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Conversion Factors
 

Multiply By To obtain 
foot (ft) 0.3048 meter (m) 
gallon per minute (gal/min) 0.06309 liter per second (L/s) 
cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s) 

Temperature in degrees Fahrenheit (◦F) may be converted to degrees Celsius (◦C) as follows: 
◦C = (◦F − 32)/1.8 
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Abstract 

The application bgaPEST is a highly 
parameterized inversion software package 
implementing the Bayesian Geostatistical Approach 
in a framework compatible with the parameter 
estimation suite PEST. Highly parameterized 
inversion refers to cases in which parameters are 
distributed in space or time and are correlated with 
one another. The Bayesian aspect of bgaPEST is 
related to Bayesian probability theory in which prior 
information about parameters is formally revised on 
the basis of the calibration dataset used for the 
inversion. Conceptually, this approach formalizes the 
conditionality of estimated parameters on the specific 
data and model available. The geostatistical 
component of the method refers to the way in which 
prior information about the parameters is used. A 
geostatistical autocorrelation function is used to 
enforce structure on the parameters to avoid 
overfitting and unrealistic results. Bayesian 
Geostatistical Approach is designed to provide the 
smoothest solution that is consistent with the data. 
Optionally, users can specify a level of fit or estimate 
a balance between fit and model complexity 
informed by the data. Groundwater and 
surface-water applications are used as examples in 
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ture, University of Parma, Parma, Italy. 
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this text, but the possible uses of bgaPEST extend to 
any distributed parameter applications. 

Introduction 

This report documents the theory and computer 
code of a Bayesian Geostatistical Approach (BGA4). 
“Bayesian” refers to theory used to solve the inverse 
problem; “Geostatistical” refers to the use of an 
autocorrelated spatial or temporal function to provide 
prior information about the parameters. This BGA 
approach has been coded by using the protocol and 
approach of PEST (Doherty, 2010a,b), the most 
widely used computer code of its type. Though BGA 
and PEST have been applied primarily to the 
environmental modeling field, a general view of the 
inverse problem discussed herein covers most classes 
of problems where measurements of a system are 
used to infer system properties that create the 
measured value. Thus, this bgaPEST formulation is 
meant to be applicable to any class of inverse 
problem that adheres to the concepts described 
herein. In this introductory section, we outline the 
conceptual framework of the method; theory, 
implementation, and instructions for use of the 
bgaPEST computer code version 1.0 follow this 
conceptual discussion. 

Environmental modeling can facilitate informed 
management of natural resources. In most cases, 

4Whereas the Bayesian Geostatistical Approach is referenced with the 
all capital abbreviation “BGA,” lowercase is used in the software name 
(“bgaPEST”) to visually differentiate “BGA” and “PEST.” 
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models represent physical processes such as 
groundwater flow, contaminant transport, surface 
water flood routing, and so forth. Simulating the 
overarching physics and chemistry with governing 
equations and concepts such as conservation of mass 
and momentum is only part of what is required. Once 
a model adequately represents the processes of the 
problem, it is still only an abstract tool until estimates 
of the physical characteristics are tuned to 
observations from the specific area to be managed. 

Input values that are used by processes are what 
control the behavior of a model at a given site; we 
refer to these input values as “parameters.” They 
represent specific characteristics (for example, 
hydraulic conductivity, recharge rate, chemical decay 
rate) of the natural system at an area of interest. 
Representative values appropriate for parameters in 
natural systems are often difficult to measure directly, 
however. Observations of system state (for example, 
water levels, streamflow magnitudes, chemical 
concentrations) are often easier to measure, and the 
model is chosen so that the observations of the 
system correspond to output values from the model. 
The outputs of observation data are dependent to 
varying degrees on the values of parameters. 
Therefore, changes in the simulated system state that 
align with observations allow inference of parameter 
values not available by direct measurement. 
“Parameter estimation” and “calibration” are both 
terms describing the process of incorporating 
site-specific observations to inform parameters and 
salient processes of a model in order to improve the 
representativeness and predictive ability of the model. 

A model, therefore, can be thought of as a 
data-processing tool that quantitatively tests 
conceptualizations of a system as well as a simulator 
of physical processes; metaphorically, data 
processing is a pipeline from field observation to 
model parameters and ultimately to more 
representative predictions for supporting 
management decisions. 

Put in terms of a Bayesian description, this 
process is one in which the model is a vehicle for 
updating soft knowledge or expert knowledge of the 
system (called a priori understanding in the Bayesian 
context). This initial vehicle is filtered by a measure 
of its ability to simulate the natural world informed, 
or updated, by site-specific observations (called a 

posteriori understanding). In the Bayesian approach, 
the ability to simulate features of the natural world 
“conditions” or narrows the wide range of possible 
outcomes that result from general expert-knowledge 
and soft knowledge alone. A key benefit of the 
Bayesian approach is that it provides a theoretically 
rigorous way to continually incorporate new 
information and, in turn, update a posteriori 
understanding. 

Purpose and Scope 

This report is intended to serve two purposes. 
First, a Bayesian approach to parameter 
estimation—expressed in the context of the Bayesian 
Geostatistical Approach (BGA)—is described to 
provide an accessible and general tool for moving a 
model from a general simulator of a physical process 
to a more optimal tool, one that is tuned to a set of 
calibration information, which, in turn, can be used 
for improved prediction and decision-making. 
Second, a computer code—bgaPEST version 1.0—is 
introduced and documented in which BGA is 
deployed by means of the protocols and input/output 
concepts developed in the free and open-source 
PEST suite of software Doherty (2010a). This report 
gives details on the mathematical theory behind 
BGA, followed by detailed instructions for using the 
computer program. Conventions and assumptions for 
using the program also are included in the discussion. 
To our knowledge, this application marks the first 
implementation of a general BGA code available for 
widespread use. 

The bgaPEST input framework is consistent with 
the input block and keyword concepts described by 
the JUPITER project Banta and others (2006). 
Although the relation of design concepts is beyond 
the scope of this report, the input block and keywords 
needed to run bgaPEST are described fully in 
appendix 1. A full description of the format of the 
general approach of template and instruction files is 
omitted here; detailed descriptions are provided in 
the PEST documentation (Doherty, 2010a, chapter 
3). All options implemented in template and 
instruction files in PEST are available in bgaPEST. A 
distributed parameterization scheme discussed in this 
report facilitates the introduction of flexibility to the 
model. This parameterization scheme also can be 



3 The Bayesian Geostatistical Approach 

applied to any region of interest and at the extreme, 
where sufficient data are available, can allow a 
modeler to estimate a unique parameter values for 
each model node or cell. This level of detail leads to 
a large number of parameters, a condition that poses 
computational challenges; alleviating these 
computational challenges is an active area of ongoing 
research and thus is not covered in detail here. 

This report includes an overview of theory and 
use of the bgaPEST code in the main text. Detailed 
input instructions for bgaPEST version 1.0 are in 
appendix 1, and quick-start instructions are in 
appendix 2. A detailed mathematical derivation of 
the BGA methods is in appendix 3, and example 
problems are in appendixes 5 through 7. 

Obtaining the Software 

The software for bgaPEST Version 1.0 is 
available for download at 
http://pubs.usgs.gov/tm/07/c09. This 
location includes a copy of this document and both 
executables and source code. As development of the 
code continues, a repository at 
http://github.com/mnfienen-usgs/bgaPEST 
provides a link to revisions in progress and provides 
a collaborative open-source space where users may 
submit revisions for consideration by the authors. As 
further development takes place, new code releases 
will be posted at 
http://pubs.usgs.gov/tm/07/c09. 

The Bayesian Geostatistical 
Approach 

The presentation of BGA is in two parts, first 
primarily as narrative then later as a detailed 
mathematical approach in appendix 3. Those most 
interested in simply applying bgaPEST to their 
specific problem will likely spend most time with the 
narrative. In both presentations, the concept of 
conditionality is fundamental. This concepts is 
expressed here as Bayes’ theorem,which forms the 
foundation of the techniques described in the rest of 
this report: 

p(s|y) ∝ L(y|s) p(s) (1) 

where: s is an m × 1 vector of m parameter values, y 
is n × 1 vector of n observations, p(·) indicates a 
probability density function (pdf), L (·) indicates a 
likelihood function, and | indicates conditionality. 
Put into words, Bayes’ theorem states that the 
posterior probability of parameters conditional on the 
observations p(s|y) (often referred to simply as “the 
posterior probability of s given y”) is proportional to 
the prior probability of the parameters p(s) updated 
with the likelihood function L(y|s) that expresses 
how well y is estimated by using the model and a 
candidate parameter set s. The pdfs in all cases are 
assumed to follow or at least be well-approximated 
by Gaussian distributions. This assumption is 
important and somewhat restrictive, but is made for 
computational simplicity. Active research is ongoing 
on alternatives to this approach, but the traditional 
Gaussian assumption is adopted in this report and is 
still considered a practical and useful assumption for 
many cases. 

In the Bayesian context, expressing the 
parameters and the likelihood function as probability 
distributions formally incorporates an estimate of 
their uncertainty rather than treating the parameters 
as perfectly known values. All a posteriori (also 
called posterior) distributions are conditional upon 
the specific data used in the calibration process. 
Perhaps less obviously, posterior distributions are 
also conditional on all other modeling and data 
assumptions and decisions that go into formulating 
the problem: which model and what model options 
are chosen, numerical considerations such as 
discretization and solver convergence criteria, 
boundary conditions that may or may not be 
considered static and known, variance values and 
weights given to individual observations and 
parameters, and others. As a result, if any of these 
underlying assumptions and decisions change, it is 
expected in the Bayesian context that the parameters 
estimated and the associated posterior uncertainty 
also will change. 

The conditionality includes all decisions made in 
the process of constructing a model and 
incorporating data;soft knowledge however, not all of 
this information is explicitly addressed by the 
modeler. In fact, the only explicit conditionality is on 
the observation data. The information contained in 
the prior pdf (p(s)) in equation 1 is critical because it 

http://pubs.usgs.gov/tm/tm7c9
http://github.com/mnfienen-usgs/bgaPEST
http://pubs.usgs.gov/tm/tm7c9 
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represents the state of knowledge about the 
parameters in the system prior to updating through 
the calibration process. In this report, assumptions 
made prior to calibration are intentionally limited and 
are restricted to the assignment of a mean value 
(unknown) of each distinct parameter type and region 
within the model domain (beta association, described 
below) and a characteristic about continuity or 
smoothness of the parameter field (implemented as a 
variogram, also described below). The degree to 
which this continuity characteristic is enforced is 
dictated by the observations included and the 
subsequent performance of the model. This 
construction is similar to (and in some cases, 
mathematically equivalent to) Tikhonov 
regularization (Tikhonov, 1963a,b; Aster and others, 
2005). Limitation of the information assumed a 
priori is similar to assuming a low or diffuse level of 
a priori soft knowledge (called an ignorance prior in 
Jaynes and Bretthorst, 2003, chapter 12). In this case, 
the resulting model is driven more by information 
obtained from site-specific observations than from 
prior assumptions based on soft knowledge. A goal 
of this approach is to limit the subjective information 
and to favor instead an objective and repeatable result 
based on observation data. Additionally, so-called 
structural parameters that enforce the characteristic 
smoothness are estimated. An algorithm that 
encompasses all of these aspects is considered an 
Empirical Bayes approach. 

A Note on Parameters 
The term “parameters” refers to discrete values 
of system state. When we describe “parameter 
type” we mean a group of parameters that belong 
to the same class of system state (for example, 
hydraulic conductivity or recharge). In appli­
cations appropriate for bgaPEST, there must be 
multiple parameter values of a given type that 
are spatially or temporally distributed. When a 
“parameter” is listed, the meaning is restricted 
to a single value of system model input that is to 
be estimated. 
The concept of a beta association is important 

and is a concept that is revisited throughout this 
report. Fienen and others (2009) describe the need to 
to represent the generalized mean value for a specific 
parameter type (for example, hydraulic conductivity 
in a groundwater model) in a specific region of a 

model referred to as a “facies association.” To be 
more general, this concept is incorporated here by the 
use of the term “beta,” derived from the mathematical 
symbol used. In the methodology described in this 
report, parameter values are estimated by estimating 
a mean value (termed β in the mathematics) and the 
fluctuations about that mean. Each parameter, 
therefore, must be associated with a mean value. 

It would be tempting to use another term such as 
“zone” or “facies” to describe this concept, but the 
term “beta association” was selected specifically to 
highlight the flexibility of the concept. The important 
idea is that the method described in bgaPEST 
depends on being able to associate each parameter 
with a mean value. In the case of distributed 
parameters (for example, hydraulic conductivity or 
recharge being distributed throughout a region in a 
model in which each model cell or node is assigned a 
unique value), the subdivision of the entire model 
domain into beta associations accounts for 
hydrogeologic contacts or facies to be delineated. 
This delineation assumes that there is little or no 
correlation across these natural divisions. Similarly, 
parameters of one type are typically not correlated 
with parameters of a different type. Beta associations 
allow the inclusion of multiple parameter types and 
the delineation of important geologic features in 
distributed parameter sets. In the BGA algorithm, 
parameters in different beta associations are assigned 
zero correlation. 

The likelihood function in equation 1, L(y|s), 
expresses the correspondence of model outcomes 
with field observations colocated in space and time. 
This correspondence is expressed as the sum of the 
squared differences between outcomes and 
observations, weighted by a covariance matrix, 
which expresses the relative certainty of each 
observation. This is equivalent to the weighted 
measurement objective function in PEST (Doherty, 
2010a). The advantages to the Bayesian approach 
stem from the conceptual framework, the ability to 
use a probability density function to represent 
parameterization rather than single values, and the 
empirical nature of the balance between prior 
information and likelihood. These elements of 
Bayes’ equation form the fundamental basis for the 
bgaPEST software described here. 

The geostatistical aspects of the method are 
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expressed in the prior pdf (p(s)) of the parameter 
values. Geostatistics is a form a interpolation that 
uses a spatial function called a variogram to fill in 
information between data points. The most common 
technique of geostatistics is called kriging. In this 
section, we discuss geostatistics in a conceptual way 
using a photographic image as an example. The 
mathematics relevant to BGA are discussed in later 
sections. More details about the history and use of 
geostatistics in general, including software for using 
the technique are found in Isaaks and Srivastava 
(1989), Deutsch and Journel (1992), Kitanidis 
(1997), and Remy and others (2009). 

The photograph in the left panel of figure 1 is a 
JPG image taken on a digital camera. As a grayscale 
image, the information of the image can be stored in 
a matrix with the number of rows and columns, 320 
rows and 240 columns in this case, indicating the 
number of pixels in the vertical and horizontal 
dimensions, respectively. The values at each pixel are 
a brightness value, in this case normalized to a 
maximum value of 64.0. In the original image, there 
are 320 × 240 = 76,800 pixels, each of which may be 
considered a discrete packet of information. To 
illustrate the kriging process, the photograph was first 
subsampled on an evenly spaced grid of 30 rows and 
20 columns with the brightness value retained at each 
location. This subsampling results in a greatly 
reduced set of information containing 30 × 20 = 600 
pixels. In the photograph in the right panel of figure 
1, the faint impression of the subsampling grid is 
visible in some areas as the subsampled values are 
depicted at those locations. Using the geostatistical 
technique of kriging with an appropriate variogram, 
it is possible to “fill in” the missing data between 
subsampled data points to present a full image of the 
matrix but with substantially less detail than the 
original. 

The main role of the variogram in geostatistics 
and, indeed, in BGA, is to act as a constraint, 
controlling the shape of the interpolated values filling 
in between the known data values. In BGA, this 
connection is not quite as direct as in the photograph 
interpolation example, but it is useful to think of the 
variogram (as a quantification of the prior pdf) as a 
control on the shape of the estimated parameters. 

Various other interpolation techniques could be 
used to fill in the missing data and each would have 

its own degree of information loss or smoothing 
relative to the original. Kriging has a long history of 
use in earth science applications and, although the 
interpolated photographic image in the example is 
much smoother than the original image, there is more 
shape and information than if, for example, linear 
interpolation had been used to fill the values between 
each data point. 

The variogram used in kriging is an empirical 
function that characterizes the difference between a 
property as a function of separation distance. To 
determine a variogram appropriate for a problem, the 
first step is to plot a variogram function (a function of 
difference in property value) against separation 
distance (depicted as red “x” marks in figure 2). 
Next, a function type is selected from a family of 
valid variogram model types. In the photograph 
example an exponential variogram is used. Later in 
this report, more mathematical details about 
variograms and variogram choice are presented. 

