
Groundwater Resources Program

GWM–VI—Groundwater Management with Parallel
Processing for Multiple MODFLOW Versions

Chapter 48 of
Section A, Groundwater
Book 6, Modeling Techniques

Techniques and Methods 6–A48

U.S. Department of the Interior
U.S. Geological Survey

GWM–VI—Groundwater Management
with Parallel Processing for Multiple
MODFLOW Versions

By Edward R. Banta and David P. Ahlfeld

Chapter 48 of
Section A, Groundwater
Book 6, Modeling Techniques

Groundwater Resources Program

Techniques and Methods 6–A48

U.S. Department of the Interior
U.S. Geological Survey

U.S. Department of the Interior
SALLY JEWELL, Secretary

U.S. Geological Survey
Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2013

For more information on the USGS—the Federal source for science about the Earth, its natural and living
resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications,
visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials
as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:
Banta, E.R., and Ahlfeld, D.P., 2013, GWM–VI—Groundwater management with parallel processing for multiple
MODFLOW versions: U.S. Geological Survey Techniques and Methods, book 6, chap. A48, 33 p.,
http://dx.doi.org/10.3133/tm6a48

ISSN 2328-7055 (online)

http://www.usgs.gov
http://www.usgs.gov/pubprod
http://store.usgs.gov
http://pubs.usgs.gov/tm/6A48/

iii

Preface

This report documents GWM–VI, a computer program that can be used to analyze groundwater-
management problems using alternate versions of the U.S. Geological Survey modular, three-
dimensional groundwater-flow model, MODFLOW, with support for parallel processing. The
performance of the program has been tested in a variety of applications. Future applications,
however, might reveal errors that were not detected in the test simulations. Users are requested
to notify the U.S. Geological Survey, Colorado Water Science Center, of any errors found in this
report or the computer program. Updates might occasionally be made to both the report and to
the computer program. Users can check for updates on the Internet at URL: http://water.usgs.
gov/software/lists/groundwater/.

http://water.usgs.gov/software/lists/groundwater/

iv

Contents

Abstract..1
Introduction...1
Overview of the GWM–VI Suite of Programs..2

Implementation of Version Independence and Parallel Processing...3
GWM Features Not Available in GWM–VI..4

CRITMFC – Alternate Flow Process Termination Tests..4
Head in MNW Wells...4
Output of Managed Flows in Volumetric Budget...4
Multi-Grid Flow Processes..5
Stream Package..5

GWM–VI...5
Description of GWM–VI..5
GWM–VI File Input Instructions..5
CONTROL File Input Instructions...6

Options Input Block..8
Simulation Input Block...8
Model_Command_Lines Input Block..8
Parallel_Control Input Block...8
Parallel_Runners Input Block...9

MMProc...9
Pre- and Postprocessing by MMProc..9
Error Handling and Importance of Maintaining Duplicate Well and MNW2 Input Files.........10

JRunnerM..10
MODFLOW Input and Output Requirements..11

Input Requirements for MODFLOW..11
Output Requirements for MODFLOW...12

Listing File..12
Head Constraints and Head State Variables..12
Streamflow Constraints and Streamflow State Variables...12
Storage State Variables...13
Drain Package State Variables...13

Using GWM–VI..13
Sequence of Program Execution—Serial Processing..14
Making a Serial Optimization Run...14
Setting Up Directories and Files—Parallel Processing..14
Optimum Performance of Parallel Processing...15
Sequence of Program Execution—Parallel Processing...16
Making a Parallel Optimization Run..17
Output from the GWM–VI Suite of Programs..17

Acknowledgments..18
References Cited..18
Appendix 1: Example of Use of GWM–VI with the Dewater Problem..21

v

Running the Dewater Problem in Serial Mode...22
Running the Dewater Problem in Parallel Mode..30

Appendix 2: Programmers’ Guide to GWM–VI..31

Figures
	 1.	 Structure of distribution directory for the GWM–VI suite of programs................................2
	 2.	 Example GWM–VI CONTROL file used for the Dewater sample problem in which

parallel processing is invoked...7
	 3.	 Flow of data used by the GWM–VI suite of programs during serial processing..............15
	 4.	 Flow of data used by the GWM–VI suite of programs during parallel processing...........16
	 1-1.	 Model setup for Dewater example...21
	 2-1.	 Schematic flowchart for GWM–VI...31

Tables
	 1.	 Files used to communicate information among GWM–VI, MMProc, and JRunnerM.....17
	 2.	 Files generated by GWM–VI, MMProc, and JRunnerM for user..18
	 2-1.	 JUPITER API tasks and GWM–VI and JUPITER API subroutines that

perform them..32
	 2-2.	 Subroutines written or adapted for GWM–VI and their purposes......................................33

Abstract
Groundwater Management–Version Independent

(GWM–VI) is a new version of the Groundwater Management
Process of MODFLOW. The Groundwater Management
Process couples groundwater-flow simulation with a capability
to optimize stresses on the simulated aquifer based on an
objective function and constraints imposed on stresses and
aquifer state. GWM–VI extends prior versions of Groundwater
Management in two significant ways—(1) it can be used with
any version of MODFLOW that meets certain requirements
on input and output, and (2) it is structured to allow parallel
processing of the repeated runs of the MODFLOW model that
are required to solve the optimization problem. GWM–VI uses
the same input structure for files that describe the management
problem as that used by prior versions of Groundwater
Management. GWM–VI requires only minor changes to the
input files used by the MODFLOW model. GWM–VI uses
the Joint Universal Parameter IdenTification and Evaluation
of Reliability Application Programming Interface (JUPITER-
API) to implement both version independence and parallel
processing. GWM–VI communicates with the MODFLOW
model by manipulating certain input files and interpreting
results from the MODFLOW listing file and binary output
files. Nearly all capabilities of prior versions of Groundwater
Management are available in GWM–VI. GWM–VI has been
tested with MODFLOW-2005, MODFLOW-NWT (a Newton
formulation for MODFLOW-2005), MF2005-FMP2 (the Farm
Process for MODFLOW-2005), SEAWAT, and CFP (Conduit
Flow Process for MODFLOW-2005). This report provides
sample problems that demonstrate a range of applications of
GWM–VI and the directory structure and input information
required to use the parallel-processing capability.

Introduction
GWM–VI is a new version of a computer program

designed to solve groundwater-management problems. The
Groundwater Management (GWM) Process (Ahlfeld and
others, 2005, 2009, 2011; Ahlfeld and Barlow, 2013) enables
users of the U.S. Geological Survey (USGS) modular, three-
dimensional groundwater model MODFLOW to analyze
and solve various types of groundwater-management
problems. The first version of GWM (Ahlfeld and others,
2005) used MODFLOW-2000 (Harbaugh and others,
2000). It was originally named MF2000-GWM; the name
was later changed to GWM-2000. GWM was adapted
to MODFLOW-2005 (Harbaugh, 2005) with the July
2007 release of MF2005-GWM. Support for Local Grid
Refinement (LGR; Mehl and Hill, 2005 and 2007) was
added, and the program name was changed with the release
of GWM-2005 (Ahlfeld and others, 2009). The state-variable
capability (Ahlfeld and others, 2011) and use of multi-node
wells as decision variables (Ahlfeld and Barlow, 2013) were
added in later versions of GWM-2005. The theory underlying
GWM, methods for formulating management problems,
detailed descriptions of capabilities, discussion of sample
problems, and instructions for GWM input files are described
in the reports referenced above. The authors of this report
presume that the reader is sufficiently familiar with GWM
that this information need not be repeated here.

To obtain a solution to a groundwater-management
problem, GWM needs to make numerous simulations of the
groundwater-flow problem. The GWM Process implemented
in GWM-2000 and GWM-2005 is compiled with their
respective versions of MODFLOW. This limits applicability of
the GWM Process to cases in which the user has implemented
a model application using either MODFLOW-2000 or
MODFLOW-2005. Over the years, alternate versions of
MODFLOW have been developed. Examples of these versions
are MODFLOW-NWT (Niswonger and others, 2011), which
uses an alternate-solution technique for the groundwater-flow
process, and MF2005-FMP2 (Schmid and Hanson, 2009),
which uses MODFLOW-2005 as the underlying flow-process
simulator and adds additional process-modeling capabilities.
GWM–VI is designed to work with these alternate versions.
GWM–VI also has been tested with SEAWAT (Langevin

GWM–VI—Groundwater Management with Parallel
Processing for Multiple MODFLOW Versions

By Edward R. Banta1 and David P. Ahlfeld2

1U.S. Geological Survey, Denver, Colo.
2University of Massachusetts, Amherst

2   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

and others, 2008) and the Conduit Flow Process (CFP) for
MODFLOW-2005 (Shoemaker and others, 2007). Other
MODFLOW-based simulation programs also may be
successfully used with GWM–VI, provided that they fulfill
the requirements described in the section titled “MODFLOW
Input and Output Requirements.”

For simplicity in the remainder of this report, the term
MODFLOW is used as a generic term to represent any
MODFLOW-based groundwater-flow simulation program that
meets the requirements described in the “MODFLOW Input
and Output Requirements” section.

This report documents the GWM–VI (Groundwater
Management – Version Independent) suite of programs, which
includes GWM–VI, MMProc, and JRunnerM. In this report,
“GWM–VI” is used to refer to the main program. The group
of three programs is referred to as the “GWM–VI suite of
programs” or simply the “GWM–VI suite.” The GWM–VI
program obtains information about the flow process by running
a MODFLOW model prepared and identified by the user. The
GWM–VI program manipulates some of the input required
by MODFLOW and uses output generated by MODFLOW.
MMProc preprocesses some of the MODFLOW input files to
incorporate model-input values managed by GWM–VI, and it
extracts information needed by GWM–VI from MODFLOW
output files. JRunnerM is used in parallel processing to
implement a link between GWM–VI and MMProc. Each of
these programs is described in its own section.

For problems that necessitate lengthy run times to solve
the groundwater-flow problem, GWM–VI can be used in
a parallel-processing mode, using a suitable set of single-
processor, multi-processor, and(or) multi-core computers
to provide a substantial reduction in execution time, in
comparison with GWM-2000 or GWM-2005. GWM–VI uses
the technology of the Joint Universal Parameter IdenTification
and Evaluation of Reliability Application Programming
Interface (JUPITER API) (Banta and others, 2006) to
implement parallel processing and version independence.

GWM–VI supports nearly all the features available
in GWM-2005; features not available are described in the
section titled “GWM Features Not Available in GWM–VI.”
The parallel-processing capabilities and requirements for
running GWM–VI in parallel-processing mode are described
in various sections of this report. Finally, a section is devoted
to using GWM–VI, including details on setting up directories
and the output generated by the programs.

The GWM–VI suite of programs, including source
code, executable files for the Windows operating system,
and test-case input and output files, may be obtained by
downloading the distribution file from the URL listed in the
Preface of this report. The distribution file is a self-extracting
archive of directories and files, with the directories structured
as illustrated in figure 1. The “Bin” directory contains
executable files for the three programs in the GWM–VI
suite of programs and a double-precision executable file of
MODFLOW-2005 for running example analyses. The “Doc”
directory contains documentation files. The “Src” directory

contains all source-code files needed to build the GWM–VI
suite of programs. The “Test” directory contains a number
of subdirectories that contain files for testing GWM–VI;
they also serve as examples of how input for GWM–VI is
prepared. The “Test”\test-run directory contains batch files
that can be used to run each example.

Overview of the GWM–VI Suite of
Programs

The GWM–VI suite of programs was developed
to address a need to use GWM with alternate versions
of MODFLOW and to be able to apply multi-processor
computers or multiple computers in a network to the task of
efficiently solving groundwater-management problems. The
GWM–VI suite comprises three computer programs:

GWM–VI is the main program for the GWM–VI
suite. It reads GWM input, manipulates MODFLOW input,
and uses MODFLOW output to formulate and solve linear,
nonlinear, and mixed-binary linear groundwater-management
problems. GWM–VI may be used in serial-processing mode
or in parallel-processing mode. In serial-processing mode,
GWM–VI invokes MMProc to preprocess MODFLOW input
and to postprocess MODFLOW output. In parallel-processing
mode, GWM–VI, in JUPITER API terminology (Banta and
others, 2006), acts as a “dispatcher” program. In its dispatcher

GWM-VI.1_0_0
 Bin
 Doc
 Src
 GWM-VI
 JRunnerM
 JUPITER_lib
 MMProc
 PrecUtls_lib
 Test
 Data
 Dewater
 Dewatermb
 Drain
 Maximin
 MNW-supply
 Runner1
 Runner2
 Seawater
 Storage
 Streamflow
 Supply2
 Test-out
 Test-run

Figure 1.  Structure of distribution
directory for the GWM–VI suite of
programs

Overview of the GWM–VI Suite of Programs   3

capacity, GWM–VI assigns groundwater-flow simulations
to be run by instances of a “runner” program on the same
computer as the one running GWM–VI or on other computers
in a network. In parallel-processing mode, the runner program
(JRunnerM) effects communication of data between GWM–VI
and MMProc.

MMProc uses data prepared by GWM–VI to prepare
MODFLOW input, to execute MODFLOW, and to extract
required values from MODFLOW output. The user is
responsible for providing a MODFLOW executable file and
input files needed to simulate the groundwater system of
interest.

JRunnerM is a runner program based on the JUPITER
API. It is similar to the jrunner program documented by Banta
and others (2006), with enhancements required by GWM–VI.

Each of these programs is documented in the following
sections of this report. In normal usage, the user executes
GWM–VI. MMProc, JRunnerM, and MODFLOW are invoked
or used automatically, as described in the following sections
and demonstrated in appendix 1.

Implementation of Version Independence and
Parallel Processing

GWM–VI requires that the user provide a MODFLOW
executable file and appropriate input files to carry out the
flow-process simulation. GWM–VI reads both the input for
the GWM Process and for MODFLOW provided by the
user. GWM–VI follows the conventions for input and output
structure used by MODFLOW in its different versions. It
expects to find a MODFLOW Name file, Discretization file,
Basic Package input file, and other MODFLOW input files; if
relevant to the management problem, it also expects to find Well
(WEL) and MNW2 (Konikow and others, 2009) Package input
files. During execution of GWM–VI, MODFLOW is repeatedly
run. Before each run, GWM–VI or one of the other programs
in the suite communicates the values of the flow-rate decision
variables to MODFLOW by rewriting the WEL and/or MNW2
input files. MODFLOW is then executed. The MODFLOW
executable file is expected to create an output LIST file similar
to that produced by MODFLOW-2005. It is also expected to
produce binary files containing heads and cell-by-cell flows in
a form similar to that produced by MODFLOW-2005. MMProc
reads the LIST file and the various binary files to interpret the
results of the MODFLOW run.

