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By Karl J. Ellefsen, Margaret A. Goldman, and Bradley S. Van Gosen

Abstract
Bayesian modeling of non-stationary, univariate, spatial 

data is performed using the R-language package BMNUS. A 
unique advantage of this package is that it can map the mean, 
standard deviation, quantiles, and probability of exceeding 
a specified value. The package includes several R-language 
classes that prepare the data for the modeling, help select suit-
able model parameters, and help analyze the results. This user 
guide describes the BMNUS package and presents step-by-
step instructions to model data that accompany the package.

Introduction
Bayesian modeling of non-stationary, univariate, spatial 

data—modeling that accounts for both a spatially varying 
mean and a spatially varying standard deviation—is performed 
with the BMNUS package, which is written in the R language 
(R Development Core Team, 2019) and accompanies this user 
guide. This package includes several R-language classes that 
prepare the data for the modeling, help select suitable model 
parameters, and help analyze the results. 

This description is facilitated by showing step-by-step 
calculations for an actual dataset. Consequently, the BMNUS 
package includes a dataset comprising measurements of tita-
nium concentrations in the southeastern United States, and this 
user guide provides R-language scripts to execute the step-
by-step calculations for processing this dataset. We strongly 
encourage you to execute these scripts because this effort will 
help you become familiar with the package.

Familiarity with the Bayesian probability model that 
is the basis for BMNUS (Ellefsen and Van Gosen, 2019), 
Bayesian data analysis, and basic statistical analysis concepts 
is assumed. Consequently, rationales for the steps in this user 
guide are not presented. Familiarity with the R language and 
the Stan programming language (Carpenter and others, 2017) 
and use of a computer running the Windows 10® operating 
system is also assumed. 

In this user guide, R-language scripts, program variables, 
and data structures are typeset using the Courier New font (for 
example, me_sd <− 0.032).

Preparatory Steps
Install R packages e1071, geoR, ggplot2, mapproj, maps, 

Matrix, parallel, raster, readr, rgdal, rstan, shinystan, sp, and 
tibble, which are available from the Comprehensive R Archive 
Network. The rstan package requires additional software called 
Rtools; the installation instructions are at https://github.com/
stan-dev/rstan/wiki/Installing-RStan-on-Windows#toolchain. 
Install R packages BMNUS, MappingUtilities, Repeated- 
Measurements, PairedMeasurements, and BasicCodaFunctions, 
which are available from the USGS website along with this 
user guide.

Decompress (unzip) file ReportScripts.zip, which will 
create a directory called ReportScripts. Inside this directory, 
you will find file ScriptsInUsersGuide.R, which contains every 
script in this user guide. Start an R session and set the work-
ing directory to ReportScripts. Execute the following scripts 
within the R console window:

library(BMNUS)

library(RepeatedMeasurements)

library(PairedMeasurements)

library(BasicCodaFunctions)

library(MappingUtilities)

library(sp)

library(ggplot2)

library(Matrix)

library(rstan)



2    User Guide to Bayesian Modeling of Non-Stationary, Univariate, Spatial Data using R-Language Package BMNUS

Statistical Modeling

Estimate the Standard Deviation of the Measurement Error

In the BMNUS package, measurement error is represented by a normal distribution with a mean of zero. The standard 
deviation of this normal distribution must be estimated for the data that are being modeled. For the example in the BMNUS 
package, the standard deviation is estimated from quality-control data that were collected when the element concentrations of 
the stream sediment samples were measured. These quality-control data are repeated measurements of the titanium concentra-
tions in two standard reference samples. 

The repeated measurements for the first standard reference sample are stored in R-language tibble Example_repeat_
meas1, which is included in the BMNUS package. Column conc lists 62 repeated measurements of titanium concentration in 
units of milligrams per kilogram or, equivalently, parts per million. To estimate the standard deviation, execute the following 
scripts:

measurements1 <- scaledLogit(Example_repeat_meas1$conc, constSumValue = 1.0e6)

oEvaluation1 <- RM_Evaluation(measurements1, “Ilr-transformed concentrations”)

plot(oEvaluation1)

summary(oEvaluation1)

Function scaledLogit transforms the concentrations using the isometric log-ratio (ilr) transformation (Pawlowsky-Glahn 
and others, 2015, p. 36–38). The second script calls a constructor for class RM_Evaluation, which is used to evaluate the 
distribution of the repeated measurements. 

The third script generates two plots of the repeated measurements. In the dot plot (fig. 1A), the horizontal axis is divided 
into intervals, and a transformed concentration is represented by a dot within the appropriate interval. The dots show the distri-
bution of the transformed concentrations. There is nothing unusual about this distribution; it might be represented by a normal 
distribution. This assumption is evaluated with a quantile-quantile plot (fig. 1B). The vertical axis represents the quantiles of a 
normal distribution for which the mean and the standard deviation equal the sample mean and the sample standard deviation of 
the transformed concentrations. The horizontal axis represents the quantiles of the transformed concentrations. Our interpreta-
tion of the plot is that the transformed concentrations may be adequately represented by a normal distribution.

Figure 1.  Graphs showing the analysis of 62 repeated measurements of the titanium concentration in 
the first standard reference material. A, Dot plot of transformed concentrations. B, Quantile-quantile plot 
of transformed concentrations. The diagonal red line indicates equality between the quantiles of the 
transformed concentrations and the quantiles of the normal distribution. These graphs are generated by the 
software scripts; to make them consistent with U.S. Geological Survey publication standards, they must be 
written to a PostScript file and subsequently edited.
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The fourth script generates a table with summary statis-
tics for the transformed concentrations. The most important 
statistic is the standard deviation, which is 0.032 for these 
data. This standard deviation does not have units because the 
transformed concentrations do not have units.

The repeated measurements for the second standard  
reference sample is stored in R-language tibble Example_ 
repeat_meas2, which is included in the BMNUS pack-
age. The scripts to evaluate these data are analogous to 
the scripts for the first standard reference sample, so they 
are not presented here; however, they are presented in file 
ScriptsInUsersGuide.R. The plots are shown in figure 2, and 
our interpretation is that the transformed concentrations may 
be adequately represented by a normal distribution. The stan-
dard deviation of the transformed concentration is 0.031.

