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HydroClimATe—Hydrologic and Climatic Analysis Toolkit

By Jesse E. Dickinson, Randall T. Hanson, and Steven K. Predmore

Abstract
The potential consequences of climate variability and 

climate change have been identified as major issues for 
the sustainability and availability of the worldwide water 
resources. Unlike global climate change, climate variability 
represents deviations from the long-term state of the climate 
over periods of a few years to several decades. Currently, rich 
hydrologic time-series data are available, but the combination 
of data preparation and statistical methods developed by the 
U.S. Geological Survey as part of the Groundwater Resources 
Program is relatively unavailable to hydrologists and engi-
neers who could benefit from estimates of climate variability 
and its effects on periodic recharge and water-resource avail-
ability. This report documents HydroClimATe, a computer 
program for assessing the relations between variable climatic 
and hydrologic time-series data. HydroClimATe was devel-
oped for a Windows operating system. The software includes 
statistical tools for (1) time-series preprocessing, (2) spectral 
analysis, (3) spatial and temporal analysis, (4) correlation 
analysis, and (5) projections. The time-series preprocessing 
tools include spline fitting, standardization using a normal 
or gamma distribution, and transformation by a cumulative 
departure. The spectral analysis tools include discrete Fourier 
transform, maximum entropy method, and singular spectrum 
analysis. The spatial and temporal analysis tool is empirical 
orthogonal function analysis. The correlation analysis tools 
are linear regression and lag correlation. The projection tools 
include autoregressive time-series modeling and generation 
of many realizations. These tools are demonstrated in four 
examples that use stream-flow discharge data, groundwater-
level records, gridded time series of precipitation data, and the 
Multivariate ENSO Index. 

Introduction
The potential response of water resources to climate 

variability is one of the most vital issues for sustainability 
in the United States (Gleick and Adams, 2000; Lins and 
others, 2010) and around the world (Green and others, 
2011; Taylor and others, 2012; Treidel and others, 2012). 
As water resources become fully allocated, the responses of 
water availability to climate variability become especially 
important for long-term planning and resource management 

(Lins and others, 2010; Hanson and others, 2012). Climate 
variability represents reversible and periodic changes in the 
global weather systems that occur over periods of a few years 
to several decades or longer. Oceanic-atmospheric phenom-
ena, such as the El Niño-Southern Oscillation (ENSO), are 
important predictors of precipitation in many regions around 
the globe (Ropelewski and Halpert, 1987; Dai and Wigley, 
2000). For example, previous studies have identified evidence 
that the warm (El Niño) phase of ENSO is related to increased 
winter precipitation in the southwestern U.S. and decreased 
precipitation in the northwestern U.S. (Redmond and Koch, 
1991). The opposite pattern characterizes the cool (La Niña) 
phase of ENSO; precipitation is lower in the Southwest and 
greater in the Northwest (Redmond and Koch, 1991; Livezey 
and others, 1997). The exploration of how these cycles affect 
the use and movement of water through the hydrosphere can 
provide fundamental insight concerning how to manage and 
sustain the resources. 

Climate variability influences the timing and volumes 
of inflow and outflow components of hydrologic budgets (for 
example Hanson and others, 2003; Gurdak and others, 2007, 
2009; Faunt, 2009; Hanson and others, 2009, 2012; Campbell 
and Coes, 2010; Heilweil and Brooks, 2011). Influences on 
surface water include the distribution, timing, and amount 
of runoff-producing precipitation, which leads to changes in 
surface-water deliveries in agricultural and municipal areas, 
as well as streamflow for ecosystems. The influences on 
groundwater include natural changes in recharge, discharge, as 
well as variability in groundwater withdrawals that can coin-
cide with the availability of surface-water deliveries. 

