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By Karl J. Ellefsen and Bradley S. Van Gosen

been developed and were reviewed by Wikle (2010) and 
Banerjee and others (2015, p. 381–411). Second, the statistics 
change with location (fig. 1), which is a property called non-
stationarity. Methods for statistical modeling of non-stationary 
datasets have been developed and were reviewed by Sampson 
(2010) and Banerjee and others (2015, p. 63–70).

One group of methods for statistical modeling of non-
stationary datasets is called process convolution models 
(Sampson, 2010). With such models, the mean of a measured 
physical quantity may be estimated over the region in which 
the measurements were made (Higdon, 2002; Banerjee and 
others 2008; Lemos and Sansó, 2009). In this report, the 
process convolution model is extended to estimate the mean 
and the standard deviation. A similar extension already has 
been made for a completely different method of statistical 
modeling that involves stochastic partial differential equations 
(Ingebrigtsen and others, 2014).

This report is divided into three major sections. The Method 
section primarily describes the statistical model (which is a type 
of Bayesian hierarchical model) and its numerical solution. With 
this model, the spatially varying mean and the spatially varying 
standard deviation are estimated. The Demonstration of Method 
section shows how the method is used to map titanium concen-
trations in the southeastern United States. The Discussion section 
presents additional details regarding the method.

Method

Background

The data are measurements of a physical property, and 
all measurements are within a domain that may be represented 
by symbol D. The domain may be a line such as a transect, 
an area such as a geographic region, or a volume such as a 
mineral deposit.

The goal of the statistical modeling is to estimate, within 
domain D, the distribution of a spatially varying mean and 
the distribution of a spatially varying standard deviation. The 
method to represent the spatial variation must be flexible so 
that it can be applied to many different domains. Furthermore, 
this method must be computationally efficient so that statistical 

Abstract
Some Earth science data, such as geochemical measure-

ments of element concentrations, are non-stationary—the 
mean and the standard deviation vary spatially. It is important 
to estimate the spatial variations in both statistics because 
such information is indicative of geological and other Earth 
processes. To this end, an estimation method is formulated as 
a Bayesian hierarchical model. The method represents the spa-
tially varying mean and the spatially varying standard devia-
tion with basis functions; this formulation implicitly accounts 
for a spatially varying covariance function. A unique advan-
tage of this method is that it can map the mean, the standard 
deviation, quantiles, and exceedance probabilities. The method 
is demonstrated by mapping titanium concentrations, which 
are measured in the coastal plain of the southeastern United 
States. Various checks demonstrate that the model fits the data 
and that the estimated statistics are geologically plausible.

Introduction
This work is motivated by a dataset consisting of 3,316 tita-

nium concentrations that were measured in samples of stream 
sediments from the coastal plain in the southeastern United 
States. The complete dataset is described later in this report; for 
now, consider just those concentrations that are within 10 kilo-
meters (km) of a transect (fig. 1). The concentrations have 
undergone a nonlinear transformation, which is described later 
in this report. Both the center and the spread of the transformed 
concentrations vary along the transect. These variations reflect 
changes in geological and geochemical processes occurring 
along the transect (Van Gosen and Ellefsen, 2018).

The center and the spread of the transformed concentra-
tions may be quantified by, respectively, the mean and the stan-
dard deviation. Estimating both statistics is important because 
both provide information about the geological and geochemical 
processes that caused the current spatial distribution; how-
ever, estimating these statistics presents special challenges. 
First, because many Earth science datasets are large, estimat-
ing both statistics requires a lot of computation. Nonetheless, 
methods for statistical modeling of such large datasets have 
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modeling of large datasets is feasible. These two conditions 
are satisfied if the method uses smoothing kernels (Higdon, 
2002). In practice, a smoothing kernel is simply a basis func-
tion, and this term is used in the rest of this report.

The key idea underlying basis functions is most easily 
explained for a linear domain. Within this domain, a set of 
overlapping functions is defined, as seen in figure 2. Each 
basis function is the local bi-square function (Cressie and 
Johannesson, 2008); this function was chosen because it is 
simple, and it is nonzero only in a small region around its cen-
ter. (The later property can be exploited to significantly reduce 
the amount of computations and computer memory.) The nine 
functions have the same shape; they are just translated copies 
of one another. Appropriate weights for these functions are 
selected, and the weighted functions are added together to 
represent trends in the data.

Bayesian Hierarchical Model

Data Model
A helpful way to understand Bayesian hierarchical 

models for physical processes involves separating them into 
three submodels (Berliner, 1996; Cressie and Wikle, 2011, 
p. 21–23). The first is called the data model and is explained in 
this section. The second and third are called the process model 
and the parameter model respectively and are explained in 
subsequent sections.

Vector X consists of measurements of a physical property 
in domain D; each element of X corresponds to a measurement 
at a different location. The dependence on location is omitted 
from the notation so that the notation is as easy to read as pos-
sible. The measurements are associated with errors that may 
be represented by a normal distribution:

	 Normal(X | Y, diag(σ2))	 (1)
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Figure 1.  Graph showing transformed titanium concentrations along a transect in the southeastern 
United States.
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Figure 2.  Graph showing an example of nine basis functions for a linear domain.
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Vector Y represents the modeled physical property, and its 
dependence on location is omitted from the notation. Scalar σ 
represents the standard deviation associated with the measure-
ment error. The standard deviation σ may be estimated, for 
example, from repeated measurements that are part of quality-
control procedures. The notation diag() indicates that its argu-
ment is converted to a diagonal matrix of the appropriate size.