The analysis for the two standard reference materials 
shows that a normal distribution may adequately represent the 
measurement error. The standard deviations for the two refer-
ence materials are practically equal; consequently, the standard 
deviation of the measurement error is chosen to be the larger 
of the two, namely 0.032:

me_sd <- 0.032
Sometimes, there are paired measurements, which also 

can be used to estimate the standard deviation of the measure-
ment error. The estimation procedure is described in appen-
dix 1 because the example presented in this user guide does 
not include paired measurements.

Define the Region of Interest and the Domain

The region in which the modeling is needed is called 
the region of interest. For the example presented in this user 
guide, the region of interest is the Atlantic Coastal Plain in the 
southeastern United States. The region of interest is delineated 
by its boundary, which is a polygon. Locations of the poly-
gon vertices are specified by longitudes and latitudes. For the 
example in this user guide, the locations of vertices are stored 
in R-language tibble Example_roi, which is included in the 
BMNUS package. Columns long and lat list the longitudes 
and latitudes (in decimal degrees), respectively, of the polygon 
vertices. These locations are standardized to the World Geo-
detic System 1984 (WGS84) datum.

Adding a margin to the region of interest improves the 
accuracy of the model at the very edge of the region of inter-
est. The appropriate width of the margin depends upon the 
dataset; for these data, the width was 32 kilometers (km). The 
chosen width is not special; other, similar widths would have 
been appropriate too. The region of interest with its margin 
is called the domain. Like the region of interest, the domain 
is delineated by its boundary, which is a polygon. For the 
example in this user guide, the locations of polygon vertices 
are stored in R-language tibble Example_domain, which 
is included in package BMNUS. The format of this tibble is 
identical to that of tibble Example_roi.
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Figure 2.  Graphs showing the analysis of 63 repeated measurements of the titanium concentration in 
the second standard reference material. A, Dot plot of transformed concentrations. B, Quantile-quantile 
plot of transformed concentrations. The diagonal red line indicates equality between the quantiles of the 
transformed concentrations and the quantiles of the normal distribution. These graphs are generated by 
the software scripts; to make them consistent with U.S. Geological Survey publication standards, they must 
be written to a PostScript file and subsequently edited.
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To plot the region of interest and the domain, execute these scripts:

Add_Geography <- function(boundary_color = “gray70”) {

 

 map_df <- ggplot2::map_data(“state”, region = c(“Virginia”, “North Carolina”,

 “South Carolina”, “Georgia”,

 “Alabama”, “Florida”))

 

 text_df <- data.frame(x = c(-86.7, -84, -82, -81, -80, -81.7, -78, - 86),

 y = c(34.2, 34.2, 34.8, 35.9, 37, 28.5, 31, 28.5),

 label = c(“Alabama”, “Georgia”,

 “South\nCarolina”, “North\nCarolina”,

 “Virginia”, “Florida”, “Atlantic Ocean”,

 “Gulf of Mexico”))

 return(

 list(ggplot2::geom_path(ggplot2::aes(x = long, y = lat, group = group),

 data = map_df,

 colour = boundary_color),

 ggplot2::geom_text(ggplot2::aes(x = x, y = y, label = label),

 size = 2.5,

 data = text_df)))

}

ggplot() +

 Add_Geography(boundary_color = “gray50”) +

 Add_Path(Example_domain, “blue”) +

 Add_Path(Example_roi, “red”) +

 Refine_Map(“lambert”, 25, 40, latLimits = c(28, 39.5))
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Function Add_Geography, which is written just for the 
example in this user guide, plots the state boundaries and 
geographic names that are pertinent to the domain. This func-
tion must be recoded for each domain. The script that begins 
with ggplot() generates a map and then prints it. The result 
of executing this script is the map in figure 3. A margin is 
not added along the seacoast because there are no data in the 
Atlantic Ocean.

Figure 3.  Map showing the region of interest (red polygon) and 
domain (blue polygon). Along the seacoast, the boundaries of 
the region of interest and the domain are congruent. This map is 
generated by the software scripts; to make the map consistent 
with U.S. Geological Survey publication standards, it must be 
written to a PostScript file and subsequently edited.

Organize the Spatial Data

The spatial data are chosen to be titanium concentrations 
in 3,316 stream sediment samples. These concentrations are 
in R-language tibble Example_dataset, which is included 
in package BMNUS. Execute the following script to view the 
first six records:

head(Example_dataset)
The result is printed in the R console window:

# A tibble: 6 x 4

  labno   long   lat  conc

  <chr>   <dbl> <dbl> <dbl>

1 C-117492 -88.0 32.0 3710

2 C-117495 -86.9 31.4 2750

3 C-117497 -86.9 31.5 2120

4 C-117501 -87.8 32.0 3780

5 C-117502 -87.7 32.0 2870

6 C-117504 -87.9 32.0 3250

The first entry in each row is just the record number; this entry 
does not have a column heading. Column labno lists, for 
each record, a character identifier for the chemical analysis of 
the stream sediment sample. This identifier relates each record 
to the original data source. Columns long and lat list, for 
each record, the longitude and latitude (in decimal degrees), 
respectively, of the stream sediment sample. Column conc 
lists, for each record, the titanium concentration in units of 
milligrams per kilogram or, equivalently, parts per million. In 
practice, it is very important to analyze the spatial data before 
any statistical modeling is performed. Such an analysis is 
beyond the scope of this user guide, so it is not presented.
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To map the locations of the titanium concentrations, execute this script:

ggplot() +

 Add_Geography(boundary_color = “gray50”) +

 Add_Path(Example_domain, “blue”) +

 Add_Path(Example_roi, “red”) +

 Add_Points(Example_dataset) +

 Refine_Map(“lambert”, 25, 40, latLimits = c(28, 39.5))

The resulting map is shown in figure 4. All sample locations are within the domain. In practice, the sample locations affect how 
the region of interest and the domain are delineated.

Figure 4.  Map showing locations of the stream sediment samples 
(black dots). The red and blue polygons represent, respectively, 
the region of interest and the domain. Along the seacoast, the 
boundaries of the region of interest and the domain are congruent. 
This map is generated by the software scripts; to make the map 
consistent with U.S. Geological Survey publication standards, it 
must be written to a PostScript file and subsequently edited.

