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Design, Analysis, and Interpretation of Field Quality-
Control Data for Water-Sampling Projects

By David K. Mueller, Terry L. Schertz, Jeffrey D. Martin, and Mark W. Sandstrom

inference space is introduced to help determine where and 
when quality-control samples should be collected as well as 
which environmental samples are related to a set of quality-
control samples. The recommended basic quality-control 
design incorporates project-specific considerations, such as the 
objectives and scale of the study, and hydrologic and chemical 
conditions within the study area.

The report provides extensive information about statisti-
cal methods used to analyze quality-control data in order to 
estimate potential bias and variability in environmental data. 
These methods include construction of confidence intervals on 
various statistical measures, such as the mean, percentiles and 
percentages, and standard deviation. The methods are used to 
compare quality-control results with the larger set of environ-
mental data in order to determine whether the effects of bias 
and variability might interfere with interpretation of these 
data. Examples from published reports are presented to illus-
trate how the methods are applied, how bias and variability are 
reported, and how the interpretation of environmental data can 
be qualified based on the quality-control analysis.

Introduction
Studies of water quality in the environment require 

hydrologists to carefully consider the location of the sites to 
sample, the techniques for collecting and preserving samples, 
and the analytical methods to use. The goal is to obtain 
samples from the environment that are handled and analyzed 
in a manner that does not compromise how well the results 
represent the environment and meet the study objectives. His-
torically, the U.S. Geological Survey (USGS) relied on stan-
dard practices for collecting representative samples to ensure 
that samples collected over time and space produced results 
that were comparable and, therefore, of the quality needed to 
evaluate the environment. The only routine quality-control 
(QC) data were generated by the laboratories to ensure that 
analytical methods were providing appropriate results. In the 
late 1980s, a series of reports (Shiller and Boyle, 1987; Flegal 
and Coale, 1989; Windom and others, 1991) identified signifi-
cant problems in USGS trace-element data. Initially, informa-
tion about the sources and magnitude of these problems was 

Abstract
The process of obtaining and analyzing water samples 

from the environment includes a number of steps that can 
affect the reported result. The equipment used to collect and 
filter samples, the bottles used for specific subsamples, any 
added preservatives, sample storage in the field, and shipment 
to the laboratory have the potential to affect how accurately 
samples represent the environment from which they were 
collected. During the early 1990s, the U.S. Geological Survey 
implemented policies to include the routine collection of 
quality-control samples in order to evaluate these effects and 
to ensure that water-quality data were adequately representing 
environmental conditions. Since that time, the U.S. Geological 
Survey Office of Water Quality has provided training in how 
to design effective field quality-control sampling programs and 
how to evaluate the resultant quality-control data. This report 
documents that training material and provides a reference for 
methods used to analyze quality-control data.

Quality-control data are those generated from the collec-
tion and analysis of quality-control samples, and are used to 
estimate the magnitude of errors in the process of obtaining 
environmental data. “Bias” and “variability” are the terms 
used in this report for the two types of errors in environmen-
tal data that are quantified by the data from quality-control 
samples. Bias is the systematic error inherent in a method 
or measurement system. Variability is the random error that 
occurs in independent measurements. The types of field 
quality-control samples discussed in this report include blanks, 
spikes, and replicates. Blanks are samples prepared with water 
that is intended to be free of measurable constituents that will 
be analyzed by the laboratory; blanks are used to estimate bias 
caused by contamination. Spiked samples are modified by 
addition of specific analytes; spikes are used to determine the 
performance of analytical methods and to estimate the poten-
tial bias due to matrix interference or analyte degradation. 
Replicate samples are two or more samples that are considered 
to be essentially identical in composition. Replicates are used 
to evaluate variability in analytical results. Various sub-types 
of these quality-control samples are defined and discussed 
in this report, and guidance is provided for incorporating the 
proper samples into the design for a project. The concept of 



2    Design, Analysis, and Interpretation of Field Quality-Control Data for Water-Sampling Projects

limited by lack of routine field QC samples; however, spe-
cial studies conducted in response to these reports indicated 
contamination in the field was at least partly responsible for 
erroneous data (Rickert, 1991). As a result, an overhaul of the 
sampling techniques used by the USGS in water-quality stud-
ies was initiated and implemented during the early 1990s. Part 
of this overhaul was to include the routine collection of field 
QC samples.

The process of obtaining water samples includes a 
number of steps, all of which can contribute to differences 
between the analytical result and the true value in the sampled 
environment. The personnel, equipment, and techniques used 
to collect and filter samples, the bottles used for specific sub-
samples, any added preservatives, sample storage in the field, 
and shipment to the laboratory have the potential to affect how 
well the samples represent the environment from which they 
were collected. However, a single formula to define the types 
and numbers of required QC samples does not work for the 
varied scope of USGS water-quality projects. Instead of trying 
to craft a minimum QC requirement, the decision was made 
to develop a training class to teach USGS hydrologists how 
to design effective field QC samples into their studies. The 
approach that was developed for the training class has been 
refined over the years through more than 20 presentations of 
the lectures and invaluable experience gained from designing 
and collecting field QC samples in USGS projects. This report 
captures the sum of that training and experience in what is 
now a practice that has served the USGS well.

Basic Concepts of Measurement Errors

Three facets of evaluating data quality are (1) quality-
assurance (QA) elements, (2) QC data, and (3) quality assess-
ment. The QA elements refer to procedures that are used to 
manage those unmeasurable components of a project, such as 
sampling at the right place and time with the proper equip-
ment and using the correct techniques. The QC data are those 
generated from the collection and analysis of QC samples and 
are used to estimate the magnitude of errors in the process of 
obtaining environmental data. Quality assessment is the over-
all process of determining the quality of the environmental 
data by reviewing the application of the QA elements and the 
analysis of the QC data.

Every measurement is subject to potential errors that 
can cause the result to differ from the true value and can also 
cause results of repeated measurements to differ from each 
other. Measurement error has two additive parts: (1) random 
error varies for each measurement (but is centered on zero), 
and (2) systematic error occurs in similar samples at about the 
same value and in the same direction (positive or negative). 
Random error is caused by factors that cannot be controlled, 
either because their sources are unknown or because their 
reduction is not possible within current resources. Systematic 
error can sometimes be reduced with changes to the sam-
pling procedures or analytical methods if the source can be 
identified. Measurement errors are a part of any measurement 

process and should not be considered mistakes. Generally, the 
goal of QC data analysis is to quantify the random and system-
atic errors in the measurement process and, only occasionally, 
to reduce the overall error.

“Bias” and “variability” are the terms used in this report 
for the two types of errors in environmental data that are 
quantified by the data from QC samples. Bias is the systematic 
error inherent in a method or measurement system. Positive 
bias, typically from contamination introduced in the sample 
collection and analysis process, causes the results in the 
environmental samples to be consistently higher than what is 
actually present in the environment. Negative bias causes the 
results in the environmental samples to be consistently lower 
than what is actually occurring in the environment. Negative 
bias is common in certain analytical methods that routinely 
measure less than 100 percent of the actual amount of the 
analyte in the sample. These low measurements can be caused 
by degradation of an analyte between the time of collection 
and the time of analysis; interference from something in the 
sample matrix during the analytical method; or problems with 
performance of the method, such as incomplete extraction 
from the sample, losses during solvent evaporation, or sorp-
tion to containers. Variability is the random error that occurs 
in independent measurements. Errors that effect how well 
the environmental data represent the actual environment can 
include combinations of both bias and variability at various 
levels (fig. 1).

Other terms, such as “precision” and “accuracy,” are com-
monly used in the literature to describe data quality. Precision 
is the degree of agreement between independent measurements; 
therefore, it is the inverse of variability. Accuracy is generally 
defined as the degree of agreement between a measured value 
and the true or expected value; therefore, it is a function of both 
bias and variability. Sometimes the term accuracy is used as a 
synonym for bias, although this is not precisely correct. Bias 
and variability were chosen for use in this report because they 
are the most consistently defined, used in other literature, and 
can be calculated directly from QC data.

There are two distinct objectives of field QC sampling that 
should be considered when designing QC data collection. The 
principal objective of field QC data is to provide overall esti-
mates of the bias and variability of the environmental data. Esti-
mates of the overall error are used in the assessment phase of 
the project to (1) support the interpretation of the environmental 
data without qualification when the errors are insignificant or 
(2) qualify the environmental data that might be affected by sig-
nificant errors (either bias or variability) and identify limitations 
on the interpretation of the environmental data as a consequence 
of data quality. The QC samples designed to meet this objec-
tive provide information on errors from the combination of all 
procedures used to collect, process, and analyze environmental 
samples. The second objective of field QC data can be to locate 
the source of errors that have been identified as potentially 
affecting the environmental results, with the goal of modify-
ing the procedures to eliminate the source of the error. The QC 
samples designed to meet this objective provide information on 
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Figure 1.  Plots showing the general conditions of bias (indicated 
by the spread of the dots) and variability (indicated by displacement 
of the dots): A, low bias and low variability; B, high bias but low 
variability; C, low bias but high variability; and D, high bias and 
high variability.

Median

True  A

 

True  

Median  

B 

 

True  

Median

C 

Co
un

t
 

Concentration

Concentration

Concentration

Concentration

True  

Median

D

Co
un

t
Co

un
t

 
Co

un
t

selected subsets of the procedures used to collect, process, and 
analyze environmental samples. The ability to meet either of the 
two QC-data objectives requires knowledge of the information 
provided by specific QC sample types, the potential sources of 
error within the overall sampling and analytical process, the 
techniques for using QC information in the interpretation of the 
environmental data, and the spatial and (or) temporal limits on 
the use of the QC information.

Quality Systems Established by Other  
Federal Agencies

The U.S. Environmental Protection Agency (EPA) pro-
vides guidance on development of a Quality Management Plan 
(QMP) and a Quality Assurance Project Plan (QAPP). This 
guidance is documented in reports published by the Office 
of Environmental Information in 2001 (U.S. Environmental 
Protection Agency, 2001a; 2001b), which were reissued 
by memorandum in 2006 (http://www.epa.gov/quality/
qs-docs/reissue.pdf). At about the same time, the EPA Federal 
Facilities Restoration and Reuse Office convened an inter-
agency task force, with the Departments of Defense and 
Energy, to establish a uniform policy on QA activities for 
site-evaluation projects at Federal facilities. These policies 
were documented in a series of reports published in 2005 
(Intergovernmental Data Quality Task Force, 2005a; 2005b; 
2005c; 2005d).

Quality Management Plans (QMPs) and Quality 
Assurance Project Plans (QAPPs) are formal documents that 
provide information about QA and QC procedures and design 
for programs and projects. A QMP describes the organiza-
tional structure, functional responsibilities, lines of authority, 
and required interactions for those planning, implementing, 
and assessing all activities conducted by an overall program 
(U.S. Environmental Protection Agency, 2001a). Within the 
USGS, QMPs are analogous to Water Science Center QA 
Plans, which document the general procedures used by Center 
staff to ensure data quality. A QAPP provides details about the 
specific QA and QC activities that will be implemented for 
an individual project to ensure that the results will satisfy the 
stated performance criteria (U.S. Environmental Protection 
Agency, 2001b). For most USGS projects, this information 
is contained in the project proposal; however, some projects 
might need a separate QAPP to meet cooperator requirements.

The Intergovernmental Data Quality Task Force (IDQTF) 
was established to address inconsistencies and deficiencies in 
QA and QC within and across governmental organizations. 
The IDQTF developed a policy that includes recommenda-
tions and guidelines for documentation and implementation 
of acceptable QA and QC activities for Federal agencies. The 
policy was developed to ensure that

•	 Environmental data are of known and documented 
quality and suitable for their intended uses, and

•	 Environmental-data collection meets stated 
requirements.

The policy was initially intended to address QA and QC for 
hazardous waste cleanup projects, but also was intended to be 
a model for other programs. The policy is considered simply 
“guidance” unless it is formally adopted by an agency, and 
each agency determines how best to implement the policy. 
Some agencies have used this guidance to develop data-
quality objectives (DQOs). Often DQOs are based on rule-
of-thumb criteria (such as a requirement that variability be 

http://www.epa.gov/quality/qs-docs/reissue.pdf
http://www.epa.gov/quality/qs-docs/reissue.pdf
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within 20 percent) rather than constituent concentrations that 
are environmentally significant, and the consequence of failing 
to meet criteria is not always defined. A different approach is 
to collect sufficient QC samples so that the quality of the data 
can be evaluated in terms of meeting the needs of a project. 
Methods that can be used to evaluate data quality are pre-
sented in subsequent sections of this report.

Scope and Objectives of this Report

The topics covered in this report focus on designing 
QC-sampling programs for water-quality projects and using 
QC data to evaluate the quality of environmental-sample data. 
Sections of this report that address QC data evaluation include 
background information on pertinent statistical procedures 
plus specific examples of QC data interpretation from other 
published USGS reports. The report does not cover topics 
such as development and implementation of QA plans or 
collection of QC samples. Some of these topics are covered 
in documents referenced in this report and also in the USGS 
National Field Manual for the Collection of Water-Quality 
Data (U.S. Geological Survey, variously dated).

Types of Quality-Control Samples

Laboratory QC samples are used to estimate bias and 
variability associated with sample preparation and analysis 
by the laboratory. Field QC samples incorporate additional 
sources of bias and variability associated with sample collec-
tion, processing, storage, and shipping. Four general types of 
field QC samples are discussed in this section: blanks, refer-
ence samples, spikes, and replicates.

The specific sources of bias or variability that can be 
evaluated by using these types of QC samples depend on how 
the QC samples are collected and prepared. Small differences 
in collection and preparation yield a large variety of sub-types 
for each of the four general types of QC samples. Unfortu-
nately, terminology of many sub-types is inconsistent among 
the various institutions that collect and interpret QC samples. 
For example, the names (or definitions) of many of the QC 
sample sub-types used in this report differ from those used by 
the EPA and some other Federal agencies (Intergovernmental 
Data Quality Task Force, 2005d, p. 62–68). Therefore, QC 
sample names, methods of collection/preparation, and the 
potential sources of bias and variability must be specifically 
defined when designing a QC plan and in reports that describe 
or use QC data. Subsequent sections of this report define QC 
sample sub-types and provide information on how differences 
in QC sample collection and preparation determine which 
potential sources of bias or variability can be evaluated. These 
and other definitions of QA and QC terms are compiled in a 
glossary at the end of this report.

Blanks

Blanks are samples prepared with water that is intended 
to be free of measurable concentrations of the constituents that 
will be analyzed by the laboratory. Blanks are used to estimate 
positive bias caused by contamination. Contamination is the 
unintentional introduction of an analyte into the sample. Blanks 
estimate contamination for all or some part(s) of the sample 
collection and analysis process. Table 1 lists some common 
types of blank samples and the sources of contamination that 
could potentially affect them. Many other types of blanks can 
be collected, particularly when investigating a specific source 
of contamination. These types include sample-bottle blanks, 
preservative blanks, filter blanks, and cooler blanks. Typically, 
the blank type is named for the targeted source of contamination 
being assessed, but because all blanks measure more than one 
potential source of contamination, a variety of blank types are 
usually needed to isolate a specific source of contamination.

General procedures for the preparation of blanks 
are described in the USGS National Field Manual for the 
Collection of Water-Quality Data (U.S. Geological Survey, 
variously dated, chap. 4, p. 136–142). Specific procedures for 
preparing blanks used by the USGS National Water Quality 
Assessment (NAWQA) program are described in Mueller 
and others (1997) and Koterba and others (1995). All blanks 
prepared for this program must use blank water that has been 
obtained from and certified by the USGS National Water 
Quality Laboratory (NWQL). The use of a common blank 
water among USGS water-sampling projects facilitates the 
pooling of blank data to evaluate potential sources of con-
tamination. Various grades of blank water are available from 
the NWQL, and the selection of which to use depends on the 
constituents to be analyzed. Procedures for the preparation of 
several types of blanks (described in table 1) are briefly sum-
marized in the following sections. Many details concerning the 
preparation of blanks provided in the references above have 
been omitted for brevity.

Field blanks are samples that are intended to document 
the frequency and magnitude of contamination in environmen-
tal water samples. As such, field blanks must be prepared in 
a manner that exposes the blank water to all of the potential 
sources of contamination that might affect environmental 
water samples (table 1). Field blanks are used to evaluate the 
adequacy of field and laboratory protocols. Field blanks are 
prepared at the field site where environmental water samples 
are collected, and are processed before the collection of envi-
ronmental water samples (Mueller and others, 1997, p. 3).

The most challenging aspect of preparing a field blank 
is simulating the collection of the water sample. For ground-
water, blank water is poured into a clean standpipe, which 
is used to represent a well. Then a pump or bailer is used to 
purge the standpipe and collect a sample (Koterba and others, 
1995, p. 78). If a pump is used, blank water is passed though 
the sample tubing to the point where groundwater samples are 
processed and collected. For stream water, the sampler bottle, 
cap, and nozzle are rinsed with blank water to simulate field 
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rinsing with native stream water. It is particularly important 
to use enough rinse water to remove any carry-over contami-
nation or cleaning chemicals, such as methanol (Thiros and 
others, 2011, p. 37; Bender and others, 2011, p.16). Additional 
blank water is then poured into the sample bottle, which is 
capped and shaken to expose the blank water to all interior 
surfaces. This rinse water is then discarded, as would be done 
for a native-water rinse in preparing for an environmental 
sample. Subsequent procedures for processing groundwater 
or stream-water field blanks are identical to those for process-
ing environmental water samples. These processing steps 
can include sample splitting, filtration, and preservation. The 
processed blank is poured or pumped into a sample bottle, 
transported from the field site, and shipped to a laboratory.

Other agencies refer to field blanks as “equipment” or 
“rinsate” blanks (Intergovernmental Data Quality Task Force, 
2005d). However, these blanks are not necessarily exposed 
to all sources of contamination that potentially can affect 
environmental samples. The USGS differentiates between field 
blanks and equipment blanks based on where and how each 
is collected.

Equipment blanks, as defined by the USGS, are samples 
that are intended to demonstrate that sample collection and 
processing equipment and equipment-cleaning procedures are 
not sources of contamination. Equipment blanks are prepared 
in a clean, controlled environment such as a laboratory in the 
field office. Sample collection and processing equipment is 
cleaned using the routine protocols, and then an equipment 
blank is prepared. Blank water is exposed to all of the sample 
collection and processing equipment in the same manner 

as is done for a field blank. Because the equipment blank is 
prepared in the field office, it is not exposed to potential con-
tamination sources associated with the field environment or 
transport to or from a field site (table 1). Although equipment 
blanks are prepared primarily to evaluate the equipment and 
equipment-cleaning procedures, some other potential sources 
of contamination are unavoidable. These sources include 
sample-collection personnel, sample bottles, sample preserva-
tion, shipment, laboratory analysis, and the water used to make 
the blank (table 1).

In order to receive and evaluate the analytical results, 
equipment blanks typically are prepared months before begin-
ning water-sampling activities. Any contamination measured 
in equipment blanks is evaluated in terms of project objectives 
and the anticipated environmental concentrations to be mea-
sured for the project. A decision then is made whether to begin 
water-sampling activities, to change equipment or protocols, 
or to revise project objectives.

Trip blanks are samples that are intended to demonstrate 
that the transport and shipment of samples are not sources of 
contamination. Trip blanks typically are collected only for 
volatile organic compounds (VOC). Trip-blank vials are filled 
with blank water in the laboratory or office prior to a sampling 
trip. They are transported, along with empty sample vials, to 
the field site; kept with environmental VOC samples during 
the period of sampling and sample storage; and shipped to 
the laboratory with the environmental samples for analysis. 
Although not specifically targeted, sample vials, laboratory 
analysis, and the water used to make the blank also are poten-
tial sources of contamination in trip blanks (table 1).

Table 1.  Common types of blank samples and the potential sources of contamination they assess.

[T, targeted source of contamination; X, additional (non-targeted, but unavoidable) source of contamination]

Potential source of contamination Type of blank sample
Field Equipment Trip Source solution Laboratory

Field sources
Field Environment

Air, rain, dust, fumes T
Sample-collection personnel

Dirty hands, personal care products T X X
Sample collection

Samplers, pumps, and tubing T T
Sample processing

Splitters, filters, chambers T T
Sample bottles or vials T X X X
Sample preservation T X

Equipment cleaning
Soap, inadequate rinsing, carryover T T

Transport to and from the field site
Field vehicles, coolers T T X

Shipping to laboratory
Coolers, commercial carriers T X T X

Laboratory sources
Laboratory environment and analysis T X X X T

Other sources
Water used to make the blank1 X X X T X

1Although certified as appropriate for preparing blanks, there is a possibility that blank water can be contaminated during shipment or storage before use.
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Source-solution blanks are intended to demonstrate that 
the water used to make the other blanks is not a source of 
contamination (table 1). Source-solution blanks are prepared 
in a clean environment at the field site by pouring blank water 
directly into a sample bottle or vial. The remaining blank 
water is then used to prepare a field blank. The blank water 
used to prepare a source-solution blank must be from the same 
source and lot as that used to prepare the field blank. The 
source-solution blank and the associated field blank are inter-
preted as a set. Although not specifically targeted, the sample-
collection personnel, sample bottles or vials, sample transport 
in the field, sample shipment to the laboratory, and laboratory 
analysis also are potential sources of contamination in source-
solution blanks (table 1).

Laboratory blanks are samples that are intended to 
demonstrate that processing and analysis by the laboratory is 
not a source of contamination (table 1). Laboratory blanks are 
prepared by analysts at the laboratory and are primarily used 
by analysts to assess contamination in the analytical method. 
Laboratories use various terms for these blanks. The USGS 
NWQL refers to them as “reagent blanks” because they are 
made from clean, reagent (blank) water and are subjected to all 
steps of the analytical method. The NWQL also uses the term 
“set blanks” because they are associated with a set of envi-
ronmental samples that are all prepared and analyzed at the 
same time. Other laboratories differentiate between “method 
blanks,” which go through preparatory steps and “reagent 
blanks,” which do not (Intergovernmental Data Quality Task 
Force, 2005d). Laboratories use a variety of approaches to 
compensate or qualify reported analytical results when con-
tamination is identified in laboratory blanks. Typically, report-
ing levels for all associated samples are increased to some 
multiple of the concentration in the blank, or results for these 
samples are flagged with a data-qualifier code. Data qualifiers 
used by USGS are available at http://help.waterdata.usgs.gov/
codes-and-parameters/codes#WQ; those used by the EPA are 
listed in U.S. Environmental Protection Agency (2010), for 
inorganic analytes, and U.S. Environmental Protection Agency 
(2008), for organic compounds.

Reference Samples

Reference samples contain known concentrations of 
selected analytes. Similar to blanks, they are used to estimate 
bias, but in this case bias can be positive or negative (if the mea-
sured value is less than the known concentration). Reference 
samples are used by laboratories to evaluate the performance of 
analytical methods during development, to test performance of 
a method at a specific concentration of interest, or to monitor 
performance routinely. External performance programs also use 
reference samples to test the capability of a laboratory.

Reference samples can be prepared in a variety of ways. 
Laboratory control samples are prepared in individual labora-
tories by spiking reagent water with analytes of interest at the 
midpoint of the calibration curve or at a specific concentration 
of interest for evaluating performance of a method. Certified 

reference samples are prepared by an external provider and 
have values measured multiple times (or by different labo-
ratories) so that each certified value is accompanied by an 
uncertainty at a stated level of confidence. These can be used 
as proficiency-testing (PT) or performance-evaluation (PE) 
samples to test the laboratory’s ability to qualitatively iden-
tify and accurately quantitate analytes in a given matrix. If 
the concentrations of the analytes in the PT or PE sample are 
unknown to the analyst, the sample is referred to as a “blind 
sample.” If, additionally, the identity of the sample as a PT or 
PE sample is unknown to the analyst, the sample is referred to 
as a “double-blind sample” (Intergovernmental Data Quality 
Task Force, 2005d). Standard reference samples (SRS) are 
prepared by the USGS Branch of Quality Systems (BQS) 
using mixtures of natural waters. These samples are analyzed 
by many laboratories as part of their performance evalua-
tion. They are more completely described under “Standard 
Reference Samples (SRS) Project” in the Branch of Quality 
Systems section of this report.

The NWQL participates in a number of proficiency test 
programs, including those of the National Environmental 
Laboratory Accreditation Conference, the New York State 
Department of Health, and the BQS SRS inter-laboratory 
comparison for inorganic analytes (Maloney, 2005). Addi-
tional reference samples can be submitted by field projects, 
but this is not a common practice. Consequently, reference 
samples only are discussed in this report relative to additional 
QC data available from the laboratory or external method-
performance programs.

Spikes

Spikes are water samples fortified (spiked) with known 
concentrations of analytes. Similar to reference samples, 
spikes are used to estimate positive or negative bias, and are 
used primarily to determine whether this bias is due to method 
performance, effects of the sample matrix, or analyte degrada-
tion during sample shipment and storage. Bias for spikes is 
termed “recovery”: the concentration measured in the sample 
expressed as a percentage of the known concentration that was 
added to the sample. Calculation and interpretation of spike 
recovery is presented in the “Analysis and Interpretation of 
Data for Spikes” section of this report.

