
70 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

Appendix 1. New Input Formats and Utilities

A set of new input utilities were developed for MF-OWHM2 and are used by most of the new features presented in this
report. The new utilities simplify input by the use of keywords and generalize the input structure of input and output (I/O) files.
This new structure simplifies the name file (NAM)—the file that specifies the names of all global I/O data files and packages
used in the model simulation and controls the parts of the model program that are active—and allows for an easier understanding
of the MF-OWHM2 input for someone who did not build the original simulation model. Further, it allows for a standardized
input structure that is easier to develop and maintain for the original model developer. These tools are currently only fully
supported in the Farm Process version 4 (FMP) and select packages. With each subsequent release of MF-OWHM2, the utilities
can be folded more into the traditional MODFLOW packages to simplify their input.

This simplification is done with keywords that indicate the frequency with which the input is loaded (TEMPORAL_KEY),
the input style that is loaded (INPUT_STYLE), where the input is located (Generic_Input), and a host of options for applying
multiple scale factors (for example, to separate out conversion factors, transformation multipliers, and calibration parameters/
multipliers). Each of the input utilities builds upon each other with the simplest being the Generic_Input. Generic_Input is
used by the Universal Loader (ULOAD) to read input, which is then called by the Transient File Reader (TFR) for spatially and
temporally varying input, which is then called by the List-Array Input utility that parses the input style and temporal frequency.
If the data are loaded only once and used for the entire simulation, then the List-Array Input utility bypasses the Transient
File Reader and directly uses ULOAD one time. The temporally varying input can be read at any time interval (for example,
time step or stress period) defined by the Package that uses the utilities. The rest of this appendix uses the term “stress period”
synonymously with “time interval” because the stress period is the fundamental time interval used by MODFLOW to receive
and hold constant user-specified inflows and outflows.

This appendix begins by describing the use of comments in packages and describing a new “Block Style” input format.
The rest of the appendix begins with a top-down flow chart of the List-Array Input utility’s structure. This is to illustrate the
effect each keyword has until the final input is loaded. The next section discusses the seven possible combinations of keywords
available with the List-Array Input and briefly discusses them. The flow chart provides a road map of the subsequent sections
that summarize the major input utilities developed for MF-OWHM2. Each of the utilities makes use of the previous ones in this
appendix. The discussion of each utility includes a top-down overview flow chart of the keywords that make up the List-Array
Input, a bottom up description of the input utilities for the Generic_Input and Generic_Output, the ULOAD and scale factors
(defined by the keyword SFAC), and finally the List-Array Input Style and Transient File Reader. The appendix concludes with a
formal description of the IXJ Style input and the Lookup Style input.

Comments in Package Input

A new basic read utility, READ_TO_DATA, was developed to allow comments in input files. It has been applied entirely
to the Farm Process (FMP), General Head Boundary (GHB), and Well (WEL) packages and incorporated at select locations
in other packages. A commented line contains the symbol, #, with only blank space to the left of it. Comments to the right of a
line with input values should also be preceded by a “#” symbol. This ensures that the comment is not treated as an input value.
Empty lines, although not a comment, are automatically skipped. Examples of commented lines are shown in figure 1.1.

Block-Style Input

MODFLOW 2005 (Harbaugh, 2005) input relied on positional integer flags (for example, 2, 4, 6) and floating-point
numbers (for example, 2.0, 4.2, 6.E8) to construct a simulation model. The new block-style input was intended to increase
user friendliness, ease of use and documentation, and flexibility. A block input nests model-package input properties in one
location (both temporally varying and static inputs), providing a simple input structure that helps the user understand what
is being supplied to a model. Each block begins with the word BEGIN followed by the block’s NAME, which defines the input
in the block, then the block terminates its input feed with the word END. To the right of the block name is an optional set of
GLOBAL_KEYWORDs that alter the behavior of the entire block. In the block is its input, which relies on keywords to define
each input type and its style (for example, transient input or static input). Block input allows keywords to be in any order; it
automatically skips blank lines; and comments are accepted as long as they are preceded with a # symbol. Figure 1.2 presents
the general structure of an input block.

Appendix 1. New Input Formats and Utilities 71

The block specific keyword BLOCK_INCLUDE mimics the functionality of the C language #include “file” and
Fortran INCLUDE File statements allowing the user to specify a part of a block in a separate file that is inserted at the
BLOCK_INCLUDE location. This feature is useful if a block needs to be subdivided into individual files or to use the separate file
as a calibration template file. Figure 1.3 is a simple example of BLOCK_INCLUDE that loads four keywords. At runtime, before
any keywords are processed, the block input inserts all BLOCK_INCLUDE files, strips from the block any comments and blank
lines, and adjusts all remaining lines in the block to be left justified (fig. 1.3C).

 Column Number Column Number
 1 2 3 4 5 6 7 8 90 1 2 3 4 56 7 8 9 0 12 3 4 5 6 7 8 1 2 3 4 5 67 8 9 0 1 2 3 4

|55 65 # Side comment | → MF-OWHM2 only sees "55 65 "
| 55 65 # Side comment | → MF-OWHM2 only sees " 55 65 "
|# 55 65 # Side comment | → MF-OWHM2 skips the line and loads the next.
| #55 65 # Side comment | → MF-OWHM2 skips the line and loads the next.
| | → MF-OWHM2 skips empty line and loads the next.

Figure 1.1. Example input lines, delineated with a |, that are parsed by MF-OWHM2 to remove comments and blank lines. To
the right of each example input line is an explanation of what MF-OWHM sees as input. [Note that a “|” is used to delineate
the start and end of each example input line. Comments must be preceded by a # (pound sign). Column number is the number
of spaces within the file ranging from 1 to 28.]

A

BEGIN NAME GLOBAL_KEYWORD

Comments and blank lines are ignored

KEYWORD # COMMENT

COMMENT
KEYWORD # COMMENT
COMMENT

BLOCK_INCLUDE Generic_Input_OptKey

END

Figure 1.2. Block-Style Input A, structure, and B, explanation of the items in part A.

72 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

B

 BEGIN initiates the block input.

 NAME is the block input name that identifies the expected input within the block.

 # the # and anything to the right of the # is ignored.

 KEYWORD is a keyword that is defined for use within the block.

 END must be present and terminates reading of the block input.

Text after END is ignored, so it is recommended to add the block’s name
after the termination word for clarity (for example, END NAME).

GLOBAL_KEYWORDS
 is optional; if present, a set of global keywords that affect the entire block.

An example is BEGIN LINEFEED XY, where the block name, LINEFEED,
indicates that the block contains LineFeed input and the global block
keyword, XY, indicates that row and column are specified by a
x-coordinate and y-coordinate instead.

BLOCK_INCLUDE is optional; if present must be followed by Generic_Input_OptKey that
points to a file that contains a set of input that is inserted into the block.

Generic_Input_OptKey cannot use the keyword INTERNAL,
since it must reference an external file to include.

This feature allows for breaking large data input sections into multiple files
that are then inserted into the block.

This functions identically to C language #include "file" and
Fortran INCLUDE File statements.

Figure 1.2. —Continued

Appendix 1. New Input Formats and Utilities 73

A

B

C

BEGIN DUMMY_BLOCK
 #
 Keyword1
 #
 BLOCK_INCLUDE ./Keywords2n3.txt
 #
 # An indented Keyword
 Keyword4 # Comment
END

Contents of Keywords2n3.txt

Keyword2

Keyword3

note to self -- remember this note about…

BEGIN DUMMY_BLOCK
Keyword1
Keyword2
Keyword3
Keyword4
END

Figure 1.3. Block-Style Input example that defines four input
keywords and uses the BLOCK_INCLUDE keyword to insert
two of the four input keywords. A, Example block input with the
name “DUMMY_BLOCK” that includes two input keywords and
inserts the contents from the file “Keywords2n3.txt”. B, The
contents of the file “Keywords2n3.txt”. C, The final version of
the block that is read as input by MF-OWHM2. This version
removes all blank lines and comments, then shifts to the left any
remaining text. [Keyword1, Keyword2, Keyword3, and Keyword4
are example keywords that would be defined for use in the
DUMMY_BLOCK block.]

74 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

Overview of the List-Array Input—Top-Down View

The List-Array Input is a simple input structure that relies on keywords to define the frequency with which input is loaded
and the structure of the input. This section gives a broad top-down overview of the List-Array Input. First, a flow chart illustrates
the keyword decision-guided tree that loads the input. After the flow chart, a summary of all the potential keyword combinations
is discussed. This section is meant to be an overview of the input utilities that are defined in detail in the subsequent
appendix sections.

Flow Chart
To visualize a top-down view of the List-Array Input, the flow chart in appendix figure 1.4 presents the decision tree behind

each keyword. It begins with the Temporal keyword that defines the frequency that the input is loaded. The options for the
Temporal keyword are STATIC, TRANSIENT, or CONSTANT. The next decision is the input style in which the data are formatted.
The two input styles that are supported are a record-based List Style input and a model grid shaped Array Style input. The List-
Array Input does support a third input style called IXJ Style—which is only mentioned here for completeness and not included in
the flow chart nor in subsequent sections. This input style is an advanced input whose structure varies and serves as a surrogate
for List Style and Array Style. The keyword for List Style is LIST, for Array Style is ARRAY, and IXJ Style is IXJ.

Once the input frequency and format are defined, then the actual data location is specified with a Generic_Input and loaded
with the Universal Loader (ULOAD). The flow chart uses the word “stress period”, corresponding to a typical frequency, but the
input load frequency can be different depending how the calling package defines it.

Potential Input Combinations
The List-Array Input utility uses keywords as presented in the flow chart (fig. 1.5). The following are the seven keyword

combinations and their basic descriptions. The detailed descriptions are provided in the remainder of this appendix.
If the Transient File Reader (TFR) is used, then it has a set of directive keywords that are specified on each row of its file

to indicate each time interval’s input (typically one keyword for each stress period, unless noted by the specific MF-OWHM2
input). Note that each uncommented, non-SFAC row in the Transient File Reader is loaded for each time interval. If SFAC
is found (see “SFAC—Scale Factor Keyword” for more details), then it is applied to the input from the file specified after it.
Figure 1.6 presents the supported directive keywords that can be specified within a TFR.

Input is loaded from any uncommented line that contains one of the keywords defined in 1–10 in figure 1.6. The input
frequency depends on the model feature, but typically is in line with the MODFLOW stress period (for example, the fifth
uncommented row containing the keyword in 1–10 serves as input to stress period five). For example, several of the input
options in the Farm Process, such as precipitation arrays, can be read by stress period or by time step (the input frequency. The
keyword SFAC may appear multiple times, one per uncommented line, and is only applied to the subsequent input specified by
items 1through 10 (that is, it modifies the stress-period input only for that stress period). Figure 1.7 is a simple example TFR that
loads nine stress periods of input and includes an SFAC that is applied in the first stress period.

This concludes the top-down overview to the List-Array Input; what follows begins the bottom-up development of the
utilities that make it up. The abbreviation LAI refers to the List-Array Input utility input options, and the letters S, T, A, L stand
for STATIC, TRANSIENT, ARRAY, and LIST, respectively. These four options for specification of the data input used for the
Farm Process (FMP) block input are explained in detail in the “Farm Process Input Updates” (appendix 6).

Appendix 1. New Input Formats and Utilities 75

Keyword For
Input

Property

Temporal
Keyword

Transient File Reader (TFR) – Each Stress Period Reads one ULOAD
Unless SFAC is specified, then one ULOAD per uncommented line.
Each directive may include to the right of it "SF SCALE", where SCALE is a scale factor.
If List Style Input (LIST) has one property, then may read input for current stress period
on single line, otherwise specify a directive:

CONSTANT Value Set input to Value
INTERNAL Read input on subsequent lines within the TFR
EXTERNAL Unit
OPEN/CLOSE File
REPEAT Reuse previous input without scale factors

TRANSIENT

Read Every Stress Period
With Transient File Reader

STATIC

Read Once and Use For
Entire Simulation

CONSTANT
Read One Value and

Use For Entire Simulation

Input Set to Single Value

LIST
Record Based

List Style

ARRAY
Model Grid (NROW × NCOL)

Array Style

Read one ULOAD
Input Data Based on Input Style (LIST or ARRAY)

INTERNAL Read input on subsequent lines
Keyword Description

Directive Description

EXTERNAL Unit Read input from Unit
OPEN/CLOSE File Open File
DATAUNIT Unit
DATAFILE File Open

, then read input, then close File

, then read inputFile

Transient File Reader Opened With
DATAUNIT OR DATAFILE

Transient File Reader becomes a Direct Data File
Each Stress Period Input is sequentially concatenated
as one single file. Only the SFAC keyword is allowed.

Input loaded once
based on Input Style

Input loaded based on
Directive and Input Style

every Stress Period

ARRAY

Transient File Reader is Opened With

Open/Close OR ExternalOpen/Close OR External

List-Array Input
Reader

Input Style
Keyword

Model Grid (NROW × NCOL)
Array Style

Read input from Unit

Input Style
Keyword

Generic_Input
Open Transient File

Reader

Generic_Input
Open Transient File

Reader

LIST

File remains open until simulation ends.
If already open, read input where previous
read from File ended.

DATAUNIT Unit
DATAFILE File Open , then read inputFile

Read input from Unit

File remains open until simulation ends. If already open,
read input where previous read from File ended.

File, Unit,

Open File, then read input, then close File

RELOAD

LOAD_NEXT

Read input from the first line of the closest, previous file that
was accessed in the TFR. File must be still open reading.
Read input where previous read ended from the closest,
previous file that was accessed in the TFR. File must be still
open for reading.

Each keyword may include to the right of it "SF SCALE", where SCALE
is a scale factor. If List Style Input (LIST) has one property, then may
read input on current line, otherwise specify a keyword:

Read input from Unit

Record Based
List Style

Figure 1.4. Flow chart showing the keyword-based control of new MF-OWHM2 input utilities.

