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Computing Ordinary Least-Squares Parameter Estimates 
for the National Descriptive Model of Mercury in Fish

By David I. Donato

Abstract
A specialized technique is used to compute weighted 

ordinary least-squares (OLS) estimates of the parameters 
of the National Descriptive Model of Mercury in Fish 
(NDMMF) in less time using less computer memory than 
general methods. The characteristics of the NDMMF allow 
the two products ′X X  and ′X y  in the normal equations to be 
filled out in a second or two of computer time during a single 
pass through the N data observations. As a result, the matrix 
X does not have to be stored in computer memory and the 
computationally expensive matrix multiplications generally 
required to produce ′X X  and ′X y  do not have to be carried 
out. The normal equations may then be solved to determine 
the best-fit parameters in the OLS sense. The computational 
solution based on this specialized technique requires 
O(8 p 2+16 p)  bytes of computer memory for p parameters 
on a machine with 8-byte double-precision numbers. This 
publication includes a reference implementation of this 
technique and a Gaussian-elimination solver in preliminary 
custom software.

Introduction 
The National Descriptive Model of Mercury in 

Fish (NDMMF) is a statistical model used to predict the 
concentration of methylmercury in fish tissue (Wente, 
2004). This model is of interest in current research at the 
U.S. Geological Survey (USGS) because of its ability to 
explain much of the variation in fish-tissue methylmercury 
concentrations as variation by geographic location, variation 
over time, and variation by fish species and length.

Before the NDMMF can be used to predict fish‑tissue 
methylmercury concentrations, its parameters must be fitted 
to a collection of observations of fish-tissue methylmercury 

concentrations. The statistical procedure used to fit the 
parameters of the NDMMF to observed data is that of 
maximum-likelihood estimation (MLE). The parameters 
of the NDMMF are fitted in the maximum‑likelihood 
sense because the available national database of fish‑tissue 
methylmercury concentrations includes a substantial 
number of left-censored observations1, and the MLE 
method makes better use of the information contained 
in censored observations than other common statistical 
methods of parameter estimation, including the method of 
ordinary least‑squares estimation (Helsel, 2004). Ordinary 
least‑squares (OLS) parameter estimation is, however, a 
preliminary step of choice in computing maximum-likelihood 
estimates and, therefore, an essential part of the complete 
procedure for estimating the parameters of the NDMMF.

This publication presents a technique, along with a 
reference (baseline) implementation in custom computer 
software, for computing OLS parameter estimates for the 
NDMMF based on weighted observations. By exploiting 
the specific characteristics of the NDMMF, this technique 
enables faster computation of OLS parameter estimates for 
the NDMMF using less computer random-access memory 
(RAM) than is possible with generalized statistical computer 
software. Faster computation and use of less RAM are major 
improvements in fitting parameters to the NDMMF because 
some generalized software procedures may fail to run because 
they require more RAM than is available, and those that do 
run will require many hours or days of computation. The 
reference software computes the best-fit parameters for the 
NDMMF in the ordinary least-squares sense using Gaussian 
elimination with back substitution (Noble, 1969; Draper 
and Smith, 1966); a revised version of the software using an 
alternative computational method, such as LU or Cholesky 
decomposition, is planned (Press and others, 1992).

The preliminary custom software included with this 
publication is not intended for general use; rather, it is 
intended for research and development use in conjunction 
with other custom software developed at the U.S. Geological 
Survey (USGS) for computing maximum-likelihood estimates 
of the parameters of the NDMMF more quickly, and using 
less RAM, than is possible with generalized statistical 
software (Donato, 2012). A full understanding of this report 
requires knowledge of linear algebra and familiarity with 
statistical models.

1A left-censored observation is a value determined to be below a  
particular detection limit but otherwise unspecified. For example, if a 
laboratory procedure cannot detect methylmercury concentration values 
below 0.020 part per million, then a sample with an undetected concentration 
would be recorded as a nondetected and, thus, as a left-censored value with a 
detection limit of 0.020 part per million (Helsel, 2004).
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The National Descriptive Model 
of Mercury in Fish as a Formal 
Statistical Model

The NDMMF is expressed formally and compactly as:
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In the seminal paper on the NDMMF (Wente, 2004), the 
terms species/cut and sampling event are defined to have 
specialized meaning as applied to the NDMMF. Briefly, the 
species/cut is a combination of a species of fish and a method 
of preparing the tissue of the fish for laboratory analysis; a 
sampling event is a collection of samples from a particular 
geographic location within the same year. Wente’s 2004 
publication provides a full explanation of these terms.

