
U.S. Department of the Interior
U.S. Geological Survey

Techniques and Methods 7–C12

Groundwater Resources Program 
Prepared in cooperation with U.S. Environmental Protection Agency,  
Great Lakes Restoration Initiative

Approaches in Highly Parameterized Inversion:  
PEST++ Version 3, A Parameter ESTimation and Uncertainty 
Analysis Software Suite Optimized for Large  
Environmental Models

p
c
f

*
 
c
o
n
t
r
o
l
 
d
a
t
a

R
S
T
F
L
E
 
P
E
S
T
M
O
D
E

N
P
A
R
 
N
O
B
S
 
N
P
A
R
G
P
 
N
P
R
I
O
R
 
N
O
B
S
G
P
 
[
M
A
X
C
O
M
P
D
I
M
]

N
T
P
L
F
L
E
 
N
I
N
S
F
L
E
 
P
R
E
C
I
S
 
D
P
O
I
N
T
 
[
N
U
M
C
O
M
 
J
A
C
F
I
L
E
 
M
E
S
S
F
I
L
E
]

R
L
A
M
B
D
A
1
 
R
L
A
M
F
A
C
 
P
H
I
R
A
T
S
U
F
 
P
H
I
R
E
D
L
A
M
 
N
U
M
L
A
M
 
[
J
A
C
U
P
D
A
T
E
]
 
[
L
A
M
F
O
R
G
I
V
E
]

R
E
L
P
A
R
M
A
X
 
F
A
C
P
A
R
M
A
X
 
F
A
C
O
R
I
G
 
[
I
B
O
U
N
D
S
T
I
C
K
 
U
P
V
E
C
B
E
N
D
]
 
[
A
B
S
P
A
R
M
A
X
]

P
H
I
R
E
D
S
W
H
 
[
N
O
P
T
S
W
I
T
C
H
]
 
[
S
P
L
I
T
S
W
H
]
 
[
D
O
A
U
I
]
 
[
D
O
S
E
N
R
E
U
S
E
]

N
O
P
T
M
A
X
 
P
H
I
R
E
D
S
T
P
 
N
P
H
I
S
T
P
 
N
P
H
I
N
O
R
E
D
 
R
E
L
P
A
R
S
T
P
 
N
R
E
L
P
A
R
 
[
P
H
I
S
T
O
P
T
H
R
E
S
H
]
 
[
L
A
S
T
R
U
N
]
 

[
P
H
I
A
B
A
N
D
O
N
]

I
C
O
V
 
I
C
O
R
 
I
E
I
G
 
[
I
R
E
S
]
 
[
J
C
O
S
A
V
E
]
 
[
V
E
R
B
O
S
E
R
E
C
]
 
[
J
C
O
S
A
V
E
I
T
N
]
 
[
R
E
I
S
A
V
E
I
T
N
]
 
[
P
A
R
S
A
V
E
I
T
N
]

*
 
a
u
t
o
m
a
t
i
c
 
u
s
e
r
 
i
n
t
e
r
v
e
n
t
i
o
n

M
A
X
A
U
I
 
A
U
I
S
T
A
R
T
O
P
T
 
N
O
A
U
I
P
H
I
R
A
T
 
A
U
I
R
E
S
T
I
T
N

A
U
I
S
E
N
S
R
A
T
 
A
U
I
H
O
L
D
M
A
X
C
H
G
 
A
U
I
N
U
M
F
R
E
E

A
U
I
P
H
I
R
A
T
S
U
F
 
A
U
I
P
H
I
R
A
T
A
C
C
E
P
T
 
N
A
U
I
N
O
A
C
C
E
P
T

*
 
s
i
n
g
u
l
a
r
 
v
a
l
u
e
 
d
e
c
o
m
p
o
s
i
t
i
o
n

S
V
D
M
O
D
E

M
A
X
S
I
N
G
 
E
I
G
T
H
R
E
S
H

E
I
G
W
R
I
T
E

*
 
l
s
q
r

L
S
Q
R
M
O
D
E

L
S
Q
R
_
A
T
O
L
 
L
S
Q
R
_
B
T
O
L
 
L
S
Q
R
_
C
O
N
L
I
M
 
L
S
Q
R
_
I
T
N
L
I
M

L
S
Q
R
W
R
I
T
E

*
 
s
v
d
 
a
s
s
i
s
t

B
A
S
E
P
E
S
T
F
I
L
E

B
A
S
E
J
A
C
F
I
L
E

S
V
D
A
_
M
U
L
B
P
A
 
S
V
D
A
_
S
C
A
L
A
D
J
 
S
V
D
A
_
E
X
T
S
U
P
E
R
 
S
V
D
A
_
S
U
P
D
E
R
C
A
L
C
 
S
V
D
A
_
P
A
R
_
E
X
C
L

*
 
s
e
n
s
i
t
i
v
i
t
y
 
r
e
u
s
e

S
E
N
R
E
L
T
H
R
E
S
H
 
 
S
E
N
M
A
X
R
E
U
S
E

S
E
N
A
L
L
C
A
L
C
I
N
T
 
 
S
E
N
P
R
E
D
W
E
I
G
H
T
 
 
S
E
N
P
I
E
X
C
L
U
D
E

*
 
p
a
r
a
m
e
t
e
r
 
g
r
o
u
p
s

P
A
R
G
P
N
 
M
E
I
N
C
T
Y
P
 
D
E
R
I
N
C
 
D
E
R
I
N
C
L
B
 
F
O
R
C
E
N
 
D
E
R
I
N
C
M
U
L
 
D
E
R
M
T
H
D
 
[
S
P
L
I
T
T
H
R
E
S
H
 
S
P
L
I
T
R
E
L
D
I
F
F
 

S
P
L
I
T
A
C
T
I
O
N
]

(
o
n
e
 
s
u
c
h
 
l
i
n
e
 
f
o
r
 
e
a
c
h
 
o
f
 
N
P
A
R
G
P
 
p
a
r
a
m
e
t
e
r
 
g
r
o
u
p
s
)

PEST++

INVERSE M
ODELING TOOL KIT

Gauss-Levenberg-M
arquardt M

ethod

Alternative/Hybrid
 M

ethods

 

 

PEST++

GLOBAL SENSITIVITY TOOL KIT

Method of M
orris

Sobol’s M
ethod

THIRD PARTY APPLICATIONS

Partic
le Swarm

 Optim
iza

tion

Run M
anager

Seria
l

YAMR

GENIE

Generic
 Run M

anager In
terfa

ce

C

Fortra
n

Python

PEST++

PEST++

UNCERTAINTY TOOL KIT

Linear M
ethods

Nonlinear M
ethods

M
E
T
H
O
D
(
M
O
R
R
I
S
)

M
O
R
R
I
S
_
R
(
4
)

M
O
R
R
I
S
_
P
(
4
)

M
O
R
R
I
S
_
D
E
L
T
A
(
.
6
6
6
)

M
O
R
R
I
S
_
P
O
O
L
E
D
_
O
B
S
(
F
A
L
S
E
)

parameter_name, sen_mean, sen_mean_abs, 

sen_std_dev

X1, -16.4665, 108.885, 138.542

i=1 i=1 i=1 s=1j=1 j=1 l=1
 y=β0+∑

20
 β0wi +∑

20
 ∑
20

 βi,jwiwi +∑
20

 ∑
20

 ∑
20

 βi,j,lwiwjwl +∑
20

 ∑
20

 ∑
20

 ∑
20

 βi,j,l,swiwjwlws

Vijk  =   V(E(Y |Xi, Xj, Xk))−Vi −Vj −Vk −Vij −Vim−Vjm  

i=1 j=1 l=1





Approaches in Highly Parameterized Inversion: 
PEST++ Version 3, A Parameter ESTimation 
and Uncertainty Analysis Software Suite 
Optimized for Large Environmental Models

By David E. Welter, Jeremy T. White, Randall J. Hunt, and John E. Doherty

Groundwater Resources Program 
Prepared in cooperation with U.S. Environmental Protection Agency,  
Great Lakes Restoration Initiative

Techniques and Methods 7–C12

U.S. Department of the Interior
U.S. Geological Survey



U.S. Department of the Interior
SALLY JEWELL, Secretary

U.S. Geological Survey
Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2015

For more information on the USGS—the Federal source for science about the Earth, its natural and living  
resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications,  
visit http://www.usgs.gov/pubprod/.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the 
U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials 
as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:
Welter, D.E., White, J.T., Hunt, R.J., and Doherty, J.E. , 2015, Approaches in highly parameterized inversion— 
PEST++ Version 3, a Parameter ESTimation and uncertainty analysis software suite optimized for large environmental 
models: U.S. Geological Survey Techniques and Methods, book 7, chap. C12, 54 p., http://dx.doi.org/10.3133/tm7C12.

ISSN 2328-7055 (online)

http://www.usgs.gov
http://www.usgs.gov/pubprod


iii

Contents

Abstract............................................................................................................................................................1
Introduction.....................................................................................................................................................1
Purpose and Scope........................................................................................................................................2
Major Enhancements to PEST++ Version 3................................................................................................2

Gauss-Marquardt-Levenberg (GML) Capabilities............................................................................3
TCP/IP Run Manager Integration (YAMR - Yet Another run ManageR).......................................3
Including Expert Knowledge with Tikhonov Regularization...........................................................3
Linear Uncertainty Analysis Capabilities...........................................................................................4
Global Sensitivity Analysis...................................................................................................................5

Other Enhancements to PEST++ Version 3.................................................................................................7
Restart Capability...................................................................................................................................7
Excluding Lambda Search Using Last-Iteration Base Parameter Jacobian...............................7
Maximum Number of Allowed Forward-Run Failures.....................................................................7
Iteration Summary Suitable for Postprocessing..............................................................................8
PEST++ Performance Log File.............................................................................................................8

PEST++ Version 3 User Interface.................................................................................................................8
Development Environment............................................................................................................................8
Limitations of Version 3..................................................................................................................................8
Summary..........................................................................................................................................................9
References.......................................................................................................................................................9
Appendix 1. PEST++ Version 3 Input Instructions...................................................................................14

The PEST++ Command Line...............................................................................................................14
The Pest Control File...........................................................................................................................14
PEST++ Additions to the PEST Control File.....................................................................................22
References............................................................................................................................................23

Appendix 2. GENIE Version 2, A General Model-Independent TCP/IP Run Manager.......................24
Preface..................................................................................................................................................24
Introduction..........................................................................................................................................24
Acknowledgments...............................................................................................................................24
Limitations.............................................................................................................................................24
Updates to the Run Manager.............................................................................................................25

Command Line Interaction........................................................................................................25
Termination..................................................................................................................................25
Input Instructions........................................................................................................................26

Updates to the Run Executer (Worker Node)..................................................................................26
Input Instructions........................................................................................................................26

Updates to the Interface Routines....................................................................................................27
Output...........................................................................................................................................32
Example Application—Interfacing GENIE with PPEST........................................................32

Updates to the GENIE Programming................................................................................................33
Network Programming...............................................................................................................34

CLS_NODE..........................................................................................................................34



iv

Appendix 2.—Continued
Message Passing.......................................................................................................................34

CLS_HEADER......................................................................................................................34
CLS_BUFFER.......................................................................................................................34
CLS_MESSAGE..................................................................................................................35

Model Run....................................................................................................................................36
CLS_RUN.............................................................................................................................36
CLS_RESULT.......................................................................................................................37

References............................................................................................................................................37
Appendix 3. Example Problem Using GML and Tikhonov Regularization............................................38

Introduction..........................................................................................................................................38
Model Description...............................................................................................................................38
Results...................................................................................................................................................38
References............................................................................................................................................40

Appendix 4. Linear Uncertainty Methods Included in Version 3...........................................................41
Input Instructions.................................................................................................................................42
Output....................................................................................................................................................42
Additional Considerations..................................................................................................................43
References............................................................................................................................................43

Appendix 5. Example Problems Using PEST++ Version 3 Linear Uncertainty Capabilities..............44
Introduction..........................................................................................................................................44
Model Description...............................................................................................................................44
Results...................................................................................................................................................45
References............................................................................................................................................47

Appendix 6. GSA++ Implementation and Use..........................................................................................48
GSA++ Output Files..............................................................................................................................49

Appendix 7. Example Problem Using GSA++ and the Method of Morris............................................50
References............................................................................................................................................50

Appendix 8. Example Problem Using GSA++ and the Method of Sobol..............................................53
References............................................................................................................................................54

Figures
	 2–1.  Flow of communication between the different components of the GENIE suite..............25
	 2–2.  Conceptualization of the use, and interaction of, a calling program  

and the GENIE Interface.............................................................................................................28
	 2–3A.  Flow of logic in the calling program to communicate model runs to the Interface.........30
	 2–3B.  Flow of logic to get results returned by the Interface (receiver thread)............................31
	 3–1.  The synthetic problem test domain..........................................................................................39
	 3–2.  Comparison of the final inverted parameter values. The PEST++ solution  

is slightly more regularized than the PEST solution...............................................................39
	 3–3.  Comparison of the algorithmic behavior of PEST++ Version 3 and  

PEST version 13.3 ........................................................................................................................40
	 5–1.  SEAWAT model domain..............................................................................................................44



v

	 5–2.  Excerpt from PEST++ record file...............................................................................................45
	 5–3.  Output of PREDUNC1 utility applied to prediction pred_one...............................................46
	 6–1.  Example GSA++ input file for Method of Morris analysis.....................................................48
	 6–2.  Example Morris sensitivity (.msn) file.......................................................................................49
	 6–3.  Example raw sensitivity (.raw) file.............................................................................................49
	 7–1.  GSA++ .pst control file................................................................................................................51
	  7–2.  GSA++ .gsa control file...............................................................................................................51
	 7–3.  GSA++ .msn output file...............................................................................................................52
	 7–4.  Plot of the Method of Morris results........................................................................................52
	 8–1.  PEST++ .pst control file...............................................................................................................53
	 8–2.  GSA++ .gsa control file................................................................................................................54
	 8–3.  GSA++ .sbl output file for Method of Sobol.............................................................................54

Figures—Continued

Tables
	 1.	 Summary of variables in the Method of Morris........................................................................6
	 1–1.  Summary of PEST++ command line options...........................................................................14
	 1–2.  PEST++ optional arguments......................................................................................................22
	 2–1.  Definition of Parameters Required by Routine “give_fortran_run_to_interface”............29
	 5–1.  Comparison of posterior parameter variances......................................................................47
	  5–2.  Comparison of prior and posterior forecast standard deviations.......................................47
	 8–1.  Comparision of GSA++ and analytical results........................................................................54





Approaches in Highly Parameterized Inversion: 
PEST++ Version 3, a Parameter ESTimation and 
Uncertainty Analysis Software Suite Optimized  
for Large Environmental Models

By David E. Welter,1 Jeremy T. White,2 Randall J. Hunt,2 and John E. Doherty3

Abstract
The PEST++ Version 1 object-oriented parameter 

estimation code is here extended to Version 3 to incorporate 
additional algorithms and tools to further improve support 
for large and complex environmental modeling problems. 
PEST++ Version 3 includes the Gauss-Marquardt-Leven-
berg (GML) algorithm for nonlinear parameter estimation, 
Tikhonov regularization, integrated linear-based uncertainty 
quantification, options of integrated TCP/IP based parallel run 
management or external independent run management by use 
of a Version 2 update of the GENIE Version 1 software code, 
and utilities for global sensitivity analyses. The Version 3 code 
design is consistent with PEST++ Version 1 and continues to 
be designed to lower the barriers of entry for users as well as 
developers while providing efficient and optimized algorithms 
capable of accommodating large, highly parameterized inverse 
problems. As such, this effort continues the original focus of 
(1) implementing the most popular and powerful features of 
the PEST software suite in a fashion that is easy for novice 
or experienced modelers to use and (2) developing a software 
framework that is easy to extend. 

The PEST++ Version 3 software suite can be compiled 
for Microsoft Windows®4 and Linux®5 operating systems; the 
source code is available in a Microsoft Visual Studio®6 2013 
solution; Linux Makefiles are also provided. PEST++ Version 3 
continues to build a foundation for an open-source framework 
capable of producing robust and efficient parameter estimation 
tools for large environmental models.

1Computational Water Resource Engineering.
2U.S. Geological Survey.
3Watermark Numerical Computing.
4“Windows” is a registered trademark of Microsoft Corporation in the 

United States and other countries 
5“Linux” is the registered trademark of Linus Torvalds in the United States 

and other countries. 
6“Visual Studio” is a registered trademark of Microsoft Corporation in the 

United States and other countries.

Introduction
Calibration of environmental models is an inherently 

non-unique (underdetermined) inverse problem, where infi-
nitely many parameter sets can be found to provide suitable 
history matching of observations. Such inverse problems are 
considered to be ill posed because of the very large param-
eter space associated with a complex reality and information 
deficits in the accompanying observation dataset. Hence, 
quantifying the reliability of forecasts made with environmen-
tal models is becoming an important component of societal 
decision making. Oreskes and others (1994), Saltelli and 
others (2004), Pilkey and Pilkey-Jarvis (2007), Beven (2009), 
Doherty (2011), and White and others (2014) discuss some 
underlying modeling and uncertainty issues in detail and put 
forth concepts about the appropriate roles and uses of models 
in the process of environmental planning and decision making. 
As a result of these and many other works, parameter estima-
tion and uncertainty analyses together are now considered a 
standard component of defensible environmental modeling 
(Anderson and others, 2015). 

PEST++ Version 1 was built upon the theory documented 
in the PEST software suite (Doherty, 2010a,b), a widely used 
parameter estimation code in the environmental modeling 
community, with specific emphasis on handling highly param-
eterized inverse problems (Doherty and Hunt, 2010). The term 

“highly parameterized” refers to the use of many parameters 
in the inverse problem so that the optimal amount of infor-
mation can be extracted from the calibration dataset. Highly 
parameterized problems are not only inherently non-unique 
but also characterized by calibration/uncertainty analyses 
that are computationally expensive. The use of regularized 
inversion techniques (where expert knowledge is explicitly 
employed to govern parameter plausibility and to stabilize 
the inverse problem; Hunt and others, 2007) on computation-
ally expensive, highly parameterized models has been made 
more tractable by the proliferation of relatively inexpensive 
multicore processors available in modern desktop computers 
and the advent of cloud computing (Hunt and others, 2010). 



