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The modeling concepts and terminology described in the this section have been more
thoroughly described by Cooley (2004) and Christensen and Cooley (2003).

A ground-water flow system can be characterised by hydrogeologic variables (termed
system characteristics) such as hydraulic head, hydraulic conductivity, recharge, discharge,
hydraulic heads and fluxes along internal and external boundaries, and point sources and sinks.
In a model these system characteristics can be conceptualized as being discretely variable (in
space and/or time) because discrete variation can be at as small a scale as desired (depending
only on model discretization), allowing it to be virtually the same as continuous variation. All of
these system characteristics can be assembled into an m-vector f. Because f includes all scales
of variation necessary to construct an accurate model, any model function of £ is almost free of
model error, assuming that the model accurately represents the physical processes.

Seen from a practical modeling perspective, vector ff represents small-scale variability
that cannot be explicitly represented in a model and larger scale variability (the drift) that can. In
addition, vector £ is unknown. Because f has much too large a dimension to be estimated from a
small number of uncertain observations, the vector of model parameters to be estimated is
reduced from one of large dimension, f#, to one of much smaller dimension, .. The p-vector
0. represents the spatial and temporal average of # and has the same form as the drift @ ; it does
not represent the small-scale variation. A model function f{(f#), which contains large- and small-
scale variation from f, is represented in terms of f,as f (yﬂ*), where y is an m x p interpolation
or averaging matrix.

In ground-water modeling we are interested in estimating 6. rather than @ because 6.
characterizes the actual realization . An estimate of 6., 0, can be found by minimizing

S(0) =¥ - £(0)) (Y — £(0)). (1)

where Y is an n-vector of observations (m>>n>p), f (y0) is the corresponding n-vector of values
simulated using general vector p@ instead of f, w is an n xn weight matrix, and the prime
indicates transpose.

Predictions can be made with the ground-water model. In practice, variables of interest
g(p) are predicted by g(yé).

Different types of observations, Y, can be used in the Parameter Estimation Process.
Cooley (2004) does not distinguish among the several possible types of observations such as
hydraulic heads, measured streamflow gains and losses, measured spring and well discharges,
and measured direct (often called “prior”’) information on model parameters. It is convenient to
divide the types of information into two groups: (1) measured direct observations of parameters
or linear combinations of them and (2) observations corresponding to model functions of the
parameters such as hydraulic heads and fluxes. The various matrices and vectors pertaining to
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observations have a subscript d for the partition of direct information and a subscript m for the
partition for model-function information. Corresponding to this notation, the number of direct
observations is designated n, and the number of model-function observations is designated n,, for
a total of n +n =n observations. The matrices and vectors are used in the partitioned form in an
equation only when the form of the result for each partition is different. The difference is caused
by the forms of the observation second-moment matrix, 2c. = E(Y — f(90,))(Y — f(y60.))' , and
the weight matrix, @, used as an approximation for 2" in the weighted regression analysis. As
in standard regression analysis, o~ is a generally unknown scalar multiplier that is estimated by
the regression. We assume that the partition of the observation second-moment matrix for the
model functions depends on an unknown model error and often may not be known, but that the
partition for the direct information would be well estimated using the same techniques used to
acquire the direct information. We also assume that the two partitions are not correlated. (This is
a standard assumption dating back to Theil (1963). Should it prove to be inaccurate in any
application, the correction factors computed by CORFAC-2k will be somewhat in error. If
n<<n_, the errors should be small.) Thus, the forms for 2 and @ are

Q0 0
Q=" , (2)
0 Q,
where 0 is a matrix of zeros, and
0
0= %1 (3)
0 Q,

The partitioning also can be used for the nxn matrix R defined as

R=0'""Df(DfoDf)' Df'0'"” = LI;“ I;ﬂ ()

in which Df is the nxp sensitivity matrix of derivatives of f with respect to @,

theoretically evaluated at the drift set of parameters 8 = E(6.), and
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R, =w”2Df (DfwDf) Df,,"
®,” D, (Df wDf)" Df; 5/2 ©)
dm—wd”sz(Df Df) ' Dfye,” |
R, = ;" Df,(Df oDf) DY, 3/2

where f, and f, are model-function and direct-information partitions of f, and D(...) is the
derivative operator applied as in equation 5 to yield the n xp and the n xp matrices Df and Df,.
Similar partitioning is used for the n-vector Q, defined as

o! Df, (Df wDf)’ Dg} _ {Qm} )

0=0'""Df(Df wDf)" Dg :[w;/ZDfd(be)Df)‘ng' 0.]

where Dg' = [ag / 891.] 1s the column p-vector of sensitivities of the prediction g(y@).

The UNC Process described in ‘The UNC Process’ section can be used to compute
confidence or prediction intervals for parameters (0) of the Parameter-Estimation Process, and
for most types of predictions ( g(yf.) or g(f)+& where ¢ is a random observation error) that can
be computed by a MODFLOW-2000 model calibrated by the Parameter-Estimation Process. The
programs RESAN2-2k, BEALE2-2k, and CORFAC-2k that also are described in this report are
valuable in the evaluation of results from the Parameter-Estimation Process and in the
preparation of input values for UNC.

The UNC Process

The purpose of UNC is to compute confidence and prediction intervals for variables of
the form g(yﬁ*). Both the model functions f (yﬁ*) and predictions g(yﬁ*) can be nonlinear, and
the intervals can be individual, Scheffé type, or, with correction factors not given in this report,
other simultaneous types (Hill, 1994, p. 26-33). Calculation procedures are the same for all types
of confidence intervals and for all types of prediction intervals; only the critical values described
after equation 8 are different. Extensive information on the theory, calculation procedures, and
use of confidence and prediction intervals can be found in Graybill (1976, chapters 6-10), Seber
and Wild (1989, chapter 5), Hill (1994, p. 26-37), Cooley and Vecchia (1987), Vecchia and
Cooley (1987), Cooley (1997), Christensen and Cooley (1999a, b), Cooley and Naff (1990,
chapter 5), and Cooley (2004). Cooley (2004) summarizes much of the information found in the
other references.