Process Model
Vector Y, which represents the modeled physical property, 

is generated by a normal distribution:

	 Normal(Y | μ1+Bϕ, diag[(ρexp[Bψ])2])	 (2)

The mean of the distribution has two terms. In the first term, 
scalar μ represents the average value of the physical property 
in domain D. It is a constant and is estimated from the data X 
before the statistical modeling occurs. The symbol 1 repre-
sents a vector of ones. In the second term, the product Bϕ rep-
resents smooth, spatially varying excursions from the average 
μ. Matrix B consists of the values of the basis functions at the 
measurement locations, and vector ϕ consists of the weights 
for those basis functions.

The standard deviation ρexp(Bψ) has two parts. First, 
scalar ρ represents the average value of the standard devia-
tion throughout domain D. Second, vector exp(Bψ) represents 
smooth, spatially varying, positive-valued excursions from 
scalar ρ. The notation exp() indicates that exponentiation is 
applied to each element of the vector Bψ. Vector ψ consists of 
the weights for the basis functions.

Parameter Model
An appropriate prior distribution for vector ϕ must 

satisfy two requirements. First, the excursions from the mean, 
which are specified by the product Bϕ, must be zero when 
averaged over domain D because that condition is inherent 
in equation 2. This requirement is satisfied approximately 
if the average of the elements in vector ϕ is approximately 
zero. Second, the weights for adjacent basis functions should 
be similar to one another so that the mean varies smoothly 
throughout domain D.

To satisfy these two requirements, vector ϕ is represented 
by a normal distribution:

	 Normal(ϕ | 0,Σϕ)	 (3)

The mean of the distribution is a vector of zeros 0, so the first 
requirement is satisfied. The covariance matrix Σϕ is chosen 
so that weights for adjacent basis functions are similar to one 
another, a procedure that has been used by Lang and Brezger 
(2004). Thus, the second requirement is satisfied. The cova-
riance matrix is formulated as a conditional autoregressive 
(CAR) model (Banerjee and others, 2015, p. 80–84). In a CAR 

model, the covariance matrix is decomposed in the following 
manner:

	 Σϕ=(��
2 [Dϕ−αϕWϕ])

−1	 (4)

The number of basis functions is denoted J, so the covariance 
matrix Σϕ has dimension J × J. Matrix Wϕ, which also has 
dimension J × J, is a proximity matrix (Banerjee and others, 
2015, p. 74); it specifies the associations among weight ϕj and 
its neighbors. Matrix Dϕ, which also has dimension J × J, is 
diagonal; element j on the diagonal is the sum of the weights 
associated with weight ϕj. Scalar parameter αϕ, which is 
restricted to the interval (0,1), ensures that the covariance 
matrix is nonsingular (Strang, 1988, p. 13–14). The closer 
that αϕ is to 1, the stronger the spatial association between 
weight ϕj and its neighbors. Scalar parameter ��

2  represents 
precision; its reciprocal quantifies how a weight varies with 
respect to its neighboring weights but not the degree of spatial 
association among them.

A suitable prior distribution for parameter αϕ must satisfy 
two criteria. First, it must limit the range of αϕ to the interval 
(0,1) (Banerjee and others, 2015, p. 82). Second, it must be 
adjustable so that αϕ has a high probability of being close to 
1. Values close to 1 ensure that weight ϕj has a strong spatial 
association with its neighbors. The first criterion can be satis-
fied with the beta distribution:

	 Beta(αϕ | p1, p2)	 (5)

Constants p1 and p2 control the shape of the distribution and 
must be positive. If p1>p2>1, then the second criterion is satis-
fied. For example, suitable values might be p1=2.5 and p2=1.2.

A suitable prior distribution for parameter ��
2  must 

satisfy two criteria. First, it must ensure that ��
2 >0 because 

negative precision is physically meaningless, and a precision 
of zero would correspond to infinite variability. Second, it 
must exclude small and large values because they correspond 
to excessively large and excessively small variances, respec-
tively. (Small and large depend on the specific problem, so a 
general definition cannot be formulated.) The first criterion 
can be satisfied with the gamma distribution:

	 Gamma(��
2  | q1,q2)	 (6)

Constants q1 and q2 control the shape of the distribution and 
must be positive. If q1>1, then the second criterion is satisfied. 
For example, suitable values might be q1=2.0 and q2=0.3.

An appropriate distribution for vector ψ is formulated 
similarly. The equations are identical to equations 3, 4, 5, and 
6, except that ϕ is replaced by ψ; consequently, the equations 
are not repeated.

The prior distribution for standard deviation ρ must 
satisfy two criteria. First, it must permit only positive val-
ues for ρ. Second, it must permit ρ to have a wide range of 
values because usually little is known about ρ before the 
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statistical modeling. To satisfy these two requirements, ρ is chosen to have a truncated Cauchy 
distribution:

	                                                    Truncated Cauchy(ρ | 0,s)	 (7)

To understand this distribution, consider a Cauchy distribution with a center of zero and a scale 
parameter of s. Then, truncate the Cauchy distribution at zero, removing the negative-valued 
part. The resulting distribution ensures that the standard deviation has a positive value, which 
satisfies the first criterion. A suitable value for scale parameter s might be 3, which satisfies the 
second criterion.