2    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

When undertaking regularized inversion, modelers should not 
artificially limit the number of adjustable parameters in the 
analysis that could potentially influence the model forecast; in 
other words, “A regularized-inversion philosophy to param-
eterization, then, can be summarized as ‘if in doubt, include 
it’” (Doherty and Hunt, 2010). This approach helps improve 
the reliability of the forecasts by minimizing biases introduced 
by the parameterization (Moore and Doherty, 2005; White and 
others, 2014). As noted by Welter and others (2012), the corre-
sponding increase in modeling problem size has pushed many 
existing groundwater software tools to their limits, especially 
as advancements to the science increase both the number and 
sophistication of the software tools.

PEST++ Version 1 augmented available software by 
making tools accessible and more intuitive for new users but 
also more robust and efficient for those working on increas-
ingly complex and more highly parameterized problems. 
However, Version 1 was a first step and did not include some 
capabilities important for environmental modeling. Notably, it 
did not include an implementation of the Gauss-Marquardt-
Levenberg (GML) algorithm, lacked an integrated TCP/IP 
parallel run manager similar the one developed for PEST by 
Schreüder (2009) (BeoPEST), and lacked the ability to auto-
matically scale observation weights during Tikhonov regu-
larization (Tikhonov and Arsenin, 1977). Such capabilities 
are often required for large environmental modeling projects, 
such as those used in the Great Lakes Restoration Initiative, 
whereby Great Lake watershed-scale models are subjected to 
sophisticated, regularized inversion and uncertainty analyses. 

Purpose and Scope
This report describes an expansion of the algorithms and 

tools included in PEST++ Version 1 documented by Welter 
and others (2012). PEST++ Version 3 supplants Version 1,7 
but the overriding design concepts and approaches are 
consistent with those previously documented in Welter and 
others (2012). Therefore, this report focuses on documenta-
tion of new capabilities added to PEST++ Version 3. The input 
instructions and examples are sufficiently documented, how-
ever, so a user can run PEST++ Version 3 without referring to 
the Version 1 documentation. Source code and executable of 
PEST++ Version 3 as documented in this report are available 
for download at http://wi.water.usgs.gov/models/pestplusplus/. 
More recent releases of PEST++, including any enhancements 
made after publication of this report, will be available at http://
www.inversemodeler.org/. The most current development ver-
sion of the source code is maintained in an online open-source 
version-control repository at https://github.com/dwelter/pestpp.

7Version 2 of PEST++ existed only as a code-development milestone, hence 
the designation of Version 3 for the current release to the user community.

PEST++ Version 1 did not attempt to reproduce all the 
functionality of PEST but instead focused on implementing 
the most used features for highly parameterized inversion 
while also focusing on streamlining proper use of these fea-
tures (Welter and others, 2012). However, it was recognized at 
the time that the list of ported PEST capability would expand 
as PEST++ was applied to more real-world problems in the 
future (Welter and others, 2012, p. 7). Thus, this report focuses 
on the enhancements added to PEST++ Version 3 to incorporate 
additional features from the PEST software suite of Doherty 
(2010a,b) and elsewhere. In particular, PEST++ Version 3 
includes the following additional capabilities: (1) efficient cal-
culation of parameter upgrades by using a formulation of the 
Gauss-Marquardt-Levenberg (GML) algorithm, (2) integrated 
internal TCP/IP parallel run management and external inde-
pendent TCP/IP parallel run management (GENIE Version 1 
of Muffels and others 2012), (3) enhanced Tikhonov regular-
ization capabilities, (4) integrated algorithms for performing 
linear parameter and predictive uncertainty analyses, and  
(5) methods for global sensitivity analysis.

The main text of this report briefly introduces the theory 
supporting the new capabilities of PEST++ Version 3 and 
provides references to supporting documents. The appendixes 
document the implementation, input instructions, and 
examples needed to apply these new capabilities. All related 
terminology, concepts, file extensions, and so forth, follow the 
conventions and derivations presented and cited by Doherty 
(2010a, 2015), Doherty and Hunt (2010), Doherty and others 
(2010), and Welter and others (2012) and are omitted here for 
brevity.

Major Enhancements to PEST++ 
Version 3

As described by Welter and others (2012), PEST++ Ver-
sion 1 provided enhancements and changes to the original 
PEST software suite of Doherty (2010a,b). These included 
capabilities such as the following:

1.	 The ability to automatically switch between native param-
eters and superparameters (Tonkin and Doherty, 2005) 
without user intervention.

2.	 A PROPACK-based truncated singular value decompo-
sition algorithm for large and sparse matrices (Larsen, 
1998, 2001) to increase computational efficiency for 
high-dimensional inverse problems.

3.	 Automated normalization of parameter sensitivity based 
on parameter ranges.

http://wi.water.usgs.gov/models/pestplusplus
http://www.inversemodeler.org/
http://www.inversemodeler.org/
https://github.com/dwelter/pestpp


Major Enhancements to PEST++ Version 3    3

Although these enhancements are important, Version 1 
implemented only a subset of the most used PEST features. 
In PEST++ Version 3, the Version 1 capabilities have been 
retained and several new capabilities have been added and 
streamlined from existing PEST methods. These enhance-
ments follow the Version 1 design goal of being object ori-
ented and suitable for future development. In the next sections, 
the enhancements and changes now available in PEST++ 
Version 3 are described in detail. Consistent with Version 1 
documentation, the input instructions for existing and new 
capabilities are included in appendix 1.

Gauss-Marquardt-Levenberg (GML) Capabilities

PEST provides the Gauss-Marquardt-Levenberg method 
with truncated SVD (Aster and Thurber, 2013) as numerical 
solution techniques for the least-squares problem, but  
PEST++ Version 1 implemented only truncated SVD. In 
PEST++ Version 3, a robust implementation of the Gauss-
Marquardt-Levenberg (GML) algorithm has been added to  
the existing truncated SVD solution scheme. Briefly, the 
Marquardt lambda is a component of the Gauss-Marquardt-
Levenberg method. When the Marquardt lambda is zero, 
the upgrade vector is in the direction of the Gauss-Newton 
solution, a solution direct that includes “curvature” informa-
tion from the quadratically approximated Hessian matrix of 
sensitivities (Oliver and others, 2008). Increasing the magni-
tude of lambda has the effect of rotating the upgrade vector in 
the direction of the gradient descent solution, which can be 
more robust if the solution surface is not well approximated as 
a quadratic (Oliver and others, 2008). This rotation is accom-
plished by adding terms to the diagonal of the normal equation 
matrix. Adding these terms tends to make the matrix better 
conditioned, which has a stabilizing effect and serves as form 
of regularization. The Marquardt lambda’s role for rotating the 
upgrade vector in the direction of the gradient descent solution 
is valuable for enhancing the search capability to the nonlinear 
least-squares solution because it forms a trust region between 
the two solution endpoints. As a result, testing different values 
of the Marquardt lambda allows PEST++ to explore a larger 
portion of parameter space, helping to prevent premature ter-
mination at a local minimum on the objective function surface. 
The reader is referred to Hill and Tiedeman (2007), and Oliver 
and others (2008), Doherty (2010a, 2015), and Aster and 
Thurber (2013) for additional description of how GML and 
truncated SVD approaches are implemented in least-squares 
nonlinear parameter estimation framework. 

It should be noted that in PEST++ Version 1, an SVD 
rotation factor approach was used instead of a GML approach 
(Welter and others, 2012) to define a trust region for solution 
exploration. Subsequent testing by the authors and Dahlstrom 
and Carter (2013) did not identify cases where this approach 
was demonstrably superior to the more widely used GML 
approach. Therefore, to streamline future maintenance of the 
PEST++ Version 3 code base, the SVD rotation factor capa-
bilities have been omitted in Version 3. 

TCP/IP Run Manager Integration (YAMR - Yet 
Another run ManageR)

Parallel processing of the large numbers of runs required 
by parameter estimation is a challenge to highly parameter-
ized problems (for example, Hunt and others, 2010). PEST++ 
Version 1 relied on a separate computer code, GENIE (Muffels 
and others, 2012) to perform parallel run management across 
a network by using the TCP/IP protocol. PEST++ Version 3 
retains and updates the external independent GENIE run 
manager to GENIE Version 2 (appendix 2). PEST++ Version 3 
also now includes an integrated TCP/IP parallel run manager 
within the PEST++ Version 3 executable. The advantage of 
an integrated run manager is that it allows a user to perform 
parallel run management without requiring running a separate 
stand-alone code. The new, integrated parallel run manager 
is called YAMR (Yet Another run ManageR) to distinguish 
between the new capability and the external GENIE compat-
ibility. YAMR is invoked similarly to BeoPEST (Schrüeder, 
2009); instructions for use are provided in appendix 1. Within 
the YAMR run manager framework, worker nodes are multi-
thread as compared to the BeoPEST single-thread worker 
nodes. The multi-threaded capability allows multiple lines 
of communication between the master and workers, which 
in turn facilitates more sophisticated and robust run manage-
ment than with single-thread nodes. Using multi-threading, 
the master instance can communicate periodically check the 
workers’ status while a forward run is being executed and, if 
nessecary, allows the master to interrupt and supplant runs on 
the workers. This allows the master instance to more easily 
and efficiently detect run failures and start competitions 
for overdue runs. PEST++ Version 3 can easily support any 
number of run managers because it implements an abstract run 
manager interface, which is a software approach that encap-
sulates the actual operations of a run manager away from the 
rest of the code. Additionally, Fortran and Python interfaces to 
YAMR are included in the PEST++ Version 3 software so that 
users can easily develop interfaces to YAMR for their own 
codes that require distributed run management, such as Monte 
Carlo analyses.

Including Expert Knowledge With Tikhonov 
Regularization

As described in detail in Doherty and Hunt (2010) 
and Anderson and others (2015), Tikhonov regularization 
(Tikhonov and Arsenin, 1977) provides a mechanism for 
formally incorporating soft knowledge about adjustable 
parameters into the calibration process. This is performed by 
augmenting the measurement objective function, which is the 
weighted sum-of-squared residuals, with a second separate 
regularization objective function that penalizes deviations 
from the user-specified preferred parameter states, which may 
include preferred parameter values and (or) relations between 
parameters (see Doherty, 2003, p. 171–173). The best-fit 



4    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

model is then identified as the minimum of the combined 
measurement-regularization objective function. The formal 
minimization of the regularization objective function is one 
approach for determining a unique solution to the inverse 
problem, one that balances model-to-measurement misfit with 
adherence to the modeler’s knowledge of the system. Math-
ematically, the regularization objective function supplements 
the calibration dataset through a suite of special pseudo-
observations, each pertaining to a preferred condition for one 
or more adjustable parameters. In this way, Tikhonov regular-
ization forms a fallback value for parameters, or for relations 
between parameters, when little or no information is contained 
for them in the observations used for calibration. Where the 
information content of a calibration dataset is insufficient for 
unique estimation of certain parameters or combinations of 
parameters, the fallback value prevails, resulting in a reason-
able parameter value. Additionally, for spatially distributed 
parameterizations, Tikhonov regularization governs the extent 
to which heterogeneity is expressed in the estimated parameter 
field. When properly specified (and weighted), Tikhonov con-
straints enforce coherent departures from preferred parameter 
conditions, whether those preferred conditions are expressed 
as specific parameter values or relationships among param-
eters. Without such constraints, parameter estimates that result 
in a good fit with the calibration dataset may nonetheless be 
considered suboptimal because of implausible or unlikely 
parameter values (Doherty and Hunt, 2010). 

PEST++ Version 1 did not fully support the use of Tik-
honov regularization; Version 3 has added the recommended 
settings as described by Doherty and Hunt (2010). Similar to 
the setup in PEST, Tikhonov regularization in PEST++ Ver-
sion 3 is controlled by the variable PHIMLIM, which reflects 
the “target measurement objective function” specified by the 
modeler. The target measurement objective function is usually 
set unrealistically low in an initial parameter estimation run to 
obtain the best fit to observations (that is, with no soft-knowl-
edge penalty considered). After the first run, PHIMLIM is set 
to some value above this best fit, often 5–10 percent higher. 
The PHIMLIM variable gives the user a way to control over-
fitting—the case when a modeler considers model-to-measure-
ment fit too good given the level of noise associated with the 
calibration dataset. Thus, the PHIMLIM variable limits how 
well the estimated parameter values reproduce the observa-
tion dataset. PEST++ dynamically adjusts the regularization 
weight with which Tikhonov constraints are applied by solv-
ing a constrained optimization problem. Relaxing Tikhonov 
constraints achieves a tighter fit with respect to observations, 
whereas strengthening these constraints results in a poorer 
fit. One important topic is how the regularization is enforced 
among different parameter groups (the IREGADJ variable; 
Doherty, 2010a). PEST++ Version 3 internally uses the recom-
mended setting of IREGADJ = 1 as specified by Doherty and 
Hunt (2010), which adjust regularization weights by parameter 
group to ensure that each group is seen in the regularization 
objective function. The implementation of Tikhonov regular-
ization in PEST is covered in depth by Vogel (2002), Doherty 

(2003), Oliver and others (2008), Doherty and Hunt (2010), 
Aster and Thurber (2013), and Doherty (2015). A PEST++ 
Version 3 example problem which uses dynamically weighted 
regularization is provided in appendix 3. 

Linear Uncertainty Analysis Capabilities

Doherty and others (2010) outline the variety of uncer-
tainty analysis tools available in the PEST software suite. 
They, as well as Hunt (2012) and Anderson and others (2015), 
suggest that linear methods may be well suited for efficiently 
estimating uncertainty around model forecasts for many envi-
ronmental problems. PEST++ Version 3 includes the ability 
to estimate the posterior (that is, after calibration) uncertainty 
by calculating the parameter covariance matrix through the 
use of linear-based conditional uncertainty propagation. Also 
included within PEST++ Version 3 is the ability to estimate 
the prior (before calibration) and posterior (after calibration) 
forecast uncertainty for any observations listed in the PEST 
control file. Details regarding the implementation of linear 
uncertainty methods within PEST++ Version 3 are given in 
appendix 4, with an example problem provided in appendix 5].

The linear uncertainty analyses implemented in PEST++ 
Version 3 are based on the use of Schur’s complement (Golub 
and Van Loan, 1996) for conditional uncertainty propagation:

		  (1)

where Σθ  is the prior parameter covariance matrix, Ј is the 
Jacobian matrix of partial first derivatives of observations with 
respect to parameters, and Σε the covariance matrix of mea-
surement noise. The matrix Σθ of equation 1 is the posterior 
parameter covariance matrix, which can be seen as the prior 
parameter covariance matrix less the conditioning provided 
by the observations, which are embodied in the linear map-
ping provided by the Jacobian matrix. As such, equation 1 
assumes a linear relation between adjustable parameters and 
model-simulated observation equivalents and that parameter 
and measurement noise uncertainty can be described by a 
multivariate Gaussian (or log-Gaussian) distribution. See 
Fienen and others (2010) for a complete derivation of equa-
tion 1 and Doherty (2015) for additional information regarding 
theoretical underpinnings implied in equation 1. See Dausman 
and others (2010) for an evaluation of the linearity assumption 
implied by equation 1. Note that the diagonals of the Σθ and Σθ 

matrices are the prior and posterior variances of the adjustable 
parameters. 

If one or more forecast sensitivity vectors are available, 
then the prior and posterior forecast uncertainty can be cal-
culated by premultiplying and postmultiplying the associated 
parameter covariance matrices:

		  (2)

Σθ = Σθ −Σθ JT(JΣθJT+Σε)−1JΣθ

σ2
s =yT Σθy;σ2

s =yT Σθy



Major Enhancements to PEST++ Version 3    5

used as a screening-level tool to identify the most important 
parameters for the observations tested. This screening is typi-
cally followed by application of a more comprehensive tool, 
such as the Method of Sobol, to the most important subset 
of parameters to further characterize the effects of parameter 
nonlinearity and interactions. Because the Method of Sobol 
is based on the decomposition of variance (Saltelli and others, 
2004), it can provide detailed information on how parameter 
nonlinearity and interaction affect the sensitivity, but at a high 
computational cost. 

The Method of Morris, also known as the Elementary 
Effects Method (Saltelli and others, 2004), is referred to as a 
“one-at-a-time” method because each parameter is perturbed 
sequentially to compute sensitivities. The method, originally 
proposed by Morris (1991), samples the sensitivity of a given 
parameter at several locations in parameter space and then 
provides two measures of parameter sensitivity: the mean 
(μ) and the standard deviation (σ) of the resulting sensitivity 
distribution. The mean, μ, captures the overall effect of a 
parameter on the model output of interest; the standard devia-
tion, σ, measures the variable of a parameter’s sensitivity 
across the range of acceptable parameter values, this being an 
indicator of how nonlinear a given parameter is and (or) how 
the parameter interacts with other parameters. It is important 
to note that the Method of Morris cannot distinguish between 
parameter nonlinearity and parameter interactions because 
only the standard deviation of parameter sensitivity is avail-
able. However, this method is less computationally demanding 
than other GSA methods and is easily parallelizable. 

The Method of Morris is based on the calculation of 
elementary effects, which are sensitivities of parameters that 
have been scaled to a closed interval [0,1] to facilitate direct 
comparison of the results. Morris (1991), defines an elemen-
tary effect as 

		  (3)

where di(x) is an elementary effect, k is the number of param-
eters, and the xi variables are the components of a k-dimen-
sional vector containing a set of scaled parameter values. Each 
xi is drawn from the closed set {0, 1/( p−1), 2/( p−1),….,1} 
where p is a variable that defines the number of intervals used 
for each parameter and ∆ is the size of the perturbation applied 
to scaled parameters to calculate the elementary effects. This 
sampling strategy partitions the specified parameter range for 
each parameter into nearly equal parts for sensitivity sampling. 
Morris (1991) recommends choosing an even number for p 
and setting ∆=p/[2(p−1)].

Campolongo and others (2005) extended the Method of 
Morris by adding the mean of the absolute values (μ*) as an 
additional metric to provide a more robust estimate of the pa-
rameter sensitivity that is not subject to canceling of positive 
and negative values that may occur if the sensitivity metric 
(for example, objective function) is not monotonic. 

where y is the sensitivity vector of forecast s with respect to 
the adjustable parameters and σ2

s  and σ2
s  are the prior and pos-

terior variances of forecast s, respectively. PEST++ Version 3 
facilitates application of equation 2 by extracting one or more 
observations from the Jacobian to serve as forecast sensitiv-
ity vectors. This in turn allows the user to obtain the prior 
and posterior uncertainty of any forecasts that are included as 
observations in the PEST++ analysis. See appendixes 4 and 5 
for more details. Note that within the PEST++ input and 
appendixes, the terms “prediction” and “forecast” are used 
interchangeably. 