Confidence Intervals

A confidence interval for g(y&) is defined by two confidence limits, the maximum and
minimum values of g(yﬂ) over a likelihood region. The definition of the region depends on the
type of confidence interval being computed. For example, for a Scheffé interval the likelihood
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region is the standard confidence region given in terms of S (é), and for an individual confidence
interval the likelihood region is of the same form but has a smaller diameter (Cooley, 2004,
p. 53). If we assume that the maximum and minimum values of g(yﬂ) occur on the boundary of
the likelihood region as they do for linear problems, then these extreme values can be found
using the method of Lagrange multipliers (Vecchia and Cooley, 1987). Cooley (1999, p. 118)
states that this assumption is almost non-restrictive; the assumption has never been violated in
any of the calculations made by the authors of this report. Therefore, confidence and prediction
intervals computed by the UNC Process are based on the method of Lagrange multipliers.

A (1 — a)x 100 percent confidence interval is computed by finding extreme values (the
confidence limits) of the Lagrange function

1(0.3)=g(r0)+ (a2 - 50)+ 50). ®)

where A" is the Lagrange multiplier and d_ is the critical value that depends on the type of
confidence interval being computed. For an individual confidence interval

dl=c,t?, S(é)/(n —p) and for a Scheffé interval d’ = c,Fa(p,n - p)S(é)/(n - p). Here ¢, and
c, are correction factors defined in ‘The RESAN2-2k Program’ section, 7, is the (l —a/ 2)>< 100
percentile of the cumulative ¢ distribution, £, (p,n — p) is the upper o point of the F distribution
with p and n —p degrees of freedom, p is the number of model parameters, and # is the total
number of observations used to estimate 8. Theoretically, the equations to compute extreme
values are obtained simply by taking the derivatives of L(0, 7») with respect to @ and A", then
setting the results to zero. However, this yields a set of nonlinear equations to be solved
whenever g(yﬂ) or f (yﬂ) (or both) are nonlinear. Another method was developed by Vecchia
and Cooley (1987) and involves linearizing the nonlinear functions g(y0) and (or) f (yﬂ) first,
then taking the derivatives of L(0, 7») and setting the results to zero. The resulting linear system
of equations then can be written to yield an iterative solution to the nonlinear problem. The
iterative solution is derived in appendix A; the solution @, ,, at iteration r+1 is given in terms of
quantities computed at iteration r as

. ' 1/2
[ d2-50)+50)+ (v~ £46,) 0 R (¥ - £(8,)
r+l - Q;Qr

€))

and
0. =0+, (Df'oDf )" Dg +(Df'wDf, )" Df'o(Y - £(20,)), (10)

where subscript r indicates evaluation using parameter set 6, and 6, is the initial, user supplied,
set. Use of the positive sign in equation 9 yields the maximum and use of the negative sign yields
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the minimum. At convergence of the process 8 =0 _,, ~ 0 , the set of parameters defining either
limit g(ya )

To control round-off errors resulting from large variations in magnitude of the elements
of Df/oDf. and to put equation 10 into a form for the Marquardt-like solution scheme
developed by Vecchia and Cooley (1987), Df,, Dg,., 0, ,and 0, ,, need to be scaled. Let A, be a
diagonal matrix composed of the square roots of the inverses of the diagonal elements of
Df'wDf, . Then let

S =Df A, (11)

Z, =ADg, (12)
and

d, =A4"0,,-0,). (13)

With the above scaled matrix and vectors, equation 10 transforms to

d, =\

r+

(S/0S,)" Z, +(S]wS,)" Sl — £(26,)). (14)

r+l1
Note that Q@ and R, in equation 9 are invariant under the scaling used for equations 11 and 12, so
can be written in terms of S, and Z .

Vecchia and Cooley (1987) found that a Marquardt-like modification (Seber and Wild,
1989, p. 624) of equation 14 often was effective for solving ill-conditioned problems. We have

used numerous tests to confirm this finding. The modification is simply to add p,, I to S/ @S, in
equation 14 to obtain
dr+1 = 7\‘r+1 (Sr,'wsr + “’r+11)71 Zr + (S;CUS’ + “’r+11)71 S;C()(Y - f(yar )) ’ (15)

where i, is a parameter obtained using the algorithm given by Cooley and Naff (1990, p. 71-
72).

Another modification involves damping of the parameter displacement vector d_,. This
often is necessary to achieve convergence because d,_, is frequently too large (Cooley and
Vecchia, 1987). Thus, parameter set 8 ,, is computed using a damped form of equation 13:

0l‘+1 = pr+1Ardr+l + 0r . (16)
Damping parameter p,, is computed using the algorithm given by Cooley (1993c, p. 2-3) except

that ¢, used by that algorithm is defined in the present report as the value of 8_’;.“ / 0, for which
t &' /st , where 6;.” is an element of A d ., 0 isanelementof @ ,and 6, isa

r+l ol 2 Vg

=man

10
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user-supplied scaling vector. The scaling vector adjusts for differing sizes of elements of @, so
should reflect the user’s best knowledge of 6., except that no element of @ can be zero.

We consider the iteration scheme to have converged if either |r,.,| or
|S M )| / S |S (0,4 ) ) (6’r_1 )| / S (0,._1) is small enough. The convergence criteria for
t, | and |S M (6” / S (0,)+ |S (0,,)— S (6?,71 X / S (HH) are user supplied. Another test that
overrides the above two also is used, if specified by the user. Sometimes g(yﬂm) can stabilize
even though one or more elements of # have not converged. To address this case the user can
specify that the process has converged whenever |2 X (g(yl%1 ) — g(yﬂr ))/ (g(y0,,+, )+ g(yﬂr ))| is
smaller than another user-supplied criterion. This criterion is not used when

(g(0,.,)+g(0,)) <107,

Weighted Residuals

Cooley (2004, p. 56-57) showed that weighted residuals from a regression constrained so
that g(yéN’ )z g(yﬂ*) (where @ is the constrained regression estimate) can be defined as
(I-00'/0'0)w" (Y - f (ya )) and are equal to weighted residuals "> (Y -f (yé)) from the
unconstrained regression if model intrinsic nonlinearity and model combined intrinsic
nonlinearity as defined by Cooley (2004, p. 35-36) both are small. Parameter set 6 can be the
set computed for either confidence limit because minimization of § (0), subject to the constraint

yﬁ , 1s the same as finding an extreme value of g(yﬁ) subject to the constraint

Sf g ,if g yﬂ ) assumed for the constrained regression is the confidence limit for
g yﬂ computed using d’ . Thus, the constrained weighted residuals for both confidence limits
for g(yﬂ*) are computed and printed if spec;lfled by the user. Vector Q is computed using the
initial set of parameters 6, because if 6 were used, the term in (I 00'/0' )a)l/ Y- f (yﬂ ))
expressing model combined intrinsic nonlinearity, that is (R -00'/ Q’Q)w 2y - flyo )), always
would be zero, as shown in appendix B.