The data in Example_dataset are reorganized to facilitate processing. To this end, execute the following scripts:

Value <- scaledLogit(Example_dataset$conc, constSumValue = 1e6)

spatialData <-

 sp::SpatialPointsDataFrame(data.frame(long = Example_dataset$long,

 	 lat = Example_dataset$lat,

 	 row.names = Example_dataset$labno),

 	 data.frame(Value = Value,

 	 IndValue = “no”,

 	 me_sd = rep.int(me_sd, length(Value)),

 	 row.names = Example_dataset$labno),

 	 proj4string=sp::CRS(Example_CRS_arg_longlat),

 	 match.ID=TRUE)

These measurements, which are transformed concentrations for this example, are stored in a SpatialPointsDataFrame, 
which is defined in the sp package and is designed specifically for spatial data. The first argument to SpatialPoints-
DataFrame is an R-language dataframe that stores the longitudes and latitudes of the measurements. Note that the respective 
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column names must be long and lat. The second argument is an R-language dataframe that stores the measurements, the cen-
sor indicators, and the standard deviations of the measurement errors. Note that the respective column names must be Value, 
IndValue, and me_sd. The censor indicators and standard deviations are described below. The third argument contains 
information about the datum that is used for the locations; this information is stored in character string Example_CRS_arg_
longlat, which is included in the BMNUS package. The fourth argument tells the function to check whether the row names in 
the first and second arguments match. 

Occasionally, some of the measurements are left or right censored. This information is important in the statistical model-
ing and is stored in IndValue. The elements in IndValue are characters strings that have values left, right, or no. If an 
element is left, then the corresponding element in Value is left censored and is set to its censoring threshold. If an element 
is right, then the corresponding element in Value is right censored and is set to its censoring threshold. If an element is no, 
then the corresponding element in Value is not censored. (For the titanium concentrations, no measurements are censored, so 
all elements in IndValue are no.) It is acceptable to have multiple censoring thresholds.

The standard deviation of the measurement error is specified for each measurement. This specification is redundant for the 
example presented in this user guide because the standard deviation is the same for all measurements. However, the standard 
deviation changes in some cases; for example, the measurements could comprise two or more datasets with different measure-
ment errors. In such cases, specification for each measurement is necessary. 

Generate the Basis Functions

The individual basis function is a local bi-square function (Cressie and Johannesson, 2008), which is nonzero in a circu-
lar region around its center and is zero everywhere else. This individual basis function is placed at regularly spaced intervals 
throughout the domain. Thus, a key parameter is the spacing between the individual basis functions; this spacing is unknown at 
this stage in the modeling. Consequently, the data are modeled using a wide range of different spacings, and the modeling results 
for a specific spacing are selected according to a quantitative measure. This procedure is described in the next section. The cur-
rent modeling step is to select a suitable set of spacings and then to generate the basis functions for those spacings.

A way to select a suitable set is to plot the transformed concentrations along several different transects through the domain. 
To this end, execute the following scripts to generate and display one transect:

maxOffset <- 10

end_points1 <- data.frame(long = c(-83.48355, -81.21104),

 	 lat = c(33.30348, 29.69067))

oViewTransect1 <- ViewTransect(spatialData, maxOffset, end_points1,

 	 Example_CRS_arg_utm)

plotSampleLocations(oViewTransect1) +

  Add_Geography() +

  Add_Path(Example_domain, color = “blue”) +

  Refine_Map(“lambert”, 25, 40,

 	 latLimits = c(29, 34),

 	 longLimits = c(-85.5, -80))

plot(oViewTransect1, “Ilr-transformed\nconcentration”, span = 0.5, se = FALSE)

The first script specifies the maximum offset between the transect and a field sample; this specification effectively defines 
which field samples are included in the transect. The unit for offset is a kilometer. The second script specifies the end points of 
the transect, using longitude and latitude. The third script calls a constructor for class ViewTransect, which is used to gener-
ate the transect from the spatial data. The fourth script plots the transect and the field samples that are included in the transect 
(fig. 5). The fifth script plots the transformed concentrations as a function of distance along the transect (fig. 6).
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Figure 5.  Graph showing the transect (red line), the field samples 
associated with the transect (black dots), and a portion of the 
domain boundary (blue lines). This graph is generated by the 
software scripts; to make it consistent with U.S. Geological Survey 
publication standards, it must be written to a PostScript file and 
subsequently edited.

Figure 6.  Graph showing the transformed concentrations (black dots) along the transect (fig. 5), 
and a smooth curve (red line) that is fit to the transformed concentrations. This graph is generated 
by the software scripts; to make it consistent with U.S. Geological Survey publication standards, it 
must be written to a PostScript file and subsequently edited.
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The transformed concentrations are highly variable (fig 6), making it difficult to discern the length of the smallest feature 
that could be resolved. A reasonable guess of this length might be 50 km. This guess applies also to three other transects that are 
not shown here, but their scripts are presented in file ScriptsInUsersGuide.R. 

To resolve a feature that is 50 km across, the spacing between the basis function centers must be 50 km or less. Because this 
spacing is just a guess, basis functions are generated for spacings ranging from 20 to 100 km, using the following scripts:

spacings <- c(“020”, “025”, “030”, “035”, “040”,

 	 “045”, “050”, “055”, “060”,

 	 “070”, “080”, “090”, “100”)

oBasisFunctions <- BasisFunctions(spacings,

 	 Example_domain,

 	 spatialData,

 	 Example_CRS_arg_utm,

 	 seed = 777)

summary(oBasisFunctions)

plot(oBasisFunctions, 30) +

  Add_Geography(boundary_color = “gray50”) +

  Add_Path(Example_roi, “red”) +

  Refine_Map(“lambert”, 25, 40, latLimits = c(28, 39.5))

The first script specifies, as character strings, the spacings between the basis function centers. The unit for the spacing is kilome-
ters. The second script calls a constructor for the class that calculates the basis functions. The basis functions for each spacing 
are written to a file in directory BasisFunctions, which is created by the constructor. The third script prints, for each spacing, 
information about the matrix that stores the values of the basis functions at the locations of the field samples. The fourth script 
plots locations of the basis function centers for a spacing of 30 km (fig. 7). Notice that the centers extend slightly beyond the 
boundary of the domain; this feature improves the accuracy of the modeling within the domain. However, along a small part of 
the seacoast of North Carolina, the centers do not extend beyond the boundary because there are too few field samples to do so 
(fig. 4). To plot the locations of the basis function centers for any other spacing, only the second argument to function plot is 
changed; scripts for spacings of 20, 50, 70, and 100 km are presented in file ScriptsInUsersGuide.R.