Bayes’ Rule
Bayes’ rule is needed to infer the unknown parameters and can be formulated directly 

from equations 1 to 7. However, the numerical calculation of the posterior probability density 
function has severe problems because the function has regions of high curvature where the 
Monte Carlo sampler can be trapped. This problem can be overcome with a slight change in the 
formulation. To this end, equation 1 is considered from a different perspective. The measure-
ment of a physical property X is represented by the equation X=Y+ε. Vector ε represents the 
measurement error; it has a normal distribution with mean zero and covariance matrix diag(σ2). 
Because vector Y has a normal distribution (eq. 2), the sum Y+ε also has a normal distribu-
tion (Grimmett and Stirzaker, 2001, p. 114); thus, the measurements can be represented by the 
normal distribution:

	                                           Normal(X | μ1+Bϕ,diag[σ2+(ρexp[Bψ])2])	 (8)

With this slight change, Bayes’ rule is formulated from equations 3 to 8:

p(ϕ,αϕ,��
2,ψ,αψ, 2,ρ | y) ∝ 

i Ii: 1
Normal (Xi | μ+Bϕ|i,σ

2+[ρexp(Bψ|i)]
2 )×

i I

x

i: 0

0

Normal (xi | μ+Bϕ|i,σ
2+[ρexp(Bψ|i)]

2)dxi×

Normal(ϕ | 0,Σϕ )×Beta(αϕ | p1,p2)×Gamma(��
2  | q1,q2)×

	        Normal(ψ | 0,Σψ )×Beta(αψ | p1, p2)×Gamma( 2 | q1,q2)×TruncatedCauchy(ρ | 0,s)	  (9)

The expression on the left is the posterior probability density function for the model param-
eters. The first product on the right is that part of the likelihood function that accounts for 
those measurements that are not censored. The second product on the right is that part of the 
likelihood function that accounts for those measurements that are left censored at value x0. It 
is important to include this product because left-censored measurements are common in the 
Earth sciences. (There could be another product to account for measurements that are right 
censored. Because such measurements are rare in the Earth sciences, the product is omitted 
from equation 9.) These two products constitute the likelihood function. The remaining seven 
probability density functions on the right side are the prior probability density functions.
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Numerical Solution

Equation 9 is coded in the Stan probabilistic program-
ming language (Carpenter and others, 2017). The CAR model 
is coded in the manner proposed by Joseph (2016), which 
executes quickly and requires little computer memory because 
it accounts for sparsity in the matrices. Samples of the poste-
rior probability density function are obtained using the Ham-
iltonian Monte Carlo method (Neal, 2011; Gelman and others, 
2014, p. 300–305), which is implemented within Stan.

Convergence of the sampling is assessed by examining the 
parameter traces, the potential scale reduction factor, the effec-
tive number of independent simulation draws, and various other 
statistics (Gelman and others, 2014, p. 281–288). The effec-
tive numbers for αϕ,��

2
,αψ, and ��

2  usually are relatively small 
compared to the effective numbers for the other parameters. 
The reason is that these parameters appear relatively deep in the 
hierarchy, making them somewhat difficult to sample. These 
low effective numbers have no practical effect on inference.

Demonstration of the Method
To demonstrate the method, it is used to model titanium 

concentrations that were measured in 3,316 samples of stream 
sediments (Ellefsen, 2017). The samples were collected in the 
coastal plain of the southeastern United States, where the sedi-
ments are relatively rich in titanium-bearing minerals, namely 
ilmenite, rutile, and leucoxene. These minerals, as well as oth-
ers, make these sediments an important economic resource.

The sample locations are scattered throughout the region of 
interest, except for a few small locales such as the southwestern 
corner of Georgia (fig. 3). The density of the samples varies a 
lot. It is relatively low in the northeast but relatively high in the 
southwest, especially near the center of Alabama. A margin was 
added to the region of interest because the margin improves the 
modeling near the boundary of the region of interest. Of course, 
a margin could not be added along the seacoast. The region of 
interest and the margin constitute the domain.

The titanium concentrations are an example of compo-
sitional data. Such data have special mathematical proper-
ties (Pawlowsky-Glahn and others, 2015, p. 8–31) that, if 
not accounted for, may adversely affect statistical inference 
(Aitchison, 2003, p. 48–63). A way to account for these prop-
erties is to transform the concentrations using the isometric 
log-ratio (ilr) transformation (Pawlowsky-Glahn and others, 
2015, p. 36–38), which is a generalization of a logit transform. 
The resulting transformed concentrations do not have units.

Repeated measurements of titanium concentrations in two 
reference materials were made as part of the quality-control 
procedure for measuring element concentrations in the stream 
sediment samples. For each reference material, its titanium 
concentrations undergo the ilr transform. Analysis of these 
ilr-transformed concentrations indicates that their distribution 
may be represented by a normal distribution, which is impor-
tant because this distribution represents the measurement error 

(eq. 1). The standard deviation of the distribution is 0.032 for 
one reference material and 0.031 for the other material; conse-
quently, the standard deviation in the data model is chosen to 
be 0.032.