Global Sensitivity Analysis

GSA++ is a stand-alone program distributed with the 
PEST++ Version 3 suite of tools that perform global sensi-
tivity analysis (GSA). It leverages the PEST++ code base, 
which includes the parallel run manger, YAMR. GSA++ is 
fully compatible with PEST/PEST++ file formats, including 
template and instruction files. This design facilitates efficient 
application of global sensitivity analyses to projects set up for 
PEST++ and (or) PEST. GSA++ is notable because it provides 
capability currently not available in the PEST software suite. 
The implementation and use details of GSA++ are provided 
in appendix 6. Appendixes 7 and 8 demonstrate the use of 
GSA++ for two example problems. 

Global sensitivity analysis is a class of statistical analyses 
that strives to characterize how model parameters affect model 
outputs over a wide range of acceptable parameter values. 
Although there are many different GSA methods, all GSA 
methods strive to be more robust than traditional, derivative-
based local sensitivity analysis, which computes the local  
sensitivities at a single point in parameter space and is not 
always adequate for analyzing nonlinear problems where 
the sensitivities can change depending on where they are 
computed. Some GSA methods provide general information 
about the variability of the sensitivities and have relatively 
low computational requirements, whereas others provide 
detailed information on nonlinear behavior and interactions 
between parameters at the expense of larger computational 
requirements. For a complete introduction to GSA theory and 
methods, see Saltelli and others (2004, 2008).

The program GSA++ currently supports two GSA meth-
ods: (1) the Method of Morris (Morris, 1991), with extensions 
proposed by Campolongo and others (2005) and Sin and 
Gernaey (2009), and (2) the Method of Sobol (Sobol, 2001). 
The Method of Morris is in a class of GSA methods referred 
to as “one-at-a-time” methods (Saltelli and others, 2004) and 
is computationally more efficient than other GSA approaches. 
However, the Method of Morris only provides estimates of 
the first two moments (mean and variance) of the sensitivity 
distribution for each parameter. Because of the lack of com-
plete description of the parameter nonlinearity and interac-
tions between parameters, the Method of Morris is typically 

di(x)= [y(x1,x2,....,xi−1,xi+∆,xi+1,....,xk)−y(x)] 
∆



6    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

After a parameter is perturbed and the corresponding 
forward run is completed, the Method of Morris uses equa-
tion 3 to compute an elementary effect for the perturbed 
parameter. The parameters are each perturbed one at a time to 
define a trajectory through parameter space which provides 
a single estimate of the sensitivity of the objective function 
with respect to each of the scaled parameters. The sample 
size, r, is then defined to be the number of trajectories used 
in the analysis and represents the number of sensitivities that 
are computed for each parameter. It is important is remember 
that, for nonlinear problems, the sensitivity of a parameter can 
depend on the value of the parameter as well as the values of 
all the other parameters. Thus, the sample size controls how 
much of the parameter space is sampled, with a large value 
providing a more comprehensive sample. Table 1 summarizes 
the important variables in the Method of Morris.

The standard Method of Morris implementation only 
computes the sensitivity of a single model output with respect 
each parameter and is not designed to compute sensitivi-
ties with respect to multiple outputs. In contrast, the GSA++ 
implementation of the Method of Morris computes elementary 
effects of scaled parameters for PEST++ objective function. 
Unfortunately, this is not compatible with the previously 
published work of Morris (1990), which is typically based 
on a single observation rather than the sum of squares of the 
residuals of multiple observations. This difference in approach 
becomes especially problematic when the user wants to 
perform the Method of Morris on a single observation. The 
PEST++ objective function would provide perform the analy-
sis on observation squared, which is very different than the 
observation itself. To overcome this limitation, GSA++ pro-
vides an option to compute the Method of Morris sensitivities 

for each observation in the PEST++ control file in addition to 
the objective function. Because the additional analysis does 
not require additional model runs and can provide insight 
even for those users primarily interested in working with the 
PEST++ objective function, this option is turned off when a 
very large number of observations is used and the additional 
computations would become burdensome.

Although the Method of Morris can provide valuable 
information, analyzing the sensitivity of only a single model 
output is a limitation. Because GSA++ can access the indi-
vidual observations used to construct the composite objective 
function, it is desirable to look for ways to extend the Method 
of Morris to analyze the sensitivities of individual observa-
tions or subsets of observations. Sin and Gernaey (2009) pro-
posed the Standardized Elementary Effects (SEE) to extend 
the Method of Morris to account for the elementary effects of 
multiple model outputs by using the standard deviation of the 
elementary effects of parameters as well as the standard devia-
tion of the desired model outputs:

	  	 (4)

Table 1.	 Summary of variables in the Method of Morris.

Variable Input/output Description

p input Number of levels or the number of 
points each parameter is sampled at.

∆ input Size of the sampling step. This must 
be a multiple of p/[2( p−1)] and 
represent the size of the interval that 
will be used to calculate the  
perturbation sensitivities.

r input Sample size. The number of times the 
sensitivity will be computed for 
each parameter.

μ output Mean sensitivity of the output with 
respect to each parameter.

μ* output  Mean sensitivity of the absolute value 
of the output with respect to each 
parameter.

σ output Standard deviation of the sensitivity 
of the output with respect to each 
parameter.

SEEij=
∂yj  

∂xi 
σxi 

σyj

where SEEij  is the standardized elementary effect of parameter 
xi on model output yj,       is the sensitivity of model output 
yj with respect to parameter xi, σxi  is the standard deviation 
of elementary effects of scaled parameter xi, and σyj is the 
standard deviation of model output yj. Equation 4 scales the 
sensitivities with respect to the individual model outputs. 
However, this approach may be suboptimal for many water-
resource problems because the scaling process obscures the 
differences in sensitivity between observations that are of a 
similar type. For example, if a model predicts heads and flows, 
it is desirable to scale the associated sensitivities of all the 
heads and the flows by factors that preserve variation insensi-
tivities within the group but scale the sensitivities across the 
groups. To accomplish this, GSA++ provides an option to use 
pooled standard deviations in lieu of the individual observa-
tion sensitivities in equation 4. The pooled standard deviation 
is an estimate of the model output standard deviation that 
contains several groups which have different means but share 
a common standard deviation. The equation used to compute 
the pooled variance is

		  (5)

where sp is the pooled standard deviation, n is the number of 
groups, ni is the number of samples in group i, and s2

i is the 
standard deviation of group i. It is generally recommended 
that initial GSA++ runs use the pooled standard deviation 
option.

∂yj  

∂xi 

Sp= 
∑n

i=1(ni−1)s2
i

∑n
i=1(ni−1)√



Other Enhancements to PEST++ Version 3    7

The Method of Sobol is based on the decomposition 
of variance so that the variance of a model output over the 
parameter space is decomposed to separate the effects arising 
from different parameters and combinations of parameters. 
Sobol (2001) and Saltelli and others (2004, 2008) provide 
comprehensive derivations and explanations of the method, 
which is summarized herein. The total model output variance, 
VT(Y), from a model with k parameters can be decomposed as

 	 VT=V(Y )=∑iVi +∑i∑j>iVij + ...V12...k	 (6)

where	  

	              Vi     =   V(E(Y |Xi))			        	          (7)

 	             Vij    =   V(E(Y |Xi, Xj))−Vi −Vj			           (8)

	              Vijk  =   V(E(Y |Xi, Xj, Xk))−Vi −Vj −Vk −Vij −Vim−Vjm         (9)

When the variance is decomposed in the Method of Sobol, 
Vi  is the variance of the model output attributed to varying i’th 
parameter while holding all the other parameters fixed, and Vij 

is the variance in the model output attributed to varying the 
i’th and j’th parameters simultaneously while holding all the 
other parameters fixed, minus the variances associated with 
varying the i’th and j’th parameters individually. The sensitiv-
ity indices, S, are defined to be the ratios of the decomposed 
components of the variance with respect to the total variance 
and form the basis for the Method of Sobol. These and can be 
written as

			   Si =			           (10)

and
			   Sij =	  		          (11)

In a similar way, the total effects term, STi, is defined as

            	            (STi =	    )		          (12)

where V−i is variance associated with allowing all the param-
eters but the i’th parameter to vary and thus STi represents the 
total effect of the i’th parameter, including parameter interac-
tions of the i’th parameter with all other adjustable parameters 
in the model. Because variance is a measure of variability, 
the parameters which contribute most to the variance of the 
model output will be the parameters the model is most sensi-
tive to. Inspection of equation 6 reveals how computationally 
demanding the Method of Sobol can be, especially if the num-
ber of parameters is large. This is why the Method of Morris 
is typically employed to screen all adjustable parameters and 
identify a (small) subset of parameters that will subsequently 
be used in the Method of Sobol. See appendix 6 for details 
regarding the implementation of the Method of Morris and the 
Method of Sobol in GSA++.

Vi  

VT 

 Vij 

VT

 VT − V−i 

VT

Other Enhancements to PEST++ Version 3
In addition to the major enhancements to PEST++ Version 3 

described above, numerous minor enhancements also have been 
made. A few of these are mentioned below. 

Restart Capability

PEST++ Version 1 required the user to start all parameter 
estimation runs from initial values. PEST++ Version 3 has the 
ability to restart a run that was terminated prematurely, a feature 
that can significantly reduce computational demands for highly 
parameterized problems. Restart is invoked by adding /r flag to 
the end of the PEST++ command line. 

Excluding Lambda Search Using Last-Iteration 
Base Parameter Jacobian 

When PEST++ Version 1 recalculated the base parameter 
sensitivities, these new sensitivities were used for a lambda 
search/parameter upgrade evaluation prior to formulation of 
the internal superparameter solution. However, in some cases, 
it may be advantageous to forego this base-parameter lambda 
search and proceed to the superparameter solution. In PEST++ 
Version 3, the user has the option to omit these lambda search 
runs performed on the basis of the new base parameter Jacobian 
matrix by invoking N_ITER_BASE = −1 (appendix 1). Under 
this condition, PEST++ will omit the lambda search using the 
base parameter Jacobian matrix and instead define a new super-
parameter Jacobian matrix on the basis of the newly calculated 
base parameter sensitivities. This operation is then immediately 
followed by lambda-based parameter upgrade calculation and 
testing performed by using only the superparameter Jacobian. 
This option is equivalent to sequential manual SVDA runs in 
PEST (Doherty, 2010a) that might be generated by using mul-
tiple runs of the SVDAPREP utility at various stages within the 
PEST-based parameter estimation process (Doherty and Hunt, 
2010, p. 22).

Maximum Number of Allowed Forward-Run 
Failures

When a YAMR worker node encounters a failed forward 
model run, it is not immediately apparent to the master whether 
the failure is a result of a network communication error (or 
failure) or instability in the underlying forward model being 
run with the parameters estimated by PEST++. To test the 
underlying cause of failure, PEST++ allows the user to specify 
the maximum number of tries the PEST++ master will attempt 
using the parameter set of the failed forward run before marking 
the run as a failure. If a failed run occurs during the Jacobian 
matrix calculation, and if the DERFORGIVE algorithmic 
option is invoked in the PEST control file, then the parameter 



8    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

associated with the failed perturbation run will be treated as 
frozen in the subsequent upgrade calculations. If the failed run 
is associated with parameter upgrade testing, then the upgrade 
vector associated with the failed run is ignored and the objec-
tive function is reported as “NA.” Note that the efficiency 
of this capability is greatly enhanced by the multi-threaded 
worker nodes of YAMR because the penalty for starting con-
current attempts for a single model run is negligible. 

Iteration Summary Suitable for Postprocessing

PEST++ Version 3 provides a new reporting capability 
that allows the user to also obtain comma-separated value 
(CSV) files of iteration-based PEST++ results, which are more 
amenable to postprocessing and visualization than were the 
output-file options in Version 1. Iteration-specific CSV sum-
mary files are provided for parameters (.ipar), base parameter 
sensitivities (.isen), and objective function components (.iobj). 

PEST++ Performance Log File

PEST++ Version 3 writes a log file that details the 
process execution time for the most computationally demand-
ing aspects of the algorithm. The file is written with a .pfm 
extension. Users are encouraged to monitor this file if PEST++ 
appears unresponsive. 

PEST++ Version 3 User Interface
Similar to PEST++ Version 1, Version 3 maintains full 

backward compatibility with PEST input files; changes to the 
file formats and user interfaces have been minimized. This 
consistency facilitates switching between the enhancements 
available in PEST++ and the full capabilities of PEST. This 
compatibility design criterion embodies the concept that 
although PEST++ is appropriate for the majority of param-
eter estimation problems, there are expected to be a subset of 
inverse problems that will require additional, less-used capa-
bilities available in PEST that are not yet available in PEST++. 
This design criterion facilitates PEST++ compatibility with the 
large set of utilities included in the PEST suite of tools. 

In a similar manner, PEST++ Version 3 continues to 
retain PEST’s format for the template (.tpl), instruction 
(.ins), parameter value (.par), and Jacobian matrix (.jco) 
files, thereby ensuring compatibility with the majority of the 
PEST’s uncertainty utilities available beyond the linear uncer-
tainty methods included in PEST++ Version 3 (for example, 
see Doherty 2010a,b; and Doherty and others, 2010). PEST++ 
also retains support for the legacy PEST control file (.pst), 
although it is anticipated that future versions of PEST++ will 
support more flexible control file formats. Similar to Version 1, 
PEST++ Version 3 offers additional functionality that can be 
accessed through optional lines beginning with “++” at the 
end of the PEST control file (see appendix 1). Because the 

truncated SVD solution scheme (Aster and Thurber, 2013) is 
optional in PEST but not in PEST++, PEST++ programmati-
cally provides default values for the algorithmic parameters 
in the “* singular value decomposition” section of the PEST 
control file if these values are not specified by the user.

Development Environment
All the source code required to build PEST++ Version 3 

has been consolidated in a Microsoft Visual Studio® 2013 
solution. Source and Makefiles are also provided for Linux 
compilation. PEST++ Version 3 is compiled as a statically 
linked PEST++ executable without any external run-time 
dependencies. This setup simplifies and facilitates sharing the 
source code and distributing the executable. Note that PEST++ 
requires a C++11-compliant compiler as well as a modern For-
tran compiler. The PEST++ Visual Studio solution, Makefiles, 
as well as source code and executable documented in this 
report are available for download at the Web page associated 
with this report: http://dx.doi.org/10.3133/tm7–C12. More 
recent releases of PEST++, including any enhancements made 
since the release of this report, are available at http://www.
inversemodeler.org/. The most current version of the source 
code is maintained an online open-source version-control 
repository at https://github.com/dwelter/pestpp. 

Limitations of Version 3
Similar to PEST++ Version 1, some features of the PEST 

suite are not available in Version 3. Most notable are the 
following:

•	 Use of a full observation covariance weights matrix is 
not supported.

•	 Similar to a SVD-Assist run in PEST, PEST++ does 
not perform a final run with the best parameters. A 
strategy needs to be developed to implement a final 
run when using parallel runs via YAMR or GENIE. 
However, PEST++ does provide the best-fit parameter 
values, as well as the model output corresponding to 
observations and residuals associated with the best 
model run, so that a user simply needs to update the 
PEST control file with the best parameters and run 
PEST++ with NOPTMAX set to 0. 

•	 The Jacobian (.jco) file for superparameter iterations 
is written in terms of the superparameters, whereas 
PEST++ writes the base parameter Jacobian to a .jcb 
file. Both of these files are compatible with the PEST 
.jco file specification. The use of a .jcb is necessary to 
support restart capabilities in concert with the internal-
ization of the superparameter solution process. 

http://dx.doi.org/10.3133/tm7–C12
http://www.inversemodeler.org/
http://www.inversemodeler.org/
https://github.com/dwelter/pestpp


References    9

Although this program has been used by the U.S. Geo-
logical Survey (USGS), no warranty, expressed or implied, is 
made by the USGS or the U.S. Government as to the accuracy 
and functioning of the program and related program material 
nor shall the fact of distribution constitute any such warranty, 
and no responsibility is assumed by the USGS in connection 
therewith.

Summary
Capabilities of Version 1 of the object-oriented parameter 

estimation code PEST++ have been augmented and extended 
in Version 3. Similar to the design concepts of Version 1, 
PEST++ Version 3 does not reproduce all the functionality  
of PEST but has increased the subset of features important for 
parameter estimation of large, highly parameterized problems. 
These enhancements follow the Version 1 design goal of  
being object orientated and suitable for future development. 
The primary enhancements are the following:

•	 The widely used Gauss-Marquardt-Levenberg method 
was added as a robust numerical solution technique 
for the least-squares problem. This is in contrast to 
PEST++ Version 1, which used a trust region based on 
the SVD rotation factor.

•	 A multi-threaded TCP/IP parallel run manager has 
been integrated into PEST++ Version 3 and is invoked 
similarly to the parallel run manager in BeoPEST 
(Schreüder, 2009). The new integrated run manager is 
called YAMR (“Yet Another run ManageR”) to distin-
guish its integrated capability from the independent or 
external parallel run manager capability provided by 
GENIE (Muffels and others, 2012) in PEST++ Ver-
sion 1. The GENIE parallel run manager is retained in 
PEST++ Version 3 and is updated to GENIE Version 2 
(appendix 2).

•	 The ability to dynamically adjust Tikhonov regulariza-
tion weight has been included in Version 3. The theo-
retical and implementation aspects are consistent with 
the most widely used settings available in the PEST 
software suite.

•	 Version 3 incorporates the most widely used subset of 
the of uncertainty analysis tools available in the PEST 
software suite. The integrated analyses are currently 
restricted to linear uncertainty methods, because 
these methods often constitute an acceptable tradeoff 
between theoretical rigor and computational burden for 
highly parameterized environmental models. 

•	 The program GSA++ for global sensitivity analysis 
is now included in the PEST++ software suite. This 
program implements two widely used approaches for 
estimating global sensitivity measures with a parallel 

run manager. GSA++ is fully compatible with the 
PEST/PEST++ file formats so that it can be easily 
and efficiently applied to existing projects. GSA++ is 
notable because it provides capability currently not 
available in the PEST software suite.

•	 Additional capabilities added to Version 3 include other 
user-friendly options such as the ability to restart a 
terminated run and enhanced output better suited for 
postprocessing. 

Similar to Version 1, all code necessary to produce a 
statically linked PEST++ executable has been consolidated 
into the Microsoft Visual Studio 2013 solution and Makefiles 
for the Windows and Linux environments, respectively.

References

Anderson, M.P., Woessner, W.W., and Hunt, R.J., 2015, 
Applied groundwater modeling—Simulation of flow and 
advective transport (2d ed.): Amsterdam, The Netherlands, 
Elsevier, 610 p.