Figure 7.  Map showing locations (black dots) of the centers of 
the basis functions for a spacing of 30 kilometers. The red and 
blue polygons represent, respectively, the region of interest and 
the domain. Along the seacoast, the boundaries of the region of 
interest and the domain are congruent. This map is generated 
by the software scripts; to make the map consistent with U.S. 
Geological Survey publication standards, it must be written to a 
PostScript file and subsequently edited.
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Conduct the Cross-Validation Test

A suitable spacing for the basis functions is selected using K-fold cross validation (Hastie and others, 2009, p. 241–245). For this 
test, two measures of predictive accuracy are computed. One measure is the deviance, which is -2 times the logarithmic transform of 
the predictive density (Gelman and others, 2014, p. 166–169). The other measure is mean squared error, which is shortened to ms error. 

To conduct the cross-validation test, execute the following scripts:

filename <- paste0(normalizePath(path.package(“BMNUS”)), “\\stan\\BMNUS.stan”)

tr <- stanc(file = filename, model_name = “BMNUS”)

BMNUS_sm <- stan_model(stanc_ret = tr, verbose=FALSE)

nFolds <- 10

nCpuCores <- 4

oCrossValidation1 <- CrossValidation(spatialData, 

 	 BMNUS_sm,

 	 oBasisFunctions,

 	 nFolds, nCpuCores)

save(oCrossValidation1, file = paste0(“CrossValidation_10-Folds\\Object.dat”))

plot(oCrossValidation1)

summary(oCrossValidation1)

The first script sets variable filename to the file that contains the Stan program BMNUS; this file is installed with the R-package 
BMNUS. The second and third scripts compile Stan program BMNUS.

The fourth script sets variable nFolds, which is the number of folds in the cross-validation test. A suitable value for 
nFolds is approximately 10 (Hastie and others, 2009, p. 241–249). The fifth script sets variable nCpuCores, which is the 
number of computer cores that the cross-validation test uses. That is, the cross-validation test requires a significant amount of 
computation, so the computations are performed by multiple computer cores. Variable nCpuCores should be less than the 
actual number of computer cores. This sixth script calls a constructor for the class that performs the cross-validation test. Even 
with the parallel computations, this script requires a long time to execute—several hours is common. The seventh script stores 
the object returned by constructor CrossValidation because of the constructor’s long execution time.

The eighth script plots the results of the crossvalidation test (fig. 8). For each spacing, there are 10 deviances for the 10 
folds. Likewise, there are 10 ms errors for the 10 folds. Both the deviances and the ms errors are summarized by their means and 
their associated standard errors. The ninth script prints a table listing these summary statistics. 

The mean deviances change slightly between successive spacings, but the change is less than the standard errors. The 
mean ms errors behave similarly. Consequently, it is difficult to determine the minimum mean deviance and the minimum 
mean ms error. Because of this difficulty, a range of spacings that have both low mean deviances and low ms errors is selected. 
Any spacing within this range should be suitable for the modeling. Finally, one spacing within this range is chosen. For the 
example in this user guide, the chosen spacing is 30 km. Sometimes, it is helpful to repeat the cross validation using a greater 
number of folds, which reduces the variability in the deviances and the ms errors. An example with 20 folds is included in file 
ScriptsInUsersGuide.R.
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Figure 8.  Graphs showing results of the cross-validation test with 10 folds. A, Test results for the deviance. A gray dot represents 
a deviance. (A small amount of random noise is added to the horizontal coordinate to reduce the number of symbols plotting atop 
one another.) A red dot represents the mean of the 10 deviances at a specified spacing; each vertical red line associated with a red 
dot represent one standard error for the mean. B, Test results for the mean squared error. The definitions of the graph elements are 
analogous to those in A. This graph is generated by the software scripts; to make it consistent with U.S. Geological Survey publication 
standards, it must be written to a PostScript file and subsequently edited.

Sample the Posterior Probability Density Function

To sample the posterior probability density function, execute the following scripts:

load(“BasisFunctions\\Spacing_030.dat”)
csrBasisFuncs <- as(basis_functions$basisFuncs, “RsparseMatrix”)
carQuantities <- SparseCarQuantities(basis_functions)
stanData <- list( N = nrow(spatialData@data),
 	 M = ncol(csrBasisFuncs),
 	 UU = csrBasisFuncs@p + 1,
 	 VV = csrBasisFuncs@j + 1,
 	 WW = csrBasisFuncs@x,
 	 nNeighborPairs = carQuantities$nNeighborPairs,
 	 W_sparse = carQuantities$W_sparse,
 	 D_sparse = carQuantities$D_sparse,
 	 lambda = carQuantities$lambda,
 	 X = spatialData@data$Value,
 	 me_sd = spatialData@data$me_sd,
 	 areLeftCensored = as.integer(
 	 spatialData@data$IndValue == “left”),
 	 betaPar = c(2.5, 1.2),
 	 gammaPar = c(2, 0.3),
 	 cauchyPar = 3)
gen_init <- function(){
 	 phi1 <- rnorm(stanData$M, mean = 0.0, sd = 1e-6)
 	 phi2 <- rnorm(stanData$M, mean = 0.0, sd = 1e-6)
 	 return(list(phi1 = phi1, phi2 = phi2))
}
nChains <- 3
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if(nChains < parallel::detectCores()){
  oldPar <- options(mc.cores = nChains) 
} else{
  oldPar <- options(mc.cores = parallel::detectCores()-1) 
}
rawSamples <- sampling(BMNUS_sm, data = stanData, chains = nChains,
 	 iter = 2000, warmup = 500,
 	 refresh = 100, seed = 7,
 	 init = gen_init,
 	 pars=c(“phi1”, “tau1”, “alpha1”,
 	 “phi2”, “tau2”, “alpha2”, “rho”,
 	 “Y_mean”, “Y_sd”))

options(oldPar)

The first script loads, into computer memory, the basis functions for which the spacing is 30 km. The second function converts 
the basis-function matrix from dictionary-of-keys format to compressed, sparse, row-oriented format, which is needed by the 
BMNUS program. The third script calculates quantities (namely, a scalar, two vectors, and a matrix) that are needed to implement 
the sparse, conditional auto-regressive model. The fourth script prepares the data container for the BMNUS program. The vari-
ables in this list are completely described in file BMNUS.stan, which is in the BMNUS package, so the description is not repeated 
here. The fifth script is a function that is used to initialize vectors phi1 and phi2 in the Stan program BMNUS—this initializa-
tion facilitates sampling of the posterior probability density function. The sixth script sets the number of chains in the sampler. 
The seventh script, which comprises the block-if expression, sets the number of cores for the sampling of the posterior probability 
density function—it is very important that the number of cores for the sampling be less than the actual number of cores.