The basis function for a geographic region must be two-
dimensional. The basis function—the local bisquared func-
tion—is nonzero only in a circular region, and the peak of the 
function is at the center of the circular region. For the specified 
domain (fig. 3), an example set of basis functions is shown in 
figure 4; only the locations of the basis function centers are 
plotted. The centers extend slightly beyond the domain. This 
feature improves the modeling near the domain boundary 
(Cressie and Kang, 2010, p. 49–63). (An exception is along 
part of the seashore of North Carolina where there are so few 
stream sediments samples that having centers outside the study 
area is infeasible.) The centers are chosen to be in a hexagonal 
pattern because this pattern requires fewer basis functions to 
represent the transformed concentrations than a rectangular 
pattern requires (Dudgeon and Mersereau, 1984, p. 44–47). 
Another reason is that the hexagonal pattern is more isotropic 
than a rectangular pattern is.

The next step in the statistical modeling is selecting the 
spacing between the basis functions. If the spacing is too small, 
then there will be many basis functions, and the statistical model 
will overfit the data. Conversely, if the spacing is too large, 

Figure 3.  Map showing sample locations, region of interest, 
and domain in the coastal plain of the southeastern United 
States. Along the seacoast, the boundaries of the region of 
interest and the domain are congruent. The inset shows the 
location of the domain within the United States.
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then there will be few basis functions, and the statistical model 
will underfit the data. For both situations, the consequences are 
the same: the statistical model will poorly predict the modeled 
physical property Y. That is, the resulting map will be inaccu-
rate. So, selecting an appropriate spacing is important.

The spacing is selected using K-fold cross validation 
(Hastie and others, 2009, p. 241–245). The essential idea of 
this method is that a small fraction, say, 10 percent of the data 
are reserved, the remaining 90 percent of the data are used to 
estimate the statistical model, the estimated model is used to 
predict values for the reserved data, and finally the predicted 
values are compared to the actual values in the reserved data. 
The accuracy of the predicted values is measured by two differ-
ent statistics: the deviance and the mean squared error (Gelman 
and others, 2014, p. 166–182; McElreath, 2016, p. 165–205). 
This procedure is repeated K times (namely, K fold), yielding 
K values of each statistic. K-fold cross validation is performed 
for many different spacings between the basis functions.

The results of 10-fold cross validation are shown in 
figure 5. The spacings between the basis functions centers 
range from 20 to 100 km; this range extends beyond the 
spatial scales of anomalies that are observed in transects. For 
both the deviance and the mean squared error, smaller values 
indicate higher predictive accuracy.

At each spacing, the 10 deviances vary a lot (fig. 5A). Con-
sequently, it is difficult, perhaps impossible, to discern any trend 
in the deviances as the spacing increases from 20 to 100 km. 
To mitigate the effects of this variability, the 10 deviances at 

Figure 4.  Map showing an example set of basis functions for 
the domain. Along the seacoast, the boundaries of the region of 
interest and the domain are congruent.

each spacing are summarized by their mean and the associated 
standard error. The means for the deviance appear relatively 
small between 25 and 40 km. Similarly, the means for the mean 
squared error (fig. 5B) appear relatively small between 25 and 
40 km. For both statistics, there is significant uncertainty in 
the interpreted relations because the changes between succes-
sive spacings are smaller than the standard errors. Because of 
this uncertainty, the cross validation is repeated using 20 folds, 
which reduces the variability in the statistics. The results, which 
are not shown, are practically the same. Consequently, the spac-
ing between the basis functions is chosen to be 30 km, which is 
the very spacing shown in figure 4.

Sampling the posterior probability density function and 
assessing the convergence of the sampling are performed as 
described in the Numerical Solution section. The sampling 
consists of three chains of 1,500 samples each, so there are 
at total of 4,500 samples of the posterior probability density 
function. Various checks of the statistical model are presented 
in appendix 1.

To display the mean and the standard deviation of the 
process model as maps, many regularly spaced points are 
chosen within the domain. For this demonstration, the number 
is 10,000. There is nothing special about this number; other 
numbers could also yield suitable maps. The mean and the 
standard deviation of the process model must be predicted at 
these 10,000 points. To this end, the values of the basis func-
tions at these prediction points are calculated and stored in a 
matrix Bp. For one sample of the posterior probability density 
function, the mean of the process model μ1+Bpϕ is calculated 
at each of the 10,000 prediction points. Hence, one sample 
of the posterior probability density function yields one map 
of the mean of the process model. This procedure is repeated 
for all samples in the posterior probability density function, 
yielding 4,500 maps. Such a large number of maps cannot be 
analyzed by a human, so they are averaged, yielding a single 
map. The resulting map might be called the mean of the maps 
of the mean of the process model. Because this phrase is 
cumbersome, the resulting map is simply called the process 
mean. The procedure for the standard deviation of the process 
model is analogous, and the resulting map is called the process 
standard deviation. These maps are shown in figures 6A and B.

