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Abstract
We describe a low-cost, compact multipurpose camera 

system designed for field deployment at active volcanoes that 
can be used either as a webcam (transmitting images back to an 
observatory in real-time) or as a time-lapse camera system (storing 
images onto the camera system for periodic retrieval during 
field visits). The system also has the capability to acquire high-
definition video. The camera system uses a Raspberry Pi single-
board computer and a 5-megapixel low-light (near-infrared sensitive) 
camera, as well as a small Global Positioning System (GPS) 
module to ensure accurate time-stamping of images. Custom 
Python scripts control the webcam and GPS unit and handle data 
management. The inexpensive nature of the system allows it to 
be installed at hazardous sites where it might be lost. Another 
major advantage of this camera system is that it provides accurate 
internal timing (independent of network connection) and, because 
a full Linux operating system and the Python programming 
language are available on the camera system itself, it has the 
versatility to be configured for the specific needs of the user. We 
describe example deployments of the camera at Kīlauea Volcano, 
Hawai‘i, to monitor ongoing summit lava lake activity. 

Introduction
Remote field cameras are essential tools for monitoring 

volcanic activity, with the images providing an invaluable visual 
framework for interpreting the multitude of other data streams 
coming into a volcano observatory (Poland and others, 2008; 
Behncke and others, 2009). The U.S. Geological Survey (USGS) 
Hawaiian Volcano Observatory (HVO) has found automated 
camera systems to be particularly useful for monitoring highly 
dynamic activity at Kīlauea Volcano, Hawai‘i, over the past 6 
years (Hoblitt and others, 2008; Orr and Hoblitt, 2008; Patrick 
and others, 2010a,b, 2011; Orr and Rea, 2012; Orr and others, 
2013), and the history of remote field cameras on Kīlauea extends 
back several decades (Wolfe and others, 1988; Thornber and 
others, 1997). These camera systems have been both webcams 
(images are telemetered in real-time back to the observatory) and 
time-lapse systems (images are not telemetered but stored on 
the camera for periodic retrieval by field personnel). However, 
the specific needs for these camera systems vary widely based 
on the eruption style and other circumstances. Most affordable 
webcams available on the market, unfortunately, are difficult or 
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impossible to customize to meet individual needs. For instance, 
we are not aware of any affordable webcam that time-stamps 
images based on Global Positioning System (GPS) input. Accurate 
timing of images is essential for comparison with other datasets 
(for example, geophysical data). To solve these limitations, we 
have assembled a simple camera system that uses a single-board 
computer (Raspberry Pi) running Linux and Python, enabling 
complete customization and tailoring to individual needs.

The Raspberry Pi (table 1) is a small, low-cost ($35) 
computer that runs the Linux operating system and has been 
used in many hobbyist projects, including those focusing on 
time-lapse photography. The system we describe here does not 
have any particularly novel improvements over previous projects 
shared on the Internet, as time-lapse and GPS time-syncing have 
already been done with the Raspberry Pi by many hobbyists 
(http://www.raspberrypi.org/tag/time-lapse/, accessed January 
2015). We simply present a system that combines previous uses 
of the Raspberry Pi, coupled with our own customized scripts 
and modified enclosure, for effective use at active volcanoes. The 
camera may be used as a webcam (when combined with telemetry 
equipment) or as a time-lapse camera. The focus of this report is 
the camera system itself, and we do not go into detail on the power 
system or telemetry. Power and telemetry systems for volcano-
monitoring cameras are described in Hoblitt and others (2008), Orr 
and Hoblitt (2008), Paskievitch and others (2010), and Patrick and 
others (2014). In this paper we describe two sample deployments 
on Kīlauea Volcano to monitor ongoing lava lake activity in 
Halema‘uma‘u Crater.

Equipment
The equipment needed for a compact multipurpose camera 

system for field deployment at active volcanoes based on a system 
used at Kīlauea Volcano, Hawai‘i, is described below. 

Raspberry Pi Model B
The Raspberry Pi Model B is a small (fig. 1), low-cost ($35) 

single-board Linux computer that has a 700-megahertz (MHz) 
ARM processor with 512 megabyte (Mb) random access memory 
(RAM), two universal serial bus (USB) 2.0 ports, an Ethernet 
port, and a Secure Digital (SD) memory card slot for data storage 
and the operating system (http://www.raspberrypi.org; accessed 
April 2014). 

http://www.raspberrypi.org/tag/time-lapse/
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Item Manufacturer/supplier Cost in U.S. dollars

Raspberry Pi Model B Raspberry Pi 35

Raspberry Pi NoIR camera module Raspberry Pi 30

Ultimate GPS module version 3 Adafruit 40

SD memory card (8 gigabyte) SanDisk 8

DC 12 volt to USB 5-volt power adapter Fulree, Drok 12

USB to TTL serial cable Adafruit 10

Raspberry Pi case SB components 9

Raspberry Pi camera mount Pimori 10

Pelican case 1120 Pelican 25

Low-profile USB flash drive Various 15

Total   194

Table 1.  Equipment list and approximate costs for compact multipurpose camera system designed for 
field deployment at active volcanoes based on a system used at Kīlauea Volcano, Hawai‘i.

[Excludes costs for tripod, power system, and telemetry. SD, Secure Digital; USB, universal serial bus; TTL, 
transistor–transistor logic; DC, direct current]
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Figure 1.  Photographs of the compact 
multipurpose camera system used at 
Kīlauea Volcano, Hawai‘i. A, Main camera 
components—the camera system is 
enclosed in a waterproof Pelican case (1) 
and includes the Raspberry Pi computer 
(4), the Raspberry Pi NoIR camera 
module (3), and the Adafruit Ultimate 
GPS module (5), which is connected 
by the USB to TTL (universal serial bus 
to transistor–transistor logic) cable (2). 
The power connection in the enclosure 
consists of the 12-volt direct current (DC) 
to 5-volt USB converter (6) and DIN-rail 
terminal block (not shown). A few minor 
cables and other components are not 
shown. The low-profile USB flash drive is 
not shown. B, Camera system within its 
enclosure (tan Pelican case). Downward 
view of the components connected 
within the Pelican case. The camera 
module (partially obscured) is attached 
to the right face of the case. Power and 
Ethernet are connected at the left face. 
(U.S. Geological Survey photographs by 
Matthew R. Patrick.)
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Raspberry Pi NoIR Camera Module
The Raspberry Pi NoIR camera module is designed 

specifically for the Raspberry Pi computer and is very 
inexpensive ($30). The camera sensor is 5 megapixels 
(2,592×1,944 pixels) and can do 1080p (1,080 horizontal 
lines of vertical resolution) high-definition video at 30 frames 
per second. It is a fixed-focus camera with a horizontal field 
of view of about 55°. The default software, available from 
RaspberryPi.org, provides a streamlined command-line 
interface for acquiring still photographs and video that can be 
easily added to scripts.

