
U.S. Department of the Interior
U.S. Geological Survey

Techniques and Methods 13–A2

A Multipurpose Camera System for Monitoring
Kīlauea Volcano, Hawai‘i

Chapter 2 of
Section A, Methods Used in Volcano Monitoring
Book 13, Volcano Monitoring

COVER.  Photograph of camera at Kīlauea Volcano, Hawai‘i, used to monitor ongoing summit lava lake activity at Halema‘uma‘u Crater (U.S.
Geological Survey photograph by Matthew R. Patrick).

A Multipurpose Camera System for Monitoring
Kīlauea Volcano, Hawai‘i

By Matthew R. Patrick, Tim Orr, Lopaka Lee, and Cyril Moniz

Chapter 2 of
Section A, Methods Used in Volcano Monitoring
Book 13, Volcano Monitoring

Techniques and Methods 13–A2

U.S. Department of the Interior
U.S. Geological Survey

U.S. Department of the Interior
SALLY JEWELL, Secretary

U.S. Geological Survey
Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2015

For more information on the USGS—the Federal source for science about the Earth, its natural and living
resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications,
visit http://www.usgs.gov/pubprod/.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials
as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:
Patrick, M.R., Orr, T., Lee, L., and Moniz, C., 2015, A multipurpose camera system for monitoring Kīlauea Volcano,
Hawai‘i: U.S. Geological Survey Techniques and Methods, book 13, chap. A2, 25 p.,
http://dx.doi.org/10.3133/tm13A2.

ISSN 2328-7055 (online)

http://www.usgs.gov
http://www.usgs.gov/pubprod

iii

Contents

Abstract...1
Introduction..1
Equipment...1

Raspberry Pi Model B...1
Raspberry Pi NoIR Camera Module...3
Ultimate GPS Module Version 3...3
Raspberry Pi Accessories...3
Enclosure: Pelican Case Model 1120 and Accessories..3
Tripod ...3
Power System...3
Telemetry..4
Equipment for Initial Setup..4

Image Acquisition and Management Scripts...4
Script 1: Fast Time-Lapse Acquisition (Appendix 2)...4
Script 2: Slow Time-Lapse Acquisition (Appendix 3)..4
Script 3: Archive Fast Time-Lapse Images (Appendix 4)..5
Script 4: Get GPS Position (Appendix 5)..5
Scripts 5 and 6: Ensure NTP Server Working Correctly (Appendix 6)..5
Script 7: Acquire Video (Appendix 7)..5
Script 8: Ensure Flash Drive Does Not Fill Up (Appendix 8)..5

Acquisition Schemes...5
Time-Lapse System Setup...5
Webcam System Setup..5
Video Acquisition Setup..5

Deployments..6
Monitoring the Outgassing Plume From the HVO Tower..6
Monitoring the Lava Lake From the Rim of Halema‘uma‘u Crater..7

Discussion...9
Acknowledgments...9
References..9
Appendix 1. System Setup.. 11
Appendix 2. Fast Time-Lapse (Script 1: fasttimelapse.py)..15
Appendix 3. Slow Time-Lapse (Script 2: slowtimelapse.py)..16
Appendix 4. Archive Fast Time-Lapse Images (Script 3: putfiles.py)..18
Appendix 5. Get GPS Position (Script 4: gpspuller3.py)...20
Appendix 6. NTP Time Set (Script 5: ntpset.py) and Approximate Time Set (Script 6: setapproximate2.py).. 	

...22
Appendix 7. Acquire Video (Script 7: getvideocmd.py)..23
Appendix 8. Maintain Free Space on Flash Drive (Script 8: freespace.py)...25

iv

Figures
	 1.  Photographs of the compact multipurpose camera system used at Kīlauea Volcano, Hawai‘i....2
	 2.  Photographs of the compact multipurpose camera system in the field at Kīlauea Volcano,

Hawai‘i, at the edge of Halema‘uma‘u Crater...4
	 3.  Photographs of the summit eruption plume at Kīlauea Volcano, Hawai‘i.....................................6
	 4.  Photograph taken February 14, 2014, of camera monitoring the lava lake at the summit of

Kīlauea Volcano, Hawai‘i..7
	 5.  Photographs of the lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano,

	 Hawai‘i...8

Tables
	 1.  Equipment list and approximate costs for compact multipurpose camera system designed for

	 field deployment at active volcanoes based on a system used at Kīlauea Volcano,
	 Hawai‘i...2

Supplementary Videos
[Available online only at http://pubs.usgs.gov/tm/13/a02/]

	 1.	 Halema‘uma‘u plume time-lapse. This video shows an image every 10 minutes, from February
	 3, 2014, at 0001 Hawai‘i Standard Time (HST) to February 9, 2014, at 2359 HST. The
	 movie shows the commonly fluctuating wind directions typical of winter months, when the
	 normally steady trade winds become unstable. The camera was positioned in the
	 Hawaiian Volcano Observatory observation tower. In the lower right corner of the image is .	
	 the public overlook at Jaggar Museum.

	 2.	 Halema‘uma‘u lava lake time-lapse. This video shows an image every minute, from
	 February 14, 2014, at 1200 Hawai‘i Standard Time (HST) to February 15, 2014, at 1200
	 HST. The plot of RSAM (real-time seismic amplitude measurement), which can be taken
	 as a proxy for the amplitude of seismic tremor, is shown below. Spikes in RSAM
	 correspond with the appearance of additional spattering sources on the lake margin,
	 whereas the sustained low level in RSAM after about 0800 on February 15 is an indicator
	 of the absence of spattering at the lake and very quiet activity.

	 3.	 Halema‘uma‘u lava lake video clips. Four clips from February 2014 are shown, taken at the
	 following times: (1) February 14, 1200 Hawai‘i Standard Time (HST); (2) February 14,
	 1800 HST; (3) February 15, 0000 HST; and (4) February 15, 0600 HST. Videos are shown
	 at 3× speed.

Abstract
We describe a low-cost, compact multipurpose camera

system designed for field deployment at active volcanoes that
can be used either as a webcam (transmitting images back to an
observatory in real-time) or as a time-lapse camera system (storing
images onto the camera system for periodic retrieval during
field visits). The system also has the capability to acquire high-
definition video. The camera system uses a Raspberry Pi single-
board computer and a 5-megapixel low-light (near-infrared sensitive)
camera, as well as a small Global Positioning System (GPS)
module to ensure accurate time-stamping of images. Custom
Python scripts control the webcam and GPS unit and handle data
management. The inexpensive nature of the system allows it to
be installed at hazardous sites where it might be lost. Another
major advantage of this camera system is that it provides accurate
internal timing (independent of network connection) and, because
a full Linux operating system and the Python programming
language are available on the camera system itself, it has the
versatility to be configured for the specific needs of the user. We
describe example deployments of the camera at Kīlauea Volcano,
Hawai‘i, to monitor ongoing summit lava lake activity.

Introduction
Remote field cameras are essential tools for monitoring

volcanic activity, with the images providing an invaluable visual
framework for interpreting the multitude of other data streams
coming into a volcano observatory (Poland and others, 2008;
Behncke and others, 2009). The U.S. Geological Survey (USGS)
Hawaiian Volcano Observatory (HVO) has found automated
camera systems to be particularly useful for monitoring highly
dynamic activity at Kīlauea Volcano, Hawai‘i, over the past 6
years (Hoblitt and others, 2008; Orr and Hoblitt, 2008; Patrick
and others, 2010a,b, 2011; Orr and Rea, 2012; Orr and others,
2013), and the history of remote field cameras on Kīlauea extends
back several decades (Wolfe and others, 1988; Thornber and
others, 1997). These camera systems have been both webcams
(images are telemetered in real-time back to the observatory) and
time-lapse systems (images are not telemetered but stored on
the camera for periodic retrieval by field personnel). However,
the specific needs for these camera systems vary widely based
on the eruption style and other circumstances. Most affordable
webcams available on the market, unfortunately, are difficult or

A Multipurpose Camera System for Monitoring
Kīlauea Volcano, Hawai‘i
By Matthew R. Patrick, Tim Orr, Lopaka Lee, and Cyril Moniz

impossible to customize to meet individual needs. For instance,
we are not aware of any affordable webcam that time-stamps
images based on Global Positioning System (GPS) input. Accurate
timing of images is essential for comparison with other datasets
(for example, geophysical data). To solve these limitations, we
have assembled a simple camera system that uses a single-board
computer (Raspberry Pi) running Linux and Python, enabling
complete customization and tailoring to individual needs.

The Raspberry Pi (table 1) is a small, low-cost ($35)
computer that runs the Linux operating system and has been
used in many hobbyist projects, including those focusing on
time-lapse photography. The system we describe here does not
have any particularly novel improvements over previous projects
shared on the Internet, as time-lapse and GPS time-syncing have
already been done with the Raspberry Pi by many hobbyists
(http://www.raspberrypi.org/tag/time-lapse/, accessed January
2015). We simply present a system that combines previous uses
of the Raspberry Pi, coupled with our own customized scripts
and modified enclosure, for effective use at active volcanoes. The
camera may be used as a webcam (when combined with telemetry
equipment) or as a time-lapse camera. The focus of this report is
the camera system itself, and we do not go into detail on the power
system or telemetry. Power and telemetry systems for volcano-
monitoring cameras are described in Hoblitt and others (2008), Orr
and Hoblitt (2008), Paskievitch and others (2010), and Patrick and
others (2014). In this paper we describe two sample deployments
on Kīlauea Volcano to monitor ongoing lava lake activity in
Halema‘uma‘u Crater.