76 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

1) KEYWORD CONSTANT VALUE
2) KEYWORD STATIC LIST ULOAD
3) KEYWORD STATIC ARRAY ULOAD
4) KEYWORD TRANSIENT LIST TFR → Transient File Reader
5) KEYWORD TRANSIENT ARRAY TFR → Transient File Reader
6) KEYWORD TRANSIENT LIST DATAFILE FILE → Direct Data File
7) KEYWORD TRANSIENT LIST DATAUNIT UNIT → Direct Data File

where

KEYWORD is a package input keyword (PIK) that identifies the model input feature
being set with the List-Array Input utility.
The keyword depends on the package and the feature being loaded.

CONSTANT VALUE indicates a single value, VALUE, is used for the entire simulation.

STATIC indicates that the input is read once and used for the entire simulation.

TRANSIENT indicates that the input is read for every time interval (stress period).

LIST indicates that input uses List Style.

ARRAY indicates that input uses Array Style.

 ULOAD is the Universal Loader that reads input information.

 TFR is a Transient File Reader that is opened with Generic_Input_OptKey.

 The TFR cannot be opened with INTERNAL, DATAFILE, or DATAUNIT.

 DATAFILE FILE indicates that the transient input bypasses the TFR and instead reads the
data directly within the FILE.

FILE is then the location of a Direct Data File (DDF).

 DATAFILE UNIT indicates that the transient input bypasses the TFR and instead reads the
data directly within the UNIT number declared in the NAME file as

“ DATA UNIT FILE ” or as “ DATA(BINARY) UNIT FILE ”

where FILE is then the location of the DDF.

 Transient File Reader is a file that contains a directive keyword for each stress period
that indicates where the input is located,
then uses ULOAD to read the stress period’s input.

Direct Data File is a single file containing all the input for all stress periods.
A DDF may only contain the actual input and, optionally, SFAC keywords.

It is analogous to a TFR with only INTERNAL directives,
but the DDF equivalent does not include the keyword INTERNAL.

Figure 1.5. Possible keyword combinations for an input that uses the List-Array Input utility and a brief explanation
about them.

Appendix 1. New Input Formats and Utilities 77

0) SFAC [DIMKEY] ULOAD Optional, advanced scale factor features.
 Repeat as needed, using one SFAC per line of text.
 The SFACs are multipliers for item 1–10.

 ULOAD reads a single scale factor,
 unless a DIMKEY keyword is included,
 which defines the number of scale factors read
 by ULOAD and how they are applied.

1) CONSTANT VALUE Set all input to VALUE.

2) INTERNAL [SF SCALE] Input on subsequent lines.
 SF SCALE is optional scale factor, do not include [],

where SCALE is a number that multiplies with the input.
SF SCALE may be repeated as needed on the same line

3) OPEN/CLOSE FILE [SF SCALE] Input within FILE.
First open file, then read input from first line,
then close file after input is loaded.

4) EXTERNAL UNIT [SF SCALE] Input is in file UNIT, which defined in the NAME file.
First read of UNIT during a simulation
loads from the first line.
Subsequent references to UNIT read from current line.
File UNIT remains open until simulation ends.

5) DATAUNIT UNIT [SF SCALE] Same as EXTERNAL.

6) DATAFILE FILE [SF SCALE] Check if FILE has been opened previously,
either as a UNIT in the NAME file or
use of DATAFILE FILE in the simulation.
If FILE is open, then read input from current line.
If not previously opened,
then open FILE and read input from first line.
FILE remains open until simulation ends and
subsequent references to FILE read from current line.

7) REPEAT [SF SCALE] Reuse previously loaded, unscaled input.
That is, the input before SCALE or SFAC is applied.

8) RELOAD [SF SCALE] Move to the first line, then read input from a file that
was, in the TFR, used in the closest, previous
EXTERNAL, DATAUNIT, or DATAFILE directive.

9) LOAD_NEXT [SF SCALE] Read input from the current line from a file that
was, in the TFR, used in the closest, previous
EXTERNAL, DATAUNIT, or DATAFILE directive.

10) SKIP Set input to 0.0 or 0 or an empty string.

Figure 1.6. Transient File Reader (TFR) directive keywords that direct how input is loaded for each stress period. Each stress period
must contain only one directive defined in items 1 through 10. SFAC (item 0) is optional and is only applied to the next directive keyword
(items 1 through 10). SF SCALE is enclosed in brackets to indicate it is optional and is only applied to the directive with which it appears
on the same line. SFAC and SF SCALE scaling only remain in effect for the directive they are applied to. If a new directive is specified,
such as REPEAT, the scale factors are not carried forward, such that a REPEAT directive will repeat using only the previous, unscaled
input and then apply any new scale factors associated with the new directive. [Note that these keywords also work with the Universal
Loader (ULOAD), but have limited functionality outside of the scope of a TFR.]

78 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

TFR Example for reading 9 Stress Periods (SP)

The scale factor keyword, SFAC, can be specified before, a�er, or
both before and a�er the TFR input direc�ve (such as INTERNAL, OPEN/CLOSE, or REPEAT)

SFAC 1.25 # SP1 input is mul�plied by 1.25
SFAC 0.80 # SP1 input is mul�plied by 0.8
INTERNAL # SP1 input is read on subsequent lines
 1.0 2.0 3.0
 8.0 16.0 24.0 # Blank lines are allowed

INTERNAL # SP2 input is read on subsequent lines
SFAC 1.1 # SP2 input is mul�plied (scaled) by 1.1
 2.0 4.0 6.0
 8.0 16.0 24.0

REPEAT # SP3 input uses SP2 unscaled input (ignores the “SFAC 1.1”)

SFAC 1.25 # SP4 input is mul�plied by 1.25
REPEAT # SP4 input uses SP2 input without SP2’s scale factor
 #
OPEN/CLOSE ./INP.txt # SP5 input is read from “INP.txt”. File is closed a�er input read.

DATAFILE ./DAT.txt # SP6 input is read from “DAT.txt”.
 # DAT.txt is opened and input is read from first line
 # DAT.txt remains open un�l simula�on ends

DATAFILE ./DAT.txt # SP7 input is read from “DAT.txt”, which is already open.
 # DAT.txt reads input from where the SP6 read ended

REPEAT SF 1.25 # SP8 input uses SP7 input and mul�plies it by 1.25

RELOAD # SP9 input is read from the start of “DAT.txt”, because
 # DAT.txt is s�ll open and was the previously used file.

Figure 1.7. Example Transient File Reader (TFR) file that specifies the location of nine stress periods’ input. The input is
assumed to be Array Style that consists of 2 rows and 3 columns. [Note that these keywords also work with the Universal
Loader (ULOAD), but have limited functionality outside of the scope of a TFR.]

Appendix 1. New Input Formats and Utilities 79

Generic Input and Generic Output Files

A generalized file input and output Fortran module was written for MF-OWHM2 to standardize how files are opened and
maintained. This is currently only implemented in the new MF-OWHM2 features, but may be incorporated to the older packages
in subsequent upgrades and code releases. In this report, any documented input sections using the keywords Generic_Input or
Generic_Output refer to this input. As the names indicate, Generic_Input refers to files that are “read only” and are meant to be
loaded as input; Generic_Output refers to files that are “write only” and are opened for writing MF-OWHM2 output and results.

The sections that follow discuss how to set up a Generic_Input or Generic_Output file. It begins with some of the beneficial
features that include buffering of files with the BUFFER option and the ability to split output files into multiple parts. An in-depth
discussion follows about the difference between a text (ASCII or Unicode UTF-8) file and a MF-OWHM2 binary file. For binary
files, methods of loading the data with Python scripts are discussed. Lastly, the formal input to the Generic_Input or Generic_
Output file is presented with examples.

Buffering of Files
One important feature that Generic_Input and Generic_Output files have is the ability to specify a buffered value in

kilobytes (KB)—using the post-keyword “BUFFER BUF_SIZE_KB”—that reserves additional random access memory (RAM)
for file operations. Each Generic_Input and Generic_Output file has its own buffer that results in reduced input and output
operations (I/O), leading to faster simulation runtimes at the expense of increasing total RAM usage. For Generic_Input, the
buffer serves as space where the file preloads for faster input. For the Generic_Output, the buffer serves as space where output
is written until the buffer is full; then the entire buffer is written to the file, and the buffer begins to refill again. This minimizes
file writing to the hard drive for the Generic_Output, but the output file is only updated after the buffer is full. For example, if
the LIST file has a 1024 kilobyte buffer (post-keyword “BUFFER 1024”), then it only updates the actual file in 1024 KB chunks.
That is, after MF-OWHM2 writes a total of 1024 KB of text to the LIST file, the user is only then able to see the actual file
updates. Empirical tests have shown the fastest performance is for buffer sizes between 32 KB and 1024 KB. By default, all files
that are opened in MF-OWHM2 have their buffer set to 32 KB. If it is desired to have immediate writing of output files or no
preloading of input files, then the buffer should be set to zero (“BUFFER BUF_SIZE_KB” is set to “BUFFER 0”). If a model has a
design flaw or input structure that does not trigger a clean error message, that is a runtime Fortran stack error is raised, then it is
recommended to zero the buffer for the LIST file to ensure that all its contents are written before the simulation halts.

Splitting Generic Output Files into Parts of the Same Size
For long simulations, output files can grow substantially in size causing issues for post-processors or even viewing the

results. To overcome this issue, MF-OWHM2 has the option to split a Generic_Output file into a new file once the original
reaches a user specified size in megabytes (MB), using the post-keyword “SPLIT SPLIT_SIZE_MB”. The file size is checked at
the end of each stress period to determine if it exceeds the SPLIT_SIZE_MB and needs to be split into a new file. When a file is
split, the newly created file has the same file name, but with a number appended to the end of the filename root. The header in
the original file is also included in each of the split files created, and when the simulation is restarted, all split files are removed.
For example, if the original output file was “MyFile.txt” and the keyword used for it was “SPLIT 900”, then each time the
file size exceeds 900MB, a new file is created with the following naming sequence: MyFile.txt, then MyFile01.txt, and then
MyFile02.txt. This is most useful for the LIST file, which can become very large.

Text and Binary Format of Generic Input and Generic Output
The Generic_Input and Generic_Output both support text (ASCII/Unicode UTF-8) format and binary format. The text

format is the default and is a human readable format when opened with any text editor. Most text files are stored in the UTF-8
Unicode format, which is backward compatible with ASCII. All text files read by MF-OWHM2 must use the ASCII or UTF-8
Unicode character encodings. It should be noted that the Microsoft Windows program Notepad.exe saves text files using the
UTF-8-BOM format that adds a Byte Order Mark (BOM) binary header to a UTF-8 text file. Fortran does not support reading
the UTF-8-BOM encoding format, so this text file format should not be used with any program written in Fortran. MF-OWHM2
does check for a Microsoft Windows style BOM and if found will position the start of the file just past the BOM and process the
file using UTF-8 character encoding.

80 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

In MF-OWHM2, the binary format uses standard FORTRAN 2003 Unformatted Stream I/O, which may have limited
portability among computers. The limited portability is not operating system based (for example, Windows, Linux, or Unix), but
is the result of the central processing unit (CPU) “endianness” making the binary CPU dependent. There are two types of binary
endianness, referred to as big-endian or little-endian format. Most microprocessors for servers and desktops (x86, x86-64, x64,
and AMD64 instruction) use the little-endian, making a binary file portable among them.

Binary files can be read by separate Fortran programs that open the file with the ACCESS=“STREAM” option. The file can
also be loaded using Python structures or Python’s Numpy Module with the “numpy.fromfile” method. The file must be loaded
with the same variable size for each variable position. For example, if the first value in the binary file is a double precision
number and the second variable is an integer, then it must be loaded with a double precision variable followed by an integer
variable to load correctly. For Fortran, this method is direct and uses the same naming, but for Python, the user has to specify
the “numpy.dtype”. When a binary file output is requested in MF-OWHM2, its record structure is written to the LIST file, so the
user can reconstruct its output. The records use keywords, described in figure 1.8, to indicate the type of storage.

In addition to the keyword, there could be a dimension to the variable written. This is to accommodate arrays that are
written to the binary file. To identify arrays, brackets are used with the dimension enclosed within them (for example, [10] or
[5,15]). Within the brackets, the words NROW, NCOL, and NLAY represent the model’s number of rows, columns, and layers,
respectively. Figure 1.9 presents an example of output that is written to the LIST file to indicate the binary file’s record structure.

This example indicates that each record written to the binary file writes the DATE_START as 19 characters, PER as an
integer, STP as an integer, DYEAR as a double precision, and DATA as a double precision array of size NCOL by NROW. Note
that most MODFLOW arrays are stored with the model grid’s “column” on the first array dimension rather than the second.
That is, computer arrays are specified as [Dimension 1, Dimension 2, Dimension 3, …], so “DATA[NCOL,NROW]” indicates
that the first array dimension is of size NCOL (the number of model columns) and the second array dimension is of size NROW
(the number of model rows). Figure 1.10 and 1.11 are code examples in Fortran and Python, respectively, necessary to load
one record from the figure 1.9 binary-stream output. Fortran can use its native variables, if they are the same type and the
file is opened using the options ACCESS=‟STREAM” and FORM=‟UNFORMATTED” options. Conversely, Python 3 requires
using the NumPy module; defining the binary structure using “numpy.dtype” and loading the binary data with the “numpy.
fromfile” method.

Keyword Storage Fortran Type Python Numpy Type
(double) → 8 bytes, Double Precision, numpy.dtype('float64')
(int) → 4 bytes, Integer, numpy.dtype('int32')
(X char) → X × 1 bytes, Character(X), numpy.dtype('SX')
(sngl) → 4 bytes, Real, numpy.dtype('float32')

Figure 1.8. Definition of keywords used by MF-OWHM2 to define a stream-binary file’s memory storage for different
variable types and the type of Fortran and Python variables that can read them. [X is used as a place holder for an
integer number, such as Character(19) or numpy.dtype(‘S19’). NumPy is a library for the Python programming language.
Fortran assumes that REAL and DOUBLE PRECISION are not modified by compiler options. To make Fortran compiler
option independent, it is recommended to use the parameters INT32, REAL32, and REAL64 from the intrinsic module
ISO_FORTRAN_ENV and declare INTEGER variables as INTEGER(INT32), REAL variables as REAL(REAL32), and DOUBLE
PRECISION variables as REAL(REAL64).]

