making that model better than the simpler model tested. Other simpler
models having different subsets of variables may need to be compared to the more complex model before
choosing it as the best. See also section 11.6 on choosing the best linear model.

11.3.2 Overall F-Test

There are two special cases of the nested F-test. The first is of limited use and is called the overall
F-test. In this case, the simpler model is

yo=h+e (11.5)

where
B, =y.
The rules for a nested F-test still apply: the df,=n—1 and SSE =(n—1) x the sample variance of y.
Many computer packages give the results of this F-test. It is not very useful because it tests only whether

the complex regression equation is better than no regression at all and does not indicate whether useful
predictions can be made. Of much greater interest is which of several regression models is best.

11.3.3 Partial F-Tests

The second special case of nested F-tests is the partial F-test, which is called a Type III test by SAS
(SAS Institute Inc., 2014) and is performed in R by fitting the complex and simpler model separately and
comparing them using the anova function. Here the complex model has only one additional explanatory
variable over the simpler model, so that m=k+1. The partial F-test evaluates whether the mth variable adds
any new explanatory power to the equation, and so ought to be in the regression model, given that all the
other variables are already present. The F statistics on a coefficient will change depending on what other
variables are in the model, thus we cannot determine if the variable m belongs in the model. What can be
determined is whether m belongs in the model in the presence of the other variables. Note the comparison is
valid only if the models are fitted to the same dataset; this can be a problem if values are missing for some
potential explanatory variables.
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With only one additional explanatory variable, the partial F-test is identical in results to a #-test on the
coefficient for that variable (described in chap. 9). In fact, #=F, where both are the statistics computed for
the same coefficient for the partial test. Some computer packages report the F-statistic, and some the #-test,
but the p-values for the two tests are identical. The partial ¢-test can be easily performed by comparing the
t-statistic for the slope coefficient to a Student’s ¢-distribution with n—(m+1) degrees of freedom. H is
rejected if |¢] > oy FOT @ two-sided test with a=0.05 and sample sizes n of 20 or more, the critical
value of ¢ is |t| = 2. Larger t-statistics (in absolute value) for a slope coefficient indicate significance.
Squaring this, the critical partial F value is near 4.

Partial tests guide the evaluation of which variables to include in a regression model but are not
sufficient for every decision. If every |¢| >2 for each coefficient, then it is clear that every explanatory
variable is accounting for a significant amount of variation, and all should be present. When one or more of
the coefficients has a |f| <2, however, some of the variables should be removed from the equation, but the
t-statistics are not a certain guide as to which ones to remove. These partial #- or F-tests are precisely the
tests used to make automatic decisions for removal or inclusion in stepwise procedures: forward, backward,
and stepwise MLR. These procedures do not guarantee that the best model will be obtained, as discussed
later, better procedures are available for doing so.

11.4 Confidence and Prediction Intervals

Confidence intervals can be computed for the regression slope coefficients, f,, and for the mean
response, J, at a given value for all explanatory variables. Prediction intervals can be similarly computed
around an individual estimate of y. These are entirely analogous to SLR in chapter 9 but require matrix
manipulations (linear algebra) for computation. A brief discussion of them follows. More discussion can be
found in chapter 9 and more complete treatment can be found in many statistics textbooks, such as Draper
and Smith (1981), Walpole and Myers (1985), Kutner and others (2004), and Montgomery and others
(2012).

11.4.1 Variance-covariance Matrix

In MLR, the values of the k explanatory variables for each of the n observations, along with a vector
of ones for the intercept term, can be combined into a matrix X (eq. 11.6):

(1 X, X, - - xlﬂ
I X, x, . . Xy

X=|. . A (11.6)
_1 xnl 'an A xnk_

X is used in MLR to compute the variance-covariance matrix o* (XX)", where (XX )" is the often called
the X prime X inverse matrix, where X’ (X prime) is the transpose of the X matrix and ()' denotes in the
inverse of the quantity in parentheses. Elements of (X X )71 for three explanatory variables are as follows:

S
3
>

8]
w

(Xx)"' = (11.7)

D000
D000
D000
D000

S
R
<@

When multiplied by the error variance, o (estimated by the variance of the residuals, s?), the diagonal
elements of the matrix C, through C,; become the variances of the regression coefficients, and the off-
diagonal elements become the covariances between the coefficients. Both (X ¢ )71 and s? can be output from
MLR software.
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11.42 Confidence Intervals for Slope Coefficients

Interval estimates for the regression coefficients § through f, are often printed by MLR software; if
not, the statistics necessary to compute them are. As with SLR it must be assumed that the residuals are
normally distributed with variance, 6”. A 100 - (1—a)-percent confidence interval on Bis

R [2 o 2
ﬁj _tl—a/Z;n—p S ij Sﬁ/ SB} +tl—a/2;n—p s ij ’ (118)

where C_ is the diagonal element of (X X ) corresponding to the jth explanatory variable. Often printed is
the standard error of the regression coefficient:

se([s,)z $°C, (11.9)

Note that C/ is a function of the other explanatory variables as well as the jth. Therefore, the interval
estimate, like ,6’ and its partial test, will change as explanatory variables are added to or deleted from the
model.

11.43 Confidence Intervals for the Mean Response

A 100 - (1—a)-percent confidence interval for the expected mean response, (y,), for a given point in
multidimensional space x, is symmetric around the regression estimate, y,. These intervals also require the
assumption of normality of residuals.

~ ’ ! ~ ’ v\l
Po =t anp) S xy (XX) xy <p(py) < Py + Haon-) s°xy (XX) x, (11.10)
The variance of the mean is the term under the square root symbol. It changes with x, increasing as

x, moves away from the multidimensional center of the data. In fact, the term x; (X X )7l X, is the leverage
statistic, /2, which expresses the distance that x, is from the center of the data.

11.4.4 Prediction Intervals for an Individual y

A 100-(1—-a) percent prediction interval for a single response, y,, given a point in multidimensional
space, x,, is symmetric around the regression estimate, J,. It requires the assumption of normality of
residuals.

A

Po = Yearzin-p) R (XfX)f1 Xy £, <7, 1 airin-p) \/sz (1+xé (X'X)f1 xo) (11.11)

As in SLR, the prediction interval for a new observation is wider than the confidence interval for a
mean response because it takes into account the uncertainty in parameter estimates and in the unexplained
variability in y (see chap. 9 for more discussion).

11.5 Regression Diagnostics

As was the case with SLR, it is important to use graphical tools to diagnose deficiencies in MLR.
The following residuals plots are very important: normal probability plots of residuals, residuals versus
predicted (to identify curvature or heteroscedasticity), residuals versus time sequence or location (to
identify trends), and residuals versus any candidate explanatory variables not in the model (to identify
variables, or appropriate transformations of them, which may be used to improve the model fit).
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11.5.1 Diagnostic Plots

As with SLR, curvature in a plot of residuals versus an explanatory variable included in the model
indicates that a transformation of that explanatory variable is required. Their relation should be linear. To
see this relation, however, residuals should not be plotted directly against explanatory variables; the other
explanatory variables will influence these plots. For example, curvature in the relation between e and x,
may show up in the plot of e versus x, erroneously indicating that a transformation of x, is required. To
avoid such effects, partial-regression plots (also called added-variable plots) should be constructed to view
the partial relation between the response and an explanatory variable, adjusted for the other explanatory
variables (Fox and Weisberg, 2011).