This NoIR camera module is “low-light” in the sense 
that it has the near-infrared filter removed and is thus 
sensitive to both visible and near-infrared light. HVO has had 
good success with such low-light cameras for two reasons. 
First, they tend to be very sensitive to the near-infrared 
radiation emitted by active lava and thus can be used to 
detect active lava far better than visible-wavelength cameras. 
Second, we have found that such low-light cameras tend 
to provide better views through thick volcanic fume than 
visible-wavelength cameras, presumably due to the longer 
wavelengths (Patrick and others, 2012; Orr and others, 2013). 
This ability to “see” through fume provides a great benefit 
when monitoring the active lava lake at Halema‘uma‘u 
Crater. The lake is contained within the “Overlook crater,” 
a nested crater within Halema‘uma‘u Crater, and is often 
obscured by thick fume to the naked eye. 

Ultimate GPS Module Version 3
The Adafruit Ultimate GPS module is a small (fig. 1) 

low-cost ($40) GPS unit that is easy to interface with and 
commonly used for Raspberry Pi projects. Although the unit 
can provide PPS (pulse per second) timing accuracy (which 
can be used to get microsecond timing accuracy), we use only 
the National Marine Electronics Association (NMEA) timing 
from the serial feed, which is only accurate to within about a 
second. The NMEA protocol was simpler to work with and 
the timing is adequate for our camera system. This unit is 
attached to the USB port on the Raspberry Pi using the USB 
to TTL (transistor–transistor logic) cable. It includes a slot for 
a small battery that allows the module to retain a relatively 
accurate time even when the power to the Raspberry Pi is cut 
off, and makes the Ultimate GPS module act as a real-time 
clock (RTC). The battery also allows faster GPS locks.

Raspberry Pi Accessories
Accessory Raspberry Pi equipment includes an 

8-gigabyte (Gb) SD card, a 5-volt (V) micro-USB to 12-V 
direct-current (DC) power adapter, a Raspberry Pi case, a 
16-Gb USB flash drive and a USB to TTL cable. The USB 
drive needs to be a low-profile form factor in order to fit into 
the enclosure.

Enclosure: Pelican Case Model 1120 and 
Accessories

A small enclosure is needed to protect the camera system 
from rain and volcanic gas. We choose Pelican cases because 
they are water tight and plastic and therefore do not corrode 
like metal enclosures. These types of enclosures have a good 
track record in thick volcanic fume on Kīlauea (Harris and 
others, 2005; Orr and Hoblitt, 2008; Patrick and others, 2014).

The Pelican case enclosure was modified in several ways. 
First, we cut a small hole in the front of the box and covered 
the hole with a piece of plexiglass to provide a window for the 
webcam. Two size 2-56 screws passed through the front of the 
box to attach the plexiglass to the outside of the case, as well as 
fasten the Raspberry Pi camera to the inside of the case (using 
the Raspberry Pimoroni camera mount to aid in a tight fit). 
At the opposite end of the box we cut two holes and installed 
connectors for the power and Ethernet cables. We attached 
the bottom of the Pelican case to a ¼-inch camera screw that 
had a ¼-inch female attachment at the bottom to fasten to a 
standard camera tripod. All holes cut into the Pelican case 
were well sealed with silicone sealant to ensure waterproofness 
(following Harris and others, 2005; Hoblitt and others, 2008). 

The power cable for the Raspberry Pi computer (which 
also powers the camera and GPS module) is a 5-V micro-
USB connector, and we plugged in a micro-USB to normal 
USB cord, which is then plugged into a 5-V USB to 12-V 
DC converter. The positive and negative 12-V wires from this 
converter are then plugged into a small DIN-rail terminal block 
(fig. 1) inside the enclosure. The switch on the terminal block 
was removed and a diode, used to avoid short-circuiting, was 
soldered in its place. A 3-ampere (A) fuse was also attached to 
the terminal block. 

Tripod
To save costs, we used an old Tiltall tripod (fig. 2) from 

our inventory. New Tiltall tripods cost about $120. Large rocks 
are piled around the legs of the tripod to ensure stability in high 
winds. We emphasize that stability of the tripod and camera is 
vital to construct steady long-term time-lapse sequences.

Power System
The power system we used for our test deployments 

consisted of four 10-A-hour Lithium polymer batteries (fig. 2). 
We used an Extech 380942 clamp meter to monitor the power 
consumption of the system and measured an average draw of 
roughly 250 milliamps (at 12 V). Based on this average power 
draw (3 Watts, W) the battery pack would provide about a 
week of power, which was sufficient for our test deployments. 
For long-term deployments, we typically use a solar-powered 
system consisting of a combination of 12-V lead/acid batteries 
and 80-W solar panels (Hoblitt and others, 2008; Orr and 
Hoblitt, 2008; Patrick and others, 2014). 

http://en.wikipedia.org/wiki/Display_resolution
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Figure 2.  Photographs of the compact multipurpose camera system in the 
field at Kīlauea Volcano, Hawai‘i, at the edge of Halema‘uma‘u Crater. A, The 
camera is within the tan Pelican case, atop a standard photography tripod, 
and pointed towards the active lava lake (out of view at the right). Note that 
the tripod legs are secured with rock piles to ensure stability of the camera. 
B, The battery pack (40 ampere-hour lithium polymer batteries) is shown 
for the temporary deployment and can supply about a week of power. (U.S. 
Geological Survey photographs by Matthew R. Patrick.)

Camera on tripod

Camera on tripod

Battery pack

A

B

Telemetry
The focus of this paper is the camera system itself so we do 

not discuss in detail the telemetry system for the camera, should it 
be used as a webcam. Nevertheless, to transmit webcam images 
back to the observatory we normally use one of two methods. The 
first is a WiFi (local-area wireless) radio system, such as the one 
described by Hoblitt and others (2008). The second is a cellular 
modem that can transmit images when the camera is within 
cellular phone reception. We have used a Sierra Wireless AirLink 
Raven XE cellular modem with a high-gain antenna, which cost 
about $600 to purchase. Data access cost about $40 a month 
through Verizon Wireless. Choice of telemetry system can greatly 
increase power consumption.

Equipment for Initial Setup
Some equipment is needed to set up the Raspberry Pi and 

GPS unit and configure them for field operation. Most of this 
equipment is freely available in a typical office environment, and 
so we do not include it in the cost of the system. This equipment 
includes an AC (alternating current) power adapter for the micro-
USB power connector, Ethernet cable, powered USB hub, USB 
keyboard, USB mouse, monitor, DVI-to-HDMI (Digital Visual 
Interface to High Definition Vector Imaging) adapter (assuming 
monitor has DVI input) or HDMI cable (if monitor has HDMI 
input). Care must be taken to ensure that this equipment is 
compatible with the Raspberry Pi. 

Image Acquisition and Management 
Scripts

All scripts are written in Python 2.7, which comes 
preinstalled on the Raspbian Debian Linux Wheezy distribution. 

Script 1: Fast Time-Lapse Acquisition (Appendix 2)
We use two different time-lapse acquisition schemes—one 

fast and the other slow. The fast time-lapse script (script 1) is 
meant to acquire several images per minute. We have used this 
script to acquire an image every 10 seconds (s) with good success. 
Note that this script requires a few seconds to archive each image, 
so we do not recommend intervals less than 5 s—for shorter 
intervals, periodic video acquisition can be scheduled. The fast 
time-lapse setup requires an associated script (script 3) to run 
alongside it and archive the incoming images. 