DATE_START (19char), PER (int), STP (int), DYEAR (double), DATA[NCOL,NROW] (double)

Figure 1.9. Example output, written to the LIST file, that indicates the structure of a MF-OWHM2 binary-stream output file.
The text not enclosed in parenthesis is the variable name and the part in the parenthesis indicates the binary-stream format
used. [Note that MODFLOW stores arrays as NCOL by NROW. 19char indicates the record is a Fortran character of length 19,
int indicates the record is a 4-byte Fortran integer (INT32), double indicates the record is an 8-byte Fortran floating point
number (REAL64), which is commonly called double precision.]

Appendix 1. New Input Formats and Utilities 81

PROGRAM READ_BINARY
USE, INTRINSIC:: ISO_FORTRAN_ENV, ONLY: REAL32, REAL64

! REAL32 is single precision -> REAL(REAL32) REAL (4 bytes)
! REAL64 is double precision -> REAL(REAL64) DOUBLE PRECISION (8 bytes)

INTEGER, PARAMETER:: NROW = 5, NCOL = 10 ! Dimension of Model Grid

CHARACTER(len=19):: DATE_START
INTEGER:: PER, STP
REAL(REAL64):: DYEAR
REAL(REAL64), DIMENSION(NCOL, NROW):: DATA ! MODFLOW Stores Arrays as NCOL x NROW

INTEGER:: IU ! Variable holds Fortran unit number associated with binary file

IU = 0 ! Initialize the variable, will be set by OPEN with Fortran unit number

OPEN(NEWUNIT=IU, FILE="myfile.bin", STATUS="OLD", ACCESS="STREAM", FORM="UNFORMATTED")

! Read one binary record from file unit IU

READ(IU) DATE_START, PER, STP, DYEAR, DATA

END PROGRAM

Figure 1.10. Fortran code example that can read a stream-binary file “myfile.bin” that contains binary record composed of
19 characters, 2 integers, a double-precision real number, and then a double precision array of size that is 5 model rows and
10 model columns. [Note that MODFLOW stores arrays as NCOL by NROW, where NROW is 5 and NCOL is 10. DATE_START is the
calendar date at the start of the time step, PER is the stress period number, STP is the time step number, DYEAR is a decimal year
representation of DATE_START, DATA is the NCOL by NROW array that is read.]

82 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

import numpy

NROW = 5
NCOL = 10

Note that MODFLOW stores binary arrays as NCOL x NROW

But Python stores arrays by row, while Fortran stores array by column,
so unlike a Fortran read, Python reads NROW x NCOL
and then must transpose the result to get the original shape (NCOL, NROW)

dt = numpy.dtype([
 ('DATE_START', numpy.dtype('S19')),
 ('PER', numpy.dtype('int32')),
 ('STP', numpy.dtype('int32')),
 ('DYEAR', numpy.dtype('float64')),
 ('DATA', numpy.dtype('float64'), (NROW, NCOL)),
])

Set "F" to binary file that will be read from

F = open('myfile.bin','rb')

Read single record defined with dt from file "F"

REC = numpy.fromfile(F, dtype=dt, count=1)

REC holds each record as an array of length 1,
the following extracts the binary contents to individual variables

DATE_START = REC['DATE_START'][0] # Get stored starting date
PER = REC['PER'][0] # Get stress period number
STP = REC['STP'][0] # Get time step number
DYEAR = REC['DYEAR'][0] # Get starting date decimal year
DATA = REC['DATA'][0].transpose() # Get DATA as NCOL x NROW array

Figure 1.11. Python 3 code example that can read a stream-binary file “myfile.bin” that contains binary record composed of
19 characters, 2 integers, a double precision real number, and then a double precision array of size that is 5 model rows and
10 model columns. [Note that MODFLOW stores arrays as NCOL by NROW, where NROW is 5 and NCOL is 10. Python reads
arrays using the right most dimension first, whereas Fortran reads the left most dimension first. Because of this, the DATA
array, which was written with Fortran as NCOL by NROW, is read by Python with an array dimensioned as NROW by NCOL,
then must be transposed to get the original MODFLOW array. DATE_START is the calendar date at the start of the time step,
PER is the stress period number, STP is the time step number, DYEAR is a decimal year representation of DATE_START, DATA is
the NROW by NCOL array that is read, REC holds the first record in myfile.bin read by numpy.fromfile.]

Appendix 1. New Input Formats and Utilities 83

Input Structure
The Generic_Input and Generic_Output module systematically looks for keywords to indicate how to access or open a file

and what options to include with it. When keywords are optional (fig. 1.12A, items 1 and 7), then the “_OptKey” is added to
Generic_Input and Generic_Output, changing it to Generic_Input_OptKey or Generic_Output_OptKey. Because of the potential
for ambiguity of input options, it is recommended to use the keywords even when they are optional.

The order in which the Generic_Input_OptKey and Generic_Output_OptKey module detects and opens a specified file is to
first check to see if it can load a single integer; if so, then the integer indicates that it is a unit number that is defined in NAME
file, which is associated with a DATA or DATA(BINARY) file (fig. 1.12A, item 1). If it fails to read an integer, then it checks
to see if there are keywords for the unit number; keywords to open a file; or lastly, if the line just contains a file name to open
(fig. 1.12A, items 2 through 7). Once the file has been identified through its unit number or file name, there are a set of optional
post-keywords and scale factors available (fig. 1.12A, items A through H), that override default options or allow advanced file
operations. Any comments to the right and on the same line must be preceded by a “#” symbol (commonly called a number
sign, pound sign, or hash symbol). Preceding a comment by “#” symbol is necessary to indicate to MF-OWHM that the text to
the right is a comment and not a post-keyword. Figure 1.12A contains the decision order for how the file is detected, opened,
and what post-keywords can be applied, and a description of the keywords is in figure 1.12B and figure 1.12A, C. Because of
the potential for ambiguity of input, it is recommended to use the keywords EXTERNAL and OPEN/CLOSE (fig. 1.12) rather than
directly loading the UNIT or FILE name for the Generic_Input_OptKey and Generic_Output_OptKey versions.

The two most powerful optional keywords for the Generic_Input are the SF SCALE and REWIND. When SF SCALE is
loaded, it is multiplied by any data loaded from the Generic_Input. Multiple scale factors are allowed to provide clarity for the
input. For example, two scale factors could be used to separate a unit conversion factor from a calibration factor. Continuing
this example, an input line that reads from the file MyText.txt could be “OPEN/CLOSE MyFile.txt SF 0.3048 SF 1.05”,
where 0.3048 is a unit conversion factor and 1.05 is a calibration adjustment factor that increases the input by 5 percent. The
REWIND option resets a file that is already opened (excluding INTERNAL) to the first line. This is advantageous if a file only has
a certain number of input records that are repeated after a set number of stress periods. For example, if an input was repeated
every 12 stress periods (that is, one input for each month), then it only requires 12 lines to represent the 12 months in one file
that is opened with DATAFILE, DATAUNIT, or EXTERNAL. Once the file is accessed and read 12 times for the 12 stress periods,
the file utility then uses the keyword REWIND to move to the start of the file to cycle through another 12 stress periods.

The following is a set of examples for different ways to access or open a file using Generic_Input or
Generic_Input_OptKey:

INTERNAL # READ input on subsequent lines

READ input on subsequent lines, multiply input loaded by 2.5 and 1.25
INTERNAL SF 2.5 SF 1.25

READ input on subsequent lines, multiply input loaded by 2.5 and 1.25
INTERNAL 2.5 1.25

READ input on subsequent lines, multiply input loaded by 2.5, “#” excludes 1.25
INTERNAL 2.5 # 1.25

OPEN/CLOSE MyFile.txt # Open MyFile.txt, load its contents, then close file

Open MyFile.txt, load its contents and multiply it by 2.5 and 1.25, then close file
OPEN/CLOSE MyFile.txt SF 2.5 SF 1.25

Open MyFile.txt, load its contents and multiply it by 2.5 and 1.25, then close file
OPEN/CLOSE MyFile.txt 2.5 1.25

84 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

EXTERNAL 55 # Load contents from Unit 55 as specified in the NAME file

Load contents from Unit 55 as specified in the NAME file, multiply it by 2.5 and 1.25
EXTERNAL 55 SF 2.5 SF 1.25

Load contents from Unit 55 as specified in the NAME file, multiply it by 2.5 and 1.25
EXTERNAL 55 2.5 1.25

The following are additional examples of different ways to access or open input with Generic_Input_OptKey:

MyFile.txt # Open MyFile.txt, load its contents, then close file

Open MyFile.txt, load its contents and multiply it by 2.5 and 1.25, then close file
MyFile.txt SF 2.5 SF 1.25

Open MyFile.txt, load its contents and multiply it by 2.5 and 1.25, then close file
MyFile.txt 2.5 1.25

55 # Load contents from Unit 55 as specified in the NAME file

Load contents from Unit 55 as specified in the NAME file, multiply it by 2.5 and 1.25
55 SF 2.5 SF 1.25

Load contents from Unit 55 as specified in the NAME file, multiply it by 2.5 and 1.25
55 2.5 1.25

The following is a set of examples for different ways to specify keywords for Generic_Output or Generic_Output_OptKey:

INTERNAL # Write output to LIST file

LIST # Write output to LIST file, same as INTERNAL

OPEN/CLOSE MyFile.txt # Open MyFile.txt and write output to it

EXTERNAL 55 # Write output to Unit 55 as specified in the NAME file

The following are additional examples for different ways of setting up the output for Generic_Output_OptKey:

MyFile.txt # Open MyFile.txt and write output to it

55 # Write output to Unit 55 as specified in the NAME file

Appendix 1. New Input Formats and Utilities 85

The following are examples for present the usage of post-keywords for Generic_Output and Generic_Output_OptKey:

OPEN/CLOSE MyFile.txt SPLIT 500 #MB

Write output to Unit 55 and split file every 500MB. Note if file is binary,
then it should be declared as DATA(BINARY) in NAME file
55 SPLIT 500

The second to last example would split the Generic_Output file “MyFile.txt” if its size exceeded 500 megabytes and
begin writing output to a new file called “MyFile01.txt”. If this new file size exceeded 500 megabytes, then it would be split,
and output would be written to the file “MyFile02.txt”. This splitting of files continues until the MF-OWHM2 simulation is
completed. The following is an example of buffering a file with 512 kilobytes of memory:

This works for Generic_Input too
OPEN/CLOSE MyFile.txt BUFFER 512 #KB buffer for file

Both BUFFER and SPLIT can be used simultaneously, and the order does not matter. This allows for a file to be buffered
and split into multiple files. The following is an example of using both keywords, which would turn off buffering of a binary file,
but still split the file whenever it was greater than 500 megabytes in size:

Open MyFile.txt as binary, with no buffer and split to new file every 500MB
MyFile.txt BINARY BUFFER 0 SPLIT 500

or

OPEN/CLOSE MyFile.txt SPLIT 500 BINARY BUFFER 0

Finally, the keyword BINARY may be placed at the start of a Generic_Input or Generic_Output input section:

BINARY OPEN/CLOSE MyFile.txt SPLIT 500 BUFFER 0

86 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

A

 One of the following items must be present accessing or opening a file with

Generic_Input, Generic_Output, Generic_Input_OptKey, or Generic_Output_OptKey:

1) UNIT → Generic_Input_OptKey and Generic_Output_OptKey

2) INTERNAL

3) EXTERNAL UNIT

4) DATAUNIT UNIT

5) OPEN/CLOSE FILE

6) DATAFILE FILE

7) FILE → Generic_Input_OptKey and Generic_Output_OptKey

8) NOPRINT → Generic_Output and Generic_Output_OptKey

 The following are optional, post-keywords that are checked for after items 1–7.-

The order of the post-keywords does not matter nor do any have to be specified.

Any option supported by Generic_Input is supported by Generic_Input_OptKey.
Any option supported by Generic_Output is supported by Generic_Output_OptKey.

A) BINARY → Generic_Input and Generic_Output

B) BUFFER BUF_SIZE_KB → Generic_Input and Generic_Output

C) SPLIT SPLIT_SIZE_MB → Generic_Output

D) NOPRINT → Generic_Output

E) REWIND → Generic_Input

F) DIM DIM_SIZE → Generic_Input

G) SF SCALE → Generic_Input

H) SCALE → Generic_Input

Figure 1.12. Syntax for accessing or opening files with the utilities: Generic_Input, Generic_Output, Generic_Input_OptKey, and
Generic_Output_OptKey. A, The keyword decision order for how the file is detected, then either accessed or opened (items 1 through
8), and what post-keywords can be applied (items A through H). B, Explanation of items 1 through 8 in part A. C, Explanation of the
post-keywords in part A. [The symbol, → indicates that the option is only available to a specific file utility.]

Appendix 1. New Input Formats and Utilities 87

B

 INTERNAL indicates that
Generic_Input files are read on subsequent lines, and
Generic_Output files are written to the LIST file.

 NOPRINT indicates that Generic_Output output will not be written.

 UNIT is the unit number of a file opened in the NAME file with
DATA or DATA(BINARY).

 EXTERNAL indicates that
Generic_Input files are read from a file associated with UNIT, and
Generic_Output files are written to a file associated with UNIT.

 DATAUNIT This option is identical to EXTERNAL,
except if the expected file to be opened is a Transient File Reader (TFR),
then DATAUNIT indicates that the TFR is bypassed the UNIT is a Direct Data
File (DDF). A TFR and DDF are part of the List-Array Input (LAI).

 BINARY is a keyword that indicates FILE should open as a BINARY file.
The keyword may be placed at either the beginning or ending of the
Generic_Input and Generic_Output input.

 FILE is the file name and location (file path) that will be opened for reading or
writing to. Note that item 7 is equivalent to specifying OPEN/CLOSE FILE.

OPEN/CLOSE indicates that FILE is to be opened and read or written to at the start of the
file. FILE is closed when it is no longer required.

Generic_Input file is closed after reading input.
 Note, a TFR reads input until the simulation ends.
Generic_Output is closed when either the simulation ends
 or it is no longer used for writing output.