Prediction Intervals

As for a confidence interval, a prediction interval for a predicted observation of g(R), Y,
is defined by two limits, the maximum and minimum values of g(y0)+ v over a likelihood
region, where v is the predicted error (Cooley, 2004, p. 59-60). The form of the likelihood region
is developed in Cooley (2004, p. 61) and the prediction limits are assumed to lie on the edge of
the likelihood region so that the method of Lagrange multipliers can again be used to find the
extreme values. To obtain the Lagrange function we assume that the weight matrix incorporating
the prediction, w, of Cooley (2004, p. 63), is block diagonal of the form

_w0 17
%=y o (17)

11
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as described by Cooley (2004, p. 63). In equation 17, o, is the weight for the prediction that is
analogous to diagonal elements of @ . The form given by equation 17 not only simplifies
calculations, but also does not require the user to estimate second moments between observations
and the prediction, which often would be unknown. However, if such second moments actually
exist so that the second-moment matrix that includes the prediction is of the form (Cooley, 2004,
equation 5-87)

Q C
o= " (18)
“ 0 bo,
then a correction factor ¢, described in “The RESAN2 2k Program section, must be used. In
equation 18, C = E(Y f(yﬂ ))(Y -g y0 ) c., —E(Y -g y0 )2/05’

b= tr( "2Qw'"? )/ n , where (.. ) signifies matrix trace.
On the basis of the assumed structure of @, , Cooley (2004, p. 65) stated the Lagrange
function as

L(0,v,0)=g(y0)+v +%(d§ ~5(0)- o, +5(9)). (19)

where critical value d_ is equal to ¢ ta/z( p)S(é)/ (n— p) for an individual prediction interval.
As explalned by Cooley (2004, p. 65), sometimes the second moment of ¥, g(y0 )
E (Y -g yH )2 can be estimated more easily than @, for use in equation 19 In this case, the
term E\Y, g(y0 )) s” can replace the general welght ®,in equation 19.

Iterative solution of the extreme value problem based on equation 19 is derived in
appendix A using the same method as used for equation 8. The solution is given as

112

y o di=5(0)+ S0} (- sG0) 0 RO W -100)|

+1 -1
’ 00, +o,

1)

and equation 10. All of the developments following equation 10 for a confidence interval are
used for a prediction interval.

The RESAN2-2k Program

The purpose of analyzing residuals is to test whether or not the assumptions made for
nonlinear regression and uncertainty analysis seem to be violated (Cooley and Naff, 1990, p.
167). RESAN2-2k focuses on detection of model and system types of intrinsic nonlinearity as
defined by Cooley (2004, p. 35-36), as well as the traditional graphical examination of residuals

12
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plots for lack of model fit and testing of residuals for indications of non-normality. More on the
purposes, theory, and methods of residuals analysis is given in Draper and Smith (1998, chapters
2,7, and 8), Cooley and Naff (1990, chapter 5), Hill (1992, p. 56-66, 88-89), Hill (1994), Cooley
(2004), and references cited in these works.

A Test for Model Intrinsic Nonlinearity

Model intrinsic nonlinearity causes confidence regions, confidence intervals, and
prediction intervals to be too small unless they are corrected with a correction factor. Cooley
(2004, section 5) showed that (1) the size of a confidence region is proportional to
¢ F, (p, n-— p), where ¢, is the correction factor; (2) the size of a Scheffé interval is proportional
to (cyFa (p, n— p))l/ ?: (3) the size of an individual confidence interval is proportional to
(ccté/2 (n - p) ’ , where c, is the correction factor; and (4) the size of an individual prediction
interval is proportional to (cpz‘jt/2 (n - p))vz, where c, is the correction factor. The correction
factors are defined by

Gi + (ercé + YII'Gz) p

c = - - , (22)
o; + (7,00 +7,01)/(n—p)
c = Gi + YW’CGé + YICG: (23)
o +iuop+9,00) (- p)
and, for the form of prediction interval computed by UNC,
2 2 4
G.+Yv,,0; +7.,0
c = € YWa B YIa € . (24)

p

oo +{fuop+1,00)(n-p)

Variables contained in equations 22-24 are defined as follows: Gé is a scalar multiplier for the
variance of the vector of system characteristics, f , defined by Var(/)’) = Vﬁcé ; G- is a scalar
multiplier for the variance of the observation-error vector, &, of order n, defined by
Var(¢)=V,c?; and 7405715 40>Y 105>V 1:00 Y05V 1:0s» ¥,aOp» and v, G+ are component
correction factors defined by Cooley (2004, section 5). (The subscripts r and ¢ were added in the
present report.)