One challenge facing water resource managers is to 
predict how groundwater systems will recover after a peri-
odic stress, such as drought, so that they can properly assess 
the vulnerability of human water-supply systems and ripar-
ian habitats to climate variability and change. Knowledge of 
how climatic variability can influence hydrologic inflows and 
outflows could prove to be essential for achieving sustain-
able water resources, especially in regions of limited water 
availability. Hydrologic models that are commonly used for 
assessing the effects of water-management strategies have 
often used long-term trends in inflow and outflow components. 
Simulations of long-term trends in these components can 
depict the general state and movement of water, but variations 
in the inflows and outflows from mean conditions can result in 
extremely dry and wet conditions. Temporal variability about 
the long-term trends can exacerbate the effects of extremely 
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dry periods, leading to disconnected groundwater and surface 
water to the extent that ecosystems potentially are not able to 
recover. High frequency, short-term increases in precipitation 
can produce flashy runoff, but infiltration from short-term 
events does not always result in significant or lasting changes 
in subsurface water storage (Bakker and Nieber, 2009). Con-
versely, persistent periods of flashy runoff can be captured and 
stored in reservoirs or artificial recharge facilities. Because 
groundwater is often used to reduce the effects of drought, 
temporal variability in precipitation in a long-term declin-
ing trend and patterns of human use could combine to have 
dramatic consequences for human as well as natural systems 
(Alley and others, 1999). 

Recently, hydrologic models have included more accu-
rate representations of interannual and interdecadal varia-
tions in the inflow and outflow components, as well as more 
complete coupling of atmospheric and hydrologic processes 
(for example, Faunt, 2009; Clark and others, 2011; Hanson 
and others, 2012), which could improve the accuracy of the 
simulated effects of short- and long-term water management 
strategies. Such assessments become increasingly important as 
water resources are fully allocated and variations in inflows or 
outflows from the long-term conditions stress the water sup-
plies for human uses and ecosystem functions.

The assessment of the effects of climate variability on 
hydrologic systems often begins with an analysis of long-
term hydrologic records for features such as temporal trends 
and variability (Hanson and others, 2004; Kumar and Duffy, 
2009; Lins and others, 2010). Often, such assessments are 
based on an objective statistical analysis of these records to 
identify relations among indicators of climate variability and 
hydrologic conditions. A systematic approach for identifying 
such features in hydrologic time-series data was established as 
part of the U.S. Geological Survey Southwest Ground Water 
Resource Project (Leake and others, 2000; Hanson and others, 
2004; Hanson and others, 2006). Relations between climatic 
variability and multiple types of hydrologic time series 
(groundwater levels, streamflow, precipitation, and tree-ring 
data) in the southwestern United States (Hanson and others, 
2006), as well as a statistical basis for delineating the climatic 
and anthropogenic variations in hydrologic systems, lead to 
methods for estimating climate-controlled recharge to alluvial 
aquifer systems (Dickinson and others, 2004). Projections of 
future hydrologic conditions based on objective analysis of 
long-term records were used to simulate wet and dry periods 
in streamflow and precipitation in simulations of groundwater 
flow in the Santa Clara—Calleguas Basin in central California 
(Hanson and others, 2003; Hanson and Dettinger, 2005). 

Purpose and Scope

The purpose of this report is to document how to use 
the program Hydrologic and Climatic Analysis Toolkit 
(HydroClimATe), which automates the use of several objec-
tive methods for assessing relations among one or more sets 
of data that vary in time and space with climate variability 
and variability in hydrologic time-series data. Although the 
software was written for the purpose of identifying relations 
between hydrologic and climatic time series, the available 
tools and methods can be applied to many other types of time 
series generated by physical, biological, economic, or social 
processes. The methods include standardization, detrending, 
regression and correlation, Fourier analysis, maximum entropy 
method (MEM), singular spectrum analysis (SSA), empiri-
cal orthogonal function (EOF) analysis, and autoregressive 
time series modeling. These tools have been used exten-
sively to identify relations among climatic indicators and 
meteorological and hydrologic data to hydrologic conditions 
in previous HydroClimATeic investigations (for example, 
Dettinger and others, 1995a; Dettinger and Diaz, 2000; 
Dickinson and others, 2004; Hanson and others, 2004, 2006, 
2009; Gochis and others, 2007a, b; Kumar and Duffy, 2009). 
The software combines these methods in order to provide 
a set of analysis tools that can be readily implemented for 
processing hydrologic time-series data. The software includes 
all of the methods for assessing relations between climatic 
and hydrologic time series described by Hanson and others 
(2004) and implemented by Hanson and others (2003). This 
report describes how to use the tools in the software, but it is 
recommended that users become familiar with each technique 
by review of the literature on each technique. This report is 
intended to describe how to operate the software and provide 
some context of where and when each technique can be useful, 
and is not intended to serve as a comprehensive review on 
these techniques. The implementation of the techniques in the 
software is described in appendix A.