Spikes are defined by the location where the spike solu-
tion is added to the sample, either in the field or in the labo-
ratory, and by the type of water that is spiked, either envi-
ronmental (matrix) water or blank (reagent) water (table 2). 
Field matrix spikes and laboratory matrix spikes are used to 
estimate recovery bias in an environmental water sample. 
Low recovery (negative bias) in matrix spikes could be caused 
by a variety of factors including matrix effects, degradation, 
and analytical performance. Matrix effects are the chemical, 
physical, and biological characteristics of environmental water 
that might interfere with or compromise chemical analysis of 
the sample. Field reagent spikes and laboratory reagent spikes 
are used to estimate recovery bias of the analytical method in 

http://help.waterdata.usgs.gov/codes-and-parameters/codes#WQ
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a blank-water sample. High or low recovery for reagent spikes 
might indicate a problem with performance of the method. 
Lower recovery in the field spike than in the laboratory spike 
might indicate that the analyte has degraded, through loss 
or chemical conversion, during the time between collection 
in the field and analysis in the laboratory. Lower or higher 
recovery in matrix spikes than in reagent spikes might indicate 
matrix effects from the environmental water sample. Matrix 
effects, method performance problems, or analyte degradation 
identified in spikes would similarly affect analytical results of 
environmental samples.

Replicates

Replicates are two or more water samples that are col-
lected, prepared, and analyzed such that they are considered to 
be essentially identical in composition and analysis. Replicate 
is the general term; duplicates are two replicates, triplicates are 
three replicates, and so forth. Replicate environmental samples 
are used to estimate variability (random measurement error) of 
analytical results. In addition, replicate blanks, replicate refer-
ence samples, and replicate spikes can provide an estimate of 
the variability associated with various types of measurement 
bias. The process of collecting replicates might require some 
modification of field procedures (for example, sample volume 
usually must be increased); however, most aspects (such as 
sampling and processing equipment, and personnel) should be 
kept the same as for normal sampling. Unnecessary changes to 
field procedures can introduce sources of replicate variability 
that are not likely to affect routine environmental samples.

Replicates can be collected in several ways. Split repli-
cates are made from a single sample that is collected and then 
subdivided into other samples. Concurrent replicates are made 
from multiple samples that are collected at about the same 
time. Sequential replicates are made from multiple samples 
that are collected one after another. The different types of 
replicates assess different sources of variability (table 3). 
Sequential replicates can include environmental variability 
within the sampled medium; therefore, they are not appropri-
ate under certain conditions (for example, when water chem-
istry is changing rapidly) or if collection of the first replicate 
might affect the content of the second replicate (for example, 
fish shocking or bed-sediment sampling). Other agencies 
refer to split replicates as “subsample” replicates and also 

use the term “co-located” replicates, but they do not distin-
guish whether these are collected concurrently or sequentially 
(Intergovernmental Data Quality Task Force, 2005d).

Sometimes samples that might be called replicates are 
used to investigate some difference in the data-generation 
process. Samples used for this purpose are defined herein as 
“irreplicates” to emphasize that these samples are not used to 
assess variability. Typically, the goal of collecting irreplicates 
is to assess the comparability of data that have been generated 
through different methods. Depending on the results of the com-
parability assessment, data generated differently may be pooled 
for analysis. Some examples of the use of irreplicates are to:

•	 Compare analyses by different laboratories or analyti-
cal methods,

•	 Compare samples collected using different sampling 
equipment or techniques,

•	 Compare preserved with unpreserved samples,

•	 Compare filtered with unfiltered samples,

•	 Compare suspended-sediment samples from a cone 
splitter with conventionally collected sediment 
samples,

•	 Compare an auto sampler with traditional sampling 
methods, or

•	 Compare the effects of sample holding times.
Other agencies use the term “split samples,” defined as 

subsamples that are sent to different laboratories or analyzed 
using different methods (Intergovernmental Data Quality Task 
Force, 2005d). Such split samples are a type of irreplicates.

Table 2.  Common types of spiked samples and the potential sources of bias they assess.

[T, targeted source of bias]

Potential source of bias Field matrix spike Laboratory matrix spike Field reagent spike Laboratory reagent spike
Field sources

Field environment
Water matrix interference T T

Shipping to laboratory
Analyte degradation T T

Laboratory sources
Laboratory environment and analysis T T T T

Table 3.  Common types of replicate samples and the potential 
sources of variability they assess.

[T, targeted source of variability; X, additional (non-targeted, but unavoidable) 
source of variability]

Potential sources of variability
Replicate type

Spilt
Con- 

current
Sequen- 

tial
Field sources

Sample collection T T
Sample splitting and filtering T T T
Temporal change in sampled medium X

Laboratory sources
Laboratory environment and analysis T T T
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Design of a Field Quality-Control 
Sampling Program

Designing a field QC sampling program is the process of 
deciding what types of QC samples are needed, how many of 
each type of QC sample are needed, and when and where the 
QC samples should be collected in order to adequately and 
efficiently assess the quality of the environmental data. The 
QC design needed for a project is dependent on the objectives 
of the project and consideration of the potentially important 
sources of bias and variability in the laboratory results. Bias 
and variability are estimated using results of QC samples, 
and inferences about the quality of the environmental data are 
made using these estimates.

Designed QC samples are selected by the investigator to 
meet the technical needs of the project. How adequately data 
quality must be determined depends on the questions being 
addressed by the project. In addition, QC sample design may 
be influenced by nontechnical considerations such as:

•	 Is this a routine project or something more complex?

•	 Is there great interest in the project?

•	 Could the conclusions be controversial?

•	 Are there human health and welfare issues?

•	 What is at stake? What is the cost of being wrong?
For some water-sampling projects, QC is prescribed. 

Some aspects of the design, usually the numbers and types 
of QC samples, are specified by a program administrator, 
such as the USGS NAWQA national leadership team, or a 
regulatory authority, such as the EPA. Even if the types and 
numbers of QC samples are prescribed, when and where 
to collect them might need to be designed, and additional 
designed QC samples might be necessary to adequately 
determine the quality of the environmental data or to locate 
data-quality problems.

A complete suite of QC samples generally cannot be 
collected in association with each environmental sample; 
therefore, some set of QC samples will need to be considered 
applicable to a larger set of environmental samples. Determin-
ing which QC samples best relate to which environmental 
samples relies on the concept of “inference space.”

Inference Space

Inference space is a concept used in the design of experi-
ments (for example, see Anderson and McLean, 1974). In 
many ways, the design of a QC program is the design of an 
experiment to determine the quality of the environmental data. 
The inference space is the location in time and space within 
which the results of the experiment are valid. In terms of QC, 
inference space is used to determine which QC samples can 
be related to which environmental samples. These related QC 

samples represent the same conditions, in terms of potential 
bias and variability, under which the environmental samples 
were collected.

For example, a field blank collected at the same time 
and location as an environmental sample is usually consid-
ered to represent the sources of contamination that potentially 
affect the environmental sample. This blank might also repre-
sent potential sources of contamination for samples collected 
at about the same time in a similar setting using similar equip-
ment and sampling procedures. Inference space defines the 
extent of this representation.

For some regulatory projects, such as EPA Superfund or 
Department of Defense installation investigations, the infer-
ence space of QC samples is explicitly specified. For example, 
Superfund investigations must include a field blank with each 
“set” of environmental samples (U.S. Environmental Protection 
Agency, 1989). Typically, a set is all samples shipped in the 
same cooler, so the inference space for the blank in the cooler 
is the environmental samples in the cooler. If the field blank is 
clean, then concentrations reported for all the environmental 
samples are assumed to be unaffected by contamination. If 
the concentration of a particular analyte in the field blank is 
greater than detection, then concentrations of that analyte in 
all the environmental samples are subject to qualification or an 
elevated reporting level (U.S. Environmental Protection Agency, 
1989, p. 5-16 and 5-17).

If inference space is not externally specified, as is the 
case for most USGS studies, the project chief or program man-
ager must determine the QC samples that are needed to repre-
sent the range of environmental conditions that are expected to 
be encountered. One approach is to identify important factors 
or variables that could affect bias or variability in samples col-
lected over this range of conditions. The QC sampling is then 
stratified so that a set of samples is collected within each com-
bination of factors. Each of the sets of QC data is then used 
to represent the potential bias and variability in an associated 
group of environmental samples. If some factors turn out to be 
unimportant, QC samples can be pooled and associated with a 
larger group of environmental samples.

Classification of Quality-control Samples  
by Use: Basic or Topical

The various sub-types of QC samples may be classified 
as “basic” or “topical” QC samples dependent on the intended 
use of the QC information. Basic QC samples measure all of 
the potential sources of bias or variability that might affect 
environmental samples and are used to estimate the overall 
quality of the environmental data. Topical QC samples mea-
sure a limited number of sources of bias or variability; thus, 
they cannot be used to estimate the overall quality of envi-
ronmental data. Topical QC samples are intended to measure 
some specific, targeted aspect of bias or variability. These 
samples are typically used to (1) investigate the causes of 
data-quality problems, (2) assess the comparability of methods 
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or equipment, (3) determine whether sampling equipment and 
protocols are adequate to initiate environmental sampling, or 
(4) verify that blank water is suitable for preparing blanks or 
cleaning equipment. When used to investigate the cause of 
data-quality problems, a series of topical QC samples often are 
collected at the same time as a basic QC sample and are inter-
preted as a set in order to isolate the cause of the problem.

Basic QC samples include field blanks, field matrix 
spikes, and field replicates; most other types of QC samples, 
including reference samples, are topical. Water-sampling proj-
ects should always collect basic QC samples to document the 
quality of the environmental data. Topical QC samples might 
be needed, but often are not. Only basic QC samples will be 
discussed in the design, analysis, and interpretation sections of 
this report.

Design Considerations for Blanks

How, when, where, and why field blanks are collected 
control the potential sources of contamination that might be 
included. For example, a field blank could be collected either 
before or after the environmental sample. Does the sequence 
of preparation influence the sources of potential contamination 
that could affect the field blank? Consider the following two 
sequences.
Sequence 1: the field blank is prepared before an environmental 
sample is collected:
1.	 Arrive at field site,

2.	 collect field blank,

3.	 collect environmental sample,

4.	 clean equipment at field site, and

5.	 depart from field site.

Sequence 2: the field blank is prepared after an environmental 
sample is collected:
1.	 Arrive at field site,

2.	 collect environmental sample,

3.	 clean equipment at field site,

4.	 collect field blank, and

5.	 depart from field site.
The field blank collected before the environmental sample 
includes one additional source of potential contamination: 
storage and transport of the sampling equipment and supplies 
prior to arrival at the field site. Storage time could be short 
(for example, if a previous sample was collected the same day) 
or could be much longer (for example, if the blank was col-
lected before the first sample of a monthly field trip). Unless 
the specific sequence of activities for preparing the blank is 
described, data users will not know which sources of potential 
contamination are relevant.

Design Considerations for Spikes

In general, spikes need to be included in QC sample 
designs only if environmental samples will be analyzed for 
organic compounds. Analyses of inorganic constituents usu-
ally are not much affected by matrix interference, nor do these 
constituents tend to degrade if properly preserved. Many 
methods for organic constituents do not include preserva-
tives, so the use of field matrix spikes is important to evaluate 
analyte stability and degradation during sample shipment and 
storage. QC designs should include samples spiked at the field 
site (field matrix spikes) to get the most information about 
potential bias from analyte degradation as well as matrix inter-
ference on the analytical method.

Spike recoveries can have large errors if the background 
concentration in the environmental water is similar to or 
greater than the expected concentration added to the spiked 
sample. These errors are caused by variability associated 
with two analytical results: one for an environmental sample 
(to determine background) and one for the spiked sample (to 
determine recovery). Computed recovery is more meaning-
ful for matrix spikes in which the spiked addition increases 
analyte concentration by at least five times over background. 
A good QC design should avoid spiked samples when environ-
mental concentrations are expected to be high, relative to the 
spiked addition. If this is not possible, the amount of spiked 
material should be increased.

Field matrix spikes are the only spikes required in a basic 
QC design. If recovery in these spikes is outside acceptable 
limits, laboratory matrix and reagent spikes should be added 
in order to determine whether the cause is analyte degradation, 
matrix interference, or analytical performance. If recovery in 
the field matrix spike is lower than in the laboratory matrix 
spike, the likely cause is analyte degradation during sample 
shipment and storage. If recoveries in both matrix spikes 
are different from recovery in the reagent spike, the likely 
cause is matrix interference. If recoveries in all three spikes 
are similar and outside acceptable limits, the likely cause is 
analytical performance. Bias due to analyte degradation or 
analytical performance can affect all environmental samples. 
Bias due to matrix effects might be limited to environmental 
samples from that particular matrix, which could be con-
strained by sampling location or time period. If laboratory 
matrix spikes are required, a separate sample must be submit-
ted with a request for spiking in the laboratory. Laboratory 
reagent samples are routinely prepared, and results can be 
requested from the laboratory.

For some VOCs, typical field spiking procedures are 
inadequate, and the only option is to rely on laboratory matrix 
spikes. In this case, the laboratory matrix spikes should be 
held for several days between preparation and analysis in 
order to simulate sample shipment from the field site and 
account for potential degradation.
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Design Considerations for Replicates

The type of field replicates (split, concurrent, or sequen-
tial) in a QC design should be selected to incorporate the most 
likely sources of sampling and analytical variability and the 
least amount of environmental variability. Split replicates 
are prepared so as to avoid all environmental variability, but 
this process also excludes potential variability due to sample 
collection. Sequential replicates always have the possibil-
ity of including some environmental variability, though in 
some cases this can be assumed negligible. Exactly concur-
rent replicates can be impossible to collect. The choice of 
which type of replicate to collect generally must be based on a 
variety of logistical considerations. For example, groundwater 
replicates collected using a submersible pump are usually 
collected sequentially; however, this typically adds negligible 
environmental variation, particularly if replicate samples for 
each group of analytes are collected immediately one after the 
other. For stream water, it might not be reasonable to collect 
concurrent replicates under high-flow conditions, so split repli-
cates could be the best option. Also, samples for VOCs cannot 
be split because the samples must not be exposed to ambient 
air. Therefore, replicates for these analytes must be collected 
either concurrently (if two sets of sampling equipment are 
available) or sequentially. It is best to use only one type of 
field replicate throughout a project so that any difference in 
replicate collection is not a factor in estimated variability.

Hydrologic and Chemical Considerations

Sources of bias and variability can be influenced by 
hydrologic and chemical conditions at sampling sites during 
the time of sample collection. The QC samples need to be dis-
tributed over a range of conditions in order to ensure adequate 
evaluation of the potential effects of bias and variability. For 
example, variability for samples collected at stream sites 
might be greater during high runoff or storm events than dur-
ing base flow; therefore, separate sets of replicates are needed 
to evaluate these different levels of variability. In other words, 
the inference space for these replicates will be limited in part 
by the streamflow condition during sample collection. Simi-
larly, sources of bias can vary by location and season, depend-
ing on where and when different levels of contaminants might 
occur. For some analytes, samples collected in agricultural 
areas during times of pesticide or fertilizer application could 
be subjected to high positive bias. The blanks used to evalu-
ate this bias need to be collected at locations and times that 
adequately represent this application condition. The inference 
space for blanks that represent such special conditions prob-
ably will not include locations or time periods where these 
conditions do not occur.

Some chemical constituents and environmental media are 
prone to greater bias or variability. Constituents that com-
monly occur in the field or laboratory environment, including 
ammonia, trace metals, VOCs and, plasticizers, can cause high 
contamination bias. Contamination also can be a problem for 

many constituents in samples of low-ionic strength water, such 
as precipitation. For studies that include these constituents or 
media, QC sample design should emphasize field blanks, in 
order to ensure that contamination can be adequately evalu-
ated. Some constituents, primarily organic compounds, are 
subject to negative bias due to low analytic recovery. Low 
recovery of these constituents can be exacerbated in samples 
that have high concentrations of dissolved organic carbon, 
such as water from swamps and wetlands or sewage-treatment 
effluent. For studies that include these constituents or media, 
QC designs should emphasize field matrix spikes. Analyti-
cal results for suspended sediment and sediment associated 
constituents, such as phosphates and hydrophobic organic 
compounds, can be affected by high variability. Chemical con-
stituents in samples of bottom sediment and biological tissues 
also are subject to high variability. For studies that include 
these constituents or media, QC designs need an emphasis 
on replicates.

The expected concentrations of analytes in environmental 
samples also should be considered in the design of the field 
QC program. High concentrations at a sampling site can be a 
source of carry-over contamination if equipment cleaning is 
not adequate or not done properly; therefore, blanks should be 
targeted before sampling the subsequent site. High concentra-
tions can also affect computation of recovery if the spiked 
amount is small by comparison. For this reason, spikes should 
be targeted at times and locations where the background con-
centration is low relative to the spiked addition. Conversely, 
replicates should be targeted at times and locations where con-
centrations are expected to be high (during storm runoff, for 
example), or at least greater than the analytical reporting level. 
Computation of variability is not possible if the concentration 
in one or more replicates is reported as a censored value (less 
than the reporting level). Replicates in the low range of con-
centrations are common in most studies; high-range replicates 
are less common. Targeting high concentrations is important 
for getting a balanced set of replicate data.

Considerations Based on Study Objectives  
and Scale

The objectives of a study must be considered in determin-
ing how the environmental data will be analyzed, and thus 
what environmental samples must be collected. Similarly these 
objectives need to be considered in the QC sampling design. 
Water-quality projects can be categorized according to their 
objectives; some of these categories are:

•	 Reconnaissance projects: short-term studies to char-
acterize current conditions at a particular location or 
within a specified area,

•	 Compliance-monitoring projects: studies to identify 
possible exceedances of a standard or criterion,

•	 Trend-analysis projects: long-term studies of possible 
changes in water quality over time.
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Each type of project has its own needs for QC data. Recon-
naissance projects are conducted over a short timeframe, so 
QC sampling must be concentrated early in the study, or even 
before environmental sampling begins, in order to ensure that 
there are no problems with sampling equipment, cleaning 
procedures, or sample processing. Compliance monitoring is 
generally longer term, so QC samples should be distributed 
throughout the project to ensure that any possible changes in 
data quality can be considered in a presentation of monitor-
ing results. If the concentrations of standards or criteria are 
high relative to potential contamination, blanks might be less 
important than spikes and replicates that target the concentra-
tion of the water-quality standard. Trend analysis is particu-
larly sensitive to changes in bias over time, so blanks and 
spikes are important and should be distributed over the entire 
time of environmental sampling. Reference samples are an 
option for evaluating method performance over time if a spik-
ing material is not available (as is the case for most inorganic 
constituents); however, reference samples are routinely ana-
lyzed by most laboratories, so these do not necessarily need 
to be submitted from the field. Replicates are less important 
because the large number of environmental samples typically 
collected for these studies can overcome the effects of vari-
ability in statistical analysis for trends.

The spatial and temporal scale of a project can affect 
the inference space over which a set of QC samples can 
be assumed to apply. Spatial factors that might need to be 
considered in QC sampling design include land use, geology, 
altitude, soils, slope, crop types, point sources, stream size, 
and climate. The QC samples should be distributed among 
areas with differences in these spatial factors. This distribution 
could be in proportion to:

•	 The importance of the area to study objectives,

•	 The number of environmental samples collected from 
the area,

•	 The variability in environmental concentrations 
expected for the area, and

•	 The potential effects of bias or variability on data from 
the area.

Temporal factors that might need to be considered include 
seasonal, diurnal, annual, and decadal cycles; and the tim-
ing of floods, droughts, and groundwater pumping. The QC 
samples could be distributed during various time periods in 
several ways:

•	 Equally spaced throughout all time periods,

•	 In proportion to the number of environmental samples 
collected during each time period,

•	 Higher proportions during the initial phase of the study,

•	 In proportion to the importance of each time period to 
study objectives, or

•	 In proportion to the variability expected in environ-
mental concentrations during each time period.

Selection of one or more of these designs for distribu-
tion of QC samples can be based on study objectives, as 
discussed above.

Design of a QC sampling program should also consider 
anticipated study results. If low concentrations of target 
analytes are expected to occur throughout the study area, 
then the QC design should emphasize field blanks in order to 
determine whether contamination of samples has the potential 
to affect the reported concentrations in environmental samples 
or the interpretation of study results. If concentrations of target 
analytes are expected to be close to a regulatory standard 
or some other numerical threshold, the QC design should 
emphasize replicates at concentrations near the standard in 
order to determine whether variability of results might affect 
the determination of compliance with, or exceedance of, the 
standard. This design also should include samples spiked at 
concentrations near the standard in order to demonstrate that 
these concentrations can be reliably measured in environmen-
tal samples. If concentrations of target analytes are expected to 
be different in samples collected under various environmental 
conditions, the QC design should emphasize samples that 
can be used to determine whether reported concentrations in 
environmental samples from all conditions have similar data 
quality. For example, if concentrations in groundwater under 
oxidizing conditions are expected to be greater than concentra-
tions under reducing conditions, then field spikes are needed 
to determine whether there is a matrix effect associated with 
either water type.

Overall Approach

A QA plan for water-quality studies should focus on 
basic QC samples: field blanks, field matrix spikes, and field 
replicates. In general, the only necessary topical QC sample is 
an equipment blank collected before environmental sampling 
begins. This sample is used to ensure that sampling equip-
ment and procedures are not sources of contamination for any 
target analytes.

The basic QC sampling design should be stratified over 
the various inference spaces that have been identified within 
the study area and time frame. Within each identified infer-
ence space, QC sampling should be randomized, so that each 
time and site for collection of an environmental sample has 
an equal chance of being selected for QC sampling. However, 
selection of specific types of QC samples also should con-
sider the expected environmental conditions. (For example, 
blanks should be collected at sites or times when sources of 
contamination are expected to be present. Replicates should 
be collected only at times and sites where concentrations are 
expected to exceed analytical method detection limits. Spikes 
should be collected only at times and sites where concentra-
tions are expected to be low relative to the spiked addition.) 
Other considerations for the design of QC samples include:
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•	 Focus QC sampling early to identify any problems that 
must be corrected,

•	 Focus QC sampling after a change in sampling equip-
ment, sampling procedures, or laboratory methods,

•	 Focus QC sampling on any expected issues concerning 
potential bias or variability,

•	 Focus some QC sampling on unusual hydrologic condi-
tions, and

•	 Reallocate some QC samples to focus on any issues of 
bias or variability that become apparent as sampling 
proceeds.

Evaluate the QC data in relation to environmental data 
immediately following release of results from the laboratory. 
This evaluation is particularly important during the initial 
stage of the project in order to identify, and perhaps fix, any 
problems before the bulk of the environmental samples have 
been collected. If possible, use the same sampling personnel, 
equipment, sample-processing procedures, and laboratory 
methods throughout the project in order to avoid differ-
ences in the potential sources of bias or variability that might 
complicate data interpretation. When these differences are 
unavoidable, such as for long-term projects or large programs, 
the QC design should include topical QC samples (irrepli-
cates) that can be used to verify the comparability of field and 
laboratory methods.

As the project progresses, continue to evaluate the basic 
QC data in order to determine whether any target analytes are 
particularly subject to high bias or variability at certain sites 
or under certain conditions. If so, consider rearranging the QC 
design to focus less on the good-quality samples and provide 
more data to evaluate these problematic conditions. Also, 
evaluate the environmental data as they become available in 
order to identify what significant findings are emerging from 
the study. Ensure that the QC results are adequate to support 
these findings so they can be reported with confidence in the 
data base and interpretive reports.

Other Sources of Quality-Control Data

In addition to data from field QC samples, information 
available from the analyzing laboratory can aid in evaluation 
of the quality of environmental data. Contract laboratories 
often provide QC information, such as results from set blanks 
and laboratory matrix spikes, in a report on results from analy-
sis of environmental samples. For projects that submit samples 
to the NWQL, there are several sources of QC information 
available on the USGS websites. These sources include the 
NWQL itself and the BQS.

National Water Quality Laboratory

Routine QC data produced by the NWQL include results 
for several types of QC samples and for QC analytes (sur-
rogates and internal standards) (Maloney, 2005). Instrument 
QC samples are used to calibrate the analytical instrument 
initially, to monitor contamination from the analytical instru-
ment, and to verify calibration linearity and response during 
the analytical run. Typical instrument QC samples included 
in an analytical run or batch of samples include calibration 
standards, instrument blanks and carryover blanks, and con-
tinuing calibration verification standards. The analyst uses the 
instrument QC samples to ensure that the analytical instrument 
is producing acceptable qualitative and quantitative data. If 
data are outside acceptance criteria, the analyst can either take 
corrective action and then reanalyze the samples if possible, or 
report results with appropriate qualifiers. Results from instru-
ment QC samples are generally not useful for data users in 
interpreting field data, so they are not reported to the data user 
with sample results.

Preparation or set QC samples are typically assigned to 
a set of field samples during preparation and other steps prior 
to instrument analysis. Set QC samples are reagent blanks and 
reagent spikes. These samples are prepared using reagent-
grade blank water, and go through the same preparation, 
extraction, and other steps as field samples before analysis 
on the instrument. In this regard, they are similar to field QC 
samples, and thus are the most useful internal-laboratory QC 
data for comparison with field blanks and spikes.