 DATAFILE indicates that if FILE is not open, then open it;
The file remains open until simulation ends.

Any subsequent DATAFILE references to the same FILE
continue reading or writing at the file’s previous position.

This is analogous to EXTERNAL UNIT, but uses the file name, FILE,
instead of UNIT, and it is not required to define FILE in the NAME file.

If the expected file to be opened is a TFR, then
DATAFILE indicates that the TFR is bypassed and FILE is a DDF.

Figure 1.12. —Continued

88 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

C

 BUFFER indicates that the input or output file should be buffered in RAM to
improve speed. The size of the buffer is in kilobytes (KB).
When not specified the default buffer is 32KB.

Generic_Input preloads the file into RAM for reading.
Generic_Output writes output first to RAM, then writes to the
 actual file in BUF_SIZE_KB chunks.

BUF_SIZE_KB Size of the buffer in KB.
If the buffer is set to 0 , then

Generic_Input disable preloading of the file before reading.
Generic_Output results in immediate writing of output.

 SPLIT indicates that a Generic_Output file should split
into a new file after a specified size in megabytes (MB).

The new file uses the original files name with a
sequential number appended to it to not overwrite the original.

SPLIT_SIZE_MB is the minimum size, in MB, of the output before it is split.

 REWIND indicates that the file’s position is reset to the start of the file
before the file is read from or written to

This is done by default for newly opened files.

This option is ignored when used with the keyword INTERNAL.

 DIM sets user-specified dimension, DIM_SIZE, for the input file.

The use of DIM depends on what the input file is used for.
If the input file does not support DIM, then a warning is raised.

One notable use is that if DIM_SIZE is specified when opening a Transient
File Reader (TFR) and Direct Data File (DDF), then it specifies the largest
line size that is read as input and overrides the default size of 700
characters.

 DIM_SIZE is an integer number that is specified after DIM.

 SF a scale factor, SCALE, is read and multiplied with the input data.

 “SF SCALE” may be repeated multiple times.

Scale factors are ignored for input that is expected as an integer (int).

 SCALE is a scale factor that is read and multiplied with the input data.

The use of the keyword SF is optional but recommended for clarity.

 “SCALE” may be repeated multiple times.

 NOPRINT suppresses the creation and writing of an output file.

Figure 1.12. —Continued

Appendix 1. New Input Formats and Utilities 89

ULOAD Input Utility and SFAC Keyword—Universal Loader and Scale Factors

The following section introduces the Universal Loader (ULOAD) input utility and optional keyword SFAC, which provides
supplemental scale factors for modifying input. ULOAD is an array reading utility that is capable of loading text, integers, and
floating-point numbers that are structured as List Style input or Array Style input. List Style is a record-based input that reads
one record per row; a single record starts with a record identifier (ID, an integer) and is followed by one or more columns of
input data. Array Style loads a two-dimensional array of input data without a record ID (identifier). List Style may have its
record ID associated with a specific input property or may be linked to a spatial identification array that is loaded with the Array
Style. Typically, Array Style is used for loading spatial data that conform to the MF-OWHM2 model grid (NROW by NCOL).
Ultimately, the key difference between the List Style and Array Style is whether record IDs are read or not.

Note that MODFLOW, and consequently MF-OWHM2, reads (or writes) arrays from (or to) text files with the dimension
NROW by NCOL (traditional matrix structure), but reads (or writes) arrays from (or to) BINARY files with the dimension NCOL
by NROW. This is the reason why figures 9 and 10 dimension the array as (NCOL, NROW), which is an array that is read from
a binary file.

ULOAD—A Universal Array and List Load Utility
The MF-OWHM2 ULOAD input utility is capable of loading either List Style or Array Style input data. The utility

automatically skips blank lines and ignores any commented text, which must be preceded with “#” symbol. The data loaded
depend on the input keywords specifying what the dataset comprises, which can be either integer, floating point (single/double
precision), or character data (for example, ASCII text). The specific data type is defined by the input package that is relying on
ULOAD to load the data.

List Style reads a row at a time that starts with a record ID (as an integer) then multiple records—properties—to the right
of it. The Array Style loads a two-dimensional array (typically, NROW by NCOL) and must be formatted in the structure of
the array (for example, it must have NCOL inputs for each row and must have NROW rows). The input data may be space
separated, comma separated, or tab separated, and comments are allowed between rows and after the last column of input.
Figure 1.13 presents two List Style input examples and one and Array Style example.

Unless otherwise stated in the input section of the utility that is calling ULOAD, the row record ID is the only placeholder
not used by MF-OWHM2. It is instead required to provide an ID to help the user identify the input ID (or row of input). In
addition, unless otherwise stated by the input section, the rows must be well ordered, irrelevant of the ID, such that the first row
applies to record 1, and the second row applies to record 2, and so forth. The number of rows that are read is specified by each
input section.

ULOAD is capable of loading binary files. This is an advanced input and is discussed here only to provide a complete
description of ULOAD. ULOAD imposes several limitations to the structure of the binary file. First, the Generic_Input must include
the post-keyword BINARY or be associated with a unit that was opened with DATA(BINARY) in the NAME file. Second, the List
Style input cannot have the record ID in the binary file. The binary structure using List Style input is such that the first property
(from the first record to the last record) is written first, then the second property, and so forth. Third, the Array Style binary file
array structure will be defined by the input utilizing it. If there is no description of the input structure defined, the Array Style
input assumes that the array is written in binary format such that the first column is first, then the second column, and so forth.
This assumption coincides with the way MODFLOW stores arrays as (NCOL, NROW). The advantage of binary files compared
to text files is that they load faster and are typically smaller in size. Because text files are easier to maintain and more portable,
however, they are the recommended input format.

A special case is ULOAD_NoID, which follows the same rules, but does not read the row record ID (only the data are read
in). In fact, Array Style uses ULOAD_NoID to read a two-dimensional array. In addition to this, ULOAD_NoID is how a single
value (for example, a single integer, scalar or floating-point number, or single word) is loaded. ULOAD_NoID can be thought of
as a generalization of the standard MODFLOW input utilities U1DREL, U2DREL and U2DINT, because it performs the same
operation without requiring format codes and automatically adjusts for single precision and integer input (and for some special
inputs can read text input, such as a name).

The ULOAD input data type (integer, floating point, text) and input style is specified by the calling package, and within the
model input dataset being loaded. ULOAD first attempts to identify a keyword (fig. 1.14A, items 1 through 4). If ULOAD does not
identify a keyword, then the input is assumed to be specified as an Implied_Internal and located along the current line. If an
Implied_Internal is not allowed, then an error is raised, and the simulation stopped.

90 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

The following is a set of examples that use ULOAD to read in three values (Val1, Val2, Val3) that define one input
property (for example, root depth for NCROP = 3 Crops). The first example is for using a constant value:

CONSTANT VALUE # Sets Val1 Val2 Val3 Equal to VALUE

The INTERNAL keyword requires a record ID:

INTERNAL
ID1 Val1
ID2 Val2
ID3 Val3

If no keyword is present and an Implied_Internal is allowed, then the input is loaded along the same line, without the List
Style record ID. The following is an example Implied_Internal:

Val1 Val2 Val3 # Load Val1 Val2 Val3 to Record ID 1, 2, 3, respectively

The input can be specified in a separate file. One method of loading input is to use the keyword OPEN/CLOSE:

OPEN/CLOSE MyFile.txt

The file “MyFile.txt” contains the following:

ID1 Val1
ID2 Val2
ID3 Val3

The final example uses EXTERNAL:

EXTERNAL 55

The entry in the NAME file (NAM) is as follows:

DATA 55 ./MyFile.txt READ BUFFER 16

The file “MyFile.txt” contains the following:

ID1 Val1
ID2 Val2
ID3 Val3

For these examples, values of ID1, ID2, and ID3 would be 1, 2, and 3 to serve as the place holder, and Val1, Val2, and
Val3 would be the input property (for example, 3.14, 2.718, and 1.618).

Appendix 1. New Input Formats and Utilities 91

As described before, ULOAD is capable of loading multiple properties per record. In this case, ULOAD does not allow for an
Implied_Internal because of the additional column dimensions. The following is an example of a ULOAD with three records that
load property A and B.

INTERNAL
ID1 Val1_A Val1_B
ID2 Val2_A Val2_B
ID3 Val3_A Val3_B

Because ULOAD uses Generic_Input to check for the keywords INTERNAL, EXTERNAL, and OPEN/CLOSE, it also supports
all the post-keywords (for example, BUFFER, BINARY, SF SCALE). To illustrate the application of SF SCALE, the following
example loads the values in bold and then multiplies them by SCALE1 and SCALE2, which represent multiple instances of SF
SCALE.

INTERNAL
ID1 Val1_A Val1_B
ID2 Val2_A Val2_B
ID3 Val3_A Val3_B

or

INTERNAL
ID1 Val1_A Val1_B
ID2 Val2_A Val2_B
ID3 Val3_A Val3_B

INTERNAL SF SCALE1 SF SCALE2
ID1 Val1_A Val1_B
ID2 Val2_A Val2_B
ID3 Val3_A Val3_B

A

B

C

List Style Input; 3 IDs and 1 Proper�es
ID Prop1
1 Val # Comment
2 Val
3 Val

List Style Input; 3 IDs and 2 Proper�es
ID Prop1 Prop2
1 Val Val # Comment
2 Val Val
3 Val Val

Array Style Input; 4 rows and 5 columns
Val Val Val Val Val # Comment
Val Val Val Val Val
Val Val Val Val Val
Val Val Val Val Val

Figure 1.13. Example input structures expected by Universal
Loader (ULOAD). A, List Style input that reads three records that
define one property. B, List Style input that reads three records
that each define two properties. C, Array Style input that reads a
4-by-5 array. [Val is a placeholder that represents a single value
of the format expected by the input using ULOAD.]

92 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

A

0) SFAC [DIMKEY] ULOAD Optional and may be repeated with one SFAC per line.

 Defines advanced scale factors that are applied to input
 indicated by items 2–5.

 SFAC scale factors are read with a separate instance of ULOAD.

 If present, then item 2, 3, 4, or 5 is expected on
 the next uncommented line.

1) SKIP

2) REPEAT [SF SCALE] Only allowed when the same input
 was previously loaded with ULOAD.
 Typically, this only occurs within a Transient File Reader.

3) CONSTANT VALUE

4) Generic_Input [SF SCALE] Specify the location of the input with
 INTERNAL, EXTERNAL, OPEN/CLOSE, DATAUNIT, or DATAFILE.

 At the start of the input within the Generic_Input
 “SFAC [DIMKEY] ULOAD” can optionally be included.

5) Implied_Internal Input is assumed to be on current line
 if and only if the expected input is
 a single VALUE, or
 List Style input with only one property, or
 Array Style input that is a vector (one-dimensional array).

Figure 1.14. Universal Loader (ULOAD) supported keywords. A, The syntax of ULOAD keywords, ordered by how ULOAD checks
for keywords; for example, REPEAT is checked for before CONSTANT. B, Explanation of items 0 through 5 in part A. [SF SCALE is
enclosed in brackets to indicate it is optional and is only applied to the directive with which it appears on the same line. SFAC and
SF scaling only remain in effect for the directive they are applied to. If a new directive is specified, such as REPEAT, the scale
factors are not carried forward, such that a REPEAT directive will by default repeat only the unscaled input.]

Appendix 1. New Input Formats and Utilities 93

B

 24

SFAC [DIMKEY] ULOAD

 SFAC indicates that advanced scale factors are read with a separate instance
of ULOAD and applied to the input read by items 2–5.

SFAC may be repeated as necessary, but only one is allowed per line.

DIMKEY is an optional keyword that indicates the number of scale factors
read and how they are applied to the input.

If DIMKEY is not present or not supported,
then SFAC reads a single scale factor that is applied to all the input.

If DIMKEY is supported, then the accepted keywords and how they are
applied to the input are defined by the input that supports it.

 SKIP specifies that values input properites are set to zero.

 REPEAT specifies input that was previously loaded should be reused.

Repeated input does not carry forward any SFAC, SF, or SCALE
scale factors from the previous load;
thus it requires the scale factors to be repeated to reproduce the same input.

REPEAT is only allowed if the dataset has been previously loaded by ULOAD
(that is, the input from the previous stress period).

 SF SCALE specifies an optional scale factor, SCALE, that is applied to the
REPEAT input or the input read from the Generic_Input.
Multiple SF SCALE are allowed but must be on the same line.
SCALE, without the keyword SF, is accepted in the place of “SF SCALE”.

 CONSTANT specifies that VALUE should be used as to the input.
VALUE must match the data type that the input utility expects,
which can be integer, floating point, or text.

Generic_Input uses the keywords INTERNAL, EXTERNAL, OPEN/CLOSE, DATAUNIT, and
DATAFILE to specify the location of the input.

All the Generic_Input post-keywords are supported, including SF SCALE.

SFAC [DIMKEY] ULOAD can be used within the Generic_Input
on the line (or lines) before the expected input data begins.

Implied_Internal assumes that the input data is located along the current line
because items 1–4 are not identified.

An error is raised if input is not one of the following cases:
• A scalar—that is a single input value.
• List Style input that only has one property (record ID and one column)
• Array Style input that expects a vector (one-dimensional array)

 A single property List Style input in an Implied_Internal does not include
the record ID and assumes that the first input has a record ID of 1,
and the second has a record ID of 2, and so forth.

Figure 1.14. —Continued

94 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

SFAC—Scale Factor Keyword
MF-OWHM2 input sections may specify that they support SFAC as a keyword. SFAC allows loading and applying scale

factors to a set of input data. SFAC is automatically multiplied with any loaded Generic_Input “SCALE” values to derive a
composite scale factor. SFAC scale factors rely on a List Style ULOAD (see previous section) to read either a single scale factor
or a set of scale factors. If SFAC reads a set of scale factors, then it is required to include the keyword DIMKEY to specify the
number of scale factors and how they should be applied. Figure 1.15 presents the general input structure when using SFAC.