Aster, R.C., and Thurber, C.H., 2013, Parameter estimation 
and inverse problems (2d ed.): Waltham, Mass., Academic 
Press, 360 p.

Beven, Keith, 2009, Environmental modelling—An uncertain 
future?: CRC Press, 328 p.

 Campolongo, F., Cariboni, J., Saltelli, A. and Schoutens, W., 
2005, Enhancing the Morris Method, in Hanson, K.M., 
and Hemez, F.M, eds., Sensitivity analysis of model 
output—Proceedings of the 4th International Conference 
on Sensitivity Analysis of Model Output (SAMO 2004) 
Santa Fe, New Mexico, March 8–11, 2004: Los Alamos 
National Laboratory Research Library, p. 369–379. 

Dahlstrom, D.J., and Carter, J.T.V., 2013, Inverse modeling 
with PEST++ and GENIE: Groundwater, v. 51, no. 2, 
p. 162–167, doi:10.1111/gwat.12021.

Dausman, A.M.; Doherty, John; Langevin, C.D.; and Sukop, 
M.C., 2010, quantifying data worth toward reducing predic-
tive uncertainty: Ground Water, v. 48, no. 5, p. 729–740.

Doherty, John, 2003, Ground water model calibration using 
pilot points and regularization: Ground Water, v. 41, no. 2, 
p. 170–177.

Doherty, J., 2010a, PEST, Model-independent parameter 
estimation—User manual (5th ed., with slight additions): 
Brisbane, Australia, Watermark Numerical Computing.

Doherty, J., 2010b, Addendum to the PEST manual: Brisbane, 
Australia, Watermark Numerical Computing.



10    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Doherty, J., 2011, Modeling—Picture perfect or abstract art?: 
Ground Water, v. 49, no. 4, p. 455, doi: 10.1111/j.1745-
6584.2011.00812.x.

Doherty, J.E., 2015, Calibration and uncertainty analysis for 
complex environmental models (PEST—Complete theory 
and what it means for modelling the real world): Brisbane, 
Australia, Watermark Numerical Computing.

Doherty, J.E., and Hunt, R.J., 2010, Approaches to highly 
parameterized inversion—A guide to using PEST for 
groundwater-model calibration: U.S. Geological Survey 
Scientific Investigations Report 2010–5169, 59 p.,  
http://pubs.usgs.gov/sir/2010/5169/.

Doherty, J.E, Hunt, R.J., and Tonkin, M.J., 2010, Approaches 
to highly parameterized inversion—A guide to using PEST 
for model-parameter and predictive-uncertainty analysis: 
U.S. Geological Survey Scientific Investigations Report 
2010–5211, 71 p., http://pubs.usgs.gov/sir/2010/5211/.

Golub, G.E., and Van Loan, C.F., 1996, Matrix computations 
(3d ed.): Baltimore, Md., Johns Hopkins University Press, 
694 p.

Fienen, M.N., Doherty, J.E., Hunt, R.J., and Reeves, H.W., 
2010, Using prediction uncertainty analysis to design  
hydrologic monitoring networks—Example applications 
from the Great Lakes Water Availability Pilot Project:  
U.S. Geological Survey Scientific Investigations Report 
2010–5159, 44 p., http://pubs.usgs.gov/sir/2010/5159/.

Hill, M.C., and Tiedeman, C.R., 2007, Effective groundwa-
ter model calibration—With analysis of data, sensitivities, 
predictions, and uncertainty: Hoboken, N.J., Wiley-Inter-
science, 455 p.

Hunt, R.J., 2012, Uncertainty, in Australian groundwater 
modelling guidelines: Canberra, Australia, National Water 
Commission, Waterlines Report Series No. 82, p. 92–105. 

Hunt, R.J.; Doherty, John; and Tonkin, M.J., 2007, Are models 
too simple? Arguments for increased parameterization: 
Ground Water, v. 45, no. 3, p. 254–262, doi: 10.1111/j.1745-
6584.2007.00316.x.

Hunt, R.J.; Luchette, Joseph; Schreüder, W.A.; Rumbaugh, 
J.O.; Doherty, John; Tonkin, M.J.; and Rumbaugh, D.B., 
2010, Using a cloud to replenish parched groundwater 
modeling efforts: Ground Water, v. 48, no. 3, p. 360–365, 
doi:10.1111/j.1745-6584.2010.00699.x.

Kalman, D., 1996, A singularly valuable decomposition—The 
SVD of a matrix: College Mathematics Journal, v. 27, no. 1, 
p. 2–23.

Larsen, R.M., 1998, Lanczos bidiagonalization with reorthogo- 
nalization: Aarhus, Denmark, Aarhus University, Computer 
Science Department, 90 p., accessed December 6, 2011, at 
http://soi.stanford.edu/~rmunk/PROPACK/paper.pdf.

Larsen, R.M., 2001, Combining implicit restart and partial 
reorthogonalization in Lanczos bidiagonalization:  
Stanford University, notes from a presentation given  
in April 2001, accessed December 6, 2011, at  
http://soi.stanford.edu/~rmunk/PROPACK/talk.rev3.pdf.

Moore, Catherine, and Doherty, John, 2005, The role of the 
calibration process in reducing model predictive error: 
Water Resources Research, v. 41, no. 5, W05020, 14 p., 
doi:10.1029/2004WR003501.

Morris, M.D., 1991, Factorial sampling plans for preliminary 
computational experiments: Technometrics, v. 33, no. 2,  
p. 161–174.

Muffels, C.T., Schreüder, W.A., Doherty, J.E., Karanovic, 
M., Tonkin, M.J., Hunt, R.J., and Welter, D.E., 2012, 
Approaches in highly parameterized inversion—GENIE,  
A general model-independent TCP/IP run manager:  
U.S. Geological Survey Techniques and Methods, book 7, 
chap. C6, 26 p., http://pubs.usgs.gov/tm/tm7c6/.

Oliver, D.S., Reynolds A.C., and Liu, Ning, 2008, Inverse 
theory for petroleum reservoir characterization and  
history matching (1st ed.): Cambridge, UK, Cambridge 
University Press, 380 p., http://dx.doi.org/10.1017/
CBO9780511535642.

Oreskes, N., Shrader-Frechette, K., and Belitz, K., 1994,  
Verification, validation, and confirmation of numerical  
models in the earth sciences: Science, v. 263, p. 641–646.

Pilkey, O.H., and Pilkey-Jarvis, L., 2007, Useless arithmetic—
Why environmental scientists can’t predict the future:  
New York, Columbia University Press, 230 p.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., 
Cariboni, J., Gatelli, D. Saisana, M., and Tarantola, S.,  
2008, Global sensitivity analysis—The primer: Chichester, 
England, John Wiley & Sons Ltd., 292 p.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M., 
2004, Sensitivity analysis in practice—A guide to assessing 
scientific models: West Sussex, England, John Wiley & 
Sons Ltd., 219 p.

Schreüder, W.A., 2009, Running BeoPEST, in Tonkin, M.J., 
ed., Proceedings, PEST Conference 2009, Potomac, Md., 
November 1–3, 2009: Bethesda, Md., S.S. Papadopulos and 
Associates, p. 228–240.

http://pubs.usgs.gov/sir/2010/5169/
http://pubs.usgs.gov/sir/2010/5211/
http://pubs.usgs.gov/sir/2010/5159/
http://soi.stanford.edu/~rmunk/PROPACK/paper.pdf
http://soi.stanford.edu/~rmunk/PROPACK/talk.rev3.pdf
http://pubs.usgs.gov/tm/tm7c6/
http://dx.doi.org/10.1017/CBO9780511535642
http://dx.doi.org/10.1017/CBO9780511535642


﻿    11

Sin, G., and Gernaey, K., 2009, Improving the Morris method 
for sensitivity analysis by scaling the elementary effects: 
Computer Aided Chemical Engineering, v. 26, p. 925–930.

Sobol, I.M., 2001, Global sensitivity indices for nonlinear 
mathematical models and their Monte Carlo estimates: Math-
ematics and Computers in Simulation, v. 55, p. 271–280.

Tikhonov, A.N., and Arsenin, V.Y., 1977, Solutions of ill-
posed problems: New York, Halstead Press-Wiley, 258 p.

Tonkin, M.J., and Doherty, John, 2005, A hybrid regularized 
inversion methodology for highly parameterized models: 
Water Resources Research, v. 41, no. 10, W10412, 16 p., 
doi:10.1029/2005WR003995. 

Vogel, C.R., 2002, Computational methods for inverse prob-
lems: Philadelphia, Pa., Society for Industrial and Applied 
Mathematics, 183 p.

Welter, D.E., Doherty, J.E., Hunt, R.J., Muffels, C.T., 
Tonkin, M.J., and Schreüder, W.A., 2012, Approaches in 
highly parameterized inversion—PEST++, a Parameter 
ESTimation code optimized for large environmental models: 
U.S. Geological Survey Techniques and Methods, book 7, 
chap. C5, 47 p., http://pubs.usgs.gov/tm/tm7c5/.

White, J.T., Doherty, J.E. and Hughes, J.D., 2014, Quantify-
ing the predictive consequences of model error with linear 
subspace analysis: Water Resources Research, v. 50, no. 2, 
p. 1152–1173, doi:10.1002/2013WR014767.

http://orbit.dtu.dk/en/persons/gurkan-sin%284c35984e-28c5-43c9-9a4b-c7ac589bf597%29.html
http://orbit.dtu.dk/en/persons/krist-gernaey%28cc1a5662-82ba-4420-96be-f2a9d371b22d%29.html
http://orbit.dtu.dk/en/publications/improving-the-morris-method-for-sensitivity-analysis-by-scaling-the-elementary-effects%283bfe5cbe-b369-40c8-915b-ade7e802cae0%29.html
http://orbit.dtu.dk/en/publications/improving-the-morris-method-for-sensitivity-analysis-by-scaling-the-elementary-effects%283bfe5cbe-b369-40c8-915b-ade7e802cae0%29.html
http://pubs.usgs.gov/tm/tm7c5/




Appendixes 

Appendix 1.  PEST++ Version 3 Input Instructions................................................................................14
Appendix 2.  GENIE Version 2, A General Model-Independent TCP/IP Run Manager ..................24
Appendix 3.  Example Problem Using GML and Tikhonov Regularization........................................38
Appendix 4.  Linear Uncertainty Methods Included in Version 3.......................................................41
Appendix 5.  Example Problems Using PEST++ Version 3 Linear Uncertainty Capabilities...........44
Appendix 6.  GSA++ Implementation and Use.......................................................................................48
Appendix 7.  Example Problem Using GSA++ and the Method of Morris.........................................50
Appendix 8.  Example Problem Using GSA++ and the Method of Sobol...........................................53



14    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Appendix 1.  PEST++ Version 3 Input Instructions

The PEST++ Version 3 Visual Studio solution, as well as source code and executable as documented in this report, are avail-
able for download at http://wi.water.usgs.gov/models/pestplusplus/. More recent releases of PEST++, including any enhance-
ments made since the publication of this report, will be available at http://www.pestpp.org/. The most current development 
version of the source code is maintained an online open-source version-control repository at https://github.com/dwelter/pestpp/.

In order to facilitate use by experienced PEST users, PEST++ adopts many of the conventions, variable names, and output 
formats of the original PEST (Doherty, 2010). The intent is to make PEST++ input and output compatible with the large number 
of existing PEST utilities (for example, Doherty, 2011a,b).

The PEST++ Command Line

 PEST++ supports various command line options that control run manager invocation as well as restart options.  
PEST++ Version 3 supports three run mangers to complete the forward model runs: (1) Yet Another Run ManageR (YAMR), (2) 
GENIE, and (3) a serial run manager. YAMR and GENIE are sophisticated parallel run managers capable of performing paral-
lel runs on a single machine or over a TCP/IP-enabled network. YAMR is integrated into PEST++ and is invoked similarly to 
BeoPEST (Schreüder, 2009). Although PEST++ provides an interface to the GENIE run manager, this interface relies on the 
external GMAN and GSLAVE programs (Muffles and others, 2012) to manage and perform the actual model runs. The serial run 
manager provides a simple alternative that mimics the functionality currently in PEST. 

In addition to run manager specification, the command line also controls the restart functionality of PEST++. 
The various options related to run manger and restart control are summarized in table 1–1, where /j and /r are optional com-

mands; /j invokes Jacobian reuse for the first iteration, and /r invokes restart. When PEST++ is run with the serial run manager or 
as the master node with a parallel run manager, it now supports the /j option to reuse an existing binary Jacobian file rather than 
computing the Jacobian for the first iteration. Note that PEST++ can be restarted by using a Jacobian computed by PEST as long 
as the PEST++ “autonorm” option is not invoked in the control file. 

Table 1–1.  Summary of PEST++ command line options.

Run Manger / Mode Command

Serial Run Manager / Master pest++.exe <casename>.pst [/j] [/r]

YAMR / Master pest++.exe <casename>.pst /H 
:<port> [/j] [/r]

YAMR / Worker Node pest++.exe <casename>.pst /H 
<hostname>:<port>

GENIE / Master pest++.exe <casename>.pst /G <GENIE 
Master hostname>:<port> [/j] [/r]

GENIE / Master genie.exe /port <port>

GENIE / Worker Node genie.exe /ip <GENIE Master IP  
address> /port <port>

The Pest Control File

For ease of reference, variables within the PEST control file are listed on the next three pages, and the variables used by 
PEST++ are shaded. PEST++ relies on the structure of the PEST control file (Doherty, 2010) to read the necessary algorithmic 
parameters and reads only those algorithmic parameters that are needed. For example, there is no need to read the NOBS vari-
able because each line in the “observation data” section of the PEST control file specifies an observation; however, it is neces-
sary to read the NPAR variable to know where specification of parameters ends and information on tied parameters begins. 
This list is followed by short explanation of each variable used by PEST++.

http://wi.water.usgs.gov/models/pestplusplus/
http://www.pestpp.org/
https://github.com/dwelter/pestpp/


Appendix 1    15

pcf

* control data

RSTFLE PESTMODE

NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]

NTPLFLE NINSFLE PRECIS DPOINT [NUMCOM JACFILE MESSFILE]

RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE] [LAMFORGIVE]

RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND] [ABSPARMAX]

PHIREDSWH [NOPTSWITCH] [SPLITSWH] [DOAUI] [DOSENREUSE]

NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN] 

[PHIABANDON]

ICOV ICOR IEIG [IRES] [JCOSAVE] [VERBOSEREC] [JCOSAVEITN] [REISAVEITN] [PARSAVEITN]

* automatic user intervention

MAXAUI AUISTARTOPT NOAUIPHIRAT AUIRESTITN

AUISENSRAT AUIHOLDMAXCHG AUINUMFREE

AUIPHIRATSUF AUIPHIRATACCEPT NAUINOACCEPT

* singular value decomposition

SVDMODE

MAXSING EIGTHRESH

EIGWRITE

* lsqr

LSQRMODE

LSQR_ATOL LSQR_BTOL LSQR_CONLIM LSQR_ITNLIM

LSQRWRITE

* svd assist

BASEPESTFILE

BASEJACFILE

SVDA_MULBPA SVDA_SCALADJ SVDA_EXTSUPER SVDA_SUPDERCALC SVDA_PAR_EXCL

* sensitivity reuse

SENRELTHRESH  SENMAXREUSE

SENALLCALCINT  SENPREDWEIGHT  SENPIEXCLUDE

* parameter groups

PARGPN MEINCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD [SPLITTHRESH SPLITRELDIFF 

SPLITACTION]

(one such line for each of NPARGP parameter groups)



16    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

* parameter data

PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGPSCALE OFFSET DERCOM

(one such line for each of NPAR parameters)

PARNME PARTIED

(one such line for each tied parameter)

* observation groups

OBGNME [GTARG] [COVFLE]

(one such line for each of NOBSGP observation group)

* observation data

OBSNME OBSVAL WEIGHT OBGNME

(one such line for each of NOBS observations)

* derivatives command line

DERCOMLINE

EXTDERFLE

* model command line

COMLINE

(one such line for each of NUMCOM command lines)

* model input/output

TEMPFLE INFLE

(one such line for each of NTPLFLE template files)

INSFLE OUTFLE

(one such line for each of NINSLFE instruction files)

* prior information

PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME

(one such line for each of NPRIOR articles of prior information)

* predictive analysis

NPREDMAXMIN [PREDNOISE]

PD0 PD1 PD2

ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH

ABSPREDSWH RELPREDSWH

NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP 

* regularisation

PHIMLIM  PHIMACCEPT [FRACPHIM] [MEMSAVE] 

WFINIT  WFMIN  WFMAX  [LINREG][REGCONTINUE]



Appendix 1    17

WFFAC  WFTOL IREGADJ [NOPTREGADJ REGWEIGHTRAT [REGSINGTHRESH]]

* pareto

PARETO_OBSGROUP  

PARETO_WTFAC_START PARETO_WTFAC_FIN NUM_WTFAC_INC  

NUM_ITER_START NUM_ITER_GEN NUM_ITER_FIN

ALT_TERM

OBS_TERM ABOVE_OR_BELOW OBS_THRESH NUM_ITER_THRESH (only if ALT_TERM is non-zero)

NOBS_REPORT

OBS_REPORT_1 OBS_REPORT_2 OBS_REPORT_3..(NOBS_REPORT items)

++# This line is a comment as are all lines that begin with “++#” 

++# PEST++ input is parsed using key words that can be specified in any order

++ MAX_N_SUPER(20)  SUPER_EIGTHRES(1.0E-8)

++ N_ITER_BASE(1)  N_ITER_SUPER(3)

++ SVD_PACK(PROPACK)   AUTO_NORM(4)

++  LAMBDAS(0.1,1,10,100,1000)

++ MAX_SUPER_FRZ_ITER(5)

++ MAX_REG_ITER(20)

++ MAT_INV(inv_type)

++ SUPER_RELPARMAX(sup_relpar_max)

++ MAX_RUN_FAIL(3)

++ ITERATION_SUMMARY(TRUE)

++ DER_FORGIVE(TRUE)

++ UNCERTAINTY(TRUE) 

++ FORECASTS(pred_1,pred_2,pred_3)

++ PARAMETER_COVARIANCE(prior_parameter.cov)

++ OVERDUE_RESCHED_FAC(2.0)

++ OVERDUE_GIVEUP_FAC(10.0)



18    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Variables in “control data” section of PEST control file.

Variable Type Values Description

RSTFLE Text “restart” or “norestart” Instructs PEST whether to write restart data.
PESTMODE Text “estimation”,  

“prediction”,  
“regularisation”,  
“pareto”

PEST’s mode of operation.