Routine QC data are available from the NWQL in 
a variety of ways, depending on the need and stage of a 
project. These QC data can be retrieved from the NWQL 
internal website; however, access is restricted to connec-
tion using the USGS network. Set QC data can be reviewed 
for a particular sample using the Sample Status application 
(http://wwwnwql.cr.usgs.gov/USGS/sampstatus/). This appli-
cation is useful for reviewing set-blank results in comparison 
to an equipment blank or single field blank. Laboratory QC 
data for a larger group of samples can be reviewed by the QC 
sample results application (http://nwqlqc.cr.usgs.gov/). This 
application provides summary statistics, graphs of results, 
and downloadable files for individual analytes, all of which 
are useful for comparing field matrix spikes or field blanks to 
laboratory reagent spikes or blanks analyzed during a specific 
time. Unfortunately, this application only allows retrieval of 
QC data by analyte and is not very efficient for multi-analyte 
methods. Routine laboratory QC data for a group of analytes 
in a method can only be obtained by special request to the 
NWQL for a retrieval of the QC data from the laboratory 
information system.

Surrogates and internal standards are two types of QC 
analytes commonly used in all gas and liquid chromatography 
methods (most methods for organic constituents). These QC 
analytes are similar in that they are added to all samples, but 

http://wwwnwql.cr.usgs.gov/USGS/sampstatus/
http://nwqlqc.cr.usgs.gov/
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are used for slightly different purposes. Surrogates are added 
to samples prior to sample preparation and are used to provide 
information about recovery and matrix effects in the method. 
Internal standards are added to samples prior to instrument 
analysis and are used for calculating quantitative results. The 
number of QC analytes varies by method but is usually a small 
percent of the total number of analytes (3 to 4 of each for a 
method with 60 analytes).

Surrogates are compounds similar in physical and chemi-
cal properties to the analytes of interest but normally are not 
found in environmental samples. They are expected to behave 
similarly in a method in terms of instrument response and 
recovery. Typical surrogates are compounds that have been 
isotopically labeled or have hydrogen replaced with fluorine 
or bromine and have chemical structures similar to one of the 
analytes in the method. Surrogates are added to all environ-
mental and QC samples at the start of sample preparation. 
Because surrogates are added to every sample, they provide 
sample-specific QC information by monitoring matrix effects 
and gross sample-processing errors. If all surrogates from a 
sample are outside acceptance limits, the analyst will take 
corrective action and re-analyze the sample. If re-analysis is 
not possible, the analyst will qualify the original results in 
the database. Surrogates are not used to calculate or correct 
analyte concentrations. Surrogate results are reported to the 
data user because they are useful for interpretation of possible 
matrix effects and understanding of qualification codes.

Internal standards are chemicals that provide good 
response on the analytical instrument but are not analytes 
in the method nor expected to be found in environmental 
samples. Internal standards are added to samples just prior to 
instrumental analysis for use in quantitative analysis calcula-
tions. This calculation method uses the response ratio of the 
analyte to the internal standard for calibration, and therefore 
compensates for changes in response between sample and cali-
bration standard due to differences in the amount of sample 
injected into the instrument. The response of the internal 
standards is monitored throughout the analysis of a group of 
samples to check for changes in sensitivity or matrix effects. 
The internal standard results are generally not useful for inter-
pretation of environmental sample results, so are not reported 
to the data user.

Branch of Quality Systems

The role of the BQS is to assure the quality of laboratory 
and field measurements and to supply reference materials to 
USGS water-quality programs and projects. Data from blind 
sample QA projects or programs operated by BQS are used 
to estimate bias and variability within the field, analytical, 
and measurement processes. Statistical summaries, charts, 
and data reports summarizing the QA data are produced and 
made available on the BQS website (http://bqs.usgs.gov/). 
Information provided by BQS, especially the information on 

laboratory performance over time for the wide range of ana-
lytical methods covered, can be incorporated into the overall 
evaluation of data quality for a project.

Standard Reference Samples (SRS) Project: The 
SRS Project formulates reference samples for trace elements, 
major ions, mercury, and nutrients using various mixtures of 
natural-matrix water. These samples are submitted semian-
nually for analysis to about 100 laboratories throughout the 
United States. The true concentration of each constituent is not 
known, but a most probable value (MPV) is determined as the 
median of results from all laboratories. These results also are 
used to calculate a measure of variability, F-pseudosigma, for 
each constituent. Individual results are normalized by subtract-
ing the median and dividing by F-pseudosigma; therefore, 
analytical variability can be compared without bias among 
samples with a variety of constituent concentrations. Data 
for each laboratory, including the NWQL, are available from 
the BQS website, and project staff can evaluate laboratory 
performance during the time period their samples were being 
analyzed. Information on the variability of individual analyti-
cal methods, based on results from all laboratories, is also 
available for each constituent.

Inorganic Blind Sample Project (IBSP): The IBSP 
prepares reference samples for the majority of inorganic con-
stituents analyzed at the NWQL. These samples are submitted 
as if they were environmental samples collected in the field, 
so their reference status is blind to the laboratory analysts. 
The blind samples are designed to capture the same sources 
of analytical variability that affect environmental samples. 
Data from these samples are used to evaluate method perfor-
mance over time and estimate laboratory bias and variability 
for inorganic constituents. For example, figure 2 shows plots 
obtained from the BQS website for cadmium during water 
year 2013 (October 2012–September 2013). Results in fig-
ure 2A are from the method used for filtered samples; results 
in figure 2B are from the method used for unfiltered samples. 
The data points indicate deviation of individual results from 
the “known” value, determined as the median for each batch 
of blind samples. These data are normalized using the known 
concentration and F-pseudosigma for that batch; therefore, 
results from multiple samples with various known concentra-
tions can be displayed on the same scale. The upper chart 
shows a positive (though generally acceptable) bias through 
most of the year, becoming almost unbiased (close to zero) 
in September. Results for environmental samples analyzed 
during this time period probably will have a slightly high 
bias. Also, a decreasing trend for cadmium concentrations in 
environmental samples could represent an artifact of analytical 
bias rather than a true environmental change. The lower chart 
shows a slight negative, but acceptable, bias throughout the 
year. Together, the charts indicate that environmental-sample 
results for filtered samples could be biased higher than results 
for unfiltered samples, which could produce anomalous data 
with dissolved cadmium exceeding total cadmium.

http://bqs.usgs.gov/
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Organic Blind Sample Project (OBSP): The OBSP 
prepares samples spiked with known concentrations of 
organic constituents and submits them as blind samples for 
analysis at the NWQL. Data for over 600 organic analyses 
at the NWQL are evaluated for bias, variability, false posi-
tives, false negatives, and method performance over time. 
Figure 3 and table 4 show example results for the pesticide 
acetochlor from 2011 to 2014 obtained from the BQS web-
site. Individual data points are in percent recovery, which is 
comparable for samples of various expected concentrations. 
Recovery was biased low until September 2012. Since then, 
recovery has averaged about 94 percent. Results for environ-
mental samples collected during this period could be similarly 
biased. Reported concentrations are likely to be less than 
the actual value in the environment, particularly for samples 
analyzed prior to September 2012. An increasing trend for 

acetochlor concentrations in environmental samples dur-
ing 2012 could represent an artifact of analytical bias rather 
than a true environmental change. Table 4 provides statistics 
about sample recovery, broken down by how the analytical 
result was reported. The number of false negatives (censored 
results in spiked samples) and false positives (quantified 
results in unspiked samples) also are listed. For the example, 
mean recovery of acetochlor was 87 percent with a standard 
deviation of 15 percent. There were no false negatives or false 
positives. This information can be used in evaluation of data 
quality for environmental samples collected during the time 
period shown in figure 3.

Blind Blank Project (BBP): The BBP submits blind 
blank samples to the inorganic and carbon sections at the 
NWQL, collecting contamination data on approximately 
140 analytical determinations. Analytical results from the 
BBP are summarized weekly for the NWQL and are used 
to monitor for laboratory contamination. For example, 
figure 4 shows results obtained from the BQS website for 
chromium analyzed during water years 2012 and 2013 
(October 2011–September 2013) using the inductively-
coupled plasma method. These results include a number of 
false positives (values greater than the detection limit) with 
concentrations up to 0.2 micrograms per liter (μg/L) during 
June–November, 2012. The results of environmental samples 
analyzed during that time may be biased high by a similar 
amount. If field blanks analyzed during this time period had 
similar concentrations, the source of contamination could be 
from the laboratory rather than sample collection, processing, 
and shipping. Blanks analyzed before or after this period are 
unlikely to be affected by laboratory contamination; therefore, 
any positive bias in those blanks would more likely be due 
to a source in the field.
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Figure 2.  Example time-series charts of method performance 
for cadmium analysis at the U.S. Geological Survey National 
Water Quality Laboratory during October 2012–September 2013: 
A, results from the method used for filtered samples; B, results 
from the method used for unfiltered samples (data from 
http://bqs.usgs.gov/ibsp/FY13charts.shtml).

Figure 3.  Example time-series chart of method performance for 
the pesticide acetochlor analyzed at the U.S. Geological Survey 
National Water Quality Laboratory (data from http://bqs.usgs.gov/
OBSP/Current_Charts/Spikelevel_2001_ACETOCHLOR.html).
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Analysis and Interpretation  
of Quality-Control Data

The QC data collected within a specified inference 
space can be used to estimate the bias and variability that 
might affect environmental samples collected within the 
same inference space. In this way, QC data can be considered 
a statistical “sample” which is used to make inferences about 
a population consisting of all possible QC and environmen-
tal data that were obtained in the same area during the same 
time using the same methods of collection, processing, and 
analysis. Thus, statistical methods can be used to analyze 
QC data in order to provide information on the potential bias 
and variability in environmental data. Methods are described 
herein for statistical analysis of blanks, spikes, and replicates. 
Some background is provided in the statistical concepts that 
underlie these methods, but for a more complete discussion, 
the reader is referred to Hahn and Meeker (1991) or Helsel 
and Hirsch (2002). Also, it must be noted that statistical esti-
mation of bias and variability might not be appropriate in all 
situations, and that in this case other, non-statistical methods 
should be used.

Following an introduction to basic statistical concepts, 
guidance is provided for applying statistical and other interpre-
tive methods to the analysis of blank, spike, and replicate data. 
Each subsequent section includes examples of the analysis 
and interpretation of QC data from published USGS reports. 
In each example, the project and QC sampling design are 
described, then the QC data analysis is summarized, and any 
implications of this analysis on the interpretation of environ-
mental data are presented.

Statistical Concepts

It is not possible, physically or financially, to measure all 
occurrences of every characteristic of interest in environmen-
tal studies. For some characteristics, any direct measurement 
is impossible. Thus, statistical methods are necessary to make 
estimates of these characteristics. Such estimates can be less 
than satisfying, and even the subject of disbelief or derision. 

Mark Twain popularized a statement attributed to Benjamin 
Disraeli that “there are three kinds of lies: lies, damned lies, 
and statistics” (Twain, 1907). On the other hand, Twain’s con-
temporary H.G. Wells is reported to have stated that “a certain 
elementary training in statistical methods is becoming as nec-
essary for everyone living in this world today as reading and 
writing” (Wells, 1938). Regardless of which of these outlooks 
is accepted, statistical analysis is an important tool for turning 
hydrologic data into useful information.

A few basic statistical concepts provide adequate back-
ground for understanding the methods used to analyze QC 
data. Statistical analysis is based on individual observations 
or measurements that can be combined into a dataset, referred 
to as a “statistical sample.” The theoretical set of all possible 
observations or measurements is called the “population.” The 
statistical sample is a subset of these possible observations, 
selected and measured in a way such that conclusions about 
the sample can be extended to the entire population. Analysis 
of a statistical sample is predicated on the assumption that the 
observations are valid. For water-quality data, observations 

Figure 4. Example time-series chart showing blind-blank results for 
dissolved chromium in water analyzed at the U.S. Geological Survey 
National Water Quality Laboratory (current blind-blank charts are 
available at https://bqs.usgs.gov/ibsp/Blind%20Blank%20Charts).

Table 4. Example statistics for acetochlor results from organic blind samples analyzed at the U.S. Geological Survey National Water 
Quality Laboratory (data from http://bqs.usgs.gov/OBSP/Current_Charts/Spikelevel_2001_ACETOCHLOR.html, accessed February 2014).
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must represent the environment from which the water sample 
was obtained. Use of standard sampling procedures, such as 
those described in the National Field Manual (U.S. Geological 
Survey, variously dated), and laboratory methods, such as 
those documented by the NWQL or the EPA, can help ensure 
that observed data are representative.

Statistical analyses can be divided into two broad catego-
ries: descriptive and inferential. Descriptive statistics provide 
summaries of the available data, for example:

•	 The mean concentration of nitrate in samples collected 
at a stream-sampling site,

•	 The maximum flood during 10 years (yr) of record, or

•	 The median pesticide concentration in samples collected 
from a well.

These are characteristics of a set of observations. By them-
selves, they do not provide any information about the popula-
tion from which the observations were obtained. Inferential 
analysis is an attempt to estimate characteristics of a popula-
tion that is not completely sampled. Some examples of infer-
ential statistics are:

•	 The time-trend for nitrate concentration in a stream,

•	 The 1-percent annual exceedance probability, or 100-yr 
flood, at a stream site, or

•	 The difference between pesticide detections in two 
aquifers.

Inferential analysis is based on probability and uncertainty. 
Statistical probability is the likelihood or relative frequency of 
the occurrence of an event, expressed as a number from 0 to 1 or 
as a percentage from 0 to 100. Uncertainty is the variability of a 
statistically estimated value, expressed as imprecision or error.

Confidence Intervals

The uncertainty of an inferential statistic often is indi-
cated by reporting a range of values, referred to as a “con-
fidence interval.” Confidence intervals are constructed to 
contain an unknown characteristic of the population, such as 
the mean, median, standard deviation, or a percentile, with a 
specified probability. The width of the confidence interval is 
the uncertainty due to estimation of a population characteristic 
based on sample data. For example, assume the mean con-
centration for a set of observations (the statistical sample) is 
10 milligrams per liter (mg/L). This is a descriptive statistic. 
Based on this mean and an associated measure of variability, 
one might determine that the 90-percent confidence interval 
for the mean concentration in the entire population is between 
8 and 12 mg/L. The population mean cannot be known 
exactly, but there is only a 10-percent chance that it is outside 
the range of plus or minus 2 mg/L from the sample mean. 
The 10-percent chance that the interval estimate is incorrect 
is the statistical probability of error. The range of the interval 
(8–12 mg/L) is the uncertainty in the estimated mean.

For any confidence interval, there are two possibilities:

1.	 The interval does not contain the true value of the 
population characteristic. This is an error. The probabil-
ity of this error is defined as α, and is referred to as the 
“significance level.”

2.	 The interval does contain the true value. This is correct. 
The probability of being correct is 1–α, referred to as the 
“confidence level.”

The interval constructed for a specified significance level (α) 
is called the 100(1–α)-percent confidence interval. The sig-
nificance level represents the risk we are willing to accept that 
the interval estimate is incorrect. For example, if α is selected 
to be 0.1, there is a 1-in-10 chance that the constructed 
90-percent confidence interval will not contain the true popu-
lation characteristic. Ten confidence intervals theoretically 
constructed from different samples (datasets) collected from 
the same population are plotted in figure 5. The true mean is 
included within the range of nine intervals but is outside the 
range of one interval. Unfortunately, the sample collectors 
cannot know the true mean, so they do not know whether their 
particular interval is the 1-in-10 that is incorrect; therefore, all 
must assume that their interval has a 10-percent risk of error.

Uncertainty is inversely related to the significance level; 
if the risk of an error is decreased, then uncertainty (the width 
of the interval estimate) will increase. For the same sample 
data, the 95-percent confidence interval will be larger, and thus 
will have more uncertainty, than the 90-percent confidence 
interval; however, the risk of error will decrease to 1-in-20 
(5 percent).

Confidence Interval for the Mean

Confidence intervals for the population mean are con-
structed based on the mean of a sample of observations from 
the population, the standard deviation (a measure of vari-
ability) of the sample observations, and an acceptable level 
of risk that the interval will not contain the true population 
mean. Mathematically, this interval is computed as a 2-sided 
inequality:

	 x t s
n

x t s
nn− ≤ ≤ +− − − −( / ),( ) ( / ),(n )1 2 1 1 2 1 		 		µ		 		 		 		 	 (1)

where
	 µ	 is the population mean,
	 x 	 is the mean of a random sample of data,
	 s	 is the standard deviation of the sample data,
	 n	 is the sample size (number of observations),
	 α	 is the specified significance level (0 through 

1), and
	 t	 is the percentage point of Student’ t 

distribution for an area of 1–α/2 with n–1 
degrees of freedom.
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In equation 1, standard deviation is estimated from the same 
data used to compute the mean. In some cases, the standard 
deviation of the population is known or can be assumed based 
on data from many previous samples. Using this known 
standard deviation (σ) requires a slightly different calculation 
of the confidence interval, with the percentage point of the 
standard normal curve (Z) in place of the Student’s t statistic:

	 x
n

x
n

− ≤ ≤ +− −Z Z( / ) ( / )1 2 1 2α α
σ σ		 		µ		 		 		 		 	 (2)

The Z value depends only on the specified significance level 
(α), not on the sample size (n).

Several characteristics of confidence intervals for the 
mean can be seen in equations 1 and 2. The interval is sym-
metric around the sample mean ( x ), with one-half the poten-
tial error (α/2) on each side. The values calculated on either 
side of the inequality, which define the range of the confidence 
interval, are referred to as the “confidence limits.” There is 
equal probability that the true mean is less than the lower 
confidence limit (LCL) or greater than the upper confidence 
limit (UCL). Figure 6 illustrates these concepts by showing a 
90-percent confidence interval plotted on a probability density 
function derived for a sample of 30 observations with a mean 
of 5 and a standard deviation of 6.5. The UCL and LCL are 
determined using equation 1 with 29 degrees of freedom 
(t0.95, 29 ≈ 1.7). For a 90-percent confidence interval, the signif-
icance level (α) is 0.10, so 1–α/2 is 0.95.

Confidence Interval for the Median

Confidence intervals can be constructed for many other 
statistics in addition to the mean. Each statistic requires a 
unique calculation. Many of these are described in Hahn and 
Meeker (1991). The median and other percentiles are statistics 
of particular importance in QC analyses. Confidence intervals 
on percentiles are calculated using the binomial probability 
function (B). For a given number of observations (n), ranked 

in ascending order of magnitude, the ranks of the upper (U) 
and lower (L) 100(1–α)-percent confidence limits of a speci-
fied percentile (p) can be determined by the inequality:

	 B (p, n, U–1) – B (p, n, L–1) ≥ 1–α	 (3)

The two binomial functions on the left side of this inequality 
indicate the probabilities that observed values less than rank U 
are no more than the population value of percentile p and that 
observed values less than rank L are less than the population 
value of percentile p. For a 90-percent confidence interval, the 
difference between these probabilities must be at least 0.90 
(1–α). This condition is met if U is selected so that the value 
of the first function is at least 0.95 and L is selected so that the 
value of the second function is no more than 0.05. The resul-
tant confidence interval for the population percentile is from 
the value of observation L to the value of observation U.

As an example, consider the median (p = 0.5) of 99 
observed values. The sample median is simply the 50th ranked 
value; 49 values are less than the median and 49 are greater 
than the median. Constructing a 90-percent confidence interval 
requires finding the smallest rank U where B (0.5, 99, U–1) 
is at least 0.95 (95 percent probability) and the largest rank L 
where B (0.5, 99, L–1) is no more than 0.05 (5 percent prob-
ability). A series of upper and lower confidence limits are 
shown in table 5. As ranks are iterated from 51 to 59, prob-
ability increases from 58 percent to 96.5 percent. At rank 58, 
the probability is slightly less than 95 percent, so there is still 
more than a 5-percent chance that the true population median 
exceeds the value of the 58th ranked observation. In order to 
ensure no more than a 5 percent chance, the upper confidence 
limit for the median must be set at the 59th ranked observa-
tion. Similarly, there is a 5.4 percent chance that the true 
median is less than the 42nd ranked observation. The lower 

True population mean

Figure 5.  Theoretical confidence intervals constructed from 10 
different sample datasets taken from the same population; the red 
line indicates an interval that does not contain the true mean.
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Figure 6.  Probability density function for the distribution of a 
hypothetical mean and the associated 90-percent confidence 
interval (standard deviation = 6.5, number of observations = 
30) (LCL, lower confidence limit; UCL, upper confidence limit; t, 
percentage point of Student’s t distribution; %, percent; and α, 
significance level).
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limit must be set at the 41st ranked observation so that the 
probability is less than 5 percent. The actual confidence level 
for the interval bounded by the 59th and 41st ranked observa-
tions is 96.5 – 3.5 = 93 percent. This 93-percent confidence 
interval is symmetric around the sample median with respect 
to rank, but not necessarily with respect to observed values.

Ranks of the LCL and UCL can be computed directly 
using the inverse binomial function (B–1):

	 rank L = B –1 (p, n, α/2)	 (4)

	 rank U = B –1 (p, n, 1–α/2) + 1	 (5)

For this example, p = 0.5 (the median), n (the number of 
observations) = 99, and α = 0.10 for a 90-percent confidence 
interval. Then rank L = B–1 (0.5, 99, 0.05) = 41, and rank 
U = B–1 (0.5, 99, 0.95) + 1 = 59.

Upper Confidence Limit for a Percentile
In some analyses, only one confidence limit is of inter-

est. For example, it might be important to not underestimate 
a specified percentile, but overestimation of that percentile is 
not of concern. In this case, only the upper confidence limit is 
needed, and all the error can be applied to the probability of 
underestimating the true percentile value. This is referred to 
as a “one-sided confidence limit” (or sometimes as an “upper 
confidence bound”). A one-sided upper confidence limit is 
determined so that:

	 B (p, n, U–1) ≥ 1–α	 (6)

For example, the 75th percentile of 99 observations is between 
the 74th and 75th ranked values. To find the 1-sided upper 
limit with a least 90-percent confidence, ranks are iterated 
until the binomial probability is at least 0.90. Binomial prob-
ability at rank 80 is 89.1 percent, so there is more than a 
10-percent chance that the observation at this rank will under-
estimate the true 75th percentile. However, at rank 81, this 
chance drops to 7 percent, so the one-sided upper confidence 
limit is the value of the observation at this rank.

Confidence Limits for a Proportion

Proportions can be computed for a dataset by dividing 
the observations into groups, such as those less than or greater 
than a specified value. In water-quality analyses, proportions 
often are used to indicate the frequency of analyte detection, 
based on the proportion ( p̂ ) of quantified values (q) within 
the total number of observations (n) in a sample dataset. 
The sample proportion p̂  = q/n is a point estimate of the 
unknown population proportion (ϕ). Confidence limits can be 
determined to provide an interval estimate of the population 
proportion (Hahn and Meeker, 1991, page 104):
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These limits are based on an F-statistic with 100α/2 percent 
uncertainty that ϕ is either less than the LCL or greater than 
the UCL. The F distribution requires two values for degrees of 
freedom (df1 and df2). In equation 7, df1 is 2n – 2q + 2 and df2 
is 2q; in equation 8 df1 is 2q + 2 and df2 is 2n – 2q. One-sided 
lower or upper confidence limits can be calculated by replac-
ing α/2 by α in either equation 7 or equation 8. (Note: in some 
statistics packages, values of the F-statistic are computed 
using α/2 or α instead of 1–α/2 or 1–α as shown above.)

As an example, assume that in a set of 20 water analyses, 
5 results were quantified and the rest were censored (mea-
sured less than the detection limit). The sample proportion is 
5/20 = 0.25, generally expressed as 25 percent. For a 90-percent 
confidence interval on the population proportion, α = 0.1 and 
1–α/2 = 0.95. The degrees of freedom for the F-statistic used 
in calculating the LCL (eq. 7) are: df1 = 2(20) – 2(5) + 2 = 32, 
and df2 = 2(5) = 10. From tables of the F-statistic (such as in Ott 
and Longnecker, 2001, p. 1105), F(0.95, 32, 10) = 2.690. Substi-
tuting this and the values of n (20) and q (5) into equation 7 
yields a lower limit of 0.104 (10.4 percent) for the popula-
tion proportion. The degrees of freedom for the F-statistic 
used in calculating the UCL (eq. 8) are: df1 = 2(5) + 2 = 12, 
and df2 = 2(20) – 2(5) = 30. From tables of the F-statistic, 
F(0.95, 12, 30) = 2.092. Substituting this value into equation 8 
yields an upper limit of 0.456 (45.6 percent). Thus, based on 
the number of measurements and the observed number of 
detections, there is a 90-percent likelihood that the detection 
frequency would be between 10.4 and 45.6 percent in the col-
lection of all possible samples.

Censored Data in Statistical Analyses
Water-quality data are reported as censored values if the 

measured result is less than the reporting level, defined by the 
laboratory for each method and analyte. Censored values can 
be problematic for statistical analyses, particularly if some 

Table 5.  Binomial probability for selected ranks of 99 observations 
that the value observed at the specified rank is less than the 
population median.

Determination of  
upper confidence limit

Determination of  
lower confidence limit

Rank
Binomial probability 

(percent)
Rank

Binomial probability 
(percent)

51 58.0 49 42.0
52 65.6 48 34.4
53 72.7 47 27.3
54 78.9 46 21.1
55 84.3 45 15.7
56 88.6 44 11.4
57 92.0 43 8.0
58 94.6 42 5.4
59 96.5 41 3.5
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assumed value, such as zero or one-half the reporting level, 
is substituted for the censored result (see Helsel, 2005, for 
a detailed discussion). This problem is less severe for non-
parametric methods, which rely on ranked results rather than 
specific data values. For example, confidence limits for medi-
ans and other percentiles are based on ranking data from low 
to high values. If the censoring level is the same for all data on 
any single analyte, the censored values are all given a tied rank 
lower than any quantified value. In this case, substitution of 
any value less than the lowest quantified result is appropriate 
for censored values. Non-parametric methods commonly are 
used for analysis of QC data. Simple substitution for censored 
values should not be used in other types of statistical analysis 
that are frequently applied to environmental-sample data.