The partial residual is

T (11.12)

where J is the predicted value of y from a regression equation where X, is left out of the model. All other
candidate explanatory variables are present. The residual is the part of y that is not explained by all the
regressors except x. This partial residual is then plotted versus another residual

X =x—%, , (11.13)
where ¥, is the X, predicted from a regression against all other explanatory variables. Therefore, X, is treated
as a response variable in order to compute its adjusted value. The partial plot (ej* versus xj*) describes the
relation between y and the jth explanatory variable after all effects of the other explanatory variables have
been removed. Only the partial plot accurately indicates whether a transformation of X, is necessary (see
fig. 9.4 and associated text in chap. 9 for more on transformations). The avPlots function in the car
package (Fox and Weisberg, 2011) for R will generate partial-regression/added-variable plots.

Another type of plot that is helpful in determining whether to transform one or more of the x variables
is a component plus residual (component + residual) plot. These plots examine whether the explanatory
variables have linear relations with the response variable by adding the linear component of the relation
between y and X, back to the residual from the full model and plotting this component plus residual against
x,. Component + residual plots are better at highlighting nonlinearities than the partial-regression plots. The
function to generate these plots is available in the car package for R.

11.5.2 Leverage and Influence

The regression diagnostics of chapter 9 are much more important in MLR than in SLR. It is difficult
when performing MLR to recognize points of high leverage or high influence from any set of plots. This is
because the explanatory variables are multidimensional. One observation may not be exceptional in terms
of each of its explanatory variables taken one at a time, but viewed in combination it can be exceptional.
Numerical diagnostics can accurately detect such anomalies.

The leverage statistic 4, = x, (X X )71 x, expresses the distance of a given point, x, from the center of
the sample observations (see also section 11.4.3.); it has two important uses in MLR. The first is the direct
extension of its use in SLR—to identify unusual explanatory variable values. Such points warrant further
checking as possible errors, or they may indicate a poor model (transformation required, relations not
linear, and so forth).

The second use of /, is when making predictions. The leverage value for a prediction should not
exceed the largest 4, in the original dataset, otherwise, an extrapolation beyond the envelope surrounding
the original data is being attempted. The regression model may not fit well in that region. It is sometimes
difficult to recognize that a given x, for which a predicted j is attempted is outside the boundaries of the
original data. This is because the point may not be beyond the bounds of any of its individual explanatory
variables. Checking the leverage statistic guards against an extrapolation that is difficult to detect from a
plot of the data.
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Figure 11.1.  Scatterplot matrix for the variables listed in table 11.1 (observation 16 is shown as a solid
triangle). DE, distance east; DN, distance north; Depth, well depth; Conc, concentration.

Example 11.1. Chemical concentrations in an aquifer.

Variations in chemical concentrations within a steeply dipping aquifer are to be described by location
and depth. The data are concentrations (Conc) plus three coordinates: distance east (DE), distance north
(DN), and well depth (Depth). Data are artificial and were generated using Conc=30+0.5 - Depth+e.

Any acceptable regression model should closely reproduce this true model, and should find Conc to be
independent of DE and DN. Pairs plots of the variables (fig. 11.1) do not reveal any extreme outliers in

the dataset, yet compared to the critical leverage statistic #,=3(p/n)=0.6, and critical influence statistic
DFFITS =2,/p/n =0.9, where n is the sample size, the 16th observation is found to be a point of high
leverage and high influence (table 11.1). In figure 11.2 the axes have been rotated, showing observation 16
to be lying outside the plane of occurrence of the rest of the potential explanatory variables, even though its
individual values for the three explanatory variables are not unusual.
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Table 11.1. Data and diagnostics for chemical concentrations used in example 11.1.

[DE, distance east; DN, distance north; Depth, well depth; Conc, concentration; h,, critical leverage statistic;
DFFITS, critical influence statistic]

DE DN Depth Conc h, DFFITS

1 1 42122 30.9812 0.289433 —0.30866
2 1 8.0671 33.1540 0.160670 —0.01365
3 1 10.7503 37.1772 0.164776 0.63801
4 1 11.9187 35.3864 0.241083 —0.04715
1 2 11.2197 35.9388 0.170226 0.42264
2 2 12.3710 31.9702 0.086198 —0.51043
3 2 12.9976 349144 0.087354 —0.19810
4 2 15.0709 36.5436 0.165040 —0.19591
1 3 12.9886 38.3574 0.147528 0.53418
2 3 18.3469 39.8291 0.117550 0.45879
3 3 20.0328 40.0678 0.121758 0.28961
4 3 20.5083 37.4143 0.163195 —0.47616
1 4 17.6537 35.3238 0.165025 —0.59508
2 4 17.5484 34.7647 0.105025 —0.77690
3 4 23.7468 40.7207 0.151517 0.06278
4 4 13.1110 42.3420 0.805951 4.58558
1 5 20.5215 41.0219 0.243468 0.38314
2 5 23.6314 40.6483 0.165337 —0.08027
3 5 24.1979 42.8845 0.160233 0.17958
4 5 28.5071 43.7115 0.288632 0.09397

Depth

DE DN
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The depth value for observation 16 was a typographical error, and should be 23.1110 instead of
13.1110. What does this error and resulting high leverage point do to a regression of concentration versus
the three explanatory variables? R code and output for a MLR model of Conc explained by DE, DN, and
Depth is shown below. From the #-ratios it can be seen that DN and perhaps DE appear to be significantly
related to Conc, but that Depth is not. This is exactly opposite of what is known to be true.

> modl <- 1lm(Conc ~ DE + DN + Depth, data=ChapllEx1)

> summary(modl1)

Call:
Im(formula = Conc ~ DE + DN + Depth, data = Chapl1lEx1)

Residuals:
Min 1Q Median 3Q Max
-4.101 -1.006 0.106 1.645 2.726

Coeficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 28.90857 1.58151 18.279 3.81e-12 ***

DE 0.99058 0.52033 1.904 0.0751 .
DN 1.59599 0.75055 2.126 0.0494 *
Depth 0.09069 0.18572 0.488 0.6319

Signif. codes: @ “***’ @9.001 “**’ 9.01 ‘*’ ©0.05 ‘.’ 0.1 °° 1

Residual standard error: 2.144 on 16 degrees of freedom
Multiple R-squared: 0.7112, Adjusted R-squared: 0.657
F-statistic: 13.13 on 3 and 16 DF, p-value: 0.0001393

The above code and output result in the regression equation

Conc =28.9+0.991DE +1.60DN + 0.091Depth ,

where
n =20,
K =2.14, and
R’ =0.71.

Figure 11.2 (facing page). Rotated scatterplot showing the position of the
high leverage point (observation 16, shown as a triangle). DE, distance east;
DN, distance north; Depth, well depth.
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Figure 11.3. Partial-regression plots for concentration (Conc) as a function of distance east (DE), distance north

(DN), and well depth (Depth).

The outlier had a severe, detrimental effect on the regression coefficients and model structure and is
visible in the partial-regression plots (fig. 11.3). Points of high leverage and influence should always be
examined before accepting a regression model, to determine if they represent errors.
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Suppose that the typographical error was detected and corrected. The R code and output below show
that the resulting regression relation is drastically changed.