Because SFAC relies on ULOAD with List Style input to read the scale factors, it must include a record ID. If the scale factors
are read with an Implied_Internal, then the record ID is not read. For simplicity of input, it is recommended to use the Implied_
Internal for scale factors.

The following are examples of ways to load scale factors for an input utility that accepts a DIMKEY of “ByWBS” and has
three water balance subregions (WBS or farms with NWBS = 3). Note that SFAC always accepts the DIMKEY keyword ALL, but
it is optional because SFAC automatically reads a single scale factor if DIMKEY is not present.

The following examples load a single scale factor, SVAL, that is multiplied by whatever input it is associated with. The first
two text boxes use a ULOAD Implied_Internal to load SVAL, and the second two boxes use ULOAD with a Generic_Input keyword
to specify where to find SVAL—note ULOAD requires the record ID:

SFAC SVAL

or

SFAC ALL SVAL

or

SFAC INTERNAL
ID1 SVAL

or

SFAC OPEN/CLOSE MyText.txt

MyText.txt contains the following:

ID1 SVAL

The following illustrate using ULOAD with an Implied_Internal and two Generic_Input keyword examples that load the
scale factors SVAL1, SVAL2, SVAL3 to be applied where WBS 1, 2, and 3 are located, respectively:

SFAC ByWBS SVAL1 SVAL2 SVAL3

SFAC ByWBS INTERNAL
ID1 SVAL1
ID2 SVAL2
ID3 SVAL3

SFAC ByWBS OPEN/CLOSE MyText.txt

MyText.txt contains the following:

ID1 SVAL1
ID2 SVAL2
ID3 SVAL3

Appendix 1. New Input Formats and Utilities 95

Because a List Style ULOAD is used to load the SFAC scale factors, this method also supports loading additional SCALE
factors by using the Generic_Input post-keyword. This is useful for keeping conversion factors or correction factors separated
from calibration scale factors.

The following is an example that includes a conversion factor of inches to meters and a correction factor of 0.99 that are
multiplied by all the scale factors in MyText.txt. The product is then multiplied by the input data (the following example uses
real numbers to clarify the multiplication):

SFAC ByWBS OPEN/CLOSE MyText.txt 0.0254 0.99

MyText.txt contains the following:

1 1.5
2 2.5
3 3.5

In this example in the input, 0.0377 (that is, 0.0254 × 0.99 × 1.5), is multiplied by the associated input property everywhere
WBS 1 resides, 0.0629 is the multiplier everywhere WBS 2 resides, and 0.088 is the multiplier everywhere WBS 3 resides.

SFAC allows for a layered approach to scale factors that adds flexibility for calibration and distinguishes conversion factors
from parameter-estimation factors. For example, the file MyText.txt could be a calibration template file that optimization
software uses to modify the MF-OWHM2 input, but the other scale factors do not change because they just transform the input
to the proper units.

SFAC [DIMKEY] ULOAD

where

 SFAC is the keyword that initiates the advanced scale factor routine.

Only one SFAC is allowed per line

 DIMKEY is an optional keyword that indicates the number of scale factors
to be read in and how they are applied.

If DIMKEY is not present or is set to “ALL”, then a single scale factor is read
and applied to the input data.

An example DIMKEY, from FMP, is “ByWBS”, which indicates
NWBS scale factors are read, and the first scale factor is applied
to areas where WBS 1 is located, and the second scale factor is
applied where WBS 2 is located, and so on.

 ULOAD is Universal Loader utility that reads the scale factors with List Style input.

ULOAD can use an Implied_Internal to read the scale factors,
which is recommended method for reading SFAC scale factors.

It is not recommended to use keyword INTERNAL to load scale factors.

Figure 1.15. Advanced scale factor input structure and explanation of keywords.

96 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

ULOAD That Contains SFAC
Any input utility file that is loaded with a call to ULOAD also supports the SFAC keyword. This can be confusing because

SFAC relies on a separate instance of ULOAD to load the scale factors. If there is a single SFAC in a ULOAD, the routine ULOAD is
called twice; the first time loads the scale factor data, and the second time loads the input data and applies the scale factors to it.

ULOAD supports multiple calls of SFAC, but the keyword SFAC must be located before the input data and only have one
SFAC keyword for each line. The exception to this is when reading List Style with Implied_Internal, ULOAD will check for
a single SFAC keyword after the list records read on the same line. If an input record read by ULOAD uses a Generic_Input
keyword (for example, INTERNAL, EXTERNAL, OPEN/CLOSE, DATAUNIT, and DATAFILE), then it also checks in the
Generic_Input file for the SFAC keyword before loading the input data. This allows for scale factors to be applied before
checking for the Generic_Input flags and in the Generic_Input file itself. In addition to this, if the Generic_Input is followed by
a SCALE value that is written to the right of it, it is also included as a scale factor for the data.

The following examples use SFAC with ULOAD to load three values called Val1, Val2, and Val3 and two scale factors
called SF1 and SF2. The general form, figure 1.16, of this load has one or two “SFAC ULOAD” to read a single scale factor and
then reads one ULOAD that loads Val1, Val2, and Val3.

This example loads the scale factor SF1, then uses an Implied_Internal on the next line to load the three values:

SFAC SF1 ← Implied_Internal read of SF1
Val1 Val2 Val3 ← Implied_Internal read of Val1, Val2, and Val3

This causes the final input for the three values to be Val1 × SF1, Val2 × SF1, and Val3 × SF1. The next example includes
two scale factors that are applied to the values read using an Implied_Internal:

SFAC SF1
SFAC SF2
Val1 Val2 Val3

This causes the final input for the three values to be Val1 × SF1 × SF2, Val2 × SF1 × SF2, and Val3 × SF1 × SF2. Since
the input uses an Implied_Internal—that is, no Generic_Input keyword was found so the List Style input is read along the current
line—the previous input box can be reformatted to take advantage that an Implied_Internal allows specifying a single SFAC to
the right of its input. The following illustrates this:

SFAC SF1
Val1 Val2 Val3 SFAC SF2

Note that the line of text that uses an Implied_Internal is preloaded into memory. By default, the maximum preloaded line
size is set to 700 characters of text. Assuming there are no keywords on the line, 700 characters is approximately 35 numbers
that are each 20 characters long (assuming the space that separates the numbers is part of the 20 characters). Because of this
preloaded line character limit, it is not recommended to use an Implied_Internal when input exceeds 25 numbers. If the input
must use an Implied_Internal with a text line that exceeds 700 characters, then the post-keyword “DIM DIM_SIZE” (fig. 1.12
item F) can be used to set the preloaded line to a length of DIM_SIZE characters.

When the input exceeds 25 numbers, the use of Implied_Internal is not recommended and instead the input should
explicitly supply the Generic_Input keyword. The following example uses the INTERNAL keyword to load the three variables—
the same Val1, Val2, and Val3 as presented before. As presented in figure 1.17, scale factors are always loaded before the
input data, but SFAC may be located before or after the INTERNAL keyword.

If the input data reside in an external file, then the SFAC keyword can appear before the EXTERNAL or OPEN/CLOSE
keywords or in the file that is opened. In both cases, SFAC must appear before the actual input data.

SFAC SF1
OPEN/CLOSE MyFile.txt

MyFile.txt is as follows:

ID1 Val1
ID2 Val2
ID3 Val3

Appendix 1. New Input Formats and Utilities 97

or

OPEN/CLOSE MyFile.txt

MyFile.txt is as follows:

SFAC SF2
ID1 Val1
ID2 Val2
ID3 Val3

or

SFAC SF1
OPEN/CLOSE MyFile.txt

MyFile.txt is as follows:

SFAC SF2
ID1 Val1
ID2 Val2
ID3 Val3

Because MyFile.txt is opened with Generic_Input, it supports the optional SF SCALE value. The following includes a third
scale factor:

SFAC SF1
OPEN/CLOSE MyFile.txt SF3

MyFile.txt is as follows:

SFAC SF2
ID1 Val1
ID2 Val2
ID3 Val3

This would cause the final data input to be Val1 × SF1 × SF2 × SF3, Val2 × SF1 × SF2 × SF3, and Val3 × SF1 ×
SF2 × SF3.

The previous SFAC examples relied on the ULOAD Implied_Internal to load the scale factors, but they can also be in an
external file opened with Generic_Input. The following are examples that have the scale factors in a separate file:

SFAC OPEN/CLOSE SFAC1.txt
OPEN/CLOSE MyFile.txt

SFAC1.txt contains the following:

ID1 SF1

MyFile.txt contains the following:

ID1 Val1
ID2 Val2
ID3 Val3

The next example illustrates the use of DIMKEY to load more than one scale factor. DIMKEY is defined by the data set
that supports SFAC and determines how the scale factors are applied when DIMKEY is used. An example DIMKEY from FMP is
ByWBS, which indicates there are NWBS scale factors, and the first scale factor is applied to any input data item that is in WBS
1, and the second scale factor is applied where WBS 2 is located, and so on. For simplicity, the following example uses the
DIMKEY “ByVal” and loads three scale factors that are applied to the three input values, respectively:

SFAC ByVal OPEN/CLOSE SFAC3.txt
INTERNAL
ID1 Val1
ID2 Val2
ID3 Val3

98 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

SFAC3.txt contains the following:

ID1 SF1
ID2 SF2
ID3 SF3

This causes the final data input to be Val1 × SF1, Val2 × SF2, and Val3 × SF3. The original ULOAD can contain the
unscaled data and reference a separate file (SFAC3.txt) that contains a set of scale factors. This is typically used to build a
parameter estimation template by keeping the unscaled input separate from the scale factor file—such as MyFile.txt, SFAC1.txt,
or SFAC3.txt—that is adjusted by the parameter estimation software.

Because SFAC relies on ULOAD to load the scale factors, they could technically have scale factors of scale factors of scale
factors, without a limit. This is not recommended, but is presented to illustrate how the two routines are interrelated:

SFAC1.txt contains the following:

SFAC OPEN/CLOSE SFAC2.txt
ID1 SF1

SFAC2.txt contains the following:

SFAC OPEN/CLOSE SFAC3.txt
ID1 SF2

SFAC3.txt contains the following:

ID1 SF3

This causes the final data input to be Val1 × SF1× SF2 × SF3, Val2× SF1× SF2 × SF3, and Val3× SF1× SF2 × SF3. The
following is the recommended way to obtain the identical final input (note that the inclusion of SF is optional):

SFAC OPEN/CLOSE SFAC1.txt
INTERNAL
ID1 Val1
ID2 Val2
ID3 Val3

INTERNAL SF SF1 SF SF2 SF SF3
ID1 Val1
ID2 Val2
ID3 Val3

SFAC ULOAD ← Load a scale factor with ULOAD
ULOAD ← Load input data with ULOAD

Figure 1.16. General structure of a ULOAD input that includes an
advanced scale factor, SFAC. SFAC uses ULOAD to read the scale
factors and the ULOAD on the second line reads the input to which
the scale factors are applied. [ULOAD is an abbreviation for the
Universal Loader.]

Appendix 1. New Input Formats and Utilities 99

INTERNAL SF SF1
ID1 Val1
ID2 Val2
ID3 Val3

SFAC SF1
INTERNAL
ID1 Val1
ID2 Val2
ID3 Val3

INTERNAL
SFAC SF2
ID1 Val1
ID2 Val2
ID3 Val3

SFAC SF1
INTERNAL
SFAC SF2
ID1 Val1
ID2 Val2
ID3 Val3

A B C D

Figure 1.17. Possible locations that scale factors (SF) and advance scale factors (SFAC) can be placed within input read using ULOAD
with the INTERNAL keyword. A, Input that uses the Generic_Input scale factor SF SCALE to apply SF1 to input data. B, SFAC is placed
before the INTERNAL keyword. C, SFAC is placed after the INTERNAL keyword, but before the input data. D, One SFAC is placed before
the INTERNAL keyword and another SFAC is placed after the INTERNAL keyword, but before the input data. In this case the resulting
scale factor is the product of SF1 and SF2. [Universal Loader (ULOAD) examples use List Style input that reads three records identified
with ID1, ID2, and ID3 being integer values of the record ID.SF1, SF2, Val1, Val2, Val3 represent actual numbers that would be used
as input.]

List-Array Input Structure—Spatial-Temporal Input

This section describes the List-Array Input (LAI). This new MF-OWHM2 input structure facilitates initial set up as well as
incorporating future updates. It also includes scale factors for calibration. LAI relies on keywords that specify the frequency of
reading input and its spatial style (fig. 1.18), then reads the input data with ULOAD. The input frequency is either to load the input
once and reuse it for the entire simulation, keyword STATIC, or to load the input every stress period, keyword TRANSIENT. The
input style is either List Style (keyword LIST) or Array Style (ARRAY). It also offers an advanced input structure called IXJ Style
(keyword IXJ), in which input depends on the package input KEYWORD that uses it.

All List-Array Input structures support specification of the TEMPORAL_KEY, INPUT_STYLE, and INPUT keywords
(fig. 1.18). If a specific input KEYWORD only allows for one TEMPORAL_KEY or INPUT_STYLE, however, specifying it is
optional. For example, the FMP keyword, PRECIPITATION—which specifies the precipitation rate over the model grid—only
supports the Array Style input.

PRECIPITATION STATIC ARRAY OPEN/CLOSE ./Precip.txt
PRECIPITATION STATIC OPEN/CLOSE ./Precip.txt
PRECIPITATION TRANSIENT ARRAY OPEN/CLOSE ./Precip_TFR.txt
PRECIPITATION TRANSIENT OPEN/CLOSE ./Precip_TFR.txt

The STATIC keyword indicates that the input is read once and resides in the Precip.txt text file. This is an example of Array
Style input data for a 3-by-5 (NROW by NCOL) model grid:

File Precip.txt
Precipitation rate in length translated to 3 by 5 Model Grid
0.50 0.68 0.81 0.75 0.72
0.55 0.72 0.82 0.77 0.82
0.52 0.73 0.83 0.79 0.92

In LAI, the TRANSIENT keyword indicates that Precip_TFR.txt is the Transient File Reader (TFR) file. The section
“Transient File Reader and Direct Data Files” describes in detail the structure of a TFR.