GWM–VI has been successfully tested with the following
versions of MODFLOW: MODFLOW-2005, Version 1.9
(Harbaugh, 2005); SEAWAT, Version 4 (Langevin and others,
2008); MODFLOW-NWT, Version 1.0.4 (Niswonger and
others, 2011); CFP, Version 1.8 (Shoemaker and others,
2007); and Farm Process (FMP2), Version 1.0 (Schmid and
others, 2006; Schmid and Hanson, 2009). Other versions
of MODFLOW may function with GWM–VI. Any version
of MODFLOW to be used with GWM–VI must meet the
requirements described in the “MODFLOW Input and Output
Requirements” section.

Previous versions of GWM (for example, GWM-2005)
incorporate both optimization and the simulation of
groundwater flow in a single program but support only
serial processing. An important aspect of the development of
parallel processing for GWM as documented in this report
was the separation of the optimization functionality from
the simulation of groundwater flow. This approach has two
benefits: (1) it facilitates the implementation of support
for parallel processing, and (2) it provides the option to
use alternate versions of MODFLOW. In this approach,
optimization is handled by GWM–VI and groundwater flow
is simulated by the user’s choice of a version of MODFLOW
that meets the requirements listed in the “MODFLOW Input
and Output Requirements” section. The GWM–VI suite of
programs makes extensive use of modules of the JUPITER
API (Banta and others, 2006) to effect communication
between GWM–VI and MODFLOW. The Dependents Module
of the JUPITER API is used to define model-dependent
variables, which are used for implementing head-based,
streamflow-based, storage-based, and drain-based constraints.
The Model Input-Output (Model_IO) Module is used to
prepare model-input files that define groundwater-system
stresses controlled by flow-rate decision variables. The
Model_IO Module also is used to extract model-calculated
values needed to construct the response matrix for solution of
the groundwater-management problem and to define variables
subject to constraint. Several other modules of the JUPITER
API are used as needed for support functionality. When
a model run is needed, GWM–VI uses capabilities of the
JUPITER API to prepare model-input files, execute the model,
and acquire model-calculated results of interest.

When GWM–VI is run in serial-processing mode,
GWM–VI invokes MMProc directly, and MMProc runs
MODFLOW by invoking an operating-system call using a
command provided by the user. The command may be an
operating-system command that directly invokes MODFLOW,
or it may be a batch file or other script file that includes a
command to invoke MODFLOW.

When GWM–VI is run in parallel-processing mode, base
groundwater-flow simulations are carried out by invoking
MMProc directly, as described for serial-processing mode.
For populating the response matrix, model runs are made
in parallel. For these model runs, the user sets up a series of
“runner” directories, such that model runs may be executed
simultaneously without interfering with each other. The runner
directories may be located on a single computer or on multiple
computers on a local area network. Details of parallel-
processing are presented in the section titled “Sequence of
Program Execution—Parallel Processing.”

GWM-2005 was designed to recognize and deal
appropriately with certain common problematic situations
that arise during the simulation and optimization steps
necessary to solve a groundwater-management problem.
GWM–VI is designed to handle the same problematic
situations. However, because the optimization and the
groundwater-flow simulations are handled by separate

4   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

programs, the implementation of the response to these
situations is necessarily somewhat different. Three types
of problems related to simulation of the groundwater-flow
system by MODFLOW are addressed: (1) nonconvergence
of a MODFLOW simulation, (2) conversion of managed-
flow cells to “dry,” and (3) conversion of cells involved in
head-based constraints to “dry.” In addition, as with GWM-
2005, GWM–VI is designed to evaluate the precision of the
response coefficients generated by perturbation of flow-rate
decision variables and to modify perturbation increments if the
coefficients are not sufficiently precise.

In addition to the values extracted from MODFLOW
output, MMProc produces a short file (named “modflow.
status”) containing a flag that indicates convergence status
and a flag that indicates if any managed-flow cell was
converted to “dry.” If flags in modflow.status indicate either
that MODFLOW did not converge or that one or more
managed-flow cells were converted to “dry,” JRunnerM
returns meaningless placeholder values in place of model-
calculated values to GWM–VI, along with the values read
from modflow.status.

GWM–VI uses a modified version of the Parallel-
Processing Module of the JUPITER API. The modifications
enable GWM–VI to evaluate the values from modflow.status,
which indicate the convergence status and active or “dry”
status of managed-flow cells. If the MODFLOW simulation
did not converge or if one or more managed-flow cells went
“dry,” the modified parallel-processing module would revise
the perturbation increment for the appropriate decision variable
and make another run of the MODFLOW simulation in one
of the runner directories. HDRY is a numeric value written
by MODFLOW to elements in an array of model-calculated
head values corresponding to cells that have been converted
to inactive status (identified as “dry” in MODFLOW output)
during solution of the groundwater-flow equation. “Drying”
of head-constraint cells is recognized by the modified parallel-
processing module by comparing the model-calculated head
values reported by JRunnerM with HDRY as read from one of
MODFLOW’s flow packages (LPF, BCF6, Hydrologic Unit
Flow [HUF, Anderman and Hill, 2000], or Upstream Weighting
[UPW, Niswonger and others, 2011]). The modified parallel-
processing module also evaluates the precision of the response
coefficients, as is done by GWM-2005. If any head-constraint
cells go “dry” or if response coefficients are not sufficiently
precise, MODFLOW simulations are rerun in an attempt to
correct the problem, as is done by GWM-2005.

GWM Features Not Available in GWM–VI

GWM–VI includes most of the capabilities of GWM-
2005. However, some capabilities are not supported because
of the difference in the way the two codes are constructed.
GWM-2005 is compiled into a single executable file that
includes MODFLOW-2005. As a result, GWM-2005 can
access all arrays within MODFLOW-2005 and extract
whatever information is needed.

In contrast, GWM–VI depends upon the ability of
MODFLOW to output the LIST file and binary files of
relevant information. These files are the only means by
which GWM–VI can extract information from MODFLOW.
Any GWM-2005 capability that relies on information that
cannot be obtained from the MODFLOW output files is either
unavailable or available in a modified form in GWM–VI.
These limitations are discussed in this section.

CRITMFC – Alternate Flow Process Termination
Tests

CRITMFC is a parameter in the GWM “Solution and
Output-Control Parameter” (SOLN) file that controls the
method used to determine the acceptability of a MODFLOW
run. Setting CRITMFC to a positive value in GWM-2005
causes the test for acceptability to be based on the percentage
discrepancy in the volumetric budget rather than the
convergence criteria HCLOSE and(or) RCLOSE. Checking
for the percentage discrepancy with adequate precision is not
possible without access to MODFLOW arrays at each time
step. As a result, the parameter CRITMFC is not supported in
GWM–VI, and the test for acceptability is based solely on the
convergence criteria HCLOSE and(or) RCLOSE.

Head in MNW Wells
GWM-2005 includes capabilities that impose constraints

and define state variables using the head in wells represented
by the MNW2 Package (Konikow and others, 2009). GWM-
2005 accomplishes this by directly accessing MNW arrays.
The MNW2 Package (version 7.1, dated 8/26/2011) does not
provide a means to output this information to binary files.
As a result, head in wells cannot be directly determined by
GWM–VI. If a constraint on head in a well is desired, then the
GWM–VI user should impose constraints on the head in those
cells in which the MNW well is located. Similarly, the user
can define state variables as the head in those cells in which
the MNW well is located. This approach is demonstrated in
the MNW-Supply problem distributed with GWM–VI.

In GWM-2005, the head at each managed MNW well is
tested at the conclusion of each stress period to see if it has
become dry (that is, its value is equal to HDRY). If the head is
dry, then the simulation is considered to have failed. Because
GWM–VI does not have access to the head in MNW wells,
GWM–VI instead automatically checks the head at all cells
in which the MNW well is located. If the head in any of these
cells is dry, then the simulation is considered to have failed.
The checking of heads described here can be deactivated using
parameter NPGNMX in the GWM SOLN file (Ahlfeld and
others, 2005).

Output of Managed Flows in Volumetric Budget
In GWM-2005, managed WEL-type flows are listed on

a separate line of the volumetric budget report that appears in

GWM–VI   5

the LIST file produced by the flow-process simulation. This
line is labeled “MANAGED WELLS.” This line does not
appear in the LIST file output from MODFLOW when used
with GWM–VI. This is a result of the process in which flows
are provided to MODFLOW—namely, both managed and
unmanaged flows are provided in single WEL or MNW2 files.
Therefore, MODFLOW cannot distinguish between managed
and unmanaged flows in its calculation of the WELLS term in
the volumetric budget printed to the LIST file.

Multi-Grid Flow Processes
GWM-2005 has the capability to solve problems in which

the flow process is simulated using Local Grid Refinement
(LGR, Mehl and Hill, 2007). This feature is not supported in
this release of GWM–VI.

Stream Package
GWM-2005 has the capability to solve problems in which

streamflow is represented using either the Stream Package
(STR) or the Streamflow-routing Package (SFR). GWM–VI
only supports the SFR Package (Niswonger and Prudic, 2006).

GWM–VI
The GWM–VI program implements the capabilities of

GWM-2005 that are related to formulation of groundwater-
management problems; construction of the response matrix;
and solution of the linear, nonlinear, and mixed-binary linear
management problems. Description and input instructions for
GWM–VI are presented in following sections.

Description of GWM–VI

Nearly all aspects of the management formulation
(decision variables, objective function, and constraints) that
are supported by GWM-2005 are supported by GWM–VI.
Decision variables include flow-rate decision variables,
external decision variables, and binary variables. As in
GWM-2005, a single objective function is either minimized
or maximized with a choice on the weighting applied to the
three types of decision variables. Four types of constraints
can be specified: (1) upper and lower bounds on the flow-rate
and external decision variables, (2) linear summations of the
decision variables, (3) hydraulic-head-based constraints, and
(4) streamflow-based constraints. In addition, state variables
can be defined for head, streamflow (as simulated using the
SFR Package [Niswonger and Prudic, 2006]), change in
aquifer storage, and drain flow. These state variables can
be placed in the objective function or included in linear
summation constraints.

The GWM–VI program uses the Response Matrix
Solution Package documented by Ahlfeld and others (2005).

The response-coefficient matrix is populated by perturbing
individual flow-rate decision variables and calculating
response coefficients from results of the solution of the
groundwater-flow equation. Whenever groundwater-flow
simulation results are needed, either for a base run or a run
in which flow-rate decision variables are perturbed, the suite
of GWM–VI programs prepares model-input values based
on flow-rate decision variables and interprets output files
produced by MODFLOW.

GWM–VI is programmed using design principles
consistent with the JUPITER API (Banta and others, 2008). A
programmer’s guide for GWM–VI is provided in appendix 2.
Details of the JUPITER API parallel-processing methodology
are described in chapter 12 of Banta and others, 2006.

GWM–VI File Input Instructions

GWM–VI reads an input file that references a number
of other input files containing information that defines the
groundwater-management problem. This file is similar to the
GWM file required by GWM‑2005 and described in detail in
Ahlfeld and others (2011). The GWM–VI input file consists of
a series of lines, each with a keyword followed by a file name.
The GWM–VI input file has the following items:

0.	 #Text [optional]

1.	 OUT Fname [optional]

2.	 DECVAR Fname

3.	 STAVAR Fname [optional]

4.	 OBJFNC Fname

5.	 VARCON Fname

6.	 SUMCON Fname [optional]

 HEDCON Fname [optional]

 STRMCON Fname [optional]

7.	 SOLN Fname

8.	 CONTROL Fname

9.	 NAM Fname
Keywords are in bold font. Fname is a file name or path of an
output or input file of the type indicated by the corresponding
keyword. Explanation of each item follows:

0.	 Item 0 is optional and consists of one or more comment
lines designated by a “#” character in column 1. Text is
printed to the output file.

1.	 Item 1 is optional. A filename for output from GWM–VI
may be specified as Fname following the keyword OUT
in this item. If item 1 is omitted, a default name of GWM.
OUT, written in the directory in which GWM–VI is
invoked, is used.

6   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

2.	 Each management problem must include a file that pro-
vides information about the decision variables; the name
of this file is specified by Fname following the keyword
DECVAR in this item.

3.	 Item 3 is optional. Each management problem may
include a file that provides information about the state
variables; the name of this file is specified by Fname fol-
lowing the keyword STAVAR in this item.

4.	 Each management problem must include a file that pro-
vides information about the objective function; the name
of this file is specified by Fname following the keyword
OBJFNC in this item.

5.	 Each management problem must include a file that
provides information on the lower and upper bounds
specified for the flow-rate and external decision variables;
the name of this file is specified by Fname following the
keyword VARCON in this item.

6.	 Item 6 is optional. Each management problem may
include up to three files that provide information about
the types of constraints of the management problem that
are allowed in GWM–VI. These files are specified by the
records of item 6, which can be listed in any order. The
keyword SUMCON identifies a file used to specify linear
summation constraints; HEDCON identifies a file used to
specify head constraints; and STRMCON identifies a file
used to specify streamflow constraints.

7.	 Each management problem must include a file that pro-
vides information about the solution and output-control
parameters necessary for a GWM simulation; the name
of this file is specified by Fname following the keyword
SOLN in this item.

8.	 Each management problem must include a file of infor-
mation to define additional output options, to define the
way in which GWM–VI will invoke MODFLOW and
MMProc, and, optionally, to enable parallel processing;
the name of this file is specified by Fname following
the keyword CONTROL. Instructions for preparing the
CONTROL input are described in the next section.

9.	 GWM–VI also needs to read the MODFLOW Name file.
The Name file is expected to follow the form described in
Harbaugh (2005). The name of the Name file is specified
by Fname following the keyword NAM.

Items 0 to 7 of the GWM–VI input file are common
to both GWM-2005 and GWM–VI. Input instructions for
these items (files of type DECVAR, STAVAR, OBJFNC,
VARCON, SUMCON, HEDCON, STRMCON, and SOLN)
are described in Ahlfeld and others (2005, 2011) and Ahlfeld
and Barlow (2013); input instructions for these files are not
provided in this report.

The GWM Process information provided in items 2
through 7 of the GWM–VI input file is closely linked to the

output that must be produced by MODFLOW. For example,
if streamflow constraints are specified at particular stress
periods in the file identified by the STRMCON keyword, then
the output from the flow process must include a binary file
that contains streamflows at those specified stress periods. A
detailed description of the requirements of binary-file output
is provided in the “Output Requirements for MODFLOW”
section.

A GWM–VI input file can be used by GWM-2005;
comparison of results between GWM-2005 and GWM–VI is
thereby facilitated for management problems that are based on
a MODFLOW-2005 executable. Items 8 and 9 of the GWM–
VI input file are required for GWM–VI but not for GWM-
2005. When a GWM–VI input file is run with GWM-2005,
these two lines will be ignored.