> Chapl1Exl.correct <- ChapllEx1l
> Chapl1lEx1l.correct[16,"Depth"] <- 23.111
> mod2 <- 1Im(Conc ~ DE + DN + D Depth, data = ChapllExl.correct)

> summary(mod2)

Call:
Im(formula = Conc ~ DE + DN + Depth, data = ChapllExl.correct)

Residuals:
Min 1Q Median 3Q Max
-3.5166 -0.6483 0.0513 1.1086 2.8290

Coeficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 29.1680 1.3872 21.026 4.42e-13 ***

DE -0.4186 0.8331 -0.502 0.6222
DN -0.8157 1.3396 -0.609 ©0.5512
Depth 0.7103 ©0.3385 2.098 0.0521 .

Signif. codes: @ “***’ @9.001 “**’ 9.01 ‘*’ ©0.05 ‘.’ 0.1 °° 1

Residual standard error: 1.913 on 16 degrees of freedom
Multiple R-squared: 0.7701, Adjusted R-squared: 0.7271
F-statistic: 17.87 on 3 and 16 DF, p-value: 2.32e-05

The above code and output, result in the regression equation
Conc =29.2-0.419DE - 0.816DN +0.710Depth ,
where

K =1.91, and
R’ =0.77.
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Figure 11.4. Partial-regression plots for concentration (Conc) as a function of distance east (DE), distance north
(DN), and well depth (Depth), with outlier corrected.

Based on the #-statistics, DE and DN are not significantly related to Conc, but Depth is related. One
can draw the same conclusion from the partial-residual plots (fig. 11.4) that show DE and DN having
negative slopes, but little relation to the response variable when adjusted for the other explanatory
variables. The intercept of 29 is close to the true value of 30, and the slope for Depth (0.7) is not far from
the true value of 0.5. For observation 16, #,=0.19 and DFFITS=0.48, both well below their critical values
(see chap. 9). Thus, no observations have undue influence on the regression equation and no outlier stands
out in the partial-regression plots (fig. 11.4).
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Figure 11.5. Component + residual plots for concentration (Conc) as a function of distance east (DE), distance
north (DN), and well depth (Depth), with outlier corrected.

The component + residual plots are shown in figure 11.5. The dashed line is the line of best fit (if the
explanatory variables have a linear relation to the response). The solid line is a representation of where the
component + residuals actually fall. Deviations from the dashed line indicate non-normalities; figure 15
indicates a nonlinear relation with DE.
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Based on the numerical and graphical results, DE and DN do not appear to belong in the regression
model, dropping them produces the model below, with values very close to the true values from which the
data were generated. Thus, by using regression diagnostics to inspect observations deemed unusual, a poor
regression model was turned into an acceptable one.

> mod3 <- 1lm(Conc ~ Depth, data=ChapllExl.correct)

> summary(mod3)

Call:
Im(formula = Conc ~ Depth, data = ChapllExl.correct)

Residuals:
Min 1Q Median 3Q Max
-3.3882 -0.5395 0.0510 1.4331 2.6834

Coeficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 29.0363 1.1985 24.23 3.44e-15 ***
Depth 0.5110 0.0668 7.65 4.60e-07 ***

Signif. codes: @ “***’ @9.001 “**’ 9.01 *’ ©0.05 ‘.’ 0.1 <’ 1

Residual standard error: 1.825 on 18 degrees of freedom
Multiple R-squared: 0.7648, Adjusted R-squared: 0.7517
F-statistic: 58.53 on 1 and 18 DF, p-value: 4.604e-07

The above code and output result in the regression equation

Conc =29.0+0.511Depth ,

where
n =20,
K =1.82, and
R’ =0.77.

Note, the F-test for the overall model was significant in all three models, indicating that they were
all better than no model (intercept only). This highlights the fact that the F-test is of little value when
evaluating the quality of a model. The final, correct model had the lowest residual standard error, s. The
final model also had the highest adjusted R? (a measure used when comparing models with differing
numbers of explanatory variables, discussed later in this chapter).

11.5.3 Multicollinearity

Multicollinearity is the condition where at least one explanatory variable is closely related to one
or more other explanatory variables. It is important that practitioners of MLR understand the causes and
consequences of multicollinearity and can diagnose its presence, because it results in several undesirable
consequences for the regression equation, including
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1. Equations acceptable in terms of overall F-tests may have slope coefficients with magnitudes that are
unrealistically large, and whose partial F- or ¢-tests are found to be insignificant.

2. Coeflicients may be unrealistic in sign (for example, a negative slope for a regression of streamflow
versus precipitation). Usually this occurs when two variables describing approximately the same thing
counter-balance each other in the equation by having opposite signs.

3. Slope coefficients are unstable. A small change in one or a few data values could cause a large change
in the coefficients.

4. Automatic procedures such as stepwise, forwards, and backwards methods produce different models
judged to be best.

Monte Carlo simulation has found that these undesirable consequences are magnified when samples
sizes are smaller, correlations between variables are higher, and model error variances are higher (Kroll and
Song, 2013). Concern over multicollinearity should be strongest when the purpose is to make inferences
about coefficients, in which case advanced techniques could be used such as principal component analysis
or partial least squares regression (Kroll and Song, 2013). Concern can be somewhat less when only
predictions are of interest, if these predictions are for cases within the observed range of the x data.

A widely used diagnostic for measuring multicollinearity is the variance inflation factor (VIF)
presented by Marquardt (1970). For variable j the VIF is

VlF,:%_R‘?) , (11.14)

where R}2 is the R? from a regression of the jth explanatory variable on all of the other explanatory
variables—the equation used for adjustment of X, in partial plots. The ideal is VIF, =1, corresponding to
R2 = 0, meaning that there is no correlation between the jth predictor and the other predictors, and the
Varlance of the £ is not inflated. Serious problems are indicated when VIF' is large. There is no universal
definition of a large VIF, but VIF, is commonly considered large when it is greater than 10; however, some
use a value as low as 4 (Kutner and others, 2004; O’Brien, 2007; Vatcheva and others, 2016). When V[F is
greater than 10, R2 is greater than 0.9, indicating a high degree of correlation between variables (rj >0. 95)

A useful 1nterpretat10n of VIF is that multicollinearity inflates the width of the confidence interval
for the jth regression coefficient by the amount ,/VIF; compared to what it would be with a perfectly
independent set of explanatory variables. When using the VIF, it is important to know its limitations,
including that the VIF is sensitive to sample size (O’Brien, 2007) and it cannot distinguish between
multiple simultaneous multicollinearities (Neter and others, 1996).

If the analyst determines that multicollinearity is a problem for a candidate regression model, there are
four options for reducing multicollinearity.

1. Center the data. A simple solution that works in some specific cases is to center the data.
Multicollinearity can arise when some of the explanatory variables are functions of other explanatory
variables, such as for a polynomial regression of y against x and x2. When x is always of one sign,
there may be a strong relation between it and its square. Centering redefines the explanatory variables
by subtracting a constant from the original variable, and then recomputing the derived variables.

This constant should be one that produces about as many positive values as negative values. The
constant could be the mean or median, or it could be a round number roughly in the middle of the
data (for example, the year 2000 for a dataset that runs from 1990 to 2014). When all of the derived
explanatory variables are recomputed as functions (squares, products, and so forth) of these centered
variables, their multicollinearity will be reduced.

Centering is a mathematical solution to a mathematical problem, it will not reduce multicollinearity
between two variables that are not mathematically derived one from another. It is particularly useful
when the original explanatory variable has been defined with respect to some arbitrary datum (time,
distance, temperature) and is easily fixed by resetting the datum to roughly the middle of the data. In
some cases, the multicollinearity can be so severe that the numerical methods used by the statistical
software fail to perform the necessary matrix computations correctly. Such numerical problems occur
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frequently when doing trend surface analysis (fitting a high order polynomial of distances north of the
equator and west of Greenwich, as an example, or trend analysis values are a polynomial of years).
This will be demonstrated in example 11.2.