Equation (1) implies that the number of parameters of 
the NDMMF equals the sum of the number of species/cut 
combinations and the number of sampling events. This is 
more readily apparent when the NDMMF is expressed less 
compactly as:
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In equation (2), the sets of variables { } 1=
n

t tSPC  and
{ } 1=

m
t tEvent  are indicator variables (Box, 1978). These

indicator variables allow the NDMMF to be expressed in the 
form of the general linear model, a model linear with respect 
to its parameters (Mendenhall, 1968).

The Normal Equations for Ordinary 
Least-Squares Estimation

An advantage of expressing the NDMMF in the form of 
the general linear model is that an expression for its best-fit 
parameters in the ordinary least-squares sense is known in 
a general form. The system of equations that determines the 
ordinary least-squares (OLS) parameters for a general linear 
model is called the normal equations (Monahan, 2001; Press 
and others, 1992). In matrix form, the general linear model is

	 y X= +ββ εε 	 (3)

and the normal equations for this model are:
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where specifically for the NDMMF
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The symbol for the vector β  in the normal equations 
should not be confused with the symbol for the sampling‑event 
parameters { }kβ  in the NDMMF. The vector β  is a vector of 
all model parameters, so for the NDMMF, β  includes all n 
of the { }jα  and all m of the { }kβ  parameters. The matrix X 
of data observations is sparse, containing only two nonzero 
values per row.
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Matrix Form of Data for the 
National Descriptive Model of 
Mercury in Fish 

Equation (4) includes all of the matrices 
involved in the computation of OLS parameter 
estimates: y, b, X, and ′X . Since the internal 
structure of these matrices depends on features 
of parameters and data specific to the NDMMF, 
each of these matrices must be specialized to the 
NDMMF before the details of computation of 
OLS parameter estimates for the NDMMF can 
be finalized.
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The response vector y, which contains one 
row for each of the N observations, may and 
usually does contain multiple observations (rows) 
for each combination of species/cut and sampling 
event. Therefore, N is typically much larger than 
the total number of parameters, p = n + m. Each 
row in y corresponds to a row in X.
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The vector of least-squares parameter estimates b must be put 
into a sequence according to some convention in order to establish a 
correspondence between each parameter’s estimate in b and its relevant 
data observations in the matrices X and ′X . Let the convention be that 
the rows of b and ′X  and the columns of X must correspond to the n 
species/cut parameters { }jα  in sequence by species/cut parameter number, 
followed by the m sampling-event parameters { }kβ  in sequence by 
sampling-event parameter number.
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Equation (7) illustrates the general appearance of the sparse matrix X 
symbolically and equation (8) shows a numerical example of X in outline.
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The matrix X of observations of the independent variables contains 
one row for each of the N observations. Each row of X is an ordered list of 
the coefficients of the parameters 1{ }n

t t=α  and then 1{ }m
t t=β  for one equation 

in the system of N equations expressed equivalently, but in different 
forms, by equations (2) and (3). The correspondence between rows and 
the N observations, and between columns and parameters, is illustrated 
in equation (8); and the transposed correspondences are illustrated in 
equation (9).

Each row of X provides an observation for exactly one species/cut j 
and exactly one sampling event k, so each row contains exactly two 
nonzero values determined by the set of observations: first, the value of 
Lijk for the i th observation for species/cut j and sampling event k, then a
value of 1 for the single indicator variable for sampling event k. All other 
values in each row are zero (0). Thus in each row, all of the indicator
variables { } 1

n
t tSPC =

 and { } 1
m

t tEvent =
 are equal to zero, except for the one

SPCj indicator for the species/cut j associated with the observation for 
the row, and except for the one Eventk indicator for the sampling event k 
associated with the observation for the row.
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The matrix transpose ′X  contains one column for each 
observation, as shown above in equation (9), with the same 
illustrative values shown for X in equation (8). Here, each 
column contains all zero values except for the two values 
determined by the observation it represents. (Although the 
mathematical form of the NDMMF permits Lijk to equal zero,
in practice Lijk is always strictly greater than zero.) The first
n rows of each column in the transpose correspond to the 
species/cut parameters { } 1=

n
t tα  in sequence, and the following 

m rows correspond to the sampling-event parameters 1{ }m
t t=β  

in sequence. 