Script 2: Slow Time-Lapse Acquisition (Appendix 3)
The slow time-lapse scheme (script 2) is meant to acquire 

an image every few minutes, with the fastest rate limited by the 
“cron” scheduler at one image per minute. This script is run by 
the “crontab” at an interval chosen by the user; in other words, 
the crontab interval determines the imaging frequency. The 
script acquires a single image from the camera (using function 
raspistill), gets the image file time from the computer, which is 
itself set by Network Time Protocol (NTP) using either the GPS 
unit or network connection, and then imprints this time on the 
image. The latitude and longitude, and time-syncing status are 
also stamped on the image. The script then exports this image 
to a high-resolution JPEG file, with the file name based on the 
image date and time. Once an image is acquired, it is moved to 
a folder within a date-time directory structure with the following 
hierarchy: year-month-day-hour. The script archives the images 
onto the USB flash drive, which can then be easily swapped in the 
field without powering down the camera. The SD card also allows 
image storage, but to get these files the SD card must be removed 
in the field (abruptly shutting down the system). We found that 
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these shutdowns occasionally corrupted the SD card, sometimes 
losing data. Therefore, writing data to a removable USB flash 
drive is preferred. 

Script 3: Archive Fast Time-Lapse Images 
(Appendix 4)

Script 3 is scheduled to run every minute by cron in order 
to timestamp and archive the incoming images from script 1 (fast 
time-lapse). The script also stamps the geographic coordinates. 
Image archiving is done on the USB flash drive.

Script 4: Get GPS Position (Appendix 5)
Script 4 is run by scripts 2 and 3 immediately before time-

stamping the image. The script pulls 30 NMEA sentences from 
the GPS serial output and finds a NMEA GPRMC (recommended 
minimum specific GPS/transit data) sentence. From this sentence 
it determines if a GPS lock is active, and if so, it records the 
latitude and longitude. The lock status, and latitude and longitude 
are saved as variables that are passed to scripts 2 and 3, and then 
stamped directly on the image.

Scripts 5 and 6: Ensure NTP Server Working 
Correctly (Appendix 6)

Scripts 5 and 6 ensure that the NTP timeserver is setting the 
system time correctly from the GPS unit. 

Script 7: Acquire Video (Appendix 7)
Script 7 simply runs the default Raspberry Pi video function 

(raspivid) with a single input for video clip duration. The script 
provides some additional functionality. First, it temporarily 
suspends the cron scheduler for the duration of the video clip 
so that overlapping requests (from video and time-lapse image 
acquisitions) are not made to the camera module; simultaneous 
requests can make the camera freeze and require reboot. Second, 
the script renames the video file based on the start date and time 
and moves it into the date-based folder structure used by the 
time-lapse images. Finally, the script creates a metadata file for the 
video that contains the GPS coordinates and time-synchronization 
status.

Script 8: Ensure Flash Drive Does Not Fill Up 
(Appendix 8)

Script 8 simply checks the available storage space on the 
flash drive each day. If the free space falls below a specified 
threshold (for example, 500 Mb), the script deletes the oldest 
day’s worth of data and repeats this until the free space gets above 
the threshold. In this manner, the system maintains only the most 
recent data on the flash drive. 

Acquisition Schemes
Time-Lapse System Setup

Following the setup detailed in appendix 1, the camera 
system will be configured to act as a time-lapse camera system, 
so no additional work is needed for the camera to operate in this 
fashion. Periodically, personnel will need to visit the camera and 
move the camera images off of the flash drive or simply swap 
flash drives. Although the images would not be available for real-
time operational monitoring, they could be helpful for research or 
monitoring long-term processes that pose no immediate hazard. 

Webcam System Setup
In the webcam mode, the camera images are acquired in 

the same manner as the time-lapse setup but are transmitted to an 
observatory in near-real-time (within minutes), which is essential 
for real-time operational monitoring. The only change to the 
camera system is that it must be connected to a network, which 
can be done in one of two ways. First, the Raspberry Pi might be 
connected, using an Ethernet cable or WiFi adaptor, to an existing 
network that transmits data, either directly or by the Internet, to an 
observatory (Hoblitt and others, 2008). Second, the Raspberry Pi 
might be plugged in to a cellular or satellite modem to transmit the 
images through the Internet to an observatory. For the past several 
years we have used the Sierra Wireless Airlink Raven XE cellular 
modem, which connects to the Internet using the Verizon cellular 
network, with other camera systems. We tested this Raspberry Pi 
camera system (with the Apache webserver installed as described 
below) with this cellular modem successfully. 

At the observatory, a script must be run to periodically (for 
example, every few minutes) connect to the remote Raspberry 
Pi computer in the field and pull the most recently acquired 
image. The time-lapse acquisition script that we use on the 
Raspberry Pi (script 2 or 3) saves the current image to a constant 
file name (overwriting the file with the current image) in the 
webserver directory, along with a metadata file with image time. 
The webserver on the Raspberry Pi allows the current image 
and metadata file to be accessed using a Web browser or to be 
automatically downloaded using the “wget” command. 

Video Acquisition Setup
For most long-term continuous monitoring of volcanic 

activity, low image-acquisition rates (for example, an image every 
1–10 minutes) are adequate and, in fact, preferred to higher frame 
rates to keep storage space manageable. In special circumstances, 
however, high frame-rate acquisition may be desired for very 
dynamic processes, such as lava fountaining or lava lake draining. 
The Raspberry Pi camera module uses a video program called 
“raspivid” that makes video acquisition very straightforward. In 
script 7 (appendix 7) we have included this program along with 
time-stamping, and this script can be scheduled using a cron job or 
called on demand. 
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Deployments

The camera system was deployed in several locations to 
monitor the ongoing eruption at the summit of Kīlauea Volcano on 
the Island of Hawai‘i. The summit eruption began in March 2008 
(Wilson and others, 2008) and continues at the time of writing 
(early 2015) (Patrick and others, 2013, 2014). For the past several 
years, the activity has consisted of a lava lake in Halema‘uma‘u 
Crater, which is in the southwestern part of Kīlauea’s summit 
caldera. The lake itself is deep within a new crater (informally 
called the “Overlook crater,” due to its position immediately 
below the site of the Halema‘uma‘u visitor overlook). The lake 
undergoes frequent changes in lava level and emits a continuous 
plume of volcanic gas. This plume normally drifts southwest with 
the trade winds, and reacts in the atmosphere to form volcanic 
fog, or “vog.” Vog is a respiratory irritant that affects the health of 
residents downwind and negatively impacts the local agricultural 
industry (Patrick and others, 2013). 

Monitoring the Outgassing Plume From the HVO 
Tower

The camera was first deployed and operated within the HVO 
observation tower to test some of the configuration settings and 
ensure the camera system was working correctly. The system ran 
for more than a week (February 3–9, 2014) without problems, 
acquiring an image every minute (script 2) and a 30-s video 
sequence every 6 hours (script 7). The GPS unit was able to 
maintain a lock through the windows of the tower and provide 
accurate time stamps. 