The factors examined by RESAN2-2k, ,c! and y,.6!, measure the importance of model
intrinsic nonlinearity. Cooley (2004, p. 50) showed that v, 6! = —},c:. Thus, only 7,c; needs
to be computed, and this factor is expressed by Cooley (2004, equation 6-3) as

13
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7,0t =26(r (0. ) £,00.)- £10)+ £, () 0" (1 - R0 (¥ - £(;0.)
+E(£(0.)- £,00.)- £lp)+ £,(0)) 0 (1 - R -
(F00.)- £,00.)- £lpd)+ £,06)+ EW - £(6)) 02 R (v - £(;6)

=25(5, (0.)- £, 00.)~ £, 66)+ £, (6)) w02 25)
((Im -R, ,1;{2 (Ym [ (70* ))_ Rmdwir/2 (Yd - [ (7’0* )))

(1, 00.)~ £0,00.)— £, 60)+ £, (0) 022 (1, ~ R, o)
(£, 60.)= £, 0.)- £, (08)+ £, 60)+ E(¥ - £(6)) 0> Reo™ (¥ - £(p6))

where fo(yﬂ*) is the linear-model approximation of f (yﬂ*) defined in Cooley (2004, equation
5-104 and text preceding equation 6-2), f; yé is the linear-model approximation of f yé)
defined in Cooley (2004, equation 5-104 and text preceding equation 6-2), and [ is the identity
matrix.

The last term of equation 25 is the expected value of the product of row vector
(Y - f(y0))'»"* R and its transpose. If Df in R is evaluated using @, then Rw''* (Y — f(y0)) is
always 0 (Cooley, 2004, p. 39). Also, if model intrinsic nonlinearity is absent, then R is constant
(that is, the same for any set @) (Cooley, 2004, p. 39). Thus, a test for the importance of intrinsic
nonlinearity in the denominators of the correction factors is to compare the estimate of the last
term of equation 25, (¥ — £(70))' @' Rw""* (Y — f(y0)), where R is not computed using 8, with
another appropriate term in equations 22-24. This term is obtained from equation 5-16 of Cooley
(2004, p. 48), which shows that model intrinsic nonlinearity is negligible in the denominator of

the correction factors if ‘}7 e
1

<<(n-p)ol +9,0; =b(n—ap)o>, where a and b are factors that
equal 1 if b~ = £, the inverse of the correct weight matrix for the Gauss-Markov method of
weighted regression to find @ (Cooley, 2004, section 4). Specifically,

a=tr(R(w/b)e/b)?) p =R, (0, /b)* 2,(0, /) )+ o(R,)b)p  (26)
and

b= tr(w]/Zle/z) n= (tr(a),],fz!) w1/2)+ n, )/n . (27)

m m

Because bc’ is estimated by s* defined by (Cooley, 2004, p. 50) as
st = , (28)
b(n —ap)o? is estimated by S(A), where

14
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S@) =¥ - £0)) ol¥ - £20)). (29)

Thus, the test is that (¥ — £(y0))'@">Rw""* (¥ — £(y6)) should be much smaller than § (é) if R
is computed using some reasonable set of parameters € not equal to 6. A set of direct
observations or initial estimates for @, should work. If desired, vector Rw"? (Y -f (yé)) can be
examined to determine where in observation space the model intrinsic nonlinearity is large.

Because v,6! =—},6!, the test also can be used to assess the importance of model
intrinsic nonlinearity in the numerator of c¢,, except that the test criterion should be changed.
From Cooley (2004, p. 48) model intrinsic nonlinearity is negligible in the numerator of ¢, when
¥,04| << PG, +7,0, = bapo, . The term bapo, is estimated by aps® = ap$ (é)/ (n—ap), so the
test is that (¥ — f(y0))'®">Rw" (¥ — f(y8)) should be much smaller than apS(0)/(n —ap).
When a is unknown, the more conservative criterion pS (é)/ (n — p) should be used.

A Test for Model and System Types of Intrinsic Nonlinearity

Cooley (2004, p. 38-39) showed that both the mean weighted residual

S!?(Y - f(0))/n (where »!” is row i of ®"*) and the slope of the plot of weighted residuals
clu}/ ‘Y- f (yé)) in relation to weighted model functions a)[l/ °f (yé) should be small if the model
f (yé) is adequate and both model and system types of intrinsic nonlinearity are small. Formal ¢
tests could be used to determine the significance of these measures, but graphical examination as
performed by Cooley (2004, section 7) on test problems and comparisons with synthetic residual
sets as described next should be adequate to detect significant model and system types of
intrinsic nonlinearity as well as significant model inadequacy as described in the references cited
at the beginning of this section.

A Test for Normality of the Weighted Residuals

Examination of the probability plot of weighted residuals wl.l/ 2 (Y - f (yé)) will sometimes
reveal obvious departures from normality. However, as discussed by Cooley and Naff (1990, p.
168-170), departures from a standard normal distribution are expected for weighted residuals
because they always are correlated and heteroscedastic. Under ideal conditions of no model or
system intrinsic nonlinearity and zero-mean normal distributions of g and &, Cooley (2004, p.
38) showed that the weighted residuals have the normal distribution

" (v = £(y))~ N(0.(1 - R)w/b)” (/b)) (I - R)bs?). (30)
If Gauss-Markov estimation is used so that bw ™' =, then equation 30 becomes

" (¥ - £(y6))~ N(0.(1 - RYpo?), (31)

15
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which is of the form of the distribution of standard linear-regression weighted residuals.

The weighted residual distribution can be graphically compared with synthetic weighted
residual distributions generated according to equation 30 (or 31) as described by Cooley and
Naff (1990, p. 168-171) to determine whether or not the weighted residuals appear to have the
specified normal distribution. However, a more precise test also can be used. To make the test,
first synthetic weighted residuals are generated from equation 30 or 31 (with the estimate
s” replacing bo? ) as follows.

1. Standard normal deviates are generated from u ~ N (0,IS2 ) Vector u, is initialized as
U, =u.

2. If specified in the input, u is modified to be the synthetic, weighted, true error vector
u, = Lu, where L is the lower triangular Cholesky factor of (w/b)"” 2(w/b)" . (See
Kitanidis (1997, p. 237-238).)

3. Vector u, is modified according to equation 30 (or 31) to give d* = (I — R)u, , the set of
synthetic, weighted residuals for realization k.

4. Steps 1-3 are repeated for a large number of realizations, M.

Note that skipping step 2 yields synthetic weighted residuals distributed according to equation 31
(with the estimate s replacing bo_ ). This step would be skipped if Gauss-Markov estimation
were used or if 2 were unknown, in which case bof would have to be estimated by
S (é)/ (n — p) or a in the estimate s> would have to be approximated using equation 76 in ‘The
CORFAC-2k Program’ section of this report.