Analysis and Interpretation of Data for Blanks

Blanks are used to estimate the positive bias that can be 
caused by extraneous contamination introduced into envi-
ronmental samples during collection, processing, shipment, 
and laboratory analysis. Evaluation of data from field blanks 
depends on the inference space represented by the blanks. 
In general, there are two possibilities: (1) a single blank is 
prepared to represent potential sources of contamination 
that affect a specific, small set of environmental samples, or 
(2) multiple blanks are prepared periodically over time and 
space to represent potential sources of contamination that 
might affect a much larger set of environmental samples.

Evaluating Contamination Based  
on Single Blanks

Certain types of projects, including remedial investiga-
tions at Superfund sites and military installations, can require 
a sampling design consisting of a single blank that represents 
potential contamination in a specific set of environmental 
samples. In this design, there is a correspondence between 
each environmental sample and an associated field blank. If 
analytes are detected in the blank, then concentrations of these 
analytes in the associated environmental samples are evaluated 
to determine whether they should be considered valid. The 
EPA (U.S. Environmental Protection Agency, 1989) provides 
guidelines for comparing sample concentrations with blank 
concentrations. These guidelines state that for most analytes, 
quantified analytical results in environmental samples are 
considered valid only if the concentration exceeds five times 
the amount detected in the blank. Additionally, for common 
laboratory contaminants, such as acetone, methylene chloride 
(dichloromethane), or toluene (methylbenzene), environmental 
sample results are considered valid only if the concentration 
exceeds 10 times the amount detected in the blank. Project 
staff can use these guidelines but ultimately must be able 
to justify qualification of environmental data based on QC 
blank results.

Evaluation of contamination based on single blanks can 
lead to revision of environmental sample data from quanti-
fied values to nondetections (less than a reporting level). 
Revised data should be used in interpretive reports, and 
results can be qualified (using codes) but not changed in the 
USGS National Water Information System (NWIS) database 
(http://waterdata.usgs.gov/nwis; Dupre and others, 2013). 
Single blanks provide no estimates of extraneous contamina-
tion in environmental samples with concentrations that exceed 
the revised quantitation limits.

Blank Example 1: One Set of Blanks Associated  
with a Few Environmental Samples

In 2012, the USGS in cooperation with the Wyoming 
Department of Environmental Quality collected a sample 
from each of two monitoring wells near the town of Pavillion, 
Wyoming (Wright and others, 2012). These wells had been 
installed to test groundwater for potential effects of hydraulic 
fracturing of oil and gas wells in the area. Because results 
could be controversial, a large number of QC samples were 
included in the design. In the end, only one well could be 
sampled, so the project data consisted of two environmen-
tal samples (collected after different amounts of water had 
been purged from the well), along with replicates for each 
sample, various blanks, and two matrix samples spiked in 
the laboratory (Wright and others, 2012). A field blank was 
prepared immediately prior to collection of the first envi-
ronmental sample. Source-solution blanks were prepared in 
the hotel, before traveling to the well site, and in the field 
(Wright and others, 2012, referred to this field-prepared 
source-solution blank as an “ambient” blank). A trip blank, 
prepared in the laboratory, was transported to the well site. 
All blanks and environmental samples were transported to the 
laboratory in the same container. The laboratory also pro-
vided results for a method blank. Thus, there were five blanks 
analyzed in association with the four environmental samples 
and replicates.

Results of all analyses were presented in a USGS Data 
Series report (Wright and others, 2012). Analytical results 
were less than reporting levels in all blank samples for 215 
(92 percent) of the 234 constituents analyzed by the labora-
tory. Forty-three results (3.6 percent) for 17 constituents in 
the environmental samples and replicates had to be qualified 
because they were less than 5 times the maximum concentra-
tion in at least one of the associated field, ambient, or labora-
tory-method blanks. Data qualification involved including a 
qualifier code with the reported results for those constituents 
in data tables provided in the report. Qualifiers were not 
included for results that were less than the reporting level. 
Data values were not changed in the USGS NWIS database, 
but data users were cautioned in the report that these values 
should be treated as nondetections, and the reported concentra-
tion should be considered the quantitation limit for the analyte 
in that sample.

http://waterdata.usgs.gov/nwis
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Blank Example 2: A Few Blanks Associated  
with a Set of Environmental Samples

Five USGS Water Science Centers participated in 
sampling water and sediment at 70 coastal sites on the Gulf 
of Mexico following the Deepwater Horizon oil spill in 2011 
(Nowell and others, 2013). Samples were collected before 
and after the oil made landfall. These samples documented 
changes between “pre-landfall” and “post-landfall” condi-
tions. The QC design included one field blank from each of the 
Centers during each of the two sampling periods. The intent 
was to associate each Center’s blank with the environmental 
samples collected by that Center. All five field blanks were 
collected during the pre-landfall period, but only four were 
collected post-landfall. The QC data analysis had to be revised 
so that all blanks collected within each period were associ-
ated with all environmental samples from that period, and a 
detected concentration in any blank was considered evidence 
of potential contamination in every associated environmental 
sample. Although this approach might overestimate the extent 
of incidental contamination of some water samples, no other 
procedure would ensure that contamination would not be 
underestimated.

Results and data interpretation were reported by Nowell 
and others (2013). Analytical results were available for 168 
constituents in at least 4 of the pre-landfall field blanks. There 
were 24 quantified results (detections), effecting a total of 
21 constituents. Analyses of the 4 post-landfall field blanks 
included 584 total results for 146 constituents, of which 564 
(97 percent) were censored values. There were 20 quantified 
values reported for 12 analytes. In addition, 31 trip blanks 
prepared during post-landfall sampling were analyzed at one 
of the laboratories. These had limited utility for comparison to 
environmental samples; however, quantified results reported 
for three analytes indicated some potential for contamina-
tion during laboratory processing and analysis. None of these 
three constituents was detected in field blanks analyzed at 
this laboratory.

For constituents detected in field or trip blanks, concen-
trations in environmental samples were censored at raised 
reporting levels on the basis of guidance from the EPA 
(U.S. Environmental Protection Agency, 1989, pages 5–16 
and 5–17). This raised reporting level was set equal to five 
times the maximum concentration detected in any blank and 
was applied to results in all associated environmental samples. 
Quantified results that were less than this raised reporting 
level were changed to censored values (nondetections) and 
reported as less than the previously quantified value. For a few 
common laboratory contaminants (acetone, dichloromethane, 
diethyl phthalate, methyl ethyl ketone, and toluene), the 
reporting level was raised to 10 times the maximum concen-
tration detected in the blank.

In addition, 10 constituents had one or more detections in 
laboratory blanks. Concentrations of these constituents in all 
environmental samples were more than five times the blank 
concentration, except for two nutrient constituents—ammonia-
plus-organic nitrogen and phosphorus. Because a laboratory 

blank is associated with a particular set of environmental 
samples, censoring for laboratory-blank contamination was 
applied only to those environmental samples that were associ-
ated with a contaminated blank. Results for both nutrients 
subsequently were censored in more than one-half of the post-
landfall samples, and phosphorus was censored in 2 of the 110 
pre-landfall samples. (Note: censoring based on laboratory 
blanks is done prior to reporting sample data by some labo-
ratories, including the NWQL, but not by all the laboratories 
used in this study.)

Table 6 lists the constituents that were affected by cen-
soring on the basis of contamination in laboratory, field, and 
trip blanks. Eight organic compounds and two trace elements 
were left with no detections in either sampling period after 
blank-censoring. Four additional organic compounds were 
left with no detections in the pre-landfall period; benzene and 
ammonia-plus-organic nitrogen were left with no detections in 
the post-landfall period. Four other constituents were censored 
to some extent, though some results still were quantified; two 
of these constituents were left with only one quantified value 
during the post-landfall period. Overall, 223 out of a total 
of 1,189 results for 19 constituents were censored for data 
interpretation because of contamination in blanks, but 174 
of these censored results were for only 5 constituents: toluene, 
ammonia-plus-organic nitrogen, mercury, dissolved organic 
carbon, and phosphorus.

It might have been possible to improve the QC design 
so that the effects on data interpretation would have been less 
severe. In a short-term project, such as this one, QC samples 
can identify whether contamination might have affected the 
environmental data, but there is little likelihood that potential 
sources of contamination can be identified in time to make 
any corrections. Thus, the effects of potential contamination 
on data quality could not have been eliminated, even if more 
blanks had been collected. However, a better QC design (even 
following the original design of one blank per Center per sam-
pling period) could have provided more information about the 
potential effects of contamination in specific environmental 
samples, and fewer results might have needed to be censored.

Evaluating Contamination Based  
on Multiple Blanks

In many water-quality investigations, blanks are not 
collected in association with every environmental sample; 
instead, blanks are collected at a variety of environmental 
sampling sites throughout the study period. Potential contami-
nation in environmental samples is estimated by statistical 
analysis of this set of multiple blanks. The critical assumption 
in this analysis is that the blanks represent exposure to exactly 
the same sources of contamination that could affect any envi-
ronmental sample. After the samples have been collected, it is 
important to review the blank data to ensure that there are no 
obvious geographical or temporal patterns in analyte concen-
tration. This review normally can be done by plotting the data.
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For example, many field blanks were collected during 
sampling for the first cycle of the NAWQA Program. Although 
these blanks were collected by different sampling teams in 
different NAWQA study units, they were all collected using 
similar equipment and the same protocols. Thus, all these 
blanks were intended to represent a common inference space, 
and the distribution of analytical results from the blanks could 
be compared to results for all environmental samples. In 
order to check this assumption, summary statitics for blanks 
within each study unit were compared by using boxplots. 
Figure 7 shows results for dissolved ammonia in NAWQA 
field blanks collected at stream-sampling sites. These box-
plots are arranged generally from west (on the left side of the 
graph) to east across the continental United States. There is 
no discernable spatial pattern in the blank results, so group-
ing all ammonia blanks into a single inference space seems 
justified. Blanks also need to be reviewed for differences over 
time. Figure 8 shows the time series of total Kjeldahl nitrogen 
(TKN) results in field blanks collected at stream-sampling 
sites within all NAWQA study units. In this case, obvious 
changes occurred in the distribution of results, beginning in 
late 1997. These changes were associated with decreases in the 
method detection limit that year and again in 1998 and 2000. 

Thus, the inference space for TKN in NAWQA field blanks 
must be divided into several parts, dependent on when the 
blanks were collected. Blank results from each inference space 
can be compared only to environmental samples collected dur-
ing that same time period.

The next step is to evaluate the distribution of various 
constituent concentrations reported for field blanks within each 
identified inference space. The expected concentrations in a 
blank are zero (or less than the reporting level), so any non-zero 
concentration (or detection) is considered evidence of contami-
nation. Because blanks are simply a subset of all samples within 
the inference space, this same distribution of contamination 
is assumed to affect environmental samples. The distribution 
of concentrations in blanks can be highly skewed; therefore, 
statistical techniques that rely on assumptions of normality are 
not applicable. These assumptions are avoided by evaluating the 
distribution as a series of percentiles.

The objective in analyzing data from blank samples is 
to characterize the frequency and magnitude of contamina-
tion in field blanks and then to infer how that distribution of 
contamination applies to environmental samples. This objec-
tive can be achieved by constructing an upper confidence limit 
(UCL) for a high percentile of contamination in the population 

Table 6.  Constituents affected by censoring due to contamination detected in laboratory, field, and trip blanks (table 15 from Nowell 
and others, 2013).

[pre, pre-landfall; post, post-landfall]

Analyte
Time 

period
Samples

Results after laboratory-
blank censoring

Results after field and trip-blank censoring

Quantified 
results

Detection 
frequency 
(percent)

Samples 
censored 

due to blanks

Quantified 
results

Detection 
frequency 
(percent)

100-percent 
censored1

Organic contaminants
1,2,3,5-Tetramethyl-benzene pre 60 1 2 1 0 0 yes 2
1,2,3-Trimethyl-benzene pre 60 2 3 2 0 0 yes 2
1,2,4-Trimethyl-benzene pre 60 3 5 3 0 0 yes 2
Acetone pre 62 5 8 5 0 0 yes 3
Benzene post 48 3 6 3 0 0 post only
Dichloromethane pre 62 3 5 3 0 0 yes
Dichloromethane post 48 4 8 4 0 0 yes
Dissolved organic carbon pre 62 62 100 41 21 34 no
Diesel range organics post 48 6 13 5 1 2 no
Ethylbenzene pre 63 3 5 3 0 0 yes 3
Naphthalene post 48 1 2 1 0 0 yes 3
Toluene pre 63 15 24 15 0 0 pre only
Trichloromethane pre 62 3 5 3 0 0 pre only
Xylene, meta plus para pre 60 4 7 4 0 0 pre only
Xylene, ortho pre 60 3 5 3 0 0 pre only

Trace and major elements, and nutrients in water
Ammonia-plus-organic nitrogen as N post 48 48 100 48 0 0 post only
Copper post 48 22 46 3 19 40 no
Mercury post 48 23 48 23 0 0 yes 2
Phosphorus as P post 48 48 100 47 1 2 no
Phosphorus as P pre 68 55 81 2 53 78 no
Silver pre 63 4 6 4 0 0 yes 3

1Analytes that were 100-percent censored (no detections remaining) after blank-censoring; “pre only,” detected in pre-landfall samples; “post only,” detected 
in post-landfall samples; no, not fully censored.

2Data available only for one sampling period.
3Not detected (without blank-censoring) in the other sampling period.
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that includes blanks and environmental samples. This UCL 
is the maximum contamination expected in the specified 
percentage of samples. For example, the 90-percent UCL 
for the 95th-percentile concentration, estimated using data 
from field blanks, is the maximum contamination expected, 
with 90-percent confidence, in 95 percent of all samples in 
the population. The 90-percent confidence level indicates 
that there is only a 10-percent chance that the 95th-percentile 
of contamination has been underestimated. An alternative 

description is that there is 90-percent confidence that this 
amount of contamination would be exceeded in no more than 
5 percent of all samples (including environmental samples) 
that were collected, processed, shipped, and analyzed in the 
same manner as the blank samples.

The binomial function, described in the Confidence 
Interval for the Median section of this report, can be used 
to determine a distribution-free UCL for a percentile. This 
method uses order statistics (based on ranking the data values 
from small to large) and binomial probability to determine the 
UCL. Equation 6 (repeated here as equation 9) is used to cal-
culate the probability that no more than n minus U values from 
a total of n observations exceed the (100p)th percentile of the 
sampled population. The rank (U) is selected as the smallest 
integer such that:

	 B (p, n, U–1) ≥ 1–α	 (9)

where
	 α	 is the significance level.
The 100(1–α) percent UCL for the (100p)th percentile of con-
tamination in the population then is determined by the measured 
value of the U ranked observation. For example, in a group of 
100 blank samples, the 90-percent UCL for the 95th percentile 
can be determined as follows. First, find the smallest value of U 
that meets the criterion:

	 B (0.95, 100, U–1) ≥ 0.90	 (10)

For U = 98, B = 0.882, which is less than the criterion of 0.90, 
but for U = 99, B = 0.963; therefore, the 99th ranked observa-
tion is the smallest that meets or exceeds the criterion, and the 
90-percent UCL for the 95th percentile is the concentration in 
the 99th ranked blank sample.

Figure 9 shows a conceptual example of the distributions 
of concentration in environmental samples and the 90-percent 
UCL for percentiles of concentration in field blanks. In deter-
mining plotting positions for both lines, censored values are 
assigned a concentration of one-half the reporting level. The 
90-percent UCL for concentration in blanks is less than the 
reporting level (0.05 mg/L) up to the 89th percentile, and the 
UCL for the 95th-percentile concentration is about 0.07 mg/L. 
Potential contamination bias in the environmental samples is 
then estimated from the UCL calculated from the blank sample 
data. Contamination bias represents an extraneous amount of 
a constituent introduced during the sampling process and is 
in excess of any actual “contamination” present in the stream 
or groundwater. For the example in figure 9, contamination 
bias can be described as follows: Extraneous contamination is 
estimated, with at least 90-percent confidence, to be less than 
detection in at least 89 percent of all samples, and to exceed 
0.07 mg/L in no more than 5 percent of all samples. This latter 
amount of extraneous contamination can affect 1 or 2 sig-
nificant figures in concentrations reported for environmental 
samples up to 10 times the estimate made using field blanks 
(which would be 0.7 mg/L for this example). Figure 9 shows 

Figure 7.  Example plot of the spatial distribution of ammonia 
concentrations in field blanks collected in 10 selected study 
units of the National Water Quality Assessment Program during 
1992–2001 (from data compiled by Mueller and Titus, 2005).

Figure 8.  Example plot of the time series of total Kjeldahl 
nitrogen concentrations in field blanks collected as part of the 
National Water Quality Assessment Program during 1992–2001 
(from data compiled by Mueller and Titus, 2005).
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that about 50 percent of reported concentrations in environ-
mental samples were less than 0.7 mg/L, so extraneous con-
tamination could be a substantial fraction of the reported result 
for many samples. However, it is also likely that extraneous 
contamination is negligible (less than detection) in 89 percent 
of all the samples. Therefore, extraneous contamination is 
likely to have affected no more than 11 percent of the environ-
mental samples, and only those with concentrations less than 
0.7 mg/L (thus, 5.5 percent of all samples). Those potentially 
affected samples should be qualified in data reporting and 
interpretation.

Determining the Number of Blanks to Collect

In the design phase of a project, the project staff must 
determine the number of field blanks that will be required to 
adequately estimate the potential for extraneous contamina-
tion in environmental samples. If the design is to associate 
a single blank with a set of environmental samples, then a 
blank must be collected with each set (generally those samples 
shipped in the same container). If the statistical approach will 
be used to determine percentiles of contamination, the number 
of field blanks should be determined based on the following 
two criteria:

•	 How much uncertainty is acceptable?

•	 What level of confidence is necessary?
For contamination bias, based on data from blanks, uncertainty 
is determined by the largest percentile (p) of contamination 
that can be evaluated.

	 Uncertainty = 1–p	 (11)

The extent of potential contamination cannot be known for 
higher percentiles. “Confidence” is the likelihood that this 
uncertainty has not been underestimated, and is based on the 
binomial probability for the selected percentile. Using equa-
tion 9, confidence can be determined:

	 Confidence = 100 (1–α) = 100 [B (p, n, U–1)]	 (12)

For the percentile that can be determined from the maximum 
concentration reported for any field blanks, then rank (U) = 
sample size (n), and equation 12 can be solved to calculate the 
number of blanks based on the selected uncertainty (p) and 
confidence (α):

	 n
p

= log( )
log( )


	 (13)

Because α and p are fractional values, the logarithms are nega-
tive and are larger (less negative) as α and p increase from 0 
to 1. For a given level of confidence, the number of blanks (n) 
must be increased in order to achieve less uncertainty (make p 
larger). For a given percentile, n must be increased in order to 
increase confidence (make α smaller).

The number of blanks required to evaluate various 
percentiles of contamination are shown in figure 10 for three 
selected levels of confidence. For example, the 75th per-
centile of contamination can be estimated, with 90-percent 
confidence, as the maximum concentration reported for a set 
of eight blanks. The number of blanks must be increased to 
22 in order to estimate the 90th percentile with 90-percent 
confidence. The 90th percentile also could be estimated with 
16 blanks, but the level of confidence must be decreased to 
80 percent. Increasing confidence to 95 percent would require 
29 blanks.

Figure 9.  Conceptual example of the distributions of 
concentration in environmental samples and the 90-percent upper 
confidence limit for percentiles of concentrations in field blanks 
(mg/L, milligrams per liter; UCL, upper confidence limit).

Figure 10.  Number of blanks required to determine selected upper 
confidence limits for a specified percentile of contamination.
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Blank Example 3: A Few Blanks Collected for More Than 
One Set of Environmental Samples

During 2006–07, the USGS Colorado Water Science 
Center conducted a study of the groundwater quality, age, and 
probability of contamination associated with land use in the 
Eagle River valley-fill aquifer upstream from Dotsero, Colorado 
(Rupert and Plummer, 2009). Samples were collected one time 
from 61 wells and quarterly for 1 yr from 10 surface-water 
sites. The QC samples included five field blanks prepared using 
groundwater sampling equipment and three field blanks pre-
pared using surface-water sampling equipment. Table 7 presents 
a summary of laboratory results for selected constituents in 
the groundwater blanks and in the 61 primary environmental 
samples plus 2 replicates.

Too few blanks were available for a meaningful statistical 
analysis of the potential for extraneous contamination of samples 
collected for this project. With five blanks, the 90th percentile of 
contamination can be estimated with only 41 percent confidence, 
and the highest percentile that can be estimated with 90-percent 
confidence is the 63rd (eq. 12). Thus, the project investigators 
chose to compare the range of blank results to the range of envi-
ronmental results. They state (Rupert and Plummer, 2009, p. 27):

“The field-blank, replicate, and cation-anion balance 
data indicate that the major-ion and nutrient data are 
of high quality and suitable for quantitative analysis 
of ground- and surface-water quality. Concentra-
tions of major ions and nutrients in the field blanks 
are mostly below laboratory reporting levels. Cal-
cium, magnesium, nitrite, ammonia, boron, iron, and 
manganese were detected in a few field blanks, but in 
general, the concentrations were much smaller than 
those compounds detected in native and replicate 
samples. Analysis of the major-ion and nutrient field 
blanks indicated that the decontamination procedures 
of the sampling equipment were effective at clean-
ing the equipment between sampling sites and that 
there was no contamination occurring during sample 
collection, transport, and analysis that could affect the 
results of this report.”

Additional interpretations of the QC data could have been made. 
For example, the range of field-blank results indicate there could 
be substantial quantitative uncertainty in low-range concentra-
tions of iron and manganese reported for environmental samples.

Blank Example 4: A Few Blanks Collected  
for More Than One Set of Environmental Samples

Another project conducted by the USGS Colorado Water 
Science Center was an evaluation of the water quality of 
Vallecito Reservoir in southwestern Colorado. Samples were 
collected during 1999–2002 from the reservoir, its two major 
inflows, and its outflow at about monthly intervals from April 
through November (Ranalli, 2008). Nutrients and trace elements 
were analyzed in nine field blanks prepared with the equipment 
used to sample the reservoir, though not all constituents were 
analyzed in every blank. Potential extraneous contamination in 

environmental samples was estimated statistically using results 
from the blanks (table 8). All results for most constituents in the 
blanks were less than the reporting level. For these constituents, 
table 8 indicates that there is at least 90-percent confidence that 
extraneous contamination is no greater than the reporting level 
in at least 60–75 percent of all reservoir samples (depending 
on the number of blanks). Results for six constituents were 
greater than reporting levels. For example, nickel and zinc were 
detected in two of eight blanks. There is 90-percent confidence 
that extraneous contamination is no greater than the maximum 
concentrations of these constituents (2.6 μg/L for nickel and 
8.3 μg/L for zinc) in at least 75 percent of all samples. The 
uncertainty is that contamination could be greater in up to 
25 percent of all samples. At these concentrations, contamina-
tion could affect most reported results for nickel and zinc in 
many of the environmental samples from the reservoir. There-
fore, environmental results for these constituents were consid-
ered potentially biased and were excluded from interpretation of 
project data.

The project investigator interprets these blank data as 
follows (Ranalli, 2008, p. 58):

“The results of the analysis of the field blank samples 
can then be compared to environmental concentra-
tions to determine the likelihood that contamination 
has affected the interpretation of the environmental 
data in samples collected from Vallecito Reservoir. 
For all constituents measured in Vallecito Reservoir, 
with the exception of total nickel and zinc, there is a 
high degree of confidence that contamination is not 
greater than the reporting level or is only slightly 
greater than the reporting level. However, because the 
environmental concentrations are close to the report-
ing level for all constituents and the range of samples 
that could be affected by contamination varies from 25 
to 40 percent, some effects from contamination cannot 
be ruled out. For example, with respect to orthophos-
phate, there is 92 percent confidence that contamina-
tion is less than the reporting level in at least 75 per-
cent of samples; however, the potential contamination 
in the remaining 25 percent is not known. Although 
there is no evidence that contamination accounts for 
any of the measured orthophosphate, environmental 
concentrations are low in comparison to the reporting 
level, and some effects from contamination cannot be 
ruled out. The environmental concentrations of total 
iron and total manganese, however, are usually at least 
10 times greater than the reporting level. It is unlikely 
that contamination as great as 4 mg/L in 25 percent 
of all samples (total iron) and as great as 0.4 mg/L in 
25 percent of all samples (total manganese) will affect 
the interpretation of the total iron and manganese con-
centrations in the environmental samples. The amount 
of potential contamination for total nickel and total 
zinc…exceeds the concentration of these constituents 
in most of the environmental samples so that contami-
nation probably has compromised the interpretation of 
the environmental data for these two constituents.”
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Table 7.  Summary of selected constituent data in field-blanks and environmental groundwater samples from the Eagle River valley-fill 
aquifer upstream from Dotsero, Colorado, 2006–07 (data from Rupert and Plummer, 2009, tables 2 and 6).