Equipment
The equipment needed for a compact multipurpose camera

system for field deployment at active volcanoes based on a system
used at Kīlauea Volcano, Hawai‘i, is described below.

Raspberry Pi Model B
The Raspberry Pi Model B is a small (fig. 1), low-cost ($35)

single-board Linux computer that has a 700-megahertz (MHz)
ARM processor with 512 megabyte (Mb) random access memory
(RAM), two universal serial bus (USB) 2.0 ports, an Ethernet
port, and a Secure Digital (SD) memory card slot for data storage
and the operating system (http://www.raspberrypi.org; accessed
April 2014).

http://www.raspberrypi.org/tag/time-lapse/

2   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

Item Manufacturer/supplier Cost in U.S. dollars

Raspberry Pi Model B Raspberry Pi 35

Raspberry Pi NoIR camera module Raspberry Pi 30

Ultimate GPS module version 3 Adafruit 40

SD memory card (8 gigabyte) SanDisk 8

DC 12 volt to USB 5-volt power adapter Fulree, Drok 12

USB to TTL serial cable Adafruit 10

Raspberry Pi case SB components 9

Raspberry Pi camera mount Pimori 10

Pelican case 1120 Pelican 25

Low-profile USB flash drive Various 15

Total 194

Table 1.  Equipment list and approximate costs for compact multipurpose camera system designed for
field deployment at active volcanoes based on a system used at Kīlauea Volcano, Hawai‘i.

[Excludes costs for tripod, power system, and telemetry. SD, Secure Digital; USB, universal serial bus; TTL,
transistor–transistor logic; DC, direct current]

2

1

6

3

4 5

Terminal block GPS module

Ethernet
connector

Power
connector

Camera
attached
to enclosure

Raspberry Pi computer

A

B

Figure 1.  Photographs of the compact
multipurpose camera system used at
Kīlauea Volcano, Hawai‘i. A, Main camera
components—the camera system is
enclosed in a waterproof Pelican case (1)
and includes the Raspberry Pi computer
(4), the Raspberry Pi NoIR camera
module (3), and the Adafruit Ultimate
GPS module (5), which is connected
by the USB to TTL (universal serial bus
to transistor–transistor logic) cable (2).
The power connection in the enclosure
consists of the 12-volt direct current (DC)
to 5-volt USB converter (6) and DIN-rail
terminal block (not shown). A few minor
cables and other components are not
shown. The low-profile USB flash drive is
not shown. B, Camera system within its
enclosure (tan Pelican case). Downward
view of the components connected
within the Pelican case. The camera
module (partially obscured) is attached
to the right face of the case. Power and
Ethernet are connected at the left face.
(U.S. Geological Survey photographs by
Matthew R. Patrick.)

Equipment   3

Raspberry Pi NoIR Camera Module
The Raspberry Pi NoIR camera module is designed

specifically for the Raspberry Pi computer and is very
inexpensive ($30). The camera sensor is 5 megapixels
(2,592×1,944 pixels) and can do 1080p (1,080 horizontal
lines of vertical resolution) high-definition video at 30 frames
per second. It is a fixed-focus camera with a horizontal field
of view of about 55°. The default software, available from
RaspberryPi.org, provides a streamlined command-line
interface for acquiring still photographs and video that can be
easily added to scripts.

This NoIR camera module is “low-light” in the sense
that it has the near-infrared filter removed and is thus
sensitive to both visible and near-infrared light. HVO has had
good success with such low-light cameras for two reasons.
First, they tend to be very sensitive to the near-infrared
radiation emitted by active lava and thus can be used to
detect active lava far better than visible-wavelength cameras.
Second, we have found that such low-light cameras tend
to provide better views through thick volcanic fume than
visible-wavelength cameras, presumably due to the longer
wavelengths (Patrick and others, 2012; Orr and others, 2013).
This ability to “see” through fume provides a great benefit
when monitoring the active lava lake at Halema‘uma‘u
Crater. The lake is contained within the “Overlook crater,”
a nested crater within Halema‘uma‘u Crater, and is often
obscured by thick fume to the naked eye.

Ultimate GPS Module Version 3
The Adafruit Ultimate GPS module is a small (fig. 1)

low-cost ($40) GPS unit that is easy to interface with and
commonly used for Raspberry Pi projects. Although the unit
can provide PPS (pulse per second) timing accuracy (which
can be used to get microsecond timing accuracy), we use only
the National Marine Electronics Association (NMEA) timing
from the serial feed, which is only accurate to within about a
second. The NMEA protocol was simpler to work with and
the timing is adequate for our camera system. This unit is
attached to the USB port on the Raspberry Pi using the USB
to TTL (transistor–transistor logic) cable. It includes a slot for
a small battery that allows the module to retain a relatively
accurate time even when the power to the Raspberry Pi is cut
off, and makes the Ultimate GPS module act as a real-time
clock (RTC). The battery also allows faster GPS locks.

Raspberry Pi Accessories
Accessory Raspberry Pi equipment includes an

8-gigabyte (Gb) SD card, a 5-volt (V) micro-USB to 12-V
direct-current (DC) power adapter, a Raspberry Pi case, a
16-Gb USB flash drive and a USB to TTL cable. The USB
drive needs to be a low-profile form factor in order to fit into
the enclosure.

Enclosure: Pelican Case Model 1120 and
Accessories

A small enclosure is needed to protect the camera system
from rain and volcanic gas. We choose Pelican cases because
they are water tight and plastic and therefore do not corrode
like metal enclosures. These types of enclosures have a good
track record in thick volcanic fume on Kīlauea (Harris and
others, 2005; Orr and Hoblitt, 2008; Patrick and others, 2014).

The Pelican case enclosure was modified in several ways.
First, we cut a small hole in the front of the box and covered
the hole with a piece of plexiglass to provide a window for the
webcam. Two size 2-56 screws passed through the front of the
box to attach the plexiglass to the outside of the case, as well as
fasten the Raspberry Pi camera to the inside of the case (using
the Raspberry Pimoroni camera mount to aid in a tight fit).
At the opposite end of the box we cut two holes and installed
connectors for the power and Ethernet cables. We attached
the bottom of the Pelican case to a ¼-inch camera screw that
had a ¼-inch female attachment at the bottom to fasten to a
standard camera tripod. All holes cut into the Pelican case
were well sealed with silicone sealant to ensure waterproofness
(following Harris and others, 2005; Hoblitt and others, 2008).

The power cable for the Raspberry Pi computer (which
also powers the camera and GPS module) is a 5-V micro-
USB connector, and we plugged in a micro-USB to normal
USB cord, which is then plugged into a 5-V USB to 12-V
DC converter. The positive and negative 12-V wires from this
converter are then plugged into a small DIN-rail terminal block
(fig. 1) inside the enclosure. The switch on the terminal block
was removed and a diode, used to avoid short-circuiting, was
soldered in its place. A 3-ampere (A) fuse was also attached to
the terminal block.

Tripod
To save costs, we used an old Tiltall tripod (fig. 2) from

our inventory. New Tiltall tripods cost about $120. Large rocks
are piled around the legs of the tripod to ensure stability in high
winds. We emphasize that stability of the tripod and camera is
vital to construct steady long-term time-lapse sequences.

Power System
The power system we used for our test deployments

consisted of four 10-A-hour Lithium polymer batteries (fig. 2).
We used an Extech 380942 clamp meter to monitor the power
consumption of the system and measured an average draw of
roughly 250 milliamps (at 12 V). Based on this average power
draw (3 Watts, W) the battery pack would provide about a
week of power, which was sufficient for our test deployments.
For long-term deployments, we typically use a solar-powered
system consisting of a combination of 12-V lead/acid batteries
and 80-W solar panels (Hoblitt and others, 2008; Orr and
Hoblitt, 2008; Patrick and others, 2014).

http://en.wikipedia.org/wiki/Display_resolution

4   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

Figure 2.  Photographs of the compact multipurpose camera system in the
field at Kīlauea Volcano, Hawai‘i, at the edge of Halema‘uma‘u Crater. A, The
camera is within the tan Pelican case, atop a standard photography tripod,
and pointed towards the active lava lake (out of view at the right). Note that
the tripod legs are secured with rock piles to ensure stability of the camera.
B, The battery pack (40 ampere-hour lithium polymer batteries) is shown
for the temporary deployment and can supply about a week of power. (U.S.
Geological Survey photographs by Matthew R. Patrick.)