When an explanatory variable is centered, the slope coefficient of the explanatory variable does not
change, but the interpretation of the model intercept does change. In the SLR case, the intercept, f,
is the value of the response variable, when the predictor variable equals 0. If the predictor variable is
centered, f3, is the value of the response variable when the original predictor variable minus the value
used to center it equals 0. When using a regression equation for prediction, one must take care to use
the centered values in prediction, not the original values.

2. Eliminate variables. In some cases, prior judgment suggests the use of several different variables that
describe related, but not identical, attributes. Examples of this might be air temperature and dew point
temperature, the maximum 1-hour rainfall, the maximum 2-hour rainfall, river basin population and
area in urban land use, basin area forested and basin area above 6,000 feet elevation, and so on. Such
variables may be strongly related as shown by their VIFs, and one of them must be eliminated on the
basis of the analyst’s knowledge of the system being studied or on the basis of comparisons of model
fits with one eliminated variable versus the other eliminated variable, in order to lower the VIF.

3. Collect additional data. Multicollinearity problems can sometimes be solved with only a few
additional but strategically selected observations. Suppose some attributes of river basins are being
studied, where small basins tend to be heavily forested and large basins tend to be less heavily
forested. Discerning the relative importance of size versus the importance of forest cover will prove
to be difficult. Strong multicollinearity will result from including both variables in the regression
equation. To solve this and allow the effects of each variable to be judged separately, the sampling
design should include, if possible, the collection of additional samples from a few small but less
forested basins and a few large but heavily forested basins. This should produce a much more reliable
model. Similar problems arise in groundwater quality studies, where rural wells are shallow and urban
wells are deep. Depth and population density may show strong multicollinearity, requiring some
shallow urban and deep rural wells to be sampled.

4. Perform ridge regression (beyond the scope of this text). Ridge regression was proposed by Hoerl
and Kennard (1970). Montgomery and Peck (1982) give a good brief discussion of it. It is based on
the idea that the variance of the slope estimates can be greatly reduced by introducing some bias into
them. It is a controversial but useful method in MLR.

Example 11.2—Centering.

The natural log of concentration of some contaminant in a shallow groundwater plume is to be related
to distance east and distance north of a city (simulated data). The city center was arbitrarily chosen as a
geographic datum. The data are presented in table 11.2.

The following code and output show an MLR model for the log of concentration explained by DE,
DN, DE?, DN?, and an interaction term DE - DN.

> ml <- 1lm(lnConc ~ DE + DN + DESQ + DNSQ + DEDN, data = Ex2)

> summary(ml)

Call:
Im(formula = 1lnConc ~ DE + DN + DESQ + DNSQ + DEDN, data = Ex2)

Residuals:
Min 1Q Median 3Q Max
-0.33468 -0.16896 -0.01947 0.15423 0.61474



Coeficients:

Estimate Std.

(Intercept) -4.790e+02
DE 1.055e+01
DN 1.514e+01
DESQ -2.642e-01
DNSQ -1.514e-01
DEDN 1.383e-03

Signif. codes: @ €***°

Residual standard error: 0.268 on 14 degrees of freedom

Multiple R-squared: ©0.9596,

Error t

9.166e+01

1.121e+00

3.602e+00

1.498e-02

3.581e-02

1.895e-02

0.001 “**°

Chapter 11

value Pr(>|t])
-5.226 0.000128
9.405 1.99e-07
4.202 0.000887

-17.635 5.88e-11

-4.229 0.000842
0.073 0.942864

Adjusted R-squared:

F-statistic: 66.46 on 5 and 14 DF,

The regression equation is:

p-value: 2.978e

* kk

* %k k

* %k k

* %k k

* %k k

0.9451

-09

Multiple Linear Regression

0.01 “*’ 9.05 .’ 0.1 <’ 1

ln(Conc) =-479+10.5DE +15.1DN - 0.262DESQ —0.151DNSQ + 0.0014DEDN .

Table 11.2. Data for example 11.2.

[Obs. #, observation number, Conc, concentration, DE, distance east; DN, distance north; DESQ,

distance east squared, DNSQ, distance north squared]

Obs. # Conc In(Conc) DE DN DESQ DNSQ DEeDN
1 14 2.63906 17 48 289 2,304 816
2 88 4.47734 19 48 361 2,304 912
3 249 5.51745 21 48 441 2,304 1,008
4 14 2.63906 23 48 529 2,304 1,104
5 29 3.36730 17 49 289 2,401 833
6 147 4.99043 19 49 361 2,401 931
7 195 5.27300 21 49 441 2,401 1,029
8 28 3.33220 23 49 529 2,401 1,127
9 21 3.04452 17 50 289 2,500 850
10 276 5.62040 19 50 361 2,500 950
11 219 5.38907 21 50 441 2,500 1,050
12 40 3.68888 23 50 529 2,500 1,150
13 22 3.09104 17 51 289 2,601 867
14 234 5.45532 19 51 361 2,601 969
15 203 5.31320 21 51 441 2,601 1,071
16 35 3.55535 23 51 529 2,601 1,173
17 15 2.70805 17 52 289 2,704 884
18 115 4.74493 19 52 361 2,704 988
19 180 5.19296 21 52 441 2,704 1,092

20 16 2.77259 23 52 529 2,704 1,196

M
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Since the square of distance east (DESQ) must be strongly related to DE, and similarly DNSQ must be
strongly related to DN, and DE - DN with both DE and DN, multicollinearity between these variables will
be detected by their V'7Fs. One may write a function as outlined above to calculate V/Fs in the software they
are using. SAS has collinearity diagnostics as part of its regression procedure, PROC REG (SAS Institute
Inc., 2014). A number of R packages also have a function that calculates the V/Fs, including car (Fox and
Weisberg, 2011), fmsb (Nakazawa, 2017), and usdm (Naimi and others, 2014). Using the car package in
R, the VIFs for the above coefficients follow.

> library(car)
> vif(ml)

DE DN DESQ DNSQ DEDN
1751.000 7223.857 501.000 7143.857 1331.000

Using the rule that any VIF above 10 indicates a strong dependence between variables, the result of
the VIF analysis above show that all variables have high VIFs. Therefore, all of the slope coefficients are
unstable, and no conclusions can be drawn from the slope coefficients. This cannot be considered a good
regression model, even though the R? is large.

To solve the problem, DE and DN are centered by subtracting their medians. Following this, the three
derived variables DESQ, DNSQ, and DE - DN are recomputed, and the regression rerun. The following
results show that all multicollinearity is completely removed. The coefficients for DE and DN are now
more reasonable in size, and the coefficients for the derived variables are exactly the same as in the original
regression. The #-statistics for DE and DN have changed because their uncentered values were unstable
and #-tests unreliable. Note that the s and R? are unchanged. In fact, this is exactly the same model as the
uncentered equation, but only in a different and centered coordinate system.