[N, nitrogen; mg/L, milligrams per liter; µg/L, micrograms per liter; n, number of samples; <, less than]

Constituent Units
Reporting 

level

Field Blanks (n = 5) Environmental Samples (n = 63)
Number of  

censored values
Range of  

quantified values
Number of 

censored values
Range of 

quantified values
Ammonia as N mg/L 0.01 3 0.010–0.012 49 0.01–1.97
Nitrite plus nitrate as N mg/L 0.03 5 <0.03 7 0.04–5.42
Calcium mg/L 0.02 2 0.03–0.014 0 3.9–621
Magnesium mg/L 0.01 4 0.01 0 0.72–321
Boron μg/L 0.9 1 1.9–2.6 0 5–332
Iron μg/L 3 3 3.1–10.8 12 3–8,364
Manganese μg/L 0.1 3 0.20–0.34 9 0.1–1,500

Table 8.  Summary of upper confidence limits for contamination by nutrients and trace elements in specified percentiles of samples 
from Vallecito Reservoir, near Bayfield, Colorado, based on data for field blanks (data from Ranalli, 2008, table 10).

[mg/L, milligrams per liter; µg/L, micrograms per liter; <, less than]

Constituent
Number 

of blanks
Achieved level 
of confidence

Evaluated percentile 
of contamination

Upper 
confidence limit1

Ammonia, dissolved, mg/L 9 92-percent 75th <0.015
Nitrate + nitrite, dissolved, mg/L 9 92-percent 75th 0.014
Ammonia + organic nitrogen, dissolved, mg/L 9 92-percent 75th 0.233
Ammonia + organic nitrogen, total, mg/L 9 92-percent 75th <0.2
Phosphorus, total, mg/L 9 92-percent 75th <0.008
Phosphorus, dissolved, mg/L 9 92-percent 75th <0.006
Orthophosphate, dissolved, mg/L 9 92-percent 75th <0.007
Aluminum, dissolved, μg/L 8 90-percent 75th <15
Aluminum, total, μg/L 8 90-percent 75th <10
Arsenic, dissolved, μg/L 7 92-percent 70th <1
Arsenic, total, μg/L 8 90-percent 75th <1
Cadmium, dissolved, μg/L 7 92-percent 70th <0.3
Cadmium, total, μg/L 8 90-percent 75th <0.3
Chromium, dissolved, μg/L 7 92-percent 70th <0.4
Chromium, total, μg/L 8 90-percent 75th <0.4
Copper, dissolved, μg/L 7 92-percent 70th 3
Copper, total, μg/L 8 90-percent 75th <2
Iron, dissolved, μg/L 8 90-percent 75th <4
Iron, total, μg/L 8 90-percent 75th <4
Lead, dissolved, μg/L 7 92-percent 70th <2
Lead, total, μg/L 8 90-percent 75th <2
Manganese, dissolved, μg/L 8 90-percent 75th <2
Manganese, total, μg/L 8 90-percent 75th <0.4
Mercury, dissolved, μg/L 5 92-percent 60th <0.2
Mercury, total, μg/L 8 90-percent 75th <0.2
Nickel, dissolved, μg/L 7 92-percent 70th <0.4
Nickel, total, μg/L 8 90-percent 75th 2.6
Potassium, dissolved, μg/L 7 92-percent 70th <0.2
Potassium, total, μg/L 8 90-percent 75th 0.22
Silver, dissolved, μg/L 7 92-percent 70th <0.8
Silver, total, μg/L 8 90-percent 75th <0.8
Zinc, dissolved, μg/L 8 90-percent 75th <2
Zinc, total, μg/L 8 90-percent 75th 8.3

1Values in bold are greater than the reporting level.
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Blank Example 5: Many Blanks Collected  
for a Large Program

A VOC dataset, compiled from NAWQA samples col-
lected during 1996–2008, contained more than 7,000 envi-
ronmental samples, 704 field blanks, and 472 source-solution 
blanks (table 9). In addition, 5,167 laboratory set blanks were 
analyzed for VOCs during this time period. The QC design was 
nationally consistent, so environmental and QC samples were 
collected using similar equipment and procedures at each type 
of sampling site (surface water, domestic and public-supply 
wells, or monitoring wells), and it is valid to group national 
results. Bender and others (2011) compared the statistical 
distributions of concentrations in environmental samples, field 
blanks, source-solution blanks, and laboratory set blanks, in 
order to place each compound into one of four “contamination 
categories” (table 10). This comparison was made using graphs 
of the distributions based on the conceptual model previously 
shown in figure 9.

The assumptions of this statistical comparison are that 
the field blanks and environmental samples are affected 
by the same potential sources of extraneous contamination 
and the same potential to experience a certain magnitude of 
contamination. These assumptions seemed valid for many, 
but not all, VOCs. The contamination categories listed in 
table 10 were based on the relation between the distribution 
of concentrations in field blanks (based on the 90-percent 
UCL for each percentile) and the distribution of concentrations 
in environmental samples, as illustrated by the examples in 
figure 11. Compounds in category 1, 2, or 3 are considered to 
meet both assumptions, though the effects of contamination 

bias differ among categories. Compounds in category 4 do not 
meet the second assumption; the effect of contamination on 
field blanks seems greater than on environmental samples, so 
field blanks were considered to be non-representative of the 
potential sources of contamination for these compounds.

The example plots shown in figure 11 are for VOCs in 
samples from domestic and public-supply wells (Bender and 
others, 2011, p. 17 and 22). Fifty-four of the 87 analyzed 
VOCs were not detected in any field blanks (contamination 
category 1), as illustrated by lack of a red line in the graph 
of 1,1-dichlorethene (fig. 11A). Quantified results for these 
54 VOCs in environmental samples are considered to be free 
of contamination bias. Therefore, data interpretation based on 
VOC concentrations in environmental samples from domestic 
and public-supply wells was considered valid. Thirty-three 
VOCs were detected in at least one field blank. For 10 of 
these, the distribution of concentrations in field blanks was 

Table 9.  Number of samples collected for analysis of volatile 
organic compounds by the National Water-Quality Assessment 
Program during October 1996 through December 2008 (Bender 
and others, 2011, table 2).

Sample 
medium

Site 
type

Environ- 
mental 

samples

Field 
blanks

Source- 
solution 
blanks

Surface water Surface water 1,497 129 54
Groundwater Domestic and public-

supply wells
3,042 278 225

Groundwater Monitoring wells 2,639 297 193
Total 7,178 704 472

Table 10.  Description of contamination categories and the potential for contamination bias in environmental samples based on 
the relation between the 90-percent upper confidence limit for percentiles of concentrations in field blanks and the distribution of 
concentrations measured in environmental samples (Bender and others, 2011, table 3).

Contamination 
category

Relation between 
field blanks and 

environmental samples

Interpretation of the 
potential for contamination 
in environmental samples

Number of compounds in category
Domestic and 
public-supply 

wells

Monitoring 
wells

Surface-
water 
sites

1 No detections in any of the field blanks. Quantified results for environmental samples 
are essentially free of contamination bias.

54 43 54

2 Detections in field blanks, but the distribution 
is lower (at least an order of magnitude) 
and negligible in comparison to concentra-
tions in environmental samples.

Quantified results for environmental 
samples with larger concentrations are not 
markedly affected, but low concentrations 
might be affected by contamination.

10 8 16

3 Detections in both field blanks and environ-
mental samples and the distributions of 
concentrations are similar (within an order 
of magnitude).

Quantified results for environmental samples 
are likely affected by contamination bias.

7 7 10

4 Detections in field blanks have a distribution 
of concentrations markedly higher (at least 
an order of magnitude) than the concentra-
tion distribution of environmental samples.

The potential for contamination bias 
in environmental samples cannot be 
determined by this method. Field blanks 
are considered non-representative of the 
potential sources of contamination to the 
environmental samples.

16 29 7
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at least an order of magnitude smaller than the distribution 
in environmental samples (contamination category 2), as 
illustrated by the graph of chloroform (fig. 11B). Low con-
centrations of these 10 VOCs in environmental samples might 
be affected by contamination, but bias in results for larger 
concentrations can be considered negligible. For seven VOCs, 
the distribution of concentrations in field blanks was similar 
to the distribution in environmental samples (contamination 
category 3), as illustrated by the graph for perchloroethene 
(fig. 11C). Quantified results for these VOCs in environmental 
samples are likely to be affected by extraneous contamina-
tion, and any interpretation of these data requires substantial 
qualification. For 16 VOCs, the distribution of concentrations 
in field blanks was markedly greater than the distribution 

in environmental samples (contamination category 4), as 
illustrated by the graph for toluene (fig. 11D). This graph 
also shows that source-solution blanks were contaminated at 
similar levels as field blanks, indicating that the blank water 
was contaminated by some source that did not affect the 
environmental samples. The potential for bias in environmen-
tal samples cannot be determined for these category-4 VOCs 
because the field blanks are considered non-representative of 
the potential sources of contamination. In the specific example 
of toluene, the laboratory-blank data could be used to estimate 
a minimum potential for bias (without consideration of con-
tamination from field sources). Contamination from labora-
tory sources was not necessarily a similar problem for other 
compounds in category 4.

Figure 11.  Examples of the distribution of volatile organic compound (VOC) concentrations in environmental samples from domestic 
and public-supply wells, and in field, source-solution, and laboratory set blanks: A, contamination category 1 (1,1-dichlorethene); 
B, contamination category 2 (chloroform); C, contamination category 3 (perchloroethene); and D, contamination category 4 (toluene). 
Nondetections are used to determine percentiles, but are not shown on the graphs. (From Bender and others, 2011, fig. 4).
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Analysis and Interpretation of Data for Spikes

Spikes are used to estimate the positive or negative bias 
that can affect the measured results for environmental samples 
because of analyte degradation or problems with the analytical 
methods. This bias is estimated by determining the recovery 
of known concentrations of the analytes in the spiked sample. 
Calculation of recovery for matrix spikes requires a separate 
environmental sample to determine the background concen-
tration of the analyte in the unspiked matrix. Recovery in the 
spiked matrix samples can be compared to some criteria or to 
typical recovery for the analytical method based on laboratory 
reagent spikes.

Calculating Spike Recovery

Spike recovery is calculated from the concentration of an 
analyte in a spiked matrix sample in comparison to the con-
centration in a background environmental sample:

	 R
C C

C
spike env=

−
×

expected

100 	 (14)

where
	 R	 is recovery, in percent,
	 Cspike	 is the concentration of the analyte in the spiked 

matrix sample, in micrograms per liter,
	 Cenv	 is the concentration of the analyte in the 

background environmental sample, in 
micrograms per liter, and

	 Cexpected	 is the concentration of the spiked analyte 
expected in the sample, in µg/L.

The expected concentration of the analyte that was spiked into 
the matrix sample is calculated from the concentration in the 
spike solution, the volume of spike solution added, and the 
volume of the matrix sample:

	 C
V C

V
sol sol

expected
sample

=
×

	 (15)

where
	 Vsol	 is the volume of spike solution added to the 

sample, in milliliters (mL),
	 Csol	 is the concentration of the analyte in the 

spike solution, in micrograms per milliliter 
(µg/mL), and

	 Vsample	 is the volume of the matrix sample, in liters (L).

Note that in equation 15 the volume of the spike amount is 
in milliliters, though sometimes the volume reported on field 
forms or in databases is in microliters, and that the sample 
volume is in liters, though it might be reported in databases in 
milliliters. Recovery for spiked reagent samples is calculated 

using the same equations (14 and 15), except the background 
concentration in equation 14 is assumed to be zero.

Results for analyte concentrations in environmental sam-
ples are often reported as a censored value (less than a reporting 
level). When these results need to be used in the spike-recovery 
calculation (eq. 14), they are re-coded either as zero, as the 
reporting-level value, or as some fraction (for example one-half) 
of the reporting level. Generally there is little difference in the 
recovery calculated using any of these recoded values; however, 
it is good practice to compute a range of recoveries by setting 
the background concentration to zero for one end of the range 
and to the reporting-level value for the other end. If the differ-
ence is negligible, then either (or some mid-point value) can be 
used for subsequent analysis.

As an example of recovery calculation, consider the ana-
lytical results for atrazine in the following paired samples:

•	 Environmental:	 0.05 µg/L

•	 Field-matrix spike:	 0.14 µg/L
The field matrix spike was prepared by adding 100 µL of a 
spike solution containing 1.0 µg/mL of atrazine to a 932 mL 
sample. The expected concentration is calculated using equa-
tion 15:

Cexpected =









100 L
1 mL

1000 
×1.0

g
mL

932 mL
1 L

1000 mL

µ
µ

µ
L





= 0 11. 	µg L 	 (16)

Recovery is calculated using equation 14:

	 R = − × =0 14 0 05
0 11

100 82
. .

.
	percent 	 (17)

This calculated recovery can be compared to the laboratory 
control limits for atrazine, which were plus or minus 30 percent 
(70 through 130 percent) for this example. Because recovery 
of atrazine in the matrix spike is within these control lim-
its, there is no evidence of additional bias due to the sample 
matrix. However, a single matrix spike provides no information 
on the uncertainty of the estimated recovery, so it is com-
mon to collect multiple matrix spikes in order to determine a 
confidence interval.

Evaluating Recovery Bias using Multiple Spikes

Five examples of recovery are listed in table 11. Exam-
ple 1 shows the typical case where all recoveries are (close 
to) 100 percent. Method performance is good, and there is no 
evidence of a matrix effect or analyte degradation. Results from 
analysis of environmental samples are unlikely to be biased 
because of either of these conditions. Example 2 shows low 
recovery in both matrix spikes but not in either reagent spike. 
This pattern indicates a matrix effect. Example 3 shows low 
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recovery in both field spikes but in neither laboratory spike. 
This is the typical pattern for analyte degradation. Example 4 
shows the lowest recovery in the field matrix spike and better, 
but still low, recovery in the laboratory matrix spike and the 
field reagent spike. This indicates a combination of matrix and 
degradation effects. Both of these effects influence recovery in 
the field matrix spike. The laboratory matrix spike is influenced 
by the matrix effect but is not influenced by analyte degradation. 
The field reagent spike is influenced by degradation, but not the 
environmental matrix. Finally, example 5 shows low recovery 
in all spikes. This indicates that analytical performance is less 
than optimal, but there is no effect from the sample matrix or 
analyte degradation.

If only field-matrix samples are collected for a project, 
comparison is possible only with laboratory reagent spikes, 
prepared routinely to measure method performance. An exam-
ple of such a comparison for three pesticide analytes is shown 
in table 12. Recovery of atrazine in the field matrix spike is 
slightly high, but not so high as to cause concern. Recovery of 
diazinon is low, but within the 95-percent confidence interval 
of the laboratory reagent spikes; therefore, this probably repre-
sents normal method performance rather than any field issue. 
Recovery of malathion is low and outside the 95-percent con-
fidence interval of the laboratory reagent spikes. This might 
indicate a matrix effect or analyte degradation. Other types of 
spikes are needed to determine which of these effects is occur-
ring. Before committing project resources, it is wise to consult 
the laboratory chemists, who might be able to provide some 
insight as to which effect is more likely. Also, additional field 
matrix spikes should be collected to confirm the low recovery.

Confidence intervals for recovery can be estimated 
by collecting multiple matrix spikes during a project. For 
example, concentrations of the pesticide chlorpyrifos in six 
field matrix spikes and corresponding environmental samples 
are shown in table 13. The matrix spikes were prepared by 
adding 100 µL of a spike mixture containing 1.0 µg/mL 

of chlorpyrifos to the sample volumes listed in the table. 
Expected concentrations for the spiked samples were com-
puted using equation 15, and spike recoveries were computed 
using equation 14. Mean recovery is 45.5 percent with a 
standard deviation of 9.4. The 95-percent confidence interval 
for mean recovery, determined using equation 1 with a t value 
of 2.57 for 5 degrees of freedom, is 35.4–55.6 percent. This 
entire range is less than the lower control limit for labora-
tory spikes (59 percent for the NWQL in 2013). The low 
bias in recovery from field spikes indicates the possibility of 
either analyte degradation between sampling and analysis or 
interference from something in the sample matrix. Because 
chlorpyrifos is not known to degrade during normal sample 
holding time, a matrix effect is the more likely cause. This 
finding would warrant additional investigation because matrix 
interference might not be the same for all sampling sites or 
even for all times of sample collection at a single site. This 
example illustrates the need to evaluate QC data as they 
become available so that pertinent changes can be made to the 
sampling design.

Determining How Many Spikes to Collect

In the design phase of a project, the project staff must 
determine the number of field spikes that will be required to 
adequately estimate the potential for low or high recovery bias 
in environmental samples. A statistical approach is appropriate 
even if only a few spikes are collected, as long as the distribu-
tion of recovery values is approximately normal. The number 
of spikes required to meet project objectives should be deter-
mined based on the following two criteria:

•	 What level of confidence is necessary?

•	 How much uncertainty is acceptable?

Table 11.  Examples of recovery in spiked samples.

Spike type Recovery (percent)
Example 1 Example 2 Example 3 Example 4 Example 5

Field matrix spike 100 25 25 25 25
Laboratory matrix spike 100 25 100 50 25
Field reagent spike 100 100 25 50 25
Laboratory reagent spike 100 100 100 100 25

Table 12.  Example of recovery of three pesticide analytes in one field matrix spike and 40 laboratory reagent spikes.

Compound
Recovery in field 

matrix spike 
(percent)

Recovery in Laboratory Reagent Spikes 
(percent)

Mean recovery Standard deviation
Lower 95-percent 
confidence limit

Upper 95-percent 
confidence limit

Atrazine 109.8 102.2 2.7 96.9 107.6
Diazinon 83.0 82.2 1.1 80.0 84.5
Malathion 56.2 93.2 16.6 60.1 126.3
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Confidence is the likelihood that potential low recovery bias 
has not been overestimated and potential high recovery bias 
has not been underestimated. This confidence is determined 
by constructing an interval about the mean recovery. If a 
90-percent confidence interval is constructed, there is only a 
10-percent chance that the true recovery is outside the interval. 
Because confidence intervals are symmetric about the mean, a 
general description is

	 CI = x  ± d	 (18)

where
	 CI	 is the overall width of the confidence interval,
	 x 	 is the mean recovery from field spikes, in 

percent, and
	 d	 is the half-width of the confidence interval.
Uncertainty is the half-width of the interval; the actual bias 
due to low or high recovery could be any value between the 
low and high bound. From equation 2, the half-length is deter-
mined as

	 d Z
n

= −( / )1 2α
σ

	 (19)

where
	 σ	 is the standard deviation of recovery known 

from previous analysis (for example, a 
large number of laboratory spikes).

Solving equation 19 for n yields:

	 n
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Equation 20 is used to determine the number of spikes 
required to achieve an uncertainty of d with a confidence of 
1–α/2. In order to decrease uncertainty without changing con-
fidence (1–α/2), the number of spikes (n) must be increased.

The number of spikes required to achieve various per-
centages of uncertainty in recovery are shown in figure 12 for 
three selected levels of confidence. For this plot, the value of 
σ in equation 20 was set to 13 percent, which was the median 
standard deviation for recovery of 50 pesticides in laboratory 

spikes analyzed at the NWQL during 2013. Five spikes are 
required to estimate mean recovery within about plus or minus 
10 percent at the 90-percent confidence level. Increasing the 
sample size to 18 will decrease the uncertainty to plus or 
minus 5 percent.

Examples of Analyzing Spikes

Typically, an adequate number of spikes can be collected 
to determine mean recovery, even for small projects. Thus, 
statistical procedures can be used in most cases. However, in 
rare cases, projects include only one or a few samples, and a dif-
ferent approach is needed to evaluate potential recovery bias.

Spike Example 1: One Set of Spikes Associated  
with One Set of Environmental Samples

The Pavillion project was described previously in “Blank 
Example 1” in “Evaluating Contamination Based on Single 
Blanks.” Samples collected from the monitoring well included 
two environmental samples (collected after different amounts 
of water had been purged from the well), along with replicates 
for each sample, various blanks, and two laboratory matrix 
spikes (Wright and others, 2012). All samples were analyzed 
by a non-USGS laboratory. Field spike kits were not available, 
so matrix samples were spiked in the laboratory.

The laboratory provided recovery percentages for the 
spiked matrix samples, but provided no information on typi-
cal recoveries expected for the analytical method. Project staff 
decided that recoveries within 70–130 percent were accept-
able. If recovery of a constituent was outside this range in 
either matrix spike, results for that constituent in all samples 
were flagged with a data qualifier. Recoveries were avail-
able for 210 constituents, and were within 70–130 percent for 

Figure 12.  Number of spikes required to determine selected 
confidence limits for uncertainty in mean analyte recovery, based 
on a known standard deviation of 13 percent.
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Table 13.  Example of analyte recovery in a set of field matrix 
spikes and environmental samples.

[µg/L, micrograms per liter; mL, milliliter]

Chlorpyrifos 
(µg/L)

Spiked 
sample 
volume 

(mL)

Expected 
concentration 

(µg/L)

Recovery 
(percent)Environmental 

sample
Spiked 
sample

0.005 0.055 946 0.106 47.3
0.009 0.066 966 0.104 55.1
0.006 0.058 930 0.108 48.4
0.002 0.032 921 0.109 27.6
0.003 0.050 954 0.105 44.8
0.005 0.056 975 0.103 49.7
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195 (93 percent) of those constituents in both spikes. For the 
other 15 constituents in the two environmental samples and two 
replicates, 42 results were qualified as having potentially low 
bias, because recovery was less than 70 percent in one or both 
spikes, and 16 results were qualified as having potentially high 
bias, because recovery was greater than 130 percent in one or 
both spikes (Wright and others, 2012, p. 21). These data quali-
fiers were included in the report (although not in the database); 
no interpretation of the environmental data was provided.

Spike Example 2: A Few Sets of Spikes Associated  
with More than One Set of Environmental Samples

The Gulf of Mexico oil spill project was described previ-
ously in “Blank Example 2” in “Evaluating Contamination 
Based on Single Blanks.” Each of the five USGS Water 
Science Centers collected one matrix sample, for laboratory 
spiking, during each of the two time periods. The pre-landfall 
samples were spiked at the USGS NWQL and analyzed for 
85 organic compounds. Mean recovery for individual ana-
lytes ranged from about 52 to 134 percent. The post-landfall 
samples were spiked at a non-USGS laboratory and analyzed 
for 107 compounds. Mean recovery for individual analytes 
ranged from about 19 to 124 percent. The two laboratories had 
41 analytes in common, so recovery results were available for 
a total of 151 compounds. For the common analytes, differ-
ences in recoveries were generally small.

As in the previous Pavillion example, information 
on typical recoveries for these analytes was unavailable, 
so the project staff decided that acceptable limits were 
70–115 percent. Mean recovery was within these limits for 
134 (89 percent) of the 151 compounds. Mean recovery was 
less than 70 percent for 8 compounds in the spikes analyzed 
at the NWQL and for an additional 8 compounds in spikes 
analyzed by the other laboratory. Because recoveries were 
low, concentrations reported for these compounds in environ-
mental samples could underestimate the true concentrations. 
Mean recovery for one compound exceeded 115 percent, so 
concentrations reported in environmental samples could be 
somewhat higher than the true concentrations. Concentrations 
were not recovery-corrected in the database, but recovery bias 
was noted in data tables in the interpretive report (Nowell and 
others, 2013, p. 32–33).

Spike Example 3: Many Spikes Collected  
for a Large Program

The VOC dataset compiled for the NAWQA program 
was described previously in “Blank Example 5” in “Evaluating 
Contamination Based on Multiple Blanks.” A subset of spiked 
samples from this dataset was analyzed to evaluate VOC recov-
eries in groundwater and surface-water samples collected during 
1997–2001 (Rowe and others, 2005). Results were available for 
85 VOCs in a total of 428 spiked samples, including 149 field 
matrix spikes, 107 field matrix spike replicates, 20 laboratory 
matrix spikes, and 152 laboratory reagent spikes.

Spiked sample results were examined graphically and using 
a chi-square goodness-of-fit test (Ott and Longnecker, 2001) 
to determine whether recoveries were normally distributed. 
Although the distribution of VOC recoveries generally followed 
a normal distribution for all spike types, some extreme outli-
ers were apparent in the data. Thus, median, rather than mean, 
recovery was used as a measure of central tendency. For all spike 
types, 87 percent of the individual VOC recoveries were within 
the range of 60 to 140 percent, which was considered acceptable 
for the analytical method. Median recoveries for 85 individual 
VOCs ranged from about 63–102 percent for field matrix spikes 
and field matrix spike replicates, 102–135 percent for laboratory 
matrix spikes, and 91–119 percent for laboratory reagent spikes.

Rowe and others (2005) evaluated the potential for analyte 
degradation by comparing recoveries in field-matrix and labora-
tory-matrix spikes. Based on the nonparametric Wilcoxon Rank-
Sum Test (Ott and Longnecker, 2001), median recovery in field 
matrix spikes was significantly lower than in laboratory matrix 
spikes for 83 of the 85 VOCs. This difference could indicate that 
degradation might be causing a bias in environmental-sample 
data; however the authors considered this to be unlikely because 
previous, more controlled studies had not indicated any VOC 
degradation. They state that the differences in recovery could 
have been caused “simply by difference in spiking technique, 
spiking experience, the number of different individuals involved 
in processing field-matrix spikes, and (or) environmental condi-
tions when the samples were spiked” (Rowe and others, 2005, 
p. 24). Another possible explanation for the difference in recov-
eries is the discrepancy in sample size (149 field matrix spikes, 
but only 20 laboratory matrix spikes). A paired-sample analysis, 
such as the signed-rank test, on a subset of 20 field matrix spikes 
associated with the 20 laboratory matrix spikes might have pro-
vided more insight into matrix specific sample degradation.