Returning to the geostatistical aspect of BGA, a 
variogram model is used as the prior information in 
the Bayesian construction. As discussed above, a 
goal of BGA is to specify little information in the 
prior and to allow the information contained in the 
calibration dataset to inform the results as much as 
possible. This is accomplished by specifying only the 
family of variogram model used rather than 
specifying its specific shape. Using the example in 
figure 2, the family of variogram (in this case 
exponential) indicates only that the function will 
assume a curvilinear shape; the specific parameters 
or the variogram function dictate the rate of 
curvature. In terms of using a variogram for the prior 
distribution in BGA, specifying the variogram type 
informs only the most general characteristic of the 
field (for example, the field must be continuous and 
“smooth”). The degree to which this characteristic is 
enforced is controlled by the calibration dataset. 
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Figure 1. Photographic images illustrating the geostatistical interpolation process. The image on the left is a JPG format image 
with 320 × 240 pixels. The image on the right is also a JPG image, but it was created by first sampling a subset of the pixels in 
the original image (30 in the vertical direction and 20 in the horizontal) and then using the geostatistical technique of kriging to 
interpolate values for the other pixels. The interpolation was done by using the sGeMS software package (Remy and others, 
2009). 
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Figure 2. Exponential variogram fit to empirical variogram for the image processing example. The empirical variogram binned 
values are depicted by red “x” marks whereas the continuous black line shows the analytical variogram fit to the empirical 
values. The fit was done manually by using the sGeMS software package (Remy and others (2009)). 
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Overview 

The Bayesian geostatistical approach is 
described in detail by Kitanidis and Vomvoris (1983), 
Hoeksema and Kitanidis (1984), Kitanidis (1995), 
and Nowak and Cirpka (2004) among others. This 
section is a conceptual overview of the method. A 
more detailed description, including mathematical 
details, is in appendix 3. 

The core of the Bayesian geostatistical inverse 
method is Bayes’ theorem, which states 

p(s|y) ∝ L(y|s)p(s) (2) 

where y are the measured data, s are the unknown 
parameters, p(s|y) is the posterior probability density 
function (pdf) of s given y, L(y|s) is the likelihood 
function, and p(s) is the prior pdf of s. Details of 
these pdfs are explained below. 

Figure 3 depicts one-dimensional distributions 
graphically illustrating equation 2. In this example, 
the prior distribution p(s) is diffuse, meaning the 
variance is relatively high and, correspondingly, 
commitment to a particular value is low. The 
likelihood function L(y|s), on the other hand, has 
lower variance, suggesting a process that brings a 
higher level of certainty to the estimation of the 
parameters (s) than is indicated by the prior 
distribution only. The resulting posterior distribution 
p(s|y) is a convolution of the prior and likelihood 
functions. The peak is shifted significantly from the 
prior toward the likelihood and is narrower, 
representing less uncertainty. 

In bgaPEST, an empirical Bayes perspective 
(Robbins, 1956; Casella, 1985) is adopted. Empirical 
Bayes means that the general characteristics of the 
prior and (optionally) epistemic covariances 
introduced above are provided in the model setup, 
but the values of “structural” parameters that control 
the structure of the system—the balance between 
smoothness and misfit—are estimated from the 
observation data. In other words, the level of 
roughness in the solution is dictated by the 
information content of the observation data rather 
than specified by the user ahead of time. 

The prior distribution is the main mechanism by 
which soft knowledge about the parameter field is 
imparted on the parameter estimation process. In the 

Empirical Bayes perspective, this soft knowledge is 
intentionally limited such that significant flexibility is 
available to the algorithm and a specific practitioner’s 
preconceived notions, which are more subjective, are 
replaced by the objective power of the site-specific 
observations. This idea is also inspired by 
Chamberlin’s concept of multiple working 
hypotheses (Chamberlin, 1890). Chamberlin warned 
of scientists falling victim to a “paternalistic 
affection” for their initial explanation of a 
phenomenon such that they are blind to other 
explanations that may be more appropriate. This is 
not to discount the value of soft knowledge—indeed, 
the general characteristics imparted through 
specification of the prior information and the 
interpretation of the results of using BGA rely deeply 
on expertise—but it highlights a goal of leaving as 
much flexibility as possible in the process. 

In bgaPEST, then, the practitioner specifies a 
type of variogram (nugget, linear, or exponential) 
that is used to control the variability—smoothness or 
roughness—of parameters within a beta association, 
but the degree to which this characteristic is enforced 
is determined by a Bayesian adaptation of restricted 
maximum likelihood (RML). In RML, the value of 
structural parameters that control the variogram 
behavior is treated as a probability distribution and 
the most likely values resulting in either the best 
possible fit (if the epistemic error term is estimated) 
or a user-specific level of fit (if the epistemic error 
term is fixed) are estimated. The Bayesian adaptation 
to RML in this report is through the inclusion of prior 
information and uncertainty, which is not strictly 
possible in traditional RML. “Fit,” in this context, 
refers to the correspondence between observation 
data and model outputs colocated in space and time 
with the measured observations. Fit and epistemic 
error are discussed in more detail in the next section. 
A danger of providing a model with substantial 
flexibility is an “overly complex” model that is 
“overfit” (for example, Draper and Smith, 1966; 
Hill, 2006). To mitigate this issue, the RML 
approach is consistent with the principle of 
maximum entropy such that the smoothest solution is 
chosen, an approach based on the structural 
parameters estimated from the data. For a discussion 
of subtle formal differences from minimum relative 
entropy, see Rubin (2003, p. 333–342). 
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Figure 3. Graphical illustration of Bayes’ theorem. 

An extension of this approach is the inclusion of 
information about the prior mean (Nowak and 
Cirpka, 2004). Although the mean is estimated in the 
solution, a prior value and covariance can be supplied 
to constrain the estimate. Typically, a relatively high 
covariance magnitude is used so that the constraint 
on the estimated mean is weak or “diffuse.” Thus the 
prior mean principally serves the role of providing 
numerical stability rather than compelling the 
solution to adhere closely to prior values. Similarly, 
prior information and covariance can be supplied on 
the structural parameters to constrain the estimated 
values to more closely follow an initial conception of 
the parameter field variability. 

The forward model is constructed to generate 
outputs of values colocated in space and time with 
measured observations. The likelihood function 
quantifies the difference (misfit) between the model 
simulated outputs and associated observations. In all 
modeling, perfect correspondence between forecasts 
and observations is neither attainable nor desirable. 
The observations themselves are corrupted by 
measurement errors, and perfect correspondence 
between the exact nature of the measurements and 
the simulated counterparts usually is lacking. This 
corruption is due to uncertainty from sources 
including the paucity of observations, imperfections 
in the conceptual model, and approximations made to 
codify the physics of the phenomena into a numerical 
model framework. All of these sources of uncertainty 
are described by the overarching term “epistemic 
uncertainty” (Rubin, 2003, p. 4). This epistemic 
uncertainty characterizes the expected misfit between 

simulated and observed equivalents, and is expressed 
through a covariance function. As a result, the 
likelihood function can be characterized by a 
Gaussian distribution with zero mean and covariance 
defined by the epistemic uncertainty. 

Structural Parameters 
The term “structural parameters” used here has 
a specific meaning. Similar to the more gen­
eral term “parameters,” structural parameters 
are variable values that are estimated in the 
bgaPEST algorithm. Unlike typical parameters, 
however, structural parameters do not directly 
control physical aspects of the system in the 
way that, for example, hydraulic conductivity 
or stream roughness do in hydrologic models. 
Instead, structural parameters control the struc­
ture of the general parameters. For example, the 
variogram values (for example variance, slope, 
and correlation length) that control the rough­
ness of distributed parameter fields are struc­
tural parameters, as is the value of variance con­
trolling epistemic uncertainty. Because these 
parameters must be estimated but are not directly 
connected to the physics of the problem, they 
are also referred to by other authors as “nui­
sance” parameters or “hyperparameters.” We 
adopt the term “structural” to highlight the fact 
that the impact these parameters has on the solu­
tion is control of the shape or structure of the 
distributed parameter fields. 
With both the prior pdf and likelihood function 

expressed as Gaussian distributions, the resulting 
posterior pdf also is Gaussian. The values of the 
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parameters s that result in the maximum value of the 
posterior pdf are therefore the most likely solution on 
a point-by-point basis. The solution as a whole is 
always a somewhat smoothed version of reality, but 
the influence of small-scale variability can be 
approximated through conditional realizations. The 
balance between the strength of smoothing and the 
level of fit between simulated and observed 
equivalents is found through calculation of optimal 
values for the structural parameters. Optionally, this 
can include a value to quantify the epistemic 
uncertainty. The result will favor smoothness, but it 
may achieve a level of fit corresponding to an 
unrealistically low level of epistemic uncertainty. 
Hence, it is generally most appropriate to fix the level 
of epistemic uncertainty but allow the other structural 
parameters to be estimated. 

Beta Associations 

In an idealized problem, a single covariance 
model (for example, a single variogram) is flexible 
enough to encompass the entire variability of the 
hydraulic parameters. In many hydrologic 
applications, however, lithologic contacts and 
unconformities can create discontinuities in 
parameter values that a single covariance model 
cannot characterize. Partitioning the field either on 
the basis of data (for example, Fienen and others, 
2004) or through interrogation of preliminary 
solutions (for example, Fienen and others, 2008) can 
greatly improve the parameter estimation results. 
This partitioning is implemented by imposing 
discontinuities in the stochastic field that censor 
correlation among all cells that do not occur in the 
same partition. In this context, “stochastic” refers to 
the entity being partitioned (namely, the correlation 
structure of the parameter field) but we emphasize 
here that the locations of the imposed discontinuities 
are themselves considered deterministic and certain. 
This concept of partitioning is consistent with zonal 
boundaries in models made up of homogeneous 
zones but it allows more flexibility by allowing 
properties within the zone to vary. Furthermore, 
multiple types of parameters (for example, hydraulic 
conductivity and porosity in a flow and transport 
model) are commonly estimated. Although these 
parameters may be related at the physical level, they 

must correspond to different mean values, so similar 
censoring of correlation among different types of 
parameters also is necessary in most applications 
through partitioning. 

For hydrogeologic applications, the term “facies 
association,” from the facies architecture field, is an 
apt description for these partitions (Fienen and 
others, 2009). The term “facies association” typically 
refers to descriptive properties of a subset of a 
medium in the field or at least for a specific project. 
“Architectural elements” is used in the broader case 
where the characteristics are more formally defined 
(see Collinson (1969); Walker (1984, 1992); Swift 
and others (2003)). It would be appropriate to use the 
less restrictive and less transferable term “facies 
association” in hydrogeologic applications because 
when we subdivide the correlation structure of the 
medium, we often base the stochastic discontinuities 
(bounding surfaces, or contacts) on perceived 
hydraulic properties. These properties will often 
coincide with differences in age, provenance, or 
depositional environment, but such coincidence is not 
required for or by their use. In all cases, partitioning 
into facies associations is most effective when based 
on readily observable hydrologic or lithologic 
attributes. 

For bgaPEST to be a more general tool (not 
limited to hydrogeologic modeling), we have 
broadened this concept by adopting the term “beta 
association.” As shown in equation 3.2, the Greek 
letter β stands for the mean of a region of distributed 
parameters. Beta associations can, therefore, 
delineate regions of a distributed parameter field that 
have similar statistical properties and correspond to 
the same mean value; however, importantly, beta 
associations also can refer to completely different 
parameter types (for example, hydraulic conductivity 
and recharge). 

To clarify our terminology, partitions delineated 
by stochastic discontinuity within a distributed 
parameter field are referred to as “beta associations,” 
whereas zones of piecewise continuity are referred to 
herein as “homogeneous zones.” The beta 
associations delineate sub-regions of the model 
domain that share correlation characteristics and are 
uncorrelated from neighboring beta associations; 
they are usually delineated by features that are easily 
identified in measured data or geologic 
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conceptualizations of a given site area. In beta 
associations, variability of parameter values within 
each cell is allowed and constrained by the a priori 
covariance structure, whereas in homogeneous zones, 
a single parameter value represents the property for 
the entire zone. Beta associations also delineate 
regions in the model (whether defined by one or more 
parameter values) that correspond to different mean 
values (β ). 

Beta Associations and Zones: Why aren’t 
“beta associations” just called “zones”? 
Beta associations are a term specific to bgaPEST. 
As discussed in the main text, this term 
evolved from the term “facies association,” 
which describes partitioning of parameter fields 
on the basis of hydrogeologic characteristics. 
This term was used in place of “zones” because 
of a long history of zones referring to regions 
of piecewise constant homogeneity (one param­
eter value applied to every node within a region). 
Beta associations are not homogeneous, so a dis­
tinct term was sought that describes the charac­
teristic of regions partitioned according to their 
characteristics and the way these characteristics 
correlate to regions around them. To general­
ize beyond hydrogeologic applications, and to 
account for the fact the distinct parameter types 
require distinct partitions, “beta associations” 
was the term chosen. Each of these parame­
ter partitions has a distinct mean value (β ) to 
be estimated within the region, so the partition­
ing of the problem results in different β values; 
because the parameter type and/or region must 
be associated with a mean value (β ), we use the 
term “beta associations.” 

Overview of bgaPEST 

The use of BGA concepts described previously 
has been restricted to primarily academic and/or 
custom applications, owing to the case-by-case 
nature of the BGA coding. The BGA formulation 
used in bgaPEST is meant to make the approach 
generally available to a wider class of modeling 
problems. This generality is achieved by way of the 
following design considerations. The input/output 
design of bgaPEST follows that of the widely used 

PEST software (Doherty, 2010a,b). This approach 
has two primary restrictions. First, input provided to 
the model, and output derived from a model, uses an 
ASCII text file format. This restriction can be 
relaxed, however, provided that a translation utility 
can be deployed for converting data of another 
format—for example, binary—to or from ASCII, as 
appropriate. Second, the model must run in “batch” 
mode where many model runs can be called by PEST 
without user intervention. Therefore, the only kind of 
model that PEST cannot easily accommodate is one 
in which any changes to model input or the reading 
of model output must take place in a graphical user 
interface. This generality of model compatibility is a 
powerful capability that bgaPEST is able to exploit 
by virtue of efficient open-source modules that make 
this external control of a model possible using the 
same protocols as PEST. 

As discussed below, bgaPEST must control the 
model for two purposes: to evaluate the likelihood 
function (assessing the correspondence between 
model output and colocated observation data, given a 
candidate set of parameter values) and to calculate 
the “Jacobian” or “sensitivity” matrix that is required 
for solving the calibration equations. To enable PEST 
(and bgaPEST) to write input for a model, template 
files are created that map named parameters into their 
proper place in input files for the model. More than 
one template file can be used corresponding to 
multiple model input files. To enable reading of 
output files, instruction files are created that contain a 
set of instructions (including locating specific line 
numbers or searching for specific text) that enable 
extraction of output values to be compared with site 
observation data. Leveraging the modules that 
implement the PEST input/output protocols takes 
advantage of the flexibility and generality of PEST. It 
also makes it possible to take advantage of certain 
utility programs already created to be compatible 
with the PEST suite of software. Programs created 
using the JUPITER program employ a very similar 
set of protocols by virtue of the PEST modules 
having been provided to the JUPITER project. As a 
result, template and instruction files created to work 
with a model are largely interchangeable among 
projects implemented in PEST, bgaPEST, and 
programs created using JUPITER. A full description 
of the format of template and instruction files is not 
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within the scope of this report: detailed descriptions 
are provided in the PEST documentation (Doherty, 
2010a, chapter 3). All options implemented in 
template and instruction files in PEST are available in 
bgaPEST. 

This initial implementation of bgaPEST is 
written in Fortran 90. The calculation of the Jacobian 
(sensitivity or derivatives) matrix can be implemented 
either using a script written by the user or employing 
a Python5 script provided with bgaPEST. The Python 
script depends on several utilities that are standard 
with PEST and available for download at 
http://www.pesthomepage.org. The necessary 
executable files are also provided with bgaPEST. For 
users on the Windows6 operating system, installation 
of Python is optional because the Python codes are 
compiled into executables using py2exe that can be 
called by the main program. For users on Macintosh7 

or Linux8 systems, all the code must be compiled for 
the native platform and Python should already be 
installed so the Python scripts may be called directly 
without need to compile them separately. The use of 
external derivatives (sensitivity) calculation with 
PEST and Python can be replaced by using the 
parallel external derivatives capabilities described in 
appendix 4. Alternatively, it would be possible to 
implement the general parallel run management suite 
(GENIE, Muffels and others (2012)). 