Camera on tripod

Camera on tripod

Battery pack

A

B

Telemetry
The focus of this paper is the camera system itself so we do

not discuss in detail the telemetry system for the camera, should it
be used as a webcam. Nevertheless, to transmit webcam images
back to the observatory we normally use one of two methods. The
first is a WiFi (local-area wireless) radio system, such as the one
described by Hoblitt and others (2008). The second is a cellular
modem that can transmit images when the camera is within
cellular phone reception. We have used a Sierra Wireless AirLink
Raven XE cellular modem with a high-gain antenna, which cost
about $600 to purchase. Data access cost about $40 a month
through Verizon Wireless. Choice of telemetry system can greatly
increase power consumption.

Equipment for Initial Setup
Some equipment is needed to set up the Raspberry Pi and

GPS unit and configure them for field operation. Most of this
equipment is freely available in a typical office environment, and
so we do not include it in the cost of the system. This equipment
includes an AC (alternating current) power adapter for the micro-
USB power connector, Ethernet cable, powered USB hub, USB
keyboard, USB mouse, monitor, DVI-to-HDMI (Digital Visual
Interface to High Definition Vector Imaging) adapter (assuming
monitor has DVI input) or HDMI cable (if monitor has HDMI
input). Care must be taken to ensure that this equipment is
compatible with the Raspberry Pi.

Image Acquisition and Management
Scripts

All scripts are written in Python 2.7, which comes
preinstalled on the Raspbian Debian Linux Wheezy distribution.

Script 1: Fast Time-Lapse Acquisition (Appendix 2)
We use two different time-lapse acquisition schemes—one

fast and the other slow. The fast time-lapse script (script 1) is
meant to acquire several images per minute. We have used this
script to acquire an image every 10 seconds (s) with good success.
Note that this script requires a few seconds to archive each image,
so we do not recommend intervals less than 5 s—for shorter
intervals, periodic video acquisition can be scheduled. The fast
time-lapse setup requires an associated script (script 3) to run
alongside it and archive the incoming images.

Script 2: Slow Time-Lapse Acquisition (Appendix 3)
The slow time-lapse scheme (script 2) is meant to acquire

an image every few minutes, with the fastest rate limited by the
“cron” scheduler at one image per minute. This script is run by
the “crontab” at an interval chosen by the user; in other words,
the crontab interval determines the imaging frequency. The
script acquires a single image from the camera (using function
raspistill), gets the image file time from the computer, which is
itself set by Network Time Protocol (NTP) using either the GPS
unit or network connection, and then imprints this time on the
image. The latitude and longitude, and time-syncing status are
also stamped on the image. The script then exports this image
to a high-resolution JPEG file, with the file name based on the
image date and time. Once an image is acquired, it is moved to
a folder within a date-time directory structure with the following
hierarchy: year-month-day-hour. The script archives the images
onto the USB flash drive, which can then be easily swapped in the
field without powering down the camera. The SD card also allows
image storage, but to get these files the SD card must be removed
in the field (abruptly shutting down the system). We found that

Acquisition Schemes   5

these shutdowns occasionally corrupted the SD card, sometimes
losing data. Therefore, writing data to a removable USB flash
drive is preferred.

Script 3: Archive Fast Time-Lapse Images
(Appendix 4)

Script 3 is scheduled to run every minute by cron in order
to timestamp and archive the incoming images from script 1 (fast
time-lapse). The script also stamps the geographic coordinates.
Image archiving is done on the USB flash drive.

Script 4: Get GPS Position (Appendix 5)
Script 4 is run by scripts 2 and 3 immediately before time-

stamping the image. The script pulls 30 NMEA sentences from
the GPS serial output and finds a NMEA GPRMC (recommended
minimum specific GPS/transit data) sentence. From this sentence
it determines if a GPS lock is active, and if so, it records the
latitude and longitude. The lock status, and latitude and longitude
are saved as variables that are passed to scripts 2 and 3, and then
stamped directly on the image.

Scripts 5 and 6: Ensure NTP Server Working
Correctly (Appendix 6)

Scripts 5 and 6 ensure that the NTP timeserver is setting the
system time correctly from the GPS unit.

Script 7: Acquire Video (Appendix 7)
Script 7 simply runs the default Raspberry Pi video function

(raspivid) with a single input for video clip duration. The script
provides some additional functionality. First, it temporarily
suspends the cron scheduler for the duration of the video clip
so that overlapping requests (from video and time-lapse image
acquisitions) are not made to the camera module; simultaneous
requests can make the camera freeze and require reboot. Second,
the script renames the video file based on the start date and time
and moves it into the date-based folder structure used by the
time-lapse images. Finally, the script creates a metadata file for the
video that contains the GPS coordinates and time-synchronization
status.

Script 8: Ensure Flash Drive Does Not Fill Up
(Appendix 8)

Script 8 simply checks the available storage space on the
flash drive each day. If the free space falls below a specified
threshold (for example, 500 Mb), the script deletes the oldest
day’s worth of data and repeats this until the free space gets above
the threshold. In this manner, the system maintains only the most
recent data on the flash drive.

Acquisition Schemes
Time-Lapse System Setup

Following the setup detailed in appendix 1, the camera
system will be configured to act as a time-lapse camera system,
so no additional work is needed for the camera to operate in this
fashion. Periodically, personnel will need to visit the camera and
move the camera images off of the flash drive or simply swap
flash drives. Although the images would not be available for real-
time operational monitoring, they could be helpful for research or
monitoring long-term processes that pose no immediate hazard.

Webcam System Setup
In the webcam mode, the camera images are acquired in

the same manner as the time-lapse setup but are transmitted to an
observatory in near-real-time (within minutes), which is essential
for real-time operational monitoring. The only change to the
camera system is that it must be connected to a network, which
can be done in one of two ways. First, the Raspberry Pi might be
connected, using an Ethernet cable or WiFi adaptor, to an existing
network that transmits data, either directly or by the Internet, to an
observatory (Hoblitt and others, 2008). Second, the Raspberry Pi
might be plugged in to a cellular or satellite modem to transmit the
images through the Internet to an observatory. For the past several
years we have used the Sierra Wireless Airlink Raven XE cellular
modem, which connects to the Internet using the Verizon cellular
network, with other camera systems. We tested this Raspberry Pi
camera system (with the Apache webserver installed as described
below) with this cellular modem successfully.

At the observatory, a script must be run to periodically (for
example, every few minutes) connect to the remote Raspberry
Pi computer in the field and pull the most recently acquired
image. The time-lapse acquisition script that we use on the
Raspberry Pi (script 2 or 3) saves the current image to a constant
file name (overwriting the file with the current image) in the
webserver directory, along with a metadata file with image time.
The webserver on the Raspberry Pi allows the current image
and metadata file to be accessed using a Web browser or to be
automatically downloaded using the “wget” command.

Video Acquisition Setup
For most long-term continuous monitoring of volcanic

activity, low image-acquisition rates (for example, an image every
1–10 minutes) are adequate and, in fact, preferred to higher frame
rates to keep storage space manageable. In special circumstances,
however, high frame-rate acquisition may be desired for very
dynamic processes, such as lava fountaining or lava lake draining.
The Raspberry Pi camera module uses a video program called
“raspivid” that makes video acquisition very straightforward. In
script 7 (appendix 7) we have included this program along with
time-stamping, and this script can be scheduled using a cron job or
called on demand.

6   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

Deployments

The camera system was deployed in several locations to
monitor the ongoing eruption at the summit of Kīlauea Volcano on
the Island of Hawai‘i. The summit eruption began in March 2008
(Wilson and others, 2008) and continues at the time of writing
(early 2015) (Patrick and others, 2013, 2014). For the past several
years, the activity has consisted of a lava lake in Halema‘uma‘u
Crater, which is in the southwestern part of Kīlauea’s summit
caldera. The lake itself is deep within a new crater (informally
called the “Overlook crater,” due to its position immediately
below the site of the Halema‘uma‘u visitor overlook). The lake
undergoes frequent changes in lava level and emits a continuous
plume of volcanic gas. This plume normally drifts southwest with
the trade winds, and reacts in the atmosphere to form volcanic
fog, or “vog.” Vog is a respiratory irritant that affects the health of
residents downwind and negatively impacts the local agricultural
industry (Patrick and others, 2013).

Monitoring the Outgassing Plume From the HVO
Tower

The camera was first deployed and operated within the HVO
observation tower to test some of the configuration settings and
ensure the camera system was working correctly. The system ran
for more than a week (February 3–9, 2014) without problems,
acquiring an image every minute (script 2) and a 30-s video
sequence every 6 hours (script 7). The GPS unit was able to
maintain a lock through the windows of the tower and provide
accurate time stamps.

The camera captured the variations in the outgassing plume
(fig. 3, supplementary video 1), which fluctuated in direction
with the prevailing winds. Normally, the plume is carried to the
southwest with the trade winds (Elias and Sutton, 2012), but trade
winds are unstable in the winter months. The direction the plume
is carried determines which parts of the island experience the
unpleasant effects of vog. During the week of observations, the
wind direction and plume shifted many times.

A B

C D

E F

Figure 3.  Photographs of the
summit eruption plume at Kīlauea
Volcano, Hawai‘i, taken by the
compact multipurpose camera
system in early February 2014. The
photographs show the changing
plume behavior due to fluctuations in
wind direction and wind speed. The
time and position imprints are at the
bottom of each image in white text
but are too small to read in this figure.
A, February 4, 2055 Hawai‘i Standard
Time (HST); B, February 5, 0405
HST; C, February 5, 1320 HST; D,
February 8, 0715 HST; E, February
8, 1245 HST; and F, February 9,
0910 HST. (U.S. Geological Survey
photographs.)