The camera captured the variations in the outgassing plume 
(fig. 3, supplementary video 1), which fluctuated in direction 
with the prevailing winds. Normally, the plume is carried to the 
southwest with the trade winds (Elias and Sutton, 2012), but trade 
winds are unstable in the winter months. The direction the plume 
is carried determines which parts of the island experience the 
unpleasant effects of vog. During the week of observations, the 
wind direction and plume shifted many times. 

A B

C D

E F

Figure 3.  Photographs of the 
summit eruption plume at Kīlauea 
Volcano, Hawai‘i, taken by the 
compact multipurpose camera 
system in early February 2014. The 
photographs show the changing 
plume behavior due to fluctuations in 
wind direction and wind speed. The 
time and position imprints are at the 
bottom of each image in white text 
but are too small to read in this figure. 
A, February 4, 2055 Hawai‘i Standard 
Time (HST); B, February 5, 0405 
HST; C, February 5, 1320 HST; D, 
February 8, 0715 HST; E, February 
8, 1245 HST; and F, February 9, 
0910 HST. (U.S. Geological Survey 
photographs.)
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Monitoring the Lava Lake From the Rim of 
Halema‘uma‘u Crater

The second test deployment was at the rim of 
Halema‘uma‘u Crater, about 200 meters (m) west of the closed 
visitor overlook, to image the Overlook crater and directly 
monitor the lava lake (figs. 2 and 4). The camera operated for 1 
day (February 14, 2014, 1200 Hawai‘i Standard Time (HST) to 
February 15, 2014, 1200 HST), using the lithium polymer battery 
pack for power. Still images were acquired every minute (script 2) 
and 30-s video clips were acquired every 6 hours (script 7). Image 
acquisition ran correctly, as did the GPS time synchronization. 

The images depicted the lava lake well (fig. 5, 
Supplementary video 2). The lake surface normally consists 
of large crustal plates (black to the naked eye) separated by 
thin incandescent cracks (red to the naked eye) (fig. 5). These 
incandescent cracks can have surface temperatures of more 
than 500 degrees Celsius (°C) based on analysis with a thermal 
camera (Patrick and others, 2014). The cracks show up as white 

Figure 4.  Photograph taken February 14, 2014, of camera monitoring the lava lake at the summit of Kīlauea Volcano, Hawai‘i. The camera 
is positioned on the rim of Halema‘uma‘u Crater, 200 meters (m) west of the “Overlook crater” (center of image), which contains the active 
lava lake. For scale, the Overlook crater is 160 × 210 m in size, and the lava lake on this date was about 50 m below the rim of the Overlook 
crater. The Overlook crater is contained within Halema‘uma‘u Crater (about 1 kilometer diameter), whose far walls are marked by white 
alteration near the top of the photograph. (U.S. Geological Survey photograph by Matthew R. Patrick.)

in the Raspberry Pi NoIR camera images, presumably due to 
the large amount of near-infrared radiation these incandescent 
cracks are emitting. A persistent spattering source is normally 
present in the southeast part of the crater at the lake margin 
(right side in images, fig. 5A, B). 

The image sequence captures several interesting changes 
in the lava lake that correlate clearly with fluctuations in 
seismic tremor—in figure 5 shown as RSAM (real-time seismic 
amplitude measurement) (Endo and Murray, 1991; see also 
supplementary videos 2 and 3). On several occasions a transient 
spatter source appears on the east margin of the lake (far side 
of lake in images), and this spatter source migrates towards 
the southeast, presumably carried by the prevailing current 
in the lake (similar to the “traveling fountains” mentioned by 
Perret (1913) in the early Halema‘uma‘u lava lake, as well as 
the migrating fountains observed by Patrick and others, 2011). 
The RSAM spikes when these brief spatter sources appear, 
suggesting that spattering and the associated shallow outgassing 
are closely related to the seismic tremor. 
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Figure 5.  Photographs of the lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i, taken by the compact multipurpose 
camera system on February 14–15, 2014. The photographs are compared with a graph showing real-time seismic amplitude measurements (RSAM) 
recorded at station NPT (HWZ indicates the frequency band and directional component of the seismometer). Time on the graph is shown in Hawai‘i 
Standard Time (HST). A, Photograph taken during normal behavior and normal seismic tremor (moderate RSAM values); there is a single, persistent 
spattering source in the southeast part of the lake. B, Photograph taken during a rapid increase in seismic tremor, shown by a spike in RSAM, 
that occurred with the brief appearance of a second spattering source that was carried east in the prevailing current. C, Photograph taken during 
an apparent collapse on the northwest margin of the lava lake (left side in this view) that triggered increased spattering and a drop in lava level, 
presumably as gas was released from the shallow parts of the lake. The increased outgassing and spattering were associated with elevated RSAM 
values due to high seismic tremor. D, photograph showing that this change in the lake was associated with the persistent spatter source shutting down. 
The absence of spattering in the lake was associated with a reduction in seismic tremor, shown by the “flatline” in RSAM. (U.S. Geological Survey 
photographs.)



At 0551 HST in figure 5, a large spatter source appears as the 
RSAM spikes, and the lava level briefly drops. This is probably 
related to “gas piston” activity, a common process in the lava lake, 
which has been interpreted as the accumulation and release of gas 
beneath the lava lake surface (for example, Swanson and others, 
1979; Patrick and others, 2010). This phase of increased activity 
ends with the persistent spattering source dying out, at which time 
the RSAM drops to unusually low levels. The correspondence of 
diminishing spattering with plummeting seismic tremor reinforces 
the observation that surface outgassing is closely related to seismic 
tremor. Overall, the images from these deployments demonstrate 
the value that continuous detailed surface observations have in 
interpreting geophysical data. 

Discussion
A major advantage of this camera system is that it is very 

versatile, and can be customized to the specific needs of the user, 
in terms of both hardware and software. For hardware, either 
a standard or low-light camera module can be used, and other 
peripherals could be attached to the Raspberry Pi computer. For 
software, the Python scripts, and their scheduling with the crontab, 
can be modified to customize time-lapse intervals, frequency of 
video acquisition, and image resolution. The system allows much 
more innovative customization than standard camera systems 
normally allow. Onboard image processing could be done with 
Python, and internal triggering could be used. For instance, if 
infrequent time-lapse images begin to show some quality that 
might indicate increased activity at the volcano, such as elevated 
brightness during nighttime hours, then the image interval could 
automatically be changed or video sequences could be started. 
Internal triggering could be accomplished with motion detection as 
well, which would be straightforward with this setup (for example, 
using the Linux software package “Motion” for tracking scene 
changes). External triggering is another innovative option. The 
Raspberry Pi could be connected to other data streams (such as a 
seismometer) to allow external signals to trigger image or video 
acquisition.