Running bgaPEST 

The bgaPEST program uses a single input control 
file in combination with template and instruction files 
to control the underlying model, and it generates 
several output files. These files are discussed in the 
context of progression of the bgaPEST program in 
the remainder of this section. Figure 4 shows the 
general progression of a bgaPEST parameter 
estimation run. The entire process is controlled by 
variables in the input .bgp file discussed below. 

5“Python R�” is a registered trademark of the Python Software Foun­
dation. 

6“Windows R is a registered trademark of the Microsoft group of 
companies. 

7“Macintosh R�” is a registered trademark of Apple, Inc. in the U.S. 
and other countries. 

8“Linux R�” is the registered trademark of Linus Torvalds in the U.S. 
and other countries. 

To obtain an optimal solution of the parameter 
estimation problem, multiple iterations are necessary. 
An iteration is defined as a single run of the entire 
estimation process with a particular set of values. 
Multiple iterations are required because of the 
nonlinearity of the problem and the necessity of 
estimating structural parameters separately from 
model parameters. Appendix 3 gives more detail 
about the methods used to obtain a solution for a set 
of optimal parameters and structural parameters in 
bgaPEST. 

Outer iterations (also called BGA iterations) are 
wrapped around the traditional parameter estimation 
process with values of the structural parameters held 
constant. Inner parameter estimation iterations are 
performed to account for the (restricted maximum 
likelihood) estimation of structural parameters. If 
structural parameters are not chosen to be estimated, 
then a single outer iteration is performed using the 
initial values of structural parameters and inner 
iterations are performed until convergence or until 
the number of iterations reaches it max phi. If a 
line search (discussed below) is requested, this is 
performed within the inner iterations. If structural 
parameter optimization is requested, it is performed 
after convergence has occurred or maximum inner 
iterations have been reached. Then, restricted 
maximum likelihood is performed to estimate a new 
set of structural parameters. The interdependence 
between structural parameters and model parameters 
requires reiteration of the inner iterations and 
structural parameter estimation until either both have 
converged or the maximum number of outer 
iterations has been reached. At the end of both inner 
and outer iteration convergence, or exceedance of 
maximum iterations, posterior covariance is 
calculated, if requested. 

Control Variables 

Two types of variables are used in bgaPEST: 
control variables and data variables. Whereas data 
variables are values such as model parameters, 
observations, file names, and other data that are 
needed by the bgaPEST program, control variables, 
drive the actions that are performed on these data 
elements. As such, control variables operate on a 
different level from data variables and control either 

http://www.pesthomepage.org
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Outer Iteration (maximum iterations defined by it_max_bga)
     The outer iterations iterate until convergence of both 
      PHI and Structural Parameters (optional)

Inner Iteration (maximum iterations defined by it_max_phi)
     The inner iteration progresses until convergence of PHI conditional
     on the current values of Structural Parameters 

Structural Parameter Optimization 
(maximum iterations defined by it_max_structural)
     If, optionally, Structural Parameter Optimization is invoked,      
     iterations progress until convergence conditional on 
     current process parameter values

If linesearch == 1 
Linesearch (maximum iterations defined by it_max_linesearch)
     The linesearch is an optional correction that can get optimization
     for PHI back on track if it strays 

If struct_par_opt ==1 

end linesearch

end Structural Parameter Optimization

end Inner Iteration

end Outer Iteration

If posterior_cov_flag == 1 
Calculate posterior covariance
     posterior covariance is only calculated for the final parameter values

Figure 4. Abbreviated flowchart showing the progression of the major bgaPEST procedures. Text in blue italics is interpretive, 
summarizing the more programmatic language represented in black plain type. 

the reading/writing of data or the progression of the 
algorithm. Many control variables are 
straightforward (for example, it max phi, an 
integer, is the total number of iterations allowed in 
each quasi-linear inner estimation optimization; 
default=10). Such variables are defined in the 
context of the input instructions listed in appendix 1. 
Other control variables, however, are accompanied 
by important conventions regarding their impact on 
the performance of the algorithm. More detail is 
given about certain control variables in this section 
for these cases. 

structural conv float, default=0.001 
Convergence criterion for structural parameter 
convergence. Positive or negative values can 
be used to trigger two different measures of 
convergence, as noted below. In either case, 
however, convergence is compared to the 
absolute value of structural conv. 
If positive, convergence is based on the 
absolute difference in structural parameter 

objective function over consecutive iterations. 

conv = abs(ΦS,i − ΦS,i−1) (3) 

where i is the current structural parameter 
optimization iteration, i − 1 is the previous 
structural parameter optimization iteration, and 
ΦS is the structural parameter objective 
function. 
If negative, convergence is based on the norm 
of the difference between consecutive 
structural parameter values.    T   

θi−1 − θi θi−1 − θi conv = (4)
θi−1 θi−1

where i and i − 1 are as defined above, and θ is 
a vector containing all structural parameters 
currently being estimated (may include 
epistemic uncertainty, if requested). 

phi conv float, default=0.001 Convergence 
criterion for objective function convergence. 
The convergence at each inner iteration is 
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evaluated as the absolute difference from one 
inner iteration to the next. This is evaluated as 

conv = abs(ΦT,iin − ΦT,iin−1) (5) 

where iin is the current inner iteration and ΦT 

is the total objective function (equation 3.30). 

bga conv float, default=10×phi conv 
Convergence criterion for objective function 
outer iterations. The convergence at each outer 
iteration is evaluated as the absolute difference 
from one outer iteration to the next. This 
accounts for convergence of ΦT and ΦS. The 
convergence is evaluated as 

conv = abs(ΦT,iout − ΦT,iout −1) (6) 

where iout is the outer iteration and ΦT is the 
total objective function (equation 3.30). 

Q compression flag integer, default=0 Flag to 
determine how to calculate Qss. [0] = no 
compression—calculate full Qss matrix, [1] = 
calculate separate Qss matrix for each beta 
association. In addition to controlling the 
behavior of prior covariance compression, this 
flag also determines whether a full posterior 
covariance matrix or only the diagonal is 
calculated. 

posterior cov flag integer Flag to determine 
whether posterior covariance matrix should be 
calculated. [0] = do not calculate posterior 
covariance matrix, [1] = calculate posterior 
covariance. If Q compression flag=1, only 
the diagonal of the posterior covariance matrix 
is calculated. If posterior cov flag=0 then 
95 percent confidence intervals are not 
calculated and the output file 
<casename>.bpp.fin discussed below does 
not include confidence intervals. 

Input Files 

The bgaPEST program is run from the command 
line by typing bgaPEST.exe <casename>.bgp, 
where <casename> is a filename containing input 
instructions. Detailed input instruction are in 
appendix 1. 

Output Files 

Several output files are generated throughout the 
progression of a single bgaPEST run. These files are 
summarized in this section. 

Record File 

The main output file for bgaPEST is called 
<casename>.bpr. Initial values of bgaPEST input 
are repeated to form a record for the bgaPEST run. 
After each inner iteration, as defined above, the 
objective function is reported and external files are 
written that include current parameter values and 
observation values. After each outer iteration, 
structural parameter values also are reported for each 
beta association in which structural parameter 
estimation was requested and for the epistemic 
uncertainty term, if requested. After the final outer 
iteration, all structural parameter values—including 
those which were not estimated—are reported to 
make a complete record. 

Parameter Value Files 

The parameter values are written to files called 
<casename>.bpp.<#Oi> <#Ii> where 
<#Oi> is the outer iteration number and <#Ii> 
is the inner iteration number. These ASCII files are 
printed in columns with the following headers: 
ParamName; ParamGroup; BetaAssoc; ParamVal. 
At the beginning of a bgaPEST run, a file 
<casename>.bpp.0 is written in the same format 
to record the initial parameter values used. This is 
done to avoid cluttering the <casename>.bpr file 
with what is often a very long list of parameters and 
their values. Parameter values that were subjected to 
logarithmic or power transformation are reported in 
their linear space, not log-transformed or 
power-transformed space. 

Another special case of parameter value files is 
written at the end of a bgaPEST run and called 
<casename>.bpp.fin. This file contains the final 
parameter values estimated as optimal by bgaPEST. 
Furthermore, if posterior covariance calculation was 
requested, two additional columns are added: 
95pctLCL and 95pctUCL, which are the 95 percent 
lower and upper confidence limits, respectively. 
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These confidence limits are obtained by applying the √ 
subtraction and addition, respectively, of 2 × Vii to 
si—the ith optimal parameter value. In this case, V is√ 
the posterior covariance, so Vii is the standard 
deviation of the ith parameter. The 95 percent 
confidence limits are reported in linear space, not 
log-transformed or power-transformed space, so for 
log-transformed or power-transformed parameters, 
the upper and lower 95 percent percent confidence 
limits are not symmetrical about the parameter value. 

Observation Value Files 

The observation values obtained by running the 
forward model with the currently estimated 
parameters are written to files called 
<casename>.bre.<#Oi> <#Ii> following a 
similar convention as with the <casename>.bpp 
files above. The ASCII files are printed with the 
following headers: ObsName; ObsGroup; Modeled; 
Measured. These files can be easily copied into a 
spreadsheet or read with a plotting program to 
calculate and plot residuals. 

Posterior Covariance File 

If the input variable posterior cov flag=1, 
then posterior covariance of the parameters s is 
calculated. In addition to this information being used 
to report 95 percent confidence limits as described 
above, the posterior covariance matrix is also written 
to the file <casename>.post.cov. If the variable 
Q compression flag=1, then compression is used 
for saving the prior covariance matrix. This is done 
when many parameters are used and, thus, the full 
covariance matrices are unwieldy. On the basis of 
this choice, the posterior covariance is reported either 
as the diagonal of the posterior covariance matrix 
(diag(V)) if Q compression flag=1 or the full 
covariance matrix V if Q compression flag=0. 
The output formats are discussed at the end of 
appendix 1. 

Posterior Covariance and Parameter Trans­
formations 
In this section, it was indicated that in the 
<casename>.bpp.fin file, parameter values 
and 95 percent confidence intervals are reported 
in linear (untransformed) space, whereas in the 
<casename>.post.cov file, posterior covari­
ance values are reported in estimation (log­
transformed or power-transformed) space. Why 
the difference? The two files serve slightly 
different purposes. The parameter output file 
presents values in the units they are entered 
in (and, presumably, the units “seen” by the 
forward model). As a result, 95 percent 
confidence intervals are reported in the same 
way. Furthermore, the addition and subtrac­√ 
tion of 2 × Vii must be applied to the parame­
ters before back-transformation, which explains 
the asymmetry of the confidence limits. On 
the other hand, the full posterior covariance 
matrix is intended for other analysis (propaga­
tion of variance through to predictions, con­
ditional realizations, and others) in which the 
information should be retained in estimation 
(log-transformed or power-transformed) space. 
In the end, the decision of how to report these 
values is one of convention, and this side box is 
intended to make clear which was chosen in each 
case. 

Suggestions and Guidelines for 
Initial Use 

The Bayesian Geostatistical Approach is a highly 
parameterized method that is appropriate for some, 
but not all applications. In this section, we outline a 
few considerations to aid in the decision about 
whether to use bgaPEST on a given problem given 
the history and characteristics of the method. We also 
offer a few guidelines to help users avoid potential 
pitfalls in the application of bgaPEST. 

This report documents the first release of 
bgaPEST and, to our knowledge, the first 
implementation of BGA available in a generalized 
package. As a result, users of this version will be 
among the first to apply this software outside of 
academia where custom programs have been the rule. 
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Nonetheless, the method has a 20-year history. The 
majority of applications have been to groundwater 
modeling projects including (but not limited to): 
pumping test analysis (Snodgrass and Kitanidis, 
1998); hydraulic tomography (Li and others, 2007; 
Fienen and others, 2008; Li and others, 2008; Cardiff 
and Kitanidis, 2009; Cardiff and others, 2012); 
borehole logging (Fienen and others, 2004); 
contaminant source identification (Snodgrass and 
Kitanidis, 1997; Michalak and Kitanidis, 2002, 
2003); and nonparametric tracer test analysis (Fienen 
and others, 2006). The main application to date that 
does not involve groundwater is in atmospheric 
modeling (Michalak and others, 2004; Mueller and 
others, 2008). 

Characteristics of Appropriate bgaPEST 
Uses 

The characteristics that unite these applications 
form a solid guide when deciding whether bgaPEST 
is appropriate for a given application. First and 
foremost, there must be a parameter set that varies in 
either space or time; for example, a time series of 
chemical concentrations (a breakthrough curve), a 
hydraulic conductivity field, a recharge field, or 
surface flux of atmospheric gases. These parameters 
should vary continuously over reasonably substantial 
areas so that a variogram serves as an adequate 
descriptor of the shape of the parameter field. 
Subareas delineated by geologic contacts—or in the 
case of time series, punctuated by known 
events—can be partitioned into beta associations, as 
discussed throughout this report. Another 
consideration is a more practical one: model run 
time. 

The nature of bgaPEST is that many parameters 
are to be estimated. Throughout the parameter 
estimation process, a Jacobian sensitivity matrix must 
be calculated, requiring one model run per parameter. 
This computational burden must be considered and, 
potentially mitigated. In academic settings, many 
researchers have taken advantage of adjoint-state 
techniques to make the calculation of the Jacobian 
matrix more efficient in the case where parameters 
greatly outnumber observations. Adjoint-state 
versions of commercial and government codes are 
not typically available, however, but bgaPEST is 

equipped to handle Jacobian matrices calculated 
outside of bgaPEST so that users who are able to 
write such codes can make use of them. Similarly, 
parallelization is supported to a limited degree using 
Python scripts and Condor (Condor Team, 2012) for 
run management. This parallel implementation is 
documented in appendix 4. 

Adjoint-state Jacobian calculation is an attractive 
method to mitigate high computational expense of 
this method; however, production codes for adjoint 
state calculations are rare. For more information on 
the technique, see Townley and Wilson (1985), Sykes 
and others (1985), Samper and Neuman (1986), 
RamaRao and others (1995), and Neupauer and 
Wilson (1999) and references therein. 

A common occurrence in groundwater modeling 
applications is that parameters far exceed 
observations in number. This, of course, can change 
in transient simulations where, if each measurement 
in time at a single measurement location is 
considered an observation, the numbers of 
observations and parameters may equalize. Use of 
bgaPEST is most appropriate for the former 
case—where parameters outnumber observations, 
typically by a large margin. Several programming 
and mathematical accommodations are made to 
enable the number of parameters to grow very large 
(testing has been performed with 90,000 parameters). 
If the number of observation grows significantly, 
however, computer memory will become a limitation 
in many cases. For transient problems, one should 
consider the information content of each 
measurement point in time. Often, the number of 
observation points can be effectively reduced by 
considering moments rather than discrete points (Li 
and others, 2005) or by other time-series processing 
such as methods available in R (R Development Core 
Team, 2011) or TSPROC (Westenbroek and others, 
2012). 

Guidelines 

The number of applications of bgaPEST thus far 
is limited. Because bgaPEST is new software 
implementing a relatively novel technique, it will 
take time for users to get a feel for the behavior and 
characteristics of the tool. In this section, we provide 
a few guidelines that we hope will help users avoid 
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pitfalls. In future releases, building on the experience 
of a larger user base, more guidelines will be 
available. 

Run Times For a typical groundwater model, 
somewhere between 5 and 15 outer iterations will 
often be required. For each outer iteration, it is likely 
that about 5 inner iterations will be necessary. This 
means as many as 75 calculations of the Jacobian 
matrix may be required. Without parallelization or 
adjoint state, users should carefully consider how 
many parameters can be accommodated as run times 
grow in length. For planning, assume that the time 
required for each Jacobian calculation will be the 
number of parameters (m) × Run Time. 

Beta Associations Beta associations provide the 
ability to include knowledge about contacts and other 
partitions in the parameter fields. Some beta 
associations can have a separate parameter value in 
each node, whereas others can be treated as 
homogeneous zones. Specification of either 
alternative is accomplished through the design of the 
template file. In addition to allowing for the inclusion 
of well-known structures such as lithologic contacts, 
beta associations also allow for some regions—either 
because of greater importance to the ultimate 
management decisions, or because of greater density 
of data, or both—to have a large number of 
parameters whereas other regions have homogeneous 
values. By allowing a large number of parameters 
only in focused areas of interest, the overall number 
of parameters can be reduced, thus mitigating some 
of the concerns about run times. 