Deployments   7

Monitoring the Lava Lake From the Rim of
Halema‘uma‘u Crater

The second test deployment was at the rim of
Halema‘uma‘u Crater, about 200 meters (m) west of the closed
visitor overlook, to image the Overlook crater and directly
monitor the lava lake (figs. 2 and 4). The camera operated for 1
day (February 14, 2014, 1200 Hawai‘i Standard Time (HST) to
February 15, 2014, 1200 HST), using the lithium polymer battery
pack for power. Still images were acquired every minute (script 2)
and 30-s video clips were acquired every 6 hours (script 7). Image
acquisition ran correctly, as did the GPS time synchronization.

The images depicted the lava lake well (fig. 5,
Supplementary video 2). The lake surface normally consists
of large crustal plates (black to the naked eye) separated by
thin incandescent cracks (red to the naked eye) (fig. 5). These
incandescent cracks can have surface temperatures of more
than 500 degrees Celsius (°C) based on analysis with a thermal
camera (Patrick and others, 2014). The cracks show up as white

Figure 4.  Photograph taken February 14, 2014, of camera monitoring the lava lake at the summit of Kīlauea Volcano, Hawai‘i. The camera
is positioned on the rim of Halema‘uma‘u Crater, 200 meters (m) west of the “Overlook crater” (center of image), which contains the active
lava lake. For scale, the Overlook crater is 160 × 210 m in size, and the lava lake on this date was about 50 m below the rim of the Overlook
crater. The Overlook crater is contained within Halema‘uma‘u Crater (about 1 kilometer diameter), whose far walls are marked by white
alteration near the top of the photograph. (U.S. Geological Survey photograph by Matthew R. Patrick.)

in the Raspberry Pi NoIR camera images, presumably due to
the large amount of near-infrared radiation these incandescent
cracks are emitting. A persistent spattering source is normally
present in the southeast part of the crater at the lake margin
(right side in images, fig. 5A, B).

The image sequence captures several interesting changes
in the lava lake that correlate clearly with fluctuations in
seismic tremor—in figure 5 shown as RSAM (real-time seismic
amplitude measurement) (Endo and Murray, 1991; see also
supplementary videos 2 and 3). On several occasions a transient
spatter source appears on the east margin of the lake (far side
of lake in images), and this spatter source migrates towards
the southeast, presumably carried by the prevailing current
in the lake (similar to the “traveling fountains” mentioned by
Perret (1913) in the early Halema‘uma‘u lava lake, as well as
the migrating fountains observed by Patrick and others, 2011).
The RSAM spikes when these brief spatter sources appear,
suggesting that spattering and the associated shallow outgassing
are closely related to the seismic tremor.

8   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

1200 1800 0000 0600 1200
0

100

200

300

400

500

600

700

800

NP
T

HW
Z

RS
AM

, c
ou

nts

Time, in HST

Persistent spatter source Persistent spatter source

Brief additional
spatter source

Normal spatter
source inactive

Normal spatter
source inactive

New spatter source,
drop in lava level

A B

C D

Figure 5.  Photographs of the lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i, taken by the compact multipurpose
camera system on February 14–15, 2014. The photographs are compared with a graph showing real-time seismic amplitude measurements (RSAM)
recorded at station NPT (HWZ indicates the frequency band and directional component of the seismometer). Time on the graph is shown in Hawai‘i
Standard Time (HST). A, Photograph taken during normal behavior and normal seismic tremor (moderate RSAM values); there is a single, persistent
spattering source in the southeast part of the lake. B, Photograph taken during a rapid increase in seismic tremor, shown by a spike in RSAM,
that occurred with the brief appearance of a second spattering source that was carried east in the prevailing current. C, Photograph taken during
an apparent collapse on the northwest margin of the lava lake (left side in this view) that triggered increased spattering and a drop in lava level,
presumably as gas was released from the shallow parts of the lake. The increased outgassing and spattering were associated with elevated RSAM
values due to high seismic tremor. D, photograph showing that this change in the lake was associated with the persistent spatter source shutting down.
The absence of spattering in the lake was associated with a reduction in seismic tremor, shown by the “flatline” in RSAM. (U.S. Geological Survey
photographs.)

At 0551 HST in figure 5, a large spatter source appears as the
RSAM spikes, and the lava level briefly drops. This is probably
related to “gas piston” activity, a common process in the lava lake,
which has been interpreted as the accumulation and release of gas
beneath the lava lake surface (for example, Swanson and others,
1979; Patrick and others, 2010). This phase of increased activity
ends with the persistent spattering source dying out, at which time
the RSAM drops to unusually low levels. The correspondence of
diminishing spattering with plummeting seismic tremor reinforces
the observation that surface outgassing is closely related to seismic
tremor. Overall, the images from these deployments demonstrate
the value that continuous detailed surface observations have in
interpreting geophysical data.

Discussion
A major advantage of this camera system is that it is very

versatile, and can be customized to the specific needs of the user,
in terms of both hardware and software. For hardware, either
a standard or low-light camera module can be used, and other
peripherals could be attached to the Raspberry Pi computer. For
software, the Python scripts, and their scheduling with the crontab,
can be modified to customize time-lapse intervals, frequency of
video acquisition, and image resolution. The system allows much
more innovative customization than standard camera systems
normally allow. Onboard image processing could be done with
Python, and internal triggering could be used. For instance, if
infrequent time-lapse images begin to show some quality that
might indicate increased activity at the volcano, such as elevated
brightness during nighttime hours, then the image interval could
automatically be changed or video sequences could be started.
Internal triggering could be accomplished with motion detection as
well, which would be straightforward with this setup (for example,
using the Linux software package “Motion” for tracking scene
changes). External triggering is another innovative option. The
Raspberry Pi could be connected to other data streams (such as a
seismometer) to allow external signals to trigger image or video
acquisition.

The camera system could be improved in several ways.
First, a compass module could be attached to allow the camera’s
viewing azimuth to be stamped on the image. By combining the
camera viewing geometry (that is, camera location, viewing angle,
and camera field of view) with a high-resolution digital elevation
model (DEM), quantitative approaches could be used to locate and
measure features observed in the images (for example, James and
others, 2010). Photogrammetric approaches could be applied using
several cameras positioned around a target. Compass modules,
such as the Parallax 3-Axis HMC5883L Compass Module, have
already been used with the Raspberry Pi by others (http://www.
raspberrypi.org/forums/viewtopic.php?f=44&t=17107, accessed
January 2015). Second, a major weakness of the Raspberry Pi for
long-term field deployments is its continuous power consumption.
In Hawai‘i, with abundant sunlight, solar-powered setups such as
those in Orr and Hoblitt (2008) and Patrick and others (2014) can
easily provide adequate power. In more challenging locations, such

as in monitoring the remote, active volcanoes of Alaska (Paskievitch
and others, 2010; Sentmen and others, 2010), sunlight is minimal in
winter months and would require more efficient power management.
The Sleepy Pi (http://spellfoundry.com/products/sleepy-pi/,
accessed April 2014) is a power management unit developed for
the Raspberry Pi that can switch the unit on and off at intervals. In
Alaska, for example, the camera system described here could be
turned on for several minutes each hour to acquire an image or short
video sequence, then put to sleep. This would result in a substantial
reduction in power consumption and minimize the number of
batteries and solar panels required. Finally, the Raspberry Pi might
be used to interface with many other types of instruments (for
example, gas sensors, temperature sensors, accelerometers), not just
cameras. Combining the computer and instruments with a cellular
modem makes a very powerful real-time field-sensor package.

Acknowledgments
We thank Loren Antolik (HVO) for advice regarding the

webserver. We also thank Richard LaHusen (Cascades Volcano
Observatory) and John Paskievitch (Alaska Volcano Observatory)
for helpful reviews. Internet forums (many can be found through
http://www.raspberrypi.org/) and blogs detailing similar applications
with the Raspberry Pi were essential to the success of this project.

References
Behncke, B., Falsaperla, S., and Pecora, E., 2009, Complex magma

dynamics at Mount Etna revealed by seismic, thermal, and
volcanological data: Journal of Geophysical Research,
v. 114, B03211, doi:10.1029/2008JB005882.

Elias, T., and Sutton, A.J., 2012, Sulfur dioxide emission rates from
Kilauea Volcano, Hawai‘i, 2007–2010: U.S. Geological Survey
Open-File Report 2012–1107, 25 p.,
http://pubs.usgs.gov/of/2012/1107/.

Endo, E.T., and Murray, T., 1991, Real-time seismic amplitude
measurement (RSAM)—A volcano monitoring and prediction
tool: Bulletin of Volcanology, v. 53, p. 533–545.

Harris, A., Pirie, D., Horton, K., Garbeil, H., Pilger, E., Ramm, H.,
Hoblitt, R., Thornber, C., Ripepe, M., Marchetti, E., and Poggi, P.,
2005, DUCKS—Low cost thermal monitoring units for near-vent
deployment: Journal of Volcanology and Geothermal Research,
v. 143, p. 335–360.