Finally, the eighth script performs the sampling. The posterior probability density function is sampled three times, yield-
ing three chains. Each chain consists of 2,000 samples of which the first 500 samples are warmup. Progress on the sampling is 
printed every 100 samples. The seed for random number generation is set to a specific value (namely, 7) so that the results in 
this user guide can be reproduced exactly. (However, the seed should not be set for most applications.) The nine parameters for 
which samples are returned are listed in function argument pars. Parameter phi1 comprises the basis function weights associ-
ated with the process mean; parameter phi2 comprises the weights associated with the process standard deviation. Parameters 
Y_mean and Y_sd are, respectively, the mean of the process model and the standard deviation of the process model at the loca-
tions of the field samples. Parameter rho is the average standard deviation throughout the domain. The remaining four param-
eters are related to the conditional autoregressive model and are described in Ellefsen and Van Gosen (2019). The ninth script 
sets the number of cores for the sampling to its original value.

The sampling requires a long time, so it is prudent to save the results; to this end, execute the following scripts:

if(!dir.exists(“SamplingResults”)){

 dir.create(“SamplingResults”)

}

save(stanData, rawSamples, file = “SamplingResults\\RawSamples.dat”)

The scripts associated with the if-statement check whether directory SamplingResults exists. If not, the directory is created. 
The last script writes the sampling results in a file.
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Check Convergence

A summary of selected parameters in the posterior probability density function is written to a file with the following scripts:

filename <- paste(“SamplingResults\\Summary.txt”, sep = “”)

oldPars <- options(width = 140, max.print = 100000)

sink(filename)

print(rawSamples, digits = 3, 

 	 pars = c(“tau1”, “alpha1”, “tau2”, “alpha2”, “rho”))

sink()

options(width = oldPars$width, max.print = oldPars$max.print)

These scripts involve common R functions, so they are not described here. The summary is as follows:

Inference for Stan model: BMNUS.

3 chains, each with iter=2000; warmup=500; thin=1; 

post-warmup draws per chain=1500, total post-warmup draws=4500.

	  mean  se_mean   sd    2.5%    25%    50%    75%     97.5%  n_eff  Rhat

tau1 	19.945  0.137  3.090  14.557  17.745 19.715 21.944  26.616   507  1.011

alpha1 0.971  0.000  0.017  0.932 	  0.962  0.974  0.984   0.995  2270  1.001

tau2 	 6.627  0.112  1.743  3.789 	  5.386  6.425  7.670  10.607   242  1.011

alpha2 0.827  0.006  0.101  0.573 	  0.774  0.847  0.902   0.963   327  1.008

rho 	  0.278  0.001  0.016  0.249 	  0.268  0.277  0.288   0.313   685  1.004

Samples were drawn using NUTS(diag_e) at Tue Sep 24 15:40:12 2019.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at 

convergence, Rhat=1).

Regarding convergence, there are two key statistics. The first is the effective number of independent simulation draws 
(n_eff). It should be at least 10 percent of the total number of samples, and larger values are even better. Because there are 
3 chains of 1,500 samples (after warmup), the total number of samples is 4,500; thus, the lower threshold for n_eff is 450. This 
criterion is met for all parameters except tau2 and alpha2. In our experience, it is common that the parameters in this sum-
mary have relatively low values of n_eff. The reason is that these parameters are deep in the hierarchical model, making them 
difficult to sample. Because these parameters are not used for inference, the low values of n_eff are inconsequential. Additional 
information on the effective number of independent simulation draws is in Gelman and others (2014, p. 286–288).

The other statistic that assesses convergence is the potential scale-reduction factor (Rhat). This factor indicates how much 
the scale of a parameter could be reduced if the number of samples of the posterior probability density function were increased 
to infinity (Gelman and others, 2014, p. 284–285); that is, values near 1 indicate that the sampling has converged. This factor 
should be between 0.95 and 1.05—values outside this range indicate possible problems with convergence. All parameters in this 
summary meet this criterion. In our experience, the other parameters—phi1, phi2, Y_mean, and Y_sd—always meet this 
criterion.
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The best way to assess convergence is to use Rpackage shinystan. To this end, execute these scripts:

library(shinystan)

launch_shinystan(rawSamples)

A description of shinystan is beyond the scope of this user guide but is available in the help information that accompanies shinystan.

Check the Statistical Model

The first check of the statistical model involves analyzing the fit between the model and the data along one or more tran-
sects within the domain. In this user guide, one transect is analyzed. Execute the following scripts:

end_points <- data.frame(long = c(-83.48355, -81.21104),

 	 lat = c(33.30348, 29.69067))

maxOffset <- 10

oCheckTransect <- CheckTransect(spatialData, maxOffset, end_points,

 	 Example_CRS_arg_utm)

plotSampleLocations(oCheckTransect) +

  Add_Geography() +

  Add_Path(Example_domain, color = “blue”) +

  Refine_Map(“lambert”, 25, 40,

 	 latLimits = c(29, 34),

 	 longLimits = c(-85.5, -80))

The first script sets the locations of the transect ends. The second script sets the maximum offset between the transect and a field 
sample; the maximum offset effectively specifies which field samples are included in the transect. The unit for the maximum 
offset is a kilometer. The third script calls a constructor for the class that generates the transect. The fourth script plots the tran-
sect, the field points associated with it, and some geographical details (fig. 9). This plot is used to check both the transect and the 
maximum offset: the transect should be within the domain, and there should be enough field samples to analyze the fit between 
the model and the data. A suitable number might be between 20 and 100.