Computing the Normal-Equation 
Matrix Products During Data Input

The normal equations in matrix form, ( ′X X ) b = X' y, 
contain two matrix products: ′X X  and ′X y . Because of the 
sparseness and particular configuration of the matrix X and 
its transpose ′X  for the NDMMF, the two matrix products 
can be created directly by software during the input of the 
N data records, thus making it unnecessary to store X or 
′X  in computer memory and unnecessary to perform any 

computationally expensive matrix multiplications. This is 
the essence of the technique described in this publication: 
that a computation that might take hours or days with 
generalized computational methods is avoided by using 
an alternative, fast input process that requires only a few 
seconds of computer processing time.

The benefits of the alternative computation of ′X X  
and ′X y  during data input are substantial. Generalized 
computational methods must store the (N × p) matrix X in 
computer memory, and because N p

 this requires an 
amount of additional memory that is several times the amount 

of memory required for storing just the (p × p) product matrix 
X' X. Although some generalized software performs the 
multiplication of the sparse matrices ′X  and X with fewer 
computations or with less expensive computational operations 
than a full multiplication, the multiplication of ′X X  still 
requires a substantial proportion of the O(Np2) floating-point 
multiplications and additions required in the general case. 
Thus generalized computational methods may require more 
time just to set up the normal equations in computer memory 
(by computing ′X X  ) than is required to solve them.

To understand how the product matrix ′X X  is created 
during data input, begin by applying the definition of matrix 
multiplication. Each element of the (  p × p) product matrix 
′X X  is the sum of the N products of each element of a row 

multiplied by the corresponding element of a column of X. 
Now, rather than considering what would be involved in 
multiplying these two matrices in full, consider instead how 
the values for a single data observation affect the final values 
of the elements of the product matrix ′X X . Because of the 
characteristics of the NDMMF, a particular data observation
(yijk, Lijk) for species/cut j and sampling-event k will affect the
values in only two of the rows of ′X : the row for the species/
cut j and the row for the sampling-event k. Thus, during matrix 
multiplication, only these two rows from ′X  will have any role 
in the particular data observation’s effect on the final values in 
the product matrix.

Now consider what happens as each of these two rows 
from ′X  is multiplied by columns from X. There are four cases 
to consider:
1.	 Species/cut row from ′X  and species/cut column 

from X: The row-column product will be zero for every 
species/cut column in X, except the column for the same 
species/cut j. Note that the row from ′X  for species/cut 
j is the transpose of the column from X for species/cut j. 
Therefore, the element of the product matrix ′X X   at row 
j and column j will be affected by the addition of (Lijk)2.

2.	 Species/cut row from ′X  and sampling-event column 
from X: The row-column product will be zero for 
every sampling-event column, except the column 
for sampling‑event k. Therefore, the element of the 
product matrix ′X X  at row j and column n + k will be 
affected by the addition of Lijk ×1. (The column in X for 
sampling‑event k is column n + k because the n columns 
for species/cut parameters come first, so counting for 
sampling-event columns begins at n + 1.)

3.	 Sampling-event row from ′X  and species/cut column 
from X: The row-column product will be zero for every 
species/cut column, except the column for species/cut j. 
Therefore, the element of the product matrix ′X X  at 
row n + k and column j will be affected by the addition 
of 1 × Lijk.
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4.	 Sampling-event row from ′X  and sampling-event 
column from X: The row-column product will be zero 
for every sampling-event column, except the column for 
sampling-event k. Therefore, the element of the product 
matrix ′X X  at row n + k and column n + k will be 
affected by the addition of 1 × 1 = 1.
Thus, as a result of the fact that each row of X contains 

exactly two nonzero values, any particular data observation
(yijk, Lijk) only influences four elements of the product matrix
′X X . Let ′X X = P and let pa,b denote the element of P in the

ath row and bth column. Then any particular data observation
(yijk, Lijk) affects only four values in the product matrix P
as follows:
1.	  pj,j	 : increased by the addition of (Lijk)2