Hoblitt, R.P., Orr, T.R., Castella, F., and Cervelli, P.F., 2008,
Remote-controlled pan, tilt, zoom cameras at Kīlauea and Mauna
Loa volcanoes, Hawai‘i: U.S. Geological Survey Scientific
Investigations Report 2008–5129, 22 p.,
http://pubs.usgs.gov/sir/2008/5129/.

James, M.R., Pinkerton, H., and Ripepe, M., 2010, Imaging short
period variations in lava flux: Bulletin of Volcanology, v. 72,
p. 671–676.

References   9

http://www.raspberrypi.org/forums/viewtopic.php?f=44&t=17107
http://www.raspberrypi.org/forums/viewtopic.php?f=44&t=17107

10   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

Orr, T.R., and Hobblit, R.P., 2008, A versatile time-lapse camera
system developed by the Hawaiian Volcano Observatory for use
at Kīlauea Volcano, Hawai‘i: U.S. Geological Survey Scientific
Investigations Report 2008–5117, 16 p.,
http://pubs.usgs.gov/sir/2008/5117/.

Orr, T.R., and Rea, J.C., 2012, Time-lapse camera observations
of gas piston activity at Pu`u `O`o, Kīlauea volcano, Hawai`i:
Bulletin of Volcanology v. 74, p. 2353–2362,
doi:10.1007/s00445-0120-0667-0.

Orr, T.R., Thelen, W.A., Patrick, M.R., Swanson, D.A, and
Wilson, D.C., 2013, Explosive eruptions triggered by rockfalls
at Kīlauea volcano, Hawai`i: Geology, v. 41,
p. 207–210.

Paskievitch, J., Read, C., and Parker, T., 2010, Remote telemetered
and time-lapse cameras at Augustine Volcano, chapter 12 of
Power, J.A., Coombs, M.L., and Freymueller, J.T., eds., The
2006 eruption of Augustine Volcano, Alaska: U.S. Geological
Survey Professional Paper 1769, p. 285–293,
http://pubs.usgs.gov/pp/1769/.

Patrick, M.R., Kauahikaua, J.P., and Antolik, L., 2010a, MATLAB
tools for improved characterization and quantification of
volcanic incandescence in webcam imagery; applications at
Kīlauea Volcano, Hawai‘i: U.S. Geological Survey Techniques
and Methods 13–A1, 16 p., http://pubs.usgs.gov/tm/tm13a1/.

Patrick, M.R., Orr, T.R., Wilson, D., Sutton, A.J., Elias, T., Fee,
D., and Nadeau, P.A., 2010b, Evidence for gas accumulation
beneath the surface crust driving cyclic rise and fall of the
lava surface at Halema‘uma‘u, Kīlauea Volcano: American
Geophysical Union, Fall Meeting 2010, San Francisco, Calif.,
13–17 December, abstract V21C-2339,

Patrick, M.R., Orr, T., Wilson, D., Dow, D., and Freeman,
R., 2011, Cycles of spattering, seismic tremor and surface
fluctuation within a perched lava channel, Kīlauea Volcano:
Bulletin of Volcanology, v. 73, p. 639–653,
doi:10.1007/s00445-010-0431-2.

Patrick, M.R., Orr, T.R., Antolik, L., Lee, R., and Kamibayashi, K.,
2012, Recent improvements in monitoring Hawaiian volcanoes
with webcams and thermal cameras: American Geophysical
Union, Fall Meeting 2010, San Francisco, Calif., 13–17
December, abstract V33E-01.

Patrick, Matthew, Orr, T.A. Sutton, Jeff, Elias, Tamar, and
Swanson, D., 2013, The first five years of Kīlauea’s summit
eruption in Halema‘uma‘u Crater, 2008–2013: U.S. Geological
Survey Fact Sheet 2013–3116, 4 p.,
http://dx.doi.org/10.3133/fs20133116.

Patrick, M.R., Orr, T.R., Antolik, L., Lee, L., and
Kamibayashi, K., 2014, Continuous monitoring of Hawaiian
volcanoes with thermal cameras: Journal of Applied
Volcanology, v. 3, no. 1, 19 p.

Perret, F.A., 1913, The lava fountains of Kilauea: American
Journal of Science, ser. 4, v. 35, art. 206, p. 139–148,
doi:10.2475/ajs.s4-35.206.139.

Poland, M.P., Dzurisin, D., LaHusen, R.G., Major, J.J.,
Lapcewich, D., Endo, E.T., Gooding, D.J., Schilling, S.P.,
and Janda, C.G., 2008, Remote camera observations of lava
dome growth at Mount St. Helens, Washington, October
2004 to February 2006, chapter 11 of Sherrod, D.R., Scott,
W.E., and Stauffer, P.H., eds., A volcano rekindled—The
renewed eruption of Mount St. Helens, 2004–2006: U.S.
Geological Survey Professional Paper 1750, p. 225–236,
http://pubs.usgs.gov/pp/1750/.

Sentman, D.D., McNutt, S.R., Stenbaek-Nielson, H.C.,
Tytgat, G., and DeRoin, N., 2010, Imaging observations of
thermal emissions from Augustine Volcano using a small
astronomical camera, chapter 24 of Power, J.A., Coombs,
M.L., and Freymueller, J.T., eds., The 2006 eruption of
Augustine Volcano, Alaska: U.S. Geological Survey
Professional Paper 1769, p. 569–578,
http://pubs.usgs.gov/pp/1769/.

Swanson, D.A., Duffield, W.A., Jackson, D.B., and Peterson,
D.W., 1979, Chronological narrative of the 1969–71 Mauna
Ulu eruption of Kilauea volcano, Hawaii: U.S. Geological
Survey Professional Paper, 1056, 55 p.,
http://pubs.er.usgs.gov/publication/pp1056/.

Thornber, C.R., 1997, HVO/RVTS-1—A prototype remote
video telemetry system for monitoring the Kilauea east rift
zone eruption: U.S. Geological Survey Open-File Report
97–0537, 18 p.,
http://pubs.er.usgs.gov/publication/ofr97537/.

Wilson, D., Elias, T., Orr, T., Patrick, M., Sutton, A.J., and
Swanson, D., 2008, Small explosion from new vent at
Kīlauea’s summit: Eos (Transactions of the American
Geophysical Union), v. 89, p. 203.

Wolfe, E.W., Neal, C.A., Banks, N.G., and Duggan, T.J., 1988,
Geologic observations and chronology of eruptive events, in
Wolfe, E.W., ed., The Puu Oo eruption of Kilauea Volcano,
Hawaii—Episodes 1 through 20, January 3, 1983, through
June 8, 1984: U.S. Geological Survey Professional Paper
1463, http://pubs.er.usgs.gov/publication/pp1463/.

Appendix 1. System Setup   11

Appendix 1. System Setup
Set up Raspberry Pi computer

1.	 On a Windows machine, download and install the application Win2Disk (freeware). Also download the image file (.img)
for the Raspbian wheezy Debian Linux distribution (free of charge). Write the .img file to an empty SD card (>4 Gb capac-
ity) using Win2Disk. Detailed instructions on this step are available on the Raspberry Pi Web site
(http://www.raspberrypi.org) and other sites.

2.	 Connect Raspberry Pi to peripherals (monitor, USB hub with keyboard and mouse plugged in) and then to power. Con-
nect the Raspberry Pi to the network with the Ethernet cable. Put in the SD card containing the operating system. A boot
sequence should show up on the monitor.

3.	 A setup window should appear.

A.	 Choose “Expand filesystem” to make the computer recognize the full size of the SD card.
B.	 Choose “Enable camera” to let the operating system work with the Raspberry Pi camera.
C.	 Choose “Internationalization options” and “Change timezone” to change the timezone to your location.
D.	 Reboot the computer.

4.	 Login with user:pi and password:raspberry

5.	 To enter a windows-style environment, type “startx” at command prompt.

6.	 Update Linux. In a terminal window, type:
sudo apt-get update
sudo apt-get upgrade
sudo reboot

7.	 Install Python modules.
sudo apt-get install python-scipy python-matplotlib

Check IDLE path browser to make sure matplotlib is installed.

8.	 Login again, type “startx” and open a terminal window. Install gpsd service, as it appears to improve interfacing with the
Ultimate GPS module.

sudo apt-get install gpsd

9.	 Install ImageMagick
sudo apt-get install imagemagick

10.	 The operating system assumes a United Kingdom keyboard layout. Change to USA keyboard layout, if necessary.
setxkbmap us

12   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

Set up webserver

1.	 Install Apache webserver. This allows access to data, such as camera images, on the Raspberry Pi using a web browser,
making the camera system behave like a webcam.

sudo apt-get install apache2
sudo service apache2 restart

2.	 Change Apache log directory. Edit the configuration file:
sudo nano /etc/apache2/envvars

 About halfway down this file there is a line that says this:
export APACHE_LOG_DIR=/var/log/apache2$SUFFIX

 Change this line to:
 export APACHE_LOG_DIR=/var/log

Set up camera

1.	 Shutdown the computer.
sudo shutdown now

2.	 Plug the camera ribbon into the CSI (Camera Serial Interface) connector on the Raspberry Pi computer. Demonstrations of
this are shown on the Raspberry Pi Web site (http://www.raspberrypi.org/camera; last accessed April 2014).