The camera system could be improved in several ways. 
First, a compass module could be attached to allow the camera’s 
viewing azimuth to be stamped on the image. By combining the 
camera viewing geometry (that is, camera location, viewing angle, 
and camera field of view) with a high-resolution digital elevation 
model (DEM), quantitative approaches could be used to locate and 
measure features observed in the images (for example, James and 
others, 2010). Photogrammetric approaches could be applied using 
several cameras positioned around a target. Compass modules, 
such as the Parallax 3-Axis HMC5883L Compass Module, have 
already been used with the Raspberry Pi by others (http://www.
raspberrypi.org/forums/viewtopic.php?f=44&t=17107, accessed 
January 2015). Second, a major weakness of the Raspberry Pi for 
long-term field deployments is its continuous power consumption. 
In Hawai‘i, with abundant sunlight, solar-powered setups such as 
those in Orr and Hoblitt (2008) and Patrick and others (2014) can 
easily provide adequate power. In more challenging locations, such 

as in monitoring the remote, active volcanoes of Alaska (Paskievitch 
and others, 2010; Sentmen and others, 2010), sunlight is minimal in 
winter months and would require more efficient power management. 
The Sleepy Pi (http://spellfoundry.com/products/sleepy-pi/, 
accessed April 2014) is a power management unit developed for 
the Raspberry Pi that can switch the unit on and off at intervals. In 
Alaska, for example, the camera system described here could be 
turned on for several minutes each hour to acquire an image or short 
video sequence, then put to sleep. This would result in a substantial 
reduction in power consumption and minimize the number of 
batteries and solar panels required. Finally, the Raspberry Pi might 
be used to interface with many other types of instruments (for 
example, gas sensors, temperature sensors, accelerometers), not just 
cameras. Combining the computer and instruments with a cellular 
modem makes a very powerful real-time field-sensor package.
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Appendix 1. System Setup
Set up Raspberry Pi computer

1.	 On a Windows machine, download and install the application Win2Disk (freeware). Also download the image file (.img) 
for the Raspbian wheezy Debian Linux distribution (free of charge). Write the .img file to an empty SD card (>4 Gb capac-
ity) using Win2Disk. Detailed instructions on this step are available on the Raspberry Pi Web site  
(http://www.raspberrypi.org) and other sites. 

2.	 Connect Raspberry Pi to peripherals (monitor, USB hub with keyboard and mouse plugged in) and then to power. Con-
nect the Raspberry Pi to the network with the Ethernet cable. Put in the SD card containing the operating system. A boot 
sequence should show up on the monitor.

3.	 A setup window should appear.  

A.	 Choose “Expand filesystem” to make the computer recognize the full size of the SD card.
B.	 Choose “Enable camera” to let the operating system work with the Raspberry Pi camera.
C.	 Choose “Internationalization options” and “Change timezone” to change the timezone to your location.
D.	 Reboot the computer.

4.	 Login with user:pi and password:raspberry

5.	 To enter a windows-style environment, type “startx” at command prompt.

6.	 Update Linux. In a terminal window, type: 
sudo apt-get update
sudo apt-get upgrade
sudo reboot

7.	 Install Python modules.
sudo apt-get install python-scipy python-matplotlib 
 
Check IDLE path browser to make sure matplotlib is installed.

8.	 Login again, type “startx” and open a terminal window. Install gpsd service, as it appears to improve interfacing with the 
Ultimate GPS module.

sudo apt-get install gpsd

9.	 Install ImageMagick
sudo apt-get install imagemagick

10.	 The operating system assumes a United Kingdom keyboard layout. Change to USA keyboard layout, if necessary.
setxkbmap us
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Set up webserver 

1.	 Install Apache webserver. This allows access to data, such as camera images, on the Raspberry Pi using a web browser, 
making the camera system behave like a webcam.  

sudo apt-get install apache2
sudo service apache2 restart

2.	 Change Apache log directory. Edit the configuration file:
sudo nano /etc/apache2/envvars 

        About halfway down this file there is a line that says this:
export APACHE_LOG_DIR=/var/log/apache2$SUFFIX 

        Change this line to: 
             export APACHE_LOG_DIR=/var/log

Set up camera

1.	 Shutdown the computer.
sudo shutdown now

2.	 Plug the camera ribbon into the CSI (Camera Serial Interface) connector on the Raspberry Pi computer. Demonstrations of 
this are shown on the Raspberry Pi Web site (http://www.raspberrypi.org/camera; last accessed April 2014). 

3.	 Restart the computer and log back in. 

4.	 Create a folder for both the USB flash drive mounting and also the camera images. 

sudo mkdir /media/usb
sudo mkdir /media/usb/webcam
sudo chown pi:pi /media/usb

Set up GPS unit and time-syncing

1.	 Shutdown the computer.
sudo shutdown now

2.	 Solder the pins to the Ultimate GPS module.

3.	 Insert a CR1220 coin battery in the GPS module. 

4.	 Connect the Ultimate GPS module to Raspberry Pi using the USB to TTL cable.

5.	 Restart the computer and log back in.

6.	 Confirm the Ultimate GPS is working. Put the GPS unit in a window with a clear view of the sky. While the unit is 
searching for satellites it will blink a red LED at 1 Hz. Once a lock is established, the unit will blink once every 15 
seconds. To confirm that GPS data are coming in type the following:

sudo cat /dev/ttyUSB0 

A stream of data should appear on the screen; hit control-c to stop the stream. Some of the sentences should begin 		
        with“$GPRMC”, which has the following format (http://aprs.gids.nl/nmea/, accessed January 2015): 

$GPRMC,182423.000,A,1936.8246,N,15512.7806,W,173.8,231.8,021013,004.2,W*70

http://aprs.gids.nl/nmea/
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Where:
 1   182423.000 Time Stamp

2   A          validity - A-ok, V-invalid
3   1936.8246  current Latitude (19° 36.8246’)
4   N          North/South
5   15512.7806 current Longitude (155° 12.7806’)
6   W          East/West
7   173.8      Speed in knots
8   231.8      True course
9   021013     Date Stamp
10  004.2      Variation
11  W          East/West
12  *70        checksum

       The second variable shows whether the GPS has a lock (A) or not (V).  

7.	 Modify NTP timeserver to read GPS data. The NTP configuration file (ntp.conf, in the folder /etc) controls where the NTP 
service looks for an accurate time server, which in our case will either be a) an internet time-server when the camera is 
connected to the network or b) the Ultimate GPS module when the camera is not connected to the outside world. Note that 
other hobbyists using a Raspberry Pi computer with the Ultimate GPS receiver have installed a module called gpsd, and 
modified the NTP configuration file to interface with gpsd. However, we found that gpsd was unreliable, and so we put in 
the address of the GPS unit directly. To edit the file, type: 

sudo nano /etc/ntp.conf

To the end of the NTP configuration file we added these lines: 

server 127.127.20.0 mode 17 minpoll 3 iburst true prefer
fudge 127.127.20.0 flag 1 time2 0.496 

After this change is made, restart the NTP service: 

sudo service ntp restart

8.	 Test NTP to make sure it is getting GPS time. Disconnect the Ethernet cable so that the Raspberry Pi is no longer 
connected to the network. Unplug the power and wait an hour or so. Reconnect the power so that the camera boots up 
and go to the X windows environment. The time will likely be off by an hour or more. Watch the Ultimate GPS module 
and identify when it gets a GPS lock (LED going from 1 Hz to 1/15 Hz). This can also be checked by looking at the serial 
output as described above. Once the GPS has a lock, check the time on the computer screen to confirm that it has been 
corrected.  

Set up image acquisition scripts and scheduling

1.	 Copy over Python scripts for image acquisition and management. Scripts are provided in the other appendices. Copy these 
scripts to the /home/pi directory.