Line Search The purpose of the line search is 
similar to the purpose of the Levenberg-Marquardt 
adjustment used in PEST. Whereas the 
Levenberg-Marquardt search makes a correction to 
the search direction when the optimization algorithm 
might otherwise stray from the optimal direction, the 
line search adjusts the length along the 
Quasi-Newton direction to avoid overshooting. The 
line search, therefore, serves its greatest purpose in 
its first iteration or two. After that, the value of the 
line search is limited for mathematical reasons 
having to do with linearization of the problem (see 
appendix 3 for more details). As a result, a value of 
between 2 and 5 for it max linesearch in the 
control variables is generally adequate. If the line 

search algorithm does not converge, a warning will 
be issued and, although it is good to know that this 
took place, the line search has served its purpose and 
little gain will be achieved by increasing 
it max linesearch. 

Level of Fit “With great power comes great 
responsibility.” In applications where parameters 
outnumber observations, there lurks a real danger of 
overfitting. In other words, parameters can be 
adjusted to achieve of correspondence between 
simulated and observed equivalents that exceeds a 
reasonable level. The danger of this is that some of 
the lack of correspondence is often due to random 
epistemic error and is not representative of actual 
system behavior. However, if the parameters are 
adjusted to match observations within this margin of 
error, they are “fitting the noise.” The ramifications 
of this type of adjustment are mainly diminished 
predictive power of the model and unrealistic 
roughness of the parameter fields estimated. There 
are two means of avoiding this problem. One is the 
maximum entropy property of BGA. The algorithm 
is designed to find the smoothest solution consistent 
with the level of fit. If all structural 
parameters—including σR—are estimated, then the 
algorithm will try to achieve perfect fit with the 
smoothest solution that can do so. This may still lead 
to overfitting, however, so in most cases, it is more 
appropriate to set the level of fit by using sig 0 in 
the Epistemic Error Term input block described 
below to a level of fit chosen by the user to be 
appropriate given known and suspected uncertainties 
about both the observation quality and the model. 
Weights on observations can account for different 
levels of quality in different observations. In most 
cases, the user should also set sig opt=0 to force 
the algorithm to use a consistent value for epistemic 
uncertainty and thus manually control the level of fit. 
If set this way, the algorithm will adjust the other 
structural parameters to achieve the smoothest 
possible solution corresponding to the specified level 
of fit. 

The level of smoothness in the optimal BGA 
solution is always smoother than conditional 
realizations (Kitanidis, 1995), which characterize 
more of the potential variability in each solution. In 
cases such as transport models where heterogeneity 
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is the most important, conditional realizations (made 
possible using the optimal solution and the posterior 
covariance—both provided by bgaPEST) will result 
in a more precise characterization of system behavior 
in heterogeneity. 

Structural Parameter Optimization A good general 
guideline for all modeling is to start simple and add 
complexity as appropriate. In bgaPEST, this goal is 
achieved by starting with small values of variogram 
parameters (slope for the linear, variance for the 
nugget or exponential) such that the solution will be 
very smooth. By optimizing for structural 
parameters, roughness will be introduced by the 
algorithm until convergence at the optimal level of 
roughness is achieved. At the early, exploratory 
stages of a project, it might be desirable to set 
sig opt=1 to see what level of fit may be achievable, 
but the user should be prepared to override this 
setting in later stages as allowing too much 
roughness to be introduced. For the prior distribution 
variogram parameters, however, optimization should 
always be employed in keeping with the Empirical 
Bayes perspective designed into the algorithm. 

Limitations of bgaPEST Version 1.0 

bgaPEST marks the first widely available 
implementation of BGA for use by practitioners. 
Limitations, of course, accompany this first 
implementation. For example, version 1.0 has a 
limited explicit parallelization facility. This can be 
overcome by using external programs for derivatives 
and calling a parallel Jacobian calculation package 
such a BeoPEST (Schreüder, 2009) or GENIE 
(Muffels and others, 2012) whenever a Jacobian 
matrix is required. The impact of this workaround is 
on the run times required to obtain a solution. 

A practical upper limit on the number of 
parameters estimated is on the order of 100,000. To 
estimate a larger number of parameters, machines 
with a large amount of random access memory 
(RAM) must be used. At some greater limit, methods 
such as periodic embedding or other decompositions 
must be incorporated to mitigate the expense of 
storing and calculating the prior covariance matrix. 

The source code is written in Fortran 90 and 
should be compilable on any platform with a Fortran 

compiler. Special care was taken to avoid obscure 
and nonstandard language features. Nonetheless, it is 
possible that some platform- or compiler-specific 
problems may be encountered. 

It is possible to use bgaPEST with a small 
number of parameters, but the assumption from the 
start is that parameters in at least part of the 
spatio-temporal domain represent a field of 
correlated instances (for example, model nodes or 
discrete times) that often outnumber the number of 
data observations. A combination of homogeneous 
parameters in zones with a refined area of interest 
that is distributed is a common application and, as 
implemented through beta associations, this mix of 
distributed and zoned parameters is supported and 
encouraged. Typically, sufficient data to support a 
distributed parameter set are limited to part of a 
model domain in space or time. 

In considering uncertainty, version 1.0 presents 
posterior covariance values. For some applications, 
conditional realizations may be desired to capture 
candidate roughness of solutions within the ensemble 
distribution of solutions. Details for conditional 
realizations are provided by Kitanidis (1995). 
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In this appendix, the general strategy for input instructions is described. The input is arranged in a file
called <casename>.bgp, which is made up of input blocks, as discussed below. Following a discussion of
more detail of the general input protocols, subsections are presented in which specific input blocks are
discussed, including variables and data that can be inserted.

General Structure of Input

The general input structure is designed on a subset of the JUPITER protocol (Banta and others, 2006). The
advantage of this protocol over XML or the previous input format for PEST is that annotations that are easily
read by humans are part of the input protocol. The full JUPITER protocol, however, has memory and
computational overhead that can become a problem for large and complicated datasets. The protocol used here,
therefore, is simplified but should be easily recognizable to users of other JUPITER-compatible programs.

The strategy for input is designed to use BLOCKS that are made up of either KEYWORDS for individual
variables or TABLES for a series of data. The specification of whether a given block uses KEYWORDS or TABLES
is predetermined and the input blocks defined below indicate which is required.

Blocks

Input blocks are allowed to take one of two forms: either KEYWORDS or TABLES. All input blocks are
delineated by the words BEGIN and END. The header line also includes the name and type of the block and the
final line contains the name of the block. For example,

BEGIN prior mean cv KEYWORDS

prior betas=1

beta cov form = 0

END prior mean cv

Keywords

Keyword variables correspond to single values identified with an “=” sign. Multiple KEYWORDS can be
entered on each line in an input file, but no spaces are allowed in KEYWORDS names or variable values. An
example is: prior betas=1.

Tables

Table variables are used for tabular data series that have multiple values in categories. Tables are identified
by listing the number of rows (nrow), and number of columns (ncol), and by providing the keyword
columnlabels. This is followed by nrow rows of data, with values arranged in ncol columns, corresponding
to the same order as the columnlabels and delimited by one or more spaces. For example,

BEGIN Q compression cv TABLE

nrow=2 ncol=5 columnlabels

BetaAssoc Toep flag Nrow Ncol Nlay

1 0 21 21 1

2 1 21 21 1

END Q compression cv

Files

A user may want to shorten the length of the main input file by reading certain input from external text
files. This can be done by signaling an input block with the word FILES, to read a file containing the entire set
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of information for the block. Regardless of whether the external text file contains a KEYWORDS or TABLE block,
a block definition must be in place directing the program to the external file. For example,

BEGIN Q compression cv FILE

compression.txt

END Q compression cv

In this example, the contents of the file compression.txt would be
BEGIN Q compression cv TABLE

nrow=2 ncol=5 columnlabels

BetaAssoc Toep flag Nrow Ncol Nlay

1 0 21 21 1

2 1 21 21 1

END Q compression cv

bgaPEST Input Blocks

The specific input blocks used in bgaPEST are discussed, in order of appearance in the <casename>.bgp
file. It is important to maintain the order of the blocks in the same order as discussed in this report. For each
block, data types are identified either as float, integer, or string. Values entered as float can include
scientific/engineering notation, but in all cases should contain a “.” even if no fractional detail is included.
Conversely, integers must not contain “.”. Variables identified as string may not include spaces because
whitespace is used as the delimiter for rows in tables and separating keywords.

Each block is also defined with a suffix of “cv” for “control variables” or “data” for data. Control variables
are those that govern the behavior of the algorithm as a whole as opposed to data points (such as parameter
values, structural parameter values, and so forth).

A note on default variable values
In the input instructions below, some variables list a default value. Part of the design strategy of this
software was to not burden users with determining appropriate values for each and every variable
that controls the algorithm. As a result, default values are provided for some variables. In those
cases, input by the user in the .bgp file is optional. If no value is provided by the user, the default
value will be used by bgaPEST. If a variable not listed with a default value in these input instructions
is omitted by a user, bgaPEST will return with an error indicating that the variable is not present.

Algorithmic Control Variables (algorithmic cv) KEYWORDS

The following KEYWORDS variables are in the algorithmic cv block.

structural conv float,default=0.001 Convergence criterion for structural parameter convergence. If
positive, convergence is based on the absolute difference in structural parameter objective function over
consecutive iterations. If negative, convergence is based on the norm of the difference between
consecutive structural parameter values. Used only if at least one structural parameter is to be estimated.

phi conv float, default=0.001 Convergence criterion for objective function inner iterations.

bga conv float, default=10×phi conv Convergence criterion for objective function outer iterations.

it max structural integer, default=10 Total number of iterations allowed in structural parameter
optimization.

it max phi integer, default=10 Total number of iterations allowed in each quasi-linear estimation
optimization.
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it max bga integer, default=10 Total number of outer iterations allowed for the entire algorithm.

linesearch integer, default=0 Flag to determine whether a line search should be conducted. [0] = do not use
line search, [1] = use line search.

it max linesearch integer, default=4 Total number of outer iterations allowed for the line search. Used
only if linesearch = 1.

theta cov form integer, default=0 Form of the theta covariance matrix. [0] = none, [1] = diagonal, [2] = full
matrix. [0] means no prior covariance on theta provided and it is assumed to be unknown. Used only if at
least one structural parameter is to be estimated.

Q compression flag integer, default=0 Flag to determine how to calculate Qss. [0] = no
compression—calculate full Qss matrix, [1] = Calculate separate Qss matrix for each beta association.

par anisotropy integer, default=0 Flag to determine whether parameter anisotropy should be considered
when making the Qss matrix. [0] = do not consider anisotropy, [1]=consider anisotropy. If anisotropy is
considered, a parameter anisotropy block should be included, as defined below.

deriv mode integer, default=0 Flag to determine whether sensitivities are calculated by using an external call
to PEST or using a user-supplied program (such as adjoint state). [0] = use PEST, [1] = use external
program identified below in the model command lines block, [4] = use external derivatives in parallel
(see appendix 4 for details).

posterior cov flag integer, default=0 Flag to determine whether posterior covariance matrix should be
calculated. [0] = do not calculate posterior covariance matrix, [1] = calculate posterior covariance
matrix. If Q compression flag = 1, only the diagonal of the posterior covariance matrix is calculated.

jacobian file string, default=“scratch.jco” Name of the file generated by an external program if
deriv mode = 1. If deriv mode = 0, this value is ignored and left at its default value.

jacobian format string, default=“binary” Format of the file indicated in jacobian file. [binary]
indicates a binary file formatted as a JCO file from PEST, [ascii] indicates a file of a standard PEST
matrix format, discussed below in this documentation. If deriv mode = 0, this value is ignored and
left at its default value.

Prior Mean Control Variables (prior mean cv) KEYWORDS

The following KEYWORDS variables are in the prior mean cv block.

prior betas integer Flag indicating whether information about prior mean (β ) will be supplied. [0] = no, [1]
= yes.

beta cov form integer, default=0 Form of the prior mean (β ) covariance matrix Qββ . [0] = none, [1] =
diagonal, [2] = full matrix. This value is used only if prior betas = 1.

( )

Beta Association Data (prior mean data) TABLE

This table must contain the same number of rows as there are beta associations to be defined. The rows
must be in ascending order of beta association numbers. This is also the block where beta associations are
defined, even if prior means are not defined. Parameter transformations are also defined in this table. Details
about transformation options are in appendix 3.
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BetaAssoc integer Identifier of each beta association (one per row). These should be sequential integers.

Partrans string Transformation indicator determining whether β values will be in physical or estimation
space. Acceptable values are log, power, and none.

alpha trans float, default = 50.0 Exponent of the power transformation if Partrans = power.

beta 0 float Value of prior mean (β0) for the row’s beta association. This value is used only if prior betas

= 1.

beta cov # float The number of values provided is based on the value of beta cov form specified above:

If beta cov form = 1, one value is provided.

If beta cov form = 2, nrow values are provided, corresponding to the current row of the beta
covariance matrix

(
Qββ

)
.

This value is used only if prior betas = 1.

Structural Parameter Control Variables (structural parameter cv) TABLE

This table must contain the same number of rows as there are beta associations to be defined. The rows
must be in ascending order of beta association numbers.

BetaAssoc integer Identified for each beta association (one per row). These should be sequential integers.

prior cov mode integer, default = 1 Flag to indicate whether prior covariance of parameters (Qss) is supplied
or calculated. This is reserved for future use. Currently, Qss is always calculated, so this value is ignored
if present.

var type integer, default=1 This is a flag to indicate which variogram type is used to express the prior
covariance (Qss). Acceptable choices are [0] = pure nugget, [1] = linear, [2] = exponential.

struct par opt integer, default=1 Flag for whether structural parameters are meant to be optimized or not.
This can be chosen for each structural parameter individually, [0] = do not optimize (hold at initial
value), [1] = optimize by using a marginal distribution.

trans theta integer, default=0 Flag for whether a power transformation should be applied to the structural
parameters in the current row. [0] = do not transform, [1] = transform. This value is used only if
struct par opt = 1.

alpha trans float, default = 50 Exponent of the power transformation, used only if trans theta = 1.
Details of the power transformation are in appendix 3.

Structural Parameter Data (structural parameter data) TABLE

This table must contain the same number of rows as there are beta associations to be defined. The rows
must be in ascending order of beta association numbers.

BetaAssoc integer Identifier of each beta association (one per row). These should be sequential integers.

theta 0 1 float Initial value of θ1,0, which is the starting value of the first structural parameter for prior
covariance.
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theta 0 2 float Initial value of θ2,0, which is the starting value of the second structural parameter for prior
covariance. If a linear or nugget variogram is used, an arbitrary negative value should be entered here
indicating that the value will be ignored. For an exponential variogram, this parameter is the correlation
length.

Structural Parameter Covariance Data (structural parameter cov) TABLE

The only covariance model currently supported is diagonal, so there must be one covariance value for each
θ parameter. This block is read only if theta cov form is not zero.

theta cov 1 float Variance of the current row’s θ parameter. If an exponential variogram is used, then a
single beta association will have two structural parameters. To handle this possibility, the variance values
should be listed, one per line, in the order of beta associations, then in order θ1 then θ2. Even structural
parameters that will not be estimated (for example, that are held at their initial values, as indicated by
struct par opt above) must have a placeholder value entered here to maintain the order—the
placeholder value is arbitrary and will be ignored.

Epistemic Error Term (epistemic error term) KEYWORDS

sig 0 float Initial value of the epistemic uncertainty variance
(
σ2

R0
.

sig opt integer Flag indicating whether epistemic uncertainty variance

)
should be optimized for or not. [0] =

do not optimize, [1] = optimize. If sig opt = 0, then the value of sig 0 is used throughout the
inversion.

sig p var float, default=0 Prior variance on σ2
R0

. sig p var = 0 means no prior variance on epistemic error
is provided and it is assumed totally unknown. This value is used only if sig opt = 1.

trans sig integer, default=0 Flag for whether a power transformation should be applied to the epistemic
error. [0] = do not transform, [1] = transform. This value is used only if sig opt = 1.

alpha trans float, default = 50 Exponent of the power transformation, used only if trans sig = 1. Details
of the power transformation are in appendix 3.

Parameter Control Variables (parameter cv) KEYWORDS

ndim integer Number of dimensions over which the estimated parameters span.

Prior Covariance Compression Control Variables (Q compression cv) TABLE

This table must contain the same number of rows as there are beta associations to be defined. The rows
must be in ascending order of beta association numbers. This block is read only if Q compression flag = 1.

BetaAssoc integer Identified of each beta association (one per row). These typically are sequential integers.

Toep flag integer This is a flag to determine whether a Toeplitz transformation should be applied to the prior
covariance matrix (Qss). [0] = do not use Toeplitz transformation, [1] = use Toeplitz transformation.

Nrow integer Number of rows in the current beta association ( read only if Toep flag = 1).

Ncol integer Number of columns in the current beta association ( read only if Toep flag = 1).