2.	  pj,n + k	 : increased by the addition of Lijk

3.	 pn +k,j	 : increased by the addition of Lijk

4.	 pn + k, n + k	 : increased by the addition of 1
This result allows the (p × p) product matrix ′X X  = P to 

be computed by adding in values as each data observation is 
read in from an input file. When data input is complete, so is 
the product matrix ′X X  = P. Since pj,n + k and pn +k,j

always receive the same additive contributions, ′X X  = P is a 
symmetric matrix.

The other product matrix, ′X y , can also be computed 
during data input. Let ′X y =  q and let qa denote the element 
of q in the ath row. Note that the product matrix ′X y =  q is a 
(p × 1) column matrix (also called a column vector) and that 
there are exactly two rows in ′X  with values for any particular 
data observation:
1.	 Species/cut row from ′X : The row-column product 

will be zero for every species/cut row in ′X y  except the 
row for species/cut j. The element of the product matrix 
′X y =  q at row j will be affected by the addition of 

Lijk × yijk.

2.	 Sampling-event row from ′X : The row-column product 
will be zero for every sampling-event row in ′X  except 
the row for sampling-event k. The element of the product 
matrix ′X y =  q at row n + k will be affected by the 
addition of 1 × yijk.
Consequently, ′X y =  q can be computed during input by 

observing that any particular data observation affects only two 
rows of q as follows:
1.	 qj	 : increased by the addition of Lijk × yijk

2.	 qn + k	 : increased by the addition of yijk

Computing With 
Weighted Observations

The data used for fitting parameters to the NDMMF 
(the “NDMMF data”) include weights. The essential idea of 
a weight for a data observation is that an observation with 
a weight of 2.0 should have the same effect on the fitting 
of parameters as it would have if it were replaced by two 
identical observations, each with a weight of 1.0. The majority 
of observations in the NDMMF data are for the processing of 
tissue from a single fish; each such observation has a weight 
of 1.0. 

Although the weights for the NDMMF data are 
sometimes adjusted nonlinearly into nonintegral values 
such as 1.65 or 2.8, all weights remain greater than or equal 
to 1.0 (and as previously mentioned, a majority of them 
equal 1.0 exactly). For the purpose of making use of the 
weights associated with NDMMF data observations when 
computing OLS parameter estimates, the essential idea of 
weights as simple integral multiples will be generalized to 
allow for nonintegral weights. In other words, an observation 
weighted by an integer should have the same effect that the 
corresponding number of identical observations would have, 
and nonintegral weights should have effects intermediate 
between the effects of the bracketing integral weights. For 
example, an observation with a weight of 2.4 should have 
an effect between the effect of a weight of 2 and a weight 
of 3. The previous section of this publication showed that 
any particular data observation (ignoring its weight for the 
moment) will contribute additively to exactly four elements of 
′X X  = P and to exactly two elements of ′X y =  q. In principle, 

because two identical observations would make the same 
additive contributions twice, and three identical observations 
would make the same additive contributions three times, the 
additive contributions for a weighted observation are equal 
to each of the contributions shown in the preceding section 
multiplied by the weight. If wijk is a real number represented in
computation as a floating-point number, then when the weight 
wijk is associated with an observation ( yijk, Lijk ) the weighted
effects of this observation on ′X X  = P and ′X y =  q are 
as follows:
1.	  pj,j	 : increased by the addition of (Lijk)2 × wijk

2.	  pj,n + k	 : increased by the addition of Lijk × wijk

3.	 pn +k,j	 : increased by the addition of Lijk × wijk

4.	 p n + k, n + k	 : increased by the addition of 1 × wijk

5.	  qj	 : increased by the addition of Lijk
 × yijk × wijk

6.	 qn + k	 : increased by the addition of yijk × wijk
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Computational Methods for Solving the 
Normal Equations