100 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

If the input keyword only allows for one possible TEMPORAL_KEY and one INPUT_STYLE, then all the keywords are
optional, and the input may be loaded with ULOAD directly. For example, the FMP keyword, SURFACE_ELEVATION—which
specifies the initial land-surface elevation of the model grid—can only be loaded once with Array Style. In this case, any of the
following works for loading the input from external file, DEM.txt:

SURFACE_ELEVATION STATIC ARRAY OPEN/CLOSE ./DEM.txt
SURFACE_ELEVATION STATIC OPEN/CLOSE ./DEM.txt
SURFACE_ELEVATION ARRAY OPEN/CLOSE ./DEM.txt
SURFACE_ELEVATION OPEN/CLOSE ./DEM.txt

An example DEM.txt is as follows:

DEM.txt, Land surface elevation of 3 by 5 Model Grid
0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50

The last line, “SURFACE_ELEVATION OPEN/CLOSE ./DEM.txt”, directly calls ULOAD because both the TEMPORAL_KEY
and the INPUT_STYLE are optional.

A special TEMPORAL_KEY is CONSTANT VALUE. The contents of VALUE must be consistent with the expected input data
type (that is, integer, floating point, or text). This single value is then applied to the input keyword. CONSTANT automatically
picks the INPUT_STYLE that uses the least amount of memory that is allowed. That is, if the INPUT_STYLE supports both
ARRAY and LIST, then CONSTANT applies the single value as if LIST were selected. Conversely, if the INPUT_STYLE only
supports the ARRAY keyword, then CONSTANT applies the single value to the array. Because CONSTANT is parsed by ULOAD,
which uses Generic_Input, the use of CONSTANT can include the post-keyword SF SCALE to multiply SCALE with VALUE. The
following List-Array Input example is equivalent to the previous example (that loaded uniform values for land surface elevation
from DEM.txt) and illustrates that CONSTANT can produce input with spatial as well as temporal uniformity:

SURFACE_ELEVATION STATIC ARRAY OPEN/CLOSE ./DEM.txt
SURFACE_ELEVATION CONSTANT 0.50

Appendix 1. New Input Formats and Utilities 101

KEYWORD TEMPORAL_KEY INPUT_STYLE INPUT

where

 KEYWORD is a package input keyword (PIK) that initiates the List-Array Input utility.

TEMPORAL_KEY is the temporal input keyword that is set to

STATIC to indicate that input data is read once with ULOAD.

TRANSIENT to indicate that input data is read every stress period
with either a Transient File Reader (TFR)
or a Direct Data File (DDF).

CONSTANT VALUE to indicate that input is a single value, VALUE, and not
changed for the duration of the simulation.
When using the keyword CONSTANT,
it is optional to specify INPUT_STYLE and
VALUE is considered the INPUT.

INPUT_STYLE is the spatial input keyword that is set to

LIST to use List Style input.

ARRAY to use Array Style input.

IXJ to use IXJ Style input.

 INPUT is the actual input data that is loaded by ULOAD, TFR, or DDF.

 The input read frequency is defined by the TEMPORAL_KEY keyword
and the spatial input style used by the INPUT_STYLE keyword.

Figure 1.18. List-Array Input (LAI) general input structure and explanation of input.

102 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

LAI[S,T,A,L] Input Format Meaning
To condense writing the options available for the List-Array Input format, a special short-hand notation is used

(fig. 1.19). In most circumstances, the ARRAY keyword (A) always reads an array in the same dimension as the model grid
(NROW×NCOL), and the LIST (L) keyword only reads one property (two columns, one for the ID and one for the property). If
the LIST keyword loads more than one property (L-K, with K≥2), then it rarely supports the ARRAY keyword, because it cannot
represent multiple properties across a single model-grid array. If the ARRAY is not the same as the model grid, then its dimension
is defined by (I,J), where I is the number of rows, and J is the number of columns.

LAI[S, T, A, L] or LAI[S, T, A, L-K] or LAI[S, T, A(I,J), L]

where

 LAI indicates that input uses the List-Array Input structure. The contents within
the brackets, [], indicate which keywords are supported.

 S STATIC keyword is supported by the LAI input.

 T TRANSIENT keyword is supported by the LAI input.

 A ARRAY keyword is supported by the LAI input.

 Array Style input uses the default size,
 which is the model grid size (NROW, NCOL).

 L LIST keyword is supported by the LAI input.

 List Style input expects a record ID and one input property.

 The length of the list is defined by the input that is using LAI.

 L-K LIST keyword is supported by the LAI input. K is set to an integer,
 such as “L-4”, which represents the number of properties.

 List Style input expects a record ID and K input properties.

 The length of the list is defined by the input that is using LAI.

 A(I,J) ARRAY keyword is supported by the LAI input.

 I and J are the number of rows and columns, respectively,
 that is read using Array Style input.

Figure 1.19. Explanation of the List-Array Input (LAI) structure variants and special short-hand notation. This notation is
used with model input keywords to indicate the LAI features supported by each.

Appendix 1. New Input Formats and Utilities 103

The Keyword STATIC
The keyword STATIC makes use of just a single ULOAD call to read the input information and then use it for the entire

simulation. For example, the following example shows how to load data for the FMP keyword ROOT_DEPTH—which specifies
NCROP crop-root depths—with the STATIC keyword, and ULOAD points to the input location of root depths:

ROOT_DEPTH STATIC ARRAY ULOAD #Array Style Input
ROOT_DEPTH STATIC LIST ULOAD #List Style Input

For the Array Style input, an array the same size as the model grid is loaded by ULOAD and the crop that grows in each grid
cell has the root depth specified for that row and column location. Conversely, the List Style would read NCROP rows of input
with the crop ID as the record ID and the next column as the root depth of the crop. Then any grid cell where the crop ID array
has crop 1 receives the root depth specified in record 1, and where the crop ID array has crop 2 receives the root depth specified
in record 2, until NCROP root depths have been applied.

The following is an example for a three-by-five (NROW by NCOL) model grid with three crops (NCROP = 3) that have the
root depth specified in feet, but converted to meters (0.3048 m/ft), to match the model units. It also makes use of the crop ID
array, which is an integer array that specifies the locations of the crops. Note that a real simulation only allows specifying the
ROOT_DEPTH keyword once; the two versions are represented here to illustrate the difference between ARRAY and LIST.

Crop ID (LOCATION) - Array Style Input of 3 by 5 Model Grid
LOCATION STATIC ARRAY INTERNAL

1 1 2 2 2
1 1 2 2 3
3 3 2 3 3

#Array Style Input 3 by 5 Model Grid
ROOT_DEPTH STATIC ARRAY INTERNAL 0.3048

1.50 1.50 0.81 0.79 0.79
1.50 1.50 0.81 0.81 0.50
0.50 0.50 0.81 0.50 0.50

#List Style Input
ROOT_DEPTH STATIC LIST INTERNAL 0.3048
 1 1.50
 2 0.81
 3 0.50

In this example, the Array Style allows for crop 2 to have two different root depths (see green bold numbers). The root
depths read as an array are mapped cell by cell using the crop ID array allowing for crop 2 to have root depths set to 0.81 and
0.79. The List Style input allows for more compact input but requires crop 2 to have the same root depth for the entire model
array. The final root depths applied to the model grid with List Style are then as follows:

1.50 1.50 0.81 0.81 0.81
1.50 1.50 0.81 0.81 0.50
0.50 0.50 0.81 0.50 0.50

104 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

This would become the following after the conversion factor (0.3048) is multiplied by the input data:

 0.45720 0.45720 0.24689 0.24689 0.24689
 0.45720 0.45720 0.24689 0.24689 0.15240
 0.15240 0.15240 0.24689 0.15240 0.15240

Note that ULOAD supports SFAC, by which one could specify the scale factor either before the keyword or in the external
file that is opened. The following examples show three methods that can be used to apply the feet-to-meters conversion factor
for the List Style input. Example (1), using post-keyword SF SCALE is this:

Using Generic_Input post-keyword SF SCALE
ROOT_DEPTH STATIC LIST OPEN/CLOSE ./Root1.txt 0.3048

Example (2), using keyword SFAC outside the loaded text file is this:

Using SFAC before Keyword
SFAC 0.3048
ROOT_DEPTH STATIC LIST OPEN/CLOSE ./Root1.txt

Where Root1.txt is as follows:

Root Depth – List Style
 1 1.50
 2 0.81
 3 0.50

Example (3), using SFAC within the loaded file Root2.txt is this:

Using SFAC after Keyword
ROOT_DEPTH STATIC LIST OPEN/CLOSE ./Root2.txt

Where Root2.txt is as follows:

Scale feet to meters then
Root Depth – List Style
SFAC 0.3048
 1 1.50
 2 0.81
 3 0.50

Appendix 1. New Input Formats and Utilities 105

Also, additional comments can be placed anywhere:

Scale feet to meters
SFAC 0.3048 # Comment Here
Root Depth – List Style
Crop 1
 1 1.50 # A Comment Here
 #
 # Crop 2
 #
 2 0.81 # A Comment Here
 # Crop 3
 3 0.50 # A Comment Here

Although the STATIC keyword relies on a single ULOAD, the TRANSIENT keyword relies on the Transient File Reader to
load the input for each stress period. The next section discusses this in detail.

Transient File Reader and Direct Data Files
The Transient File Reader (TFR) and Direct Data File (DDF) file types are used by the List-Array Input (LAI) style to

load temporally varying (TRANSIENT) input data. The TFR can be thought of as a special spatial-temporal input format (for
example, reading precipitation arrays every stress period). The TFR and DDF are both opened in the LAI structure at the INPUT
keyword with Generic_Input_OptKey and must be specified as a separate file from the one that contains the LAI keywords. This
precludes opening a TFR and DDF with the keywords INTERNAL or using an Implied_Internal.

The Generic_Input_OptKey file-opening keywords indicate if the temporal file is a TFR or DDF. Specifically, if DATAFILE
or DATAUNIT open the file, then it is a DDF, whereas the rest of the keywords open a TFR.

Input from a TFR or DDF and the files that they open are preloaded, one line at a time, into memory and parsed for
keywords, List style input, and an Implied_Internal input line. For most situations, this feature can be ignored by most users—
since most input is loaded with a Generic_Input keyword—such as, INTERNAL, EXTERNAL, OPEN/CLOSE, DATAUNIT,
and DATAFILE, which do not exceed the preloaded line size. The memory reserved for the preloaded line is 700 characters
by default, which is roughly 35 numbers that are each 20 characters long. All input from a TFR or DDF—except for reading
an Array Style array—are loaded this way. If the input fails to load a number on a line, then an error is raised signifying
either not enough numbers on the line or the preloaded line size is not large enough. This can likely occur when reading List
Style input as an Implied_Internal; this is because the records are all written on one line rather than one record per line. To
change the maximum size of the preloaded line, the TFR or DDF that is opened with Generic_Input_OptKey support the post-
keyword option DIM DIM_SIZE, which makes the preloaded line size equal to DIM_SIZE. Although it is uncommon to exceed
700 characters in a line of a file, this post-keyword is a useful add-in response to an error being raised because the input exceeds
the default DIM_SIZE. Another benefit of defining DIM_SIZE is that if the input is Array Style or is List Style that never uses
Implied_Internal, then the preloaded line size can be reduced to the largest line—excluding lines that contain the actual array—
to save memory.

106 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

Transient File Reader
The Transient File Reader (TFR) is a pointer file that contains a ULOAD on each row that reads input per time interval it

applies to. The time interval depends on the keyword that is using the ULOAD, which is typically once per stress period. Because
the TFR uses ULOAD to read each temporal input, it supports all features of ULOAD, such as comments, multiple scale factors, and
Implied_Internal (for List Style input with one property). Figure 1.20 presents the general format of a Transient File Reader file.

The next set of examples uses the previous example for root depth (FMP keyword ROOT_DEPTH) and changes its
TEMPORAL_KEY to TRANSIENT. The set of keywords then becomes this:

Generic_Input_OptKey opens TFR.

A TFR cannot be opened with INTERNAL, DATAFILE or DATAUNIT

ROOT_DEPTH TRANSIENT ARRAY Generic_Input_OptKey # TFR reads Array Style input
ROOT_DEPTH TRANSIENT LIST Generic_Input_OptKey # TFR reads List Style input

The following examples are TFR files that specify and load the input every stress period (SP) for 10 stress periods using
different ULOAD keywords that open the files defined as Root1.txt and Root2.txt in the previous section (fig. 1.21). Note that
although this example uses List Style input, the Array Style works in the same manner and only differs in the input data structure.
Comments are included in the sample TFR file to explain how the data are loaded.

Because the file remains open after reading with the keywords DATAFILE, EXTERNAL, and DATAUNIT, multiple sets of
input can be specified in the same file. This allows the user to work with fewer files and have the TFR control the input order
and, optionally, the scale factors. Figure 1.22 is an example of a TFR that uses DATAFILE to cycle through three stress periods
of input.

By combining DATAFILE, EXTERNAL, and DATAUNIT with REWIND, a single file could contain a repeated block of stress-
period input that is cycled through. For example, root depths could vary through the year, but are typically the same depth
at the same time of the year. If a model contained stress periods that align with the months of the year, then a file Root12.txt
(fig. 1.23A) would contain 12 sets of input for each month’s root depth. The structure of the input depends on the input style,
where List Style input expects a root depth for each crop and array style reads a model grid array that is the root depth for each
model row and column. Figure 1.23A presents the root depth raw input using List Style for three crops. This raw input is then
cycled through using the DATAFILE directive (fig. 1.23B). Another method of cycling through a file is using the LOAD_NEXT
and RELOAD directives (fig. 1.23C).

Using an annual file that is cycled through each year provides an easy method for maintaining input datasets in a compact
manner that is easy to understand. For more information on cycling through a TFR file, please see the “Transient File Reader –
Spatial-Temporal Input” in appendix 2.

If one file is cycled through for the entire simulation by using only DATAFILE, DATAUNIT, or EXTERNAL (that is, no
REWIND), then the Transient File Reader can be bypassed and loaded as a Direct Data File (DDF)—discussed in the next section.