Figure 9.  Map showing the transect (red line), field samples 
associated with the transect (black dots), and a portion of the 
domain boundary (blue lines). This map is generated by the 
software scripts; to make the map consistent with U.S. Geological 
Survey publication standards, it must be written to a PostScript 
file and subsequently edited.
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Execute the following script to analyze the fit between the model and the data:

plot(oCheckTransect, rawSamples, “Ilr-transformed\nconcentration”)

This script generates four plots, all of which are functions of the distance along the transect (fig. 10). These plots are discussed in 
appendix 1 of Ellefsen and Van Gosen (2019).

Figure 10.  Graphs used to check, along a transect, the fit of the model to the data. A, Measured values of the field samples. 
B, Distributions of the process mean at the locations of the field samples. C, Distributions of the process standard deviation at the 
locations of the field samples. D, Distributions of the predicted measurements at the locations of the field samples and the measured 
values of the field samples (red dots). In the plot symbol representing a distribution, the bottom and the top of the vertical line 
represent its 0.025 and 0.975 quantiles, and the black dot represents its 0.50 quantile. These graphs are generated by the software 
scripts; to make them consistent with U.S. Geological Survey publication standards, they must be written to a PostScript file and 
subsequently edited.
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The second check of the statistical model involves comparing the measured values to simulated values, which are generated 
with model. This check is most easily performed using data along a transect, and the transect that is defined in the beginning of 
the section is used. Execute the following script:

plotSimulatedTransects(oCheckTransect, rawSamples, “Ilr-transformed\nconcentration”)

This script generates 8 plots—1 plot for the measured values, and 7 plots for 7 sets of simulated values (fig. 11). These plots are 
discussed in appendix 1 of Ellefsen and Van Gosen (2019).

Figure 11.  Graphs used to compare, A, the measured values and, B–H, simulated values. These graphs pertain to the 
transect in figure 9. These graphs are generated by the software scripts; to make them consistent with U.S. Geological 
Survey publication standards, they must be written to a PostScript file and subsequently edited.
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The third check of the statistical model involves analyzing the statistical properties of the standardized residuals. To this 
end, execute the following scripts:

oCheckResiduals <- CheckResiduals(stanData, rawSamples)

plot(oCheckResiduals, spatialData, Example_CRS_arg_utm,

 variogram_breaks = seq(from = 0, to = 150, length.out = 16))

summary(oCheckResiduals)

The first script calls the class constructor for the standardized residuals, which calculates the standardized residuals and various 
summary statistics. The second script plots three graphs that help analyze the standardized residuals (fig. 12). The third script 
prints the following table that summarizes the standardized residuals:

#########################################################################

Summary of the standardized residuals

Number = 3316

Range: -4.25513 4.12386

Mean = -0.0036397

Standard deviation = 0.940554

Skewness = -0.342551

Median = 0.0633641

IQR = 1.20675

########################################################################

Both the graphs (fig. 12) and the table are discussed in appendix 1 of Ellefsen and Van Gosen (2019). 

Figure 12.  Graphs used to analyze the statistical properties of the standardized residuals. A, Histogram. B, Quantile-
quantile plot. The green line represents equality between the standardized residuals and the corresponding quantiles of 
the standard normal distribution. C, Semi-variogram. The green line represents the variance of the standardized residuals. 
These graphs are generated by the software scripts; to make them consistent with U.S. Geological Survey publication 
standards, they must be written to a PostScript file and subsequently edited.
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The fourth check of the statistical model involves mapping the arithmetic sign of the standardized residuals. The map 
(fig. 13) is generated with the following script: 
plotResidualMap(oCheckResiduals, spatialData, shape = 16, size = 0.9) +

 Add_Geography(boundary_color = “gray50”) +

 Refine_Map(“lambert”, 25, 40, latLimits = c(28, 39.5)) +

 Refine_Legend(c(0.02,0.99), c(0,1)) +

 guides(colour = guide_legend(override.aes = list(size = 3))) +

 theme(legend.key = element_rect(fill = “gray90”))

This map is discussed in appendix 1 of Ellefsen and Van Gosen (2019). 

Figure 13.  Map showing the arithmetic sign of the standardized 
residuals. This map is generated by the software scripts; to make 
the map consistent with U.S. Geological Survey publication 
standards, it must be written to a PostScript file and subsequently 
edited.

Map the Predicted Quantities
The quantities that may be predicted are the process mean, the process standard deviation, a specified quantile, and a 

specified exceedance probability. To map these quantities, they are predicted on a grid of uniformly spaced points that cover the 
domain. To perform the prediction, execute the following scripts:
threshold <- scaledLogit(8000, constSumValue = 1e6)

oPredictions <- Prediction(Example_domain,

 	 spatialData,

 	 Example_CRS_arg_utm,

 	 basis_functions,

 	 rawSamples,

 	 threshold)

plotPredictionLocations(oPredictions, fraction = 1/3) +

  Add_Geography(boundary_color = “gray50”) +

  Add_Path(Example_roi, “red”) +

  Refine_Map(“lambert”, 25, 40, latLimits = c(28, 39.5))

plotPalette <- colorRampPalette(c(“blue”, “green”,

 	 “yellow”, “orange”, “red”, “black”))(12)
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For this example, the exceedance probability is calculated for a concentration of 8,000 milligrams per kilogram. How-
ever, this concentration must undergo the ilr transformation (see section Organize the Spatial Data), and this transformation is 
performed with the first script. The second script calls the class constructor for the predictions, which calculates the previously 
described quantities on the grid. The default value for the quantile is 0.95. If a different value is desired, it must be specified as 
an additional argument to this function. The third script plots the locations of the points at which the quantities are predicted 
(fig. 14). Usually the number of points is so large that they overlap one another in the plot. This problem is mitigated by plotting 
just a fraction of the points, and this fraction is specified as an argument in function plotPredictionLocations. The 
points that are plotted are selected randomly, so repeated plots differ. The fourth script generates a color palette for the maps. 