> cent <- Ex2

> cent$DE <- cent$DE - median(cent$DE)

> cent$DN <- cent$DN - median(cent$DN)

> cent$DESQ <- cent$DE~2

> cent$DNSQ <- cent$DN~2

> cent$DEDN <- cent$DE * cent$DN

> m2 <- 1lm(1nConc ~ DE + DN + DESQ + DNSQ + DEDN,

+ data = cent)
> summary(m2)
Call:

Im(formula = 1nConc ~ DE + DN + DESQ + DNSQ + DEDN, data = cent)

Residuals:
Min 1Q Median 3Q Max
-0.33468 -0.16896 -0.01947 0.15423 0.61474

Coeficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5.764495 ©.119721 48.149 < 2e-16 ***
DE 0.048116 0.026800 1.795 0.094208 .
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DN 0.018581 ©0.042375 0.438 0.667726
DESQ -0.264201 0.014982 -17.635 5.88e-11 ***
DNSQ -0.151442  0.035813 -4.229 0.000842 ***
DEDN 0.001383 0.018951 0.073 0.942864

Signif. codes: @ “***’ 9,001 **’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 0.268 on 14 degrees of freedom
Multiple R-squared: ©.9596, Adjusted R-squared: ©0.9451
F-statistic: 66.46 on 5 and 14 DF, p-value: 2.978e-09

Resulting in the equation

In(Conc) = 5.76 + 0.048(DE — median(DE ) ) + 0.019(DN — median(DN) ) - 0.264DESQ
~0.151DNSQ +0.001( DE — median(DE))-(DN — median(DN)) '

Multicollinearity is now no longer a concern.
> vif(m2)
DE DN DESQ DNSQ DEDN
1 1 1 1 1

What we see from this result is that there are three explanatory variables we might now want to
consider removing from the model (because they have #-statistics that are relatively low). These are DE,
DN, and DE - DN. The next section describes approaches for this kind of problem, selecting the best model
from among a number of possible models.

11.6 Choosing the Best Multiple Linear Regression Model

One of the major issues in MLR is finding the appropriate approach to variable selection. The
benefit of adding additional variables to an MLR model is to account for or explain more of the variance
of the response variable. The cost of adding additional variables is that the degrees of freedom, n—k—1,
decreases (the number of independent pieces of information in the sample), making it more difficult to find
significance in hypothesis tests and increasing the width of confidence intervals. A good model will explain
as much of the variance of y as possible with a small number of explanatory variables.

The first step is to consider only explanatory variables that ought to have some effect on the dependent
variable. There must be plausible theory behind why a variable might be expected to influence the
magnitude of y. Simply minimizing the SSE (error sum of squares, defined in chap. 9) or maximizing R*
are not sufficient criteria. In fact, any explanatory variable will reduce the SSE and increase the R? by some
small amount, even those irrelevant to the situation (or even random numbers). The benefit of adding these
unrelated variables, however, is small compared to the cost of a degree of freedom. Therefore, the choice
of whether to add a variable is based on a cost-benefit analysis, and variables enter the model only if they
make a significant improvement in the model, because there is a loss of statistical power as more variables
are added. There are at least two types of approaches for evaluating whether a new variable sufficiently
improves the model. The first approach uses partial F- or ¢-tests, and when automated is often called a
stepwise procedure. The second approach, all subsets regression, uses one or more overall measure of
model quality.
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11.6.1 Stepwise Procedures

Stepwise procedures are automated model selection methods in which the computer algorithm
determines which model is preferred. There are three versions, usually called forward, backward, and
stepwise. These procedures use a sequence of partial F- or ¢-tests to evaluate the significance of a variable.
The three versions do not always agree on a best model, especially when multicollinearity is present; they
also do not evaluate all possible models, and so cannot guarantee that the best model is even tested. The
procedures were developed before modern computer technology, taking shortcuts to avoid running all
possible regression equations for comparison. Such shortcuts are no longer necessary.

Forward selection starts with only an intercept and adds variables to the equation one at a time.

Once in, each variable stays in the model. All variables not in the model are evaluated with partial /- or
t-statistics in comparison to the existing model. The variable with the highest significant partial 7~ or
t-statistic is included, and the process repeats until either all available variables are included or no new
variables are significant. One drawback to this method is that the resulting model may have coefficients that
are not significantly different from zero; they must only be significant when they enter. A second drawback
is that two variables that each individually provide little explanation of y may never enter, but together the
variables might explain a great deal. Forward selection is unable to capitalize on this situation.

Backward elimination starts with all explanatory variables in the model and eliminates the one
with the lowest partial-F statistic (lowest |#|). It stops when all remaining variables are significant. The
backwards algorithm does ensure that the final model has only significant variables but does not ensure a
best model because it also cannot consider the combined significance of groups of variables.

Stepwise regression combines the ideas of forward and backward. It alternates between adding and
removing variables, checking significance of individual variables within and outside the model. Variables
significant when entering the model will be eliminated if later they test as insignificant. Even so, stepwise
does not test all possible regression models.

These stepwise procedures are influenced by the sequence in which variables are added and removed
and can move in a direction of suboptimal model space. The procedures can also result in an overfit
model, that is one that is excessively complex and mathematically describes random error rather than the
underlying hydrologic process. Overfit models may not perform well to another sample from the same
population.

Example 11.3. Regression for mean annual runoff.

Haan (1977) attempted to relate the mean annual runoff of several streams (ROFF) with nine other
variables: the precipitation falling at the gage (PRECIP), the drainage area of the basin (AREA), the average
slope of the basin (SLOPE), the length of the drainage basin (LEN), the perimeter of the basin (PERIM),
the diameter of the largest circle which could be inscribed within the drainage basin (DI), the shape factor
of the basin (Rs), the stream frequency—the ratio of the number of streams in the basin to the basin area
(FREQ), and the relief ratio for the basin (R»). Haan chose to select a three-variable model (using PRECIP,
PERIM, and Rr) based on a leveling off of the incremental increase in R* as more variables were added to
the equation.

What models would be selected if the stepwise or overall methods were applied to this data? If a
forward routine is performed, no single variables are found significant at a=0.05, so an intercept-only
model is declared best. Relaxing the entry criteria to a larger a, AREA is first entered into the equation.
Then Rr, PCIP, and PERIM are entered in that order. Note that AREA has relatively low significance once
the other three variables are added to the model (model 4 in table 11.3).

The backward model begins with all variables in the model. It checks all partial #- or F-statistics,
throwing away the variable that is least significant. Here the least significant single variable is AREA. So
whereas the forward model made AREA the first variable to bring in, the backward model discarded AREA
first. Then other variables were also removed, resulting in a model with Rr, PCIP, PERIM, DI, and FREQ
remaining in the model. Multicollinearity between measures of drainage basin size, as well as between other
variables, has produced models from backward and forward procedures that are quite different from each
other. The slope coefficient for DI is also negative, suggesting that runoff decreases as basin size increases.
Obviously, DI is counteracting another size variable in the model (PERIM) whose coefficient is large.

The stepwise model first enters AREA, Rr, PRECIP, and PERIM. At that point, the z-value for AREA
drops from near 5 to —1.6, so AREA is dropped from the model. DI and FREQ are then entered, so that
stepwise results in the same five-variable model as did the backward model (table 11.4).



Table 11.3. Results of forward selection procedure for example 11.3.

Chapter 11

[AREA, drainage area of the basin; Rr, relief ratio for the basin; PRECIP, precipitation falling at the gage;
PERIM, perimeter of the basin; -, not applicable]

Coefficient or

Forward Model 1 Model 2 Model 3 Model 4
AREA s 0.43 0.81 0.83 —0.62
t 1.77 4.36 4.97 —1.68

Rr p - 0.013 0.011 0.009
t - 3.95 3.49 4.89
PRECIP I3 - - 0.26 0.54
t - - 1.91 5.05
PERIM B - - - 1.02
t - - - 4.09

Table 11.4. Results of stepwise selection procedure for example 11.3.