At each prediction point, the process mean and the pro-
cess standard deviation are the parameters of a normal distri-
bution that represents the process. This property allows alter-
native ways to communicate information about the process. 
One way involves the probability that the physical property 
exceeds a specified threshold; the probability of exceeding this 
threshold is called the exceedance probability. This exceed-
ance probability is calculated for all prediction points, and 
the result is displayed as a map. For example, such a map is 
calculated for the titanium concentrations, using a threshold of 
8,000 milligrams per kilogram (fig. 6C). Maps of exceedance 
probability are especially important in studies of contaminants, 
as researchers want to know where it is highly likely that the 
contaminant concentration exceeds some threshold.
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Another way to communicate information about the 
process involves the value of the physical property that 
is associated with a specified probability, say, 0.95. In the 
normal distribution that represents the process at a prediction 
point, this 0.95 probability is associated with a specific value 
of the physical property, which is called the 0.95 quantile. 
This 0.95 quantile is calculated for all prediction points, and 
the result is displayed as a map. For example, a 0.95 quantile 
map is calculated for the titanium concentrations (fig. 6D). 
Such maps communicate information about the right tail 
of the normal distribution that represents the process. Such 
information is especially important in studies of mineral 

resources; economic geologists want to know where mineral 
resource concentrations are high.

Recall that the statistical modeling is performed on 
ilr-transformed concentrations. Consequently, the maps in 
figures 6A, B, and D are expressed in terms of these ilr-
transformed concentrations. Because these ilr-transformed 
concentrations are difficult to interpret, scales for the process 
mean and the 0.95 quantile are re-expressed in terms of the 
equivalent titanium concentrations (figs. 6A and D). Unfor-
tunately, there is no similar transformation for the process 
standard deviation (Pawlowsky-Glahn and others, 2015, 
p. 108–112).den20-0018_fig 05
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Figure 6.  Maps showing, A, the process mean, B, the process standard deviation, C, the exceedance probability, and, D, the 0.95 quantile.
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Discussion
In the demonstration of the method, sample density varies 

over a wide range (fig. 3). Such variation strongly affects clas-
sical kriging techniques, so there are procedures to compen-
sate for it (Issaks and Srivastava, 1989, p. 237–248); however, 
the effects are different for the method presented herein. 
Regions with high sample density strongly affect the weights 
of the basis functions that intersect those regions. Conversely, 
regions with low sample density weakly affect the weights of 
the basis functions that intersect those regions. These differ-
ences in effect are localized, and they do not affect other parts 
of the Bayesian hierarchical model. Consequently, there is no 
need to compensate for variations in sample density.

Recall that the probability density functions in the 
parameter model are characterized by constants p1, p2, q1, q2, 
and s (eqs. 5, 6, and 7). These constants are chosen by the 
user based upon their understanding of the distributions that 
parameters αϕ,

2,αψ,��
2, and ρ should have. Because these 

constants are chosen, not estimated from the data, the sensitiv-
ity of the model to these constants is a concern. This concern 
is addressed with a sensitivity analysis, which is presented in 
appendix 2. The analysis shows that, if reasonable values are 
assigned to the constants in the parameter model, then these 
constants have no discernible effect on the solution.

Several extant methods for modeling non-stationary 
data explicitly specify a spatially varying covariance function 
(Sampson, 2010; Banerjee and others, 2015, p. 63–70). Such 
a function was not specified in the formulation of the method. 
Nonetheless, the covariance function for the process model 
can be derived from the formulating equations (appendix 3). 
The covariance function is calculated at four different loca-
tions in the domain, and the results show that the covariance 
function varies spatially. Hence, although a spatially varying 
covariance is not explicitly specified in the statistical model, it 
is implicit in the model.

The basis function—the local bisquare function—is 
zero throughout most of the domain, so almost all elements 
in matrix B are zero. The number of zero-valued elements 
depends upon the number of measurements and the number 
of basis functions, so the percentage of zero-valued elements 
is different for every dataset. Nonetheless, the percentage 
frequently ranges from 97 to greater than 99. This sparsity 
is exploited in the computer implementation, which greatly 
decreases the computer time required to sample the posterior 
probability density function and greatly increases the amount 
of data that can be modeled. Regarding the latter advantage, a 
dataset for the conterminous U.S. with 64,368 measurements 
has been processed. An upper limit for the amount of data is 
currently unknown.

Conclusions
Non-stationary, univariate, spatial data are represented by 

a Bayesian hierarchical model that consists of three submodels. 
The first is the data model that represents the measurement 
procedure. The second is the process model that represents, 
throughout the domain, the spatial changes in the mean and the 
standard deviation of the data. This process model accounts for 
the non-stationary nature of the data, as well as a spatially vary-
ing covariance function. The third submodel is the parameter 
model that represents the parameters in the process model. All 
parameters in the Bayesian hierarchical model are estimated 
using the Hamiltonian Monte Carlo method.

This method is used to generate maps of the process 
mean, the process standard deviation, an exceedance prob-
ability, and a quantile. These maps provide Earth scientists 
with information about geological and other Earth processes. 
For example, maps of exceedance probability are especially 
helpful in studies of contaminants, and maps of quantiles are 
especially helpful in studies of mineral resources.
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performing these numerical computations for appendixes 2 
and 3, the scripts in the user guide must be executed so that 
several necessary data files are created. In summary, the pub-
licly available data and the software can be used to reproduce 
the results in this article.
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Appendix 1.  Checks of Statistical Model

This appendix presents five different checks of the statis-
tical model. The first check involves analyzing the fit between 
the model and the data along one or more transects within the 
domain. This check is particularly valuable because it reveals 
model properties that are difficult to discern in map view. In 
this appendix, this analysis is demonstrated for only one tran-
sect (fig. 1.1). The data that are projected into this transect are 
within 10 kilometers (km) of it and are shown in figure 1.2A. 
(These data are also shown in figure 1.)