ULOAD # First Load of Input
ULOAD # Second Load of Input
ULOAD # Third Load of Input
 ⋮
ULOAD # Nth Load of Input

Figure 1.20. General input structure of a Transient File Reader (TFR) file. If the
TFR input occurs once per stress period, then this example represents reading the
input for the first N stress periods. Each uncommented, non-blank line in the file
is expected to load the input needed for that stress period. Input for each stress
period is read with the Universal Loader (ULOAD). That is, the first ULOAD reads
input for stress period 1, and the second ULOAD reads input for stress period 2, and
so forth. [Comments are any text that are written to the write of a “#” symbol.]

Appendix 1. New Input Formats and Utilities 107

Transient File Reader Example that loads 10 Stress Periods (SP)
INTERNAL 0.3048 # SP1
 1 1.50
 2 0.81
 3 0.50

REPEAT SF 0.3048 # SP2: Reuse previous input, mul�ply it by 0.3048
 # Note the keyword “SF” is op�onal, so “REPEAT 0.3048” works.

SP3: Implied Internal - SFAC must be used instead of “SF SCALE” or “SCALE”

SFAC 0.3048
1.50 0.81 0.50

SP4: Open and then close Root2.txt and mul�ply its input by 0.3048
OPEN/CLOSE ./Root2.txt SF 0.3048

EXTERNAL 55 # SP5: Unit 55 is Root2.txt that is open in the NAME file

Note that keywords DATAFILE and DATAUNIT work within the TFR
Root2.txt remains open for the rest of the simula�on and is buffered into 64 kb of RAM

DATAFILE ./Root2.txt SF 0.3048 BUFFER 64 # SP6: Load from first line of Root2.txt

DATAFILE ./Root2.txt SF 0.3048 # SP7: Load input from current line of Root2.txt
 # The current line is the next text file line
 # from where the SP6 input load ended.

SP8: Move to first line of Root2.txt, load input, and apply SCALE (mul�ply by 0.3048)
RELOAD 0.3048 # Note the use of “SF” is op�onal

Unit 55 is Root2.txt, but it was read already once
so a second call to the unit with EXTERNAL or DATAUNIT
would cause an end of file error, so the open file must be rewound back to the first line.

EXTERNAL 55 REWIND # SP9 move to line 1 of file, then load input
DATAUNIT 55 REWIND # SP10 Same effect as EXTERNAL 55

Figure 1.21. Example Transient File Reader (TFR) file that loads input for 10 stress periods (SP) using various TFR directives.
Input is assumed to be List Style that reads 3 records. Comments are used to explain what each directive is doing and what
is being read. [Comments are any text that are written to the right of a "#" symbol.]

108 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

A

B

Transient File Reader file that reads from Root2.txt input for three stress periods
Each stress period’s input is scaled by 0.3048
(Note that “SF 0.3048” could be used in the place of “0.3048”)

DATAFILE ./Root2.txt 0.3048 # SP1: open Root2.txt, load input from first line
DATAFILE ./Root2.txt 0.3048 # SP2: Root2.txt already open, load at current file loca�on
DATAFILE ./Root2.txt 0.3048 # SP3: con�nue loading input from Root2.txt

Root2.txt
 1 1.50 # SP 1 Root Depth – List Style
 2 0.81
 3 0.50
SP 2 -- Note that comment does not have to be on separate line
 1 1.50
 2 0.81
 3 0.50
SP 3
 1 1.50
 2 0.81
 3 0.50

Figure 1.22. Example Transient File Reader (TFR) file that loads input for three stress periods (SP) using the DATAFILE directive and
List Style input that expects 3 records. Comments are used to explain what each directive is doing and what is being read. A, The TFR
file that opens and reads input from Root2.txt once per SP. B, The input file Root2.txt that is read from. In the file, the comments are
optional and used to separate, visually, each stress period’s input. [Comments are any text that are written to the right of a “#” symbol.]

Appendix 1. New Input Formats and Utilities 109

A

B

Root12.txt
ID Root_Depth
 1 0.20 #SP -- January
 2 0.21
 3 0.10
 1 0.60 #SP -- February
 2 0.71
 3 0.30
 1 1.50 #SP -- March
 2 0.81

3 0.50

 1 1.50 #SP -- November
 2 0.81
 3 0.50
 1 0.10 #SP -- December
 2 0.15
 3 0.05

DATAFILE ./Root12.txt 0.3048 # SP1 January
DATAFILE ./Root12.txt 0.3048 # SP2 February
DATAFILE ./Root12.txt 0.3048 # SP3 March
DATAFILE ./Root12.txt 0.3048 # SP4 April
DATAFILE ./Root12.txt 0.3048 # SP5 May
DATAFILE ./Root12.txt 0.3048 # SP6 June
DATAFILE ./Root12.txt 0.3048 # SP7 July
DATAFILE ./Root12.txt 0.3048 # SP8 August
DATAFILE ./Root12.txt 0.3048 # SP9 September
DATAFILE ./Root12.txt 0.3048 # SP10 October
DATAFILE ./Root12.txt 0.3048 # SP11 November
DATAFILE ./Root12.txt 0.3048 # SP12 December
DATAFILE ./Root12.txt 0.3048 REWIND # SP13 January - Rewind to top of file
DATAFILE ./Root12.txt 0.3048 # SP14 February
DATAFILE ./Root12.txt 0.3048 # SP15 March

Figure 1.23. Example Transient File Reader (TFR) file that cycles through a file that contains 12 months of root depth input for three
crops (List Style input with three records). In this example, the TFR time interval is a Stress Period (SP) defined equivalently with the
months of the year. For example, SP 1 and 13 represent January and SP 2 and 14 represent February. A, The raw input file, Root12.txt,
which contains the root depth for three crops for each month of the year. If a model only used between 1 and 12 Stress Periods, then
Root12.txt could also be used opened as a Direct Data File (DDF). B, An example TFR file that uses the DATAFILE directive to open
and read input from Root12.txt for each SP. C, An example TFR file that uses the DATAFILE directive to open and read input from
Root12.txt initially and then uses the LOAD_NEXT and RELOAD directives to cycle through the file for each SP. [Comments are any text
that are written to the right of a “#” symbol. The TFR examples use a scale factor, SCALE = 0.3048 that multiplies with the root depth
to convert the depths from feet to meters.]

110 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

C
DATAFILE ./Root12.txt 0.3048 # SP1 January
LOAD_NEXT 0.3048 # SP2 February
LOAD_NEXT 0.3048 # SP3 March
LOAD_NEXT 0.3048 # SP4 April
LOAD_NEXT 0.3048 # SP5 May
LOAD_NEXT 0.3048 # SP6 June
LOAD_NEXT 0.3048 # SP7 July
LOAD_NEXT 0.3048 # SP8 August
LOAD_NEXT 0.3048 # SP9 September
LOAD_NEXT 0.3048 # SP10 October
LOAD_NEXT 0.3048 # SP11 November
LOAD_NEXT 0.3048 # SP12 December
RELOAD 0.3048 # SP13 January - Rewind to top of file
LOAD_NEXT 0.3048 # SP14 February
LOAD_NEXT 0.3048 # SP15 March

Figure 1.23. —Continued

Direct Data File
The Direct Data File (DDF) is opened when the LAI uses the Generic_Input keyword DATAFILE or DATAUNIT.

Functionally, the DDF acts identically to a Transient File Reader (TFR) file that only contains DATAFILE, DATAUNIT, or
EXTERNAL references with no SFAC or post-keywords (for example, SF SCALE, REWIND). The DDF allows a shortcut for
accessing an input file without having to double-specify keywords. A DDF is the closest analogue to how input was loaded by
previous versions of FMP and can help with transforming previous FMP inputs to the current input design. To translate such an
older structure to a LAI structure, the same EXTERNAL file could be opened with DATAUNIT as with the LAI INPUT keyword.

The following example presents a TFR and its equivalent DDF using the previously discussed root depth examples with List
Style input for three crops and for four stress periods; the base text file Root3.txt is shown first:

Root3.txt – Stress period input is defined as contiguous blocks – no keywords
 1 1.0 # SP 1 Root Depth – List Style
 2 0.8
 3 0.5
 1 1.1 # SP 2
 2 0.9
 3 0.6
 1 1.2 # SP 3
 2 0.95
 3 0.7
 1 1.3 # SP 4
 2 0.99
 3 0.8

Appendix 1. New Input Formats and Utilities 111

Next, the FMP input keyword ROOT_DEPTH uses keywords to indicate List-Style input lines will be loaded using the
Transient File Reader (TFR) file, Root_TFR.txt, opened as is shown:

Generic_Input_OptKey opens TFR.

A TFR cannot be opened with INTERNAL, DATAFILE or DATAUNIT
ROOT_DEPTH TRANSIENT LIST OPEN/CLOSE ./Root_TFR.txt # Reads List Style input

Root_TFR.txt
DATAFILE ./Root3.txt 0.3048 # SP1, Open Root3.txt, read from first line
DATAFILE ./Root3.txt 0.3048 # SP2, continue reading from Root3.txt
DATAFILE ./Root3.txt 0.3048 # SP3, continue reading from Root3.txt
DATAFILE ./Root3.txt 0.3048 # SP4, continue reading from Root3.txt

Alternatively, Root_TFR.txt could use EXTERNAL by declaring Root3.txt in the NAME file:

Root_TFR.txt, Unit 56 is Root3.txt opened in the NAME file
EXTERNAL 56 0.3048 # SP1, read from unit 56 (Root3.txt)
EXTERNAL 56 0.3048 # SP2, read from unit 56 (Root3.txt)
EXTERNAL 56 0.3048 # SP3, read from unit 56 (Root3.txt)
EXTERNAL 56 0.3048 # SP4, read from unit 56 (Root3.txt)

This LAI structure using a TFR could be translated into one that opens a DDF by using the keyword DATAFILE or
DATAUNIT as part of the LAI INPUT. The following example directly accesses Root4.txt and bypasses the TFR:

Direct Data File: Is only opened with DATAFILE or DATAUNIT
#
ROOT_DEPTH TRANSIENT LIST DATAFILE ./Root3.txt 0.3048 # Open as DDF
#
or if Root3.txt is opened in the NAME file on Unit 56
#
ROOT_DEPTH TRANSIENT LIST DATAUNIT 56 0.3048

The limitation of the DDF is it does not allow for easy specification of time-varying scale factors. The only way a scale
factor can vary in a DDF is by specifying it with the SFAC keyword before each stress-period input. The following example file
illustrates the only method for applying a temporally varying scale factor when input is opened as a DDF. This example reads the
input for four stress periods and applies the scale factors 1.1, 1.2, 1.3, and 1.4, to stress periods 1, 2, 3, and 4, respectively.

112 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

SFAC 1.1 # SFAC applied to first read of DDF
 1 1.0 # SP 1 Root Depth – List Style
 2 0.8
 3 0.5
SFAC 1.2 # SFAC applied to second read of DDF
 1 1.1 # SP 2
 2 0.9
 3 0.6
SFAC 1.3
 1 1.2 # SP 3
 2 0.95
 3 0.7
SFAC 1.4
 1 1.3 # SP 4
 2 0.99
 3 0.8

IXJ Style Input—Advanced Structured Input
The IXJ Style input is an advanced input that serves as a surrogate to the List and Array Style inputs. The IXJ Style has

been intentionally left out of the previous descriptions to prevent confusion with the recommended input structures (LIST and
ARRAY). It is not necessary to use the IXJ Style input structure as part of the standard List-Array Input. It is documented here
for completeness and to provide examples of the benefits of using it. IXJ Style input is loaded using ULOAD, so the IXJ Style
supports all of the ULOAD keywords and scale factors (SFAC). The name “ IXJ ” is a reference to the loading of an arbitrary
number of lines of input in which each line has a prespecified set of integers (I), followed by a set of floating-point numbers (X),
and finally by a second set of integers (J). The number of integers (I and J) and floating-point numbers (X) that are read on each
line depends on the input keyword that loads them. The loading of IXJ Style input continues until it either reaches the end of the
file or encounters the keyword STOP IXJ.

The dimensions I, X, and J for IXJ Style input are either explicitly defined or specified with a shorthand notation. The
shorthand notation has the structure of IXJ[DIMI, DIMX, DIMJ], where DIMI, DIMX, DIMJ are set to a number that represents the
number of integers read for I, floating-point real numbers read for X, and integers read for J, respectively. For example, IXJ[3,
1, 0] indicates that the IXJ Style input expects to read on each row three integers (I), one floating-point (X), and zero integers
(J). The shorthand can optionally exclude DIMJ, which indicates its value is zero. Using this option would shorten the previous
example to IXJ[3, 1].

Appendix 1. New Input Formats and Utilities 113

A common use of the IXJ Style is to specify Array Style using a compressed coordinate structure in which each line
contains the row number, the column number, and the floating-point value to assign at that row and column location. Any
row and column location that is not defined in the IXJ Style is set to zero (in fact, the array is initialized to zero, and then the
IXJ Style input overwrites each specified row and column location with the assigned value). Using IXJ Style, the compressed
coordinate structure would read two values for I, one value for X, and zero values for J.

As an example of input using the IXJ Style as surrogate for Array Style, reconsider the previously used ARRAY input for
PRECIPITATION (shown in the example following fig. 1.18). The following is an example use of LAI for precipitation input
using Array Style where Precip.txt (fig. 1.24E) contains the Array Style precipitation data:

PRECIPITATION STATIC ARRAY OPEN/CLOSE ./Precip.txt

The same data can be loaded as IXJ Style input by translating the precipitation array to IXJ Style (fig. 1.24B) and changing the
input style keyword from ARRAY to IXJ. This would change the previous example as follows:

Figure 1.24 presents a precipitation List Array Input example that uses the TRANSIENT keyword and IXJ Style input
(fig. 1.24A). Figure 1.24B is the TFR that reads two stress periods; the first stress period uses INTERNAL directive to load
five lines of IXJ Style input, and the second stress period uses OPEN/CLOSE directive to read the IXJ Style input from the
file PrecipIXJ.txt (fig. 1.24C). If a row and column is not specified, then IXJ Style automatically assumes a value of zero for
precipitation. The final precipitation arrays for the two stress periods are presented in figure 1.24D and E.