Nlay integer Number of layers in the current beta association ( read only if Toep flag = 1).
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Parameter Groups (parameter groups) TABLE

Each row of this table corresponds to one of the parameter groups. These groups are used to group together
parameters by type and are not the same as beta associations.

groupname string Name of the group in the current row. Note that these cannot contain spaces.

grouptype integer Integer identifying which type of parameter the group corresponds to. This is used to
ensure that beta associations do not span parameter types (for example, hydraulic conductivity
parameters should not be in the same group type as recharge parameters). The specific values are
arbitrary, but a distinct value should be assigned to each parameter group type.

derinc float The derivative increment for calculating external derivates if using external derivatives
calculation (deriv mode = 0 or deriv mode = 4).

Parameter Data (parameter data) TABLE

Each row of this table provides information for one parameter.

ParamName string Name for the parameter.

StartValue float Starting parameter value.

GroupName string Name of the group to which the parameter belongs. This name must be defined in the
parameter groups block.

BetaAssoc integer Beta association to which this parameter belongs.

SenMethod integer Sensitivity method used for this parameter type. This parameter may now be arbitrary—it
is reserved for future use and currently is ignored.

x1 float Location in the first dimension.

x2 float Location in the second dimension. Read only if ndim >= 2.

x3 float Location in the third dimension. Read only if ndim = 3.

Observation Groups (observation groups) TABLE

Each row of this table corresponds to one of the observation groups. These groups are used to group
together observations by type and are used to report portions of the objective function.

groupname string Name of the group in the current row. Note that these cannot contain spaces.

Observation Data (observation data) TABLE

One observation is presented on each line.

ObsName string Name of an observation.

ObsValue float Value of the observation.

GroupName string Name of the group to which the observation belongs. This name must be defined in the
observation groups block.

Weight float A relative weight that gets applied to the epistemic error.
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Model Command Lines (model command lines) KEYWORDS

Currently, a single forward model command and an optional derivative model command can be supplied
here. These string keywords can include path information if the command line batch files or shell scripts are
not located in the current working directory, but spaces are not allowed.

Command string This is the batch file or shell script that runs the forward model.

DerivCommand string This is the optional batch file or shell script that is used to calculate derivatives. This is
used only if deriv method = 1 in the algorithmic cv block.

Model Input Files (model input files) TABLE

Each row of this table includes a matched template file and model input file. This allows the program to
create the correct input files for the model.

TemplateFile string Name of a template file for making model input. Must end in .tpl.

ModInFile string Name of the model input file corresponding to the TemplateFile identified on the same row.

Model Output Files (model output files) TABLE

Each row of this table includes a matched instruction file and model output file. This allows the program to
read the results of model runs correctly.

InstructionFile string Name of an instruction file for reading model output. Must end in .ins.

ModOutFile string Name of the model output file corresponding to the InstructionFile identified on the same
row.

Parameter Anisotropy (parameter anisotropy) TABLE

Each row of this table contains information for parameter anisotropy for a beta association. This block is
read only if the variable par anisotropy =1 in the algorithmic cv block.

BetaAssoc integer Identifier of a beta association.

horiz angle float Angle, in degrees of the principal direction of anisotropy in a horizontal plane. See figure
3.1 for details.

horiz ratio float Ratio of maximum to minimum principal property values in the horizontal plane. See
figure 3.1 for details.

vertical ratio float Ratio of maximum to minimum principal property values in the vertical direction. See
figure 3.1 for details. This value is read only if ndim=3.

PEST Matrix Formats for Jacobian and Posterior Covariance

On two occasions in bgaPEST, a matrix text file format from PEST is used to store matrices: when
posterior covariance output from bgaPEST is specified as a full matrix; and when Jacobian sensitivity matrix
information is exchanged from an external code with bgaPEST run through, for example, a Python script.
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Figure 1.1. Example of a standard PEST matrix file, adapted from Doherty (2010b).

The posterior covariance matrix may take two forms: a full matrix or a diagonal matrix. These options are
discussed below. Two options are available for Jacobian sensitivity matrices (H) to be read by bgaPEST. If
deriv mode=0, PEST is used, external to bgaPEST, to calculate the Jacobian matrix resulting in a binary file
with the extension .jco. If deriv mode=1 then an external program is used to calculate H, and a file, written
by the external program, must be communicated to bgaPEST. This file can either be a .jco file or a .jac file
which is an ASCII file following the format of a standard matrix file used by PEST, as described in Doherty
(2010b), section 4.4.3. An example and description of the format of a standard PEST matrix follow, quoting
from Doherty (2010b).

Figure 1.1 depicts an example matrix file holding a matrix with three rows and four columns.
The first line of a matrix file contains 3 integers. The first two indicate the number of rows (NROW) and

number of columns (NCOL) in the following matrix. The next integer (named ICODE) is a code, the role of
which will be discussed shortly. Following the header line is the matrix itself, in which entries are
space-separated and wrapped to the next line if appropriate. The maximum line length is 500 characters, so
wrapping to the next line must occur within 500 characters. It is recommended to wrap lines after 8 values and
to maintain maximum possible precision.

In use for Jacobian matrices by bgaPEST, ICODE is set to 2, so the string “* row names” is printed next,
followed by NROW names (of 20 characters or less in length), containing the names associated with rows of the
matrix. NCOL column names follow in a similar format, following the string “* column names”.

Other options for ICODE are described in Doherty (2010b) and are used in bgaPEST for output of the
posterior covariance matrix. The two options for posterior covariance output both refer to square matrices that
have the same names of columns and rows. As a result, only one list of names follows the data following the
string “* row and column names”.

If compression is used in the prior covariance matrix, bgaPEST outputs only the diagonal elements of the
posterior covariance. In this case, ICODE=-1 and only the diagonal entries are listed, one per line, after the
header line. If compression is not used, the entire posterior covariance matrix is printed using ICODE=1 with 8
values per line.

References Cited

Banta, E.R., Poeter, E.P., Doherty, J.E., and Hill, M.C., 2006, JUPITER: Joint Universal Parameter
IdenTification and Evaluation of Reliability—An application programming interface (API) for model
analysis: U.S. Geological Survey Techniques and Methods, book 6, chap. E1, 268 p.

Doherty, J., 2010b, PEST, Model-independent parameter estimation—Addendum to user manual (5th ed.):
Brisbane, Australia, Watermark Numerical Computing.
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One advantage of using block input and keywords, as discussed in appendix 1, is that default values are
supplied within bgaPEST so they can be skipped by a user. The values supplied as defaults have general
applicability and will all be reported in the <casename>.bpr file. In this section, then, the bare minimum
level of input is described to get a project running.

Forward Model

The forward model must exist and have the ability—either inherently or through pre- and
post-processing—to receive input and provide output using text (ASCII) files. For bgaPEST to be able to run
the model, template files (.TPL) and instruction files (.INS) must be provided, corresponding with model input
and output, respectively. Details of the construction of these files are in Doherty (2010, chap. 3). The template
and instruction files are detailed in the model input files and model output files blocks, respectively.
The model command lines block also must be included with an entry for either a batch file or shell script in
the command keyword that runs the model.

Observations

The observation groups block must be completed. All observations can belong to the same group if
desired. Groups are reported in output to assist in interpretation of results. The observation data block also
must be completed.

Beta Associations

Beta associations are first defined in the prior mean data block. If no prior information about mean
values and their covariance is to be supplied, the only information necessary is a row for each beta association
in the prior mean data block and a decision about whether to transform the value with a logarithmic or
power transform. Note that beta associations indicate regions and groups that will have the same mean value
estimated regardless of whether prior information about the mean is provided.

Structural Parameters

Each beta association must have a variogram specified for it, defined by structural parameters. Therefore,
the structural parameters cv and structural parameter data blocks must be completed. Whether to
optimize for structural parameter values and whether to provide prior information about the values are optional.

Parameters

The parameter groups block must be completed and, like with observations, it is acceptable for all
parameters to be in a single group, and groups do not need to correspond with beta associations. The
parameter cv keyword ndim must be provided, and the parameter data block must be completed.

Algorithmic Control Variables

The algorithmic cv block contains variables that all have default values; however, bgaPEST must find
the algorithmic cv block—even if it is empty. If the algorithmic cv block is empty, all default values will
be used.

Example .bgp Input File

The following text shows a bgaPEST input file. Two dependent files for parameters and observations are
shown in abbreviated form to indicate their format.
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Example1.bgp
BEGIN algorithmic cv KEYWORDS

structural conv=0.004 phi conv=0.004

bga conv=1.0e-2 it max structural=10

it max phi=15 it max bga=15

linesearch=1 it max linesearch=3

theta cov form=1 Q compression flag=1 deriv mode = 1

jacobian format = ascii jacobian file = S1 1.jac

posterior cov flag = 1 par anisotropy=0

END algorithmic cv

BEGIN prior mean cv KEYWORDS

prior betas= 1 beta cov form=1

END prior mean cv

BEGIN prior mean data TABLE

nrow=1 ncol=7 columnlabels

BetaAssoc Partrans beta 0 beta cov 1 beta cov 2 beta cov 3 beta cov 4

1 log -7.6 5e-7 65. 3.1 4.1

END prior mean data

BEGIN structural parameter cv TABLE

nrow=1 ncol=6 columnlabels

BetaAssoc prior cov mode var type struct par opt trans theta alpha trans

1 2 1 1 1 20

END structural parameter cv

BEGIN structural parameters data TABLE

nrow=1 ncol=3 columnlabels

BetaAssoc theta 0 1 theta 0 2

1 1.0e-007 -0.1

END structural parameters data

BEGIN structural parameters cov TABLE

nrow=1 ncol=1 columnlabels

theta cov 1

11.1

END structural parameters cov

BEGIN epistemic error term KEYWORDS

sig 0 = 1.000e-000 sig opt = 0 sig p var=0.00001

END epistemic error term

BEGIN parameter cv KEYWORDS

ndim=3

END parameter cv

BEGIN Q compression cv TABLE

nrow=1 ncol=5 columnlabels

BetaAssoc Toep flag Nrow Ncol Nlay

1 1 21 21 1

END Q compression cv

BEGIN parameter groups TABLE
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nrow=1 ncol=2 columnlabels

groupname grouptype

pargp uno 1

END parameter groups

BEGIN parameter data FILES

PARAMETERS.txt

END parameter data

BEGIN observation groups TABLE

nrow=1 ncol=1 columnlabels

groupname obsgp oden

END observation groups

BEGIN observation data FILES

obs12.txt

END observation data

BEGIN model command lines KEYWORDS

Command = modflow.bat

DerivCommand = modflow adj.bat

END model command lines

BEGIN model input files TABLE

nrow=1 ncol=2 columnlabels

TemplateFile ModInFile

S1 mul.tpl S1 .mul

END model input files

BEGIN model output files TABLE

nrow=1 ncol=2 columnlabels

InstructionFile ModOutFile

S1 1 hbs.ins S1 1.hbs

END model output files

BEGIN parameter anisotropy TABLE

nrow = 1 ncol = 4 columnlabels

BetaAssoc horiz angle horiz ratio vertical ratio

1 45 10 10

END parameter anisotropy

PARAMETERS.txt
BEGIN parameter data

TABLE nrow=441 ncol=8 columnlabels

ParamName StartValue GroupName BetaAssoc SenMethod x1 x2 x3

P1 2.000000000000000E-04 pargp uno 1 1 1.0000E+00 1.000E+000.00E+00

P2 2.000000000000000E-04 pargp uno 1 1 2.0000E+00 1.000E+000.00E+00

P3 2.000000000000000E-04 pargp uno 1 1 3.0000E+00 1.000E+000.00E+00

...

P440 2.000000000000000E-04 pargp uno 1 1 2.0000E+01 2.100E+010.00E+00

P441 2.000000000000000E-04 pargp uno 1 1 2.1000E+01 2.100E+010.00E+00

END parameter data

obs12.txt
BEGIN observation data TABLE

nrow=12 ncol=4 columnlabels ObsName ObsValue GroupName Weight

P001T0000 33.8154 obsgp oden 1.0
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P002T0000 29.9383 obsgp oden 1.0

P003T0000 28.4674 obsgp oden 1.0

P004T0000 30.9286 obsgp oden 1.0

P005T0000 24.7332 obsgp oden 1.0

P006T0000 31.5769 obsgp oden 1.0

P007T0000 27.3057 obsgp oden 1.0

P008T0000 29.3834 obsgp oden 1.0

P009T0000 27.8658 obsgp oden 1.0

P010T0000 30.4177 obsgp oden 1.0

P011T0000 28.5865 obsgp oden 1.0

P012T0000 27.4403 obsgp oden 1.0

END observation data
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Tables 2.1 and 2.2 summarize the input blocks and variables names, types, and default values.

Reference Cited

Doherty, J., 2010, PEST, Model-independent parameter estimation—User manual (5th ed., with slight
additions): Brisbane, Australia, Watermark Numerical Computing.
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Table 2.1. Summary of input blocks with variables identified.

algorithmic_cv Algorithmic Control Variables: KEYWORDS This block is optional if all default values are used
Variable type Variable name Default Description

double precision structural_conv 0.001 Structural parameter convergence values
double precision phi_conv 0.001 Objective function convergence value
double precision bga_conv 0.001 BGA outer loop convergence value

integer it_max_structural 10 Max number of iterations for struct parameters
integer it_max_phi 10 Max number of iterations for objective function
integer it_max_bga 10 Max number of iterations for BGA

integer linesearch 0 Linesearch procedure flag: [0] not perform [1] perform 

integer it_max_linesearch 10 Max number of iterations for linesearch procedure

integer theta_cov_form 0 Form of theta covariance:  [0] none, [1] diag, [2] full 
matrix

integer deriv_mode 0
Derivatives (Jacobian) calculation method: [0] make 
PEST files internally, [1] use secondary command line 
argumern (typically adjoint state)

integer posterior_cov_flag 0 [0] do not calculate posterior covariance, [1] calculate 
posterior covariance

character, len = 6 jacobian_format "binary"
Two options for how the Jacobian matrix calculated by 
an external code is communicated to bgaPEST: 
binary means a jco file, ascii means a text file

character(len=100) jacobian_file scratch.jco Jacobian File
integer par_anisotropy 0 Anisotropy flag: [0] no anistropy, [1] anisotropy

integer Q_compression_flag 0
[0] none - calculate full Qss, [1] Calculate Qss for each 
beta separately and if nugget store just 1, if toep_flag 
store just a vector

prior_mean_cv Prior Mean Control Variables: KEYWORDS
Variable type Variable name Default Description

integer prior_betas 0 Have or not prior informations about mean? [0] No  -  
[1] Yes

integer beta_cov_form 0 Form of Beta covariance:  [0] none, [1] diag, [2] full 
matrix

prior_mean_data Beta Association Data: TABLE
Variable type Variable name Defaults Description

integer BetaAssoc - Integer identifiers of beta associations

character(len=100) Partrans - Vector of parameter transformation : [NONE], 
[POWER], or[ LOG]. (Not case sensitive)

double precision beta_0 - Prior beta values
double precision beta_cov_i    i = 1, p - Covariance of beta

structural_parameter_cv Structural Parameter Control Variables: TABLE
Variable type Variable name Default Description

integer BetaAssoc - Integer identifiers of beta associations
integer prior_cov_mode 1 Supplied matrix [0]  or calculated [1].

integer var_type 1 Type of variogram [0] pure nugget, [1] linear, [2] 
exponential

integer struct_par_opt 1 Structural parameters optimization: [0] No 
optimization, [1] Optimization

integer trans_theta 1 Transformation of structural parameters in the 
estimation space (power transform): [0] No, [1] Yes

double precision alpha_trans 50 Exponent of power transformation in case of 
trans_theta

structural_parameter_data Structural Parameter Data: TABLE
Variable type Variable name Default Description

integer BetaAssoc - Integer identifiers of beta associations
double precision theta_0_1 - Initial value of theta 1 value
double precision theta_0_2 - Initial value of theta 2 value -- negative if not used

structural_parameter_cov Structural Parameter Data: TABLE
Variable type Variable name Default Description

integer BetaAssoc - Integer identifiers of beta associations
double precision theta_cov_i  i=1,…,max(num_thata_type) - Theta covariance matrix

epistemic_error_term Epistemic Error Term: KEYWORDS
Variable type Variable name Defaults Description

double precision sig_0 - Initial value of sigma (epistemic uncertainty 
parameter)

integer sig_opt - Optimization for sigma: [0] No, [1] Yes
double precision sig_p_var 0 Prior variance on sigma

integer trans_sig 0 Transformation of epistemic error in the estimation 
space (power transform): [0] No, [1] Yes

double precision alpha_trans_sig 50 Exponent of power transformation in case of trans_sig
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Table 2.2. Summary of input blocks with variables identified (continued).