The distributions of the mean of the process model, the 
standard deviation of the process model, and the predicted 
measurement are calculated at the locations of the data in 
the transect. Then, these distributions are projected into the 
transect too (fig. 1.2B, C, and D). The trend defined by the 
medians of the mean of the process model is similar to the 
trend in the transformed titanium concentrations (fig. 1.2A 
and B). Likewise, the trend defined by the medians of the 
standard deviation of the process model is similar to the trend 
in the variability of the transformed titanium concentrations 
(fig. 1.2A and C). For the mean and the standard deviation of 
the process model, the distribution spreads at both transect 

ends are relatively large because there are less data here to 
estimate the model parameters (fig. 1.2B and C).

The distribution for predicted measurement i is a normal 
distribution with mean μ+Bϕ|i and with standard deviation 
(σ2+[ρexp(Bψ|i)]

2)1⁄2. This distribution accounts for the mean of 
the process model, the standard deviation of the process model, 
and the measurement error—it analogous to the prediction 
interval in classical regression (DeGroot and Schervish, 2002, 
p. 641–642). The distributions for the predicted measurements 
are compared to the transformed concentrations in figure 1.2D. 
The trend defined by the medians is similar to the trend in the 
transformed concentrations. The distribution spreads at both 
transect ends are relatively large because there are less data 
here to estimate the model parameters. The distribution spreads 
near the middle are large because the data here are highly vari-
able. Thus, the distributions for the predicted measurements 
satisfactorily represent the actual data.

A plot symbol for a distribution for a predicted measure-
ment shows the 95-percent probability interval. So, if the 
distributions and their associated measurements are considered 
collectively, approximately 95 percent of the measurements 
should plot within the 95-percent probability intervals. Conse-
quently, for the 82 measurements in figure 1.2D, it is expected 
that 78 will plot within this interval; actually, 77 measure-
ments do. This finding further reinforces the conclusion that 
the distributions for the predicted measurements satisfactorily 
represent the actual measurements.

The second check of the statistical model also involves 
the transect: the observed isometric log-ratio (ilr)-transformed 
concentrations are compared to seven sets of ilr-transformed 
concentrations that are simulated with the statistical model 
(fig. 1.3). The observed and the simulated transformed con-
centrations appear similar, with one exception. The exception 
occurs between about 175 and 250 km—there is large scatter 
in the observed ilr-transformed concentrations but only moder-
ately large scatter in the simulated ilr-transformed concentra-
tions. The reason for this difference is that the basis functions 
constrain the spatial changes in both the mean and the standard 
deviation of the process model; consequently, they have dif-
ficulty representing the abrupt changes at 175 and 250 km.

The third check of the statistical model involves analyz-
ing the standardized residuals for all data. The formula for the 
standardized residual is derived from equation 8. For measure-
ment Xi, the standardized residual is

          
X E Ei i i
� �� ��� �� � � ��� ��� � � � �B exp B/

2

	 (1-1)

for which the notation E() denotes the expected value. 
Equation 8 indicates that the standardized residuals should 

Figure 1.1.  Map showing the location of the transect for the 
first and second checks of the statistical model.
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Figure 1.2.  Graphs showing the model fit along the transect (fig. 1-1). A, isometric log-ratio transformed concentrations. B, distributions 
of the mean of the process model at the sample locations, C, distributions of the standard deviation of the process model at the sample 
locations, D, distributions of the predicted measurement at the sample locations, and the transformed concentrations.
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have a standard normal distribution, which has a mean of 
0, a standard deviation of 1, and a skew of 0. However, the 
actual distribution of the standardized residuals has a mean of 
−3.6 × 10−3, a standard deviation of 0.94, and a skew of −0.34 
(fig. 14A). The quantile-quantile plot, for which the theoreti-
cal distribution is a standard normal distribution, indicates that 
the actual distribution departs slightly from a standard normal 
distribution in its tails (fig. 14B). The interpretation of these 
findings is that the discrepancy between the standard normal 
distribution and the actual distribution is small. Thus, the sta-
tistical model is deemed appropriate for these data.

If the statistical model properly fits the data, then the stan-
dardized residuals should be spatially uncorrelated with one 
another. That is, a standardized residual for one field sample 
should be unrelated to the standardized residuals for nearby 
field samples. This property can be evaluated with a variogram. 
Because the standardized residuals have a variance of 0.88, the 

variogram should equal 0.88 for all distances. The calculated 
variogram is close to this ideal for the distances specified in the 
variogram (fig. 14C). The interpretation of this finding is that 
the standardized residuals are uncorrelated with one another 
for the distances specified in the variogram. In practice, it is 
prudent to calculate variograms for different ranges.