The IXJ Style is suited best for input of the land-use area fractions if there are multiple land-use types allowed in one model
cell. This advanced feature in the FMP allows more than one land use type for each model cell. The input keyword that specifies
crop-area fractions is LAND_USE_AREA_FRACTION, and it expects Array Style input that reads multiple NROW by NCOL arrays
(one per Crop) of fractions of the cell area. Figure 1.25A is an example that loads such arrays for a three-by-five (NROW by NCOL)
model grid’s crop-area fractions for three crops (NCROP = 3). The equivalent IXJ Style input (fig. 1.25B) reads three integers and
one floating-point number. The three integers are crop ID, row, and column, and the floating-point number is the fractional cell
area applied to the specified crop ID at that model grid row and column. The advantage of using IXJ Style is that only the non-
zero fractions must be specified. In this example, the difference between the IXJ and Array Styles is trivial, but the advantage can
be quite substantial for large scale models.

PRECIPITATION STATIC IXJ OPEN/CLOSE ./PrecipIXJ.txt

114 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

A

B

C

PRECIPITATION TRANSIENT IXJ OPEN/CLOSE ./PrecipIXJ_TFR.txt

PrecipIXJ_TFR.txt
INTERNAL # SP1
#ROW COLUMN PRECIP
 1 3 0.81
 2 1 0.55
 2 2 0.72
 2 4 0.77
 3 4 0.79
STOP IXJ # Keyword that ends loading IXJ input for stress period

OPEN/CLOSE PrecipIXJ.txt # SP2 loads from file PrecipIXJ.txt

File: PrecipIXJ.txt
#ROW COLUMN PRECIP
 1 1 0.50
 1 2 0.68
 1 3 0.81
 1 4 0.75
 1 5 0.72
 2 1 0.55
 2 2 0.72
 2 3 0.82
 2 4 0.77
 2 5 0.82
 3 1 0.52
 3 2 0.73
 3 3 0.83
 3 4 0.79
 3 5 0.92

End of file indicates termina�on of input;
or could use keyword
STOP IXJ

Figure 1.24. A, Example package input keyword,
PRECIPITATION, that uses List-Array Input with IXJ
Style to specify for two stress periods the precipitation
rate for a 3 by 5 model grid. B, Example Transient File
Reader file, PrecipIXJ_TFR.txt. The first stress period
is loaded with the INTERNAL directive and reads on
each uncommented, non-blank line, the row and column
number of the model grid and the precipitation rate that is
assigned to it. IXJ Style input continues to read lines until
encountering the keyword “STOP IXJ”. The second stress
period loads the IXJ Style input from the file PrecipIXJ.txt.
C, The file PrecipIXJ.txt, that contains IXJ Style input, is
read until the end of file is reached. D, The resulting array
that MF-OWHM2 uses after reading the IXJ Style input
specified by the INTERNAL. E, The resulting array that
MF-OWHM2 uses after reading PrecipIXJ.txt with IXJ
Style input. [Comments are any text that are written to the
right of a “#” symbol.]

Appendix 1. New Input Formats and Utilities 115

D

E

Resul�ng Precipita�on array from IXJ Style read with INTERNAL
Precipita�on rate in length translated to 3 by 5 Model Grid
0.00 0.00 0.81 0.00 0.00
0.55 0.72 0.00 0.77 0.00
0.00 0.00 0.00 0.79 0.00

File Precip.txt
Resul�ng Precipita�on array from IXJ Style read of PrecipIXJ.txt
Precipita�on rate in length translated to 3 by 5 Model Grid
0.50 0.68 0.81 0.75 0.72
0.55 0.72 0.82 0.77 0.82
0.52 0.73 0.83 0.79 0.92

Figure 1.24. —Continued

116 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

A

B

#Array Style Input 3 by 5 Model Grid and NCROP=3
LAND_USE_AREA_FRACTION STATIC ARRAY INTERNAL
CROP 1
0.5 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.2
0.0 0.0 0.3 0.0 0.0
CROP 2
0.0 0.8 0.0 0.0 0.0
0.8 0.8 0.0 0.0 0.0
0.0 0.0 0.3 0.0 0.0
CROP 3
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.5
0.0 0.0 0.3 0.5 1.0

#IXJ Style Input 3 by 5 Model Grid and NCROP=3
LAND_USE_AREA_FRACTION STATIC IXJ INTERNAL
#Crop Row Col Frac�on
 1 1 1 0.5
 1 2 1 0.2
 1 2 5 0.2
 1 3 3 0.3
 2 1 2 0.8
 2 2 1 0.8
 2 2 2 0.8
 2 3 3 0.3
 3 2 4 0.5
 3 2 5 0.5
 3 3 3 0.3
 3 3 4 0.5
 3 3 5 1.0
STOP IXJ

Figure 1.25. Examples of List-Array Input for the FMP Land_Use block using input keyword
LAND_USE_AREA_FRACTION to A, load an Array Style input for 3 crops and a model grid that is 3 rows by 5 columns.
This particular input expects to read an array that is 9 rows (3 sets of 3) by 5 columns, where the first 3 by 5 array
represents the fraction of each cell that crop 1 is planted, and the second 3 by 5 array is for crop 2, and so forth; and
B, loads an IXJ Style input equivalent to the List-Array Input of part A. [Comments are any text that are written to the
right of a “#” symbol. Comments are optional and included to help organize the example.]

Appendix 1. New Input Formats and Utilities 117

Lookup Table Input Structure

The Lookup Table input structure reads Lookup Style input; that is, it uses lookup tables that are composed of pairs of
data—the lookup value and its associated return value. In all lookup tables, the lookup values should be sorted in ascending
order, but if they are not, then MF-OWHM2 sorts the lookup table rows to ensure ascending order. An individual lookup table
is read once (for example, a single stream stage-discharge table), but may be used for different lookup values or during different
times of a simulation (such as evaluating the discharge rate given a stream stage at the start of each stress period). The Lookup
Style input within a LAI currently only supports the STATIC TEMPORAL_KEY keyword—that is, LAI reads all the lookup tables
once and reuses them for the entire simulation.

In MF-OWHM2, a lookup table is optimized for fast searches within small tables—less than 1,000 rows of data—with
basic interpolation methods. There is no limit to the size of a lookup table, but it is recommended to resample the table to make
it smaller if it contains redundant or unnecessary information.

A lookup value may be specified as a date (using any of the date formats described in appendix 2), but MF-OWHM2
internally converts each value in the lookup column to an equivalent decimal year that is treated as a regular floating-point
number, and the specified lookup value also is converted likewise for comparison. For example, if the lookup value is specified
as 1979-4-23, 1979-4, or APR-23, these are converted to 1979.307, 1979.247, and 0.307, respectively. Note that if the
day of month is not specified it is assumed to be 1. If the year is not specified, then it is assumed to be zero. Figure 1.26 is an
example lookup table composed of nine rows.

There are four methods available for determining the return value for a given search value to seek among the lookup values.
The method is set at the time of loading the lookup table and cannot change during a simulation. The first method, signified
by METHOD keyword NEAREST, searches for closest lookup value and returns the paired return value. If the search value is
equidistant from two lookup values, then the larger lookup value is selected. The second method, signified by METHOD keyword
STEP_FUNCTION, is a step function that searches for the closest lookup value that is less than or equal to the search value. For
the STEP_FUNCTION method, if the search value is less than the first lookup value then the first return value is used. The third
option, signified by METHOD keyword INTERPOLATE, linearly interpolates a return value based on the lookup values bracketing
the search value. If the search value is less than the smallest lookup value in the table then the linear interpolation uses the first
two rows of values to extrapolate a return value. Similarly, if the search value exceeds the table’s largest lookup value, then the
last two rows are used to extrapolate. The fourth method, signified by METHOD keyword CONSTANT, is a special case that forces
the table to always return the same value. Figure 1.27 presents an example Lookup Table and the results from three different
methods for given search values.

A set of lookup tables can be loaded with ULOAD, which allows lookup tables to be loaded with LAI; however, limitations
exist—only the LAI keyword LIST is supported for lookup tables. Specifically, MF-OWHM2 only supports List Style input that
reads one lookup table for each record. The Lookup Table input structure (Lookup Style input, fig. 1.28) is composed of three
parts, the first being the METHOD keyword that indicates how the lookup table returns a value—NEAREST, STEP_FUNCTION,
INTERPOLATE, or CONSTANT. The second part, NTERM, is the number of rows in the lookup table, and the last part is a
Generic_Input file identifier that points to where the lookup table is. A scale factor, SF SCALE, maybe optionally specified after
the Generic_Input. At the start of the Generic_Input file the keyword SFAC is supported, but it does not support any DIMKEY
keywords—that is, it only supports loading a single scale factor. If a scale factor is read, then it is only applied to the return
value of the lookup table (the second column). Figure 1.28 is a formal description of Lookup Style input.

Figure 1.29 is an example package input KEYWORD that uses List Style input to read a list of three record ID’s that use
Lookup Style input. The lookup table associated with record ID 1 is loaded from the file TAB.txt and specifies that it will
find return values using the NEAREST method. Because NTERM is set to zero, the number of rows in the table is automatically
determined during reading of TAB.txt. The table associated with record ID 2 will use the INTERPOLATION lookup method and
contains 4 rows. The INTERNAL keyword indicates that the lookup table is loaded on the subsequent lines. The lookup table
associated with record ID 3 has the lookup method set to CONSTANT, so it will always return 0.5 for all search values.

118 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

LookUp ReturnValue
 1.0 19.0
 2.0 66.0
 5.0 -91.0
 10.0 -82.0
 12.0 17.0
 12.4 -57.0
100.0 -75.0
123.0 23.0
956.0 91.0

Figure 1.26. Example
lookup table used by
the Lookup Table input
structure (Lookup Style).
The first column of numbers
are the lookup values and
the second column of
numbers are the associated
return values.

A

B

 Value Returned by METHOD

Search Value NEAREST STEP_FUNCTION INTERPOLATE

5 0 0 –1.0
14 0 0 0.8
15 2 0 1.0
16 2 0 1.2
29 6 2 5.6
30 6 6 6.0
31 6 6 6.8
55 16 16 17.0

LookUp ReturnValue
 10.0 0.0
 20.0 2.0
 30.0 6.0
 40.0 14.0
 50.0 16.0

Figure 1.27. Summary of Lookup Table input (Lookup Style) examples for various search values
given three of the available lookup methods: A, example lookup table; B, return values obtained
by each method for the given set of search values; graphs showing lookup table’s returned values
using the C, NEAREST method, D, STEP_FUNCTION method, and E, INTERPOLATE method.

Appendix 1. New Input Formats and Utilities 119

C

D

–2

0

2

4

6

8

10

12

14

16

18

Va
lu

e
re

tu
rn

ed

Search value

NEAREST

–2

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50 55 60

0 5 10 15 20 25 30 35 40 45 50 55 60

Va
lu

e
re

tu
rn

ed

Search value

STEP_FUNCTION

E

–2

0

2

4

6

8

10

12

14

16

18

Va
lu

e
re

tu
rn

ed

Search value

INTERPOLATE

0 5 10 15 20 25 30 35 40 45 50 55 60

Lookup table values

Result of the lookup table using
the NEAREST method

EXPLANATION

Lookup table values

Result of the lookup table using
the STEP_FUNCTION method

EXPLANATION

Lookup table values

Result of the lookup table using
the INTERPOLATE method

EXPLANATION

Figure 1.27. —Continued

120 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

METHOD NTERM Generic_Input_OptKey

where

 METHOD defines the method that is used for determining the return value based on

the relationship between the search value and the lookup value. It must be
set to one of the following keywords:

NEAREST the nearest lookup value determines the return value.

STEP_FUNCTION the nearest smaller or equal lookup value determines
the return value.

INTERPOLATE linearly interpolates between the lookup values to the
search value to determine the return value.

CONSTANT VALUE declares that lookup table is composed of a single
number that is returned for all lookup values. VALUE
must be specified after the keyword CONSTANT and is
the number that will be returned. Because they are not
needed, NTERM and Generic_Input are not read.

 NTERM is the number of rows in the lookup table. If set to a negative value or zero,
then the lookup table must reside in a separate file and its size is
automatically determined. The length is determined based on the number
of successfully loaded, uncommented, rows in the table (namely the
bottom of the file is reached or there is a non-commented line that fails to
load).

Generic_Input_OptKey is the input file that contains the lookup table.

If there is a scale factor, SCALE, specified then it is only applied to
the return values (second column).

Figure 1.28. General input structure for Lookup Style input, which loads a single lookup table and specifies the lookup method
by which return values will be associated with a search value.

Appendix 1. New Input Formats and Utilities 121

A

B

KEYWORD STATIC LIST INTERNAL
#ID Lookup-Style
#ID METHOD NTERM GENERIC_INPUT
1 NEAREST 0 TAB.txt # Load table in TAB.txt; auto-count rows
2 INTERPOLATE 4 INTERNAL # Table with 4 rows on subsequent lines
 10 0
 20 2
 30 8
 40 14
3 CONSTANT 0.5 # Table always returns 0.5

File: TAB.txt
LookUp ReturnValue
 5.0 25.0 # First Value
 8.0 50.0
 10.0 75.0
 # Comments can be anywhere
 15.0 80.0
 50.0 98.0
End of file determines table size is 5 = NTERM

Figure 1.29. Example using Lookup Style input. The shorthand notation is KEYWORD LAI[S, L] using Lookup Style, where
KEYWORD represents the package input keyword that supports lookup tables. The List Style input reads three lookup tables (three
records) that each define the lookup method and lookup table location. A, The input for KEYWORD LAI[S, L] using Lookup Style.
B, The lookup table specified in part A as the TAB.txt file.

122 One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software

References Cited

Harbaugh, A.W., 2005, MODFLOW-2005—The U.S. Geological Survey modular ground-water model—The
ground-water flow process: U.S. Geological Survey Techniques and Methods 6–A16, variously paginated,
https://pubs.usgs.gov/tm/2005/tm6A16/.