Next, the following quantities are computed:

J:Zk:dk/M, (32)

the mean n-vector over all M realizations,

s {Zdﬁdﬁ} : (33)
k

the vector of sum of squared values of d over all realizations, and

v=Jl — @ o —1) | (34)

the sample standard deviation n-vector.

A normal probability plot of vectors d +2v gives a band within which the weighted
residuals usually might be expected to lie (Cooley, 2004, section 7). Even though 071 +2v,
defines an approximate 95 percent individual confidence interval, interpretation of the plot is

16
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limited because each interval is an individual one so that all intervals in the band cannot be
interpreted simultaneously. A better test for normality is obtained as follows as a generalization
of a test given by Shapiro and Francia (1972) and used by Hill (1992, p. 63). First, the grand
mean is computed:

d=Yd/n, (35)

Next the square of the correlation between synthetic weighted residuals for each realization k and
the means over all realizations is obtained:

(-3 -2)

k= : ., (36)
w(a-xan) xla-af

i

Then, all values of ¢* are ordered from smallest to largest.
By definition, the probability that ¢" has some specified value c, or a smaller value is

P=S1lc, <)M, 37)

where [ (Cs <ct )is the indicator function / = 0 when ¢, > ¢* and I =1when ¢, < c¢*. Therefore, a
95 percentile is given by ¢, = c*, where k, = int(0.95M )and int(---) indicates truncation to the
nearest integer. Similar 90 and 99 percentiles also can be computed. These percentiles should be
compared to ¢, the square of the correlation between weighted residuals e, = w;/ ? (Y - f (yé)) and

d>

the means d,, which is

i

s[4z shi-af

o-gep-7)

(38)

¢, =
The comparison will tell if the weighted residuals are significantly different from the specified
normal distribution at some predetermined level of significance equal to 100 minus the selected

percentile. Also, by letting ¢, = ¢, , the probability P of ¢, or a smaller value can be obtained,
which is a more direct test.

17
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The BEALEZ2-2k Program

The purpose of BEALE2-2k is to compute measures of total model nonlinearity, model
intrinsic nonlinearity, and model combined intrinsic nonlinearity in the vicinity of 6. These
measures relate to component correction factors §,0;,7,06+, v,0.,and vy, c; that compose
correction factors ¢, ¢, and c,.

A Measure of Average Total Model Nonlinearity

Total model nonlinearity is the sum of model intrinsic nonlinearity and parameter effects
nonlinearity, the latter of which is nonlinearity that can be eliminated by some generally
unknown transformation of parameters (0(6’) (Draper and Smith, 1998, p. 528-529). In effect,
intrinsic nonlinearity is the smallest possible total model nonlinearity for any transformation of
parameters. The measure of total nonlinearity was developed to determine when linear theory
can be used to compute confidence regions (Beale, 1960; Guttman and Meeter, 1965; Cooley and
Naff, 1990, p. 187-188).

Cooley and Naff (1990, p. 187-188) defined a measure of average total nonlinearity as a
combination of measures developed by Beale (1960) and Linssen (1975). For reasons discussed
by Cooley (2004, p. 85) the measure used in this report was altered slightly from the one defined
by Cooley and Naff (1990). It is defined as the average weighted sum of squared discrepancies
between nonlinear and linear model values on the edge of the linear probability region having
diameter apbo’ and centered on the drift set of parameters @ . Therefore, the measure of
average total model nonlinearity is calculated using estimates as (Cooley, 2004, p. 87)

§=—L_3(£(0,)- £,48,)) o(£(6,)- £,08,)/2p)

aps” i

=3 (£, 60.) £, 00)) 0, (£, 60,)- £,,0,)/(2p)

aps - =1

8]
AS1

(39)

where fo( . ) and f;,, ( . ) indicate linear model values, and the sets 8,,/=1,2,---,2p, are
calculated as given by Cooley and Naff (1990, p. 189):

0,=6+21(DfwDf)'I . (40)

in which
, 12
=t P 41)
I(DfwDf)' 1
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and [ is the row p-vector

I1=[00--1--0], (42)

with the 1 being in column /. Sensitivity matrix Df is evaluated at @ . Note that the diameter of
the linear confidence region aps” can be written in terms of ¢, as evaluated in CORFAC-2k
(which assumes no model intrinsic nonlinearity) as

z:aPS(é):(”—P)ap ( ) ( ) (43)

n—ap n—ap  n—p n

aps

If @ is unknown so that a cannot be calculated using equation 26, then @ may be estimated using
equation 76 derived in ‘The CORFAC-2k Program’ section.

By analogy with the standard criteria for ranking nonlinearity first given by Beale (1960,
p. 60) and later augmented by Cooley and Naff (1990 p. 189), we consider the model to be
highly nonlinear if N >1 so that the numerator of N is greater than the diameter aps” of the
confidence region; nonlinear if 1> N> 0.09; moderately nonlinear if 0.09 > N >0.01; ; and
essentially linear if N <0.01. Linear theory for computing confidence regions seems to produce
good approximate results when N <0.09 (Cooley and Naff, 1990, p. 189).

A Measure of Average Model Intrinsic Nonlinearity

Average model intrinsic nonlinearity is assessed by the measure N ., modified by
Cooley (2004, p. 85) from forms given earlier by Beale (1960) and Linssen (1975). As for the
measure of total nonlinearity, this measure is defined in terms of the linear probability region
centered on @ and having diameter apbc’ . It is calculated using the same estimates and linear
confidence region as used for N. Therefore, the model intrinsic nonlinearity measure is
calculated as (Cooley, 2004, p. 85)

R = 3(r060,)- £,00,)- i, ) ol £ 66,)- £,00,)- Di, J2p)

aps - =1

3(1,60.)- 1,.60,)-DF,w, Voo, (£, 00,)- £ 00,)-DFw)  (44)

+(Did'/’1 )de D.f‘dl/]l )/(2]7) )

where @, is computed using equations 40-42, and

w, =(DfwDf ) DFw(£(10,)- £,(0,))

S (45)
~ (D7 wDf) ' Df 0, (£, (8,) fo(76,))
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The measure aps2]\7 ... is similar to the second expected value in §,6; given by equation
25. Hence, the measure provides another test of the importance of model intrinsic nonlinearity in

¢, and ¢, in addition to the test using the term (¥ — f(y0))'@"” Ro'"* (¥ — f(y0)) given after
equation 29. By analogy with the former test, aps2]\7 i Should be much smaller than § 6) when
applied as a test of the size of 7,6} and should be much smaller than aps® when applied as a
test of the size of v, .} . Therefore, the test criterion for 7,6 is that N, should be much

n

smaller than (n—ap)/(ap), and the test criterion for y,c" is that N i Should be much smaller

than 1. The ranking used to classify nonhnearlty for N also can be used for N , because N min
is just the smallest possible value for N.