Rowe and others (2005) also evaluated potential matrix 
effects by comparing median recoveries in laboratory-matrix 
and laboratory-reagent spikes. Recoveries were not significantly 
different for all but two VOCs, indicating that analytical results 
for environmental samples generally were not affected by matrix 
interference. The report did not include interpretation of potential 
degradation or matrix effects for individual VOCs, but did pro-
vide a table of median recoveries for each of the 85 compounds 
in each type of spiked sample.

Analysis and Interpretation of Data  
for Replicates

Replicates are used to measure variability, which is 
defined as the random error in independent measurements as 
the result of repeated application of the measurement process 
under identical conditions. Statistical evaluation of replicate 
variability is based on the standard deviation of measured 
values in the primary environmental sample and the replicate 
sample or samples. If only one set of a large number of repli-
cates was collected, the standard deviation could be calculated 
directly; however, the general practice is to collect many sets 
of a small number of replicates under different conditions.
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Evaluating Variability in Analyte Detection
Analysis of variability is complicated when analytes are 

reported as censored values (less than the reporting level) in 
one or more samples within a replicate set. In this case, the 
standard deviation of analyte concentrations in the set cannot 
be calculated; however, an alternative measure, variability in 
analyte detection, can be estimated. This variability is deter-
mined either by calculating the mean detection rate in all 
replicate sets or by calculating the percentage of replicate sets 
with inconsistent detections (sets that contain both quantified 
and censored values). The percentage of replicate sets with 
inconsistent detections is calculated as the number of replicate 
sets with inconsistent detections divided by the total number 
of replicate sets minus the number of sets with consistent non-
detections (all analytical results less than the reporting level). 
Replicate sets with consistent nondetections are excluded 
from the calculation because the objective of the analysis is to 
evaluate the variability of detection rather than the variability 
of nondetection. Mean detection rate and percentage of incon-
sistent replicate sets are closely related estimates of variability 
in analyte detection. Mean detection rates that are high corre-
spond to percentages of inconsistent replicate sets that are low, 
and the converse also is true. The percentage of inconsistent 
replicate sets is the preferred method because uncertainty can 
be estimated by calculating confidence limits.

Detections in a single replicate set are either consistent 
or inconsistent, regardless of the number of replicates in the 
set. Confidence limits for the proportion of measurements 
that have only two possible outcomes can be calculated using 
the method for percentage of nonconforming units (Hahn and 
Meeker, 1991, p. 104–105). In the context of replicate analy-
sis, nonconforming units are sets with inconsistent detections; 
conforming units are sets that contain only quantified results 
(consistent detections). The one-sided upper confidence limit 
for the percentage of inconsistent replicates sets, derived from 
equation 8 is computed as:
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where
	 PU	 is the upper confidence limit, in percent,
	 n	 is the total number replicate sets,
	 x	 is the number of replicate sets with 

inconsistent detections, and
	 F	 is the percentage point of the F distribution 

with 100(1–α) percent confidence and 
degrees of freedom df1 = 2x + 2 and 
df2 = 2n – 2x.

For example, Martin (2002, p. 25) reported on a set of 
pesticide replicate data that included 37 sets with consistent 
detections of alachlor and 7 sets with inconsistent detec-
tions. The percentage of inconsistent replicate sets is simply 
7 divided by the sum of 37 plus 7, or 15.9 percent. The upper 
90-percent confidence limit on this percentage is:
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Martin (2002, p. 33) assumes that if the percentage of incon-
sistent detections is less than 25 percent then the variability 
of detection can be considered low. For the alachlor example, 
there is only a 10 percent likelihood that the percentage is 
greater than 25.3 percent, which was close enough to the crite-
rion that detections could be considered reproducible without 
any qualification to interpretation of the data.

Evaluating Variability in Analyte Concentration

For many chemical constituents, variability (as standard 
deviation) is correlated with the mean concentration of that 
constituent in a replicate set. If a sufficient number of replicate 
sets have been collected over a range of concentrations, vari-
ability can be evaluated by estimating standard deviation as a 
function of concentration. Three approaches are presented for 
making these estimates:

•	 A piecewise-linear model, as used by Mueller and Titus 
(2005), hereinafter referred to as the “two-range model,”

•	 A pooled-variance model, as used by Martin (2002), and

•	 A bias-corrected log-log regression model.
These methods are described in the following sections and 
each is applied to two example datasets. The first dataset 
comprises concentrations of nitrite-plus-nitrate in replicates 
collected as part of an assessment of total nitrogen in surface 
water (Rus and others, 2012). (Note: Hereinafter this analyte is 
referred to simply as “nitrate,” which is the primary com-
ponent in oxygenated water.) The second dataset is atrazine 
concentrations in groundwater replicates collected for the 
NAWQA Program during 1993–2006. Results in both datasets 
were not subjected to typical data rounding; additional signifi-
cant figures were retained in order to provide more precise val-
ues for replicate standard deviation and mean concentration. 
Both datasets are provided in Appendix 1.

Two-Range Model

Over a range of low concentrations, standard deviation of 
replicates generally is uniform, but at higher concentrations, 
standard deviation tends to increase in proportion to concentra-
tion (figs. 13A and 14A). Within this high range, the relative 
standard deviation (RSD), defined as the ratio (in percent) of 
standard deviation to mean concentration, is generally uniform 
(figs. 13B and 14B). Both datasets (nitrate and atrazine) can thus 
be divided into two pieces: a low concentration range for which 
standard deviation is approximately constant, and a high con-
centration range for which RSD is approximately constant. For 
concentrations within the low range, variability can be estimated 
as the average standard deviation of replicates; within the high 
range, variability can be estimated as the average RSD.
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An appropriate boundary concentration between the 
low and high ranges can be selected by graphical analysis of 
standard deviation and RSD in relation to mean concentra-
tion. Adding a line, such as a locally weighted scatterplot 
smooth (LOWESS) through the center of the data (Chambers 
and others, 1983), can aid in the selection of the best bound-
ary concentration. Figure 15 shows the standard-deviation 
and RSD data for nitrate with LOWESS curves indicating 
that the change in slope occurs at a mean concentration of 
about 0.4–0.5 mg/L. Selection of the boundary within these 
limits is somewhat subjective. In this example, the boundary 
was selected at 0.5 mg/L, as indicated by the dashed line on 
the plot. This selection incorporates two replicates with low 
standard deviations, at concentrations of 0.46 and 0.48 mg/L, 
into the low range and keeps one replicate with a moderately 
high RSD, at a concentration of 0.47 mg/L, out of the high 
range. Figure 16 shows the atrazine data with LOWESS 

curves. In this case, the curve through the RSD data (fig. 16B) 
is not helpful in selecting a boundary concentration, but the 
change in slope for standard deviation (fig. 16A) is clear 
at a mean concentration of about 0.03–0.07 μg/L. For this 
example, the boundary was selected to be 0.04 μg/L, about the 
mid-point of the change in slope.

After the boundary concentration has been selected and 
the replicate data have been divided into the two ranges, aver-
age standard deviation is calculated for replicates in the low 
range and average RSD is computed for replicates in the high 
range. For the example data,

•	 Average standard deviation for low-range nitrate 
replicates is 0.0021 mg/L,

•	 Average RSD for high-range nitrate replicates is 
0.71 percent,

•	 Average standard deviation for low-range atrazine 
replicates is 0.0007 μg/L, and

•	 Average RSD for high-range atrazine replicates is 
3.53 percent.

Figure 13.  Plots of A, standard deviation and B, relative standard 
deviation, compared to mean concentration of nitrite-plus-nitrate 
in replicate surface-water samples collected for the total nitrogen 
study dataset (data from Rus and others, 2012, are compiled in 
table 1–1).

Figure 14.  Plots of A, standard deviation and B, relative standard 
deviation compared to mean concentration of atrazine in replicate 
groundwater samples collected for the National Water-Quality 
Assessment Program, 1993–2006 (data from Martin, 2012, are 
compiled in table 1–2).
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These averages can be pieced together as two linear estimates 
on a single graph of standard deviation (fig. 17). Over the low 
range, the line of estimated standard deviation is horizontal; 
over the high range, estimated standard deviation is linear 
relative to mean replicate concentration, with a slope equal to 
the average percent RSD. (Note: The high-range lines appear 
curved because the scale for mean concentration is logarithmic 
in figure 17.) Some adjustment to the boundary concentration 
might be necessary if the average low-range standard devia-
tion and high-range RSD do not intersect at the transition point. 
For the nitrate example, the estimated standard deviation at 
the transition point (0.5 mg/L) is 0.0021 mg/L using the low-
range average and 0.0036 mg/L (calculated as 0.5 mg/L times 
0.71 percent divided by 100) using the high range average RSD. 
The difference between these estimates is not decreased if the 
boundary is shifted to 0.4 or 0.6 mg/L. The difference could 
be decreased if the boundary was shifted to 0.3 mg/L, but then 
there would be only 13 replicate sets in the low range, so the 
average standard deviation could be poorly defined.

Pooled-Variance Model

Martin (2002) introduced the pooled-variance model as 
an alternative to the two-range model. The primary differ-
ence between these models is that the pooled-variance model 
splits the replicate data into more than two subsets and aver-
ages the variance, rather than standard deviation, to estimate 
variability within subsets. Variance is simply the square of 
standard deviation, but unlike standard deviations, variances 
are additive. When multiple statistical “samples” are combined 
(“pooled”), it is appropriate to use average variance but not 
average standard deviation.

For the pooled-variance model, the mean variance of 
each replicate subset is calculated as described by Anderson 
(1987, p. 44–45). This method requires that the individual vari-
ances within the subset be approximately equal; therefore, this 
requirement should be a criterion for subset selection. In prac-
tice, even approximate equality of variances within each subset 
is difficult to achieve, particularly at higher concentrations (for 
example, as in figs. 13 and 14). In addition, if replicates for 
many analytes are being evaluated, selecting subsets for each 

Figure 15.  Plots of the nitrate example data (from fig. 13) with a 
LOWESS smooth (solid red line) and selected boundary between 
low-range and high-range concentrations (dashed red line).
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Figure 16.  Plots of the atrazine example data (from fig. 14) with a 
LOWESS smooth (solid red line) and selected boundary between 
low-range and high-range concentrations (dashed red line).
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one becomes tedious. Martin surmounted these difficulties by 
using a standard set of concentration ranges for each analyte. 
Replicates with an overall range within 0.001–10 μg/L were 
divided into eight overlapping subsets: less than 0.01 μg/L, 
0.005–0.05 μg/L, 0.01–0.1 μg/L, 0.05–0.5 μg/L, 0.1–1 μg/L, 
0.5–5 μg/L, 1–10 μg/L, and greater than 5 μg/L. The mean 
(pooled) variance was computed for each subset and was 
considered to be the best estimate of replicate variance within 
the central part of the subset range. An illustration of this subset-
ting technique is provided in figure 18. The six data subsets that 
have specific end-points are shown; the subsets less than 0.01 
and greater than 5 μg/L are excluded. The applicable ranges of 
concentration for each subset also are shown. For example, the 
mean variance for data subset 2 (0.01–0.1 μg/L) was applied to 
concentrations from 0.025–0.075 μg/L; the mean variance for 
data subset 5 (0.5–5 μg/L) was applied to concentrations from 
0.75–2.75 μg/L, and so forth. The overlapping subset ranges 
improve estimates of variance for concentrations that otherwise 
would be at the extremes of a range.

Mean pooled variance was computed for each range of 
replicate concentration in the nitrate and atrazine example 
datasets using overlapping subsets as described above. Pooled 
standard deviation within each range of concentration was 
estimated as the square-root of the mean variance. The pooled 
standard deviations for all ranges of concentration are plotted 
as step-wise lines in figure 19. The lines are generally higher 

Figure 17.  Plots of the A, nitrate and B, atrazine replicate data 
(from figs. 13 and 14) with solid red lines indicating the best 
estimates of standard deviation based on the two-range model.
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Concentration,
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Data subset 3 Data subset 5

Applicable ranges

Figure 18.  Illustration of the data subsetting technique used in 
the pooled-variance model of replicate variability.

Figure 19.  Plots of the A, nitrate and B, atrazine replicate data 
(from figs. 13 and 14) with horizontal blue lines indicating the best 
estimates of standard deviation at each step based on the pooled-
variance model.
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than the center of mass for standard deviation of individual 
replicate sets within each range. This happens because the 
pooled estimates are based on squared standard deviation, so 
higher values have more weight in calculation of the mean.

Bias-Corrected log-log Regression Model

Both the previous models are somewhat difficult to apply 
because of the need to divide the data into subsets. In addition, 
this division requires subjective judgment, and if the subset 
boundaries are changed, estimated standard deviations also 
will change. In order to avoid these problems, a third model 
has been developed. This model is based on the approximately 
linear relation between the logarithms of replicate standard 
deviation and mean concentration. Log-transformation is well 
justified for both these variables. Standard deviation follows 
a chi-square distribution, which is positively skewed with 
a lower bound of zero (Ott and Longnecker, 2001, p. 344). 
Constituent concentrations in natural water also have positive 
skewness and a lower bound of zero (Helsel and Hirsch, 2002, 
p. 2). Such distributions can be approximated by a lognormal 
distribution, so log-transformations of these data will be more 
normally distributed and more appropriate for regression anal-
ysis. Figure 20 shows least-square regression lines fit through 
the base-10 log-transformed nitrate and atrazine example data. 
The relation between replicate standard deviation and mean 
concentration is approximately linear for both constituents. 
Note that replicates with identical analytical values have a 
standard deviation of zero, and these are excluded from the 
model because the logarithm of zero is undefined. The regres-
sion line appears to be a good predictor of average replicate 
standard deviation for both constituents, though somewhat 
better for atrazine as indicated by a higher coefficient of deter-
mination (R2) and lower standard error. In addition, the model 
residuals for both constituents are close to homoscedastic and 
are normally distributed, indicating that the log-transform was 
appropriate for linear regression.

Instead of the log-log model of standard deviation, a 
log-log model of variance might be preferable because such a 
model could be considered to produce “continuously pooled” 
estimates of variance over the entire range of concentration 
measurements. But that is not necessary because model results 
are identical for logarithms of either variance or standard 
deviation. The logarithm transform linearizes the relation 
between variance (Var) and standard deviation (SD):

	 Var = SD 2	 (23)

	 log(Var) = 2 log(SD)	 (24)

Thus, the coefficients of a log(Var) model will be exactly two 
times those of a log(SD) model. The estimated standard devia-
tion from the log(Var) model will be one-half the estimated vari-
ance, which will be exactly equal to the log(SD) model estimate. 
Thus it is reasonable to “continuously pool” log(SD) values in 
the same way as log(Var). The regression model then is

	 log(SD) = B0 + B1log(C)	 (25)

where
	 log(SD)	 is the logarithm of replicate standard deviation,
	 B0	 is the intercept of the regression line, 

estimated by least-squares,
	 B1	 is the slope of the regression line, estimated 

by least-squares, and
	 log(C)	 is the logarithm of mean replicate concentration.

The objective of any model of replicate variability is to 
estimate the mean standard deviation of replicate analyses 
in relation to mean replicate concentration. However, trans-
formation of log-log model estimates back to original units 
provides an estimate of median standard deviation, which will 
be lower than the mean. Several methods have been devel-
oped to compensate for this low bias (Helsel and Hirsch, 2002, 
p. 255–257). The most general of these is the smearing estimate 
(Duan, 1983). Residuals from the log-log equation are trans-
formed back to their original units. The mean of the transformed 
residuals is called the bias-correction factor. This factor (bcf) is 
multiplied by the estimated median standard deviations in order 
to correctly express these estimates as mean values:

Figure 20.  Plots of the base-10 log-transformed A, nitrate and 
B, atrazine example data (from figs. 13 and 14) with least-squares 
regression lines. (SD, standard deviation; C, concentration; R2, 
coefficient of determination)
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	 SD = bcf {10[B0+B1log(C)]}	 (26)

Figure 21 shows the example nitrate and atrazine replicate 
data with curves indicating the estimated standard deviation 
from the bias-corrected log-log model. The bias correction 
factors are 1.619 for the nitrate replicates and 1.517 for the 
atrazine replicates, so with the regression equations shown in 
figure 20, the complete bias-corrected equations are:

	 Nitrate: SD = 1.619 {10[–2.2281+0.6504log(C)]}	 (27)

	 Atrazine: SD = 1.517 {10[–1.7439+0.7745log(C)]}	 (28)

Both curves provide a good approximation of average repli-
cate standard deviation throughout the range of concentration.

Comparison of the Three Models of Variability

Each of the three models of variability has advantages 
and disadvantages. The two-range model is simple to apply, 
but requires subjective judgment about the boundary between 
the ranges of concentration. The statistical justification for the 
model is somewhat questionable because average values are 
computed using standard deviation rather than variance, as is 
the more common practice. In general, the model produces 
low estimates of standard deviation around the boundary 
concentration, because each line is affected by lower values 
at the extremes (low standard deviation at low concentrations 
and low RSD at high concentrations). In addition, estimates of 
standard deviation can be high at the highest concentrations if 
the average RSD is affected by many high values nearer the 
boundary. The pooled-variance model is the most complex to 
apply; it requires subjective judgment to determine multiple 
concentration boundaries. Statistical justification is good if 
variances are approximately equal within each range of con-
centration. If a systematic approach is used to set boundaries, 
application becomes simpler, but the risk of unequal variances 
increases. If variances are not equal, estimates of standard 
deviation can be too high or too low, particularly in the middle 
and upper ranges of concentration. The bias-corrected log-log 
model is the easiest to apply and requires no subjective judg-
ment. It is well justified as long as the log-log relation is linear. 
The primary disadvantage of this model is that replicates with 
identical analytical values produce undefined logarithms, 
which cannot be used to fit the regression line, so estimates of 
standard deviation might be slightly high throughout the range 
of concentrations.

Estimated standard deviation from the three models are 
shown in figure 22 for the nitrate and atrazine example data. 
All three produce essentially equivalent estimates of standard 
deviation at low concentrations. The two-range model pro-
duces the lowest estimates within the mid-range of concentra-
tions and the highest estimates at the extreme high concentra-
tions. The pooled-variance model produces high estimates 
for the standard deviation of nitrate within the mid-range of 
concentrations and low estimates for the standard deviation 

of atrazine at high concentrations. The bias-corrected log-log 
model produces reasonable estimates of standard deviation for 
both analytes throughout the concentration range.

Determining How Many Replicates to Collect
In the design phase of a project, the project staff must 

determine the number of field replicates that will be required to 
adequately estimate the potential variability in environmental 
samples. A statistical approach is appropriate even if only a few 
replicates are collected. The number of replicates required to 
meet project objectives should be determined based on the fol-
lowing two criteria:

•	 What level of confidence is necessary?

•	 How much uncertainty is acceptable?
Uncertainty is the potential underestimation of true variabil-
ity that could result from using standard deviation based on 
replicate data. (Note that overestimation of true variability is 

Figure 21.  Plots of the A, nitrate and B, atrazine replicate 
data (from figs. 13 and 14) with orange lines indicating the best 
estimates of standard deviation based on the bias-corrected log-
log model.
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of less concern in a conservative evaluation of data quality.) 
Uncertainty is determined by constructing an upper confidence 
limit on the estimated standard deviation (Hahn and Meeker, 
1991, p. 55):

	 S SD
df

U
df

=












χ2

,

	 (29)

where
	 SU 	  is the upper confidence limit on the true 

standard deviation,

	 SD	  is the standard deviation based on replicate 
samples,

	 df	  is degrees of freedom (defined below), and

	 χ2
α,df	 is the percentage point of the chi-square 

distribution with α uncertainty and df 
degrees of freedom.

In this equation, 1–α is the confidence that the population 
standard deviation (variability) has not been underesti-
mated. The expression under the radical can be redefined as 
(1+δ), where 100δ is the potential uncertainty, in percent. 
The population standard deviation could be as much as 1+δ 
times larger than the standard deviation estimated from the 
replicate data:

	 SU = SD(1 + δ)	 (30)

Substituting terms from equation 29 and then solving equa-
tion 30 for df yields:

	 df

dfχ2
1

α

δ
,













= + 	 (31)

	 df = (χ2
α,df)(1 + δ)2	 (32)

Typically, degrees of freedom is 1 less than the number of 
observations used to estimate SD; however, if SD is estimated 
by pooling the variance for pairs of replicates, df is equal to 
the sums of the degrees of freedom for each pair (Anderson, 
1987, p. 45). The SD estimated from two observations has 
1 degree of freedom; therefore, df becomes simply the number 
of replicate pairs (n), and:

	 n = (χ2
α,n)(1 + δ)2	 (33)

Equation 33 allows calculation of the required number 
of replicates as a function of confidence (1-α) and uncertainty 
(δ). Figure 23 shows the number of replicate pairs required to 
achieve various levels of uncertainty for three selected levels 
of confidence. For example, 10 replicates are required to 
estimate SD within 45 percent of the true standard deviation 
with 90-percent confidence. The uncertainty is that the true 
standard deviation could be as much as 45 percent greater than 
the estimated value. Increasing the number of replicates to 30 

will decrease the uncertainty to within 21 percent greater than 
the estimated standard deviation. Decreasing the uncertainty to 
15 percent would require 50 replicates.

A number of problems can interfere with making a good 
estimate of variability from field replicate data. The distribu-
tion of constituent concentrations among sets of field repli-
cates is not likely to be uniform, because the frequency of 
occurrence is typically inverse to concentration. Thus, low 
concentrations generally are predominant in field-replicate 
data, and few or no data might be available at high concen-
trations. In this instance, variability within the high range of 
concentrations might be impossible to define, particularly 
for the two-range model. Another issue results from labora-
tory rounding of the analyzed concentrations: the possible 

Figure 22.  Plots of the A, nitrate and B, atrazine replicate data 
(from figs. 13 and 14) showing comparison of estimated standard 
deviations from the three models.
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differences among rounded concentration values are not 
continuous but occur at discrete intervals that change with the 
order of magnitude of concentration. Thus, standard deviations 
can be defined with better resolution for low-concentration 
replicates than for high-concentration replicates. Again, 
determination of variability for the high range of concentra-
tions might be adversely affected. Good QC designs attempt 
to ensure that as many replicates as possible are collected at 
locations and during times when concentrations are expected 
to be high. Also, calculation of replicate standard deviations 
should always be done with unrounded data, if they are avail-
able from the laboratory.

Using Replicate Variability to Evaluate 
Environmental-Sample Data

Variability determined from field replicates can be used 
to make various evaluations of uncertainty in environmental-
sample data. In all these evaluations, standard deviation 
estimated by a model of variability is assumed to represent 
the true standard deviation (σ) for all samples collected within 
the same inference space as the replicates. If replicate vari-
ability was determined using the two-range model and the 
measured concentration (C) is in the low range, σ is estimated 
as the average standard deviation of replicates within that 
range. If the measured concentration is in the high range, σ is 
C (RSD/100). If the pooled-variance model was used, σ is the 
square-root of the average variance for the applicable range 
of concentrations containing the measured value. If the bias-
corrected log-log model was used, σ is calculated using the 
regression equation and bias-correction factor.

One particular use of replicate variability is to estimate 
the uncertainty of the concentration measured in a single envi-
ronmental sample. After σ has been estimated, uncertainty in 
the measured concentration can be determined by constructing 
the confidence interval for the true concentration:

	 [CL,CU] = C ± Z(1–α/2)σ	 (34)

where
	 CL,CU 	 is the lower and upper limits of concentration 

for the 100(1–α/2) percent confidence 
interval,

	 Z	 is the percentage point of the standard 
normal curve that contains an area of 
100(1–α/2) percent,

	 α	 is the probability that the confidence interval 
does not include the true concentration, and

	 σ	 is standard deviation of the measured 
concentration, independently estimated 
from replicate variability.

The second term, Z(1–α/2)σ, in equation 34 represents the error 
inherent in a single measurement of concentration due to 
field variability.

For example, consider surface-water samples collected 
within the inference space (same general area and during the 
same time) as the replicates used in the models of variability 
in the preceding section of this report. If nitrate in one of these 
samples is reported as 9.5 mg/L, standard deviation of this 
measurement can be estimated using the bias-corrected log-log 
model (eq. 27):

	 σ = 1.619 {10[–2.2281+0.6504log(9.5)]} = 0.0414 mg/L	 (35)

The Z-value for a 90-percent confidence interval (α/2 = 0.05) is 
1.645. Thus the 90-percent confidence interval (from eq. 34) is:

	 [CL,CU] = 9.5 ± 1.645(0.0414) = [9.43, 9.57]	 (36)

The actual concentration of nitrate in this sample is estimated, 
with 90-percent confidence, to be in the range of 9.43 to 
9.57 mg/L.