When using GWM–VI, names of flow-rate decision
variables, head-based constraints, streamflow-based
constraints, and drain-based constraints need to conform
to the JUPITER naming convention (Banta and others,
2006) because JUPITER modules are used to implement
communication between GWM–VI and JRunnerM. The
following two rules comprise the JUPITER naming
convention:
Rule 1. The first character needs to be a letter of the English
alphabet.
Rule 2. All characters after the first letter need to be a let-
ter, digit, or member of the set: “_”; “.”; “:”; “&”; “#”; and
“@” (underscore, dot, colon, ampersand, number sign, and at
symbol).
Lengths of names specified in GWM input are not restricted
by the JUPITER naming convention because the maximum
length permitted for decision-variable and constraint names in
the DECVAR, HEDCON, and STRMCON files is less that the
length limit imposed by the JUPITER API.

CONTROL File Input Instructions

A file identified by the keyword CONTROL in the
GWM–VI input file provides input to define output options,
to define the way in which GWM–VI invokes MODFLOW
and MMProc, and, optionally, to enable parallel processing.
JUPITER API-style input blocks provide information in the
CONTROL file. For detailed information concerning the
structure and use of input blocks, the reader is referred to
Banta and others (2006). The instructions provided in this
section, however, are sufficient for constructing the relatively
simple input blocks required by GWM–VI. An example
CONTROL file, which is used for the Dewater problem
described in appendix 1, is provided in figure 2 for reference.

Input blocks have the basic structure:

BEGIN Blocklabel [Blockformat]
Blockbody
END Blocklabel

Where:

GWM–VI   7

BEGIN is a keyword that defines the first line of an input
block.

Blocklabel is one of several keywords recognized by GWM–
VI. GWM–VI recognizes the following
blocklabels: Options, Simulation, Model_
Command_Lines, Parallel_Control, and
Parallel_Runners.

Blockformat is an optional keyword that defines the format
in which the input block is structured.
Valid blockformats include Keywords
and Table. If Blockformat is omitted or
misspelled, the blockformat defaults to
Keywords. Any input block can use either
of the two blockformats, but for simplicity
in describing the CONTROL file, the
Keywords blockformat will be used in
constructing the Options, Simulation,
Model_Command_Lines, and Parallel_
Control input blocks, and the Table
blockformat will be used in constructing
the Parallel_Runners input block.

Blockbody consists of one or more lines containing data to
be used as input. Content and format of
the blockbody depend on the specified
blocklabel and blockformat.

END is a keyword that indicates the end of the input block.
The blocklabel following the END
keyword needs to match the blocklabel
specified in the corresponding BEGIN
line.

The format of the blockbody is determined by the choice
of blockformat on the BEGIN line. When blockformat is
Keywords, data are provided in the form of “keyword=value”
entries, where “keyword” is one of the keywords recognized
in an input block identified by a particular blocklabel, and
“value” is an integer, floating point number, text string,
or Boolean (true or false) value, as appropriate for the
keyword preceding the “=” sign. In the keyword=value
entry, spaces may be used on either side of the “=” sign as
desired, and single or double quotation marks may be used
in pairs. If value is a text string containing embedded blanks,
quotation marks must enclose either the value or the entire
keyword=value entry. For Boolean values, “True,” “T,” “Yes,”
and “Y” are synonymous; similarly, “False,” “F,” “No,” and
“N” are synonymous. Keywords and Boolean values are
case-insensitive. Case is retained in text-string values, but
comparison of strings is case-insensitive.

When blockformat is Table, the data in the blockbody are
organized in rows and columns. A line of the form:

NROW=nr NCOL=nc COLUMNLABELS

BEGIN Options
 Verbose = 3
 MessageFile = dewater_messages.txt
END Options

BEGIN Simulation
 SimCommand = "..\..\bin\mf2005dbl ..\data\dewater.nam"
END Simulation

BEGIN Model_Command_Lines
 command = ..\data\dewater_cmr.bat
 commandid = Dewater_cmr
END Model_Command_Lines

BEGIN Parallel_Control
 parallel=true wait=0.01
 VerboseRunner=4
 AutoStopRunners = true
 TimeOutFactor = 4.0
END Parallel_Control

BEGIN Parallel_Runners table
 nrow=2 ncol=3 columnlabels
 RunnerName RunnerDir RunTime
 Runner1 ..\runner1\ 2.0
 Runner2 ..\runner2\ 2.0
END Parallel_Runners

Figure 2.  Example GWM–VI CONTROL file used for the Dewater sample problem in which
parallel processing is invoked.

8   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

must follow the BEGIN line, where
nr is the number of rows of data and
nc is the number of columns.

One line of column labels must appear next, where the
column labels include the keywords recognized within the
input block. The recognized column labels are the same as
the keywords that are recognized when the blockformat is
specified as Keywords. A total of nc column labels are read.
Following the line of column labels, GWM–VI reads nr lines
of data, where nc values are read from each line. Text strings
containing embedded blanks must be enclosed in single or
double quotes. Column labels and Boolean values are case-
insensitive; case is retained in text strings, and columns may
appear in any order. Blockbody may contain extra columns
headed by column labels that are not required or recognized in
a particular input block; extra columns are ignored.

Note that keywords and column labels are “recognized”
in JUPITER input blocks and that input blocks, by design,
are allowed to contain keywords or columns that are not
recognized and, therefore, unused. This logic precludes
identification of spelling errors by GWM–VI. Many input
values have appropriate defaults, as noted in the instructions
for each input-block type in following sections. If a keyword
or column label is misspelled or not present, no error message
is issued, and the default value (if applicable) is used. If
GWM–VI generates unexpected results, check the spelling of
keywords.

GWM–VI reads up to five input blocks from the
CONTROL file; three of these are optional. The blocklabels
and order of the input blocks conform to the conventions of
the JUPITER API. The input blocks are documented in the
following sections.

Options Input Block

The Options input block is optional; blockformat
Keywords is convenient. GWM–VI recognizes two keywords
in this input block: MessageFile and Verbose.
MessageFile: Value is a text string to be used as a filename for

an output file. If the MessageFile option is used, output
generated by GWM–VI that is not directly related to the
groundwater-management problem is directed to the file
identified in value rather than the main GWM–VI output
file. The output that is affected is generated by parts of the
code that are used to implement communication between
GWM–VI and either MMProc or JRunnerM. Output
generated during reading of the Discretization file also is
affected.

Verbose: Value is an integer that controls verbosity of output
not directly related to the groundwater-management
problem; the default value is 3. When MessageFile is
specified, Verbose affects only the output directed to the
MessageFile file. Valid values and meanings are:
0.	 No extraneous output;
1.	 Write warnings only;

2.	 Write warnings and notes;

3.	 Write warnings and notes, and echo selected input
 (default);

4.	 Write warnings and notes, and echo all input; and

5.	 Write warnings, notes, echoed input, and
 miscellaneous information.

Simulation Input Block
The Simulation input block is required because the

command that MMProc will use to invoke MODFLOW is
read from the Simulation input block; blockformat Keywords
is convenient. GWM–VI recognizes one keyword in this input
block: SimCommand.
SimCommand: Value is a text string to be used as an

operating-system command that MMProc will use to
start a MODFLOW run. The command needs to be valid
if issued in the directory where GWM–VI is invoked
or, when parallel processing is enabled, in any of the
runner directories. This requirement imposes a degree
of uniformity in the directory structure used for runner
directories, as well as the directory where GWM–VI is
invoked.

Model_Command_Lines Input Block
The Model_Command_Lines input block is required;

blockformat Keywords is convenient. Two keywords are
recognized: Command and CommandID; only Command
is required. If a CommandID entry is used, it must follow the
Command entry.
Command: Value is a text string to be used as an operating-

system command to invoke MMProc. Value may be either
an operating-system command that invokes MMProc
directly, or it may be the name of a script file, such as an
MS-DOS batch file, that invokes MMProc. Command
is invoked by GWM–VI when run in serial-processing
mode or when making base groundwater-flow simulations
in parallel-processing mode. Command is invoked by
JRunnerM to make groundwater-flow simulations required
to populate the response matrix when GWM–VI is run in
parallel-processing mode.

CommandID: Value is a text string used to identify the
command in output generated by GWM–VI. CommandID
plays no role in the functionality of GWM–VI. If omitted,
the command identifier defaults to a blank string.

Parallel_Control Input Block

The Parallel_Control input block is required in order
to invoke parallel processing but otherwise is optional;
blockformat Keywords is convenient. Six keywords

MMProc   9

are recognized: Parallel, Wait, VerboseRunner,
AutoStopRunners, OperatingSystem, and TimeoutFactor.
Parallel: Value is a Boolean value, which, when True, invokes

parallel processing. If omitted, Parallel defaults to False.
When Parallel is specified as True, the Parallel_Runners
input block is required.

Wait: Value is a floating-point number. Wait is a time delay,
in seconds, used as needed in checking for presence of,
and reading from, the JUPITER signal files (Banta and
others, 2006) used to communicate between GWM–VI
and JRunnerM. If omitted, Wait defaults to 0.001 seconds
(sec). In most cases the default value is appropriate;
however, in some cases Wait may need to be set to a
larger value. The need to increase Wait can be identified
by the appearance of the following message on the screen
running either GWM–VI or JRunnerM: “Warning: WAIT
time may be too small.” Little is to be gained by setting
Wait smaller than the default value.

VerboseRunner: Value is an integer that controls verbosity
of output generated by JRunnerM. The valid values and
meanings are the same as those defined for Verbose. If
omitted, VerboseRunner defaults to 3.

AutoStopRunners: Value is a Boolean value. If
AutoStopRunners is set to True, at the conclusion of
a GWM–VI run, all runners (instances of JRunnerM)
will terminate execution. If a sequence of runs of
GWM–VI is anticipated and runner directories are
located on remote computers in a network, users
may find it preferable to allow runners to reset
and continue running when GWM–VI execution
finishes. To have runners reset rather than terminate,
specify AutoStopRunners as False. If omitted,
AutoStopRunners defaults to True.

OperatingSystem: Value is a text string indicating the
operating system under which GWM–VI and JRunnerM
are run. Valid values are “WINDOWS,” “DOS,” “UNIX,”
and “LINUX.” In the context of GWM–VI, WINDOWS
and DOS are synonymous, and UNIX and LINUX are
synonymous. If omitted or misspelled, OperatingSystem
defaults to “WINDOWS.”

TimeoutFactor: Value is a floating-point number. The product
of TimeoutFactor and RunTime of the Parallel_Runners
input block is used to determine if a model run is overdue.
If omitted, TimeoutFactor defaults to 3.0.

Parallel_Runners Input Block

The Parallel_Runners input block is required when
Parallel is set to True in the Parallel_Control input block;
blockformat Table is convenient. Three keywords (column
labels) are recognized: RunnerName, RunnerDir, and
RunTime; RunnerName and RunnerDir are required.
For each processor or processor core involved in a parallel-
processing setup, a row in the Parallel_Runners input block
defines a name, a runner directory, and, generally, an expected
run time for one model simulation.

RunnerName: Value is a text string that is a name used to
identify the runner.

RunnerDir: Value is a text string identifying the runner
directory where an instance of JRunnerM will run. The
string needs to end in the directory-separator character
used by the operating system, either “\” or “/”.

RunTime: Value is a floating-point number defining the
expected model run time (seconds). If omitted, RunTime
defaults to 10 sec. The expected run time for each runner
is adjusted as the runner completes model runs. When
the parallel-processing capability is activated, GWM–VI
keeps track of model run times and, if a model run is
overdue, it starts the model run on a different runner. The
product of the expected run time and TimeoutFactor
of the Parallel_Control input block is used to determine
if a model run is overdue. The expected run time does
not need to be particularly accurate. However, to avoid
unnecessary restarts due to overdue model runs, set
RunTime to a value at least as large as the time expected
for a model run to complete on each runner.

MMProc

The MMProc program is designed to be invoked either
by GWM–VI or by JRunnerM; it is likely that users would
never need to invoke it directly. Input for MMProc is prepared
automatically by either GWM–VI or JRunnerM, and output
generated by MMProc is read by either GWM–VI or JRunnerM.
For users interested in a more complete understanding of the
operation of the GWM–VI suite of programs, the “Pre- and
Postprocessing by MMProc” section gives an overview of the
functionality served by MMProc. The “Error Handling and
Importance of Maintaining Duplicate Well and MNW2 Input
Files” section contains information useful for all users.

Pre- and Postprocessing by MMProc

In brief, the job of MMProc is to prepare input for
MODFLOW (including input controlled by the optimization
algorithm of GWM–VI), execute MODFLOW, extract
simulated head and cell-by-cell flow values of interest from
MODFLOW’s binary output files, interpret model-run status
based on the MODFLOW LIST file and head values simulated
at managed-stress cells, and report the simulated values and
MODFLOW status to two text output files. MMProc is able
to read binary cell-by-cell flow data generated by any of the
following flow packages: BCF6, LPF, HUF (Anderman and
Hill, 2000, 2003; Anderman and others, 2002), and UPW
(Niswonger and others, 2011).

When MMProc starts, it opens a file named mmproc.in
(which is prepared automatically by GWM–VI or JRunnerM),
from which input will be read. If this file is not found,
MMProc terminates with an error message. From the mmproc.
in file, MMProc reads:

10   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

•	 The command (SimCommand of the Simulation input
block of the CONTROL file) that will be used to
invoke MODFLOW;

•	 The path of the MODFLOW Name file;

•	 The MODFLOW spatial and temporal discretization
dimensions;

•	 Various variables defined in the MODFLOW Basic,
flow, and solver package input files;

•	 The path of the binary head file written by
MODFLOW;

•	 The path of the binary cell-by-cell flow file used by the
MODFLOW flow package, if needed;

•	 The paths of binary cell-by-cell flow files used by the
SFR2 Package (Niswonger and Prudic, 2006), or Drain
Package, or both, if needed;

•	 Data to define managed stresses simulated with the
Well Package;

•	 Data to define cells and desired flows included in
managed MNW wells;

•	 Data to enable MMProc to extract specified model-
simulated head and cell-by-cell flow values from
MODFLOW binary output files;

•	 The path of the SFR2 Package input file, if needed; and

•	 The name of the auxiliary variable defined in the Drain
Package that is used to identify the drain feature of
interest in each drain cell, if needed.

After reading these data, MMProc performs a number of
preprocessing steps:

•	 If simulated values generated by the SFR2 Package are
required, MMProc reads data from the SFR2 input file
that will enable it to extract the specified values from
the appropriate MODFLOW binary output file.

•	 If the Well Package is being used to simulate managed
stresses, the original Well Package input file containing
unmanaged stresses is saved with a new name
(generated by appending “_COPY.TXT” to the original
file name). MMProc then combines unmanaged well
stresses with managed stresses and overwrites the
original Well Package input file with the combined
well-stress information.