Multiple Linear Regression

[AREA, drainage area of the basin; Rr, relief ratio for the basin; PRECIP, precipitation falling at the gage; PERIM, perimeter of the
basin; DI, diameter of the largest circle which could be inscribed within the drainage basin; FREQ, stream frequency—the ratio of
the number of streams in the basin to the basin area; -, not applicable]

Coefficient
Stepwise Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
t-statistic
AREA p 0.43 0.81 0.83 —0.62 - - -
t 1.77 4.36 4.97 —1.68 - - -
Rr s - 0.013 0.011 0.009 0.010 0.010 0.011
t - 3.95 3.49 4.89 5.19 5.02 6.40
PRECIP g - - 0.26 0.54 0.430 0.495 0.516
t - - 1.91 5.05 4.62 5.39 6.71
PERIM I3 - - - 1.02 0.617 0.770 0.878
t - - - 4.09 8.24 6.98 8.38
DI s - - - - - -1.18 —1.30
t - - - - - -1.75 —2.32
FREQ B - - - - - - 0.36
t - - - - - - 2.14

11.6.2 Overall Measures of Quality

Four statistics can be used to evaluate each of the 2* regression equations possible from & candidate
explanatory variables. These are the adjusted R (R?); Mallow’s Cp (Cp); Schwartz’s information criterion
(BIC); and the prediction error sum of squares (PRESSP) statistic, usually shortened to PRESS.

Adjusted R? is an R? value adjusted for the number of explanatory variables (or equivalently, the
degrees of freedom) in the model. The model with the highest R’ is identical to the one with the smallest
standard error(s) or its square, the mean squared error (MSE). To see this, in chapter 9 R*> was defined as a
function of the total (SSy) and error (SSE) sum of squares for the regression model:

(11.15)
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The weakness of R? is that it must increase, and the SSE decrease, when any additional variable is
added to the regression. This happens no matter how little explanatory power that variable has. Adjusted
R? is adjusted to offset the loss in degrees of freedom by including as a weight the ratio of total degrees of
freedom to error degrees of freedom:

woy (noNSSE | MSE
" (n-p)ss,  SS,/(n-1)"

(11.16)

As SS /(n—1) is constant for a given dataset, R’ increases as MSE decreases; therefore, an analyst can
either max1mlze R2 or minimize MSE as an overall measure of quality. However, when p, the number of
coefficients, is con51derably smaller than n, R’ is a less sensitive measure than either PRESS or C,. PRESS
has the additional advantage of being a validation criterion.

The statistic Cp (Mallows, 1973) is designed to achieve a good compromise between the desire
to explain as much variance in y as possible (minimize bias) by including all relevant variables, and to
minimize the variance of the resulting estimates (minimize the standard error) by keeping the number of
coefficients small. The C, statistic is

Cp=p+(n_p)(A§Ep_Oﬁ) : (11.17)

where 7 is the number of observations, p is the number of coefficients (number of explanatory variables
plus 1), MSE is the mean square error of the p-coefficient model, and & ? is the best estimate of the true
error, which is usually taken to be the minimum MSE among the 2* possible models. The best model is the
one with the lowest C value. When several models have nearly equal C, values, they may be compared in
terms of reasonableness, multicollinearity, importance of high influence points, and cost in order to select
the model with the best overall properties.

The statistic BIC, sometimes known as Bayesian information criterion or Schwarz criterion (Schwarz,
1978), takes into account goodness of fit of the model and applies a penalty for increasing the number of
parameters in a model. It approximates Bayes factor, which is a “summary of the evidence provided by
the data in favor of one scientific theory, represented by a statistical model, as opposed to another” (Kass
and Raftery, 1995). In model selection using BIC, the goal is to minimize the BIC, while making a tradeoff
between model fit and number of parameters in the model. For large n, the BIC criterion is

BIC =-2- 1n( )+1n( )p (11.18)

where L is the maximized value of the likelihood function (the likelihood of a set of parameter values of
a statistical model, given the observed data), n is the number of of observations, and p is the number of
coefficients in the fitted model (R Core Team, 2016). It can also be expressed as

BIC:n+n~1n(27r)+n'1n(E
n

j+1n(n)(p+1) . (11.19)

This is very similar to another criterion, Akaike’s information criterion (Akaike, 1974), AIC, which is
calculated in the same manner as BIC by replacing 1n(n) with 2 (R Core Team, 2016). When n>8, the BIC
penalty for each additional parameter is larger than it is for AIC. BIC can be useful when an analyst has
many potential explanatory variables, but wants a parsimonious model.

The statistic PRESS was defined in chapter 9 as a validation-type estimator of error that uses the
deleted residuals to provide an estimate of the prediction error (the sum of the squared prediction errors e).
By minimizing PRESS, the model with the least error in the prediction of future observations is selected.

The R’ and BIC can disagree as to which is the best model when comparing models of different sizes
because of the larger penalty BIC applies to additional coefficients. PRESS and C, generally agree as to
which model is best, even though their criteria for selection are not identical. Among the several metrics
introduced here (R?, BIC, C, and PRESS) there is no universally accepted best metric. They are all
reasonable approaches to model selection and all of them are better metrics than simply using R2.
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11.6.3 All-subsets Regression

The all-subsets regression method, an exhaustive search method, uses the computer to perform a large
number of computations, letting the scientist judge which model to use. This allows flexibility in choosing
between models—some may make more sense from an economic or scientific perspective, rather than from
a purely statistical perspective. For example, two best models may be nearly identical in terms of their R?,
C , BIC, and (or) PRESS statistics, yet one involves variables that are much less expensive to measure than
the other. The less expensive model can be selected with confidence. Likewise, several best models may
have similar measures of model quality, but one better matches the science of the process being modeled.
In contrast, stepwise procedures ask the computer to judge which model is best. Their combination of
inflexible criteria and inability to test all models often results in the selection of something much less than
the best model and they may even fail to test the best model.

Example 11.3. Regression for mean annual runoff—Continued.

Instead of the stepwise procedures run on Haan’s data, models are evaluated using the overall statistics
C, and PRESS. Smaller values of C, and PRESS are associated with better models. Computing PRESS and
C, for the 2°=512 possible regression models can be done with modern statistical software. A list of these
statistics for the two best k-variable models, where best is defined as the highest R, is given in table 11.5.

Based on Cp, the best model would be the five variable model having PCIP, PERIM, DI, FREQ,
and Rr as explanatory variables (Cp=2.9). It is the same model as selected by the stepwise and forward
methods. Remember that there is no guarantee that stepwise procedures regularly select the lowest C or
PRESS models. The advantage of using an overall statistic like C, is that options are given to the scientist
to select what is best. If the modest multicollinearity (VIF=5.1) between PERIM and DI is of concern
(with its resultant negative slope for DJ) the model with the next lowest C, that does not contain both these
variables, a four-variable model with Cp= 3.6 could be selected. If the scientist decided AREA must be in
the model, the lowest Cp model containing AREA (the same four-variable model) could be selected.

Table 11.5. Statistics for several multiple regression models of Haan’s (1977) data.