A measured concentration also could be compared to a 
water-quality standard in order to estimate the probability that 
the true concentration in the sample exceeded the standard. In 
this case, the standard is set equal to the one-sided confidence 
limit in one of the following equations:

	 CL = C – Z(1–α)σ	 (37)

	 CU = C + Z(1–α)σ	 (38)

Equation 37 is used if C is greater than the standard; equation 38 
if C is less than the standard. (If C is equal to the standard, the 
probability of exceedance is 50 percent.) The equation is solved 

Figure 23.  Number of replicate pairs required to determine 
selected upper confidence limits for uncertainty (potential 
under-estimation) in estimates of variability using the standard 
deviations of field replicates.
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for Z, and the associated α value is determined from a table of 
Z (standard normal) scores. The probability that the standard 
has been exceeded is 100(1–α) percent for measured concen-
trations greater than the standard and 100α percent for mea-
sured concentrations less than the standard. For the example, 
the measured concentration of nitrate was 9.5 mg/L and the 
drinking-water standard is 10 mg/L (http://water.epa.gov/drink/
contaminants/index.cfm). Because the measured value is less 
than the standard, equation 38 is used:

	 10 = 9.5 + Z(1–α)(0.0414)	 (39)

Solving for Z yields a standard-normal score of 12.1, for 
which α is less than 0.0001 (from tables in, for example, Ott 
and Longnecker, 2001, p. 1092). The probability of exceed-
ance is equal to 100α percent. For this example, the mea-
sured concentration of 9.5 mg/L indicates there is less than 
a 0.01 percent likelihood that the true concentration in the 
sample exceeded the 10 mg/L standard.

Another use of replicate variability is to estimate the min-
imum difference in mean concentrations that can be measured 
with a specified level of confidence. This estimate is based on 
the standard deviation (SDdiff) of the difference between mean 
concentrations in two sets of data, X1 and X2:

	 SD
SD

n

SD

ndiff
X X

= +
2

1

2

2

1 2 	 (40)

where
	SD SDX X

2 2

1 2
, 	 is variance of datasets X1 and X2, and

	 n1, n2	 is the number of samples in datasets X1 and X2.
Assuming no environmental variability (that is, no actual 
difference in true concentrations) the only source of SDdiff is 
field variability (SDFV), which is introduced by sampling and 
laboratory procedures and estimated from replicate variability. 
If the two sets of environmental data are of equal size, equa-
tion 40 becomes:

	 SD
SD

nFV
reps2 2( ) 	 (41)

where
	 SDreps	 is standard deviation estimated using one of 

the replicate models (two-range, pooled-
variance, or log-log regression).

The confidence interval for the difference between mean 
concentrations (∆C), for comparison of two sites or two time 
periods, is

	 ∆Cinterval = ∆C ± Z(1–α/2)SDdiff	 (42)

If ∆Cinterval includes zero, then the difference is not significant. 
If the only source of SDdiff is field variability, the difference is 
likely to be significant only if

	 |∆C| ≥ Z(1–α/2)SDFV	 (43)

For example, assume groundwater samples were col-
lected from four wells at a location and time within the infer-
ence space of the replicates from the previous example. The 
mean concentration of atrazine in these samples was 0.5 mg/L. 
The preceding equations can be used to determine the smallest 
increase or decrease that is likely to be statistically significant 
if sampling is repeated in the future. The standard deviation 
of atrazine at 0.5 mg/L can be estimated by using the bias-
corrected log-log model (eq. 28):

	 SDreps = 1.517 {10[–1.7439+0.7745log(0.5)]} = 0.0160 µg/L	 (44)

The smallest likely variability in the mean concentration 
(assuming no actual differences among wells) is then estimated 
by substituting the result of equation 44 into equation 41:

	 SDFV = 2 0 0160
4

2( . )  = 0.011 µg/L	 (45)

This is the unavoidable variability due to sample collection 
and analysis. The smallest difference in mean concentration 
that would be significant with 90-percent confidence is then 
(from eq. 43):

	 |∆C| = 1.645(0.011) = 0.019 µg/L	 (46)

Therefore, the mean concentration in samples from the four 
wells next year must be either less than 0.481 µg/L or greater 
than 0.519 to be considered a statistically significant decrease 
or increase.

Examples of Analyzing a Few Replicates 
Collected for a Single Project

For some small projects, only a few samples might be 
collected, so field variability cannot be modeled even if rep-
licates are collected with every sample. In this case replicate 
results can be compared to some assumed criteria in order to 
indicate whether environmental data generally seem accept-
able or might be affected by elevated variability. The follow-
ing examples illustrate several possible approaches to this type 
of analysis.

Replicate Example 1: Replicates Associated  
with One Set of Environmental Samples

The Pavillion project was described previously in “Blank 
Example 1” in “Evaluating Contamination Based on Single 
Blanks.” Samples collected from the monitoring well included 
two environmental samples (collected after different amounts 
of water had been purged from the well) with replicates for 
each sample (Wright and others, 2012). Concentrations were 
reported for 244 constituents in 570 replicate-analyte pairs.

The relative percent difference (RPD) between replicate-
pair results was calculated using the following equation:

	 RPD = −
+

100
larger result smaller result

larger result smaller reesult /2( )











	 (47)

http://water.epa.gov/drink/contaminants/index.cfm
http://water.epa.gov/drink/contaminants/index.cfm
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A criterion of 20-percent maximum difference between 
replicate-pair concentrations was considered to be accept-
able. Variability was within this criterion for 559 (98 percent) 
of the replicate-analyte pairs. One pair of results each for 11 
constituents exceeded the criterion, and so were qualified 
by adding a code to the data tables in the report. This code 
indicated that high variability might affect interpretation of 
environmental data, though no interpretation was included in 
the report.

Replicate Example 2: Replicates Associated  
with More than One Set of Environmental Samples

The Colorado Water Science Center’s Eagle River 
study was described previously in “Blank Example 3” in 
“Evaluating Contamination Based on Multiple Blanks.” Sam-
ples were collected one time from 61 valley-fill aquifer wells 
and quarterly for 1 yr from 10 surface-water sites. The QC 
samples included replicate pairs for six groundwater and seven 
surface-water samples (Rupert and Plummer, 2009, table 7). 
An RPD was calculated (eq. 47) for as many as 23 analytes in 
each replicate pair.

The RPD of replicate concentrations was very small for 
most analytes; mean RPD was less than 11 percent for all but 
ammonia (19.6 percent) and iron (25.4 percent) in surface-
water samples and for all but iron (28.7 percent) and manga-
nese (34.1 percent) in groundwater samples. The ammonia 
result was based on only two replicate pairs, both of which 
had low concentrations with little absolute difference between 
replicates. Project investigators concluded that “Overall, the 
replicate samples indicated that there was low variability (high 
precision) in the major-ion and nutrient analyses” (Rupert and 
Plummer, 2009, p. 27).

Replicate Example 3: Replicates Associated  
with More than One Set of Environmental Samples

The Gulf of Mexico oil spill project was described previ-
ously in “Blank Example 2” in “Evaluating Contamination 
Based on Single Blanks.” Various numbers of replicate water 
samples and replicate sediment samples were collected during 
each time period (pre-landfall and post-landfall). Results for 
many analytes in water samples were censored (less than the 
reporting level) in one or both replicate samples; these were 
excluded from replicate analysis. Water samples from the pre-
landfall and post-landfall periods were, for the most part, ana-
lyzed at different laboratories, so replicates from each period 
were compiled into separate datasets. For pre-landfall water 
samples, replicate pairs with quantified results were available 
for 21 analytes, and the number of pairs ranged from 4 to 27, 
depending on the analyte. For the post-landfall period, quanti-
fied results were available for 12 analytes, and the number of 
replicates pairs ranged from 4 to 7. Sediment samples col-
lected during both sampling periods were analyzed at the same 
laboratories: inorganic constituents at the USGS Sediment 
Chemistry Laboratory at the Georgia Water Science Center 
(Norcross, Georgia) and organic compounds at a non-USGS 

laboratory. Quantified results were available for 31 inorganic 
constituents in 4 to 17 replicate pairs and for 15 organic com-
pounds in 5 to 17 replicate pairs (Nowell and others, 2013).

Project investigators intended to evaluate variability 
using the two-range model, but the number of replicate results 
was too small to separate into low and high ranges of con-
centration, so variability was simply estimated as the mean 
RSD. This was considered a conservatively high estimate of 
variability, because high RSD values for low-concentration 
replicates were included in the calculation. Mean RSD was 
less than 10 percent for 13 of 21 analytes in pre-landfall 
replicate water samples and for 8 of the 12 analytes in post-
landfall samples. For sediment replicates, mean RSD exceeded 
20 percent for 27 of the 31 inorganic constituents and for 12 
of the 15 organic compounds. In subsequent interpretation 
of environmental data, Nowell and others (2013) noted that 
uncertainty could be a problem for any analyte with variability 
(RSD) greater than 10 percent for water or 20 percent for sedi-
ment. This uncertainty limited interpretation of differences in 
analyte concentration between the two sampling periods.

The variability estimated from replicate data presum-
ably was due to sampling or analytical errors. Adding more 
replicates could have provided more confidence in the estimate 
of variability; however, the sources of variability would have 
remained the same. The only way to decrease variability 
would have by using different sampling procedures or analyti-
cal methods.

Examples of Analyzing Many Replicates 
Collected for a Large Program

Datasets compiled for multiple projects or collected 
for large programs can include more than enough replicate 
samples so that analyte variability can be evaluated by using 
one of the statistical models. The NAWQA program provides 
a good example of such large datasets. The two following 
examples illustrate application of the two-range model to esti-
mate variability of nutrient analytes and the pooled-variance 
model to estimate variability of pesticides.

Replicate Example 4: Many Replicates Collected  
for a Large Program

During Cycle I of the NAWQA program (1992–2001), 
more than 1,300 surface-water replicates and more than 500 
groundwater replicates were collected within 52 study units 
around the nation (Mueller and Titus, 2005). Replicates from 
diverse locations could be compiled into a single dataset 
because they were collected and analyzed using similar meth-
ods and equipment (thus they were considered to represent 
a consistent inference space). Nutrient results from analysis 
of these replicates were evaluated in order to provide guid-
ance on the potential effects that variability might have on 
the interpretation of environmental data from any study unit 
(Mueller and Titus, 2005). Separate evaluations were made for 
surface-water replicates and groundwater replicates because 
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these were collected using different methods. For two analytes 
(total Kjeldahl nitrogen and total phosphorus), the replicate 
data were split into three time periods, corresponding with 
changes in laboratory analytical methods. Variability was esti-
mated using the two-range model; estimates for a few selected 
analytes are listed in table 14.

Using the estimates of variability in table 14, confidence 
intervals were constructed around analyte concentrations 
that were considered critical values for individual nutrients 
(table 15). Critical values included previously identified back-
ground concentrations and various water-quality standards 
or criteria.

The confidence intervals listed in table 15 allowed the 
authors to make the following statements about the effects 
of variability on interpretation of data from environmental 
samples (Mueller and Titus, 2005, p. 24–25).

95 percent of all measured concentrations within the 
range of critical values identified for ammonia in 
streams are expected to differ from the actual con-
centrations by no more than 0.25 mg/L or 9 percent 
of the measurement, whichever is smaller. In most 
circumstances, variability in this range has little 
effect on interpretation of ammonia data.

At the highest aquatic-life criterion for ammonia 
(6.7 mg/L), the 95-percent confidence interval is 
0.25 mg/L. Therefore, measured concentrations as 
high as 6.95 mg/L do not indicate exceedance of 
the criterion, with 95-percent confidence. Similarly, 
measured concentrations as low as 6.45 mg/L do not 
necessarily indicate compliance.

For nitrite-plus-nitrate measurements at the 
drinking-water standard (10 mg/L), the 95-percent 
confidence interval is approximately 0.4 mg/L for 
stream samples. If laboratory results are rounded 

to two significant figures, a reported concentration 
of at least 11 mg/L would indicate an exceedance 
of the standard with 95-percent confidence. In this 
instance, the uncertainty caused by sampling vari-
ability has no real effect, because it does not change 
the least significant figure of the rounded value.

For orthophosphate [and for] total phosphorus sam-
pled after 1998, … differences of 0.02 mg/L would 
be considered significant for most individual mea-
surements, and differences greater than 0.006 mg/L 
between means of 10 measurements would likely be 
unaffected by sampling variability. For the highest 
critical value for ammonia (6.7 mg/L), differences in 
individual measurements must exceed 0.5 mg/L to 
be considered significant.

Replicate Example 5: Many Replicates Collected  
for a Large Program

Another report on the quality of NAWQA data sum-
marized pesticide results from replicate samples collected 
in streams and groundwater wells within the first 20 study 
units during 1992–1997 (Martin, 2002). Analytical data 
for 86 pesticides in 402 sets of surface-water field replicates 
and 187 sets of groundwater field replicates were used to 
evaluate variability. The variability of pesticide detections was 
assessed by calculating the mean percentage detection and the 
percentage of inconsistent replicates sets, as described in the 
section of this report on “Evaluating Variability in Analyte 
Detection.” The variability of pesticide concentrations was 
assessed by using the pooled-variance model to estimate 
standard deviation and relative standard deviation for eight 
overlapping ranges of concentration.

Estimates of variability were presented in a series of 
tables. Selected examples for variability of detection are listed 
in table 16 and for variability of concentration in table 17.

Martin provided computational tools, similar to those 
in this report, so data users could evaluate the effects of 
variability on interpretations of subsets of the NAWQA data. 
He also drew the following general conclusions about the 
full dataset:

The variability of detection for most pesticides is high 
at concentrations less than the minimum reporting 
level, but the variability of detection decreases dra-
matically at higher concentrations. … The overall rate 
of inconsistent replicate sets is 60.0 percent in the low 
range of concentration, 13.7 percent in the medium 
range, and 1.1 percent in the high range. … Incon-
sistent detections in replicate sets likely were caused 
by variability in the analytical method and by water-
matrix interferences (or other loss processes) that 
cause false-negative errors. Consequently, estimates 
of the frequency of detection of pesticides in envi-
ronmental water samples collected for the NAWQA 

Table 14.  Examples of variability estimated from average standard 
deviation within a low range and average relative standard deviation 
within a high range of constituent concentrations (from Mueller and 
Titus, 2005, table 4).

[<, less than; >, greater than; mg/L, milligrams per liter; P, phosphorus]

Constituent

Concen- 
tration 
range 
(mg/L)

Variability

Value Units

Ammonia in surface water <0.2 0.0045 mg/L
>0.2 1.9 percent

Nitrate in surface water <1 0.012 mg/L
>1 2.2 percent

Orthophosphate in surface water <0.1 0.0027 mg/L
>0.1 2.8 percent

Total P in surface water 1999–2001 <0.2 0.0032 mg/L
>0.2 4 percent

Nitrate in groundwater <1 0.043 mg/L
>1 2.9 percent
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Program probably are biased low because of false-
negative errors at concentrations near the minimum 
reporting level.

Results of correlation analyses indicate that for most 
pesticides and concentrations, pooled estimates of RSD 
rather than pooled estimates of SD should be used to esti-
mate variability because pooled estimates of RSD are less 
affected by heteroscedasticity. The median pooled RSD 
was calculated for all pesticides to summarize the typical 
variability for pesticide data collected for the NAWQA 
Program. The median pooled RSD was 15 percent at 
concentrations less than 0.01 μg/L, 13 percent at concen-
trations near 0.01 μg/L, 12 percent at concentrations near 
0.1 μg/L, 7.9 percent at concentrations near 1 μg/L, and 
2.7 percent at concentrations greater than 5 μg/L.

Publication of Quality-Control 
Information

The primary goals for the publication of QC information are 
to (1) provide evidence for and insights about the sources and mag-
nitude of bias and variability in measurements of environmental 
water-quality samples, and (2) explain how knowledge of bias and 
variability influenced the analysis and interpretation of the envi-
ronmental data. This section of the report provides suggestions of 
the types of QC information that might be useful to include in the 
publications resulting from a variety of water-quality assessment 
projects. The guiding principal is that the types of QC information 
most needed are those that support specific study objectives and the 
conclusions of the study.

Table 15.  Estimated sampling variability and confidence intervals around measured concentrations of nutrient analytes at selected 
critical values used to interpret environmental data (from Mueller and Titus, 2005, tables 5 and 6).

[mg/L, milligrams per liter; N, nitrogen; P, phosphorus; RSD, relative standard deviation]

Constituent
Critical value Estimated sampling 

variability1 
(mg/L)

95-percent confidence interval 
(mg/L)

Concentration 
(mg/L)

Description
Individual 

measurements
Mean of 

10 measurements
Ammonia in surface water 0.1 Background2 0.0045 0.091–0.109 0.097–0.103

0.18 Aquatic-life criterion3 0.0045 0.171–0.189 0.177–0.183
6.7 Aquatic-life criterion3 0.13 6.45–6.95 6.62–6.78

Nitrate in surface water 0.6 Background2 0.012 0.576–0.624 0.593–0.607
10 Drinking-water standard4 0.22 9.56–10.4 9.86–10.1

Orthophosphate in surface water 0.05 Recommended to avoid 
eutrophication5

0.0027 0.045–0.055 0.048–0.052

Total P in surface water 1999–2001 0.1 Recommended to avoid 
eutrophication5

0.0032 0.094–0.106 0.098–0.102

Nitrate in groundwater 1.1 Background2 0.03 1.04–1.16 1.08–1.12
10 Drinking-water standard4 0.29 9.43–10.6 9.82–10.2

1From table 14. For concentrations in the high range, sampling variability is concentration times RSD divided by 100.
2Mueller and others, 1995.
3Criterion varies depending on water temperature and pH (U.S. Environmental Protection Agency, 1999).
4http://water.epa.gov/drink/contaminants/index.cfm
5U.S. Environmental Protection Agency, 1986.

Table 16.  Variability of pesticide detections in field replicates (from Martin, 2002, tables 5 and 6).

[MRL, minimum reporting level; ≥, greater than or equal to; <, less than; >, greater than]

Pesticide MRL
Number of replicate sets with Mean 

detection rate 
(percent)

Replicate sets with  
inconsistent detections 

(percent)
At least one 

detection
Consistent 
detections

Inconsistent 
detections

Measured
90-percent upper 
confidence limit

Mean concentration of the replicate sets: ≥ MRL and < 10 times the MRL
Atrazine 0.001 60 50 10 90.2 16.7 24.5
Desethylatrazine 0.002 80 73 7 95.9 8.8 14.3
Simazine 0.005 99 98 1 99.5 1.0 3.9

Mean concentration of the replicate sets: > 10 times the MRL
Atrazine 0.001 156 156 0 100.0 0.0 1.5
Desethylatrazine 0.002 82 82 0 100.0 0.0 2.8
Simazine 0.005 64 64 0 100.0 0.0 3.5

http://water.epa.gov/drink/contaminants/index.cfm
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Describe Institutional  
Quality-Assurance Programs

For some water-sampling projects, it may be appropri-
ate to describe or cite the various quality-assurance programs 
that are applicable to the project. Many of these programs 
document various office, field, and laboratory activities that 
are used to ensure the quality of water-quality data. Examples 
of these programs include the project-specific or program-
specific QA plans (for example, Mueller and others, 1997, for 
the NAWQA Program), USGS Water Science Center QA plans 
(template available at http://water.usgs.gov/owq/QAfolder/), 
the USGS National Field Manual (U.S. Geological Survey, 
variously dated), analytical method documents (for example, 
Sandstrom and others, 2001), Federal and State laboratory 
certification programs (for example, EPA Drinking Water 
Laboratory Certification Program: http://water.epa.gov/scitech/
drinkingwater/labcert/), inter-laboratory quality programs 
(for example, the BQS Standard Reference Sample Project: 
http://bqs.usgs.gov/srs/), and external laboratory QA programs 
(for example, the BQS Inorganic and Organic Blind Sample 
Projects: http://bqs.usgs.gov/).

Define Quality-Control Terms

QC terms have not been standardized across agencies 
or programs. The same or similar terms might refer to differ-
ent sources of bias or variability and, conversely, different 
QC terms might refer to the same sources of bias or vari-
ability. For example, the term “split replicates” is used by the 
USGS to identify a set of two or more essentially identical 
subsamples that have been produced by splitting (subdivid-
ing) a single sample. All subsamples are analyzed by the same 
method and laboratory in order to estimate the variability of 
sample processing and laboratory analysis. The term “split 
samples” is used by other agencies to identify a similar set of 
subsamples split from a single sample, except that each of the 
subsamples is analyzed by a different laboratory in order to 
investigate the bias between laboratories.

Clearly, it is desirable that project reports define the QC 
terms used in the report, explain how QC samples are collected 
or produced, and explain what potential sources of bias and 
variability are included and excluded in each type of sample.

Describe the Field Quality-Control Program

Project reports should describe the design of the field 
QC program and should specify which potential sources of 
bias and variability were considered important for assess-
ment in view of the study objectives and possible outcomes. 
Examples of spatial sources include land use (agricultural, 
industrial, commercial, and others); land-management activi-
ties such as the presence of irrigation, tillage, and drainage; 
the presence of point or non-point sources of contaminants; 
geographic characteristics, such as altitude and climate; and 
the types of water sampled (streams, lakes, groundwater). 
Examples of temporal sources include seasonal cycles, stream-
flow conditions, water withdrawal or discharge schedules, and 
environmental conditions during sampling, such as the occur-
rence of precipitation, blowing dust, or aerial spraying.

Reports should include a description of the types and 
numbers of QC samples that were collected to assess potential 
sources of bias and variability and should indicate how these 
samples were distributed across the various sources. Explain 
which factors were considered in determining the types, num-
ber, and distribution of QC samples.

Summarize the Field Quality-Control Results

Project reports should summarize and interpret the field 
QC data in relation to the potentially important spatial and 
temporal sources of bias and variability targeted in the design 
of the field QC program. If data quality is similar across the 
different levels of a source, then QC samples could be pooled 
to estimate data quality. If data quality varies across the dif-
ferent levels of the source, then QC samples should be used 
to estimate the quality of data at each level. For example, if 
the frequency and magnitude of herbicide contamination in 

Table 17.  Variability of pesticide concentrations in field replicates 
(from Martin, 2002, table 7).

[MRL, minimum reporting level; μg/L, micrograms per liter; ≥, greater than 
or equal to; <, less than]

Concentration 
range 
(μg/L)

Number of 
replicate 

sets

Median pooled 
standard 
deviation 

(μg/L)

Median pooled 
relative standard 

deviation 
(percent)

Atrazine: MRL 0.001 μg/L
<0.01 49 0.0012 16.3
0.005 to <0.05 90 0.0014 11.8
0.01 to <0.1 80 0.0039 7.6
0.05 to <0.5 78 0.0128 7.5
0.1 to <1 62 0.0258 6.9
0.5 to <5 18 0.1396 7.1
1 to <10 12 0.1732 5.8
≥5 6 1.377 2.5

Desethylatrazine: MRL 0.002 μg/L
<0.01 50 0.00095 18.2
0.005 to <0.05 79 0.0046 20.4
0.01 to <0.1 82 0.0061 18.5
0.05 to <0.5 42 0.0151 12.0
0.1 to <1 25 0.0258 10.8
0.5 to <5 3 0.0784 8.0
1 to <10 1 0.0919 7.6

Simazine: MRL 0.005 μg/L
< 0.01 28 0.0010 14.8
0.005 to <0.05 98 0.0020 11.1
0.01 to <0.1 97 0.0027 8.4
0.05 to <0.5 52 0.0137 7.9
0.1 to <1 36 0.0197 8.8
0.5 to <5 12 0.1472 7.0
1 to <10 7 0.1989 9.1

http://water.usgs.gov/owq/QAfolder/
http://water.epa.gov/scitech/drinkingwater/labcert/
http://water.epa.gov/scitech/drinkingwater/labcert/
http://bqs.usgs.gov/srs/
http://bqs.usgs.gov/
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field blanks is similar in urban and agricultural areas, then 
field blanks from both land uses could be pooled to estimate 
contamination, and land use does not need to be considered 
in assessing data quality. If herbicide contamination is much 
greater during the growing season than during the non-grow-
ing season, separate estimates of the frequency and magnitude 
of contamination should be made for each season, and the sea-
son needs to be considered in evaluating contamination effects 
on environmental data. Likewise, if any data-quality problems 
were identified and corrected during the course of the study, 
there will be two populations of data: one before and one after 
the correction. Data quality and its effect on interpretation of 
the environmental data will be different for each time period.

Tables of QC data provide little insight into data qual-
ity. Statistical summaries and graphical presentation of bias 
and variability are much more informative and provide 
evidence for or against pooling QC samples either spatially 
or temporally. Graphs are particularly effective for convey-
ing data-quality information. Some pertinent graphs include 
(1) boxplots of data for different potential sources of bias 
and variability (for example, Martin and Eberle, 2011, fig. 2; 
Rowe and others, 2005, Appendix 1), (2) charts of data quality 
organized by chemical (for example, Mueller and Titus, 2005, 
fig. 2; Rowe and others, 2005, fig. 6), (3) scatterplots with a 
LOWESS smooth of data quality as a function of concentra-
tion or time (for example, Martin, 2002, fig. 4), and (4) cumu-
lative frequency plots of data quality (for example, Bender and 
others, 2011, Appendix 1).

Statistical summaries of field blanks should include the 
number of blanks, the percentage of blanks with detections, 
percentiles of concentrations, and confidence limits for percent 
detections and percentile concentrations. Statistical summaries 
of field matrix spikes should include the number of spikes, the 
concentration spiked, median or mean recovery, variability 
of recovery (percentiles, standard deviation, relative stan-
dard deviation), and confidence limits for recovery statistics. 
Statistical summaries of field replicates should include the 
number of replicate sets, typical variability (standard devia-
tion or relative standard deviation), and the applicable range of 
concentration for various estimates of variability.