MMProc then starts the MODFLOW run by submitting
the SimCommand to the operating system. When the
MODFLOW run terminates, MMProc performs the following
postprocessing steps:

•	 Model-simulated values are extracted from the binary
head and cell-by-cell flow files as specified in the
mmproc.in file;

•	 Model-simulated values are written to the
SimulatedValues.out file;

•	 The model-convergence status is interpreted by reading
the MODFLOW LIST file.

•	 The simulated values of head at the cells included in
managed stresses simulated with the Well and MNW2
Packages are evaluated to determine if any of the cells
converted to “dry” during the simulation;

•	 The modflow.status file is written; and

•	 If the Well Package input file was modified, the file is
overwritten by the saved, original version of this file.

Execution of MMProc terminates when the postprocessing
steps have been completed.

Error Handling and Importance of Maintaining
Duplicate Well and MNW2 Input Files

GWM–VI, JRunnerM, and MMProc attempt to recognize
common errors that may be encountered during execution.
When errors are recognized, GWM–VI, JRunnerM, and
MMProc continue execution and ensure that the original
Well and(or) MNW2 Package input file(s) are restored with
their original names. However, if an unrecognized error is
encountered, one of these programs may terminate abnormally,
leaving the modified Well and(or) MNW2 Package input
file(s) in place. If this occurs, subsequent runs of MMProc will
behave as if the modified file(s) is (are) the original file(s),
and results will be misleading. For this reason, it is helpful to
keep duplicate copies of the original Well and MNW2 Package
input files, so that they can be used to replace the modified
input files in the event of an abnormal termination of GWM–
VI, JRunnerM, or MMProc.

JRunnerM
JRunnerM is a “runner” program, in the terminology

of the JUPITER API (Banta and others, 2006). The purpose
of a runner program is to generate model-input files, make
model runs, and extract model-output values as required by
a “dispatcher” program. In the GWM–VI suite of programs,
GWM–VI is the dispatcher program. When a model run does
not converge or causes managed-flow cells to convert to “dry,”
GWM–VI is designed to adjust the stresses at managed-flow
cells and attempt another model run. The runner program used
in conjunction with GWM–VI needs to be able to handle the
non-convergence case. A runner program for GWM–VI needs
to perform several steps to do its job:

1.	 Initialize itself;

2.	 Monitor a runner directory for a specially-named
“signal” file (named “jdispatch.rdy”) written by

MODFLOW Input and Output Requirements   11

GWM–VI. The signal file contains information
needed by the runner, including model-input
and -output file names, template file names, and
instructions for extracting model-generated values of
interest from model-output files;

3.	 When the signal file of step 2 is found, read the file;

4.	 Monitor the runner directory for another signal file
(“jdispar.rdy”) written by the dispatcher program
containing values to be assigned as stresses in
managed-flow cells;

5.	 When the signal file of step 4 is found, read it and
use the stress values and template file to create a
MMProc input file.

6.	 Make a model run by invoking MMProc;

7.	 Read the modflow.status file generated by MMProc;

8.	 (a) If the modflow.status file indicates convergence
was reached and no managed-flow cells went dry,
read model-output files to obtain model-calculated
values needed by GWM–VI to evaluate head and
streamflow constraints; or

8.	 (b) if the modflow.status file indicates that the
model failed to converge or that any managed-flow
cells went dry, generate meaningless placeholder
values to take the place of model-calculated values
corresponding to head and streamflow constraints;

9.	 Write a signal file (“jrundep.rdy”) containing the
values read from modflow.status and either the
model-calculated values or the placeholder values
generated in step 8; and

10.	 Prepare for another request for a model run by
returning to step 4.

Banta and others (2006) describe a runner program called
jrunner, which is distributed with the JUPITER API. Jrunner
is capable of performing all of the steps outlined above except
step 8; it is not designed to modify its behavior based on the
contents of a model-output file (for example, modflow.status)
or to generate placeholder values. To satisfy the requirements
of step 8, JRunnerM was developed by making minor
modifications to jrunner.

JRunnerM needs to be invoked such that its working
directory is one of the runner directories listed in the
Parallel_Runners input block of the CONTROL file listed in
the GWM–VI input file. The simplest way to start JRunnerM
under Microsoft Windows is to open a DOS (Disk Operating
System) command window, use the DOS CD command as
needed to ensure that the working directory is one of the
runner directories, and start jrunnerm.exe, which is in the
Bin directory of the GWM–VI distribution. When multiple
processes need to run on the same computer running
Windows, it may be helpful to lower the “Base Priority” of the

process running JRunnerM by starting it with a command of
the form:
start /low /wait jrunnerm

Alternatively, a script (for example a batch file) can be used
to invoke instances of JRunnerM as needed and then invoke
GWM–VI; this approach is demonstrated in the batch files
provided in the Test folder and its subfolders in the GWM–VI
distribution.

File names (or paths) for the command to invoke
MODFLOW (identified by the keyword SimCommand in
the Simulation input block of the CONTROL file) and for
the command to invoke MMProc (identified by the keyword
Command in the Model_Command_Lines input block) need to
be accessible relative to the runner directory where JRunnerM
is started. Care needs to be exercised to ensure that file names
and relative paths reference the correct, up-to-date files from
the directory where GWM–VI is started and from all the
runner directories.

MODFLOW Input and Output
Requirements

To properly function with GWM–VI, the version of
MODFLOW being used must support input and output that
meets certain specific requirements. This section provides
detailed information on these requirements. The requirements
are described using the notation and terminology of
MODFLOW-2005 (Harbaugh, 2005).

Input Requirements for MODFLOW

GWM–VI uses the file identified by the NAM keyword
in the GWM–VI input file as the MODFLOW Name file. It is
assumed that the structure and contents of the Name file are
consistent with MODFLOW-2005. GWM–VI will look for file
types LIST, DIS, and BAS6. Depending on the flow package
used, GWM–VI will look for file types BCF6, LPF, HUF, or
UPW and will expect to find the OC file type and a file type
that identifies the solver package. If streamflow or drains are
part of the management problem, then GWM–VI will expect
to find the SFR or DRN file types.

If well-type decision variables are used in the
management formulation, then GWM–VI will expect to find
a WEL file type. Even if there are no unmanaged wells, a
WEL file must be present. Prior to each MODFLOW run,
MMProc combines the original WEL file with managed well-
type decision variables to create a new WEL file. If there are
no unmanaged wells, an original WEL file must exist and be
listed in the NAM file; however, the WEL Package input file
should indicate no active wells.

Similarly, if MNW-type decision variables are used,
then GWM–VI will expect to find an MNW2 file type. If no
unmanaged MNW wells are present, then an MNW2 Package

12   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

input file that indicates that zero wells will be simulated must
be provided. When MNW-type decision variables are used,
MMProc extracts net flow values for each cell included in
a managed MNW well and sums them for comparison with
the flow specified for that well. If the sum of the net flows
does not equal the specified flow, the well is considered
to have dewatered. To ensure that flows recorded in the
binary file are associated with the correct well, GWM–VI
assigns a unique sequence number to each MNW well;
it uses an auxiliary variable for this purpose. Because of
this use of an auxiliary variable, it is necessary to specify
“COMPACT BUDGET AUXILIARY” (or “AUX” in place
of “AUXILIARY”) in the MODFLOW Output Control file
whenever the GWM problem includes one or more MNW-
type decision variables.

The GWM Response Matrix Solution (RMS) Package
performs a check on the success of each perturbation run
using the number of significant digits in the difference
between base and perturbed heads (Ahlfeld and others, 2005,
p. 32–33). The number of digits is estimated using the ratio of
the difference in heads and HCLOSE, the head convergence
parameter used in many MODFLOW solvers. GWM–VI
searches for a value of HCLOSE (or its equivalent) from
the solver input file listed in the NAM file. GWM–VI is
capable of searching the following solvers: SIP, PCG, PCGN
(CLOSE_H), SOR, DE4, GMG, and NWT (HEADTOL). If a
value of HCLOSE cannot be found, a default value that is an
estimate of machine precision is used. The use of HCLOSE
for perturbation testing can be deactivated by setting
NPGNMX to zero in the SOLN input file.

Output Requirements for MODFLOW

MODFLOW is expected to provide output in certain
forms so that it can be properly interpreted. GWM–VI uses
the output to determine the success of the flow-process run
and to obtain the values of heads, streamflows, and other
quantities needed to evaluate constraints and state variables
of the management problem. Much of the output is in the
form of unformatted files. These files contain heads or cell-
by-cell flow information. Control of the contents of the
unformatted files is specified in the MODFLOW Output
Control (OC) file. For many features, GWM–VI requires
cell-by-cell data that are written only when the COMPACT
BUDGET option is specified in the OC file; for this reason,
COMPACT BUDGET must be specified whenever a GWM–
VI run requires cell-by-cell flow data. Detailed instructions
for producing unformatted output are given in following
sections for each type of constraint and state variable.
These are described using the notation and terminology of
MODFLOW-2005 (Harbaugh, 2005).

Listing File
GWM–VI gauges the success of a run of the simulation

model by examining the listing file produced by each run.

GWM–VI does a case-sensitive search of the listing file
looking for one of these phrases:

‘FAILED TO MEET SOLVER CONVERGENCE’
‘Failure to converge’
‘FAILED TO CONVERGE’
To function properly, the MODFLOW version used

must output one of these phrases to the Listing File when
convergence has failed. Otherwise, GWM–VI will assume
that the run has converged. At least one of these phrases is
produced by the versions of MODFLOW with which GWM–
VI has been tested. Other MODFLOW versions may need to
be coded to include one of these phrases in the listing file.

Head Constraints and Head State Variables
When head constraints or head state variables are used,

unformatted information about heads needs to be written to
a file that is identified in the NAM file as a DATA(BINARY)
file. The unit number assigned to this binary file must match
the unit number specified in the Output Control file for the
value of IHEDUN (HEAD SAVE UNIT).

GWM–VI requires heads for three cases:
(1) the time step at the end of a stress period at which

each head constraint is imposed,
(2) the time step at the end of a stress period at which

each head-type state variable is imposed,
(3) all time steps in any stress period in which a flow-

rate decision variable is allowed to be active (these
heads are used to evaluate if the cell containing a
well has converted to “dry”).

It is up to the user to ensure that the required head data are
written to the binary file; MMProc has limited ability to
recognize that required data are missing.

Streamflow Constraints and Streamflow State
Variables

When a GWM–VI problem includes streamflow
constraints or streamflow state variables, the SFR Package
needs to write unformatted information about streamflow.
Streamflow constraints and state variables can be either
flow-type (representing flow in the stream leaving the
specified reach) or leak-type (representing flow between
the aquifer and stream in the specified reach). Flow and
leakage information are written to separate unformatted
files, each of which must be identified in the NAM file as
a DATA(BINARY) file. The unit number assigned to the
binary file that is to contain streamflow or leakage data
must match the unit number specified in the SFR input file.
Leakage data are read from a binary file associated with a
positive value of ISTCB1; flow data are read from a binary
file associated with a negative value of ISTCB2 (Niswonger
and Prudic, 2006; appendix 1). When using streamflow
constraints or streamflow state variables, it is necessary to
use MODFLOW Output Control using words and to specify
the COMPACT BUDGET option.

Using GWM–VI   13

GWM–VI requires streamflow data for:
(1) the time step at the end of a stress period at which

each streamflow constraint (either flow or leakage)
is imposed, and

(2) the time step at the end of a stress period at which
each streamflow-type state variable (either flow or
leakage) is defined.

Storage State Variables
When storage state variables are used, unformatted

information about groundwater-storage changes needs to
be written to a file that is identified in the NAM file as a
DATA(BINARY) file. The unit number assigned to this binary
file must match the unit number specified in the BCF6 input
file for the value of IBCFCB if using the Block-Centered Flow
Package, in the LPF input file for the value of ILPFCB if using
the Layer-Property Flow Package, in the HUF input file for the
value of IHUFCB if using the Hydrologic-Unit Flow Package
(Anderman and Hill, 2000), or in the UPW input file for the
value of IUPWCB if using the Upstream Weighting Package
(Niswonger and others, 2011). Storage-change information
that is written to the binary file must include information at all
the time steps required by GWM–VI. Data in the file for time
steps not required by GWM–VI are ignored.

GWM–VI requires storage-change information at every
time step spanned by the storage state variables SPSTRT and
SPEND. For example, if a problem has 10 stress periods, each
with 5 time steps, and the storage state variable is defined over
stress periods 3 through 5, then GWM–VI will require that the
binary file contain storage change information at time steps 11
through 25 for a total of 15 time steps. If multiple storage state
variables are present, then the inclusive set of time steps must
be written to the binary file.

Drain Package State Variables
When Drain-Package state variables are used,

unformatted information about drain flow needs to be
written to a file that is identified in the NAM file as a
DATA(BINARY) file. The unit number assigned to this
binary file must match the unit number specified in the
DRN file for the value of IDRNCB. Drain information
should be saved to the binary file (using ICBCFL (SAVE
BUDGET) in the Output Control file) at the time steps
needed by GWM–VI. When using drain-flow state
variables, it is necessary to use MODFLOW Output
Control using words and to specify the COMPACT
BUDGET option.

GWM–VI requires drain information for the following:
(1) the time step at the end of a stress period at which

each flow-type drain state variable is defined; and
(2) every time step spanned by a volume-type drain

state variable as defined by the starting and ending
stress periods, SPSTRT and SPEND.

The Drain Package allows multiple drains to be defined
in a single cell of the MODFLOW grid. If a managed drain
is present in a cell that has multiple drains, then a method
must be available to distinguish among the drains in that
cell. GWM–VI accomplishes this by using the AUXILIARY
variable option in the Drain Package. The user defines the
name of the AUX variable in data set 2 of the Drain Package
input. The name used for GWM auxiliary variables must
be “GWM-DR.” This name can appear with other auxiliary
variables, which can be in any order. The user then defines
a value for the auxiliary variable in data sets 4 and 6 of the
Drain Package input. These values should be positive integer
numbers; they serve as an index to identify the drain in that
cell. In the GWM state variable input file, each drain cell is
identified by its layer, row, column location and, optionally,
its auxiliary variable index number. GWM–VI determines the
correct drain, when multiple drains are present in a single cell,
by matching the auxiliary variable values in the GWM state
variable file and the Drain Package input file. When using
GWM–VI and auxiliary variables are used to identify drains,
ensure that the Output Control input file specifies “COMPACT
BUDGET AUXILIARY” (or AUX in place of AUXILIARY).
Otherwise, the required auxiliary variables of the Drain
Package will not be written to the binary budget file, and
GWM–VI will not be able to match managed drains with drain
boundaries defined in the Drain Package.