NPAR Integer greater than 0 Number of parameters.
NUMCOM Integer optional; greater than zero Number of command lines used to run model.
RELPARMAX Real greater than 0 Parameter relative change limit.
FACPARMAX Real greater than 1 Parameter factor change limit.
FACORIG Real between 0 and 1 Minimum fraction of original parameter value in evaluating 

relative change.
PHIREDSWH Real between 0 and 1 Sets objective function change for introduction of central 

derivatives.
NOPTMAX Integer −2, −1, 0, or any number  

greater than 0
Number of optimization iterations.

PHIREDSTP Real greater than 0 Relative objective function reduction triggering termination.
NPHISTP Integer greater than 0 Number of successive iterations over which PHIREDSTP 

applies.
NPHINORED Integer greater than 0 Number of iterations since last drop in objective function to 

trigger termination.
RELPARSTP Real greater than 0 Maximum relative parameter change triggering termination.
NRELPAR Integer greater than 0 Number of successive iterations over which RELPARSTP 

applies.

Variables in optional “singular value decomposition” section of PEST control file.

Variable Type Values Description

MAXSING Integer greater than 0 Number of singular values at which truncation occurs.
EIGTHRESH Real 0 or greater, but less than 1 Eigenvalue ratio threshold for truncation.
EIGWRITE Integer 0 or 1 Determines content of SVD output file.



Appendix 1    19

Variables required for each parameter group in “parameter groups” section of PEST control file.

Variable Type Values Description

PARGPNME Text 12 characters or less Parameter group name.
INCTYP Text “relative”,  

“absolute”,  
“rel_to_max”

Method by which parameter increments are calculated.

DERINC Real greater than 0 Absolute or relative parameter increment.
DERINCLB Real 0 or greater Absolute lower bound of relative parameter increment.
FORCEN Text “switch”,  

“always_2”,  
“always_3”,  
“switch_5”,  
“always_5”

Determines whether central derivatives calculation is  
undertaken and whether three points or four points are  
employed in central derivatives calculation.

DERINCMUL Real greater than 0 Derivative increment multiplier when undertaking central 
derivatives calculation.

DERMTHD Text “parabolic”,  
“outside_pts”,  
“best_fit”,  
“minvar”,  
“maxprec”

Method of central derivatives calculation. PEST++ V3 only 
supports “parabolic.”

Variables required for each parameter in “parameter data” section of PEST control file.

Variable Type Values Description

PARNME Text 12 characters or less Parameter name.
PARTRANS Text “log”,  

“none”,  
“fixed”,  
“tied”

Parameter transformation.

PARCHGLIM Text “relative”,  
“factor”,  
or absolute(n)

Type of parameter change limit.

PARVAL1 Real any real number Initial parameter value.
PARLBND Real less than or equal to PARVAL1 Parameter lower bound.
PARUBND Real greater than or equal to PARVAL1 Parameter upper bound.
PARGP Text 12 characters or less Parameter group name.
SCALE Real any number other than 0 Multiplication factor for parameter.
OFFSET Real any number Number to add to parameter.
DERCOM Integer 0 or greater Model command line used in computing parameter increments.
PARTIED Text 12 characters or less The name of the parameter to which another parameter is tied.



20    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Variables required for each observation group in “observation groups” section of PEST control file.

Variable Type Values Description

OBGNME Text 12 characters or less Observation group name.

Variables required for each observation in “observation data” section of PEST control file

Variable Type Values Description

OBSNME Text 20 characters or less Observation name.
OBSVAL Real any number Measured value of observation.
WEIGHT Real 0 or greater Observation weight.
OBGNME Text 12 characters or less Observation group to which observation assigned.

Variables in “model command line” section of PEST control file.

Variable Type Values Description

COMLINE Text system command Command to run model.

Variables in “model input/output” section of PEST control file.

Variable Type Values Description

TEMPFLE Text a filename Template file.
INFLE Text a filename Model input file.
INSFLE Text a filename Instruction file.
OUTFLE Text a filename Model output file.

Variables in “prior information” section of PEST control file.

Variable Type Values Description

PILBL Text 20 characters or less Name of prior information equation.
PIFAC Text real number other than 0 Parameter value factor.
PARNME Text 12 characters or less Parameter name.
PIVAL Real any number “Observed value” of prior information.
WEIGHT Real 0 or greater Prior information weight.
OBGNME Text 12 characters or less Observation group name.



Appendix 1    21

Variables in optional “regularization” section of PEST control file.

Variable Type Values Description

PHIMLIM Real greater than 0 Target measurement objective function.
PHIMACCEPT Real greater than PHIMLIM Acceptable measurement objective function.
FRACPHIM Real optional; 0 or greater,  

but less than 1
Set target measurement objective function at this fraction of 

current measurement objective function.
MEMSAVE Text “memsave” or “nomemsave” Activate conservation of memory at cost of execution speed 

and quantity of model output.
WFINIT Real greater than 0 Initial regularization weight factor.
WFMIN Real greater than 0 Minimum regularization weight factor.
WFMAX Real greater than WFMAX Maximum regularization weight factor.
LINREG Text “linreg” or “nonlinreg” Informs PEST that all regularization constraints are linear.
REGCONTINUE Text “continue” or “nocontinue” Instructs PEST to continue minimizing regularization objective 

function even if measurement objective function is less than 
PHIMLIM.

WFFAC Real greater than 1 Regularization weight factor adjustment factor.
WFTOL Real greater than 0 Convergence criterion for regularization weight factor.
IREGADJ Integer 0, 1, 2, 3, 4, or 5 Instructs PEST to perform inter-regularization group weight 

factor adjustment, or to compute new relative weights for 
regularization observations and prior information equations.

NOPTREGADJ Integer 1 or greater The optimization iteration interval for recalculation of regular-
ization weights if IREGADJ is 4 or 5.

REGWEIGHTRAT Real absolute value of 1 or greater The ratio of highest to lowest regularization weight; spread is 
logarithmic with null space projection if set negative.

REGSINGTHRESH Real less than 1 and greater than 0 Singular value of xtqx (as factor of highest singular value) at 
which use of higher regularization weights commences if 
IREGADJ is set to 5.



22    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Table 1–2.  PEST++ optional arguments.—Continued

Variable Type Values Description

N_ITER_BASE

N_ITER_SUPER

SUPER_EIGTHRES

MAX_N_SUPER

MAX_REG_ITER

MAX_SUPER_FRZ_ITER

AUTO_NORM(4) 

SVD_PACK(PROPACK)

MAT_INV

SUPER_RELPARMAX

Integer

Integer

Real

Integer

Integer

Integer

Integer 

String

String

Real

1 or greater

0 or greater

any positive number  
(typically should be greater 
than 1.0E−7)

integer between 1 and the 
minimum either of maximum 
number of parameters or the 
maximum number of  
observations

integer greater than 1;  
default is 20

1 or greater; default value is 5

1 or greater; default is no scaling

“JACOBI” or “PROPACK; 
default is “JACOBI”

“Q1/2J” or “JTQJ”; default is 
“JTQJ”

greater than 0; default is 0.1

Number of base parameter iterations  
performed for each superparameter iteration.

Number of superparameter iterations performed for 
each base parameter iteration.

PEST++ will not include any superparameters whose 
ratio with the largest superparameter is less than 
this ratio. This value can as small as zero if the 
user wants to specify the number of superparam-
eters solely with MAX_N_SUPER. Because 
PEST++uses SVD on the superparameter problem, 
a low value for this SUPER_EIGTHRES will not 
adversely impact the stability of the solution.

Maximum number of superparameters to use in the 
superparameter iterations.

Provides a limit on the maximum the number of 
iterations used to compute dynamic regularization 
weights when PEST++ is run in regularization 
mode. Setting this value too large can result in  
appreciable slowdown, especially in early iterations.

Maximum number of times a superparameter  
iteration will try to freeze any parameters that go 
out of bounds and try to recompute a Jacobian.  
If the Jacobian cannot be computed in  
MAX_SUPER_FRZ_ITER iterations, PEST++ 
will switch to a base parameter iteration.

Automatically normalizes the sensitivities by assum-
ing there are X standard deviations between the 
upper and lower parameter bounds, where X is the 
value passed with the AUTO_NORM variable (4 is 
shown). 

Flag to use PROPACK to compute SVD factoriza-
tions. “JACOBI” is the SVD provided by the 
EIGEN library; “PROPACK” is the iterative SVD 
factorization suitable for large problems.

Flag to specify the formulation of the normal equation. 
This option is forced to “Q1/2J” when PROPACK 
is used.

Parameter relative change limit for superparameters.

PEST++ Additions to the PEST Control File

Information in the PEST control file specific to PEST++ is marked by lines starting with “++”. Although the examples 
provided in this report place all PEST++ input in a single section at the end of the PEST control file, this is not a requirement. 
This information does not need to be contiguous and can reside anywhere in the file. Lines starting with “++#” are considered 
comments and are ignored by PEST and PEST++.

Unlike the rest of the PEST control file, PEST++ uses keywords rather than location to specify variables. Lines are parsed 
using the space, tab, and parenthesis characters as separators. Although one can use parentheses to more clearly delineate the 
values assigned to the variable (for example, ++N_ITER_BASE(1) specifies N_ITER_BASE=1), these could just as well be 
replaced by white spaces (for example, ++N_ITER_BASE 1 also specifies N_ITER_BASE=1). Table 1–2 includes a listing and 
explanation of the permissible PEST++ keywords.



Appendix 1    23

Table 1–2.   PEST++ optional arguments.—Continued

Variable Type Values Description

MAX_RUN_FAIL Integer greater than 0; default is 3 Maximum times the run manager will try to rerun a 
failed run.

LAMBDAS Comma-
separated 
list of 
reals

greater than 0; default is 
(0.01,1,10,100,1000)

Specify the standard values of lambda to be used each 
iteration. 

ITERATION_SUMMARY Boolean “TRUE” or “FALSE”; default is 
“TRUE”

Setting this to “TRUE” will save a summary of each 
iteration to a series of comma-separated files for 
easy plotting.

DER_FORGIVE Boolean “TRUE” or “FALSE”; default is 
“TRUE”

Setting this to “FALSE” will turn off derivative 
forgive and cause PEST++ to terminate if a run fails 
while computing the Jacobian.

UNCERTAINTY Boolean “TRUE” or “FALSE”; default is 
“TRUE”

A flag to disable uncertainty analyses.

FORECASTS Comma 
separated 
list of 
text

Observation names in the con-
trol file; default is none

The names of observations to treat as forecasts in the 
uncertainty analyses. 

PARAMETER_COVARI-
ANCE

Text Filename; default is none The name of a PEST-compatible ASCII matrix or 
uncertainty file to use as the prior parameter covari-
ance matrix. 

OVERDUE_RESCHED_FAC Real greater than 1.0; default is 1.15 YAMR specific command.  If a model run  takes 
longer than (OVERDUE_RESCHED_FAC * the 
average runtime) it will rescheduled on another 
node if one is available.

OVERDUE_GIVEUP_FAC Real greater than 1.0; default is 100.0 YAMR specific command.  If a model run has been 
running longer than (OVERDUE_GIVEUP_FAC * 
the average runtime) it will canceled.

References

Doherty, John, 2010, Addendum to the PEST manual: Brisbane, Australia, Watermark Numerical Computing.

Doherty, John, 2011a, PEST surface water utilities: Brisbane, Australia, Watermark Numerical Computing.

Doherty, John, 2011b, Groundwater data utilities: Brisbane, Australia, Watermark Numerical Computing.

Muffels, C.T., Schreüder, W.A., Doherty, J.E., Karanovic, M., Tonkin, M.J., Hunt, R.J., and Welter, D.E., 2012, Approaches in 
highly parameterized inversion––GENIE, A general model-independent TCP/IP run manager: U.S. Geological Survey  
Techniques and Methods, book 7, chap. C6, 26 p., http://pubs.usgs.gov/tm/tm7c6/.

Schreüder, W.A., 2009, Running BeoPEST, in Tonkin, M.J., ed. Proceedings, PEST Conference 2009, Potomac, Md.,  
November 1–3, 2009: Bethesda, Md., S.S. Papadopulos and Associates, p. 228–240.

http://pubs.usgs.gov/tm/tm7c6/


24    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Appendix 2.  GENIE Version 2, A General Model-Independent TCP/IP Run Manager 

By Christopher T. Muffels,1 Douglas A. Hayes,1 Matthew J. Tonkin,1 and Randall J. Hunt2

Preface

GENIE Version 1 was documented in—
Muffels, C.T., Schreüder, W.A., Doherty, J.E., Karanovic, M., Tonkin, M.J., Hunt, R.J., and Welter, D.E., 2012, Approaches  

in highly parameterized inversion—GENIE, a general model-independent TCP/IP run manager: U.S. Geological Survey  
Techniques and Methods, book 7, chap. C6, 26 p., http://pubs.usgs.gov/tm/tm7c6/.

Capabilities of GENIE Version 1 have been expanded, called Version 2. This appendix documents the Version 2  
enhancements. The suggested citation for Version 2 is—
Muffels, C.T., Hayes, D.A., Tonkin, M.J., and Hunt, R.J., 2015, GENIE Version 2, A general model-independent TCP/IP run 

manager, appendix 2 of  Welter, D.E., White, J.T., Hunt, R.J., and Doherty, J.E., 2015, PEST++ Version 3—A Parameter 
ESTimation and uncertainty analysis software suite optimized for large environmental models: U.S. Geological Survey  
Techniques and Methods, book 7, chap. C12, 54 p.

Introduction

GENIE is a model-independent suite of programs external to PEST++ that can be used to generally distribute, manage, and 
execute multiple model runs via the TCP/IP network infrastructure. The suite consists of a Run Manager, a Run Executer, and a 
set of routines that can be compiled as part of a program and used to exchange model runs with the Run Manager. Because com-
munication is via a standard protocol (TCP/IP), any computer connected to the Internet can serve in any of the capacities offered 
by this suite. Model independence is consistent with the existing template and instruction file protocols of the widely used PEST 
and PEST++ parameter estimation programs. GENIE was originally documented by Muffels and others (2012).

GENIE is a single program; the Run Manager and Run Executer are distinguished at runtime by using a command line 
switch. The program is intended to be stand-alone and does not require modification by users. Users need only modify their 
programs to call the provided integration routines that are a conduit/entry point to GENIE, which in turn handles all exchanges 
regarding the model runs. The Run Manager receives runs and distributes them to the different client computers, where they are 
executed (fig. 2–1). 

Acknowledgments

Support for GENIE is also provided by the California Department of Water Resources (CDWR).

Limitations

•	 Unlike BeoPEST of Schreüder (2009), which includes MPI and TCP/IP communication, GENIE supports only TCP/IP 
communication.

•	 Support for IP v6 is available but is not tested in Version 2. 

•	 Although this program has been used by the U.S. Geological Survey (USGS), no warranty, expressed or implied, is made 
by the USGS or the U.S. Government as to the accuracy and functioning of the program and related program material 
nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connec-
tion therewith.

2 U.S. Geological Survey.
1 S.S. Papadopulos and Associates, Inc. 

http://pubs.usgs.gov/tm/tm7c6/


Appendix 2    25

Compiled Together

GENIE Interface
CLIENT
Exchanges runs and results with 
the calling program and the Run 
Manager.

thread 
synchronization

global message 
queue

User’s Calling Program
Modified to prepare runs (including 
space for the results) in the  
required format and pass them to 
the GENIE_INTERFACE routine.

TCP/IP 
Communication

GENIE Run Manager
HOST
Manages and exchanges runs 
with the calling program and any 
connected client-computers.

GENIE Run Executer
CLIENT
Executes and model 
runs received.

GENIE Run Executer
CLIENT
Executes and model 
runs received.

. . .
GENIE Run Executer
CLIENT
Executes and model 
runs received.

Figure 2–1.   Flow of communication between the different components of the GENIE suite.

Updates to the Run Manager

Command Line Interaction
An interactive feature is provided that allows users to query different aspects of the Run Manager state or give it commands 

to perform. For example, it can be queried for a list of the connected clients or a list of the outstanding runs or can be instructed 
to terminate a specific client or model run. A complete list of the available queries and commands is presented in the table below. 
The user can enter “genie ?” at the command prompt for a list of available queries and actions.

Command Arguments Description

quit Terminate Run Manager and any connected clients.
list clients

disconnects
runs
runs_inprogress
runs_failed

Lists to the screen any members belonging to the requested argument.

end_client all
client_name

Terminates connection with all the connected clients, or just the sup-
plied client.

end_run all
client_name

Terminates the run currently being executed by all clients, or just on 
the supplied client.

Termination
The Run Manager remains active unless instructed to terminate. The termination command can be provided from the calling 

program via the Interface or at the GENIE command prompt. The termination command from the Interface is only acknowledged 
if the “quitwhendone” option is specified at the command line. The default is to keep GENIE alive (and any connected clients) so 
that a calling program can be started and restarted as needed without having to restart the Run Manager or any clients.



Input Instructions

The Run Manager is started by executing the genie.exe file. This file can be copied to the desktop (or a shortcut to another 
folder that contains it) and simply double-clicked to start actions most easily accessed when running models over a local network 
only. In the event slave computers are to be used across the Internet, then optional command line switches may be required:

Switch Description

/ip Used to specify an IP address to use for communication. Only IP v4 has been tested to date.
Example: /ip 192.168.0.1

/port Used to specify a PORT to use for communication. This switch is most likely to be required when communicating with 
slave computers over the Internet. In most cases a specific PORT must be opened in the firewall to allow Internet com-
munication. This switch is used to provide that PORT. Viable ports are between 1024 and 65535.

Example: /port 4040
/runtime The expected time (in minutes) of a model run. Used by the load balancer: if the execution time of a model run exceeds 

RUNTIME on a client, it will be started again on an idle client. If this switch is not supplied, the default is 10 minutes.
Example: /runtime 0.5

/nfail The number of times a failed model run is retried before the Run Manager returns the run as failed to the calling program. If 
this switch is not supplied, the default is 3.

Example: /nfail 
/quitwhendone If specified, GENIE will terminate itself and any connected clients when finished.

 
.

Updates to the Run Executer (Worker Node)

Input Instructions
The Run Executer is started by executing the genie.exe file at the command line with the following, case-insensitive, 

required switches:

Switch Description

/host Used to specify the socket the Run Manager is listening on.
Example: /host 192.168.0.1:4040

/name Used to uniquely identify the slave computer to the Run Manager.
Example: /name S1

The switches can be specified in any order, for example:
genie /interval 1.0 /console on /name S-1 /host 192.168.0.1:4040

The following table lists optional switches that can be used to define a specific socket for the Run Executer to communicate on.