Figure 14.  Map showing locations (dots) of the points at which 
the model quantities are predicted. (Only one-third of the points 
are plotted.) The red and blue polygons represent, respectively, 
the region of interest and the domain. Along the seacoast, the 
boundaries of the region of interest and the domain are congruent. 
This map is generated by the software scripts; to make the map 
consistent with U.S. Geological Survey publication standards, it 
must be written to a PostScript file and subsequently edited.

To plot maps showing the predicted quantities, execute the following scripts:

plot(oPredictions, plotPalette, quantity = “Y_mean”, isPaletteScaled = TRUE) +

 Add_Path(Example_roi, “black”) +

 Add_Geography(boundary_color = “gray50”) +

 Refine_Map(“lambert”, 25, 40, latLimits = c(28, 39.5)) +

 Refine_Legend(c(0.02,0.99), c(0,1), legend.direction = “horizontal”) +

 theme(plot.title=element_text(hjust = 0, face = “bold.italic”, size = 10))

plot(oPredictions, plotPalette, quantity = “Y_sd”, isPaletteScaled = FALSE) +

 Add_Path(Example_roi, “black”) +

 Add_Geography(boundary_color = “gray50”) +

 Refine_Map(“lambert”, 25, 40, latLimits = c(28, 39.5)) +

 Refine_Legend(c(0.02,0.99), c(0,1), legend.direction = “horizontal”) +

 theme(plot.title=element_text(hjust = 0, face = “bold.italic”, size = 10))

plot(oPredictions, plotPalette, quantity = “prob”, isPaletteScaled = FALSE) +

 Add_Path(Example_roi, “black”) +

 Add_Geography(boundary_color = “gray50”) +

 Refine_Map(“lambert”, 25, 40, latLimits = c(28, 39.5)) +

 Refine_Legend(c(0.02,0.99), c(0,1), legend.direction = “horizontal”) +

 theme(plot.title=element_text(hjust = 0, face = “bold.italic”, size = 10))
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plot(oPredictions, plotPalette, quantity = “quantile”, isPaletteScaled = TRUE) +

 Add_Path(Example_roi, “black”) +

 Add_Geography(boundary_color = “gray50”) +

 Refine_Map(“lambert”, 25, 40, latLimits = c(28, 39.5)) +

 Refine_Legend(c(0.02,0.99), c(0,1), legend.direction = “horizontal”) +

 theme(plot.title=element_text(hjust = 0, face = “bold.italic”, size = 10))

These four scripts plot, respectively, maps of the process mean (fig. 15), the process standard deviation (fig. 16), the exceedance 
probability (fig. 17), and the 0.95 quantile (fig. 18). 

Figure 16.  Map showing the process standard deviation 
throughout the domain. The black polygon represents the region of 
interest. This map is generated by the software scripts; to make the 
map consistent with U.S. Geological Survey publication standards, 
it must be written to a PostScript file and subsequently edited.

Figure 15.  Map showing the process mean throughout the 
domain. The black polygon represents the region of interest. 
This map is generated by the software scripts; to make the map 
consistent with U.S. Geological Survey publication standards, it 
must be written to a PostScript file and subsequently edited.
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Figure 17.  Map showing the exceedance probability throughout 
the domain, for a threshold of 8,000 milligrams per kilogram. 
The black polygon represents the region of interest. This map is 
generated by the software scripts; to make the map consistent 
with U.S. Geological Survey publication standards, it must be 
written to a PostScript file and subsequently edited.

Figure 18.  Map showing the 0.95 quantile throughout the domain. 
The black polygon represents the region of interest. This map is 
generated by the software scripts; to make the map consistent 
with U.S. Geological Survey publication standards, it must be 
written to a PostScript file and subsequently edited.
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For the example in this user guide, the measurements are the ilr transform of the titanium concentrations (see section 
Organize the Spatial Data). Consequently, maps for the process mean (fig. 15), the process standard deviation (fig. 16), and the 
0.95 quantile (fig. 18) relate to the ilr transform of the titanium concentrations. To make the maps of the process mean and the 
0.95 quantile easily interpretable, the labels for the color bar should be re-expressed as titanium concentration with units of 
milligrams per kilogram. For example, the labels for the process mean are −4.5, −4.0, and −3.5. These labels are transformed to 
their equivalent labels in units of milligrams per kilogram with the following script:

invScaledLogit(c(-4.5, -4.0, -3.5), constSumValue = 1e6)

The equivalent labels are 1720, 3480, and 7040 milligrams per kilogram. That is, the map should be written to a PostScript file, 
and the labels on the color bar should be replaced by the equivalent labels. No transformation exists for the process standard 
deviation; this issue is discussed further in Ellefsen and Van Gosen (2019).

Data, Software, and Reproducibility
The data are in Rpackage BMNUS, which accompanies this user guide. The software scripts in this user guide are in the 

compressed file ReportScripts.zip, which accompanies the user guide. You are encouraged to execute the software scripts to repro-
duce the results in this report and thereby check the calculations and figures. Please report any errors to the authors.
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Appendix 1.  Estimate the Standard Deviation of the Measurement Error using 
Paired Measurements

The standard deviation of the measurement error can also be estimated from paired measurements. In a geochemical survey, 
for example, there are two types of paired measurements: analytical duplicates and field duplicates (Reimann and others, 2008, 
p. 286–289). The analytic duplicates can be used to estimate the standard deviation of the measurement error.

The estimation may be performed using R-language package PairedMeasurements, which accompanies this report and 
should be installed on your computer (section Preparatory Steps). The use of this package is demonstrated with data that are in 
the package. Execute the following scripts:

oEvaluation <- PM_Evaluation(ExampleData, “Example data (no units)”)

plot(oEvaluation)

summary(oEvaluation)

The first script calls a constructor for the PairedMeasurements class; this constructor performs the calculations needed by the class. 
The second script plots the second measurement in a pair against the first measurement in a pair (fig. 1.1). The spread of the black 
dots about the red line is a qualitative indication of the measurement error. This spread is quantified by the standard deviation.