2.	 Set crontab (type “crontab –e”) to run the selected Python scripts on a schedule.  

Script 1: Fast time-lapse (several images per minute)	 Every 10 minutes
Script 2: Slow time-lapse (image every few minutes)	 Every few minutes
Script 3: Archive fast time-lapse images		  Every minute
Script 5: Force NTP time sync				   Every couple hours
Script 7: Run video script				    Every couple minutes, hours
Script 8: Free disk space check			   Every day

We also add a cronjob in which the Raspberry Pi computer reboots once a day, a few minutes after midnight. For the fast 
        time-lapse script the complete crontab then looks like this, with the script acquiring several images per minute,  
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        continuously for 10 minutes, and then restarting: 
*/10 * * * * /usr/bin/python2.7 fasttimelapse.py 
*/1 * * * * /usr/bin/python2.7 putfiles.py 
0 0 * * * /usr/bin/python2.7 freespace.py 
11 0 * * * sudo shutdown –rF now
1 */2 * * * /usr/bin/python2.7 ntpset.py 
5 */2 * * * sudo service ntp start 
@reboot sleep 400 && /usr/bin/python2.7 ntpset.py 
@reboot sleep 300 && sudo mount /dev/sda1 –o remount,rw
@reboot sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo chown –R pi /var/www

For the slow time-lapse script, the crontab looks like this, in which the crontab frequency determines the frequency of  
        image acquisition (one image every 2 minutes in this example): 

*/2 * * * * /usr/bin/python2.7 slowtimelapse.py 
0 0 * * * /usr/bin/python2.7 freespace.py 
11 0 * * * sudo shutdown –rF now
1 */2 * * * /usr/bin/python2.7 ntpset.py 
5 */2 * * * sudo service ntp start 
@reboot sleep 400 && /usr/bin/python2.7 ntpset.py 
@reboot sleep 300 && sudo mount /dev/sda1 –o remount,rw
@reboot sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo chown –R pi /var/www

For periodic video acquisition, the crontab would look like this, in which the video acquisition lasts 30 seconds and is run  
        every 10 minutes: 

*/10 * * * * /usr/bin/python2.7 getvideocmd.py -i 30 
0 0 * * * /usr/bin/python2.7 freespace.py 
11 0 * * * sudo shutdown –rF now
1 */2 * * * /usr/bin/python2.7 ntpset.py 
5 */2 * * * sudo service ntp start 
@reboot sleep 400 && /usr/bin/python2.7 ntpset.py 
@reboot sleep 300 && sudo mount /dev/sda1 –o remount,rw
@reboot sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo mount /dev/sda1 –o remount,rw
*/2 * * * * sudo chown –R pi /var/www

Setup SD card as read-only to avoid SD card corruption

1.	 Change the fstab file to set the root directory as read-only.
sudo nano /etc/fstab

 Edit the file so that it looks like this: 
proc            /proc           proc    defaults          0       0

/dev/mmcblk0p1  /boot           vfat    ro                0       2

/dev/mmcblk0p2  /               ext4    ro                0       1

/dev/sda1       /media/usb      vfat    rw,uid=1000,gid=1000       0       2

tmpfs           /tmp            tmpfs   defaults,noatime,nosuid,size=100m    0   0

tmpfs           /var/lib/lightdm/       tmpfs             defaults,noatime,nosuid,mode=0755,size=30m   0    0

tmpfs           /var/log/       tmpfs   defaults,noatime,nosuid,mode=0755,size=100m      0     0

tmpfs           /var/run/       tmpfs   defaults,noatime,nosuid,mode=0755,size=2m   0   0

tmpfs           /var/spool/mqueue     tmpfs   defaults,noatime,nosuid,mode=0700,gid=12,size=30m   0  0

tmpfs           /var/www/       tmpfs   rw,noatime,user,nosuid,mode=0755,size=100m   0   0

# a swapfile is not a swap partition, so no using swapon|off from here on, use  dphys-swapfile swap[on|off]  for that

2.	 If further changes to the scripts or operating system are necessary, write permission must be reset:
sudo mount / -o remount,rw

The fstab will then reset the root directory to read-only upon the next reboot.
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Appendix 2. Fast Time-Lapse (Script 1: fasttimelapse.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string: 

#Script 1.This acquires a high rate timelapse sequence (currently 10 images per minute). The acquisition 
#runs for 10 minutes, and should thus be scheduled by cron to restart every 10 minutes.  The script 
#”putfiles.py” should also be scheduled by cron, preferably once per minute, to move the incoming image 
#files to their date directories.   

# Matt Patrick
# US Geological Survey - Hawaiian Volcano Observatory
# Mar 20, 2014

import os 

#Acquire image and name file based on date-time
os.chdir(‘/media/usb/webcam/’)

os.system(‘kill $(pgrep raspistill)’) 

#Raspistill in this setting acquires a timelapse burst of images (ie several images per minute) - 
# currently set at 10 images per minute
#image size = 1024 x 768 (about 400 kb)
#runs for 570 seconds (a little under 10 minutes, because internal timer appears to run 4.5% longer 
#than stated
#acquires an image every 10 seconds 
os.system(‘raspistill -o timelapse%04d.jpg -q 90 -w 1024 -h 768 -t 580000 -tl 10000 -vf -hf -ex auto -awb auto -n’); 
#acquire image 
path=’/media/usb/webcam/timelapse*jpg’
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Appendix 3. Slow Time-Lapse (Script 2: slowtimelapse.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string: 

 
#Script 2. Call this script in a crontab to acquire an image every few minutes (cron can do no faster 
#than one image per minute in this fashion.  To acquire several images per minute, use  
#fasttimelapse.py as well as putfiles.py together in the crontab. 
 
 # Matt Patrick
# US Geological Survey - Hawaiian Volcano Observatory
# Mar 20, 2014   
 
import os
#import pylab as plt
import time as ti
import os.path
import datetime
import subprocess
import shlex
from gpspuller3 import gpspull
import pytz
import shutil
import glob 

tic=ti.time()
ss=100000000

#Acquire image and name file based on date-time
os.chdir(‘/media/usb/webcam’)
#acquire image. Image size is 1024 x 768. Camera waits 3 sec before capture to settle exposure.
os.system(‘raspistill -o webcam2.jpg -q 90 -w 1024 -h 768 -t 3000 -vf -hf -n’)
path=’/media/usb/webcam/webcam2.jpg’ 
 
#stamp on gps fix
[gpsfix,lat,lon,gpstime]=gpspull()

#stamp on network connection (for time sync info)
command_line=”ping -c 1 www.google.com”
args=shlex.split(command_line)
try: 
    subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
     s=”Internet time-sync: yes”
except subprocess.CalledProcessError:
    s=”Internet time-sync: no”

for fname in glob.glob(path): 

    t3=os.path.getmtime(fname) #get system time of filename
    tt=ti.localtime(t3)
    t4=datetime.datetime.fromtimestamp(t3)
    s1=fname

    #stamp on gps coordinates
    if lat==’nan’:
        latstring=’Lat: nan’
        lonstring=’Lon: nan’
    else:
        latstring=’Lat: ‘+str(lat)
        lonstring=’Lon: ‘+str(lon)