3.	 Restart the computer and log back in.

4.	 Create a folder for both the USB flash drive mounting and also the camera images.

sudo mkdir /media/usb
sudo mkdir /media/usb/webcam
sudo chown pi:pi /media/usb

Set up GPS unit and time-syncing

1.	 Shutdown the computer.
sudo shutdown now

2.	 Solder the pins to the Ultimate GPS module.

3.	 Insert a CR1220 coin battery in the GPS module.

4.	 Connect the Ultimate GPS module to Raspberry Pi using the USB to TTL cable.

5.	 Restart the computer and log back in.

6.	 Confirm the Ultimate GPS is working. Put the GPS unit in a window with a clear view of the sky. While the unit is
searching for satellites it will blink a red LED at 1 Hz. Once a lock is established, the unit will blink once every 15
seconds. To confirm that GPS data are coming in type the following:

sudo cat /dev/ttyUSB0

A stream of data should appear on the screen; hit control-c to stop the stream. Some of the sentences should begin 		
 with“$GPRMC”, which has the following format (http://aprs.gids.nl/nmea/, accessed January 2015):

$GPRMC,182423.000,A,1936.8246,N,15512.7806,W,173.8,231.8,021013,004.2,W*70

http://aprs.gids.nl/nmea/

Appendix 1. System Setup   13

Where:
 1 182423.000 Time Stamp

2 A validity - A-ok, V-invalid
3 1936.8246 current Latitude (19° 36.8246’)
4 N North/South
5 15512.7806 current Longitude (155° 12.7806’)
6 W East/West
7 173.8 Speed in knots
8 231.8 True course
9 021013 Date Stamp
10 004.2 Variation
11 W East/West
12 *70 checksum

 The second variable shows whether the GPS has a lock (A) or not (V).

7.	 Modify NTP timeserver to read GPS data. The NTP configuration file (ntp.conf, in the folder /etc) controls where the NTP
service looks for an accurate time server, which in our case will either be a) an internet time-server when the camera is
connected to the network or b) the Ultimate GPS module when the camera is not connected to the outside world. Note that
other hobbyists using a Raspberry Pi computer with the Ultimate GPS receiver have installed a module called gpsd, and
modified the NTP configuration file to interface with gpsd. However, we found that gpsd was unreliable, and so we put in
the address of the GPS unit directly. To edit the file, type:

sudo nano /etc/ntp.conf

To the end of the NTP configuration file we added these lines:

server 127.127.20.0 mode 17 minpoll 3 iburst true prefer
fudge 127.127.20.0 flag 1 time2 0.496

After this change is made, restart the NTP service:

sudo service ntp restart

8.	 Test NTP to make sure it is getting GPS time. Disconnect the Ethernet cable so that the Raspberry Pi is no longer
connected to the network. Unplug the power and wait an hour or so. Reconnect the power so that the camera boots up
and go to the X windows environment. The time will likely be off by an hour or more. Watch the Ultimate GPS module
and identify when it gets a GPS lock (LED going from 1 Hz to 1/15 Hz). This can also be checked by looking at the serial
output as described above. Once the GPS has a lock, check the time on the computer screen to confirm that it has been
corrected.

Set up image acquisition scripts and scheduling

1.	 Copy over Python scripts for image acquisition and management. Scripts are provided in the other appendices. Copy these
scripts to the /home/pi directory.

2.	 Set crontab (type “crontab –e”) to run the selected Python scripts on a schedule.

Script 1: Fast time-lapse (several images per minute)	 Every 10 minutes
Script 2: Slow time-lapse (image every few minutes)	 Every few minutes
Script 3: Archive fast time-lapse images		 Every minute
Script 5: Force NTP time sync				 Every couple hours
Script 7: Run video script				 Every couple minutes, hours
Script 8: Free disk space check			 Every day

We also add a cronjob in which the Raspberry Pi computer reboots once a day, a few minutes after midnight. For the fast
 time-lapse script the complete crontab then looks like this, with the script acquiring several images per minute,

14   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

 continuously for 10 minutes, and then restarting:
*/10 * * * * /usr/bin/python2.7 fasttimelapse.py
*/1 * * * * /usr/bin/python2.7 putfiles.py
0 0 * * * /usr/bin/python2.7 freespace.py
11 0 * * * sudo shutdown –rF now
1 */2 * * * /usr/bin/python2.7 ntpset.py
5 */2 * * * sudo service ntp start
@reboot sleep 400 && /usr/bin/python2.7 ntpset.py
@reboot sleep 300 && sudo mount /dev/sda1 –o remount,rw
@reboot sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo chown –R pi /var/www

For the slow time-lapse script, the crontab looks like this, in which the crontab frequency determines the frequency of
 image acquisition (one image every 2 minutes in this example):

*/2 * * * * /usr/bin/python2.7 slowtimelapse.py
0 0 * * * /usr/bin/python2.7 freespace.py
11 0 * * * sudo shutdown –rF now
1 */2 * * * /usr/bin/python2.7 ntpset.py
5 */2 * * * sudo service ntp start
@reboot sleep 400 && /usr/bin/python2.7 ntpset.py
@reboot sleep 300 && sudo mount /dev/sda1 –o remount,rw
@reboot sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo chown –R pi /var/www

For periodic video acquisition, the crontab would look like this, in which the video acquisition lasts 30 seconds and is run
 every 10 minutes:

*/10 * * * * /usr/bin/python2.7 getvideocmd.py -i 30
0 0 * * * /usr/bin/python2.7 freespace.py
11 0 * * * sudo shutdown –rF now
1 */2 * * * /usr/bin/python2.7 ntpset.py
5 */2 * * * sudo service ntp start
@reboot sleep 400 && /usr/bin/python2.7 ntpset.py
@reboot sleep 300 && sudo mount /dev/sda1 –o remount,rw
@reboot sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo chown –R pi /var/www

Setup SD card as read-only to avoid SD card corruption

1.	 Change the fstab file to set the root directory as read-only.
sudo nano /etc/fstab

 Edit the file so that it looks like this:
proc /proc proc defaults 0 0

/dev/mmcblk0p1 /boot vfat ro 0 2

/dev/mmcblk0p2 / ext4 ro 0 1

/dev/sda1 /media/usb vfat rw,uid=1000,gid=1000 0 2

tmpfs /tmp tmpfs defaults,noatime,nosuid,size=100m 0 0

tmpfs /var/lib/lightdm/ tmpfs defaults,noatime,nosuid,mode=0755,size=30m 0 0

tmpfs /var/log/ tmpfs defaults,noatime,nosuid,mode=0755,size=100m 0 0

tmpfs /var/run/ tmpfs defaults,noatime,nosuid,mode=0755,size=2m 0 0

tmpfs /var/spool/mqueue tmpfs defaults,noatime,nosuid,mode=0700,gid=12,size=30m 0 0

tmpfs /var/www/ tmpfs rw,noatime,user,nosuid,mode=0755,size=100m 0 0

a swapfile is not a swap partition, so no using swapon|off from here on, use dphys-swapfile swap[on|off] for that

2.	 If further changes to the scripts or operating system are necessary, write permission must be reset:
sudo mount / -o remount,rw

The fstab will then reset the root directory to read-only upon the next reboot.

Appendix 2. Fast Time-Lapse (Script 1: fasttimelapse.py)   15

Appendix 2. Fast Time-Lapse (Script 1: fasttimelapse.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script 1.This acquires a high rate timelapse sequence (currently 10 images per minute). The acquisition
#runs for 10 minutes, and should thus be scheduled by cron to restart every 10 minutes. The script
#”putfiles.py” should also be scheduled by cron, preferably once per minute, to move the incoming image
#files to their date directories.

Matt Patrick
US Geological Survey - Hawaiian Volcano Observatory
Mar 20, 2014

import os

#Acquire image and name file based on date-time
os.chdir(‘/media/usb/webcam/’)

os.system(‘kill $(pgrep raspistill)’)

#Raspistill in this setting acquires a timelapse burst of images (ie several images per minute) -
currently set at 10 images per minute
#image size = 1024 x 768 (about 400 kb)
#runs for 570 seconds (a little under 10 minutes, because internal timer appears to run 4.5% longer
#than stated
#acquires an image every 10 seconds
os.system(‘raspistill -o timelapse%04d.jpg -q 90 -w 1024 -h 768 -t 580000 -tl 10000 -vf -hf -ex auto -awb auto -n’);
#acquire image
path=’/media/usb/webcam/timelapse*jpg’

16   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

Appendix 3. Slow Time-Lapse (Script 2: slowtimelapse.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script 2. Call this script in a crontab to acquire an image every few minutes (cron can do no faster
#than one image per minute in this fashion. To acquire several images per minute, use
#fasttimelapse.py as well as putfiles.py together in the crontab.