26    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Switch Description

/ip Used to specify an IP address to use for communication. Only IP v4 is supported in version 1.0.
Example: /ip 192.168.0.1

/port Used to specify a PORT to use for communication. This switch is most likely to be required when communicating with slave  
computers over the Internet. In most cases a specific PORT must be opened in the firewall to allow Internet communication for 
the Run Manager. This switch is used to provide that PORT to the Run Manager. Viable ports are between 1024 and 65535.

Example: /port 4040

/interval The number of seconds the Run Executer is idle before checking on a run. For long model run times, this number can be higher.  
If this number is unnecessarily low, the Run Executer will consume more CPU resources than it should. For short run times it is 
important to make this number small (0.1). The default is 10 seconds.

Example: /interval 0.1

/console Indicates whether the RUN should be executed in a visible console window or not. This switch can be either ON, OFF, or PIPE. 
If it is ON, then the RUN console is visible. If PIPE is specified, the STDERR and STDOUT of the run process are piped to the 
GENIE console window. The default is OFF.

Example: /console ON  



Appendix 2    27

Updates to the Interface Routines

The Interface routine required by the calling program (that is, PPEST or PEST++) to exchange information with the Run 
Manager is a threaded function operating in parallel with the outside program. Thus, the calling program never loses focus, and 
it and the Interface operate (somewhat) independently of each other, giving control to the outside program developer. The call-
ing program is able to make decisions as results come in and communicate new directives to the Interface as needed. Effort was 
made to make the implementation of the Interface in the calling program straightforward. To this end, self-evident routine names 
were used, and the threading and TCP/IP communication programming is “hidden” from uninterested users.

The outside program needs to prepare the model run information in the format required by GENIE and then, using the 
available function calls, exchange runs with the Interface, which in turn forwards the requests onto the GENIE Run Manager. 
The Interface routines, listed in the table below, are available in the genie_interface.lib library file that can be compiled against 
statically from the calling program. The routines are written in C++ but contain the necessary external functions for compiling 
with Fortran.

Function Description

genie_interface_v2(char *ip_port) Initializes the Interface, which makes first contact with the GENIE Run 
Manager. IP_PORT is the socket required to connect to the GENIE 
Run Manager.

genie_interface_v2_terminate() Terminates both the Interface and Receiver threads, and disconnects from 
the GENIE Run Manager and cleans up any shared global memory.

initialize_synchronization_variables() Initializes the different synchronization variables utilized by the Interface 
and calling program.

destroy_synchronization_variables() Properly disposes of the synchronization variables.
signout_response_mutex() Signs out the mutex for the shared message Response queue. This mutex 

is used to guard the queue to ensure it is manipulated by only one 
thread at a time.

signin_response_mutex() Signs in the mutex for the shared message Response queue.
signout_cp_mutex() Signs out the mutex controlling access to the condition variable the  

calling program is blocking on.
signin_cp_mutex Signs in the mutex controlling access to the calling program condition 

variable.
wait_for_signal_from_receiver() Blocks (indefinitely) until a message is returned by the Receiver thread.
timedwait_for_signal_from_receiver() Blocks, for a limited time or until a message is returned by the Receiver 

thread.
signal_interface() Signals the Interface that there is a message to be sent to the GENIE Run 

Manager.
add_message_to_request_queue(cls_message 

*msg)
Provides a (single) run to the Interface after it has been converted to a 

message. Used if the calling program is C++ based. Note: a run is  
easily converted to a message by using the appropriate constructor.

give_fortran_run_to_interface(int *runid,                                
int *nexec, char *_execnams, int *npar, int 
*nobs, char *_apar, char *_aobs, double 
*pval, double *oval, int *ntpl, int *nins, char 
*_tplfle, char *_infle, char *_insfle,  char 
*_oufle)

Used to provide a (single) run to the Interface when called from a 
Fortran-based calling program. See table 2–2 for a description of the 
variables passed to this function.

get_number_of_responses() Returns the number of responses (received by Receiver thread) in the 
global queue.

fortran_get_result_from_response_queue(int 
*runid, int *npar, int *nobs, double *pval, 
double *oval)

Gets a single response from the global queue.

reset_write_counter()
report_runid_to_console(int *pid)
report_runid_to_log(int *pid)

These routines can be used to write a particle ID to either the console  
or the GENIE_Interface_Misc log file. Particle IDs are written  
20 per line, reset_write_counter resets the counter used to track how 
many IDs were written.



28    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Figure 2–2 conceptualizes the use and interaction of a calling program with the GENIE Interface. Because the Interface is 
started as a thread from within the calling program, thread synchronization (mutexes and condition variables) and shared global 
queues are used to exchange messages between the two. 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

  
 

 

 

 

 
 

 
 

Calling Program
(primary thread)

Genie Interface
(thread in calling program)

Communicates with calling program through shared (global) memory and
synchronization.

Shared (global) message queue: Using the “message” protocol
of GENIE the Interface exchanges messages with the calling 
program.

Synchronization via condition variable: both the calling program
and the Interface block (on unique condition variables) until a 
message is to be exchanged (sent or received).

Connects to the GENIE Run Manager via TCP/IP and 
communicates any messages from the calling program.

Receiver
(thread in GENIE Interface)

Handles  receipt of messages from the GENIE Run Manager. It is 
synchronized with the calling program. This receiver thread is 
needed to make blocking possible; while the interface is blocking 
on a condition variable, this thread is blocking on socket 
communication. 

•

•

•

 

Genie Run 
Manager  

TCP/IP  

Message 

TCP/IP  

Message 

Gl
ob

al
 M

es
sa

ge
Re

qu
es

t Q
ue

ue

Gl
ob

al
 M

es
sa

ge
Re

qu
es

t Q
ue

ue

Figure 2–2.   Conceptualization of the use and interaction of a calling program and the GENIE Interface.



Appendix 2    29

Table 2–1.   Definition of Parameters Required by Routine “give_fortran_run_to_interface.”
Parameter Type Description

NRUN Integer The number of model runs to be managed and executed.
NEXEC Integer The number of executable files to be processed as part of a run; currently 

must be 1 and multiple executables listed in a batch file.
_EXECNAMS String

(NEXEC)
Array, of size NEXEC, listing each executable file.

NPAR Integer Number of parameters.
NOBS Integer Number of observations.
_APAR String

(NPAR)
Array, of size NPAR, listing each parameter name.

_AOBS String
(NOBS)

Array, of size NOBS, listing each observation name.

PVAL Double
C/C++:

(NRUN,NPAR)
Fortran:

(NPAR,NRUN)

Array, of size NRUN * NPAR, listing each parameter value for each 
run. Values must be listed in the same order as for _APAR; that 
is, PVAL(1,1) is the value corresponding to the parameter named 
_APAR(1,1). Can be 2D array (NRUN,NPAR) or an equivalent 1D 
array. Because Fortran is column-major, the equivalent Fortran array 
must be dimensioned and filled as (NPAR,NRUN).

OVAL Double
C/C++:

(NRUN,NPAR)
Fortran:

(NPAR,NRUN)

Array, of size NRUN * NOBS, listing each observation value for each 
run. Values must be listed in the same order as for _AOBS; that is, 
OVAL(1,1) is the value corresponding to the observation named 
_AOBS(1,1). Can be 2D array (NRUN,NOBS) or an equivalent 1D 
array. Because Fortran is column-major, the equivalent Fortran array 
must be dimensioned and filled as (NOBS,NRUN).

NTPL Integer Number of template files.
NINS Integer Number of instruction files.
_TPLFLE String

(NTPL)
Array, of size NTPL, listing the template file names.

_INFLE String
(NTPL)

Array, of size NTPL, listing the model input file names. These file names 
must be listed in the same order as for _TPLFLE; that is, _INFLE(1) is 
the model input file whose template is provided by file _TPLFLE(1).

_INSFLE String 
(NINS)

Array, of size NINS, listing the instruction file names.

_OUFLE String 
(NINS)

Array, of size NINS, listing the model output file names. These file  
names must be listed in the same order as for _INSFLE; that is, the 
instructions to read _OUFLE(1) are listed in file _INSFLE(1).

ID String A string identifying the calling program to the Run Manager –  
for example “ppest” or “pest++”

The following figures, 2–3A and 2–3B, outline the basic logic and Interface routine calls required by the calling program to 
exchange runs with the Run Manager.



30    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Initialize GENIE Interface

start_winsock()  (If WINDOWS)
initialize_synchronization_variables()

Signout_cp_mutex()
genie_interface_v2(host_socket)

While there is a Run to
send to GENIE Run

No

See Figure
2–3B

Yes

Put Run into required format and give to Interface
Fortran: give_fortran_run_to_interface

C++: add_message_to_request_queue(cls_message *run)

Wait (timed) for a Result (response)
timedwait_for_signal_from_receiver

Did “wait”

No

Yes

signout_response_mutex

Get number of Results
get_number_of_responses

For each Result in Queue:
fortran_get_result_from_response_queue

Process Result as needed

signin_response_mutex

Figure 2–3A.   Flow of logic in the calling program to communicate model runs to the Interface.



Appendix 2    31

While there is a Result 
outstanding

No
Yes

Wait for a Result (response)
wait_for_signal_from_receiver

signout_response_mutex

Get number of Results
get_number of responses

For each Result in Queue:
fortran_get_result_from_response_queue

Process Result as needed

signin_response_mutex

Terminate GENIE Interface

genie_interface_v2_terminate() 
signin_cp_mutex()

destroy_synchronization_variables()
stopwinsock()  (If WINDOWS)

Figure 2–3B.   Flow of logic to get results returned by the Interface (receiver thread).



32    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Output
The GENIE Interface writes limited information to a series of files:

•	 genie_interface_v2.log – Interface thread log,

•	 receiver.log – Receiver thread log, and

•	 GenieInterfaceSTDERR.log – STDERR is written to this file and not the console.

Example Application—Interfacing GENIE with PPEST
This section describes in detail the steps taken to link Parallel PEST (PPEST; Doherty, 2010) to GENIE. The link primar-

ily consists of exchanging model runs required and associated results with the Run Manager using the Interface. There are four 
instances in which PPEST may execute a model run or a collection of runs:

•	 the initial model run to get the current objective function,

•	 during sensitivity matrix calculation, 

•	 during parameter update calculation if using the Levenberg-Marquardt technique, and

•	 the final model run using best parameter values.
The PPEST parallel Run Manager is encapsulated in a subroutine called DORUNS in source file parpest.f. This routine 

serves a role similar to the GENIE Run Manager—it is responsible for distributing and collecting model results as they become 
available. It is called during each of the four instances listed above. PPEST stores the parameter and observation values for 
different model runs in direct-access binary files. The runs distributed by the DORUNS routine are constructed from these files. 
The most significant change to the PPEST program was development of an additional source file called genie.f that contains 
the routines that prepare the PEST data for use with the GENIE Interface and then call this routine. This file is of most interest 
to developers wishing to link with the GENIE suite and is available in the GPEST source code section of the GENIE software 
download.

Most important in the genie.f file is a DORUNS-like routine called DORUNS_GENIE. DORUNS_GENIE gathers, one at a 
time, runs from the various binary files used by PEST to store parameter and observation information, puts them in the necessary 
arrays required by the give_fortran_run_to_interface routine, calls the routine to give the run to the Interface and, as results are 
returned, processes them in a manner similar to DORUNS. All of the modules and subroutines contained within genie.f are listed 
below.

Subroutine Description

GENIE_DATA Module. Contains the host socket information. These values are set within pest.f from the command line.
checkhost Routine to verify the host provided is valid. Currently this check is limited to IP:PORT division.
DORUNS_GENIE Routine equivalent to PPEST routine DORUNS for use with GENIE.

All of the changes made to the existing PPEST source code are contained within GENIE (#ifdef GENIE) preprocessor 
definitions. The following lists the subroutines that were modified, including the source file they belong to.

Subroutine File Description Change

slavdat1 parpest.f Opens the Run Manager file and reads the 
number of slaves.

Initializes the variables set by this routine because  
the details are not required.

slavedat2 parpest.f Reads part of the Run Manager file and tests 
part of the information in it.

Skips details and writes host socket and other details 
to PPEST run management record (RMR) file.

writslv2 parpest.f Summarizes slave properties to the RMR file. Added property statements to reflect use of GENIE.
run_pest runpest.f Main PEST subroutine. Executes the  

functionality of PEST.
Added calls to DORUNS_GENIE.

parse_command_line pest.f Parses the PEST command line. Modified to get host socket.
pest pest.f Main program—initialization and call to 

run_pest.
Modified to indicate use of GENIE.



Appendix 2    33

Updates to the GENIE Programming

This section details some of the classes developed for the GENIE suite that will be of use to developers interested in link-
ing existing programs with GENIE. The following is a list of the generic classes developed for the GENIE suite of programs. 
Programming-specific details of these classes are provided in the subsections that follow.

Class (or Object) Used by Description

Network programming classes

CLS_NODE (socketstuff.h) Run Manager,
Run Executer, and
the Interface

Contains the bulk of the functionality required to start a node (client or 
host) using TCP/IP for communication.

Message-passing classes

CLS_HEADER (message.h) Run Manager,
Run Executer, and
the Interface

The header portion of a message.

CLS_BUFFER (message.h) Run Manager,
Run Executer, and
the Interface

A generic buffer class typically used to store the data portion of a mes-
sage.

CLS_MESSAGE (message.h) Run Manager,
Run Executer, and
the Interface

The low-level message-passing infrastructure developed for GENIE.

Multi-threaded classes

CLS_CONNECTOR (connector.h) Run Manager A thread to monitor and accept incoming connection requests.
CLS_BALANCER (balancer.h) Run Manager A thread to handle the load balancing features of the Run Manager.
CLS_MONITOR (monitor.h) Run Manager, and Run 

Executer
A thread spawned for every client instance that monitors communication 

between it and the host.
CLS_PIPER (piper.h) Run Executer A thread to handle the piping of an application’s console output to the 

GENIE console when the “/console pipe” option is used.
CLS_RUNNER (runner.h) Run Manager and Run 

Executer
A thread to either distribute a run to a client (Run Manager) or execute a 

run (Run Executer)
“Run” classes

CLS_EXECUTABLE (run.h) Run Manager, Run Ex-
ecuter, and the Interface

The definition of an executable; i.e. name, path, and arguments.

CLS_RUN (run.h) Run Manager, Run Ex-
ecuter, the Interface

The definition of a complete model run.

CLS_RESULT (run.h) Run Manager, Run Ex-
ecuter, and the Interface

The result portion of a model run, including functionality to send and 
receive this aspect of a run.



34    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Attribute Description

ip (public) (property – string)
The IP of the NODE

port (protected) (property – unsigned int)
The PORT of the NODE

sockets (protected) (property – set<int>)
The set of sockets the NODE communicates on.

cls_node(int port) (constructor method – void)
HOST constructor instance

cls_node(string hostip) (constructor method – void)
CLIENT constructor instance

Attribute Description

type (property – integer)
The type of the message. Can be one of the following defined in definitions.h: COMMAND,  

STATUS_UPDATE, CONNECTION_TYPE, CONNECTION_NAME, CONNECTION_
SPEED, or RUN

bytesize (property – integer)
The number of bytes constituting a single element of the buffer portion of a message

nbytes (property – integer)
The number of elements in the buffer portion of a message.

compression (property – integer)
Currently not used.

Network Programming

CLS_NODE
The CLS_NODE class contains all the functionality of a 

host (Run Manager) and a client (Run Executer, Interface).

Message Passing

CLS_HEADER
The CLS_HEADER class is a set of properties compris-

ing the header of a message. The header is a fixed size (16 
bytes currently) that dictates how to read the rest of a message.

The following subsections detail the specific methods and properties of classes that will be of most use to developers; 
namely, those related to TCP/IP communication, the message-passing infrastructure, and multi-threading. These classes are 
very general and do not necessarily have to be used together to write a run-management-type program.



Appendix 2    35

CLS_BUFFER
The CLS_BUFFER class is used to store the data portion 

of a message.

Attribute Description

size (property – integer)
The size of the buffer (supplied by CLS_HEADER).

buf (property – character pointer)
The buffer.

copyfrom (method – void)
Copy source memory block into buf. Uses C memcpy function.

copyto (method – void)
Copy buf to a user-specified memory block. Uses C memcpy function.

CLS_MESSAGE
The CLS_MESSAGE class is used to prepare and send a 

message

Attribute Description

type (property – integer)
The number of bytes in the data component of the message.

hdr (property – header)
The header. See header class.

bdy (property – buffer)
The data portion of the message. See buffer class.

cls_message(int type) (constructor method – void)
An empty message (buffer size is zero) containing only a TYPE.

cls_message(int type, int data) (constructor method – void)
A message with an INTEGER buffer type.

cls_message(int type, size_t data) (constructor method – void)
A message with a SIZE_T buffer type.

cls_message(int type, std::string data) (constructor method – void)
A message with a STRING buffer.

cls_message(int type, double data) (constructor method – integer)
A message with a DOUBLE buffer type.

cls_message(cls_run *run) (constructor method – void)
Used to construct a message from a RUN object.

cls_message(cls_result *result) (constructor method – double)
Used to construct a message from a RESULT object.

cls_message(int socket, int *ifail) (constructor method – integer)
Receives and constructs a message from a TCP/IP communication.

receivedata (method – integer)
Routine to receive the data portion of a message from a CLIENT according to the header.

sendme (method – integer)
Sends a message to a CLIENT



36    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Model Run

CLS_RUN
The CLS_RUN class contains all the properties and 

methods required to define a model

Attribute Description

id (property, pointer – integer)
Assigned by GENIE_INTERFACE, ID is a unique identifier for a run within a run collection.

npar (property, pointer – integer)
The number of parameters.

nobs (property, pointer – integer)
The number of observations.

ntpl (property, pointer – integer)
The number of template files.

nins (property, pointer – integer)
The number of instruction files.

nexec (property, pointer – integer)
The number of executables (currently assumed to be 1).

tplfiles (property, pointer – string)
A pointer to an ntpl-element array that contains the name of each template file.

insfiles (property, pointer – string)
A pointer to an nins-element array that contains the name of each instruction file.

infiles (property, pointer – string)
A pointer to an ntpl-element array that contains the name of each model input file.

outfiles (property, pointer – string)
A pointer to an nins-element array that contains the name of each model output file.

parnams (property, pointer – string)
A pointer to an npar-element array that contains the name of each parameter.

obsnams (property, pointer – string)
A pointer to an nobs-element array that contains the name of each observation

parvals (property, pointer – double)
A pointer to an npar-element array that contains the value of each parameter.

obsvals (property, pointer – double)
A pointer to an nobs-element array that contains the value of each observation.

executables (property, pointer – EXECUTABLE)
A pointer to an instance of the CLS_EXECUTABLE class.

cls_run(cls_message *message) (constructor-method – void)
Creates a RUN object from a CLS_MESSAGE message.

cls_run(int *runid, int *nexec, char 
*_execnams, int *npar, int *nobs, 
char *_apar, char *_aobs, double 
*pval, double *oval, int *ntpl, int 
*nins, char *_tplfle, char *_infle, 
char *_insfle, char *_oufle)

(constructor-method – void)
Creates a RUN object from arrays corresponding to the different properties of a RUN.  