parameter_cv Parameter Control Variables: KEYWORDS
Variable type Variable name Defaults Description

integer ndim - Spatial dimensions for parameters (1 if temporal only)

Q_compression_cv Prior Covariance Compression Control Variables: TABLE
Variable type Variable name Defaults Description

integer BetaAssoc - Integer identifiers of beta associations
integer Toep_flag - Using Toeplitz matrix for Qss. [0] No, [1] Yes
integer Nrow - Number of model rows
integer Ncol - Number of model columns
integer Nlay - Number of model layers

parameter_groups Parameter Groups: TABLE
Variable type Variable name Defaults Description

character (len=50) groupname - Name of the parameter groups
integer grouptype - Identifier to segregate groups of different types

double precision derinc - Derivative increment for external Jacobian
parameter_data Parameter Data: TABLE

Variable type Variable name Defaults Description
character (len=50) GroupName - Name of group
double precision StartValue - Starting values of parameters

character (len=50) ParamName - Name of parameter
double precision x1 - Location in first dimension (time if a time series)
double precision x2 - Location in second dimension (read if ndim >= 2)
double precision x3 - Location in third dimension (read if ndim >= 3)

 integer SenMethod - Sensitivity calculation method
integer BetaAssoc - Beta association

observation_groups Observation Groups: TABLE
Variable type Variable name Defaults Description

character (len=50) groupname - Name of the observation groups
observation_data Observation Data: TABLE

Variable type Variable name Defaults Description
character (len=50) GroupName - Name of groups
double precision ObsValue - Vector of observations

character (len=50) ObsName - names of observations
double precision Weight - Weight for R matrix        

model_command_lines Model Command Lines: KEYWORDS
Variable type Variable name Defaults Description

character (len=50) Command - Command line
character (len=50) DerivCommand - Derivative Command line

model_input_files Model Input Files: TABLE
Variable type Variable name Defaults Description

character(len=100) TemplateFile - Template file
character(len=100) ModInFile - Input file

model_output_files Model Input Files: TABLE
Variable type Variable name Defaults Description

character(len=100) InstructionFile - Instruction file
character(len=100) ModOutFile - Output file

parameter_anisotropy Parameter Anisotropy: TABLE This block is optional if parameter anisotropy is not used
Variable type Variable name Defaults Description

integer BetaAssoc - Integer identifiers of beta associations
double precision horiz_angle - Angle, in degrees, of principal anisotropy direction

double precision horiz_ratio - Ratio of maximum to minimum principal property 
values in the horizontal plane

double precision vertical_ratio - Ratio of maximum to minimum principal property 
values in the vertical direction (read only if ndim=3)
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The Bayesian geostatistical approach is described in detail by Kitanidis and Vomvoris (1983), Hoeksema
and Kitanidis (1984), Kitanidis (1995), and Nowak and Cirpka (2004) among others. The mathematics are
reviewed here.

The Bayesian Geostatistical Approach

In the Bayesian geostatistical approach, the posterior pdf is calculated as

p(s|y) ∝ exp
(
−1

2
(y−h(s))T R−1 (y−h(s))

)
L(y|s)

exp
(
−1

2
(s−Xβ

∗)T G−1
ss (s−Xβ

∗)

)
p(s)

(3.1)︸ ︷︷ ︸︸ ︷︷ ︸
where s is the m×1 vector of parameter values at distributed spatial locations in the model, Xβ ∗ is the prior
mean, Gss is the m×m prior covariance of (s−Xβ ∗), h(s) is the n×1 vector of modeled forecasts colocated
with observations (y) , and R is the n×n epistemic uncertainty covariance, modeled as σ2

RW where σ2
R

represents epistemic uncertainty, and W is an n×n diagonal matrix containing the observation weights. In
general terms, the likelihood function (L(y|s)) characterizes the misfit between model forecasts and
observations whereas, the prior pdf (p(s)) defines a characteristic (such as smoothness or continuity) that is
assumed to apply to the parameter field. The prior pdf also serves the role of regularization. The best estimate
of s maximizes the posterior pdf. A computationally efficient method to find the best estimates of s and β

ŝ and β̂ , respectively is through
( )

ŝ = Xβ̂ +QssHT
ξ (3.2)

which is the superposition of the prior mean (first term) and an innovation term that accounts for deviations of
the model outputs from the observations (second term). In this context, β in the first term is not the prior mean
but is the best estimate of the mean (mapped onto the parameter field through the m× p X matrix), whereas the
second term is fluctuations about the estimated mean. H in the second term (often referred to as the n×m
Jacobian, sensitivity, or susceptibility matrix) is the sensitivity of observation values to parameter values

∂hwhere H (s)
i j = i

∂
, which can be calculated by using either finite difference or adjoint-state methods. Ins j

bgaPEST, finite-difference calculations for H are made by using PEST, whereas adjoint-state calculations
depend on the specific model being used and must be made by using an external program.

The values for β̂ and ξ are found by solving the (n+ p) (n+ p) linear system of cokriging equations×[
Qyy HX

XT HT −Q−1
ββ

ξ

β̂
=

y
−Q−1

ββ
β ∗

(3.3)

][ ] [ ]

where Qyy is the n×n auto-covariance matrix of the observations, defined as HQssHT +R, n is the number of
observations, and p is the number of beta associations. In hydrogeologic applications, the numerical forward
model is typically nonlinear. Further nonlinearity can be induced by using a logarithmic or power
transformation, which is a convenient way to enforce non-negativity on parameters.

Provided that the nonlinearities introduced are not too extreme, a solution can be obtained through
successive linearizations following the quasi-linear extension (Kitanidis, 1995). The forward model, h(s) is
expanded about the current best estimate of the parameters s̃

h(s)≈ h(s̃)+H̃(s− s̃) (3.4)

where H̃, as a function of s̃, is evaluated at each linearization. We assign the subscript k to indicate iteration



44 Approaches in Highly Parameterized Inversion: bgaPEST

number, and correct the measurements for the kth linearization as

y
′
k = y h(s̃k)+ H̃ks̃k.− (3.5)

Then the cokriging equations (equation 3.3) are updated[
Q̃yy,k H̃kX
XT H̃T

k −Q−1
ββ

ξk

β̂k
=

y′k
−Q−1

ββ
β ∗

][ ] [ ]
(3.6)

where Q̃yy,k = H̃kQ ˜ssHT
k +R . From this set of equations, the next estimate of s is

s̃k+1 = Xβ̂ k +QssH̃T
k ξk. (3.7)

This process can be iterated until there is minimal difference in the parameter estimates or minimal further
improvement in the objective function. The objective function, which we seek to minimize, is − ln p(s|y)
which is equivalent to maximizing equation 3.1

ΦT =−1
2

ln p(s|y) = (s−Xβ
∗)T G−1

ss (s−Xβ
∗)− 1

2
(y−h(s))T R−1 (y−h(s)) (3.8)

Line Search

In some cases, numerical instability makes convergence difficult. A line search is implemented in which a
linear search is performed between the most recent best estimate of the parameters (ŝ) and the current
linearization of the parameters (s), seeking a parameter value that minimizes an objective function.

The line search optimizes a single parameter, ρ , along a linear dimension between ŝ and s as
˜ ˜

sopt = ŝρ + s(1−ρ)˜ (3.9)

where sopt minimizes the objective function, ΦT , using a Nelder-Mead simplex (see, for example, Press and
others, 1992), which guarantees monotonic decrease in ΦT over successive iterations. It is recommended to
limit the number of line-search iterations to a relatively low number, because the goal of handling weak
linearity is balanced against the computations required to perform the line search. The greatest advantage is
likely achieved in the first few (less than five) iterations. The role of the line search is not to find a minimum
value of ΦT because the nonlinearity of the overall problem prevents it. Rather, the line search is meant to be a
correction of search direction for stability.

Parameter Field Anisotropy

In distributed parameter fields, such as hydraulic conductivity in groundwater models, it is common to
encounter anisotropy along an axis that may or not be aligned with the coordinate (x, y, z) axes. bgaPEST
allows the definition of anisotropy in a horizontal plane at any angle from the x-axis and also in the vertical
direction. The general layout of horizontal anisotropy is illustrated in figure 3.1. The angle from the x-axis
(specified in degrees) is defined by horiz angle, and the amount of anisotropy is defined by horiz ratio.
The designation p max refers to the direction with maximum parameter values and p min refers to the direction
of minimum parameter values. The ratio is used to adjust the effective distance (and thereby the covariance
values) along that principal direction. The user supplies values for horiz angle and horiz ratio for each
beta association. If some beta associations are not meant to exhibit anisotropy, the user may simply set
horiz ratio=1.0. If none of the beta associations exhibit anisotropy, the entire parameter anisotropy
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p_min

Figure 3.1. Schematic diagram of conventions defining horizontal anisotropy in bgaPEST .

block can be eliminated by setting the algorithmic control variable par anisotropy=0, which means the
block (if present) is ignored.

Anisotropy is introduced in the calculation of distances that are then used in the calculation of the prior
covariance matrix Qss discussed below. Every pair of points must first be rotated into the principal direction
orientation. This is accomplished by means of a rotation matrix:[

xrot,i

yrot,i

]
=

[
cosθ −sinθ

sinθ cosθ

][
xi

yi

]
(3.10)

where i indicates the ith point of the pair (i = 1,2), θ is the angle (in degrees) specified by horiz angle, x and
y constitute the point coordinates in the original coordinate system, and xrot and yrot constitute the location
projected into the coordinate system corresponding to the orientation of horizontal anisotropy. Once this
projection is made, the horizontal distance is calculated as

distance = (xrot,1− xrot,2)
2 +horiz ratio×(yrot,1− yrot,2)

2
√

(3.11)

For three-dimensional parameter fields, a second anisotropy ratio may be specified as vertical ratio.
In the vertical direction, no angle is specified, so the rotation step is not required and distance is calculated as

distance =

√√√√√√ (xrot,1− xrot,2)
2

+horiz ratio×(yrot,1− yrot,2)
2

+vertical ratio×(zrot,1− zrot,2)
2

(3.12)

Prior Probability Density Function

The prior pdf of s can be characterized as multi-Gaussian through its mean and covariance. The (m×1)
unknown parameter vector, s, is modeled as a random process with mean

E[s] = Xβ (3.13)
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where E[·] indicates expected value, m is the number of parameters, β is a (p×1) vector of drift coefficients,
and X is an (m× p) matrix of base functions. In the absence of prior drift, the β constitute the beta association
mean values, and X is a selection matrix mapping each value in s and β into their appropriate beta association.
X contains all zeros except for Xth

i j element, which maps the ith parameter to the jth beta association, which
contains the value of 1. Subdivision into beta associations within distributed parameter domains has been
critical to success in hydrogeologic settings that include strong contrasts in parameter values indicative of
geologic contacts (see, for example, Fienen and others, 2004; Fienen and others, 2008). Prior drift is accounted
for in X through trends expressed in the nonzero terms, although this is not currently implemented in bgaPEST.
The prior covariance (Qss) of s for a known β is

Qss(θ) = E[(s−Xβ )(s−Xβ )T ] (3.14)

where Qss is a covariance function with structural parameters θ . In bgaPEST, allowable covariance functions
include

1. the nugget

Qss (d) = σ
2 (3.15)

and

2. the exponential covariance function

Rss(d) = σ
2exp(−|d|

`
) (3.16)

where |d| is separation distance, σ2 is variance, and ` is integral scale. If the integral scale is set such that
` > max(|d|) we can substitute σ2 = θ` and restate equation 3.16 as

Qss(h,σ2) = σ
2`exp(−| |

`
).

d
(3.17)

We can also set `= 10×max(|d|) so that the behavior of the covariance function will be as a linear
variogram (Fienen and others, 2008) which enforces continuity at a scale determined by the single free
structural parameter σ2. The motivation for this covariance function choice is to impart minimal assumptions
about parameter structure onto the solution.

The appropriate values of θ (the vector of structural parameters including σ2
R and σ2) are calculated

through restricted maximum likelihood. For the remainder of this derivation, θ is assumed to be known. In
bgaPEST, as discussed below in the input instructions, either the exponential or linear variogram models may
be used.

Assembling the mean and covariance, the prior pdf is

p(s|β ) ∝ exp −1
2
(s−Xβ )TQ−1

ss (s−Xβ ) .

[ ]
(3.18)

In the case of no knowledge about the prior mean the prior pdf of β can be modeled as uniform over all
space as p(β ) ∝ 1 with both s and β being estimated together, so that the conditional distribution in equation
3.18 is replaced by a joint distribution

p(s,β ) ∝ exp −1
2
(s−Xβ )TQ−1

ss (s−Xβ ) .

[ ]
(3.19)



Appendix 3—Details of the Method 47

Frequently, at least diffuse knowledge about the prior mean is available and can be modeled as multi-Gaussian
with mean β ∗ and covariance Qββ . Typically, Qββ is modeled as a diagonal matrix with variance values on the
diagonal indicating independence among the β ∗. Incorporating the prior information yields a prior pdf for s

p(s) ∝ exp −1
2
(s−Xβ

∗)TG−1
ss (s−Xβ

∗)

[ ]
(3.20)

where Xβ ∗ is the prior mean and Gss = Qss +XQββ XT is the prior covariance (Nowak and Cirpka, 2004). The
incorporation of prior mean information, even assuming very high variance values in Qββ , can provide
numerical stability without overly biasing the results. In the original formulations of Kitanidis and Vomvoris
(1983), Hoeksema and Kitanidis (1984), and Kitanidis (1995), Gss = Qss and no prior covariance is supplied
on the values for β . This behavior can be duplicated in bgaPEST by specifying prior betas=0 in the input
block for Prior Mean Control Variables.

Prior Covariance Matrix Storage Issues

In underdetermined problems suitable for bgaPEST, the number of parameters can be very large. The prior
covariance matrix discussed above can, therefore, grow to such large dimensions that it cannot be practically
stored in computer memory. However, two techniques are provided to alleviate some of this storage stress:
compression and Toeplitz transformation.

Compression takes advantage of the fact that values in the Gss matrix relating parameters in different beta
associations, by definition, have the value of zero. As a result, a general Gss matrix can be viewed as a
partitioned matrix of nonzero blocks G and zero blocks

(
ss,β i
)

Gss =


Gss,β1 0 0 0

0 Gss,β2 0 0

0 0 . . . 0
0 0 0 Gss,β p

 .




 (3.21)

There is no need to store the zero elements provided that accommodations are made to avoid
multiplications that involve the zeros. These accommodations have been made in bgaPEST and compression
is, therefore, allowed.

In cases where spacing of model cells or nodes is constant in respective directions, Gss,β i is a block
Toeplitz matrix (Gray, 2005). A square, symmetric j× j matrix is Toeplitz in form if it has diagonals that all
have the same value as in this example

T =


t0 t1 . . . t j−2 t j−1

t1 t0 t1
. . . t j−2

... t1 t0
. . .

...

t j−2
. . . . . . . . . t1

t j−1 t j−2 . . . t1 t0

.







(3.22)

This matrix has the properties that there are only j unique values, and these values occur in a regular order
such that only a vector of length j needs to be stored from which individual rows can be constructed to perform
matrix multiplication operations. The spacing, as indicated above, must be constant. For example, in a spatial
model such as properties in a groundwater model, ∆x, ∆y, and ∆z must be constant, but these values do not
need to be equal to each other. This condition is restrictive in the sense that it implies a regular grid that may
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 First level symmetric block Toeplitz matrix

 Second level symmetric block Toeplitz matrix

 Third level symmetric block Toeplitz matrix

Figure 3.2. Schematic graphical visualization of a three-level embedded set of Toeplitz blocks in a covariance matrix (modified
from D’Oria (2010)). The smallest squares represent individual matrix entries (values), and the colors correspond to distinct val-
ues. In this synthetic example, it is assumed that there are three rows, three columns, and three layers in the underlying model.

not correspond to geometry in the field; however, the regular grid required to take advantage of Toeplitz storage
and operations can be assigned to one beta association with a surrounding, irregular grid put in another beta
association with fewer parameter values.

In order to use Toeplitz structure in three dimensions, there must be a three-level embedding of Toeplitz
matrices (D’Oria, 2010). The first level corresponds to the model layers, the second level corresponds to model
rows, and the third level corresponds to model columns. Inspection of the schematic example in figure 3.2
shows that every distinct value represented in the entire matrix is found in the first (leftmost) column. Cycling
of rows or columns, relative to the single stored vector, can be used to reconstruct any row or column of the
main matrix to be used in multiplication operations. In bgaPEST, a combination of Toeplitz and complete
blocks can make up the Gss matrix in Compressed form, as discussed above.