There are several different, well-documented 
computational methods available for solving the normal 
equations for b once the (p × p) matrix ′X X  and the 
(p × 1) column vector ′X y from the normal equations  
( ′X X ) b =   ′X y are available in computer RAM. By analogy 
with standard algebra, the solution of the normal equations 
may be expressed as
	 ( ) 1−′ ′=b X X X y 	 (10)

in terms of the left multiplicative inverse of the (p × p) matrix 
′X X ; and one way to compute the solution of the normal 

equations b is to invert the matrix ′X X  and left-multiply this 
inverse with ′X y . In general, however, it is not necessary in 
computations to invert the matrix ′X X  in order to solve for 
b, and when the matrix inverse is not required for additional 
computations, the inversion is often undesirable because it 
entails more computation than other methods and is, therefore, 
relatively slow (Monahan, 2001).

Well-known and widely used methods for solving the 
normal equations and other systems of linear equations 
computationally (Monahan, 2001; Press and others, 1992) 
include the following:

•	 Gaussian elimination with back substitution;

•	 Gauss-Jordan elimination with back substitution;

•	 Cholesky decomposition;

•	 LU decomposition with back substitution;

•	 Singular value decomposition; and

•	 QR decomposition.
Of these methods, no one stands out as the best for 

all problems though in general LU decomposition comes 
close to being the presumptive method of choice (Press 
and others, 1992). Each method has advantages and 
disadvantages that make it more suitable for some sets of 
normal equations and less suitable for others. Gauss-Jordan 
elimination is acceptably efficient when the matrix inverse 
is required for other operations, but it is three times slower 
than alternative methods for simply solving a system for 
a single solution vector b. Although Gaussian elimination 

is faster than Gauss-Jordan elimination and comparable in 
speed to LU decomposition, it is seldom used in statistical 
packages because it is subject to round-off errors and other 
computational inaccuracies. Cholesky decomposition is the 
fastest of the commonly used methods (approximately twice 
as fast as Gaussian elimination or LU decomposition), but 
it can only be used when the matrix ′X X  is symmetric and 
positive definite. Singular value decomposition is a “can’t fail” 
method that effectively overcomes ill-conditioning and near-
zero values in the matrix, but it is slow and, consequently, it is 
not suited for solving large systems of equations such as those 
encountered in computing OLS parameters for the NDMMF. 
Finally, QR decomposition requires about twice as much 
computation as LU decomposition and is not generally chosen, 
except in special cases (Press and others, 1992).

Detailed description of the derivation of the normal 
equations for OLS parameter estimation is beyond the scope 
of this publication, as are detailed descriptions of the various 
methods of solving systems of linear equations. These topics 
are covered thoroughly in a number of texts and other books 
(Mendenhall, 1968; Draper and Smith, 1966; Monahan, 2001; 
Press and others, 1992).

Reference Software
The reference custom software included with this 

publication is a single program module of structured and 
commented source code written in the C programming 
language. This code has been compiled using Version 
4.4.4 of GCC and has been executed successfully on a 
computer workstation running under Version 2.6.33 of the 
Linux kernel. This reference software uses the method of 
Gaussian elimination with back substitution to solve the 
normal equations and find the best-fit parameter estimates 
for the NDMMF. For a computation involving about 
15,400 parameters, the real run time (elapsed wall-clock 
time) on an otherwise lightly loaded workstation was about 
16 hours.

A run time of 16 hours may seem long, especially to 
those who are accustomed to computing solutions for systems 
of linear equations with 100 or fewer parameters. The long 
run time is understandable, however, in view of the fact 
that the time required to solve a system of linear equations 
is approximately proportional to the cube of the number of 
parameters. More precisely, the computation required
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for Gaussian elimination or LU decomposition is 35( )
6

O p

additions and multiplications where p is the number of 
parameters. Back substitution requires the comparatively
modest, additional computation of 21

2 p  multiplications and
additions (Press and others, 1992). Doubling p increases 
the computation required for Gaussian elimination or LU 
decomposition by a factor of approximately eight (8). 
Computing a solution for a model with 15,400 parameters will 
take about 3,650,000 times longer than computing a solution 
for a model with 100 parameters.