 # Matt Patrick
US Geological Survey - Hawaiian Volcano Observatory
Mar 20, 2014

import os
#import pylab as plt
import time as ti
import os.path
import datetime
import subprocess
import shlex
from gpspuller3 import gpspull
import pytz
import shutil
import glob

tic=ti.time()
ss=100000000

#Acquire image and name file based on date-time
os.chdir(‘/media/usb/webcam’)
#acquire image. Image size is 1024 x 768. Camera waits 3 sec before capture to settle exposure.
os.system(‘raspistill -o webcam2.jpg -q 90 -w 1024 -h 768 -t 3000 -vf -hf -n’)
path=’/media/usb/webcam/webcam2.jpg’

#stamp on gps fix
[gpsfix,lat,lon,gpstime]=gpspull()

#stamp on network connection (for time sync info)
command_line=”ping -c 1 www.google.com”
args=shlex.split(command_line)
try:
 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
   s=”Internet time-sync: yes”
except subprocess.CalledProcessError:
  s=”Internet time-sync: no”

for fname in glob.glob(path):

 t3=os.path.getmtime(fname) #get system time of filename
 tt=ti.localtime(t3)
 t4=datetime.datetime.fromtimestamp(t3)
 s1=fname

 #stamp on gps coordinates
 if lat==’nan’:
 latstring=’Lat: nan’
 lonstring=’Lon: nan’
 else:
 latstring=’Lat: ‘+str(lat)
 lonstring=’Lon: ‘+str(lon)

 #make big string at bottom
 t4s=str(t4)
 tz=ti.strftime(‘%Z’,ti.gmtime())
 bigstring=t4s+’ ‘+tz+’ | ‘+s+’ | ‘+gpsfix+’ | ‘+latstring+’ | ‘+lonstring

Appendix 3. Slow Time-Lapse (Script 2: slowtimelapse.py)   17

 #save image with date filename
 t5=ti.strftime(‘%Y%m%d%H%M%S’,tt)
 imagename=t5+’.jpg’
 d0=’/media/usb/webcam/’+imagename

 cmdstring=”/usr/bin/convert “+s1+” -pointsize 17 -fill white -annotate +20+760 ‘”+bigstring+”’ “+d0
 os.system(cmdstring)

 #Archive current image in date-time folder structure
 year=ti.strftime(‘%Y’,tt)
 month=ti.strftime(‘%m’,tt)
 day=ti.strftime(‘%d’,tt)
 hour=ti.strftime(‘%H’,tt)

 t=pytz.timezone(ti.tzname[1])
 t4aware=t.localize(t4)
 if not gpstime==’nan’:
 difft=gpstime-t4aware
 ss=difft.total_seconds()

 if ss<120 and gpsfix==’GPS time-sync: yes’ and not gpstime==’nan’:
 d1=’/media/usb/webcam/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename
 else:
 d1=’/media/usb/webcam/unsuretimestamp/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename

 d2=os.path.dirname(d1)
 #if file path does not exist, make it
 if not os.path.exists(d2):
 os.makedirs(d2)

 shutil.copyfile(d0,’/var/www/image.jpg’) #copy image to webserver directory
 #print d0
 #print d1
 shutil.move(d0,d1) #move file to new date folder

\#write metadata text file for webserver
f=open(‘metadata.txt’,’w’)
f.write(t5+’\n’)
f.close()
shutil.move(‘metadata.txt’,’/var/www/metadata.txt’)

toc=ti.time()
print toc-tic

18   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

Appendix 4. Archive Fast Time-Lapse Images (Script 3: putfiles.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

 #Script 3 takes incoming images and 1) puts a timestamp on them and 2) puts files in a
#date-based folder structure.Call this script in a crontab once every minute. This
#function should run alongside fasttimelapse.py. This script requires that ImageMagick be
#installed.

Matt Patrick
US Geological Survey - Hawaiian Volcano Observatory
Mar 20, 2014

import os
import time as ti
import os.path
import datetime
import subprocess
import shlex
from gpspuller3 import gpspull
import pytz
import shutil
import glob

tic=ti.time()

path=’/media/usb/webcam/timelapse*jpg’

#stamp on gps fix
[gpsfix,lat,lon,gpstime]=gpspull()

#stamp on network connection (for time sync info)
command_line=”ping -c 1 www.google.com” #test ping address
args=shlex.split(command_line)
try:
 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
 s=”Internet time-sync: yes”
except subprocess.CalledProcessError:
 s=”Internet time-sync: no”

#go through all the images that are timelapse*jpg, stamp on text and put in date folders
for fname in glob.glob(path):

 t3=os.path.getmtime(fname) #get system time of filename
 tt=ti.localtime(t3)
 t4=datetime.datetime.fromtimestamp(t3)
 s1=fname

 #stamp on gps coordinates
 if lat==’nan’:
 latstring=’Lat: nan’
 lonstring=’Lon: nan’
 else:
 latstring=’Lat: ‘+str(lat)
 lonstring=’Lon: ‘+str(lon)

 #make big string at bottom
 t4s=str(t4)
 tz=ti.strftime(‘%Z’,ti.gmtime())
 bigstring=t4s+’ ‘+tz+’ | ‘+s+’ | ‘+gpsfix+’ | ‘+latstring+’ | ‘+lonstring

 #save image with date filename
 t5=ti.strftime(‘%Y%m%d%H%M%S’,tt)
 imagename=t5+’.jpg’
 d0=’/media/usb/webcam/’+imagename

Appendix 4. Archive Fast Time-Lapse Images (Script 3: putfiles.py)   19

 cmdstring=”/usr/bin/convert “+s1+” -pointsize 17 -fill white -annotate +20+760 ‘”+bigstring+”’ “+d0
 os.system(cmdstring)
 os.remove(fname)

 #Archive current image in date-time folder structure
 year=ti.strftime(‘%Y’,tt)
 month=ti.strftime(‘%m’,tt)
 day=ti.strftime(‘%d’,tt)
 hour=ti.strftime(‘%H’,tt)
 t=pytz.timezone(ti.tzname[1])
 t4aware=t.localize(t4)

 if not gpstime==’nan’:
 difft=gpstime-t4aware
 ss=difft.total_seconds()
 if ss<180 and gpsfix==’GPS time-sync: yes’ and not gpstime==’nan’:
 d1=’/media/usb/webcam/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename
 else:
 d1=’/media/usb/webcam/unsuretimestamp/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename
 print d1
 d2=os.path.dirname(d1)
 #if file path does not exist, make it
 if not os.path.exists(d2):
 os.makedirs(d2)

 shutil.copyfile(d0,’/var/www/image.jpg’) #copy image to webserver directory
 #os.rename(d0,d1) #move file to new date folder
 shutil.move(d0,d1)

#write metadata text file for webserver
f=open(‘metadata.txt’,’w’)
f.write(t5+’\n’)
f.close()
shutil.move(‘metadata.txt’,’/var/www/metadata.txt’)

toc=ti.time()
print toc-tic

20   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

Appendix 5. Get GPS Position (Script 4: gpspuller3.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script 4 reads in NMEA sentences from a serial GPS device plugged into the Raspberry
#Pi. Looks at 30 sentences and takes out GPRMC line, and then reads lat and lon and
#time.

Matt Patrick
US Geological Survey - Hawaiian Volcano Observatory
Mar 20, 2014

import os
import time
import re
import datetime as dt
import pytz

def gpspull():
 print ‘pulling GPS time...’
 a=os.listdir(‘/sys/bus/usb-serial/devices’)

 #Acquire image and name file based on date-time
 os.chdir(‘/media/usb/webcam’)
 s=’head --lines=30 /dev/’+a[0]+’ > gpsinfo4.txt’
 os.system(s)

 isactive=’nan’
 lat=’nan’
 lon=’nan’
 gpstime=’nan’

 fh=open(‘gpsinfo4.txt’)
 for line in fh.readlines():
 #print line[1:6]
 if line[1:6]==’GPRMC’:
 #print ‘yes’
 s=re.split(‘,’,line)
 isactive=s[2]
 if isactive==’A’:
 slat=s[3]
 slat1=int(float(slat)/100)
 slat2=float(slat)-(slat1*100)
 slat2=slat2/60
 lat=slat1+slat2
 slon=s[5]
 slon1=int(float(slon)/100)
 slon2=float(slon)-(slon1*100)
 slon2=slon2/60
 lon=slon1+slon2
 lat=str(lat)
 lat=float(lat[0:11])
 lon=str(lon)
 lon=float(lon[0:11])

 if s[4]==’S’:
 lat=lat*-1
 if s[6]==’W’:
 lon=lon*-1

 t1=s[1]
 thour=int(t1[0:2])
 tmin=int(t1[2:4])
 tsec=int(t1[4:6])

Appendix 5. Get GPS Position (Script 4: gpspuller3.py)   21

 t2=s[9]
 tday=int(t2[0:2])
 tmonth=int(t2[2:4])
 tyear=int(t2[4:6])+2000
 utc=pytz.UTC
	   gpstime=dt.datetime(tyear,tmonth,tday,thour,tmin,tsec,0,utc)

 if isactive==’nan’:
 gpslock=’GPS time-sync: no’
 elif isactive==’V’:
 gpslock=’GPS time-sync: no’
 elif isactive==’A’:
 gpslock=’GPS time-sync: yes’

 fh.close()

 return (gpslock, lat, lon, gpstime)