This constructor is required by a calling program to create a CLS_MESSAGE object from  
arrays. This constructor is used in the give_fortran_run_to_interface of the GENIE Interface.



Appendix 2    37

CLS_RESULT
CLS_RESULT is similar to the CLS_RUN class, but it contains only a property referencing a base CLS_RUN object and 

constructor methods to convert a CLS_RUN or CLS_MESSAGE object into the necessary format—the observation values and 
the adjusted parameter values given the precision they could be written to the model input file. 

References

Doherty, John, 2010, PEST, Model independent parameter estimation—User Manual (5th ed., with slight additions):  
Brisbane Australia, Watermark Numerical Computing, 336 p.

Muffels, C.T., Schreüder, W.A., Doherty, J.E., Karanovic, M., Tonkin, M.J., Hunt, R.J., and Welter, D.E., 2012, Approaches in 
highly parameterized inversion—GENIE, a general model-independent TCP/IP run manager: U.S. Geological Survey Tech-
niques and Methods, book 7, chap. C6, 26 p., http://pubs.usgs.gov/tm/tm7c6/.

Schreüder, W.A., 2009, Running BeoPEST, in Tonkin, M.J., ed. Proceedings, PEST Conference 2009, Potomac, Md.,  
November 1–3, 2009: Bethesda, Md., S.S. Papadopulos and Associates, p. 228–240.



38    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Appendix 3.  Example Problem Using GML and 
Tikhonov Regularization

Introduction

A simple synthetic groundwater model is used to demonstrate the combined use of the 
GML algorithm with Tikhonov regularization. The inversion was completed with both PEST++ 
Version 3 and PEST (Doherty, 2010) so that users can compare the regularized solution and 
algorithmic behavior of both codes. 

Model Description

The synthetic model is a cross-section MODFLOW-2005 (Harbaugh, 2005) model (X–Z 
domain) with 1 layer, 1 row, and 10 columns. The top and bottom of the model domain are 
bounded by no-flow boundaries (Neumann-type boundary condition where flux is specified 
as zero); the right side of the model domain is a specified flow boundary representing inflow 
from upgradient; the left boundary is a specified head (Dirichlet-type) boundary (fig. 3–1). 
Conceptually, groundwater enters the domain on the right and exists on the left. The model has 
two steady-state stress periods corresponding to a calibration period and a forecast period of 
reduced flux through the right boundary. 

The inverse problem has 10 parameters, which are the horizontal hydraulic conductivity 
of each model cell, and 2 observations, collected from model cells 4 and 6 at the end of the 
calibration stress period. Both observations were assigned a weight of 10.0, which corresponds 
to a measurement noise standard deviation of 0.1 meter. Because observation weights were 
specified according to assumed measurement noise, the PHIMLIM variable should equal the 
number of non-zero weight observations, which in this case is 2.0. Tikhonov regularization was 
used enforce a condition of preferred parameter values. To demonstrate the computational sav-
ings and ease of use of the automatic superparameter solution scheme in PEST++, the PEST++ 
optional variables N_ITER_BASE and N_ITER_SUPER were set to 1 and 4, respectively. 

Results

The model was inverted with both PEST (Doherty, 2010) and PEST++ so that the func-
tionality of the combined GML algorithm and Tikhonov regularization as implemented in 
PEST++ Version 3 can be compared to the complementary functionality implemented in PEST. 
The inverted parameters found with PEST++ and PEST are very similar, although the PEST++ 
solution is slightly more regularized (smoother) than the PEST solution (fig. 3–2). PEST++ 
terminated after five iterations of the GML algorithm, whereas PEST continued until the maxi-
mum 20 iterations were complete. However, the minimum measurement objective function 
found by PEST++ is 2.07, which compares well to the PEST minimum of 2.09. For this simple 
synthetic case, PEST++ found a slightly more regularized solution with a slightly lower mini-
mum objective function in five iterations than was found by PEST in 20 iterations. However, 
examination of the iteration-specific algorithmic behavior of PEST++ and PEST shows that the 
two different codes function very similarly (fig. 3–3).



Appendix 3    39

Specified 
flux

(inflow)

Specified 
head
(outflow)

8

6

4

2

0

Calibration

Q=0.5m3/d

1 2 3 4 5 6 7 8 9 10

He
ad

, i
n 

m
et

er
s

Active model cells

Observation

Figure 3–1.   The synthetic problem test domain.

Model cell

H
yd

ra
ul

ic
 c

on
du

ct
iv

ity
, i

n 
m

et
er

s 
pe

r d
ay

1 2 3 44 65 7 8 9 10
1.0

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

pest++ pest
EXPLANATION

Figure 3–2.   Comparison of the final inverted parameter values. The PEST++ solution is 
slightly more regularized than the PEST solution.



40    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Iteration number

M
ea

su
re

m
en

t p
hi

1 2 3 4 5 6 70
00

2

6

4

10

8

20

40

60

80

100

To
ta

l m
od

el
 ru

ns

PESTPEST++

Number of runs,
PEST++

Number of runs,
PEST

EXPLANATION

Figure 3–3.   Comparison of the algorithmic behavior of PEST++ Version 3 and PEST version 13.3. 
The target minimum measurement phi (the PHIMLIM variable) is 2.0. PEST++ terminates after five 
iterations; PEST terminates after 20 iterations. PEST++ has less “overshoot” of the target phi after 
iteration 1. 

References

Doherty, John, 2010, PEST, Model-independent parameter estimation—User manual (5th ed., 
with slight additions): Brisbane, Australia, Watermark Numerical Computing.

Harbaugh, A.W., 2005, MODFLOW-2005, The U.S. Geological Survey modular ground-water 
model—The Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods, 
book 6, chap. A16 [variously paged].



Appendix 4    41

Appendix 4.  Linear Uncertainty Methods Included in Version 3

Linear-based uncertainty analyses have been implemented in PEST++ Version 3 so that, 
at the completion of an inversion analysis, users can easily obtain estimates of parameter (and 
optionally forecast) uncertainty. The integrated analyses replicate the behavior of PREDUNC1 
and PREDUNC 7 (Doherty, 2010). Similar to PEST++, the code that implements the linear 
uncertainty analysis follows object-oriented design principles and is built into the PEST++ code 
base. The implementation includes several classes for handling generic and structured (covari-
ance) matrices and uses compressed (sparse) matrix storage and operations. The integration of 
these uncertainty analyses has been structured so that minimal user input is needed, in contrast 
to existing software for linear analysis such as the PREDUNC suite of tools (Doherty, 2010). 
However, less involvement from the user also means that many choices related to the imple-
mentation of the uncertainty analyses are programmatically assigned and are opaque to the user, 
including the following:

•	 If the optional “forecasts” PEST++ argument is specified, the names associated with 
this argument are assumed to be observations in the PEST control file. If one or more 
of these forecast observations is not found in the observation data section of the PEST 
control file, PEST++ will raise an exception. Once the inversion is complete, the rows of 
the last base parameter Jacobian matrix associated with these observations are extracted 
and treated as forecast sensitivity vectors (see equation 2). If the “forecasts” argument is 
not found, only parameter uncertainty estimates are calculated.

•	 All prior information (PEST control file observations and prior information groups that 
begin with “regul”) are excluded from J and  Σε of equation 1 during uncertainty estima-
tion. 

•	 The matrix Σε of equation 1 is formed from the observation weights listed in the PEST 
control file and is scaled to account for the contribution of each observation group to 
the final composite objective function so that Σε reflects the level of measurement noise 
implied by the final composite objective function. Note that observations listed in the 
PEST control file with zero weight are assigned an artificial weight of 1.0E−30. 

•	 If a prior parameter covariance matrix (Σθ of equation 1) is not passed as a PEST++ 
option (the PARAMETER_COVARIANCE argument, see below), then this matrix if 
formed from the parameter bounds listed in the PEST control file. The variance of a non-
log-transformed parameter p, σp, is calculated as 

where ULp and LLp are the upper and lower bounds of parameter p listed in the PEST 
control file. This formulation assumes that the prior distribution of parameters is Gauss-
ian and that the upper and lower bounds correspond to the upper and lower 95-percent 
confidence interval (±2 standard deviations). Similarly, for log-transformed parameters, 
the prior variance is calculated from parameter bounds as

						           (2)

ULp− LLpσp =(                )2

4
(1)

(log10(ULp)− 
log10(LLp))σp =(                                      )2

4



42    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Input Instructions

Several new PEST++ options must be added to control the use of integrated linear  
uncertainty analysis. These are listed in appendix 1 and are discussed in detail below:

•	 	 UNCERTAINTY(True).— A Boolean flag to enable or disable parameter 
and predictive uncertainty analyses. It is internally set to true by default. If 
UNCERTAINTY(False) is found in the PEST++ options, no uncertainty  
calculations will be performed, regardless of what other uncertainty-related input 
options are specified. 

•	 	 FORECASTS(obs_1,obs_2,obs_3).— Identify PEST control file observations obs_1, 
obs_2, and obs_3 as predictions. As many observations as desired can be identified, as 
long as at least one observation remains a nonforecast. Equations 1 and 2 will be used 
to estimate the prior and posterior uncertainty for each forecast. If this argument is not 
found in the PEST control file, only parameter uncertainty analyses will be completed. 
A Pest Error is raised if one or more forecasts are not found in the observation names. 
A warning is issued if a forecast is assigned a non-zero observation weight. 

•	 	 PARAMETER_COVARIANCE(prior_parameter.cov).—Identifies an existing 
covariance matrix (for example, prior_parameter.cov) to use as the prior parameter 
covariance matrix ( Σθ of equation 1). The format of the external file must be either 
a PEST-compatible ASCII matrix file or a PEST-compatible uncertainty file (see 
Doherty, 2010, for a description of these simple file types: p. 43 for ASCII matrices 
and p. 194 for uncertainty files). If this argument is not passed, if the external file 
cannot be loaded properly, or if the file is not compatible with the current inverse 
problem, a warning is issued and the prior parameter covariance matrix is constructed 
from parameter bounds as discussed previously. The user must ensure that an external 
parameter covariance file respects the log-transform status of the parameters as listed 
in the PEST control file (and as represented in the corresponding Jacobian matrix). 

Alternatively, the parameter bounds specified in the PEST control file can be used 
to construct a diagonal prior parameter covariance matrix.  This is the default behavior 
and requires that the parameter bounds correspond to 95-percent confidence intervals. 

Output

Several types of output are generated as part of the linear uncertainty analysis calculations. 
The posterior parameter covariance matrix ( Σθ of equation 1) is written to a PEST-compatible 
ASCII matrix file named <case>.post.cov where <case> is the base name of the PEST control 
file for the current PEST++ analysis. Additionally, a parameter uncertainty summary is written 
the record file (<case>.rec) of the current PEST++ analysis and to a comma-separated value 
(CSV) file named <case>.par.usum.csv. This uncertainty summary lists the prior and posterior 
mean, variance, and upper and lower bound for all adjustable parameters. If forecasts were 
identified, then a similar forecast uncertainty summary is written to the record file, as well as to 
a CSV file named <case>.pred.usum.csv. 

For inverse problems with observation numbering greater than 50,000, the linear uncer-
tainty calculations may take more than 30 minutes of clock time. During this time, the user can 
monitor the progress of the calculations in the PEST++ performance log file (case.pfm), which 
lists the starting, ending, and elapsed time for the most computationally demanding aspects of 
the analysis.



Appendix 4    43

Additional Considerations

A robust estimate of parameter and predictive uncertainty requires the contribution from 
all uncertain model inputs treated as adjustable parameters. An artificially low, nonconservative 
estimate of uncertainty can be found by using a subset of these uncertain inputs as adjustable 
parameters. Additionally, not adjusting all uncertain inputs as parameters in the inverse problem 
can produce substantial model error that may bias parameter and forecast uncertainty estimates 
in ways that are not readily apparent. Users are therefore encouraged to include all adjustable 
parameters in the uncertainty analysis process even if not included for the initial parameter 
estimation. See White and others (2014) for more detailed discussion of this topic. 

References

Doherty, John, 2010, Addendum to the PEST manual: Brisbane, Australia, Watermark  
Numerical Computing.

White, J.T., Doherty, J.E., and Hughes, J.D., 2014, Quantifying the predictive consequences  
of model error with linear subspace analysis: Water Resources Research, v. 50, no. 2,  
p. 1152–1173, doi:10.1002/2013WR014767.



44    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Appendix 5.  Example Problems Using PEST++ Version 3 Linear Uncertainty 
Capabilities

Introduction

This example demonstrates the use of the PEST++ 
integrated linear-based uncertainty analyses with a density-
dependent SEAWAT model (Langevin and others, 2007) based 
on the analysis described in Herckenrath and others (2011) 
which is patterned after the Henry saltwater intrusion problem 
(Henry, 1964) . The outputs of both PEST++ and the comple-
mentary PEST utilities are presented so that users can review 
and verify the results.

Model Description

The synthetic model is a 2-dimensional SEAWAT 
model (X–Z domain) with 1 row, 120 columns, and 20 layers 
(fig. 5–1). The left boundary is a specified flux of freshwater; 
the right boundary is a specified head and concentration  
representing an infinite saltwater boundary. Conceptually, 
freshwater enters the domain on the left and a classic saltwa-
ter-freshwater interface “wedge” is formed where to lower-
density freshwater overrides the saltwater and discharges in 
the upper right. The model has two stress periods: an initial 
steady state (calibration) period, then a transient period with 
less flux, which causes the saltwater-freshwater interface to 
move to the left. The second stress period serves as the fore-
cast period. 

The inverse problem has 601 parameters (600 hydraulic 
conductivity pilot points and 1 specified flux rate) and  
36 observations (21 heads and 15 concentrations) measured 
at the end of the steady-state calibration period. The forecast 
of interest is the distance from the left boundary to the toe of 
the saltwater wedge (model layer 20) at the end of the forecast 
period. For this model, the toe of the wedge is character-
ized by the 1-, 10- and 50-percent seawater concentrations 
in model layer 20, which correspond to observations named 
pred_one,pred_ten, and pred_half .

To verify the PEST++ integrated linear uncertainty  
analysis results, the same analyses were performed by using 
the legacy PEST utilities. To accomplish the PEST++ inte-
grated linear analyses, as well as the preprocessing and 
postprocessing (such as observation weight scaling, removing 
prior information, etc.), several PEST utilities and a text editor 
are needed. The utilities include PWTADJ2, PREDUNC7, 
PREDUNC1, and JCO2JCO (Doherty, 2010). The results of 
both PEST++ integrated uncertainty analysis, as well as a 
complementary uncertainty analysis using PEST utilities, are 
presented below for comparison. Note the analyses using the 
PEST utilities were completed with the base parameter  
Jacobian matrix filled by PEST++ with the NOPTMAX vari-
able set to −1. 

EXPLANATION

Concentration  observations
Head observations Pilot pointSaltwater boundary

Freshwater boundary

Length, in meters

De
pt

h,
 in

 m
et

er
s

0
−2.0

−1.5

−1.0

0.0

−0.5

2 4 6 8 10 12

16 17 18

19 20 21

11 12 13 14 15

01 02 03 04 05

06 07 08 09 10

Figure 5–1.   SEAWAT model domain.



Appendix 5    45

Results

For the synthetic SEAWAT model, the PEST++ inte-
grated linear analysis results compare well with the same 
analysis completed by using PEST utilities. An excerpt from 
the PEST++ record file (fig. 5–2) displays the prior and poste-
rior variance of select parameters and predictions. The output 
of the PREDUNC1 legacy software that was used to verify the 
integrated linear analyses, when applied to forecast pred_one, 
is shown in figure 5–3. 

The cumulative element-wise sum of the differences 
between the PEST++ and PREDUNC7 posterior parameter 
matrices is 1.6E−07. Table 5–1 compares the posterior vari-
ances of selected parameters. The prior and posterior forecast 
uncertainty estimates agree well for forecasts pred_one,  
pred_ten, and pred_half (table 5–2). Note that PREDUNC1 
reports standard deviation as the measure of uncertainty, 
whereas the PEST++ linear analyses report variance. 

---------------------------------------

---- parameter uncertainty summary ----

---------------------------------------

    name  prior_mean  prior_variance   post_mean  post_variance

   MULT1     1.00000      0.00307605     1.00000     0.00175068

 KR01C01     200.000        0.250000     200.000       0.250000

 KR10C35     200.000        0.250000     200.000       0.249919  

 KR10C38     200.000        0.250000     200.000       0.249774  

 KR10C44     200.000        0.250000     200.000       0.249654  

----------------------------------------

---- prediction uncertainty summary ----

----------------------------------------

     name  prior_mean  prior_variance  post_mean  post_variance

  PD_HALF     9.39664       0.0800481    9.39664      0.0600698

   PD_ONE     8.77066       0.0449995    8.77066      

Figure 5–2.   Excerpt from PEST++ record file.



46    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

PREDUNC1 Version 13.3. Watermark Numerical Computing.

 Enter name of PEST control file:  Enter observation reference variance: 

 Enter name of parameter uncertainty file:  Enter name of predictive sen-

sitivity matrix file: 

 Use which version of linear predictive uncertainty equation:-

     if version optimized for small number of parameters   - enter 1

     if version optimized for small number of observations - enter 2

 Enter your choice: 

 - reading PEST control file pest_ord.pst....

 - file pest_ord.pst read ok.

 - reading Jacobian matrix file pest_ord.jco....

 - file pest_ord.jco read ok.

 - reading predictive sensitivity matrix file pd_one.vec....

 - file pd_one.vec read ok.

 - reading parameter uncertainty file pest.unc....

 - reading covariance matrix file cov.mat...

 - covariance matrix file cov.mat read ok.

 - parameter uncertainty file pest.unc read ok.

 - computing pre-calibration predictive uncertainty....