[PRESS, prediction error sum of squares; VIF, variance inflation factor; PRECIP, precipitation; AREA, the drainage area of the basin;
SLOPE, the average slope of the basin; LEN, the length of the drainage basin; PERIM, the perimeter of the basin; DI, the diameter of
the largest circle which could be inscribed within the drainage basin; Rs, the shape factor of the basin; FREQ, the stream frequency—
the ratio of the number of streams in the basin to the basin area; Rr, the relief ratio for the basin; - , not applicable]

Number .
of  R-squared PRESS Cp Ma’l‘l'l';‘,“'“ PRECIP AREA SLOPE LEN PERIM DI Rs FREQ Rr
variables
1 22 473 642 - - X - - .
1 21.6 493 647 - - - - S
2 69.6 206 216 14 ; X - - S ¢
2 68.1 247 230 1.4 ; - - - X - - -0 X
3 90.5 100 3.9 1.5 X - - - 0X - - -0 X
3 80.7 193 132 12 X ; X - X - -
4 93.2 80 34 3.9 X - - - X X - - X
4 93.0 77 3.6 19.5 X X - S .
5 95.9 69 29 5.1 X ; - - X X - X X
5 94.7 72 40 216 X X X - X - - - X
6 96.2 63 46 19.6 X - - - X X X X X
6 96.1 100 47 8.2 X X X - X X - X X
7 96.6 75 62 2Ll X X X - X X X X X
7 96.6 64 62 1279 X - - - X X X X X
8 96.8 537 80 234 X X X X X X X X X
8 96.7 102 81 2008 X X X - X X X X X
9 96.8 597 100 2275 X X X X X X X X X
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Figure 11.6. Plots of the magnitude of adjusted R-squared, Mallow's Cp, BIC (Bayesian information criterion), and
residual sum of squares for the two best explanatory variable models as a function of the number of explanatory
variables.

Using the regsubsets function of the 1leaps package (Lumley, 2017) in R, selecting the best subsets
from all-subsets regression can be automated. The following code performs an exhaustive all-subsets
regression and returns the two best models of each size from one to nine explanatory variables (returning
two models of size one to eight and the model of size nine is specified by the user and the user could
specify a different best subset). The best models of a particular size are the best based on R?, C,, or BIC,
as the differences among these measures of model quality occur when comparing models of different sizes.
The resulting indicators of which variables are included with each potential model is merged with R, C,
BIC, and the residual sum of squares for each model. The results of selecting the two best models of each
size from one to nine explanatory variables are graphically displayed in figure 11.6, the plots show that the
two best models of each size often have similar measures of model quality, but not always. The plots also
show that a model with five explanatory variables is likely best.

The user can then examine all of this information and select the preferred model based on the user’s
definition of best. The user may also want to select a subset of the models and calculate PRESS for them as
the regsubsets function does not calculate this function.
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11.7 Summary of Model Selection Criteria

Rules for selection of linear regression models are summarized in the five steps below.

1. Should y be transformed? To decide whether to transform the y variable, plot residuals versus
predicted values for the untransformed data. Compare this to a residuals plot for the best transformed
model, looking for three things:

A. constant variance across the range of ,
B. normality of residuals, and
C. alinear pattern, not curvature.

The statistics R?, R?, SSE, C,, BIC, and PRESS are not appropriate for comparison of models having
different transformations of y.

2. Should x (or several x’s) be transformed? Transformation of an x variable should be made using
component + residual plots. Check for the same three patterns of constant variance, normality, and
linearity. Considerable help can be obtained by optimizing statistics such as R? (maximize), BIC
(minimize), SSE (minimize), Cp (minimize), or PRESS (minimize). Many transformations can be
rapidly checked with such statistics, but a residual plot should always be inspected before making any
final decision.

3. Which of several models, each with the same y and with the same number of explanatory variables, is
preferable? Use of R?, SSE, C,, or PRESS is appropriate here, but back it up with a residuals plot.

4. Which of several nested models, each with the same y, is preferable? Use the partial F-test between
any pair of nested models to find the best one. The analyst may also select the model based on
minimum Cp or minimum PRESS.

5. Which of several models is preferable when each uses the same y variable but is not necessarily
nested? Cp or PRESS should be used in this situation.

11.8 Analysis of Covariance

Often there are factors that influence the dependent variable which are not appropriately expressed as a
continuous variable. Examples of such grouped or qualitative variables include location (stations, aquifers,
positions in a cross section), or time (day and night; winter and summer; before and after some event such
as a flood, a drought, operation of a sewage treatment plant or reservoir). These factors are perfectly valid
explanatory variables in an MLR context. They can be incorporated by the use of binary variables, also
called indicator or dummy variables. This method is essentially a blending of regression and analysis of
variance into an analysis of covariance, or ANCOVA.

11.8.1 Use of One Binary Variable
Starting with the simple one-variable regression model
Y=4+fX+¢e, (11.20)
an additional factor is believed to have an important influence on Y for any given value of X. Perhaps this

factor is a seasonal one: cold season versus warm season—where some precise definition exists to classify all
observations as either cold or warm. A second variable, a binary variable Z, is added to the equation where

7 {Ozfzzs fromcold season (11.21)

lif iis from warm season



Chapter 11  Multiple Linear Regression

to produce the model
Y=F+BX+pZ+s (11.22)

When the slope coefficient, £, is significant, the model in equation 11.22 would be preferred to the
SLR model equation 11.20. A significant result also says that the relation between Y and X is affected by
season.

Consider the hypothesis test where H: f,=0 and H  : §,#0. The null hypothesis is tested using a
Student’s ¢-test with n—3 degrees of freedom. There are n—3 because there are 3 f’s being estimated. If the
partial |t| 21 o H, is rejected. Thus, we should infer that there are two models:

Y= b, +b X for the cold season (Z=0), and
Y= b, + b, X + b, for the warm season (Z=1), or

Y= (b +b,)+bX.

Therefore, the regression lines differ for the two seasons. Both seasons have the same slope, but different
intercepts, and will plot as two parallel lines (fig. 11.7).

The binary variables always have a value of 0 or 1 because their coefficient is used to change the
intercept or slope for some of the values by a constant. In the above example, the warm season values have
an intercept that is increased by b, when Z=1. An example of using binary variables to change both the
intercept and slope for some values follows.

Suppose that the relation between X and Y for the two seasons is suspected not only to differ in
intercept, but in slope as well. Such a model is written as

Y= +BX+LZ+[ZX +¢s , (11.23)

which is equivalent to

Y=(B+BZ)+(B+PZ)X+¢ . (11.24)

O Winter
e Summer

X
Figure 11.7. Plot of regression lines for data differing in intercept between two seasons.
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The intercept equals 3, for the cold season and B+ /3, for the warm season; the slope equals /3, for the cold
season and 3, +, for the warm season. This model is referred to as an interaction model because of the use of
the explanatory variable ZX; the interaction (product) of the original predictor X and the binary variable Z.

To determine whether the simple regression model with no Z terms can be improved upon by the
model in equation 11.23, the following hypotheses are tested:

H,: p,=p,=0 versus H : 8, and/or B, #0.
A nested F-statistic is computed
(SSE, - SSE, )/ (df, - df. )

F= : (11.25)
SSE. / df.

where s refers to the simpler (no Z terms) model, and ¢ refers to the more complex model. For the two
nested models shown in equations 11.20 and 11.23 this becomes

(SSE,, —SSE,,)/2
MSE,, ’

where MSE,,=SSE,,/(n—4), rejecting H if F>F, .