Using GWM–VI
A GWM–VI run involves a series of program executions,

file creations, and extractions of information from model-
output files. When all input instructions are properly
structured, this series of steps is automatic; the user simply
invokes GWM–VI and a complete run is carried out. Any of
the test files distributed with GWM–VI can be used to observe
the program steps carried out automatically and in proper
sequence; running these analyses in parallel-processing mode
requires a computer with a minimum of two processors or
processor cores. In setting up a new program run, it may be
useful to understand this sequence of steps; they are described
in detail here with reference, as an example, to the input file
for the DEWATER test problem, which can be found in the set
of problems distributed with GWM–VI.

GWM–VI may be run in serial-processing mode using a
single processor, or in parallel-processing mode using multiple
processors. This choice is indicated by parameters set in the
CONTROL input file. The mode selected determines the
directory structure required and the output generated. In both
modes, the user creates a directory in which a single instance
of GWM–VI is executed. When using either mode, this
directory is the “master” directory.

When run in either serial-processing or parallel-
processing mode, GWM–VI reads the GWM–VI input
file described in the section titled “GWM–VI File Input
Instructions.” Details of processing by the GWM–VI suite of

14   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

programs to perform a groundwater-flow simulation depend on
the selected processing mode. The following sections describe
the use of GWM–VI in serial- and parallel-processing modes.

Sequence of Program Execution—Serial
Processing

Figure 3 illustrates the flow of data among programs
when GWM–VI is used in serial-processing mode. Execution
of GWM–VI in serial-processing mode begins with
running the executable GWM–VI.exe, which uses as input
a GWM–VI input file (for example, file dewater_serial.
gwm). GWM–VI proceeds to prepare files for the rest of the
execution. MMProc.in.jtf is a JUPITER API template file
created by GWM–VI that contains information needed to
generate input for MODFLOW (for example, the locations
of flow-rate decision variables) and information needed to
interpret the MODFLOW output (for example, the names
of the binary files containing output and the cell locations
for constraints). SimulatedValues.jif is a JUPITER API
instruction file created by GWM–VI, which contains
instructions on how to extract values of state variables and
values subject to constraints defined in other GWM input
from the SimulatedValues.out file written by MMProc.
Modflow_status.jif is an instruction file created by GWM–VI,
which contains instructions on how to extract values from
the modflow.status file written by MMProc. If MNW-type
decision variables are present, then a template file named
mnw2_input.jtf is created, which is used by GWM–VI to
generate the MNW2 input file used by MODFLOW. The
resulting MNW2 input file will contain information to define
managed MNW wells in addition to unmanaged MNW wells,
if any are used.

In preparation for a run of MODFLOW, MMProc.in is
created by GWM–VI from MMProc.in.jtf by replacing the
placeholders for the flow rates for flow-rate decision variables
with the actual flow rates to be used in the run. A new
MNW2 Package input file is also created by GWM–VI using
mnw2_input.jtf, if MNW-type flow-rate decision variables
are present. Then, MMProc is run. MMProc creates a new
WEL Package input file, if WEL-type flow-rate decision
variables are present. MMProc then executes MODFLOW by
submitting the SimCommand specified in the Simulation input
block of the CONTROL file to the operating system. When the
MODFLOW run has completed, MMProc extracts information
of interest from MODFLOW output files and writes the
modflow.status and SimulatedValues.out files.

Making a Serial Optimization Run

When GWM–VI is to be run in serial-processing mode,
the CONTROL file listed in the GWM input file needs to
contain a Simulation input block and a Model_Command_
Lines input block, as described in the “CONTROL File Input
Instructions” section. The CONTROL file also may contain an
Options input block, a Parallel_Control input block, and(or)

a Parallel_Runners input block. If the CONTROL file does
not contain a Parallel_Control input block, the processing
mode defaults to serial processing. If a Parallel_Control input
block is included, it should specify PARALLEL as false.
When PARALLEL is specified as false, other entries in the
Parallel_Control input block are ignored, as is the Parallel_
Runners input block. When making an optimization run in
serial-processing mode, all processing is based in the directory
where GWM–VI is invoked. In the event of an abnormal
termination of MMProc, please refer to the “Error Handling
and Importance of Maintaining Duplicate Well and MNW2
Input Files” section.

Setting Up Directories and Files—Parallel
Processing

Before using GWM–VI in parallel-processing mode,
the user must set up “runner” directories in which model
runs are to be made, potentially simultaneously, for the
purpose of populating the response matrix. The runner
directories may be on the same computer as the one running
GWM–VI or on other computers on a local area network.
GWM–VI must be able to read and write files in all runner
directories. The naming convention \\server\directory\
directory\ (for Windows) or //server/directory/directory/
(for Unix or Linux) may be used in the Parallel_Runners
input block of the CONTROL file to reference directories on
networked computers. If multiple computers on a network
are to be used, the computers must use the same line-ending
convention for text files. For example, if GWM–VI is run
on a computer running the Windows operating system, then
only computers running Windows are candidates for use
in parallel processing. Similarly, if GWM–VI is run on a
computer running any version of Unix or Linux, then only
computers running Unix or Linux are candidates for parallel
processing.

For successful parallel processing, care needs to be
taken to ensure the following: (1) GWM–VI is able to read
and write files in all runner directories; (2) The commands
to invoke MODFLOW and MMProc, as specified in the
GWM–VI CONTROL input file, are valid in the master
directory where GWM–VI is invoked and in each of the
runner directories; (3) All model-input files other than those
that will be controlled by GWM–VI, JRunnerM, and MMProc
are identical; (4) When WEL-type or MNW-type flow-rate
decision variables are used, separate copies of WEL and(or)
MNW2 Package input files for simulating unmanaged wells
reside in both master and runner directories; and (5) Output
files generated by instances of MODFLOW and MMProc
running in the runner directories can be written without
interfering with each other. Regarding item (4), if there
are WEL-type or MNW-type flow rate decision variables,
then the WEL and(or) MNW2 Package input files will be
rewritten by GWM–VI, JRunnerM, or MMProc, in each case,
combining managed and unmanaged flows into a single file.

Using GWM–VI   15

Optimum Performance of Parallel Processing

For optimum performance, the number of programs
(including GWM–VI and all instances of JRunnerM) in use
at one time on a given computer generally needs to be limited
to the number of processors or processor cores installed
in the computer. The available random-access memory
(RAM) installed in each computer also needs to be taken
into account when determining how many instances of the
groundwater model are to be run on a computer. When the
RAM requirement of a single MODFLOW simulation is large,
the number of simulations that can be simultaneously and
efficiently run on a computer may be limited by the amount
of installed RAM rather than the number of processors.
Because of slow access times of virtual (disk-based) memory
relative to RAM, it is worthwhile to ensure that GWM–VI and
MODFLOW never use virtual memory. When deciding how
many runners to use on a particular computer, ensure that the
computer has enough RAM to accommodate MODFLOW

runs for all runners simultaneously. If RAM is limiting, reduce
the number of runners on that computer to avoid the use of
virtual memory.

If the RAM requirement is not a limiting factor, the
appropriate number of runner directories to use for a parallel-
processing optimization run will depend on the number
of processors or processor cores available, the number of
flow-rate decision variables included in the analysis, and
possibly, the speed of the local area network and the available
processors. When the response matrix needs to be populated,
one model run for each flow-rate decision variable is required
in addition to a base model run. For the fastest possible
execution time, a number of runners equal to the number
of flow-rate decision variables should be used. When the
number of flow-rate decision variables exceeds the number of
runner directories in use, some or all of the runners will need
to make multiple model runs. GWM–VI dispatches model
runs to runners as they become available. While model runs
are executing in the runner directories, GWM–VI remains

Figure 3.  Flow of data used by the GWM–VI suite of programs during serial processing. Rectangles represent
programs; rhomboids represent files.

16   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

running and consuming processor time. If more than about
four processors are available, processing may be facilitated by
dedicating one processor to running GWM–VI. If the number
of available processors is four or fewer, the advantage gained
by dedicating a processor to run GWM–VI is reduced, and it
may be advantageous to use as many runners as there are total
available processors.

Sequence of Program Execution—Parallel
Processing

The flow of information for model runs conducted in
runner directories during parallel processing is illustrated in
figure 4. When GWM–VI is used in parallel-processing mode,
processing related to base groundwater-flow simulations
is conducted in the master directory, and the procedure
described in the “Sequence of Program Execution—Serial
Processing” section applies. However, in parallel-processing
mode, all model runs needed to populate the response matrix
are conducted in the runner directories. This section describes
the sequence of program execution for the potentially
simultaneous model runs in the runner directories.

Before an optimization run can be made in parallel-
processing mode, runner directories must be set up as
described in the “Setting Up Directories and Files—Parallel

Processing” section and populated as needed with current
model-input files. The user starts an instance of JRunnerM
in each runner directory to be used by GWM–VI, then starts
GWM–VI.

Once GWM–VI has read all input, it attempts to
communicate with each runner, using signal files as
documented by Banta and others (2006). GWM–VI makes
base groundwater-flow simulations using the SimCommand
provided in the Model_Command_Lines input block of
the CONTROL file. When the response matrix needs to
be populated, GWM–VI instructs JRunnerM to make
groundwater-flow simulations in the runner directories with
perturbed flow-rate decision variables as needed by writing
signal files named jdispar.rdy. When JRunnerM recognizes
the presence of a file named jdispar.rdy, it reads the managed
stress rates to be simulated by the Well and MNW2 Packages.
For each run to be made by a runner, JRunnerM creates new
versions of the MNW2 Package and MMProc input files,
which include the stresses applied to the flow-rate decision
variables for that run in addition to the unmanaged stresses. In
each runner directory, JRunnerM invokes MMProc.

If there are managed stresses to be simulated with the
Well Package, MMProc prepares a Well-Package input file
by combining any unmanaged stresses in the existing Well-
Package input file with managed stresses. When the Well-
Package input file has been written, MMProc submits the

Figure 4.  Flow of data used by the GWM–VI suite of programs during parallel processing. Rectangles represent
programs; rhomboids represent files.

Using GWM–VI   17

SimCommand provided in the Simulation input block of the
CONTROL to the operating system to initiate the MODFLOW
simulation. As for serial-processing, when the simulation has
completed, MMProc extracts model-simulated values from
MODFLOW binary output files and writes the modflow.status
and SimulatedValues.out files. JRunnerM extracts values from
modflow.status and, assuming the flags in modflow.status
indicate that convergence was achieved and that no managed-
flow cells went dry, it extracts model-calculated values needed
for populating the response matrix from SimulatedValues.
out. JRunnerM then writes the model-calculated values to a
signal file named jrundep.rdy. When GWM–VI recognizes the
presence of jrundep.rdy, it reads the model-calculated values
and uses them to populate the response matrix. In the event of
an abnormal termination of MMProc, please refer to the “Error
Handling and Importance of Maintaining Duplicate Well and
MNW2 Input Files” section.

If the number of flow-rate decision variables exceeds
the number of available processors, GWM–VI will assign
model runs to available processors as model runs complete
and processors become available. GWM–VI will wait for a
model run to complete, unless the execution time exceeds
an expected run time multiplied by TimeOutFactor of the
Parallel_Control input block of the CONTROL input file.
The expected run time for each runner is set initially to the
RunTime provided in the Parallel_Runners input block and is
updated as model runs are completed.

Making a Parallel Optimization Run

When the master and runner directories have been properly
set up with all required input files, a parallel-processing run of
GWM–VI can be made. For most efficient operation, invoke
JRunnerM in each runner directory listed in the Parallel_
Runners input block of the CONTROL file before starting
GWM–VI. If JRunnerM is started in only a subset of the
runner directories, GWM–VI will run and use the functioning
runners, but if JRunnerM has not been invoked in any of the
runner directories, GWM–VI will stop with an appropriate error
message. When the Parallel_Runners input block lists runner
directories where JRunnerM has not been started, GWM–VI

checks for signal files in those directories. This checking is
necessary to allow runners to be started at a later time and to
be included in the parallel processing, but if a runner is not
to be used, efficiency is improved by eliminating it from the
Parallel_Runners input block. When JRunnerM has been started
in one or more runner directories, GWM–VI can be started, and
processing proceeds as described in the “Sequence of Program
Execution—Parallel Processing” section.

Output from the GWM–VI Suite of Programs

GWM–VI and the other programs in the suite produce:
(1) output files describing the results of the groundwater-
management problem, (2) files listing values extracted or
interpreted from MODFLOW output, and (3) a variety of
communication files. The communication files can normally
be ignored by the user. However, if the program fails to
function properly it may be useful to review these files. All
output files are discussed in this section.

The file identified in the GWM input file with the OUT
keyword is the primary output file from GWM–VI and
contains the main output from the GWM Process. This file is
nearly identical in content to the corresponding file produced
by runs of GWM-2005.

MODFLOW is expected to produce a listing file and
binary files that meet the requirements described in the
“Output Requirements for MODFLOW” section of this report.
MODFLOW may also produce other files depending on its
input settings. These will be ignored by GWM–VI. If running
GWM–VI in parallel-processing mode, it is recommended that
the listing and binary files be written to the directory, either
master or runner, in which MODFLOW is executed. This is
demonstrated with the distribution test problems.

The GWM–VI suite of programs creates a set of
communication files that convey information among
GWM–VI, MMProc, and JRunnerM. These files are retained
at the completion of a run of GWM–VI and can be viewed to
diagnose problems. They may be discarded by the user after a
run of GWM–VI has completed. The files are listed in table 1
along with brief descriptions of their contents. Files that are
generated for the benefit of the user are listed in table 2.

Table 1.  Files used to communicate information among GWM–VI, MMProc, and JRunnerM.

File name Written by Read by Contents

MMProc.in.jtf GWM-VI GWM-VI or JRunnerM Template file for creating input file for MMProc; copied to all
Runner directories by GWM-VI

MMProc.in GWM-VI or JRunnerM MMProc Input file for MMProc; written by GWM‑VI in Master
directory and by JRunnerM in Runner directories

Mnw2_input.jtf GWM-VI GWM-VI or JRunnerM Template file used to create MNW2 input file

Modflow_status.jif GWM-VI GWM-VI or JRunnerM Instructions for extracting values from Modflow.status file

Modflow.status MMProc GWM-VI or JRunnerM Status report containing information about a MODFLOW run

SimulatedValues.jif GWM-VI MMProc Instructions for extracting values from SimulatedValues.out file

SimulatedValues.out MMProc GWM-VI or JRunnerM Values produced by MODFLOW

18   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

Acknowledgments
The authors gratefully acknowledge the support of

the USGS Groundwater Resources Program and the USGS
California Water Science Center and the assistance of Kevin
Mulligan of the University of Massachusetts, who performed
substantial testing of GWM–VI.