Figure 1.1  Scatter plot of the second measurement in a pair 
against the first measurement in a pair. The red line represents 
equality between the two measurements. This map is generated 
by the software scripts; to make the map consistent with U.S. 
Geological Survey publication standards, it must be written to a 
PostScript file and subsequently edited. 
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The third script prints a table containing summary statistics for the pair measurements:

###############################################################

Summary

Number of paired measurements: 176

Range: -11.4631 -7.12777

Standard deviation of the paired measurements: 0.0398779

###############################################################

The standard deviation of the paired measurements is the standard deviation of the measurement error.
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Appendix 2.  Reading and Writing Data for GIS Programs
Some researchers will want to use geographic information system software with the BMNUS package. To facilitate such 

use, the package includes four functions that read and write shapefiles, which are a standard geographic information system 
format to store data. Function read_polygon_shapefile is used to read a polygon that represents either the domain or 
the region of interest. Function read_point_shapefile is used to read the measurements, their censor indicators, and 
their locations. Function write_point_shapefile is used to write the predictions (namely, the process mean, the process 
standard deviation, the exceedance probability, and the quantile) and their locations. Function write_rasterfiles is used 
to write the predictions as raster files, for which the format is the GeoTiff metadata standard. Complete documentation for these 
functions is included in the package. 
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Appendix 3.  Cross validation using a validation dataset
If there is both a training dataset and a validation dataset, then the cross-validation test is conducted with class 

SimpleCrossValidation. To explain how this class is used, assume that the training dataset is stored in a 
SpatialPointsDataFrame that is called training_spatialData. Similarly, the validation dataset is 
stored in a SpatialPointsDataFrame that is called validation_spatialData. The format of these two 
SpatialPointsDataFrames is identical to that of spatialData, which is described in section Organize the Spatial 
Data.

To conduct the cross-validation test, execute the following scripts:

filename <- paste0(normalizePath(path.package(“BMNUS”)), “\\stan\\BMNUS.stan”)

tr <- stanc(file = filename, model_name = “BMNUS”)

BMNUS_sm <- stan_model(stanc_ret = tr, verbose=FALSE)

nCpuCores <- 4

oSimpleCrossValidation <- SimpleCrossValidation(training_spatialData,

 	 validation_spatialData,

 	 me_sd, BMNUS_sm,

 	 oBasisFunctions,

 	 nCpuCores)

save(oSimpleCrossValidation, file = “SimpleCrossValidation.dat”)

plot(oSimpleCrossValidation)

summary(oSimpleCrossValidation)

The first fours scripts are described in section Conduct the Cross-Validation Test. The fifth script calls a constructor for the class 
that performs the cross-validation test. The first two arguments to this constructor are the training and validation datasets. Even 
with the parallel computations, this script requires a long time to execute. The sixth script stores the object returned by construc-
tor SimpleCrossValidation because of the constructor’s long execution time. The seventh script plots the results of the 
crossvalidation test. For each spacing, there is one deviance, and there is one ms error. The eighth script prints a table listing 
these measures of prediction accuracy. 
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Appendix 4.  Troubleshooting Tips
When library rstan is installed, the installation program writes a file that contains various compiler options that are needed 

when the Stan program BMNUS is compiled. These compiler options are appropriate for many computer processors but not 
all. For example, when these compiler options are used on author Ellefsen’s computer, Stan program BMNUS fails to execute 
properly: Function CrossValidation (see section Conduct the Cross-Validation Test), which uses Stan program BMNUS, gener-
ates the following error message:

Error in unserialize(node$con) : error reading from connection. 

If you see such an error message, then the compiler options on your computer must be changed. To this end, locate file Make-
vars.win. (On author Ellefsen’s computer, this file is in directory C:\Users\ellefsen\Documents\.R\. Replace the 
contents of this file with the following:

CXX14 = g++ -std=c++1y

CXX14FLAGS=-O3 -Wno-unused-variable -Wno-unused-function

CXX11FLAGS=-O3

Finally, recompile the Stan program BMNUS (see section Conduct the Cross-Validation Test).



Ellefsen and others—
U

ser G
uide to B

ayesian M
odeling of N

on-Stationary, U
nivariate, Spatial D

ata U
sing R-Language Package B

M
N

U
S—

TM
 7–C20

ISSN 2328-7055 (online)
https://doi.org/10.3133/tm7C20

https://doi.org/10.3133/tm7C20

	Contents
	Abstract
	Introduction
	Preparatory Steps
	Statistical Modeling
	Estimate the Standard Deviation of the Measurement Error
	Define the Region of Interest and the Domain
	Organize the Spatial Data
	Generate the Basis Functions
	Conduct the Cross-Validation Test
	Sample the Posterior Probability Density Function
	Check Convergence
	Check the Statistical Model
	Map the Predicted Quantities


	Data, Software, and Reproducibility
	Acknowledgments
	References Cited
	Appendix 1. Estimate the Standard Deviation of the Measurement Error using Paired Measurements
	Appendix 2. Reading and Writing Data for GIS Programs
	Appendix 3. Cross validation using a validation dataset
	Appendix 4. Troubleshooting Tips
	Figure 1. Graphs showing the analysis of 62 repeated measurements of the titanium concentration in the first standard reference material.
	Figure 2. Graphs showing the analysis of 63 repeated measurements of the titanium concentration in the second standard reference material.
	Figure 3. Map showing the region of interest and domain.
	Figure 4. Map showing locations of the stream sediment samples.
	Figure 5.  Graph showing the transect, the field samples associated with the transect, and a portion of the domain boundary.
	Figure 6. Graph showing the transformed concentrations along the transect, and a smooth curve that is fit to the transformed concentrations.
	Figure 7. Map showing locations of the centers of the basis functions for a spacing of 30 km.
	Figure 8. Graphs showing results of the cross-validation test with 10 folds.
	Figure 9. Map showing the transect, field samples associated with the transect, and a portion of the domain boundary.
	Figure 10. Graphs used to check, along a transect, the fit of the model to the data.
	Figure 11. Graphs used to compare, A, the measured values and, B–H, simulated values.
	Figure 12. Graphs used to analyze the statistical properties of the standardized residuals.
	Figure 13. Map showing the arithmetic sign of the standardized residuals.
	Figure 14. Map showing locations of the points at which the model quantities are predicted.
	Figure 15. Map showing the process mean throughout the domain.
	Figure 16. Map showing the process standard deviation throughout the domain.
	Figure 17. Map showing the exceedance probability throughout the domain, for a threshold of 8,000 milligrams per kilogram.
	Figure 18. Map showing the 0.95 quantile throughout the domain.