22   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

Appendix 6. NTP Time Set (Script 5: ntpset.py) and Approximate Time Set (Script 6:
setapproximate2.py)

In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script5: ntpset.py
#this function tries to ensure the NTP server has the correct time

#Matt Patrick
#US Geological Survey-Hawaiian Volcano Observatory
#Mar 20, 2014

import os
from setapproxtime2 import setapproxtime

setapproxtime()
os.system(‘sudo service ntp stop’)
os.system(‘sudo ntpd -q’)
os.system(‘sudo service ntp start’)

#Script6: setapproximate2.py
#this function uses the RTC time on the Ultimate GPS module (gps lock or not)
#to roughly set NTP, to ensure it is close enough that NTP can do self correction

Matt Patrick
US Geological Survey - Hawaiian Volcano Observatory
Mar 20, 2014

import os
import time
import datetime as dt
from gpspuller3 import gpspull
from pytz import timezone

def setapproxtime():
 [gpsfix,lat,lon,gpstime]=gpspull()

 t=gpstime.astimezone(timezone(‘HST’))

 gpstime=t
 year=str(gpstime.year)
 month=str(gpstime.month)
 day=str(gpstime.day)
 hour=str(gpstime.hour)
 mint=str(gpstime.minute)
 sec=str(gpstime.second)

 s1=year+’-’+month+’-’+day
 s1b=’sudo date --set=”’+s1
 s2=hour+’:’+mint+’:’+sec

 s3=s1b+’ ‘+s2+’”’

 os.system(s3)

Appendix 7. Acquire Video (Script 7: getvideocmd.py)    23

Appendix 7. Acquire Video (Script 7: getvideocmd.py)

In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script 7 acquires h264 format video for a set duration, which is set in the command line
#Script uses the Raspivi function, currently set at frame rate of 10 fps. Script then
#writes a metadata file with time and position and archives video and metadata file in
#date based folder structure. Script can be scheduled in cron to run at intervals.

Matt Patrick
US Geological Survey - Hawaiian Volcano Observatory
Mar 20, 2014

import os
import time as ti
from gpspuller3 import gpspull
import datetime
import subprocess
import shlex
import argparse
import shutil

#manages input from command line, where you input duration of video
parser=argparse.ArgumentParser(description=’this takes video’)
parser.add_argument(‘-i’,’--input’,help=’Input time in sec’,required=True)
arg=parser.parse_args()

print arg
d=arg.input
print d
print type(d)
d=int(d)
x=d*1000

os.chdir(‘/media/usb/webcam/’)
#use raspivid to acquire video at 10 fps
try:
 os.system(‘sudo /etc/init.d/cron stop’)
 ds=str(x)
 tt0=ti.localtime(ti.time())
 t50=ti.strftime(‘%Y%m%d%H%M%S’,tt0)
 print(t50)
 a=’raspivid -o video.h264 -hf -vf -b 120000000 -fps 10 -t ‘+ds
 os.system(a)
except:
 print(‘oops’)
os.system(‘sudo /etc/init.d/cron start’)

t3=os.path.getmtime(‘video.h264’)
tt=ti.localtime(t3)
t5=ti.strftime(‘%Y%m%d%H%M%S’,tt)
imagename=t5+’.h264’
d0=’/media/usb/webcam/’+imagename
os.rename(‘video.h264’,imagename)

#Archive current image in date-time folder structure
year=ti.strftime(‘%Y’,tt)
month=ti.strftime(‘%m’,tt)
day=ti.strftime(‘%d’,tt)
hour=ti.strftime(‘%H’,tt)

d1=’/media/usb/webcam/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename

d2=os.path.dirname(d1)

24   A Multipurpose Camera System for Monitoring Kīlauea Volcano, Hawai‘i

if not os.path.exists(d2):
 os.makedirs(d2)

shutil.move(d0,d1)

#write metadata text file
f=open(‘metadata.txt’,’w’)

[gpsfix,lat,lon,gpstime]=gpspull()
latstring=’Lat: ‘+str(lat)
lonstring=’Lon: ‘+str(lon)

#stamp on network connection (for time sync info)
command_line=”ping -c 1 www.google.com”
args=shlex.split(command_line)
try:
 subprocess.check_call(args,stdout=subprocess.
 PIPE,stderr=subprocess.PIPE)
 s=”Internet time-sync: yes”
except subprocess.CalledProcessError:
 s=”Internet time-sync: no”

currenttime=’Start time of acquisition (HST): ‘+t50

xx=’Raspberry Pi camera module’
f.write(xx+’\n’)
f.write(currenttime+’\n’)
f.write(latstring+’\n’)
f.write(lonstring+’\n’)
f.write(s+’\n’)
f.write(gpsfix)

f.close()
os.chdir(‘/media/usb/webcam/’)
metaname=t5+’.txt’
dx=’/media/usb/webcam/’+metaname
os.rename(‘metadata.txt’,metaname)

#Archive metadata in date-time folder structure
year=ti.strftime(‘%Y’,tt)
month=ti.strftime(‘%m’,tt)
day=ti.strftime(‘%d’,tt)
hour=ti.strftime(‘%H’,tt)

d1=’/media/usb/webcam/’+year+’/’+month+’/’+day+’/’+
hour+’/’+metaname

d2=os.path.dirname(d1)

if not os.path.exists(d2):
 os.makedirs(d2)

shutil.move(dx,d1)

Appendix 8. Maintain Free Space on Flash Drive (Script 8: freespace.py)   25

Appendix 8. Maintain Free Space on Flash Drive (Script 8: freespace.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script 8: freespace.py
#function checks space on flash drive and deletes directories as necessary
#to maintain sufficient free space to keep acquiring images

Matt Patrick
US Geological Survey- Hawaiian Volcano Observatory
Mar 20, 2014

import os
import shutil

path=’/media/usb/webcam’
st=os.statvfs(path)
free=(st.f_bavail*st.f_frsize)
free=free/(1e9)

thresh=6 #Gb to be left on disk

#keep deleting date folders until sufficient space cleared
while free<thresh:
 os.chdir(path)

 #remove a folder to make room
 s=os.listdir(path)
 year=min(s)

 if os.listdir(year)==[]:
 #delete directory
 shutil.rmtree(year)
 else:
 os.chdir(year)
 s=os.listdir(‘./’)
 month=min(s)

 if os.listdir(month)==[]:
 #delete directory
 shutil.rmtree(month)
 else:
 os.chdir(month)
 s=os.listdir(‘./’)
 day=min(s)
 shutil.rmtree(day)

 #recalculate space
 st=os.statvfs(path)
 free=(st.f_bavail*st.f_frsize)
 free=free/(1e9)

Page intentionally left blank.

Menlo Park Publishing Service Center, California
Manuscript approved for publication February 18, 2015
Edited by James W. Hendley II
Layout and design by Cory Hurd

Patrick and others—
A Multipurpose Cam

era System
 for Monitoring Kīlauea Volcano, Hawai‘i—

Techniques and Methods 13–A2

ISSN 2328-7055 (online)
http://dx.doi.org/10.3133/tm13A2

	rmc
	_GoBack
	Patrick_Front_TM.pdf
	Appendix 8. Maintain Free Space on Flash Drive (Script 8: freespace.py)
	Appendix 7. Acquire Video (Script 7: getvideocmd.py)

	Appendix 6. NTP Time Set (Script 5: ntpset.py) and Approximate Time Set (Script 6: setapproximate2.py)
	Appendix 5. Get GPS Position (Script 4: gpspuller3.py)
	Appendix 4. Archive Fast Time-Lapse Images (Script 3: putfiles.py)
	Appendix 3. Slow Time-Lapse (Script 2: slowtimelapse.py)
	Appendix 2. Fast Time-Lapse (Script 1: fasttimelapse.py)
	Appendix 1. System Setup
	Acknowledgments
	Discussion
	Deployments
	Monitoring the Outgassing Plume From the HVO Tower
	Monitoring the Lava Lake From the Rim of Halema‘uma‘u Crater

	Acquisition Schemes
	Time-Lapse System Setup
	Webcam System Setup
	Video Acquisition Setup

	Image Acquisition and Management Scripts
	Script 1: Fast Time-Lapse Acquisition (Appendix 2)
	Script 2: Slow Time-Lapse Acquisition (Appendix 3)
	Script 3: Archive Fast Time-Lapse Images (Appendix 4)
	Script 4: Get GPS Position (Appendix 5)
	Scripts 5 and 6: Ensure NTP Server Working Correctly (Appendix 6)
	Script 7: Acquire Video (Appendix 7)
	Script 8: Ensure Flash Drive Does Not Fill Up (Appendix 8)

	Equipment
	Raspberry Pi Model B
	Raspberry Pi NoIR Camera Module
	Ultimate GPS Module Version 3
	Raspberry Pi Accessories
	Enclosure: Pelican Case Model 1120 and Accessories
	Tripod
	Power System
	Telemetry
	Equipment for Initial Setup

	Introduction
	Abstract
	References