References Cited

Ahlfeld, D.P., Baker, K.M., and Barlow, P.M., 2009, GWM-
2005—A Groundwater-Management Process for MOD-
FLOW-2005 with Local Grid Refinement (LGR) capability:
U.S. Geological Survey Techniques and Methods, 6-A33,
65 p., http://water.usgs.gov/nrp/gwsoftware/mf2005_gwm/
MF2005-GWM.html.

Ahlfeld, D.P., Barlow, P.M., and Baker, K.M., 2011, Docu-
mentation for the State Variables Package for the Ground-
water-Management Process of MODFLOW-2005 (GWM-
2005): U.S. Geological Survey Techniques and Methods
6-A36, 45 p., http://water.usgs.gov/nrp/gwsoftware/mf2005_
gwm/MF2005-GWM.html.

Ahlfeld, D.P., and Barlow, P.M., 2013, Use of multi-node
wells in the Groundwater-Management Process of MOD-
FLOW-2005 (GWM-2005): U.S. Geological Survey
Techniques and Methods 6-A47, http://water.usgs.gov/nrp/
gwsoftware/mf2005_gwm/MF2005-GWM.html.

Ahlfeld, D.P., Barlow, P.M., and Mulligan, A.E., 2005,
GWM—A Ground-Water Management Process for the U.S.
Geological Survey modular ground-water model (MOD-
FLOW-2000): U.S. Geological Survey Open-File Report
2005–1072, 124 p., http://water.usgs.gov/nrp/gwsoftware/
mf2k-gwm/MF2K-GWM.html.

Anderman, E.R., and Hill, M.C., 2000, MODFLOW-2000,
the U.S. Geological Survey modular ground-water model—
Documentation of the Hydrogeologic-Unit Flow (HUF)
Package: U.S. Geological Survey Open-File Report 00–342,
89 p., http://water.usgs.gov/nrp/gwsoftware/modflow2005/
modflow2005.html.

Anderman, E.R., and Hill, M.C., 2003, MODFLOW-2000,
the U.S. Geological Survey modular ground-water
model—Three additions to the Hydrogeologic-Unit Flow
(HUF) Package—Alternative storage for the upper-
most active cells, Flows in hydrogeologic units, and
the Hydraulic-conductivity depth-dependence (KDEP)
capability: U.S. Geological Survey Open-File Report
03–347, 36 p., http://pubs.er.usgs.gov/publication/
ofr03347.

Anderman, E.R., Kipp, K.L., Hill, M.C., Valstar, Johan, and
Neupauer, R.M., 2002, MODFLOW-2000, the U.S. Geo-
logical Survey modular ground-water model—Documen-
tation of the Model-Layer Variable-Direction Horizontal
Anisotropy (LVDA) capability of the Hydrogeologic-Unit
Flow (HUF) Package: U.S. Geological Survey Open-File
Report 02–409, 60 p., http://pubs.er.usgs.gov/publication/
ofr02409/.

Banta, E.R., Hill, M.C., Poeter, Eileen, Doherty, J.E., and
Babendreier, Justin, 2008, Building model analysis
applications with the Joint Universal Parameter IdenTi-
fication and Evaluation of Reliability (JUPITER) API:
Computers & Geosciences, v. 34, no. 4, p. 310–319.
[April, 2008]

Banta, E.R., Poeter, E.P., Doherty, J.E., and Hill, M.C.,
2006, JUPITER—Joint Universal Parameter IdenTifi-
cation and Evaluation of Reliability—An application
programming interface (API) for model analysis: U.S.
Geological Survey Techniques and Methods, book 6,
chap. E1, 268 p., http://pubs.er.usgs.gov/usgspubs/tm/
tm6E1.

Harbaugh, A.W., 2005, MODFLOW-2005, the U.S.
Geological Survey modular ground-water model—The
ground-water flow process: U.S. Geological Survey
Techniques and Methods, book 6, chap. A16, variously
paginated, http://pubs.er.usgs.gov/usgspubs/tm/tm6A16.

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald,
M.G., 2000, MODFLOW-2000, the U.S. Geological Survey
modular ground-water model—User guide to modulariza-
tion concepts and the Ground-Water Flow Process: U.S.
Geological Survey Open-File Report 00–92, 121 p.,
http://pubs.er.usgs.gov/publication/ofr200092.

Table 2.  Files generated by GWM–VI, MMProc, and JRunnerM for user.

File name Written by Contents

MMProc.out MMProc Echo of input read by MMProc

Run0000#._ext JRunnerM Values extracted from files written by MMProc; the 0000# part of the file name identifies the run
number. These files can be useful when trying to identify problems that may be encountered
during parallel processing.

__.mnw2_COPY.TXT GWM-VI Backup copy of the unmanaged MNW2 file; retained in case of unexpected program failure

__.wel_COPY.TXT MMProc Backup copy of the unmanaged WEL file; retained in case of unexpected program failure

http://water.usgs.gov/nrp/gwsoftware/mf2005_gwm/MF2005-GWM.html
http://water.usgs.gov/nrp/gwsoftware/mf2005_gwm/MF2005-GWM.html
http://water.usgs.gov/nrp/gwsoftware/mf2005_gwm/MF2005-GWM.html
http://water.usgs.gov/nrp/gwsoftware/mf2005_gwm/MF2005-GWM.html
http://water.usgs.gov/nrp/gwsoftware/mf2k-gwm/MF2K-GWM.html
http://water.usgs.gov/nrp/gwsoftware/mf2k-gwm/MF2K-GWM.html
http://water.usgs.gov/nrp/gwsoftware/modflow2005/modflow2005.html
http://water.usgs.gov/nrp/gwsoftware/modflow2005/modflow2005.html
http://pubs.er.usgs.gov/publication/ofr03347
http://pubs.er.usgs.gov/publication/ofr03347
http://pubs.er.usgs.gov/publication/ofr02409
http://pubs.er.usgs.gov/publication/ofr02409
http://pubs.er.usgs.gov/usgspubs/tm/tm6E1
http://pubs.er.usgs.gov/usgspubs/tm/tm6E1
http://pubs.er.usgs.gov/usgspubs/tm/tm6A16
http://pubs.er.usgs.gov/publication/ofr200092

References Cited   19

Konikow, L.F., Hornberger, G.Z., Halford, K.J., and Hanson,
R.T., 2009, Revised Multi-Node Well (MNW2) package for
MODFLOW ground-water flow model: U.S. Geological
Survey Techniques and Methods, book 6, chap. A30, 67 p.,
http://pubs.usgs.gov/tm/tm6a30/.

Langevin, C.D., Thorne, D.T., Jr., Dausman, A.M., Sukop,
M.C., and Guo, Weixing, 2008, SEAWAT version 4—A
computer program for simulation of multi-species solute
and heat transport: U.S. Geological Survey Techniques and
Methods, book 6, chap. A22, 39 p., http://pubs.usgs.gov/tm/
tm6a22/.

Mehl, S.W., and Hill, M.C., 2005, MODFLOW-2005, The
U.S. Geological Survey modular ground-water model—
Documentation of shared node Local Grid Refinement
(LGR) and the Boundary Flow and Head (BFH) Package:
U.S. Geological Survey Techniques and Methods, book 6,
chap. A12, 68 p., http://pubs.usgs.gov/tm/2006/tm6a12/.

Mehl, S.W., and Hill, M.C., 2007, MODFLOW-2005, The
U.S. Geological Survey modular ground-water model—
Documentation of the Multiple-Refined-Areas capability of
Local Grid Refinement (LGR) and the Boundary Flow and
Head (BFH) Package: U.S. Geological Survey Techniques
and Methods, bk. 6, chap. A21, 13 p., http://pubs.usgs.gov/
tm/2007/06A21.

Niswonger, R.G., Panday, Sorab, and Ibaraki, Motomu,
2011, MODFLOW–NWT, A Newton formulation for
MODFLOW–2005: U.S. Geological Survey Techniques and
Methods, book 6, chap. A37, 44 p., http://pubs.usgs.gov/tm/
tm6a37/.

Niswonger, R.G., and Prudic, D.E., 2006, Documentation
of the Streamflow-Routing (SFR2) Package to include
unsaturated flow beneath streams—A modification to SFR1
(ver. 1.1, April 2006): U.S. Geological Survey Techniques
and Methods, book 6, chap. A13, 48 p., http://pubs.usgs.
gov/tm/2006/tm6A13/.

Schmid, Wolfgang, Hanson, R.T., Maddock, Thomas, III,
Leake, S.A., 2006, User guide for the Farm Process
(FMP1) for the U.S. Geological Survey’s modular three-
dimensional finite-difference ground-water flow model,
MODFLOW-2000: U.S. Geological Survey Techniques
and Methods 6-A17, 127 p., http://pubs.usgs.gov/tm/2006/
tm6A17/.

Schmid, Wolfgang, and Hanson, R.T., 2009, The Farm Process
Version 2 (FMP2) for MODFLOW–2005—Modifications
and upgrades to FMP1: U.S. Geological Survey Techniques
and Methods 6‑A32, 102 p., http://pubs.usgs.gov/tm/tm6a32/.

Shoemaker, W.B., Kuniansky, E.L., Birk, S., Bauer, S., and
Swain, E.D., 2007, Documentation of a Conduit Flow
Process (CFP) for MODFLOW-2005: U.S. Geological
Survey Techniques and Methods, book 6, chap. A24, 50 p.,
http://water.usgs.gov/ogw/cfp/cfp.htm.

Publishing support provided by:
Denver Publishing Service Center

For more information concerning this publication, contact:
Director, USGS Colorado Water Science Center
Box 25046, Mail Stop 415
Denver, CO 80225
(303) 236-4882

Or visit the Colorado Water Science Center Web site at:
http://co.water.usgs.gov/

http://pubs.usgs.gov/tm/tm6a30/
http://pubs.usgs.gov/tm/tm6a22/
http://pubs.usgs.gov/tm/tm6a22/
http://pubs.usgs.gov/tm/2006/tm6a12/
http://pubs.usgs.gov/tm/2007/06A21
http://pubs.usgs.gov/tm/2007/06A21
http://pubs.usgs.gov/tm/tm6a37/
http://pubs.usgs.gov/tm/tm6a37/
http://pubs.usgs.gov/tm/2006/tm6A13/
http://pubs.usgs.gov/tm/2006/tm6A13/
http://pubs.usgs.gov/tm/2006/tm6A17/
http://pubs.usgs.gov/tm/2006/tm6A17/
http://pubs.usgs.gov/tm/tm6a32/
http://water.usgs.gov/ogw/cfp/cfp.htm
http://co.water.usgs.gov/

Appendix 1   21

Input files and output for the Dewater sample problem
described in Ahlfeld and others (2005), adapted for use with
GWM–VI, are discussed in this section. All files referenced
here can be found in the sample problems distributed with
GWM–VI. The problem domain is illustrated in figure 1-1.
Details of the model and the management problem are as
described in Ahlfeld and others (2005). Briefly, the object of the
management problem is to minimize the cost of withdrawing
groundwater to lower heads to a suitable elevation in the
construction area identified in figure 1-1, so that footings for a
construction site can be installed. Only the linear formulation of
the Dewater problem is presented in this appendix.

As with the original sample problem, the MODFLOW
input files include a Name file. However, the contents of
the Name file used for the GWM–VI sample problem are
somewhat different from that used for the original sample
problem to account for the additional files that are needed for
the GWM–VI run. The Name file (dewater.nam) is to be read
by MODFLOW-2005 and appears as follows:

LIST 10 dewater.lst
DIS 11 ..\data\dewater.dis
BAS6 12 ..\data\dewater.ba6
BCF6 13 ..\data\dewater.bc6
PCG 14 ..\data\dewater.pcg
OC 15 ..\data\dewater.oc
WEL 16 dewater.wel
data(binary) 50 dewaterhd.bin REPLACE

As with the Name file in the original problem, a Discretization
(DIS) file, a Basic Package (BAS6) file, a Block-Centered
Flow Package (BCF6) file, and a Preconditioned Conjugate-
Gradient Package (PCG) file are included. The contents of
these files are unchanged from the original problem. Unlike
the Name file in the original sample problem, the Name file
does not include the GWM keyword.

Three additional files are added to the Name file to meet
the requirements of GWM–VI. A data(binary) file is identified.
This file contains the heads calculated by MODFLOW. An

Appendix 1: Example of Use of GWM–VI with the Dewater Problem

Figure 1-1.  Model setup for Dewater example (modified from fig. 7 of Ahlfeld and others, 2005).

22   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

Output Control (OC) file is added to provide specific output
instructions as follows:
OC file (dewater.oc):

HEAD PRINT FORMAT 20
head save unit 50
compact budget
PERIOD 1 STEP 1
PRINT HEAD
save budget
save head

Note that the OC file instructs MODFLOW to save heads to
unit 50, which is identified in the Name file as a binary data
file. A Well Package (WEL) file is added to provide a name
for a file to which decision-variable flows can be written. The
Dewater sample problem does not have any unmanaged wells,
so the Well file indicates zero unmanaged wells.
WEL file (dewater.wel):
Original WEL file for dewater case (no unmanaged wells)
0 0 # Item 1: MXACTW IWELCB
0 0 # Item 5: ITMP NP, stress period 1

The contents of the DECVAR, OBJFNC, VARCON,
HEDCON, and SOLN files are unchanged from those
documented in Ahlfeld and others (2005). As described in the
“GWM–VI File Input Instructions” section of this report, the
entries for CONTROL and NAM files in the main GWM–VI
input file are new requirements. The CONTROL file, among
other things, controls the mode (either serial or parallel) in
which GWM–VI will run. The NAM file is the MODFLOW
Name file, and is shown above.

Files for running the linear formulation of the Dewater
management problem in either serial or parallel mode are
provided in the distribution. Like all the example problems,
the Dewater problem includes a batch file, which can be
used to invoke GWM–VI in either serial or parallel model.
Serial model is invoked by providing the word “serial” as a
command-line option following the batch file name on the
command line. Parallel mode is invoked when the batch file is
run without a command-line option. Execution of GWM–VI in
both modes is explained in the following sections.

Running the Dewater Problem in Serial Mode

The input file dewater_serial.gwm is provided for running
the Dewater problem in serial mode. It contains:

OUT dewater.gwmout.serial
DECVAR ..\data\dewater.decvar
OBJFNC ..\data\dewater.objfnc
VARCON ..\data\dewater.varcon
HEDCON ..\data\dewater.hedcon
SOLN ..\data\dewater.soln
CONTROL ..\data\dewater_serial.ctrl
NAM ..\data\dewater.nam

The CONTROL file for the serial-mode run, dewater_serial.ctrl,
contains:

BEGIN Options
 Verbose = 3
 MessageFile = dewater_messages.txt
END Options
BEGIN Simulation
 SimCommand = “..\..\bin\mf2005dbl ..\data\dewater.nam”
END Simulation
BEGIN Model_Command_Lines
 command = ..\data\dewater_cmr.bat
 commandid = Dewater_cmr
END Model_Command_Lines
BEGIN Parallel_Control
 parallel=false
END Parallel_Control

The Simulation input block includes the SimCommand
that gives the path for the executable to be used for
MODFLOW runs. The Command keyword in the Model_
Command_Lines block references a DOS batch file that
invokes the MMProc executable file.