For even larger problems (more parameters) specialized Fourier transform-based functions may be useful
to speed up the computations made with compressed matrices (Nowak and others, 2003; Nowak and Cirpka,
2004). The restriction of regular grid spacing can also be relaxed by using a Karhunen-Loev` e transform (Li
and Cirpka, 2006). Both of these advances may be considered as future improvements to bgaPEST but are not
currently implemented.

Detailed input instructions for bgaPEST are presented in appendix 1. It is important to note, however, that
if Toeplitz compression is invoked, parameters must be listed in the .bgp input file in order, sorted first by
layer, then by column, and finally by row.
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Likelihood Function

The parameters s are related to observations y through a measurement equation

y = h(s)+v (3.23)

where y is an (n×1) vector of observations, such as hydraulic heads or solute concentrations, h(s) is a transfer
function or numerical model that calculates predictions which are colocated spatially and temporally with the
observation values, and v is an (n×1) vector of epistemic uncertainty terms, modeled as a random process
with zero mean and covariance matrix R. Epistemic uncertainty is the result of imperfect or sparse
measurements and an incomplete or inappropriate conceptual model (Rubin, 2003, p. 4). The epistemic
uncertainty terms are assumed to be independent and uncorrelated, so

R = σ
2
RW (3.24)

where σ2
R is the epistemic uncertainty parameter and W is an (n×n) diagonal weight matrix in which each

element is W 1
ii = 2 where ωi is the ith weight, specified by the user. The purpose of the values of ω is to allow

ωi
for different confidence in different individual observations or groups of observations. In reality, the
component of epistemic uncertainty due to measurement error is likely uncorrelated, but the component due to
modeling and conceptual uncertainty is likely systematic and correlated (Gaganis and Smith, 2001). A
significant portion of this uncertainty may be reduced by not lumping parameters into homogeneous zones
(Gallagher and Doherty, 2007), and the means to characterize the structure of R are rarely available. If
information about R is available, however, it could be included and equation 3.24 replaced by a more
complicated matrix. This option is currently not available in bgaPEST, however. Proceeding with equation
3.24, the likelihood function, assumed to be multi-Gaussian, is

L(y|s) ∝ exp −1
2
(y−h(s))T R−1 (y−h(s)) .

[ ]
(3.25)

The structural parameter for the likelihood function is σ2
R and is calculated along with θ by using restricted

maximum likelihood.

Posterior Probability Density Function

Applying Bayes’ theorem with the product of equations 3.20 and 3.25 yields the posterior pdf

p(s|y) ∝ exp −1
2
(s−Xβ

∗)TG−1
ss (s−Xβ

∗)−1
2
(y−h(s))T R−1 (y−h(s))

[ ]
(3.26)

The best estimate of s maximizes the posterior pdf. A computationally efficient method to find the best
estimates of s and β ŝ and β̂ , respectively is through

( )
ŝ = Xβ̂ +QssHT

ξ (3.27)

which is the superposition of the prior mean (first term) and an innovation term that accounts for deviations of
the model outputs from the observations (second term). H in the second term (often referred to as the Jacobian,
sensitivity, or susceptibility matrix) is the sensitivity of observation values to parameter values

∂h swhere H ( )i
i j = ∂

is calculated by using either finite-difference or adjoint-state methods. The values for ˆ
s j

β and
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[
Qyy HX

XT HT −Q−1
ββ

ξ

β̂
=

y
−Q−1

ββ
β ∗

][ ] [ ]
(3.28)

where Qyy is the auto-covariance matrix of the observations, defined as HQ T
ssH +R.

Quasi-Linear Extension

As discussed by Kitanidis (1995), we must adjust calculations of the posterior pdf to account for
nonlinearity. To do this, we expand the solution in a first-order Taylor expansion, resulting in an updated set of
cokriging equations from equation 3.28:[

Qyy HX
XT HT −Q−1

ββ

ξ

β̂
=

y−h(s̃)+Hs̃
−Q−1

ββ
β ∗

][ ] [ ]
(3.29)

At each iteration (later referred to as inner iterations), the system in equation 3.29 is solved, resulting in an
updated estimate of ŝ calculated through equation 3.27. At each iteration, the objective function, based on
minimizing the negative logarithm of the posterior pdf (equation 3.26) is evaluated by using the current value
of ŝ: this is equivalent to finding the values of s that maximize the posterior probability. Switching to a
minimization problem and taking the logarithm has computational advantages.

The objective function, then, is

ΦT = ΦM +ΦR (3.30)

where ΦT is the total objective function, ΦM is the misfit objective function (also corresponding to the
likelihood function) and ΦR is the regularization objective function (also corresponding to the prior pdf). The
components of equation 3.30 are

ΦM =
1
2
(y−h(ŝ))T R−1 (y−h(ŝ))

ξ are found by solving the (n+ p)× (n+ p) linear system of cokriging equations

(3.31)

and

1
ΦR = (ŝ

2
−Xβ

∗ T) G−1
ss (ŝ−Xβ

∗) (3.32)

where both the negative signs and exponentiation are obviated by taking the negative logarithm of p(s|y).

Implementation of Partitions into Beta Associations

The concept of beta associations is discussed above, and details of their implementation are given here.
First, the prior covariance matrix Qss is censored by assigning a value of zero to each element that
characterizes covariance between cells of different regions or parameter types, as defined by beta associations.
It is not required that the covariance model be the same for each beta association. If different covariance
models are used for different zones, this is reflected in the appropriate parts of Qss. Furthermore, in some
applications, a single structural parameter, θ , may be estimated and applied to all of Qss. In other cases, and
necessarily if the covariance model differs in various beta association, multiple elements of θ are estimated.

A distinct prior mean parameter β ∗ is assigned for each beta association, and the matrix X (equation 3.13)
is determined as explained above. In cases where the mean of each zone is completely unknown, no values for
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β ∗ are provided, but the X matrix is constructed nonetheless and in both cases a value of β̂ is calculated for
each beta association.

Structural Parameters and Restricted Maximum Likelihood

A vital element to the method outlined above is proper selection of the structural parameters. Structural
parameters—also called hyperparameters or nuisance parameters—are the parameters that characterize the
covariance structure of both the epistemic uncertainty related to the observations, and the inherent variability of
the( parameters.) In bgaPEST, structural parameters may include the epistemic uncertainty term in equation 3.24
σ2

R and the prior pdf variogram parameters in equation 3.17 (θ). These parameters are estimated by using
restricted maximum likelihood consistent with the approaches of Kitanidis and Vomvoris (1983), Kitanidis
(1995) and Li and others (2007).

Applying Bayes’ theorem to the structural parameters, given the measurements, we calculate

p θ |y′k ∝ L y
′
k|θ p(θ)

( ) ( )
(3.33)

The likelihood function evaluates how closely the observations and predictions match, given the current
linearization and the current set of structural parameters

L y
′
k|θ ∝ det(Gyy)

− 1
2 exp −1

2
y
′
k−HXβ

∗ T
G−1

yy y
′
k−HXβ

∗
( ) [ ( ) ( )]

(3.34)

where Gyy is the measurement auto-covariance defined as

Gyy = Qyy +HXQββ XT HT . (3.35)

Note that Qyy is intrinsically dependent upon the values of θ .

Prior information about the structural parameters may also be included, with prior mean θ ∗ and covariance
matrix Qθθ :

p(θ) ∝ det(Qθθ )
− 1

2 exp −1
2
(θ −θ

∗)T Q−1
θθ

(θ −θ
∗)

[ ]
(3.36)

The posterior pdf is the product of equations 3.36 and 3.34

p
(

θ |y′k
)

∝ det(Qθθ )
− 1

2 det(Gyy)
− 1

2 exp −1
2 (θ −θ ∗)T Q−1

θθ
(θ −θ ∗)

−1
2

(
y′k−HXβ ∗

)T
G−1

yy

(
y′k−HXβ ∗

)  .
 

(3.37)

To find the most likely values for θ we minimize − ln p θ |y′k resulting in the objective function
( ( ))

ΦS =
1
2

ln(det(Gyy))+
1
2

(θ −θ
∗)T Q−1

θθ
(θ −θ

∗)+
(

y
′
k−HXβ

∗
)T

G−1
yy

(
y
′
k−HXβ

∗
)[ ]

(3.38)

where unchanging quantities are absorbed into the constant of proportionality including det(Qθθ )
− 2 . The

optimal values for θ are found by using the Nelder-Mead simplex algorithm (for example, Press and others,
1992, p. 408–410). Non-negativity in the θ parameters can be enforced by using a power transformation (Box
and Cox, 1964) discussed below. As indicated by Kitanidis (1995), nonlinearity requires that structural
parameters to be estimated iteratively with the estimation of model parameters. This is accomplished through a

1
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sequence of coupled inversion as follows.

1. Initialize model parameters as (s0) and structural parameters (θ0).

2. Solve for a new estimate of model parameters (ŝ) holding θ constant.

3. Solve for a new estimate of structural parameters θ̂ holding s constant.

4. Repeat steps 2 and 3 until the change in θ in two consecuti

( )
ve outer iterations of steps 2 and 3 decreases

below a specified tolerance.

Logarithmic and Power Transformations

In some cases, structural parameters and model parameters are best estimated in transformed space. A
common reason is to enforce non-negativity. For model parameters either a logarithmic (base e) or a power
transformation may be used. For structural parameters a power transformation is the only option.

The power transformation (Box and Cox, 1964; Fienen and others, 2004) is defined as:

s = α p
1
α −1

( )
(3.39)

where s is the vector of transformed parameters, p is the vector of non-transformed parameters, and α is a
tuning variable that controls the strength of the transformation. The back-transformation is:

p =
s+α

α

α( )
(3.40)

At the limit, as α increases to infinity, the transformation and back-transformation converge on the natural
logarithm and exponential function, respectively:

s = lim
α→∞

= α p
1
α −1 = ln(p)

( )
(3.41)

and (
s+α

α

p = lim = = exp(s) .
α→∞ α

)
(3.42)

Posterior Covariance

Calculation of the posterior covariance can be based on the inverse of the Hessian of the objective function
(for example, Nowak and Cirpka, 2004). In closed form, the equation for the full posterior covariance matrix
is

V = Gss−GsyG−1
yy GT

sy (3.43)

where Gsy = GssHT and Gyy = HGssHT +R. In the case where compression of Qss is not used, the full matrix
V is calculated and reported. Where compression of Qss is used, however, the diagonal of V is returned as a
vector of variances on parameters. This information is reported in a separate file but is also used to calculated
posterior 95 percent confidence intervals. The full matrix, when reported, can be used to calculate conditional
realizations (Kitanidis, 1995, 1996).
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Introduction

A substantial computational burden in quasi-linear parameter estimation is the repeated calculation of the
Jacobian matrix (H). Calculation of this matrix is “embarassingly” or “pleasingly” parallel—the number of
runs required is the same as the number of parameters, but the individual model runs do not need to interact in
any way. Given this property of Jacobian matrix calculation, a cluster of individual computers can be used to
make the computations in parallel. Parallel implementation can be performed using a problem-specific
implementation coded into the software (for example, Schreuder,¨ 2009), compiling the software against
parallelization libraries (for example, Muffels and others, 2012), or using a parallel management system
outside the software (for example, Condor Team, 2012).

As an initial step toward full support of parallel Jacobian calculations, this appendix documents an
implementation using the Condor package (Condor Team, 2012) and Python scripts. This implementation
currently calculates the Jacobian matrix using forward finite-differences with the increment set by the user in
the derinc variable in the parameter groups table (appendix 1).

Requirements

Several requirements must be met to use this parallel implementation for Jacobian calculations.

1. Condor and the related program DAGman must be installed and active on both the master node where
bgaPEST is to run and at least one worker node. Details for installation are available from Condor Team
(2012).

2. Python, including the module numpy, must be installed on all compute nodes that will be used by
Condor, including the master node where bgaPEST is running.

3. In the folder where bgaPEST is running, the following files must be present

• Condor ATC.py
• parallel condor Jacobian.py
• jacobian pre.py
• jacobian pre.bat (or jacobian pre.sh on non-Windows operating systems)
• jacobian post.py
• jacobian post.bat (or jacobian post.sh on non-Windows operating systems)
• condor jacobian.sub.orig
• unzip.exe
• zip results.py

4. A folder called “data” must be present in the same folder where bgaPEST is running on the master node.
The “data” folder must contain all forward-model related files, the .bgp file, and all .tpl and .ins files
used by bgaPEST. Additionally, the following files must be present

• tempchek.exe (included in example files or available from http://www.pesthomepage.org)
• inschek.exe (included in example files or available from http://www.pesthomepage.org)
• condor single run.py
• parallel condor Jacobian.py

5. Set the variable deriv mode=4 in the algorithmic cv Keywords input block (appendix 1). This
instructs bgaPEST to write necessary data transfer files and to execute the code necessary to run the
Condor-based parallel Jacobian calculation.

http://www.pesthomepage.org
http://www.pesthomepage.org
http:Jacobian.py
http:results.py
http:Jacobian.py
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File modifications

The file condor jacobian.sub.orig must be customized to contain instructions specific to the Condor
network on which bgaPEST is running for the requirements and the request memory variables. Details of
these variables are described by Condor Team (2012). All other variables should remain unchanged from the
files provided with this documentation.

Description of the Method

This parallel implementation of bgaPEST using Condor is a scripted approach using a combination of
existing PEST utilities and custom Python code. The general approach consists of the following steps:

1. Files are written by bgaPEST to communicate to the parallel codes information specific to the current
run including derivative increments (specified by the user in the derinc variable).

2. At the time of each Jacobian calculation, the current parameter values are written to a temporary file

3. The current parameter values are combined with all other necessary model files in the “data” subfolder,
which is compressed into a zipfile.

4. The Condor submit file is updated to specify the correct number of model runs required to calculate the
Jacobian matrix.

5. A single-node directed acyclic graph (DAG) is initiated using the Condor utility DAGman. The need for
the DAG is to monitor the set of Condor jobs corresponding to the specific model runs. DAGman monitors
the progress of the DAG and returns control to bgaPEST ocne the entire Jacobian is calculated.

6. On each worker node, the following tasks are performed:

• Model input files are written by using the tempchek.exe utility

• The model is run once using the model command line information provided by bgaPEST

• The model output files are read by using the inschek.exe utility. The version of inschek.exe
provided with bgaPEST has been modified to carry maximum numerical precision.

7. After the model is run for each perturbation and a base case, the derivatives are calculated using forward
differences and conveyed back to bgaPEST by using a text file.
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The first example application presented is a single-layer groundwater model. The forward model is a
steady-state MODFLOW-2005 model with 21 rows and 21 columns and with constant row and column spacing
of 1 meter (m). The hydraulic conductivity field is heterogeneous, varying from 6.068×10−5 to 0.048 meters
per day. The true hydraulic conductivity field is depicted in figure 5.1. Observations of head at the locations
shown in figure 5.4 were used for parameter estimation. To generate observations representing what would be
field measurements in a non-synthetic case, the model was run forward using the true synthetic hydraulic
conductivity values and the resulting head values were perturbed with normally distributed noise with mean of
zero and standard deviation of 0.01 m.

The boundary conditions are constant head, highest at the northwest corner and linearly decreasing to the
southeast, as depicted in figure 5.2. There is a well at row 13, column 6, extracting water at a constant rate of
0.231 liters per minute. No recharge is simulated in this case.

Two options exist to calculate sensitivity (Jacobian) matrices: (1) an experimental adjoint-state version of
MODFLOW or (2) finite difference calculations using the Python linkage and PEST, as capable in the released
version of bgaPEST. Two scenarios were tested as well: (1) a case in which the epistemic error term σ2

R is
estimated and (2) one where σ2

R is fixed at a value approximately 2 orders of magnitude higher than the
artificial noise used to corrupt the synthetic “true” values previously generated by the model—1.0 m.

(
This

)
level of epistemic uncertainty is intended to be unrealistically high, but it encompasses both measurement and
modeling error and was thus used to demonstrate a case where overfitting would be avoided at all costs.

Figures 5.3 and 5.4 show the estimated parameter field and the corresponding squared residuals,
respectively, for the case in which σ2

R is fixed at 1.0 m. In this case, the relatively high value ascribed to
epistemic uncertainty certainly prevents overfitting. The solution, in fact, is smooth, and the linear variogram
slope parameter θ was estimated to be 3.66×10−1. Appropriately, the most structure expressed in the
parameter field and the correspondingly lowest residuals are found near the pumping well where stress is the
greatest (and therefore the amount of information is the greatest) is found. This phenomenon is discussed in
further detail by Fienen and others (2008).