For the fourth check of the statistical model, the arithmetic 
signs of the standardized residuals are mapped. That is, a map 
is generated showing the locations of those field samples for 
which the associated standardized residuals are positive-valued 
and similarly the locations of those field samples for which the 
associated standardized residuals are negative-valued (fig. 1-5). 
The map shows no large-scale clusters of positive-valued or 
negative-valued standardized residuals. The interpretation of 
this finding is that the statistical model adequately fits the data 
on a large-spatial scale. However, the map shows small-scale 
clusters. Comparison of figure 1.5 and figure 4 shows that the 
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Figure 1.3.  Graphs showing, A, observed and, B–H, simulated isometric log-ratio transformed concentrations along the transect 
(fig. 1-1).
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Figure 1.4.  Graphs that are used to analyze the standardized residuals. A, histogram of the standardized residuals, B, quantile-
quantile plot, and C, variogram of standardized residuals.
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sizes of the clusters roughly equal the spacing between the 
basis functions centers, namely 30 km. This spacing is the 
lower bound on any feature that cannot be resolved by the sta-
tistical model; consequently, standardized residuals that are less 
than 30 km apart could be spatially correlated with one another. 
Indeed, this phenomenon is observed in the map.

The fifth check of the statistical model, which is perhaps 
the most important check, involves interpretation of the maps 
in figure 6: The interpretation must be consistent with inde-
pendent geologic information. Completely interpreting these 
maps is beyond the scope of this report, but it is appropriate 
to interpret a couple features. Along the seacoast in south-
eastern South Carolina, the process mean is high (fig. 6A). 
This anomaly can be explained by longshore currents that 
transported titanium-bearing minerals along the seacoast. 
These minerals are deposited inland during large storms such 
as hurricanes. In south-central Georgia, the process standard 
deviation is relatively high (fig. 6B), which can be explained 
by lateral changes in the sediments of the coastal plain. A 
more detailed interpretation of the maps is provided in Van 
Gosen and Ellefsen (2018).
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Figure 1.5.  Map showing the arithmetic signs of the 
standardized residuals, which are plotted at the locations of the 
associated field samples.
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Appendix 2.  Sensitivity Analysis
In this appendix, the sensitivity of the model to changes 

in the constants p1, p2, q1, q2, and s is analyzed. The essential 
idea of this analysis is to systematically change each constant 
and then observe how this change affects the model param-
eters. To implement the analysis, the first step is to estimate 
the model parameters using the constant values that are speci-
fied in the Parameter Model section. To keep the sensitivity 
analysis tractable, it is restricted to the mean and the standard 
deviation of the process model, which are the most important 
model parameters. In addition, these two model parameters are 
analyzed at only four points (fig. 2.1). These four points are 
chosen because they are in areas with different sample densi-
ties (fig. 3) and are in different parts of the domain.

Consider point 1 (fig. 2.1). The distribution for the mean 
of the process model is shown in figure 2.2A in category None. 
(This category name indicates that none of the constants have 
been changed.) Likewise, the distribution for the standard 
deviation of the process model is shown in figure 2.2B in 
category None. The second step in the sensitivity analysis is to 
change just constant p1—its value is doubled. Then, the model 
parameters are estimated again. The distributions of the mean 
and standard deviation at point 1 are shown in figure 2.2A and 
2.2B in category p1. Then, constant p1 is returned to its original 
value. This step is repeated for the remaining four constants.

The six distributions for the mean of the process model 
(fig. 2.2A) are practically identical; thus, the changes in the 
constants have no practical effect on the mean of the process 
model at point 1. The findings for the standard deviation of 
the process model are the same (fig. 2.2B), and the inference 
is analogous. The sensitivity analyses for points 2, 3, and 4 are 
shown in figures 2.3, 2.4, and 2.5, respectively, and the infer-
ences are the same.

Figure 2.1.  Map showing the locations of the four points in 
the domain, at which sensitivity analyses are performed and 
covariance functions are calculated (appendix 3).
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Figure 2.2.  Graphs showing the sensitivity analysis for, A, the process mean and, B, the process standard deviation 
at point 1 (fig. 2.1).
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Figure 2.3.  Graphs showing the sensitivity analysis for, A, the process mean and, B, the process standard deviation 
at point 2 (fig. 2.1).
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Figure 2.4.  Graphs showing the sensitivity analysis for, A, the process mean and, B, the process standard deviation at 
point 3 (fig. 2.1).
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Figure 2.5.  Graphs showing the sensitivity analysis for, A, the process mean and, B, the process standard deviation at 
point 4 (fig. 2.1)
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Appendix 3.  Covariance Function
In this appendix, the covariance function is derived for 

the process model. It is shown that the covariance function is 
inherit in the model, despite not being explicitly specified, and 
that the covariance function is spatially varying.