Note that the default value of “parallel” in the Parallel_
Control input block is “false” and that the Parallel_Control
input block is optional. If the Parallel_Control input block
is omitted from the dewater_serial.ctrl file, GWM–VI will
execute in serial mode, as it will with the CONTROL file
shown above.

If dewater.bat is invoked with the word “serial” as a
command-line option following the batch-file name on the
command line, the Dewater problem runs in serial mode, and,
to avoid ambiguity, the output file “dewater.gwmout” is copied
to a file with the name “dewater.gwmout.serial.” The main
output file for the serial-mode run of the Dewater problem
follows. (Note that the file extends across several pages.):

Appendix 1   23

 GWM-VI
 U.S. GEOLOGICAL SURVEY GROUNDWATER MANAGEMENT VERSION INDEPENDENT PROGRAM
 Version 1.0.0

 OPENING GWM FILE FOR GWM1 -- GROUNDWATER MANAGEMENT PROCESS
 INPUT READ FROM UNIT 7

 # DEWATER Sample Problem, GWM file - Serial

 OPENING DECISION-VARIABLE FILE ON UNIT 12:
 ..\data\dewater.decvar

 #DEWATER Sample Problem, DECVAR file
 #August 14, 2006

 NO. OF FLOW-RATE DECISION VARIABLES (NFVAR) 7
 NO. OF EXTERNAL DECISION VARIABLES (NEVAR): 0
 BINARY VARIABLES ARE NOT ACTIVE.

 FLOW-RATE VARIABLES: WEL-TYPE
 FRACTION
 NUMBER NAME TYPE LAY ROW COL OF FLOW
 --
 1 Q1 WITHDRAWAL 1 7 14 1.0000
 AVAILABLE IN STRESS PERIODS: 1

 2 Q2 WITHDRAWAL 1 7 16 1.0000
 AVAILABLE IN STRESS PERIODS: 1

 3 Q3 WITHDRAWAL 1 8 15 1.0000
 AVAILABLE IN STRESS PERIODS: 1

 4 Q4 WITHDRAWAL 1 9 14 1.0000
 AVAILABLE IN STRESS PERIODS: 1

 5 Q5 WITHDRAWAL 1 9 16 1.0000
 AVAILABLE IN STRESS PERIODS: 1

 6 Q6 WITHDRAWAL 1 11 17 1.0000
 AVAILABLE IN STRESS PERIODS: 1

 7 Q7 WITHDRAWAL 1 13 16 1.0000
 AVAILABLE IN STRESS PERIODS: 1

 606 BYTES OF MEMORY ALLOCATED TO STORE DATA FOR DECISION VARIABLES

 CLOSING DECISION-VARIABLE FILE

24   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

 OPENING OBJECTIVE-FUNCTION FILE ON UNIT 12:
 ..\data\dewater.objfnc

 #DEWATER Sample Problem, OBJFNC file
 #February 20, 2005

 OBJECTIVE TYPE: MIN FUNCTION TYPE: WSDV

 NO. OF FLOW-RATE DECISION VARIABLES IN OBJECTIVE FUNCTION (NFVOBJ): 7
 NO. OF EXTERNAL DECISION VARIABLES IN OBJECTIVE FUNCTION (NEVOBJ): 0
 NO. OF BINARY DECISION VARIABLES IN OBJECTIVE FUNCTION (NBVOBJ): 0
 NO. OF STATE VARIABLES IN OBJECTIVE FUNCTION (NSVOBJ): 0

 OBJECTIVE FUNCTION: (excluding flow duration terms)

 MIN + 1.00E+00 Q1 + 1.00E+00 Q2 + 1.00E+00 Q3
 + 1.00E+00 Q4 + 1.00E+00 Q5 + 1.00E+00 Q6
 + 1.00E+00 Q7

 28 BYTES OF MEMORY ALLOCATED TO STORE DATA FOR OBJECTIVE-FUNCTION

 CLOSING OBJECTIVE-FUNCTION FILE

 OPENING DECISION-VARIABLE CONSTRAINTS FILE ON UNIT 12:
 ..\data\dewater.varcon

 #DEWATER Sample Problem, VARCON file
 #February 20, 2005

 FLOW RATE VARIABLES:
 MINIMUM MAXIMUM REFERENCE
 NUMBER NAME FLOW RATE FLOW RATE FLOW RATE
--
 1 Q1 0.000E+00 2.000E+04 0.000E+00
 2 Q2 0.000E+00 2.000E+04 0.000E+00
 3 Q3 0.000E+00 2.000E+04 0.000E+00
 4 Q4 0.000E+00 2.000E+04 0.000E+00
 5 Q5 0.000E+00 2.000E+04 0.000E+00
 6 Q6 0.000E+00 2.000E+04 0.000E+00
 7 Q7 0.000E+00 2.000E+04 0.000E+00

 CLOSING DECISION-VARIABLE CONSTRAINTS FILE

 OPENING HEAD CONSTRAINTS FILE ON UNIT 12:
 ..\data\dewater.hedcon

 #DEWATER Sample Problem, HEDCON file
 #February 20, 2005

Appendix 1   25

 HEAD CONSTRAINTS:
 MNW WELLID or RIGHT-HAND STRESS
 NUMBER NAME LAY ROW COL TYPE SIDE PERIOD

 1 b_01 1 6 13 < 5.0000E+01 1
 2 b_02 1 6 15 < 5.0000E+01 1
 3 b_03 1 6 17 < 5.0000E+01 1
 4 b_04 1 8 13 < 5.0000E+01 1
 5 b_05 1 8 17 < 5.0000E+01 1
 6 b_06 1 10 13 < 5.0000E+01 1
 7 b_07 1 10 15 < 5.0000E+01 1
 8 b_08 1 11 16 < 5.0000E+01 1
 9 b_09 1 14 16 < 5.0000E+01 1
 10 b_10 1 14 17 < 5.0000E+01 1

 700 BYTES OF MEMORY ALLOCATED TO STORE DATA FOR HEAD CONSTRAINTS

 CLOSING HEAD CONSTRAINTS FILE

 OPENING SOLUTION FILE ON UNIT 12:
 ..\data\dewater.soln

 #DEWATER Sample Problem, SOLN file
 #February 20, 2005

 SOLNTYP IS LP: GWM WILL COMPLETE A SINGLE ITERATION OF THE LINEAR PROBLEM.

 IRM EQUALS 2: RESPONSE MATRIX WILL BE CALCULATED BY GWM
 BUT NOT WRITTEN TO FILE

 MAXIMUM NUMBER OF LP ITERATIONS: 1000
 MAXIMUM NUMBER OF BRANCH AND BOUND ITER: 2000

 PERTURBATION VALUE: 0.50D+00

 MAXIMUM NUMBER OF PERTURBATION ATTEMPTS: 10
 PERTURBATION ADJUSTMENT FACTOR (PGFACT): 0.50000

 OUTPUT FROM BRANCH-AND-BOUND ALGORITHM WILL NOT BE PRINTED.

 CRITMFC SET TO 0.000D+00
 GWM WILL ACCEPT FLOW PROCESS RESULTS THAT MEET GWF
 CONVERGENCE CRITERIA

 BASE PUMPING RATES TAKEN FROM FVREF SPECIFIED IN VARCON INPUT FILE

 PROBLEM SIZE

 NUMBER OF VARIABLES (INCLUDING SLACKS) 17
 NUMBER OF CONSTRAINT EQUATIONS 10

 6439 BYTES OF MEMORY ALLOCATED FOR RESPONSE MATRIX ALGORITHM

26   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

 CLOSING SOLUTION AND OUTPUT FILE

 Reading input from file: ..\data\dewater_serial.gwm
 CONTROL file: ..\data\dewater_serial.ctrl
 NAM file: ..\data\dewater.nam

 Solution Algorithm

 Begin Solution Algorithm
 Running Base Flow Process Simulation
 Status of Simulation-Based Constraints
 Constraint Type Name Status Distance To RHS
 --------------- ---- ------ ---------------
 Head Bound b_01 Not Met 2.1724E+01
 Head Bound b_02 Not Met 2.0345E+01
 Head Bound b_03 Not Met 1.8966E+01
 Head Bound b_04 Not Met 2.1724E+01
 Head Bound b_05 Not Met 1.8966E+01
 Head Bound b_06 Not Met 2.1724E+01
 Head Bound b_07 Not Met 2.0345E+01
 Head Bound b_08 Not Met 1.9655E+01
 Head Bound b_09 Not Met 1.9655E+01
 Head Bound b_10 Not Met 1.8966E+01

 Distance to RHS is the absolute value of the difference between the
 the right hand side of the constraint and the left side of the
 constraint evaluated using the current set of decision variable values.

 Calculating Response Matrix
 Perturb Flow Variable 1
 By Perturbation Value: -1.000000E+04
 Perturb Flow Variable 2
 By Perturbation Value: -1.000000E+04
 Perturb Flow Variable 3
 By Perturbation Value: -1.000000E+04
 Perturb Flow Variable 4
 By Perturbation Value: -1.000000E+04
 Perturb Flow Variable 5
 By Perturbation Value: -1.000000E+04
 Perturb Flow Variable 6
 By Perturbation Value: -1.000000E+04
 Perturb Flow Variable 7
 By Perturbation Value: -1.000000E+04

 Average Number of Significant Digits in Matrix 1.011429E+01

 Solving Linear Program
 Feasible Solution Found
 Optimal Solution Found

Appendix 1   27

--
 Groundwater Management Solution
--

 OPTIMAL SOLUTION FOUND

 OPTIMAL RATES FOR EACH FLOW VARIABLE

Variable Withdrawal Injection Contribution
Name Rate Rate To Objective
---------- -------------- ------------ ------------
 Q1 1.077390E+03 1.077390E+06
 Q2 7.823877E+01 7.823877E+04
 Q3 0.000000E+00 0.000000E+00
 Q4 7.689506E+02 7.689506E+05
 Q5 0.000000E+00 0.000000E+00
 Q6 0.000000E+00 0.000000E+00
 Q7 9.410751E+02 9.410751E+05
 ------------ ------------ ------------
TOTALS 2.865655E+03 0.000000E+00 2.865655E+06

 OBJECTIVE FUNCTION VALUE 2.865655E+06

 BINDING CONSTRAINTS
Constraint Type Name Status Shadow Price
--------------- ---- ------ ------------
Head Bound b_01 Binding -2.7273E+04
Head Bound b_03 Binding -3.2593E+04
Head Bound b_06 Binding -3.1185E+04
Head Bound b_10 Binding -5.1544E+04

 Binding constraint and range analysis values are determined from the linear
 program and based on the response matrix approximation of the flow-process.

 RANGE ANALYSIS

 Constraint Ranges

 Lower/Upper Bound are the values of the RHS beyond which basis will change.
 Leaving is the variable which will leave the basis.
 Entering is the variable which will enter the basis.
 If the entering or leaving variable is a constraint name,
 then the constraint slack variable is active

Constraint Original Lower/Upper
Name Slack RHS Bound Entering Leaving
---------- ---------- ---------- ---------- ---------- ----------
b_01 0.0000E+00 5.0000E+01 4.9477E+01 b_03 Q2
 5.3228E+01 b_01 b_04

b_02 2.0745E+00 5.0000E+01 4.7926E+01 b_01 b_02
 Infinity ----- No Change -----

28   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

b_03 0.0000E+00 5.0000E+01 4.3065E+01 b_01 Q1
 5.0317E+01 b_03 Q2

b_04 2.0528E+00 5.0000E+01 4.7947E+01 b_01 b_04
 Infinity ----- No Change -----

b_05 1.1167E+00 5.0000E+01 4.8883E+01 Q3 b_05
 Infinity ----- No Change -----

b_06 0.0000E+00 5.0000E+01 4.7939E+01 b_03 Q2
 5.2635E+01 b_06 Q4

b_07 2.6182E+00 5.0000E+01 4.7382E+01 Q3 b_07
 Infinity ----- No Change -----

b_08 1.8584E+00 5.0000E+01 4.8142E+01 Q6 b_08
 Infinity ----- No Change -----

b_09 1.0158E+00 5.0000E+01 4.8984E+01 b_10 b_09
 Infinity ----- No Change -----

b_10 0.0000E+00 5.0000E+01 4.7205E+01 b_03 Q2
 5.0850E+01 b_10 b_09

 Objective-Function Coefficient Ranges

 Lower/Upper Bound are the values of the coefficients beyond which basis will change.
 Leaving is the variable which will leave the basis.
 Entering is the variable which will enter the basis.
 If the entering or leaving variable is a constraint name,
 then the constraint slack variable is active
 Basic variables are shown with zero reduced cost

Variable Reduced Original Lower/Upper
Name Cost Coefficient Bound Entering Leaving
---------- ---------- ---------- ---------- ---------- ----------
Q1 0.0000E+00 1.0000E+03 9.1368E+02 b_01 Q2
 1.0669E+03 Q3 Q2

Q2 0.0000E+00 1.0000E+03 8.6811E+02 b_03 Q1
 1.0438E+03 Q3 Q2

Q3 1.5770E+01 1.0000E+03 9.8423E+02 Q3 Q2
 Infinity ----- No Change -----

Q4 0.0000E+00 1.0000E+03 8.9312E+02 b_06 Q2
 1.0471E+03 Q3 Q2

Q5 4.4085E+01 1.0000E+03 9.5592E+02 Q5 Q2
 Infinity ----- No Change -----

Q6 7.4018E+01 1.0000E+03 9.2598E+02 Q6 Q2
 Infinity ----- No Change -----

Appendix 1   29

Q7 0.0000E+00 1.0000E+03 6.7387E+02 b_10 Q2
 1.1286E+03 Q6 Q2

 Final Flow Process Simulation

 Running Final Flow Process Simulation
 using Optimal Flow Variable Rates

 Status of Simulation-Based Constraints
 Using Optimal Flow Rate Variable Values

 Simulated Specified
 By Flow in
 Constraint Type Name Process Constraints Difference
 --------------- ---- ---------- ---------- ----------
 Head Bound b_01 5.0000E+01 < 5.0000E+01 9.4796E-10
 Head Bound b_02 4.7926E+01 < 5.0000E+01 -2.0745E+00
 Head Bound b_03 5.0000E+01 < 5.0000E+01 1.9886E-09
 Head Bound b_04 4.7947E+01 < 5.0000E+01 -2.0528E+00
 Head Bound b_05 4.8883E+01 < 5.0000E+01 -1.1167E+00
 Head Bound b_06 5.0000E+01 < 5.0000E+01 -9.0949E-10
 Head Bound b_07 4.7382E+01 < 5.0000E+01 -2.6182E+00
 Head Bound b_08 4.8142E+01 < 5.0000E+01 -1.8584E+00
 Head Bound b_09 4.8984E+01 < 5.0000E+01 -1.0158E+00
 Head Bound b_10 5.0000E+01 < 5.0000E+01 -2.8596E-09

 Difference is computed by subtracting right hand side of the constraint
 from the left side of the constraint.
 Precision limitations and nonlinear response may cause the
 values of the binding constraints computed directly by the flow process
 to differ from those computed using the linear program.