Characterize Data Quality

Investigators must decide and define which datasets best 
characterize the bias and variability of the project’s environ-
mental data. These datasets might include field and laboratory 
QC data collected for the project, laboratory QC data from 
the NWQL or BQS, and QC data compiled from a national 
program or multiple projects within a Science Center. Small 
budget water-sampling projects might only be able to afford 
a few QC samples. Confidence intervals on statistics of bias 
and variability will be large for estimates based on this small 
QC dataset. Such projects should endeavor to use the same 
field protocols, equipment, supplies, analytical methods, and 
laboratories as are used by national programs or multiple 
projects within a Water Science Center. In doing so, the small 

amount of project QC data can be compared to the larger set 
of QC data for these programs or projects. If estimates of bias 
and variability are comparable, the small project is justified in 
using the larger QC dataset to characterize data quality for the 
small project.

The bias and variability of field data are unlikely to be 
less than the bias and variability of the analytical method as 
implemented by the laboratory. Because field QC samples 
are intended to assess additional sources of bias and vari-
ability attributed to field activities, the magnitude of bias 
(contamination) and variability measured by laboratory QC 
samples should be considered the minimum expected in field 
QC samples.

Consider Data Quality in Analysis  
and Interpretation

Project reports should provide evidence that data quality 
is adequate for all analysis and interpretation of environmen-
tal data, or explain how data analysis or interpretation had 
to be restricted. Evidence of adequate data quality includes 
quantitative indication that bias and variability were small 
in relation to critical data values. Examples of restricted data 
analysis include the following: (1) decided not to use data for 
some constituents, samples, sites, or time periods because of 
high bias or variability; (2) developed criteria for determining 
meaningful differences between single samples on the basis of 
variability of field replicates; (3) adjusted environmental data 
(for analysis) by some amount to account for contamination; 
(4) adjusted environmental data (for analysis) by some percent 
to account for bias in recovery. (Note that data values can be 
adjusted for project reporting and interpretation, but should 
not be changed in the NWIS database.) Examples of restricted 
data interpretation include the following: (1) failed to achieve 
or changed some project objectives or reduced project scope 
because of data-quality problems; (2) gave little emphasis to 
discussion or interpretation of some constituents, sites, or time 
periods because of potential bias or variability in environmen-
tal data; (3) determined that exceedance of water-quality stan-
dards or criteria was uncertain because analytical results could 
have negative bias or high variability; and (4) determined that 
the frequency of detection for some constituents might be 
overestimated because concentrations were similar to those in 
some field blanks.

Project reports should include statements that quan-
tify the estimated bias and variability to the extent pos-
sible based on the QC data and should indicate whether the 
potential bias and variability based on these estimates has 
any effect on interpretation of the environmental data. If 
any results in the environmental data are determined to be 
of poor quality, add metadata to fields (such as sample and 
result comments) and codes (such as data-quality indicator 
codes, remark codes, and value qualifier codes) provided in 
NWIS to capture the outcome of the data-quality assess-
ment (http://help.waterdata.usgs.gov/codes-and-parameters/
codes#WQ; Dupre and others, 2013, Appendix A).

http://help.waterdata.usgs.gov/codes-and-parameters/codes#WQ
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Ideally, the QC data can be used to show that bias and 
variability have a negligible effect, and that the environmental 
data are adequate for interpretation in support of project objec-
tives. When high bias or variability are indicated, however, 
thoughtful analysis and publication of the QC information will 
help prevent misinterpretation or misuse of the data.
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Glossary

Quality management plan (EPA, p. A–3)  A 
document that describes the quality system in 
terms of the organizational structure, func-
tional responsibilities of management and 
staff, lines of authority, and required inter-
faces for those planning, implementing, and 
assessing all activities conducted.
Quality assurance project plan (EPA, p. A–3, 
IDQTF, p. 66)  A formal document describing 
in comprehensive detail the necessary quality 
assurance, quality control, and other techni-
cal activities that must be implemented to 
ensure that the results of the work performed 
will satisfy the stated performance criteria.
Data quality indicators (IDQTF, p. 7, 12, and 
63)  The quantitative statistics and qualita-
tive descriptors that are used to interpret the 
degree of acceptability or utility of data to the 
user. The principal data quality indicators are 
precision, accuracy/bias, comparability, com-
pleteness, representativeness, and sensitivity. 
Also referred to as data quality attributes.
Data quality objectives (DQOs) (IDQTF, 
p. 63)  Qualitative and quantitative state-
ments derived from the DQO process. DQOs 
can be used as the basis for establishing the 
quality and quantity of data needed to support 
decisions.
Bias  The systematic error inherent in a 
method or measurement system. The error can 
be positive (for example, contamination or 
spectral interference) or negative (for exam-
ple, analyte loss or signal suppression).
Contamination bias  Positive bias due to the 
inadvertent introduction of analytes into water 
samples during sample collection, processing, 
shipment, or analysis.

Definitions are grouped by topic and arranged within topics by pertinence, rather than 
alphabetically. Some definitions are quoted from other publications; these are in italics and 
referenced by the acronyms EPA (U.S. Environmental Protection Agency, 2001a), IDQTF 
(Intergovernmental Data Quality Task Force, 2005d), or the USGS NWQL (Maloney, 2005). 
Some of these quoted definitions were derived from the National Environmental Laboratory 
Accreditation Conference (NELAC) (National Environmental Laboratory Accreditation Con-
ference, 2003). Definitions from these publications are not necessarily consistent with defini-
tions used in this report but are provided for comparison. Some common QA/QC terms have 
not been specifically defined in USGS publications but are included herein with their IDQTF 
definition to make this list more comprehensive. A list of definitions for the variables used in 
equations in this report is included at the end of this section.

General QA/QC Terms

Quality assessment  The overall process of 
assessing the quality of environmental data 
by reviewing the application of the quality-
assurance elements and the analysis of the 
quality-control data.
Quality assurance (QA)  Procedures used to 
control the non-quantifiable components of a 
project, such as sampling at the correct loca-
tion with the proper equipment and using the 
appropriate methods.

(definition used by EPA, p. A–3 and IDQTF, 
p. 66; obtained from NELAC)  An inte-
grated system of management activities 
involving planning, implementation, assess-
ment, reporting, and quality improvement 
to ensure that a process, item, or service is 
of the type and quality needed and expected 
by the client.

Quality control (QC)  Data generated to esti-
mate the magnitude of the bias and variability 
in the process of obtaining environmental 
data.

(EPA, p. A–3 and IDQTF, p. 66; from 
NELAC)  The overall system of technical 
activities that measure the attributes and 
performance of a process, item, or service 
against defined standards to verify that they 
meet the stated requirements established by 
the customer; operational techniques and 
activities that are used to fulfill requirements 
for quality; also the system of activities and 
checks used to ensure that measurement 
systems are maintained within prescribed 
limits, providing protection against “out of 
control” conditions and ensuring the results 
are of acceptable quality.



50    Design, Analysis, and Interpretation of Field Quality-Control Data for Water-Sampling Projects

Variability  Random error in independent 
measurements as the result of repeated applica-
tion of the process under specific conditions. 
Variability can be statistically described by 
standard deviation, standard error, variance, 
or range in either absolute or relative terms.
Accuracy  The degree of agreement between a 
measured value and the true or expected value. 
Accuracy is affected by both bias and variability, 
and cannot be independently determined.

(IDQTF, p. 13 and 62)  The degree of agree-
ment between an observed value and an 
accepted reference value. Accuracy includes 
a combination of random error (precision) 
and systematic error (bias), components 
which are due to sampling and analytical 
operations.

Precision  The degree of mutual agreement 
among independent measurements from the 
repeated application of a measurement process 
under identical conditions. Precision is the 
inverse of variability, but unlike variability, 
precision cannot be directly determined.

(IDQTF, p. 13 and 65)  The degree to which 
a set of observations or measurements of the 
same property, obtained under similar condi-
tions, conform to themselves.

Sampling variability  The variability intro-
duced into sample measurements because of 
field procedures (collection, processing, and 
shipment) plus laboratory analysis.

QC-Sample Terms

Basic QC Samples  QC samples that measure 
all of the potential sources of bias or variability 
that might affect environmental samples and 
are used to estimate the overall quality of the 
environmental data. Basic QC samples are field 
blanks, field matrix spikes, and field replicates.
Topical QC Samples  QC samples that 
measure a limited number of sources of bias 
or variability; thus, they cannot be used to esti-
mate the overall quality of environmental data.
Blank  A sample prepared with water that is 
intended to be free of measurable concentra-
tions of the analyte(s) of interest for determin-
ing contamination.

(NWQL, p. E.1; from NELAC)  A sample that 
has not been exposed to the analyzed sample 
stream to monitor contamination during 
sampling, transport, storage, or analysis. 
The blank is subjected to the usual analytical 

and measurement process to establish a 
zero baseline or background value and is 
sometimes used to adjust or correct routine 
analytical results.
(IDQTF, p. 62)  A sample subjected to the 
usual analytical or measurement process 
to establish a zero baseline or background 
value. A sample that is intended to contain 
none of the analytes of interest. A blank is 
used to detect contamination during sample 
handling, preparation, and/or analysis.

Field blank  A sample of blank water that has 
been exposed in the field to all sampling equip-
ment and conditions that normally are associ-
ated with the collection of an environmental 
sample.

(NWQL, p. E.3; from NELAC)  A blank 
prepared on-site by filling a clean container 
with deionized water and appropriate 
preservative, if any, for the specific sampling 
activity being undertaken.
(IDQTF, p. 63)  A blank used to provide 
information about contaminants that may 
be introduced during sample collection, 
storage, and transport; also a clean sample, 
carried to the sampling site, exposed to 
sampling conditions, transported to the 
laboratory, and treated as an environmental 
sample.

Equipment blank (IDQTF, p. 63)  A sample of 
water free of measurable contaminants poured 
over or through decontaminated field sampling 
equipment that is considered ready to collect 
or process an additional sample. The purpose 
of this blank is to assess the adequacy of the 
decontamination process. Also called rinse 
blank or rinsate blank.
Trip blank (IDQTF, p. 68)  A clean sample of 
water free of measurable contaminants that is 
taken to the sampling site and transported to 
the laboratory for analysis without having been 
exposed to sampling procedures. Analyzed to 
assess the contamination introduced during 
sample shipment. Typically analyzed only for 
volatile organic compounds.
Source-solution blank  A sample of blank 
water taken directly from its source container 
without exposure to sampling equipment or 
conditions.
Method blank (IDQTF, p. 65)  A sample of 
a matrix similar to the batch of associated 
samples (when available) in which no target 
analytes or interferences are present at con-
centrations that impact the analytical results. 
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It is processed simultaneously with samples of 
similar matrix and under the same conditions 
as the samples.
Reagent blank (IDQTF, p. 66)  An aliquot of 
water or solvent free of measurable contami-
nants analyzed with the analytical batch and 
containing all the reagents in the same volume 
as used in the processing of the samples. The 
method blank goes through preparatory steps; 
the reagent blank does not.

(NWQL, p. E.7; from NELAC)  A sample con-
sisting of reagent(s), without the specified 
analyte or sample matrix, introduced into 
the analytical procedure at the appropriate 
point and carried through all subsequent 
steps to determine the contribution of the 
reagents and of the involved analytical 
steps. [Note: NWQL also refers to these as 
“Method Reagent Blanks.”]

Reference material  A sample of sufficiently 
well-known composition to be used for assess-
ment of biases in analytic methods.

(NWQL, p. E.7; from NELAC)  A material or 
substance, one or more properties of which 
are sufficiently well established to be used 
for the calibration of an apparatus, the 
assessment of a measurement method, or for 
assigning values to materials.

Laboratory control sample (IDQTF, p. 64)  A 
sample of known composition prepared using 
reagent-free water or an inert solid that is 
spiked with analytes of interest at the mid-
point of the calibration curve or at the level of 
concern. It is analyzed using the same sample 
preparation, reagents, and analytical methods 
employed for regular samples.
Proficiency testing sample (IDQTF, p. 65–66)   
A sample, the composition of which is unknown 
to the laboratory or analyst, which is provided 
to that analyst or laboratory to assess capa-
bility to produce results within acceptable 
criteria. Proficiency testing (PT) samples can 
fall into three categories: (1) prequalification, 
conducted prior to a laboratory beginning 
project work, to establish initial proficiency; 
(2) periodic (e.g., quarterly, monthly, or 
episodic) to establish ongoing laboratory 
proficiency; and (3) batch-specific, which is 
conducted simultaneously with analysis of a 
sample batch. A PT sample is sometimes called 
a performance evaluation sample.
Spike (NWQL, p. E.8; from NELAC)  A known 
mass of specified analyte added to a blank sam-
ple or subsample; used to determine recovery 
efficiency or for other quality-control purposes.

Matrix spike (IDQTF, p. 65)  A sample pre-
pared by adding a known concentration of 
a target analyte to an aliquot of a specific 
homogenized environmental sample for which 
an independent estimate of the target analyte 
concentration is available. The matrix spike is 
accompanied by an independent analysis of the 
unspiked aliquot of the environmental sample. 
Spiked samples are used to determine the effect 
of the matrix on a method’s recovery efficiency.

Reagent spike (NWQL, p. E.7)  A synthetic 
matrix fortified with known concentrations 
of all, or a representative selection of, the 
method analytes. The synthetic matrix usually 
is the same as the method blank, for example, 
organic-free water or sodium sulfate. For the 
purpose of interpreting the corrective action 
guidelines described in this document, a 
reagent spike failure is defined as an out-
of-control recovery for any relevant spiked 
analyte.

Replicates  Two or more environmental sam-
ples taken at the same time in the same loca-
tion. They are intended to estimate sampling 
variability and are taken through all steps of the 
analytical procedure in an identical manner.

Split replicates  Replicate samples prepared 
by taking representative portions from a single 
sample in the field or laboratory. 

Subsample duplicates (IDQTF, p. 64)  Samples 
resulting from one sample collection at one 
sample location.

Concurrent replicates  Multiple samples that 
are collected in the same location at about the 
same time.

Sequential replicates  Multiple samples that 
are collected in the same location one after 
another.

Co-located duplicates (IDQTF, p. 64)  Samples 
collected from side-by-side locations at the 
same point in time and space.

Irreplicates  Replicates used to investigate 
some difference in the data-generation process. 
Typically, the goal of collecting irreplicates is 
to assess the comparability of data generated 
differently. Irreplicates are not used to assess 
sampling variability.

Split samples (IDQTF, p. 67)  Two or more 
representative portions taken from one sample 
in the field or laboratory, analyzed by at least 
two different laboratories and/or methods.
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Variables Used in Equations

α	 a specified significance level (0 through 1); the probability that a confidence interval does not include the true value
∆Cinterval	 the confidence interval for the difference between mean concentrations in two sets of data
∆C	 the difference in two mean concentrations
δ	 potential uncertainty (0 through 1)
μ	 the population mean
ϕ	 population proportion
σ	 the standard deviation of a measured concentration, independently estimated from replicate variability
χ2	 the percentage point of the chi-square distribution for a specified area and degrees of freedom
B	 the binomial probability function
B0	 the intercept of a regression line, estimated by least-squares
B1	 the slope of a regression line, estimated by least-squares
bcf	 the bias-correction factor
Cenv	 the concentration of an analyte in the background environmental sample, in micrograms per liter
Cexpected	 the concentration of a spiked analyte expected in the spiked sample, in micrograms per liter
Csol	 the concentration of an analyte in the spike solution, in micrograms per milliliter
Cspike	 the concentration of an analyte in the spiked matrix sample, in micrograms per liter
CI	 the overall width of a confidence interval
d	 the half-width of a confidence interval
df	 the degrees of freedom used to determine a statistical value (t, Z, F, or x2)
CL	 the lower limits of concentration for the 100(1–α/2) percent confidence interval
CU	 the upper limits of concentration for the 100(1–α/2) percent confidence interval
F	 the percentage point of the F distribution for a specified area and degrees of freedom
L	 the rank of the lower 100(1–α)-percent confidence limit
log(SD)	 the logarithm of replicate standard deviation
log(C)	 the logarithm of mean replicate concentration
n	 the sample size (for example, number of observations or number of replicate sets)
p	 percentile
p̂ 	 the proportion of quantified values within the total number of observations in a dataset
PU	 the upper confidence limit, in percent
q	 the number of quantified values within a dataset
R	 recovery from a spiked sample, in percent
RPD	 relative percent difference
s	 the standard deviation of the sample data
SD	 the standard deviation of a set of replicate samples
SDdiff	 the standard deviation for the difference between mean concentrations in two sets of data
SDFV	 field variability, which is introduced by sampling and laboratory procedures
SDreps	 the standard deviation for a specified analyte concentration estimated using one of the replicate models defined under 

“Evaluating Variability in Analyte Concentration” in this report
SD2xi	 the variance of dataset xi

ni	 the number of samples (observations) in dataset xi

SU	 the upper confidence limit on the true standard deviation
t	 the percentage point of Student’ t distribution for a specified area and degrees of freedom.
U	 the rank of the upper 100(1–α)-percent confidence limit
Var	 the variance of a set of observations
Vsol	 the volume of spike solution added to the spiked sample, in milliliters
Vsample	 the volume of the matrix sample, in liters
x	 the number of replicate sets with inconsistent detections
x 	 the mean of a random sample of data (for example mean recovery from field spikes, in percent)
Z	 the percentage point of the standard normal curve that contains a specified area
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Appendix 1

Mean concentration 
(mg/L)

Standard deviation 
(mg/L)

Relative standard deviation 
(percent)

0.011 0.0014 12.86
0.015 0.0014 9.43
0.027 0.0007 2.67
0.033 0.0028 8.57
0.058 0.0014 2.44
0.131 0.0007 0.54
0.166 0.0021 1.28
0.168 0.0007 0.42
0.194 0.0007 0.37
0.196 0.0028 1.44
0.211 0.0007 0.34
0.223 0.0000 0.00
0.247 0.0007 0.29
0.352 0.0014 0.40
0.464 0.0000 0.00
0.469 0.0127 2.71
0.479 0.0007 0.15
0.492 0.0064 1.29
0.563 0.0014 0.25
0.605 0.0042 0.70
0.614 0.0057 0.92
0.641 0.0042 0.66
0.652 0.0007 0.11
0.734 0.0028 0.39
0.789 0.0057 0.72
0.883 0.0141 1.60
0.905 0.0014 0.16
0.943 0.0078 0.83
0.945 0.0014 0.15
0.954 0.0014 0.15

Mean concentration 
(µg/L)

Standard deviation 
(µg/L)

Relative standard deviation 
(percent)

0.0015 0.00000 0.00
0.0020 0.00000 0.00
0.0020 0.00000 0.00
0.0020 0.00000 0.00
0.0020 0.00042 21.21
0.0025 0.00035 14.43
0.0025 0.00007 2.89
0.0028 0.00007 2.57
0.0028 0.00014 5.05
0.0029 0.00000 0.00
0.0031 0.00021 6.96
0.0036 0.00021 5.98
0.0037 0.00120 32.93
0.0039 0.00000 0.00
0.0041 0.00014 3.45
0.0042 0.00021 5.11
0.0042 0.00007 1.70
0.0042 0.00233 56.23
0.0044 0.00021 4.88
0.0044 0.00127 28.93
0.0045 0.00000 0.00
0.0047 0.00014 3.01
0.0048 0.00014 2.95
0.0049 0.00014 2.89

Mean concentration 
(mg/L)

Standard deviation 
(mg/L)

Relative standard deviation 
(percent)

0.964 0.0113 1.17
1.068 0.0035 0.33
1.120 0.0014 0.13
1.207 0.0071 0.59
1.388 0.0148 1.07
1.525 0.0205 1.35
1.555 0.0269 1.73
1.618 0.0028 0.17
1.901 0.0064 0.33
2.109 0.0276 1.31
2.418 0.0085 0.35
2.731 0.0488 1.79
2.763 0.0686 2.48
2.805 0.0064 0.23
2.875 0.0191 0.66
3.373 0.0198 0.59
3.559 0.0049 0.14
3.873 0.0346 0.89
3.948 0.0007 0.02
4.064 0.1047 2.58
4.441 0.0233 0.53
4.695 0.0120 0.26
4.936 0.0396 0.80
4.941 0.0035 0.07
5.352 0.0120 0.22
5.367 0.0693 1.29
6.134 0.0269 0.44
8.049 0.0827 1.03

11.967 0.0445 0.37
14.123 0.0552 0.39

Table 1–1.  Nitrate plus nitrite data used in the replicate analysis example (figs. 13, 15, 17, and 19–22), compiled from Rus and others (2012).

[mg/L, milligrams per liter]

Table 1–2.  Atrazine data used in the replicate analysis example (figs. 14, 16, 17, and 19–22), compiled from Martin (2002).

[μg/L, micrograms per liter]

Mean concentration 
(µg/L)

Standard deviation 
(µg/L)

Relative standard deviation 
(percent)

0.0052 0.00014 2.72
0.0053 0.00014 2.67
0.0059 0.00007 1.21
0.0059 0.00021 3.63
0.0060 0.00000 0.00
0.0061 0.00049 8.18
0.0061 0.00049 8.18
0.0061 0.00163 26.88
0.0061 0.00021 3.51
0.0064 0.00049 7.79
0.0064 0.00014 2.21
0.0066 0.00057 8.57
0.0070 0.00000 0.00
0.0073 0.00078 10.73
0.0074 0.00049 6.73
0.0075 0.00071 9.43
0.0075 0.00014 1.89
0.0076 0.00064 8.43
0.0082 0.00191 23.43
0.0082 0.00113 13.80
0.0084 0.00021 2.54
0.0084 0.00148 17.78
0.0084 0.00000 0.00
0.0088 0.00049 5.66
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Mean concentration 
(µg/L)

Standard deviation 
(µg/L)

Relative standard deviation 
(percent)

0.0089 0.00014 1.59
0.0091 0.00445 49.22
0.0094 0.00028 3.01
0.0095 0.00064 6.73
0.0095 0.00106 11.22
0.0095 0.00071 7.44
0.0098 0.00361 36.99
0.0098 0.00028 2.89
0.0099 0.00035 3.59
0.0100 0.00035 3.55
0.0100 0.00000 0.00
0.0106 0.00071 6.67
0.0110 0.00000 0.00
0.0117 0.00177 15.17
0.0118 0.00085 7.19
0.0119 0.00035 2.98
0.0126 0.00085 6.73
0.0129 0.00057 4.39
0.0130 0.00205 15.83
0.0130 0.00057 4.35
0.0144 0.00035 2.46
0.0147 0.00071 4.81
0.0148 0.00120 8.15
0.0151 0.00014 0.94
0.0154 0.00064 4.15
0.0158 0.00028 1.79
0.0177 0.00021 1.20
0.0185 0.00113 6.12
0.0189 0.00014 0.75
0.0196 0.00057 2.89
0.0200 0.00141 7.07
0.0210 0.00035 1.69
0.0232 0.00085 3.66
0.0295 0.00339 11.51
0.0304 0.00290 9.55
0.0307 0.00049 1.61
0.0324 0.00049 1.53
0.0353 0.00721 20.43
0.0390 0.00141 3.63
0.0402 0.00127 3.17
0.0430 0.00424 9.87
0.0433 0.00064 1.47
0.0480 0.00099 2.06
0.0481 0.00035 0.74
0.0482 0.00078 1.62
0.0485 0.00071 1.46
0.0491 0.00255 5.18
0.0494 0.00481 9.73
0.0499 0.00375 7.52
0.0517 0.00537 10.39
0.0520 0.00219 4.22

Mean concentration 
(µg/L)

Standard deviation 
(µg/L)

Relative standard deviation 
(percent)

0.0560 0.00092 1.64
0.0599 0.00537 8.97
0.0603 0.00071 1.17
0.0613 0.00163 2.66
0.0620 0.00000 0.00
0.0629 0.00071 1.12
0.0640 0.00332 5.20
0.0655 0.00099 1.51
0.0660 0.00849 12.86
0.0706 0.00014 0.20
0.0708 0.00460 6.50
0.0786 0.00049 0.63
0.0816 0.00721 8.84
0.0830 0.00141 1.70
0.0838 0.01280 15.28
0.0885 0.00354 3.99
0.0940 0.00424 4.51
0.0958 0.00078 0.81
0.0998 0.00877 8.79
0.1015 0.00212 2.09
0.1100 0.00000 0.00
0.1200 0.00000 0.00
0.1245 0.00212 1.70
0.1295 0.00071 0.55
0.1375 0.00212 1.54
0.1500 0.00000 0.00
0.1525 0.00071 0.46
0.1875 0.00354 1.89
0.1975 0.00354 1.79
0.2150 0.00707 3.29
0.2225 0.01061 4.77
0.2260 0.01131 5.01
0.2305 0.01626 7.06
0.2370 0.00566 2.39
0.2385 0.00919 3.85
0.2400 0.01414 5.89
0.2655 0.01485 5.59
0.2775 0.00495 1.78
0.3370 0.00707 2.10
0.3375 0.01202 3.56
0.3600 0.00707 1.96
0.4015 0.00354 0.88
0.4730 0.01697 3.59
0.5000 0.01414 2.83
0.5440 0.01273 2.34
0.6725 0.00495 0.74
1.2300 0.04243 3.45
1.5500 0.07071 4.56
1.8300 0.00000 0.00
1.8950 0.04950 2.61
1.9300 0.00000 0.00
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Table 1–2.  Atrazine data used in the replicate analysis example (figs. 14, 16, 17, and 19–22), compiled from Martin (2002).—Continued

[μg/L, micrograms per liter]
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