A Measure of Model Combined Intrinsic Nonlinearity for Confidence Intervals

Model combined intrinsic nonlinearity affects ¢, because y,.G: is a component of this
correction factor. Cooley (2004, equation 6-20) expressed the component correction factor vy ..
as

(o000, (0. )~ £ )+ £, 69) QQ,'QJ(I—mg—%ij ¥ - £60.)

+E((f(w9* V- £,60.)- 16 )+ 1, )

~(g00.)-2,0.)- 20 )+ 2,40 QQ,IQJ(I ~R+ QQ']'

(w‘/z (£60.)- £,00.)- £8 )+ £,(0)-—2- (2(0.)- 2, (v0. )~ g[8 )+ go(yﬁ))]

el ) o - 8ol - o) 5,0

00

(46)

where g(ya), with @ = 6, or 8, is a model prediction for which a confidence interval is to be
computed, g, (yﬂ) is the linearized approximation of it analogous to f,(y@), and 6 isthe
weighted regression estimate of @, that is constrained so that g(yﬂ*) = g(;,ﬁ )

Cooley (2004, p. 86-87) developed a measure of model combined intrinsic nonlinearity,
M i » Similar to the second expected value in equation 46. As for N, the measure is defined

in terms of a likelihood region centered on 0 , but this time having diameter ﬁbcﬁ , Where

min °

= 0'(w/b)"Q(w]b)"* 0/Q'0 = (0, (®, /b) 2, (®,/b)0, + 0,0, /b))0'Q.  (47)
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Thus, it is calculated using estimates as

A

W, =3 (r60,)- £,60,)- i, ) olr6o,)- £,(0,)- D, )2

Es” =l

&iz l:((fm — fon 70 ) Dimll/l ),wm (fm (?01)_f0m(y01)_DJ}m'/’1) (48)

+(Dfdl//l) Dfdl//l /2

where 6, is given by Cooley (2004, p. 87) as

NV
0,=0 J_{ S j (DfwDf) ' Dg, (49)

in which the carets over f, g, and Q indicate evaluation using @ = 6,

visvit (wagg D8 (5(40,)- 2,0)) (50)

and

) D0 (o) vz} U0, 1,0)
(51)

~(pfwpf) ' bf! wWJ ,(00,)- fo.,(0,))

Note that the diameter of the linear likelihood region &s* can be written in terms of ¢, as
evaluated in CORFAC-2k (which assumes no model combined intrinsic nonlinearity) as

0(w/b)" 2w/b)*Q S() _(n-po(w)ewp)*0 sb) _ slb) s,

® s 00 n—ap Q'0(n-ap) n-p ‘n-p

If € is unknown so that ¢, cannot be exactly computed, then the approximate bound for ¢, given
by equation 83 derived in the sub-section titled “The CORFAC-2k Program’ can be used. In all
cases, Q is replaced with Q to make the calculations.

Note that v,.c; as defined by equation 46 contains 7,6 . A measure similar to the sum
(v, +7,)o! uses two components in addition to M. . These are (Cooley, 2004, p. 86)
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B, = 5 2 leo0) 2,007 00) )
and
B, = 23160~ £.60,)- it ) ol r0,)- ,(70,)- i 2
= 2600 11060 it 0, (7,60~ £, 60)-27w7) S0

+(Did’//10 ’wdedW?) 2.

The measure of model combined intrinsic nonlinearity related to the sum is given by the
maximum in absolute value of M min T 2§U and M — 2f3L (Cooley, 2004, p. 87).

From Cooley (2004, equation 5-49), model combined intrinsic nonlinearity is negligible
in the correction factor c, if |y, o¥| << o2 +7,.0; = Q'(0/b)" Q(w/b)" Qbs? / Q'Q = Ebc? . Thus,
(y ety 1) : / (cibc ) should be much greater than (&bc +apbc’ )/ (&bc ) (2; + ap)/ &, which has
a value greater than 1, so that, as a conservative test criterion, M +2B and M - 2B

should both be much less than 1. It is likely that the same ranking used to classify nonlinearity
for N also can be used to classify model intrinsic nonlinearity for its measure, although this
ranking might be conservative in the present instance.

Cooley (2004, p. 66) showed that when model intrinsic nonlinearity and model combined
intrinsic nonlinearity both are small, standard linear confidence intervals are accurate
approximations of nonlinear intervals. Thus, because M. measures the magnitude of these two
sources of nonlinearity, M =i can be used to indicate when standard linear confidence intervals

can be used. On the basis of preliminary results given by Cooley (2004, section 7), linear
confidence intervals should be good approximations when M _. <0.01.