If H, is rejected, the model in equation 11.23 should also be compared to the model in equation 11.22
(the shift in intercept-only model) to determine whether there is a change in slope in addition to the change
in intercept, or whether the rejection of model 11.20 in favor of 11.23 was only the result of a shift in
intercept. The null hypothesis H: f,=0 is compared to H: ,#0 using the test statistic

(SSE,, —SSE,;)/1
MSE,,

rejecting H ' if F>F

a,l,n—4"

Assuming H and H are both rejected, the model can be expressed as the two separate equations (see
fig. 11.8):

Y = b, +bX cold season

Y =(b,+b,)+ (b +b,)X warm season

O Winter
® Summer
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Furthermore, the coefficient values in these two equations will be exactly those computed if the two
regressions were estimated by separating the data and computing two separate regression equations. By
using analysis of covariance, however, the significance of the difference between those two equations has
been established.

11.8.2 Multiple Binary Variables

In some cases, the factor of interest must be expressed as more than two categories: 4 seasons, 12
months, 5 stations, 3 flow conditions (rising limb, falling limb, base flow), and so forth. To illustrate,
assume there are precise definitions of three flow conditions so that all discharge (X)) and concentration (Y)
pairs are classified as either rising, falling, or base flow. Two binary variables are required to express these
three categories—there is always one less binary variable required than the number of categories.

lif iis arising limb observation
Let R, =
Ootherwise

lif iis a falling limb observation
Let D, = .
Ootherwise
So that
Category Value of R Value of D
Rising 1 0
Falling 0 1
Base flow 0 0

The following model results

Y=4+pX+LR+pFD+¢ . (11.26)

To test H: f,=p,=0 versus H : 5, and (or) B, #0, F-tests comparing simpler and more complex models
are again performed. To compare the model in equation 11.26 versus the SLR model in equation 11.20 with
no rising or falling terms,

(SSE,, —SSE,; )/ 2
MSE,,

b

where MSE, =SSE, /(n—4), rejecting H if F>F , =

4

To test for differences between each pair of categories consider the following questions.

1. Is the rising limb different from base flow? This is tested using the -statistic on the coefficient 8,. If

|t| > ¢, with n—4 degrees of freedom, reject H, where H,: 8,=0.
2
2. Is the falling limb different from base flow? This is tested using the #statistic on the coefficient §,. If

|t|>¢ , with n—4 degrees of freedom, reject H, where H,: f,=0.
1-Z

Figure 11.8 (facing page). Plot of regression lines differing
in slope and intercept for data from two seasons.
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3. Is the rising limb different from the falling limb? There are two ways to determine this.

A.

The standard error of the difference (b,—b,) must be known. The null hypothesis is H: #,—f,=0.
The estimated variance of b,—b., Var(b,—b,)=Var(b,)+ Var(h,)—2Cow(b,,b,), where Cov is the

covariance between b, and b,. To determine these terms, the matrix (X X )_l and s? (s? is the mean
square error) are required. Then

Var(b,) = Cyys* »
Var(b) = Cy,s* »and

Cov(b,b,)=Cps® -

The test statistic is 7 = (b, — by )/ \[Var (b, —by). If |t > ¢ _ o, With n—4 degrees of freedom, reject
2

H,

The binary variables can be redefined so that a direct contrast between rising and falling limbs is

possible. This occurs when either is set as the (0,0) default case. This will give answers identical

to (A).

Ever greater complexity can be added to these kinds of models using multiple binary variables and
interaction terms such as

Y=4+BX+/R+BD+[RX+LDX+¢ . (11.27)

The procedures for selecting models follow the pattern described above. The significance of an
individual £ coefficient, given all the other fs, can be determined from the #-statistic. The comparison of
two models, where the set of explanatory variables for one model is a subset of those used in the other
model, is computed by a nested F-test. The determination of whether two coefficients in a given model
differ significantly from each other is computed either by redefining the variables, or by using a -test after
estimating the variance of the difference between the coefficients based on the elements of the (X X )7l
matrix and s2.



Chapter 11  Multiple Linear Regression

Exercises

1.

Mustard and others (1987) presented data from 42 small urban drainage basins located in several cities
around the United States. The dependent variable is the log of the total nitrogen load for the basin—
the y transformation decision has already been made. There are eight possible explanatory variables

to use for prediction purposes. The definitions of all nine variables are as follows. The data are in the
data frame AC15 in the Chapterll.RData workspace.

LOGTN log total nitrogen load

LOGCA log contributing area

LOGIMP log impervious area

MMITEMP mean minimum January temperature
MSRAIN mean seasonal rainfall

PRES percentage of area residential
PNON percentage of area nonurban
PCOMM percentage of area commercial
PIND percentage of area industrial

Do not bother with transformations of the x variables—use these variables as they are. Pay special
attention to multicollinearity. Try one or more of the approaches described in this chapter to select the
best model for predicting LOGTN from these explanatory variables.

Analysis of covariance. The following 10 possible models describe the variation in sand-size particles
(0.125-0.250 millimeters) in the Colorado River at Lees Ferry, Arizona. (There is no dataset to load,
the regression results are shown in tabular form below). Select the best model from this set of 10

and interpret its meaning. The basic model describes a quadratic relation between concentration and
discharge (X). Do the intercept and (or) slope vary with the three seasons (S, summer; W, winter; or
other)? Use a=0.05 for all hypothesis tests.

Basic model

Y=b,+bX+b,X*

where
Y  =In(concentration of suspended sands)
X  =In (discharge)
Month
Binary variables 1 2 3 4 5 6 7 8 9 10 11 12
S 0 0 0 0 0 0 1 1 1 1 0 0
w 1 1 0 0 0 0 0 0 0 0 1 1
xModel # Explanatory variables SSE df(error)

1 X, X2 69.89 124
2 X, X2, S 65.80 123
3 X, X2, S, SX 65.18 122
4 X, X2, S, SX, SX2 64.84 121
5 X, X2, W 63.75 123
6 X, X2, W, WX 63.53 122
7 X, X2, W, WX, WX2 63.46 121
8 X, X2,S, W 63.03 122
9 X, X2, S, W, SX, WX 62.54 120
10 X, X2, S, W, SX, WX, SX2 , WX2 61.45 118
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3. The Ogallala aquifer was investigated to determine relations between uranium and other
concentrations in its waters. Construct a regression model to relate uranium to total dissolved solids
and bicarbonate, using the data in the data frame AC16 of the workspace Chapterll.RData. What is
the significance of these predictor variables?



Trend Analysis

Concentrations and loads of phosphorus have been observed at numerous tributaries to an important
estuary over a 20-year period. How much has the central tendency of those concentrations and (or) loads
changed over this 20-year time period? How confident are we about the direction of those changes? Are
the changes we observe simply a reflection of the fact that the early part of the record may have been
particularly dry and the later part wetter, or is the change more than we might expect after we consider
these variations in weather? Is there an observable effect associated with a ban on phosphorus compounds
in detergents that was implemented in the middle of the observed record?

Groundwater levels were recorded for many wells in a study area over 14 years. During the ninth
year of observations, installation of new irrigation systems in the area increased groundwater withdrawals
dramatically. Do the data show decreasing water levels in the region’s wells as a result of increased
groundwater pumping? How large do we think that decrease is and how confident are we about that
estimated change?

Trend analysis is a process of building a statistical model of the behavior of some hydrologic variable
over time. Examples of the kind of variable we might consider include discharge, concentration of solutes
or suspended matter, water levels, or water temperature. The data may take the form of measurements
made at a regular interval such as hou