   #make big string at bottom
    t4s=str(t4)
    tz=ti.strftime(‘%Z’,ti.gmtime())
    bigstring=t4s+’ ‘+tz+’ | ‘+s+’ | ‘+gpsfix+’ | ‘+latstring+’ | ‘+lonstring
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    #save image with date filename
    t5=ti.strftime(‘%Y%m%d%H%M%S’,tt)
    imagename=t5+’.jpg’
    d0=’/media/usb/webcam/’+imagename

    cmdstring=”/usr/bin/convert “+s1+” -pointsize 17 -fill white -annotate +20+760 ‘”+bigstring+”’ “+d0
    os.system(cmdstring)

    #Archive current image in date-time folder structure
    year=ti.strftime(‘%Y’,tt)
    month=ti.strftime(‘%m’,tt)
    day=ti.strftime(‘%d’,tt)
    hour=ti.strftime(‘%H’,tt)

    t=pytz.timezone(ti.tzname[1])
    t4aware=t.localize(t4)
    if not gpstime==’nan’:
        difft=gpstime-t4aware
        ss=difft.total_seconds()

    if ss<120 and gpsfix==’GPS time-sync: yes’ and not gpstime==’nan’:
        d1=’/media/usb/webcam/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename
    else:
        d1=’/media/usb/webcam/unsuretimestamp/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename

    d2=os.path.dirname(d1)
    #if file path does not exist, make it
    if not os.path.exists(d2):
        os.makedirs(d2)

    shutil.copyfile(d0,’/var/www/image.jpg’) #copy image to webserver directory
    #print d0
    #print d1
    shutil.move(d0,d1) #move file to new date folder

\#write metadata text file for webserver
f=open(‘metadata.txt’,’w’)
f.write(t5+’\n’)
f.close() 
shutil.move(‘metadata.txt’,’/var/www/metadata.txt’)

toc=ti.time()
print toc-tic
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Appendix 4. Archive Fast Time-Lapse Images (Script 3: putfiles.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string: 

 #Script 3 takes incoming images and 1) puts a timestamp on them and 2) puts files in a 
#date-based folder structure.Call this script in a crontab once every minute.  This 
#function should run alongside fasttimelapse.py.  This script requires that ImageMagick be 
#installed. 

# Matt Patrick
# US Geological Survey - Hawaiian Volcano Observatory
# Mar 20, 2014

 
import os
import time as ti
import os.path
import datetime
import subprocess
import shlex
from gpspuller3 import gpspull
import pytz
import shutil
import glob

tic=ti.time()

path=’/media/usb/webcam/timelapse*jpg’ 

#stamp on gps fix
[gpsfix,lat,lon,gpstime]=gpspull()
 
#stamp on network connection (for time sync info)
command_line=”ping -c 1 www.google.com” #test ping address
args=shlex.split(command_line)
try:
    subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
    s=”Internet time-sync: yes”
except subprocess.CalledProcessError:
    s=”Internet time-sync: no”

#go through all the images that are timelapse*jpg, stamp on text and put in date folders
for fname in glob.glob(path):

    t3=os.path.getmtime(fname) #get system time of filename
    tt=ti.localtime(t3)
    t4=datetime.datetime.fromtimestamp(t3)
    s1=fname

    #stamp on gps coordinates
    if lat==’nan’:
        latstring=’Lat: nan’
        lonstring=’Lon: nan’
    else:
        latstring=’Lat: ‘+str(lat)
        lonstring=’Lon: ‘+str(lon)

    #make big string at bottom
    t4s=str(t4)
    tz=ti.strftime(‘%Z’,ti.gmtime())
    bigstring=t4s+’ ‘+tz+’ | ‘+s+’ | ‘+gpsfix+’ | ‘+latstring+’ | ‘+lonstring

    #save image with date filename
    t5=ti.strftime(‘%Y%m%d%H%M%S’,tt)
    imagename=t5+’.jpg’
    d0=’/media/usb/webcam/’+imagename
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    cmdstring=”/usr/bin/convert “+s1+” -pointsize 17 -fill white -annotate +20+760 ‘”+bigstring+”’ “+d0
    os.system(cmdstring)
    os.remove(fname)

    #Archive current image in date-time folder structure
    year=ti.strftime(‘%Y’,tt)
    month=ti.strftime(‘%m’,tt)
    day=ti.strftime(‘%d’,tt)
    hour=ti.strftime(‘%H’,tt)
    t=pytz.timezone(ti.tzname[1])
    t4aware=t.localize(t4)

    if not gpstime==’nan’:
        difft=gpstime-t4aware
        ss=difft.total_seconds()
    if ss<180 and gpsfix==’GPS time-sync: yes’ and not gpstime==’nan’:
        d1=’/media/usb/webcam/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename
    else:
        d1=’/media/usb/webcam/unsuretimestamp/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename
    print d1
    d2=os.path.dirname(d1)
    #if file path does not exist, make it
    if not os.path.exists(d2):
        os.makedirs(d2)

    shutil.copyfile(d0,’/var/www/image.jpg’) #copy image to webserver directory
    #os.rename(d0,d1) #move file to new date folder
    shutil.move(d0,d1)

#write metadata text file for webserver
f=open(‘metadata.txt’,’w’)
f.write(t5+’\n’)
f.close()
shutil.move(‘metadata.txt’,’/var/www/metadata.txt’)

toc=ti.time()
print toc-tic
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Appendix 5. Get GPS Position (Script 4: gpspuller3.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script 4 reads in NMEA sentences from a serial GPS device plugged into the Raspberry
#Pi. Looks at 30 sentences and takes out GPRMC line, and then reads lat and lon and
#time. 

# Matt Patrick
# US Geological Survey - Hawaiian Volcano Observatory
# Mar 20, 2014

import os
import time
import re
import datetime as dt
import pytz
 
def gpspull():
    print ‘pulling GPS time...’
    a=os.listdir(‘/sys/bus/usb-serial/devices’)

    #Acquire image and name file based on date-time
    os.chdir(‘/media/usb/webcam’)
    s=’head --lines=30 /dev/’+a[0]+’ > gpsinfo4.txt’
    os.system(s)

    isactive=’nan’
    lat=’nan’
    lon=’nan’
    gpstime=’nan’

    fh=open(‘gpsinfo4.txt’)
    for line in fh.readlines():
        #print line[1:6]
        if line[1:6]==’GPRMC’:
            #print ‘yes’
            s=re.split(‘,’,line)
            isactive=s[2]
            if isactive==’A’:
                slat=s[3]
                slat1=int(float(slat)/100)
                slat2=float(slat)-(slat1*100)
                slat2=slat2/60
                lat=slat1+slat2
                slon=s[5]
                slon1=int(float(slon)/100)
                slon2=float(slon)-(slon1*100)
                slon2=slon2/60
                lon=slon1+slon2
                lat=str(lat)
                lat=float(lat[0:11])
                lon=str(lon)
                lon=float(lon[0:11]) 

                if s[4]==’S’:
                    lat=lat*-1
                if s[6]==’W’:
                    lon=lon*-1

                t1=s[1]
                thour=int(t1[0:2])
                tmin=int(t1[2:4])
                tsec=int(t1[4:6])
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                t2=s[9]
                tday=int(t2[0:2])
                tmonth=int(t2[2:4])
                tyear=int(t2[4:6])+2000
                utc=pytz.UTC 
	     gpstime=dt.datetime(tyear,tmonth,tday,thour,tmin,tsec,0,utc)      

    if isactive==’nan’:
        gpslock=’GPS time-sync: no’
    elif isactive==’V’:
        gpslock=’GPS time-sync: no’
    elif isactive==’A’:
        gpslock=’GPS time-sync: yes’

    fh.close()

    return (gpslock, lat, lon, gpstime)
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Appendix 6. NTP Time Set (Script 5: ntpset.py) and Approximate Time Set (Script 6: 
setapproximate2.py)