The reference software uses relatively little memory, 
except for what is required for the (p × p) matrix ′X X  and the 
two (p × 1) column vectors b and ′X y  where p is the number 
of parameters. Thus, the software requires O(8 p2 × 16 p) 
bytes of computer memory for p parameters. For example, 
when the number of parameters is 15,400, then memory 
required is 1.767 gigabytes. The memory saved by not storing 
the (N × p) matrix of observations (with 101,000N ≅  ) is 
11.589 gigabytes.

Also provided with the C source code are:
•	 a compilation script,

•	 a sample data input file, and

•	 samples of the program’s three output files.
The software requires that there be no gaps in the 

species/cut and sampling-event parameter numbers. Each 
set of parameter numbers must begin with 1 and end with 
a number that does not exceed the value of its respective 
manifest constant—NUMSPC or NUMEVENTS. The values 
of these two manifest constants, along with the value of the 
manifest constant MATRIXDIMENSION, must be set correctly 
before compiling and running the program code. The value of 
MATRIXDIMENSION must equal or exceed the sum of the 
values of NUMSPC and NUMEVENTS.

This software does not perform checks on the validity of 
input data. The software will fail to produce valid results if 
inputs are not valid. Input concentrations are assumed to be 
in units of parts per million. Input lengths are assumed to be 
in inches.

This software is provided as a research tool, not as 
production code. Use of this code requires basic proficiency in 
reading, understanding, modifying, and compiling C program 
code. Setting up the input data file requires careful attention to 
its contents.

Summary
This publication describes a technique for efficient 

computation of ordinary least-squares (OLS) parameter 
estimates for the National Descriptive Model of Mercury in 
Fish (NDMMF). Included with this report is a preliminary 
reference implementation of the technique in software, using 
the method of Gaussian elimination. The technique enables 
rapid setup of the normal equations for the NDMMF so that 
the equations can then be solved for the OLS parameter 
estimates by any of several available methods.

The characteristic of the NDMMF that enables the rapid 
and direct setup of the normal equations is its restriction to 
exactly two parameters for each observation of methylmercury 
concentration. This characteristic allows the matrix products 
in the normal equations to be filled out quickly during data 
input so that the matrix X of data values for the independent 
variables does not need to be stored in computer memory and 
the full matrix multiplications implied by the normal equations 
do not actually have to be carried out.

It is not essential that all computation be performed 
using the provided reference software. The technique is also 
potentially usable with generalized statistical software. The 
reference software can be modified by a qualified programmer 
to omit the computation for Gaussian elimination and just 
write the two matrices created on data input ( ′X X  and b) to a 
file or files for subsequent input into any generalized statistical 
package or program capable of accepting the normal equations 
in matrix form as file input to a linear-system solver.

Computing the OLS parameter estimates for the 
NDMMF using the specialized technique described in this 
publication requires O(8 p2 × 16 p) bytes of computer memory 
on a system with 8-byte double-precision numbers, where p 
is the number of parameters of the model. In recent usage, 
for illustration, the custom software, with 15,400p ≅ , used 
about 1.767 gigabytes of computer memory and required 
about 16 hours for computation. The computer memory 
saved by not storing the X matrix in simplest form (with 

101,000N ≅ ) was 11.589 gigabytes. The computational time 
saved by avoiding a full matrix multiplication to create ′X X  
would vary by generalized statistical software but could 
range up to the time required for O(Np2) multiplications and 
additions; so the computational time saved could be a multiple
of the 35( )

6
O p  multiplications and additions used to compute

the ordinary least-squares parameter estimates by Gaussian
elimination. With 15,400p ≅  and 101,000N ≅  the 
computational time saved could be up to ~7.87 times what  
is used for Gaussian elimination.
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Appendix

This appendix contains the C language source computer 
code (NdmOls82.c) for the reference software that 
implements and illustrates the technique described in this 
publication. Also included in this appendix are:

•	 a compilation script–comp,

•	 a sample data input file–Hgdata.srt, and

•	 samples of the three output files produced by the 
reference software–EVENTparameters.txt, 
SPCparameters.txt, and log.

Please take notice of the disclaimers included in the C 
language source-code file.

Appendix files are available for download at  
http://pubs.usgs.gov/tm/07/c10.
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