 - forming XtC-1(e)X matrix....

 - inverting C(p) matrix....

 - inverting [XtC-1(e)X + C-1(p)] matrix....

 - calculating post-calibration predictive uncertainty....

Figure 5–3.   Output of PREDUNC1 utility applied to prediction pred_one. Note that PREDUNC1 reports 
standard deviation as the measure of uncertainty, whereas the PEST++ linear analyses report variance.



Appendix 5    47

         *************************************************************

         *                                                           *

         *                                                           *

         *    Pre-cal predictive uncertainty  =  0.2121308           *

         *    Post-cal predictive uncertainty =  0.1777507           *

         *                                                           *

         *                                                           *

         *************************************************************

Figure 5–3.—Continued  Output of PREDUNC1 utility applied to prediction pred_one. Note that 
PREDUNC1 reports standard deviation as the measure of uncertainty, whereas the PEST++ linear 
analyses report variance.

Table 5–1.   Comparison of posterior parameter variances.

Parameter PEST++ PEST

mult1 0.001751 0.001751
kr01c35 0.249982 0.249982
kr01c38 0.249894 0.249894
kr01c44 0.249822 0.249822

Table 5–2.   Comparison of prior and posterior forecast standard deviations.

Forecast
PEST++ PEST

Prior Posterior Prior Posterior

pd_half 0.282928 0.245091 0.282928 0.245091
pd_ten 0.289607 0.24578 0.289607 0.24578
pd_one 0.212131 0.177751 0.212131 0.177751

References

Doherty, John, 2010, PEST, Model-independent parameter 
estimation—User manual (5th ed., with slight additions): 
Brisbane, Australia, Watermark Numerical Computing.

Henry, H.R., 1964, Effects of dispersion on salt encroachment 
in coastal aquifers: U.S. Geological Survey Water-Supply 
Paper, 1613–C, p. C71–C84.

Herckenrath, Daan; Langevin, C.D.; and Doherty, John, 
2011, Predictive uncertainty analysis of a saltwater intru-
sion model using null-space Monte Carlo: Water Resources 
Research, v. 47, no. 5, W05504, 16 p.

Langevin, C.D., Thorne, D.T., Jr., Dausman, A.M., Sukop, 
M.C., and Guo, W., 2008, SEAWAT Version 4—A computer 
program for simulation of multi-species solute and heat 
transport: U.S. Geological Survey Techniques and Methods, 
book 6, chap. A22, 39 p.



48    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Appendix 6.  GSA++ Implementation and Use

GSA++ shares a common command line with PEST++ 
as well as the input control, template files, and instruc-
tion file. Algorithmic variables that control the behavior 
of GSA++ are stored in a text file with a .gsa suffix. For 
example, control variables specific to the Method of Morris 
must be specified in a file that has the same base name the 
PEST control file, but with a .gsa extension. The variables 
in this file are shown in figure 6–1.

METHOD(MORRIS)

MORRIS_R(4)

MORRIS_P(4)

MORRIS_DELTA(.666)

MORRIS_POOLED_OBS(FALSE)

Figure 6–1.   Example GSA++ input file for 
Method of Morris analysis.

General GSA++ Options
Variable Type Values Description

METHOD Text “MORRIS” or “SOBOL” Specifies type of analysis to be performed.
RAND_SEED Unsigned integer Seed for the random number generator.

GSA++ Options Specific to Method of Morris
Variable Type Values Description

MORRIS_R Integer positive integer Sample size. The number of times the sensitivity will be 
computed for each parameter.

MORRIS_P Integer positive integer Number of levels or the number of points at which each 
parameter is sampled.

MORRIS_DELTA Real multiple of 
                      p 

             [2(p–1)] 

where p=MORRIS_P

Size of the sampling step. This must be a multiple of  
p/[2(p–1)] and represent the size of the interval that 
will be used to calculate the sensitivities.

MORRIS_POOLED_
OBS

Text “TRUE” or “FALSE”; default is 
“FALSE”

MORRIS_OBS_SEN Text TRUE” or “FALSE”; default is 
“TRUE”

A value of “TRUE” instructs GSA++ to perform the 
Method of Morris sensitivity for each observation. 

GSA++ Options Specific to the Method of Sobol
Variable Type Values Description

SOBOL_SAMPLES Long integer positive integer Size of the samples to be used in Sobol’s method when 
computing sample variances. This is “n” in the equa-
tion s2=Σ (xi−x)2/(n−1).

SOBOL_PAR_DIST String “NORM”
“UNIF”

Specifies whether the parameter samples should be 
drawn from a uniform or normal distribution. If the 
parameters are assumed to be uniformly distributed 
use “UNIF”; otherwise, if the parameters are normally 
distributed, use “NORM”.



Appendix 6    49

GSA++ Output Files

The GSA++ implementation produces two output files 
summarizing the global sensitivity analysis. The Morris 
sensitivity file (.msn) is the primary output file which contains 
the metric associated with the Method of Morris analysis. The 
file contains a header line describing the information stored 
in the file, which consists of parameter_name, sen_mean(μ), 
sen_mean_abs(μ*), and sen_std_dev(σ). Each subsequent line 
contains the metrics for one of the adjustable parameters.  

In addition to the .msn file, a raw sensitivity file (.raw) is also 
written which summarizes the raw model output that was used 
to compute the information stored in the .msn file. Each line 
stores a single sensitivity computed from a pair of model runs 
where phi_0, phi_1 are the values of the objective function 
used to compute the sensitivity; par_0, par_1 are the values of 
the adjustable parameter used to compute the sensitivity; and 
sen is the sensitivity.

parameter_name, sen_mean, sen_mean_abs, sen_std_dev

X1, -16.4665, 108.885, 138.542

X2, 53.5115, 72.4633, 98.2834

Figure 6–2.   Example Morris sensitivity (.msn) file.

parameter_name, phi_0, phi_1, par_0, par_1, sen

X1,  128.437,  84.7042,  0.999999,  0.333333, 65.5993

X2,  114.144,  128.437,  0.666666,  0, -21.4395

Figure 6–3.   Example raw sensitivity (.raw) file.



50    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

Appendix 7.  Example Problem Using GSA++ and the  
Method of Morris

This appendix demonstrates the application GSA++ to perform the Method of Morris 
analysis using a benchmark analytical equation with known results. The equation was originally 
published by Morris (1991) and was also used by Saltelli and others (2004). The equation has 
20 input parameters (x1,……, x20), each of which were treated as adjustable parameters in the 
GSA++ analysis. The equation is of the form:

where
2

xi + 0.1

 wi = 2(xi−1)    for i=3,5,7

 wi = 1.1xi    for i=3,5,7

 β0 = 20    for	 1≤ i≤10

	 βi,j = −15    for	 1≤ i≤6,	1≤ j≤6

	 βi,j,l = −10    for	 1≤ i≤ 5,	1≤ j≤ 5,	1≤ l≤ 5

	 βi,j,l,s = 5    for	 1≤ i≤ 4,	1≤ j≤ 4,	1≤ l≤ 4

i=1 i=1 i=1 i=1j=1 j=1 j=1l=1 l=1s=1
 y=β0+∑

20
 β0wi +∑

20
 ∑
20

 βi,jwiwi +∑
20

 ∑
20

 ∑
20

 βi,j,lwiwjwl +∑
20

 ∑
20

 ∑
20

 ∑
20

 βi,j,l,swiwjwlws (1)

The remaining β0 and βi,j terms are generated from a normal distribution with zero 
mean and unit standard deviation, and the remaining βi,j,l and βi,j,l,s term are set to zero. This 
simple example tests the ability of the Method of Morris to distinguish between the pa-
rameters that have negligible effects, linear (or additive) effects, and nonlinear effects. The 
published results of applying the Method of Morris to equation 1 above indicate (1) the first 
10 parameters are important, (2) 7 of these have significant effects that involve interactions and 
(or) curvatures and, (3) and 3 of these are important primarily because of first-order effects 
(Saltelli and others, 2004). 

The GSA++ .pst and .gsa control files are shown in figures 7–1 and 7–2. The output from 
the Method of Morris implementation available in GSA++ to the benchmark semi-analytical 
test problem is presented in figure 7–3 and plotted in figure 7–4. To remain consistent with the 
published results, the sensitivities of observation “Y” are used in the analysis rather than those 
of the objective function, which contain the sensitivities of Y2. Because the Method of Morris 
is typically used to make qualitative inferences about the relative importance of parameters 
rather than quantitative measurements, Saltelli and others (2004) did not publish numbers for 
the elementary effects but instead published the results in a graph, which corresponds well to 
the GSA++ result plotted in figure 7–4.

References

Morris, M.D., 1991, Factorial sampling plans for preliminary computational experiments:  
Technometrics, v. 33, no. 2, p. 161–174.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M., 2004, Sensitivity analysis in prac-
tice—A guide to assessing scientific models: West Sussex, England, John Wiley & Sons Ltd., 
219 p.



Appendix 7    51

pcf
* control data
restart  estimation
    20    1     1     0     1
    1     1 single point 1 0 0
  0.0   2.0   0.3  0.03    1
  3.0   3.0 0.001
  0.1
    0 0.01     3     3  0.01     3
    1     1     1
* parameter groups
sen relative 0.01  0.0  ALWAYS_3  2.0 parabolic
* parameter data
x1 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x2 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x3 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x4 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x5 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x6 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x7 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x8 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x9 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x10 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x11 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x12 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x13 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x14 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x15 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x16 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x17 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x18 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x19 none factor   .5     0.0   1.0    sen  1.0   0.0  1
x20 none factor   .5     0.0   1.0    sen  1.0   0.0  1
* observation groups
obsgroup
* observation data
y     0  1  obsgroup1
* model command line
exe\morris_1991.exe
* model input/output
misc\input.tpl   morris_1991.inp
misc\output.ins  morris_1991.out

Figure 7–1.   GSA++ .pst control file.

METHOD(MORRIS)
MORRIS_R(4)
MORRIS_P(4)
MORRIS_DELTA(.666666)
MORRIS_POOLED_OBS(FALSE)
MORRIS_OBS_SEN(TRUE)

 y=β0+∑
20

 β0wi +∑
20

 ∑
20

 βi,jwiwi +∑
20

 ∑
20

 ∑
20

 βi,j,lwiwjwl +∑
20

 ∑
20

 ∑
20

 ∑
20

 βi,j,l,swiwjwlws

Figure 7–2.   GSA++ .gsa control file.



52    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

.

.

.
observation “y”
parameter_name, sen_mean, sen_mean_abs, sen_std_dev
X1, -3.0754, 56.3122, 70.2853
X2, -4.44507, 45.5431, 58.0327
X3, 0.890216, 33.8028, 41.5672
X4, -6.67899, 39.4061, 47.5703
X5, 21.2355, 40.5433, 60.3545
X6, -16.9367, 40.0154, 59.769
X7, 9.64928, 29.699, 36.5273
X8, -0.917067, 36.9443, 39.841
X9, 15.5057, 37.1315, 35.8605
X10, 25.72, 41.7879, 35.5455
X11, -0.475847, 6.03301, 7.87455
X12, 1.95161, 5.05447, 6.26432
X13, -2.33225, 5.10258, 6.11983
X14, -0.867056, 2.82701, 3.42373
X15, 0.553902, 3.52677, 4.25734
X16, 4.08245, 6.55249, 7.10021
X17, 1.38838, 6.80866, 9.08623
X18, -2.30373, 9.77486, 11.3164
X19, -1.00296, 5.02641, 5.73822
X20, 1.83217, 5.13305, 6.06983

Figure 7–3.   GSA++ .msn output file.

sen_mean_abs(µ∗)

se
n_

st
d_

de
v(
σ)

0
0

10

20

30

40

50

60

70

80

10 20 30 40 50  60   70

X7

X9 X10
X8

X3 X4

X6

X5

X2 X1

Figure 7–4.   Plot of the Method of Morris results.



Appendix 8    53

Appendix 8.  Example Problem Using GSA++ and the 
Method of Sobol

This appendix summarizes application of the Method of Sobol in GSA++ to a benchmark 
analytical solution, which is based on the Ishigami function (Ishigami and Homma, 1990):

	                                     Y=g(X1, X2, X3 )= sinX1+a sin2X2+bX 4
3 sinX1 			   (1)

where X1, X2, X3  are independent random variables drawn from the uniform distribution [-π, 
π]. This function provides verification of the GSA++ implementation of the Method of Sobol. 
Because this function is strongly nonlinear and nonmonotonic and has an analytical solution 
for the decomposed variances, it is widely used as an example for uncertainty and sensitivity 
analysis methods (Baudin and Martinez, 2013). Unfortunately, these examples do not contain 
descriptions of actual physical problems that can be solved by using this equation, so the user 
is left to imagine a generic process “Y” that is a function of three variables “X1”, “X2”, and 
“X3”. The GSA++ .pst and .gsa files used for this example are presented in figures 8–1 and 
8–2. The associated .sbl output file generated by the GSA++ contains the Sobol sensitivities 
for the weighted composite objective function, phi, followed by the Sobol sensitivities for each 
parameter defined in the .pst control file (fig. 8–3). The GSA++ computed results compare well 
to published results (table 8–1).

pcf
* control data
restart  estimation
    3    1     1     0     1
    1     1 single point 1 0 0
  0.0   2.0   0.3  0.03    1
  3.0   3.0 0.001
  0.1
    0 0.01     3     3  0.01     3
    1     1     1
* parameter groups
sen relative 0.01  0.0  ALWAYS_3  2.0 parabolic
* parameter data
x1 none factor   .5     -3.14159265359   3.14159265359    sen  1.0   
0.0  1
x2 none factor   .5     -3.14159265359   3.14159265359    sen  1.0   
0.0  1
x3 none factor   .5     -3.14159265359   3.14159265359    sen  1.0   
0.0  1
* observation groups
obsgroup
* observation data
y     0  1  obsgroup1
* model command line
exe\ishigami.exe
* model input/output
misc\input.tpl   input.dat
misc\output.ins  output.dat

Figure 8–1.   PEST++ .pst control file.



54    PEST++ Version 3, A Parameter ESTimation and Uncertainty Analysis Software Suite Optimized for Large Environmental Models

METHOD(SOBOL)
SOBOL_SAMPLES(50000)
SOBOL_PAR_DIST(UNIF)
RAND_SEED(1)

Figure 8–2.   GSA++ .gsa control file.

Sobol Sensitivity for PHI
E(Y) = 26.1461;  Var(Y) = 1130.54 (for S_i calculations)
E(Y) = 26.0038;  Var(Y) = 1136.29 (for S_ti calculations)
parameter_name, s_i, st_i, n_runs
X1, 0.208987, 0.580258, 50000
X2, 0.281347, 0.420693, 50000
X3, 0.140049, 0.425424, 50000

Sobol Sensitivity for observation “Y”
E(Y) = 3.50619;  Var(Y) = 13.711 (for S_i calculations)
E(Y) = 3.49479;  Var(Y) = 13.7508 (for S_ti calculations)
parameter_name, s_i, st_i, n_runs
X1, 0.313813, 0.559639, 50000
X2, 0.443826, 0.439341, 50000
X3, -0.00343356, 0.243083, 50000

Figure 8–3.   GSA++ .sbl output file for Method of Sobol.

Table 8–1. Comparision of GSA++ and analytical results. 

Sobol sensitivity GSA++ computed value Analytical value

S1 0.313813 0.313905
S2 0.443826 0.442411
S3 −0.00343356 0.000000
ST1 0.559639 0.557589
ST2 0.439341 0.442411
ST3 0.243083 0.243684

References

Baudin, Michael, and Martinez, J.-M., 2013, Introduction to sensitivity analysis with NISP, 
Version 0.4, in Scilab users manual: 73 p., available at http://www.scilab.org.

Ishigami, T., and Homma, T., 1990, An importance quantification technique in uncertainty 
analysis for computer models, in Uncertainty modeling and analysis—Proceedings of the 
First International Symposium on Uncertainty Modeling and Analysis, College Park, Md., 
December 3–5, 1990: IEEE,  p. 398–403. 

http://www.scilab.org




W
elter, W

hite, Hunt, and Doherty—
PEST++ Version 3, A Param

eter ESTim
ation and Uncertainty Analysis Softw

are Suite for Environm
ental M

odels—
Techniques and M

ethods 7–C12ISSN 2328-7055 (online)
http://dx.doi.org/10.3133/tm7C12


	Contents
	Abstract
	Introduction
	Purpose and Scope
	Major Enhancements to PEST++ Version 3
	Gauss-Marquardt-Levenberg (GML) Capabilities
	TCP/IP Run Manager Integration (YAMR - Yet Another run ManageR)
	Including Expert Knowledge With Tikhonov Regularization
	Linear Uncertainty Analysis Capabilities
	Global Sensitivity Analysis

	Other Enhancements to PEST++ Version 3
	Restart Capability
	Excluding Lambda Search Using Last-Iteration Base Parameter Jacobian
	Maximum Number of Allowed Forward-Run Failures
	Iteration Summary Suitable for Postprocessing
	PEST++ Performance Log File

	PEST++ Version 3 User Interface
	Development Environment
	Limitations of Version 3
	Summary
	References
	Appendix 1. PEST++ Version 3 Input Instructions
	The PEST++ Command Line
	The Pest Control File
	PEST++ Additions to the PEST Control File
	References

	Appendix 2. GENIE Version 2, A General Model-Independent TCP/IP Run Manager
	Preface
	Introduction
	Acknowledgments
	Limitations
	Updates to the Run Manager
	Command Line Interaction
	Termination
	Input Instructions

	Updates to the Run Executer (Worker Node)
	Input Instructions

	Updates to the Interface Routines
	Output
	Example Application—Interfacing GENIE with PPEST

	Updates to the GENIE Programming
	Network Programming
	CLS_NODE

	Message Passing
	CLS_HEADER
	CLS_BUFFER
	CLS_MESSAGE

	Model Run
	CLS_RUN
	CLS_RESULT


	References

	Appendix 3. Example Problem Using GML and Tikhonov Regularization
	Introduction
	Model Description
	Results
	References

	Appendix 4. Linear Uncertainty Methods Included in Version 3
	Input Instructions
	Output
	Additional Considerations
	References

	Appendix 5. Example Problems Using PEST++ Version 3 Linear Uncertainty Capabilities
	Introduction
	Model Description
	Results
	References

	Appendix 6. GSA++ Implementation and Use
	GSA++ Output Files

	Appendix 7. Example Problem Using GSA++ and theMethod of Morris
	References

	Appendix 8. Example Problem Using GSA++ and the Method of Sobol
	References