A Measure of Model Combined Intrinsic Nonlinearity for Prediction Intervals

The development and measure of model combined intrinsic nonlinearity for prediction
intervals is analogous to the development and measure for confidence intervals. The measure for
prediction intervals was not explicitly derived by Cooley (2004) but follows from the equations
derived for confidence intervals with some added terms obtained from equations 6-50 - 6-55 of
Cooley (2004, p. 84-85). For the prediction intervals calculated by UNC, the diameter of the
likelihood region analogous to &s” is &, s”, where £ is defined using equation 7-12 from Cooley
(2004, p. 113) as

22



Chapter 2. THEORY

Q'(a)/b)l/z Q(a)/b)l/zQ _ 20)21/2( /b)l/Z /b 1/2
o 00+o,
0, (®,/5)"2,(w,/b)"0,+0,0,/b-20,"(,/b)"C,(w,/6) 0, + &,
00+o, '

(55)

We assume in this report that errors ¥, — g(yﬂ*) in predictions are not correlated with errors
Y, — f,(y6.) in direct information so that C, = 0. The three measures analogous to equations
48, 53, and 54 are

Mgnn = ! é((f(?al)_fo(yal)_l)ﬁ/’al )’w(f(?az)_fo(?az)_Di‘/’al)
+\Vp1 )
5 . ' . (56)
g((f me ?’0) Dme/al)wm(fm(?’el)_foln(yal)_Dfm‘//al)
(Dfd'/’ 1) wded'/’az TV,0, \Vpl /2
glszi g 0)f /200 +0,)) (57)
and
f?fzélszé((f( ) £,00,)- D’ ) ol £ (20,)~ £,0,)- D', J+ vy, )2
= s 260 £, 60)- 275 ) 0, (1,60.)- £ 0,)- s ) 68)

+(DidWl) Dfdl/,al+\|]plw ‘l’pz /2

where 6, is obtained from equation H-12 in Cooley (2004, p. 205) as

12
0 ész 7 ARE Y
0 =0+t —22— DfwD Ds', 59
, (Q,QWJ (DfwDf) Dg (59)

and remaining variables are obtained straightforwardly from equations 6-51 - 6-55 in Cooley
(2004, p. 84-85) as
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,, (DfwDf) Dy

= - 0 )— 0,)),
Vu=Waut Q'Q+(D;l (g(? 1) go(? 1)) (60)
v = 2 wDf I DS (pjwpi) D" o (£(6,)- £,6,)
00+, o
- ( (ofnj) D30, (pfwDF ) Df0) Jw:,/«f,,, (40,)- £,,46,),
00+0,
(5010, 0,) 62)
Vo =V QA'QA+0); g\, )—8,\0,)),
o’ .
Yy =t 0'0" (£(0,)- £,(0,))
00+, )
® n
=+ ')’ 01 —Jom 01 g
5610 0,0, (f,(0,)- f,,(6,))

The criteria for assessing the importance of model combined intrinsic nonlinearity in ¢,
are completely analogous to the criteria pertaining to c ; equations 5-93 and 7-12 of Cooley
(2004) replace equation 5-49 of Cooley (2004) in the development. Thus, Me + 21?{} and

‘M B 213’2" should be much less than 1, and the ranking used to classify nonlinearity for N

can again be used to classify model combined nonlinearity for its measures.
The measure M ‘. can be used in the same way as M _. was used for confidence

min

intervals to indicate when standard linear prediction intervals should be accurate approximations

min

of nonlinear ones. Thus, linear prediction intervals should be good approximations of nonlinear
ones when M? <0.01.

min

The CORFAC-2k Program

The purpose of CORFAC-2k is to compute correction factors ¢, ¢, and c,, together with
components of them, assuming that model intrinsic nonlinearity and model combined intrinsic
nonlinearity are negligible. The component correction factors ?wcs;, ywrcg, v,.05 and ywacsé
are equal to zero when weight matrix @ is equal to the inverse of the matrix £2. When & is

unknown, approximations and bounds are developed for the correction factors.

Calculation of the Correction Factors When Q2 Is Known

Component correction factor ?Wcé is defined using equations 5-10 and F-133 of Cooley
(2004) as
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7,6 = (b=~ (ba=1)p)o?, 69
and ’\{WGé is defined using equations 5-12 and F-135 of Cooley (2004) as
2 2
'YV/VGB - (ba - l)pcz ’ (65)
where a and b are given by equations 26 and 27 and a >1 (Cooley, 2004, p. 52). Note that if
b =1, then ?Wcé <0, and if b =1, then }Alwcé =—y wrcé . Correction factor c, is obtained by

combining equations 64 and 65 according to equation 22, assuming 7,6, and y,c: are both
zero, to get

c,=(”_p)“. (66)
n—ap

Note from equations 26 and 27 that if @ is proportional to, but not equal to, 2", then a =1, but
b #1 and component correction factors from equations 64 and 65 are both nonzero. However, b
cancels when obtaining equation 66 so that @ only has to be proportional to 2" for ¢, to be
equal to 1. Also note that at least when model intrinsic nonlinearity is negligible, ¢ >1, so that
uncorrected confidence regions and uncorrected Scheffé intervals would be too small unless
w2 To compute c,, a and thus £ have to be known.

Component correction factor ywccé is defined using equation F-146 of Cooley (2004, p.
187) and equation 47 as

ywccsé = (bt -1)o.. (67)

Variable & given by equation 52 is not necessarily greater than 1, so ywccé is not necessarily
greater than zero. Correction factor c, is obtained by combining equations 64 and 67 according to
equation 23, assuming 7,6 and y,c! are both zero, to get

(n-p) 68)

n—ap

where again @ only has to be proportional to £ for c, to equal 1. Matrix £ has to be known in
order to compute c..

Finally, component correction factor ywacé is defined using equation 5-93 of Cooley
(2004, p. 63) and equation 55 as

¥,a0p = (bE, 1)o7 (69)
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As for equation 67, &, is not necessarily greater than 1, so ywacé is not necessarily greater than
zero. Correction factor ¢, is obtained by combining equations 64 and 69 according to equation
24, assuming 7,6: and vy, 6! are both zero, to get

,/l —

(- p)E, 70)

c, =—"",
P n—ap

which behaves like ¢, does. However, ¢, can differ from 1 even when @ is equal to Q7' because
of the term involving C in equation 55.