 Run end date and time (yyyy/mm/dd hh:mm:ss): 2013/03/28 14:12:12
 Elapsed run time: 2.155 Seconds

Running the Dewater Problem in Parallel Mode

The main input file for running the Dewater problem
in parallel mode is dewater_pll.gwm, which differs from
dewater_serial.gwm only in the CONTROL entry. It contains:

OUT dewater.gwmout.parallel
DECVAR ..\data\dewater.decvar
OBJFNC ..\data\dewater.objfnc
VARCON ..\data\dewater.varcon
HEDCON ..\data\dewater.hedcon
SOLN ..\data\dewater.soln
CONTROL ..\data\dewater_pll.ctrl
NAM ..\data\dewater.nam

The CONTROL file for the parallel-mode run, dewater_
pll.ctrl, contains:

BEGIN Options
 Verbose = 3
 MessageFile = dewater_messages.txt
END Options

BEGIN Simulation
 SimCommand = “..\..\bin\mf2005dbl ..\data\dewater.nam”
END Simulation

BEGIN Model_Command_Lines
 command = ..\data\dewater_cmr.bat
 commandid = Dewater_cmr
END Model_Command_Lines

BEGIN Parallel_Control
 parallel=true wait=0.01
 VerboseRunner=4
 AutoStopRunners = true
 TimeOutFactor = 4.0
END Parallel_Control

BEGIN Parallel_Runners table
 nrow=2 ncol=3 columnlabels
 RunnerName RunnerDir RunTime
 Runner1 ..\runner1\ 2.0
 Runner2 ..\runner2\ 2.0
END Parallel_Runners

Before invoking GWM–VI to run the Dewater problem
in parallel mode, the runner program JRunnerM is invoked in
each of the runner directories. The Dewater example is then
run by executing GWM–VI with input file dewater_pll.gwm.
When invoked without a command-line option, dewater.bat
starts JRunnerM in the runner directories and then invokes
GWM–VI in parallel mode. After GWM_VI terminates,
dewater.bat copies the output file (dewater.gwmout) to a file
with the name “dewater.gwmout.parallel.” The main output
file for the parallel-mode run of the Dewater problem is
nearly identical to the output for the serial-mode run shown
above. The only meaningful differences are in the names
of input files and in text echoed from the input file, where
“serial” is replaced by “parallel.”

30   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

Appendix 2   31

GWM–VI is a model-analysis application, in
that it is a tool designed to perform a specific type of
analysis (optimization) with a specific process-model
code (MODFLOW). The JUPITER API (Banta and
others, 2006) is a set of Fortran-90 modules containing
data structures, subroutines, and functions specifically
designed to facilitate development of model-analysis
applications. The primary goals in developing the
GWM–VI suite of programs were to add support for a
parallel-processing capability to GWM and to enable
GWM to work with any MODFLOW-based executable
that meets certain conditions. The JUPITER API is well
suited to the requirements of GWM. To take advantage of
the parallel-processing capability of the JUPITER API,
the optimization-related code of the GWM Process as
implemented in GWM-2005 was adapted into a structure

Appendix 2: Programmers’ Guide to GWM–VI
consistent with the requirements of the JUPITER API; the
result is the main program unit of GWM–VI.

The main program unit of GWM–VI has the structure
of a model-analysis application designed according to the
principles of the JUPITER API; in figure 2-1 the boxes with
white background represent GWM–VI. Tasks defined in the
JUPITER API (Banta and others, 2006) are numbered in
figure 2-1. The ellipse with a gray background represents
user-prepared input files for GWM–VI. Ellipses with a blue
background represent JUPITER API template and instruction
files generated by GWM–VI. Black ellipses with white text
represent the input files, executable file, and output files that
make up a MODFLOW simulation.

Each task shown in figure 2-1 has one or more subroutine
calls in GWM–VI. The tasks, their purposes, and the
corresponding subroutines are shown in table 2-1.

Figure 2-1.  Schematic flowchart for GWM–VI.

Start

8. Evaluate

Stop

4. Adapt Decision-Variable Values

5. Execute Model

6. Extract Model-Simulated ValuesC
O

N
TR

O
L

LO
O

P

PO
TE

N
TI

A
LL

Y
 P

AR
AL

LE
L

LO
O

P

7. Use Extracted Values

2. Determine Job of Current Iteration

Template
files

Instruction
files

GWM-VI
input
files

Model
input
files

Model
output

files

Model
(MMProc &
MODFLOW)

9. Cleanup

1. Initialize

3. Generate Decision-Variable Values

32   GWM–VI—Groundwater Management with Parallel Processing for Multiple MODFLOW Versions

Table 2-1.  JUPITER API tasks and GWM‑VI and JUPITER API subroutines that perform them. Names in bold are subroutines written
or adapted for GWM-VI; names beginning with GWM1 are subroutines from GWM-2005; non-bold names are subroutines of the
JUPITER API (Banta and others, 2006)

JUPITER API Task Purpose Subroutine(s) called from GWM‑VI main program unit to perform task

Initialize Read input; allocate and populate
arrays

MAIN_INI, GWM1BAS3AR, READ_NAME_FILE_DIS,
BAS_INI_MODELEXEC, WRMMPROCIN, MAIN_WRITE_
MF_STATUS_JIF, MAIN_INI_PARS, MAIN_INI_DEP,
DEP_INI_ALLOC, DEP_INI_STORE, MIO_INI_ALLOC,
MAIN_WRITE_MIF_BLOCK, MIO_INI_INPUTFILES,
MAIN_WRITE_MOF_BLOCK, MIO_INI_OUTPUTFILES,
MIO_INI_TEMPLATE, MIO_INI_INSTRUCT1, MIO_INI_IN-
STRUCTALLOC, MIO_INI_INSTRUCT2, MIO_INI_DIMEN-
SION, MIO_INI_ARRAYS, PLLM_INI_DISPATCHER

Determine job of current
iteration

Determine job of current iteration of
control loop

MAIN_DEF

Generate decision-vari-
able values

Perturb decision variables or, for a
nonlinear management formulation,
generate updated decision-variable
values

GWM1RMS3PL, BAS_GEN, MAIN_GEN, DECVARS_TO_PVAL

Adapt decision-variable
values

Use current values of decision vari-
ables and template files to generate
model-input file(s)

Serial Processing Parallel Processing
GWM1RMS3PP,

MIO_ADA_WRITEFILES

BAS_EXE_SELECT, PLLGWM_
MAKE_RUNS

Execute model Execute the model (using current
values of decision variables)

BAS_EXE_SELECT, BAS_EXE

Extract model-simulated
values

Use instruction files to extract
model-calculated values related
to hydraulic-head and streamflow
constraints

MIO_EXT

Use extracted values Calculate response matrix or, for
nonlinear formulation, update
decision-variable values

MAIN_UEV, GWM1RMS3FP

Evaluate Evaluate effectiveness of solution to
management problem; write results
of analyses to output file

GWM1RMS3FM, GWM1RMS3AP, GWM1RMS3OT

Cleanup Deallocate arrays and close files CLEAN_UP, BAS_CLN, DEP_CLN, PLLM_CLN, MAIN_CLN

GWM–VI, like GWM-2005, adjusts its behavior based
on results of perturbation simulations made to populate the
response matrix. The Parallel-Processing Module of the
JUPITER API does not support such intervention. To implement
this capability, GWM–VI includes a modified parallel-
processing implementation, which is derived from and replaces
the Parallel-Processing Module of the JUPITER API. The new
module includes all the capabilities of the JUPITER Parallel-
Processing Module documented by Banta and others (2006).
In addition, the GWM–VI parallel-processing module includes
code to evaluate the simulation results and adapt GWM–VI
behavior accordingly. In particular, response precision and
model non-convergence and dewater status as reported in the
modflow.status file generated by MMProc are evaluated, and
values of flow-rate decision variables are adjusted as needed to
obtain usable results using procedures from the GWM Response
Matrix Solution (RMS) Package (Ahlfeld and others, 2005).

Of the 44 subroutines listed in table 2-1, 20 are part of the
JUPITER API and documented by Banta and others (2006).
The other 24 subroutines are described briefly in table 2-2.

GWM–VI uses the same GWM Packages as GWM-
2005. As a result, both GWM-2005 and GWM–VI are
compiled with code from MODFLOW-2005, version 1.10.
GWM–VI uses this code to access data from the GLOBAL
and GWFBASMODULE modules of MODFLOW’s Basic
Package, and from the GWFMNW2MODULE module of the
MNW2 Package (Konikow and others, 2009). GWM–VI also
invokes the GWF2MNW27RP subroutine to read the MNW2
input file when MNW2-based decision variables are used. If a
model to be analyzed by GWM–VI uses more recent versions
of either the Basic Package or the MNW2 Package, it may
be necessary to make corresponding updates to the GWM–
VI code and recompile the programs to allow GWM–VI to
function correctly.

Appendix 2   33

Table 2-2.  Subroutines written or adapted for GWM–VI and their purposes.

Subroutine Purpose

MAIN_INI Read MODFLOW DIS file and store required dimensions and array data; read Options and
Simulation input blocks from Control file.

GWM1BAS3AR Open GWM input and output files; read GWM file; call routines to read DECVAR, OBJFNC,
VARCON, SUMCON, HEDCON, STRMCON, and SOLN files

READ_NAME_FILE_DIS Read MODFLOW Name file to get pathname of Discretization (DIS) file, then open DIS file and
read model discretization data

WRMMPROCIN Create three files: a JUPITER API template file for generating the mmproc.in file, another template
file for generating the mnw2_input.jtf file, and a JUPITER API instruction file for extracting
values from the SimulatedValues.out file

MAIN_WRITE_MF_STATUS_JIF Create a JUPITER API instruction file (modflow_status.jif) for extracting values from the modflow.
status file

MAIN_INI_PARS Generate names for parameters used by JUPITER subroutines from flow-rate decision variables

MAIN_INI_DEP Determine number of dependent variables

MAIN_WRITE_MIF_BLOCK Write a Model_Input_Files input block to a scratch file

MAIN_WRITE_MOF_BLOCK Write a Model_Output_Files input block to a scratch file

PLLM_INI_DISPATCHER Read Parallel_Control and Parallel_Runners input blocks from Control file; initialize parallel-
processing module of GWM‑VI

MAIN_DEF Define job of current iteration of control loop

GWM1RMS3PL Prepare perturbation loop controls, size of perturbations

MAIN_GEN Generate parameter set with perturbed value

DECVARS_TO_PVAL Utility to distribute decision-variable values to parameter-value array used by JUPITER subroutines

GWM1RMS3PP Prepare each individual perturbation

PLLGWM_MAKE_RUNS Make multiple perturbation runs in parallel

MAIN_UEV Use extracted values to populate head-constraint state array and other variables

GWM1RMS3FP Evaluate perturbation results; test for failure

GWM1RMS3FM Formulate the GWM problem

GWM1RMS3AP Solve the GWM problem

GWM1RMS3OT Write GWM solution output

CLEAN_UP Restore original MNW2 Package input file to original file name

PLLM_CLN Deallocate arrays of parallel-processing module of GWM‑VI

MAIN_CLN Close an output file and deallocate arrays used by GWM‑VI

Banta and Ahlfeld—
G

W
M

–VI—
G

roundw
ater M

anagem
ent w

ith Parallel Processing for M
ultiple M

O
D

FLO
W

 Versions—
Techniques and M

ethods 6–A48

ISSN 2328-7055 (online)
http://dx.doi.org/10.3133/tm6a48

	Abstract
	Introduction
	Overview of the GWM–VI Suite of Programs
	Implementation of Version Independence and Parallel Processing
	GWM Features Not Available in GWM–VI
	CRITMFC – Alternate Flow Process Termination Tests
	Head in MNW Wells
	Output of Managed Flows in Volumetric Budget
	Multi-Grid Flow Processes
	Stream Package

	GWM–VI
	Description of GWM–VI
	GWM–VI File Input Instructions
	CONTROL File Input Instructions
	Options Input Block
	Simulation Input Block
	Model_Command_Lines Input Block
	Parallel_Control Input Block
	Parallel_Runners Input Block

	MMProc
	Pre- and Postprocessing by MMProc
	Error Handling and Importance of Maintaining Duplicate Well and MNW2 Input Files

	JRunnerM
	MODFLOW Input and Output Requirements
	Input Requirements for MODFLOW
	Output Requirements for MODFLOW
	Listing File
	Head Constraints and Head State Variables
	Streamflow Constraints and Streamflow State Variables
	Storage State Variables
	Drain Package State Variables

	Using GWM–VI
	Sequence of Program Execution—Serial Processing
	Making a Serial Optimization Run
	Setting Up Directories and Files—Parallel Processing
	Optimum Performance of Parallel Processing
	Sequence of Program Execution—Parallel Processing
	Making a Parallel Optimization Run
	Output from the GWM–VI Suite of Programs.

	Acknowledgments
	References Cited
	Appendix 1: Example of Use of GWM–VI with the Dewater Problem
	Running the Dewater Problem in Serial Mode
	Running the Dewater Problem in Parallel Mode

	Appendix 2: Programmers’ Guide to GWM–VI
	Figures
	1. Structure of distribution directory for the GWM–VI suite of programs.
	2. Example GWM–VI CONTROL file used for the Dewater sample problem in which parallel processing is invoked.
	3. Flow of data used by the GWM–VI suite of programs during serial processing.
	4. Flow of data used by the GWM–VI suite of programs during parallel processing.
	1-1. Model setup for Dewater example.
	2-1. Schematic flowchart for GWM–VI.

	Tables
	1. Files used to communicate information among GWM–VI, MMProc, and JRunnerM.
	2. Files generated by GWM–VI, MMProc, and JRunnerM for user.
	2-1. JUPITER API tasks and GWM–VI and JUPITER API subroutines thatperform them.
	2-2. Subroutines written or adapted for GWM–VI and their purposes.

