U.S. Geological Survey Techniques and Methods
Book 6, Section B, Chapter 3
By G.E. Schwarz, A.B. Hoos, R.B. Alexander, and R.A. Smith
Part 1: A theoretical and practical introduction to SPARROW 2
1.2 SPARROW modeling concepts 3
1.2.1.1 Water-quality description 3
1.2.1.2 Contaminant source analysis 4
1.2.1.3 Water-quality simulation 5
1.2.1.4 Hypothesis testing: examining the importance of explanatory factors and processes 5
1.2.3 Time and space scales of the model 9
1.3 SPARROW model infrastructure 18
1.3.1 Monitoring station flux estimation 19
1.3.1.1 Model specification for monitoring station flux estimation 21
1.3.1.2 Monitoring station flux prediction (advanced) 24
1.3.1.3 Mean detrended flux (advanced) 26
1.3.1.4 Tools for flux estimation 28
1.3.1.5 Guidance on station and record selection 30
1.3.1.6 Guidance for specifying monitoring station flux models 31
1.4.1 Model equation and specification of terms 39
1.4.5 Reservoir/lake transport 54
1.4.6 Regional model coefficients and nested model designs 57
1.5.1 A guide to nonlinear estimation 59
1.5.1.1 Brief review of ordinary least squares 59
1.5.1.2 Nonlinear weighted least squares 61
1.5.1.3 The asymptotic covariance matrix 64
1.5.1.4 Estimation of leverage in the nonlinear model (advanced) 64
1.5.2 Asymptotic properties of the estimators (advanced) 66
1.5.2.1 Implications of asymptotic normality (advanced) 68
1.5.2.2 Asymptotic properties within a single basin—three examples (advanced) 69
1.5.3 Coefficient bias and uncertainty—additional issues 74
1.5.3.1 Bootstrap estimate of coefficient bias (advanced) 75
1.5.3.2 Bootstrap estimate of the coefficient covariance matrix (advanced) 76
1.5.3.3 Bootstrap coefficient confidence interval (advanced) 76
1.5.3.4 Discussion of bootstrap methods for coefficient estimation 77
1.5.4 Evaluation of the model parameters 80
1.5.4.1 Statistical evaluations 80
1.5.5 Evaluation of model errors 90
1.6.2 Parametric predictions 101
1.6.3 Bias-corrected predictions based on bootstrapping (advanced) 102
1.6.4 Prediction standard errors based on bootstrapping (advanced) 105
1.6.5 Prediction intervals based on bootstrapping (advanced) 107
Part 2: SPARROW User’s Guide 123
2.3 Obtaining and installing software 123
2.4 Input/output structure 125
2.5 Navigating in SAS for Windows 127
2.5.2 Active windows and menus 128
2.5.3 Opening SAS program files 128
2.6.2 Geographic Information System (GIS) base maps (optional) 134
2.6.3.1 Directory and input data 135
2.6.3.2 Bootstrap iterations and seeds (advanced) 136
2.6.3.3 Model specification 138
2.6.3.4 Process specification 144
2.6.3.5 Advanced process specification 150
2.6.3.6 Additional variable definitions 155
2.8.1.1 Nonlinear optimization results and diagnostics 167
2.8.1.2 Coefficients and diagnostic statistics for the nonlinear weighted least squares model 172
2.8.3.1 Ouput file “comments_all” 187
2.9 Common execution errors and diagnostic tests 193
2.9.1 Errors during data preparation 193
2.9.2 Estimation execution errors 195
2.9.2.1 Estimation execution errors caused by systematic errors in input data 195
2.9.2.2 Estimation execution errors caused by numerical overflow—using the test-calibration mode 197
2.9.2.3 Estimation execution errors related to bootstrap analysis 198
2.9.3 Prediction execution errors 199
2.9.3.1 Test-prediction mode 199
2.9.3.2 Evaluation of summary table of reach predictions 200
A. Determination of the Bootstrap Confidence Interval Quantiles 203
B. Hydrologic Network Development 204
C. SAS/GIS Mapfile Creation 208
D. Descriptions of Output Files 217
D.1 Estimation Output File “summary_betaest” 217
D.2 Estimation Output File “cov_betaest” 221
D.3 Estimation Output File “resids” 222
D.4 Estimation Output File “boot_betaest_all” 226
D.5 Estimation Output File “test_resids” 227
D.6 Prediction Output File “predict” 228
D.7 Prediction Output File “summary_predict” 239
D.8 Prediction Output File “lu_yield_percentiles” 239
D.9 Prediction Output File “test_data” 239
D.10 Prediction Output File “test_predict” 243
D.11 Prediction Output Files with Bootstrap Intermediate Results (“store_[variable_name]”) 247