Approximate Calculation of the Correction Factors When £ 1s Unknown

When £ isunknown,a, &, and £, must be approximated. To obtain the approximations,
we set @, equal to the diagonal weight matrix @, composed of the inverses of the diagonals of
9 ,welet w, =0, =9, and we set ® , equal to &, . (Usually, @, will only be an
approximation of the inverse of the diagonals of £ . This is discussed briefly later in this
section.) Then we make use of approximations from equations 5-20, 5-56, and 5-117 of Cooley
(2004). To approximate a we use equation 5-20 in equation 5-10 of Cooley (2004), noting that
b=1 and @, = 2, so that equation 5-20 need only be applied to the model function partition.
Therefore,

tr((lm —ka(l—c)Im +cIm))+ tr(Id —kd)z (l—c)tm +cs, +t,=n—ap, (71)

where c is an effective correlation, I, is an n, xn, matrix of 1’s, partitions of R are partitions
of R computed using @, and the traces are evaluated as

t=olr, - &,)1,)=30-7)=n,-3 7. (72)
(81‘/‘ _’;“):”m - '" Ty (73)

td:tr(ld_Rd):'z(l_ﬁ'i):nd_ ZV (74)

In equations 72-74, 7, is an element of R and d; 1s the Kronecker delta (6, =1 when i = jand
o, =0wheni=# j).

Equation 71 can be solved for ¢ by making use of the fact that ¢ +¢, =n— p. The result
1s
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c= (a — l)p , (75)

tm _Sm

which can serve as a definition of ¢. Note thatif 7, > s, ,c>0. The condition ¢, > s, has always
been found to hold. If ¢ is presumed known, then equation 75 can be solved for a to get

a=S(t s, )+1, (76)
P

which has a lower bound of a=1 when ¢=0 and an upper bound of 1+ (¢, —s, )/p when c=1. By
assuming a reasonable upper limit for c, ¢,, an approximate upper limit for a can be computed
using equation 76.

The variable & can be bounded using equation 5-56 from Cooley (2004, p. 56). However,
a more refined approximation can be obtained as follows. From equation 5-56 from Cooley
(2004) and the fact that the approximation need not be applied for the direct information,

e=(0,0/°2,6/°0,+0,0,)/00<V,. +0,0,)/ 00, (77)

where

Vi =max[ZQm,-J (78)
s i(s)

and the notation indicates the maximum of either the squared sum of positive values of the QO ’s
or the squared sum of negative values of the Q ’s (Cooley, 2004, p. 55-56). Also, if 2 is
diagonal so that @)°Q @'> =1 ,then Q' ®)°Q &'°Q, =0’ 0, sothat &=1. Therefore, a

value of ¢, <1 always exists so that

g<(1-¢)0,0, +c,. +0:0,)/00. (79)
It is almost certain that equation 79 with ¢ <1 would produce a closer bound than equation 77.

Finally, &, is bounded using equation 5-117 of Cooley (2004, p. 68) and a development
completely analogous to the one used to obtain equation 79 to obtain

g, <((1-¢)010, +&,' )+ 7. +0,0,)/(00+6), (80)

where V__is evaluated using equation 78 as
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v .=V for ZQW. as a sum of positive values
i(s)

V.+ 263;1/ Yy &, for ZQmi as a sum of negative values

a = Vmx
i(s)

(81)
me

Correction factors ¢, ¢,, and ¢, are approximated by letting ¢ = ¢, and using equations 71,
76,79, and 80 to get

Nn_p Ce(tm_sm)+p

~ b 82
Cr p (l_ce )tm +Cesm +td ( )
(P (1-¢)0.0, +c.V,, +0i0, )
Q,Q (l_ce )tm +ceSm +td
and
Conep ()00, +8; v, + 9,0, "
00+, I=c, )b, +e.s, +1, '

Note that if ¢,=0 is correct, then ¢ =1, c =1, and c=1, which also are correct. If ¢ =1, then ¢, c,,
and C, attain their maximum values, which could be very large because the denominators could
be very small. For the correction factors examined thus far in tests by the authors of this report,
¢,=0.8 has yielded bounds for all values of ¢, and c,. This value of c, also has yielded bounds for
most values of ¢, and has yielded good approximations of ¢, for the remainder.

For field problems @, will only be an approximation of the matrix of inverses of the
diagonal elements of £ . The results of example 2 of Cooley (2004, section 7) suggest that a
reasonable estimate of @, yields very little error in the correction factors. Further work by the
senior author suggests that use of the approximation for @, obtained for the Tude aa case
studied by Christensen and Cooley (1999b) also yields very little error. It appears that careful

hydrogeologic work can yield a satisfactory estimate for @, .

Approximate Calculation of the Correction Factors When £ 1Is Partly Known

In order to make the approximations in equations 71, 76, 79, and 80, we assumed the

matrix @,°Q @' to be similar to a correlation matrix so that all elements have magnitudes <1

(Cooley, 2004, p. 48-49). This implies that @, is diagonal with elements equal to the inverses of
the diagonal elements of 2 . Matrix £, has the form V,_, +V, , where V,,, is the diagonal block
in ¥, for model functions and ¥, = E(f, (B) - £, (20) (£, (B)— £, (¥0.)) / c., which is the

model-error second-moment matrix for model functions divided by . (Cooley, 2004, p. 18-19).

Observations such as streamflow gains and losses may have measurement errors that have
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known correlation so that ¥, is not diagonal. In this case, assuming @, to be diagonal would

result in a loss of information. If ¥, is known, then to preserve this information @, should be
written in the form

@,=W,,+D,)", (85)

which gives .2 @) the form C, =V, +D,)"*V,, +V,)¥,, +D,)"?, where D, is
the diagonal matrix of diagonal elements of V . Unless V,  is diagonal, C, does not have a
correlation-like form. However, as V,, approaches 0, C, approaches the matrix D."*V, D ''*,
which is similar to a correlation matrix; as V, approaches 0, C, approaches I, the identity matrix;
and if ¥V, is diagonal, C, has the standard form. Thus, C, has the form assumed for the
approximations in the limits. We assume that elements of C, have magnitudes <1 (at least in
final effect) for all matrices V,, , so that equations 82, 83, and 84 can be used to compute
correction factors when @), is defined by equation 85. (This assumption held in tests made
during development of the computer code for this report.) Note, however, that as in the standard

case where @,, is diagonal, D, is approximate because V, is unknown.
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