In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script5: ntpset.py
#this function tries to ensure the NTP server has the correct time 

#Matt Patrick
#US Geological Survey-Hawaiian Volcano Observatory
#Mar 20, 2014

import os
from setapproxtime2 import setapproxtime
 
setapproxtime()
os.system(‘sudo service ntp stop’)
os.system(‘sudo ntpd -q’)
os.system(‘sudo service ntp start’)

#Script6: setapproximate2.py
#this function uses the RTC time on the Ultimate GPS module (gps lock or not)
#to roughly set NTP, to ensure it is close enough that NTP can do self correction 

# Matt Patrick
# US Geological Survey - Hawaiian Volcano Observatory
# Mar 20, 2014

import os
import time
import datetime as dt
from gpspuller3 import gpspull
from pytz import timezone

def setapproxtime():
    [gpsfix,lat,lon,gpstime]=gpspull()

    t=gpstime.astimezone(timezone(‘HST’))

    gpstime=t
    year=str(gpstime.year)
    month=str(gpstime.month)
    day=str(gpstime.day)
    hour=str(gpstime.hour)
    mint=str(gpstime.minute)
    sec=str(gpstime.second)

    s1=year+’-’+month+’-’+day
    s1b=’sudo date --set=”’+s1
    s2=hour+’:’+mint+’:’+sec

    s3=s1b+’ ‘+s2+’”’

    os.system(s3)
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Appendix 7. Acquire Video (Script 7: getvideocmd.py) 

In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script 7 acquires h264 format video for a set duration, which is set in the command line
#Script uses the Raspivi function, currently set at frame rate of 10 fps. Script then
#writes a metadata file with time and position and archives video and metadata file in
#date based folder structure. Script can be scheduled in cron to run at intervals.
  
# Matt Patrick
# US Geological Survey - Hawaiian Volcano Observatory
# Mar 20, 2014

import os
import time as ti
from gpspuller3 import gpspull
import datetime
import subprocess
import shlex
import argparse
import shutil

#manages input from command line, where you input duration of video
parser=argparse.ArgumentParser(description=’this takes video’)
parser.add_argument(‘-i’,’--input’,help=’Input time in sec’,required=True)
arg=parser.parse_args()

print arg
d=arg.input
print d
print type(d)
d=int(d)
x=d*1000

os.chdir(‘/media/usb/webcam/’)
#use raspivid to acquire video at 10 fps
try:
    os.system(‘sudo /etc/init.d/cron stop’)
    ds=str(x)
    tt0=ti.localtime(ti.time())
    t50=ti.strftime(‘%Y%m%d%H%M%S’,tt0)
    print(t50)
    a=’raspivid -o video.h264 -hf -vf -b 120000000 -fps 10 -t ‘+ds
    os.system(a)
except:
    print(‘oops’)
os.system(‘sudo /etc/init.d/cron start’)

t3=os.path.getmtime(‘video.h264’)
tt=ti.localtime(t3)
t5=ti.strftime(‘%Y%m%d%H%M%S’,tt)
imagename=t5+’.h264’
d0=’/media/usb/webcam/’+imagename
os.rename(‘video.h264’,imagename)

#Archive current image in date-time folder structure
year=ti.strftime(‘%Y’,tt)
month=ti.strftime(‘%m’,tt)
day=ti.strftime(‘%d’,tt)
hour=ti.strftime(‘%H’,tt)

d1=’/media/usb/webcam/’+year+’/’+month+’/’+day+’/’+hour+’/’+imagename

d2=os.path.dirname(d1)
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if not os.path.exists(d2):
    os.makedirs(d2)

shutil.move(d0,d1)

#write metadata text file
f=open(‘metadata.txt’,’w’)

[gpsfix,lat,lon,gpstime]=gpspull()
latstring=’Lat: ‘+str(lat)
lonstring=’Lon: ‘+str(lon)

#stamp on network connection (for time sync info)
command_line=”ping -c 1 www.google.com”
args=shlex.split(command_line)
try:
    subprocess.check_call(args,stdout=subprocess. 
    PIPE,stderr=subprocess.PIPE)  
    s=”Internet time-sync: yes”
except subprocess.CalledProcessError:
    s=”Internet time-sync: no”

currenttime=’Start time of acquisition (HST): ‘+t50 

xx=’Raspberry Pi camera module’
f.write(xx+’\n’)
f.write(currenttime+’\n’)
f.write(latstring+’\n’)
f.write(lonstring+’\n’)
f.write(s+’\n’)
f.write(gpsfix)
 
f.close()
os.chdir(‘/media/usb/webcam/’)
metaname=t5+’.txt’
dx=’/media/usb/webcam/’+metaname
os.rename(‘metadata.txt’,metaname)

#Archive metadata in date-time folder structure
year=ti.strftime(‘%Y’,tt)
month=ti.strftime(‘%m’,tt)
day=ti.strftime(‘%d’,tt)
hour=ti.strftime(‘%H’,tt)

d1=’/media/usb/webcam/’+year+’/’+month+’/’+day+’/’+
hour+’/’+metaname

d2=os.path.dirname(d1) 

if not os.path.exists(d2):
    os.makedirs(d2)

shutil.move(dx,d1)
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Appendix 8. Maintain Free Space on Flash Drive (Script 8: freespace.py)
In the Python code below, green text is a comment, bold blue text is control flow, magenta text is a string:

#Script 8: freespace.py
#function checks space on flash drive and deletes directories as necessary
#to maintain sufficient free space to keep acquiring images
 
# Matt Patrick
# US Geological Survey- Hawaiian Volcano Observatory
# Mar 20, 2014

import os
import shutil

path=’/media/usb/webcam’
st=os.statvfs(path)
free=(st.f_bavail*st.f_frsize)
free=free/(1e9)

thresh=6 #Gb to be left on disk 

#keep deleting date folders until sufficient space cleared
while free<thresh:
    os.chdir(path)

    #remove a folder to make room
    s=os.listdir(path)
    year=min(s)

    if os.listdir(year)==[]:
        #delete directory
        shutil.rmtree(year)
    else:
        os.chdir(year)
        s=os.listdir(‘./’)
        month=min(s)

        if os.listdir(month)==[]:
            #delete directory
            shutil.rmtree(month)
        else:
            os.chdir(month)
            s=os.listdir(‘./’)
            day=min(s)
            shutil.rmtree(day)

            #recalculate space
            st=os.statvfs(path)
            free=(st.f_bavail*st.f_frsize)
            free=free/(1e9)
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