For the derivation, the process model (eq. 2) is re-
expressed as:

	 Y=Y1+ξ	 (3.1)

The first term on the right side represents the mean of the pro-
cess model, namely μ1+Bϕ (see the “Process Model” section). 
The second term on the right side represents the variability in 
the process model, which is represented by a normal distribu-
tion with zero mean and a standard deviation of ρexp(Bψ). 
Random variables Y1 and ξ are assumed to be independent of 
one another. Consequently:

	 Cov(Y,Y)=Cov(Y1,Y1)+Cov(ξ,ξ)	 (3.2)

The first term on the right side is the covariance associated 
with the mean of the process model; this covariance, expressed 
in terms of the model variables, is:

	 Cov(Y1,Y1)=B Cov(ϕ,ϕ) BT	 (3.3)

Interpreting matrix Cov(Y1,Y1) is easier if it is decomposed:

	 Cov(Y1,Y1)=S Cor(Y1,Y1) S	 (3.4)

Matrix S is square and diagonal. The elements along the 
diagonal are the square roots of the diagonal elements of 
Cov(Y1,Y1); thus, they are standard deviations. Each standard 
deviation is associated with an element in vector Y1, and hence 
with one location in domain D. Each standard deviation is 
interpreted as the scaling applied to the associated correlation 
function. Using the terminology developed for variograms 
(Banerjee and others, 2015, p. 24–30), each standard deviation 
is the square root of the partial sill, which is defined as the sill 
minus the nugget.

Matrix Cor(Y1,Y1) is a correlation matrix; it is square 
and symmetric. All elements along the diagonal of matrix 
Cor(Y1,Y1) equal 1, whereas all other elements range between 
−1 and 1. Element ij in the correlation matrix is interpreted as 
the degree of association between elements i and j in vector Y1. 
A row of the correlation matrix is related to, but not identical 
to, the shape of a variogram.

The second term on the right side of equation 3.2 is 
the covariance associated with the variability of the process 
model; this covariance, expressed in terms of the model vari-
ables, is:

	 Cov(ξ,ξ)=diag([ρexp(Bψ)]2)	 (3.5)

Matrix Cov(ξ,ξ) is square and diagonal. Each diagonal element 
of matrix Cov(ξ,ξ) is associated with an element in vector Y1, 
and hence with one location in domain D. The elements of 
matrix Cov(ξ,ξ) are interpreted as the variance in the process 
at distances less than the spacing between the field samples. 
Using the terminology developed for variograms (Banerjee 
and others, 2015, p. 24–30), a diagonal element of matrix 
Cov(ξ,ξ) is the nugget.

To gain intuition about the covariance function Cov(Y,Y), 
its components (equations 3.4 and 3.5) are calculated and plot-
ted for the example presented in the Demonstration of Method 
section. The diagonal elements of matrix S are plotted as a 
map (fig. 3.1). The map shows that these standard deviations 
are spatially varying. The highest values are near the edge of 
the domain, and relatively low values are in central Alabama 
and South Carolina. This pattern is related to the sampling 
density (fig. 3)—the higher the sampling density, the lower the 
standard deviation. An exception is along the coast of North 
Carolina where there is very low sampling density and no 
basis functions beyond the seacoast (fig. 4).

A correlation function, which is a row of matrix 
Cor(Y1,Y1), is plotted as a map (fig. 3.2). This correlation 
function pertains to point 2, which is identified in figure 2.1. 
This correlation function has a maximum (which equals 1) at 
the center of the red dot, which is the location of point 2. The 
correlation function is approximately circularly symmetric 
with respect to point 2. As the radial distance from point 2 
increases, the correlation decreases, becomes slightly negative 
(which is indicated by the gray ring surrounding the red dot), 
and increases to approximately 0. The maps of the correlation 
functions for the other three points (which also are identi-
fied in figure 2.1) are similar to that in figure 3.2—except, of 
course, that correlation functions are translated to the point 
locations; consequently, these maps are not shown.

To analyze the correlation matrix Cor(Y1,Y1) in greater 
detail, the correlation functions along radial transects are plot-
ted for each of the four points that are identified in figure 2.1 
(fig. 3.3). The maximum distance along a transect is 95.1 kilo-
meters; however, if the transect intersects the boundary of the 
domain, then it terminates there. The correlation functions 
along the four transects have approximately the same shape, 
but they differ in some details. For example, the function 
associated with point 1 is narrower than the function associ-
ated with point 2. The inference is that the correlation func-
tion Cor(Y1,Y1) is spatially varying. The correlation functions 
associated with points 1, 2, and 4 are slightly asymmetric 
with respect to zero. (Because transect 3 terminates at −11.9 
kilometers, no claim regarding asymmetry is made.) Thus, the 
correlation function as shown in map view (fig. 3.2) is only 
approximately radially symmetric.
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The square root of the diagonal elements of matrix 
Cov(ξ,ξ), which are standard deviations, are plotted as a map 
in figure (fig. 6B). This map shows that these standard devia-
tions vary spatially. These standard deviations are much larger 
than the standard deviation that are the diagonal elements of 
the matrix S (fig. 3.1).

The standard deviations in matrix S, the standard devia-
tions in matrix Cov(ξ,ξ), and the correlation functions in 
matrix Cor(Y1,Y1) vary spatially. That is, all components of 
Cov(Y,Y) vary spatially, so Cov(Y,Y) must vary spatially too.
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Figure 3.1.  Map showing the standard deviations that are the 
diagonal elements of matrix S.

Figure 3.2.  Map showing the correlation function for point 2 
(which is identified in fig. 2.1).
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Figure 3.3.  Graphs showing the correlation functions for the four 
points identified in figure 2.1. Each correlation function is along 
a transect that trends north-south. Distance along a transect is 
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south of the reference point.
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