The smoothness of the parameter field is as expected from the bgaPEST algorithm and consistent with the
maximum entropy property of the algorithm. In other words, the true hydraulic conductivity field is rough but
the algorithm estimates parameters that smooth over the rough areas. The “smearing” of higher values across a
larger area than in reality is also consistent with both maximum entropy and information content—an
anomalous region of high hydraulic conductivity emanates from the area of the well in response to the focus of
stress (and therefore information) being near the pumping well.
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Figure 5.1. True hydraulic conductivity field for the single-layer example application.
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Figure 5.2. Boundary condition (constant head) for the single layer example application.
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Figure 5.3. Parameters (hydraulic conductivity field) estimated for the single-layer example application using bgaPEST with σ2
R

fixed at 1.0 m.

Figures 5.5 and 5.6 show the estimated parameter field and the corresponding squared residuals,
respectively, for the case in which σ2

R is estimated by the bgaPEST algorithm. The estimated value for
epistemic uncertainty was 1.007×10−1 and the variogram slope (θ 1) was 2.836×10− . These results are
similar to the case in which σ2

R was held constant. The parameter field shows a similar shape and smoothness
level, although figure 5.5 shows a bit more structure (roughness). Correspondingly, the residuals are generally
lower. A key point here, however, is that the pattern of the residuals is similar and, again, reflects the general
information content of the stress induced on the system.
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Figure 5.4. Squared residuals, plotted at their locations in the model, for the 1 layer example application using bgaPEST with
σ2

R fixed at 1.0 m.
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Figure 5.5. Parameters (hydraulic conductivity field) estimated for the single-layer example application using bgaPEST with σ2
R

estimated by the bgaPEST algorithm.
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Figure 5.6. Squared residuals, plotted at their locations in the model, for the single-layer example application using bgaPEST
with σ2

R estimated.



Appendix 5—Single-Layer Example Application 65

Reference Cited

Fienen, M.N., Clemo, T.M., and Kitanidis, P.K., 2008, An interactive Bayesian geostatistical inverse protocol
for hydraulic tomography: Water Resources Research, v. 44, W00B01, doi:10.1029/2007WR006730.





Appendix 6—Three-Layer Example Application





Appendix 6—Three-Layer Example Application 69

A three-layer groundwater model is presented to explore the use of multiple beta associations, anisotropy,
and a larger number of parameters. In this case, the model is 40 rows by 35 columns across 3 layers. The row
spacing is 2.0 meters (m) while the column spacing is 1.5 m. The layers, from shallowest to deepest, are 1.8 m,
1.4 m, and 1.8 m in thickness, respectively. The disparate row, column, and layer spacing was used to test the
Toeplitz compression option. The model has constant head boundaries on all sides (set at the same
elevation—60 m) and a single well at row 18, column 17, extracting at 0.01 liters per minute from each layer.
This low flow rate is not meant to represent typical field conditions but rather highlights what can be learned
with even a very small stress on the system.

The true parameter field, shown in figure 6.1, varies from 0.01 to 0.075 meter per day.
Five cases are illustrated here, as summarized in table 6.1. In all cases, each layer is treated as a separate

beta association. In each of these layers, the initial value for the prior structural parameter (the linear variogram
slope, θ ) is 1 5.0×10− .

Cases 1 and 2 illustrate how the level of fit (and, therefore,( ) the degree of roughness of the solution) can be
influenced by adjusting( the epistemic) uncertainty term σ2

R ; so in these cases, σ2
R is set at a fixed value. In

case 3, σ2
R is set low 1.0×10−5 and the restricted maximum likelihood algorithm is given the freedom to

estimate it. This setup illustrates the best achievable fit that one might achieve given the specific observation
set provided without regard for overfitting. In cases 5 and 6, estimates are made with specification of
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Figure 6.1. True synthetic hydraulic conductivity field for each layer in the three-layer example application. Values are shown
in natural logarithm space to make the differences more visible.
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Table 6.1. Summary of the five cases investigated. The table shows which structural parameters were estimated and fixed,
and also indicates anisotropy when used.

Scenario Case 1 Case 2 Case 3 Case 4 Case 5
1.00E-01 1.00E-02 1.00E-05 1.00E-04 1.00E-01

- - 7.79E-08 1.18E-05 -
1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05
2.46E-03 1.55E-02 1.25E-02 5.54E-03 3.61E-03
1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05
6.16E-03 2.47E-02 1.34E-02 3.19E-03 7.97E-03
1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05
2.46E-03 1.55E-02 1.21E-02 2.51E-03 7.73E-05

horiz_angle - - - 0.0 0.0
horiz_ratio - - - 100.0 100.0
verical_ratio - - - 1.0 1.0
horiz_angle - - - 0.0 0.0
horiz_ratio - - - 100.0 100.0
verical_ratio - - - 1.0 1.0
horiz_angle - - - 0.0 0.0
horiz_ratio - - - 100.0 100.0
verical_ratio - - - 1.0 1.0

Beta 
Association 3

Beta 
Association 1

Beta 
Association 2

Beta 
Association 3

Beta 
Association 1

Beta 
Association 2

Initial σ2
R

Estimated σ2
R

Initial θ
Estimated θ
Initial θ
Estimated θ
Initial θ
Estimated θP
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anisotropy in the prior covariance. Inspection of the true parameter field in figure 6.1 suggests a possible
correlation along the horizontal axis, indicative of a channel feature. In cases 5 and 6, therefore, an arbitrarily
chosen ratio of 100 is applied with a rotation angle of zero. In case 4, like in case 3, σ2

R is estimated to achieve
the best possible fit, whereas in Case 5, σ2

R is held constant at 1.0×10−1.
Figures 6.2 and 6.3 show the estimated hydraulic conductivity field and squared differences between

measured and observed head values, respectively, for case 1. In this case, meant to be conservative with respect
to overfitting, the squared differences are smaller in magnitude than the specified value of σ2

R
(
1 1.0×10−

)
and

very little roughness in the solution is required to achieve the level of fit desired.
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Figure 6.2. Case 1: Hydraulic conductivity fields estimated by using bgaPEST compared to the true, synthetic hydraulic con-
ductivity field. σ2

R is held constant at 1.00×10−1.

Figures 6.4 and 6.5 show the estimated hydraulic conductivity field and squared differences between
measured( and observed head values, respectively, for case 2. In this case, the specified value of σ2

R
1 2.0×10−

)
is lower than in case 1 and, accordingly, the squared head differences are lower, and more

structure (roughness) is observed in the parameters, as expected. Note that, in this case, even with very low
residuals, the parameter fields estimated are a smoothed representation of the “truth.”

Figures 6.6 and 6.7 show the estimated hydraulic conductivity field and squared differences between
measured and observed head values, respectively, for case 3. In this case, the value of σ2

R is estimated by the
restricted maximum likelihood value algorithm. The head values match perfectly to machine precision, and the
roughness of the field is the greatest of cases 1 through 3, as expected. The major features of the “true”
hydraulic conductivity field are reproduced by this solution although they are smoothed, somewhat, as
expected. Importantly, although the highest hydraulic conductivity values in layer 2 are slightly offset to the
west, no artifacts are introduced that would be considered spurious in this solution.

Figures 6.8 and 6.9 show the estimated hydraulic conductivity field and squared differences between
measured( and) observed head values, respectively, for case 4. In this case, the value of σ2

R is set very low
1.0×10−4 to attempt to achieve excellent fit while introducing anisotropy with the principal direction

aligned with the horizontal axis. In layer 1, a somewhat spurious artifact is visible in the form of a high
hydraulic conductivity zone near the middle of the field. The head targets almost match within machine
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Figure 6.3. Case 1: Squared differences between modeled and “true” head values. Symbol size qualitatively indicates magni-
tude, and color scale quantifies magnitude. Locations of the circles indicate observation location in the model domain in plan
view. σ2

R is held constant at 1.00×10−1.

precision, however, and all other features are reasonable. This highlights the fact that, within a single beta
association, if anisotropy is used, all features estimated will roughly correspond to that framework so, in a
Bayesian sense, the answer is conditional on the prior assumption that the anisotropy is an appropriate general
characteristic shape of the parameter field. Such assumptions must be made cautiously.

Figures 6.10 and 6.11 show the estimated hydraulic conductivity field and squared differences between
measured and observ( ed head) values, respectively, for case 5. In this case, the value of σ2

R is set at a the same
value as case 1 1.0×10−1 to compare a solution with and without anisotropy assumed. Because anisotropy
is a reasonable characteristic of the “true” field in this case, better fits are achieved (nearly an order of
magnitude lower residuals) and the general pattern of the parameter field is better in case 5 with anisotropy
than in case 1 without anisotropy. This highlights the power that anisotropy can bring to a parameter estimation
problem when it is appropriate even when σ2

R is set conservatively to avoid overfitting. As discussed above,
however, this anisotropy will, in a sense, force the solution to conform to such a shape, so its use should be
approached with caution.
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Figure 6.4. Case 2: Hydraulic conductivity fields estimated by using bgaPEST compared to the true, synthetic hydraulic con-
ductivity field. σ2

R is held constant at 1.00×10−2.
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Figure 6.5. Case 2: Squared differences between modeled and “true” head values. Symbol size qualitatively indicates magni-
tude, and color scale quantifies magnitude. Locations of the circles indicate observation location in the model domain in plan
view. σ2

R is held constant at 1.00×10−2.
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Figure 6.6. Case 3: Hydraulic conductivity fields estimated by using bgaPEST compared to the true, synthetic hydraulic con-
ductivity field. σ2

R is initially 1.00×10−5 and estimated by bgaPEST at an optimal value of 7.79×10−8.
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Figure 6.7. Case 3: Squared differences between modeled and “true” head values. Symbol size qualitatively indicates magni-
tude, and color scale quantifies magnitude. Locations of the circles indicate observation location in the model domain in plan
view. σ2

R is initially 1.00×10−5 and estimated by bgaPEST at an optimal value of 7.79×10−8.
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Figure 6.8. Case 4: Hydraulic conductivity fields estimated by using bgaPEST compared to the true, synthetic hydraulic con-
ductivity field. σ2

R is initially 1.00× 10−4 and estimated by bgaPEST at an optimal value of 1.18× 10−5. Parameter anisotropy
also invoked as described in Table 6.1.
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Figure 6.9. Case 4: Squared differences between modeled and “true” head values. Symbol size qualitatively indicates mag-
nitude, and color scale quantifies magnitude. Locations of the circles indicate observation location in the model domain in
plan view. σ2

R is initially 1.00× 10−4 and estimated by bgaPEST at an optimal value of 1.18× 10−5. Parameter anisotropy also
invoked as described in Table 6.1.
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Figure 6.10. Case 5: Hydraulic conductivity fields estimated by using bgaPEST compared to the true, synthetic hydraulic con-
ductivity field. σ2 1

R is held constant at 1.00×10− . Parameter anisotropy also invoked as described in Table 6.1.
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Figure 6.11. Case 5: Squared differences between modeled and “true” head values. Symbol size qualitatively indicates mag-
nitude, and color scale quantifies magnitude. Locations of the circles indicate observation location in the model domain in plan
view. σ2

R is held constant at 1.00×10−1. Parameter anisotropy also invoked as described in Table 6.1.
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An example application of reverse flood routing in open channels is presented in this section (D’Oria and
Tanda, 2012). Reverse flood routing is useful to obtain hydrographs at upstream ungaged stations by means of
information available at downstream gaged sites. The considered channel was prismatic and 20 kilometers
long; the cross sections (spaced by 100 meters (m)) were trapezoidal in shape with bottom width of 10 m and
side slope of 2/1. A longitudinal channel slope of 0.001 and a unitless Manning coefficient of 0.033 were
adopted. The Manning coefficient is expressed as unitless when all other quantities are in SI units (as is the
case here). A correction factor would be required if English units were used for the other quantities. The
upstream and downstream boundary conditions were a streamflow time series and the uniform flow condition,
respectively. The initial condition was set consistent with the steady state of a constant flow rate equal to the
first value of the upstream hydrograph. The BASEChain module of BASEMENT (Faeh and others, 2011) that
solves the De Saint Venant equations for unsteady one dimensional flow was adopted as forward model. A
flood wave with time to peak of 2.5 hours, peak flow of 164 cubic meters per second (m3/s), and base flow of
25 m3/s was considered to obtain the corresponding downstream outflow subsequently corrupted with
multiplicative random errors and used in the inverse procedure. The simulation time was equal to 15 hours; the
input and output hydrograph time discretization was constant and equal to 5 minutes resulting in 181 values.
The initial flow condition and the downstream streamflow time series (181 observations) were then used to
estimate the inflow hydrograph (181 parameters). The initial parameter values were set to the mean value of the
observations. The sensitivity (Jacobian) matrix was evaluated by means of a finite-difference calculations using
the Python linkage and PEST, as capable in the released version of bgaPEST. The epistemic error term σ2

R and
the linear variogram slope parameter θ were estimated by the restricted maximum likelihood value algorithm.

In figure 7.1 the actual input hydrograph, the actual downstream hydrograph, assessed by applying the
forward model, and the error-corrupted one used for the inversion are reported along with the reproduced
inflow and the corresponding outflow. Table 7.1 summarizes the estimated structural parameters. In the first
case the downstream hydrograph was corrupted with a 1 percent multiplicative random error (figure 7.1a), in
the second case a 10 percent multiplicative random error was used (figure 7.1b). In both the inversions, there is
a close match between the estimated input hydrograph and the actual one; the peak flow and time are properly
reproduced. The estimated epistemic error variance increases in the second case taking account of the higher
erroneous observations (table 7.1).
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Glaciology and Hydrology (VAW).

Table 7.1. Reverse routing: estimated structural parameters .

Random errors 1% 10%
θ [m6s-3] 2.0×10−2 1.0×10−2

σ2
R [m6s-2] 1.7×10−1 9.3
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Figure 7.1. Reverse routing: inflow and outflow hydrographs for the prismatic channel. (a) the observations were corrupted
with a 1 percent random error; (b) a 10 percent random error was used.
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Glossary

Mathematical Symbols and Variables

m — Number of parameters

n — Number of observations

p — Number of beta associations

s — Vector of parameters

s0 — Starting values of parameters

y — Vector of observations

y′ — Observations corrected for the kth linearization: y′ = y−hs̃k + H̃k k ks̃k

h(s)— Modeled results of s

H — Jacobian matrix of parameter sensitivities

W — Diagonal weight matrix

σ2
R — Epistemic uncertainty

σ2 — Variogram variance or slope parameter

R — Epistemic uncertainty covariance

p(s)— Prior probability of parameter values

L(y|s)— Likelihood function

p(s|y)— Posterior probability of parameter values

X — A selection matrix that can include drift of the prior mean

β — Prior mean values for each beta association

β ∗— Initial prior mean values for each beta association used in the prior pdf

β0 — Starting prior mean values for each beta association

θ — Vector of the structural parameters

θ̂ — Best estimate of the vector of the structural parameters

θ ∗— Initial value of structural parameters (used in the prior pdf of θ )

θ0 — Starting value of the structural parameters

p(θ)— Prior probability of structural parameter values
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L y′k|θ — Likelihood function in structural parameter optimization

p
(

θ |y′k
)

— Posterior probability of sturctural parameters given the current data

Gss — Prior covariance of (s−Xβ ∗)

Gsy — Cross covariance between observations and parameters

Gyy — Auto-covariance of the observations when covariance of the prior mean is included

Qss — Prior covariance of the parameters

Qyy — Auto-covariance of the observations

Qββ — Prior covariance of the prior mean values

Qθθ — Prior covariance of the structural parameter values

s̃ — Current best estimate of s during quasi-linear runs

H̃ — Current sensitivity matrix, a function of s̃ during quasi-linear runs

ξ — Interpolation weights for the innovation in solving for ŝ

ŝ — Best estimate of s

β̂ — Best estimate of β

ΦT — Total objective function

ΦM — Measurement component of objective function

ΦR — Regularization component of the objective function

ΦS — Structural parameters objective function

sopt — Optimal value of parameters in the linesearch

ρ — Linesearch parameter

E[·]— Expected value

d — Separation distance in variogram calculation

`— Integral scale in variogram calculation

v — Vector of epistemic uncertainty terms

W — Observation weight matrix

T — An arbitrary block Toeplitz matrix

ω — Observation weight

p — Untransformed parameter values in the context of power transformation

α — Exponent for power transformation

V — Posterior covariance matrix of the parameters

( )
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