HydroClimATe includes tools for (1) identifying 
responses of hydrologic systems to climate variability; (2) 
quantifying statistical relations between multiple time series 
and climate indices, such as the Multivariate ENSO Index 
(MEI; Wolter and Timlin, 2011), and (3) projecting hydrologic 
time-series data by using time-series models and spectral 
analysis. The software consists of a graphical user interface 
that is executable in Windows operating system with the .NET 
Framework version 4.0. Software inputs can be any long-term 
time-series data, such as groundwater levels, streamflow, pre-
cipitation, tree-ring data, air temperature, and climate indices. 
Other types of time-series data, such as economic data, could 
be applicable. However, the methods of analyses demonstrated 
in this report are for climatic and hydrologic time-series data. 
Software output can be exported to files that are read by a text 
editor, Microsoft Excel®, or geographic information system 
(GIS) software. Example analyses are presented for assessing 
relations between global climate indices and hydrologic time 
series for sites in the southwestern U.S.
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System Requirements

HydroClimATe requires the Microsoft Windows XP, 
Windows Vista, Windows 7, or Windows 8 operating systems. 
The software may run on future versions of Microsoft 
Windows products. Installation of the Microsoft .NET 
Framework Version 4.0 that is distributed with Microsoft 
Windows 7 is required in order to run HydroClimATe. 
If Microsoft .NET Framework Version 4.0 is not 
installed, it is free and can be obtained from Microsoft at 
http://www.microsoft.com/downloads. An internet connection 
is required to import data from the USGS National Water 
Inventory System (NWIS).

Installation

HydroClimATe does not require installation. However, 
the installation of the Microsoft .NET Framework Version 4.0 
is required.

Approach

The software automates the methods of processing and 
analyzing climatic and hydrologic time series described by 
Hanson and others (2004). The toolkit includes the following 
steps of analysis:
1.	 Data acquisition and preprocessing.

a.	 Retrieval from an ASCII file, Excel® file or the 
USGS NWIS database.

b.	 Interpolation, standardization, and transformation by 
a cumulative departure.

2.	 Analyses.

a.	 Trend removal by differencing and curve fitting.

b.	 Frequency analysis by using Fourier analysis, MEM, 
and SSA.

c.	 Principal Component Reconstructions including 
inverse transformations.

d.	 Spatial/temporal modal decomposition by using EOF 
analysis.

e.	 Statistical Estimation using correlation, lag, 
covariance, and other multi-series relations.

3.	 Projections of time series with autoregressive (AR) time 
series models.

How to Use this Report

This report describes how to use the software features 
that complete the sets of analysis described above. This report 
describes each of the tools in the software in separate sec-
tions. The steps of analysis can vary depending on the final 
goal of the analysis and the groups of time series that are 
being analyzed together. Some types of data require prepro-
cessing before they can be analyzed by the spectral or spatial 
and temporal analysis tools, or can be projected in time. For 
example, precipitation, streamflow, tree-ring data, and climate 
indices could need to be transformed into cumulative depar-
ture to be compatible with analyses that include changes in 
groundwater levels. Data often require some standardization 
in order to make comparisons of different data types or of 
data from locations at which the physical driving processes 
differ. For example, the Standardized Precipitation Index (SPI; 
McKee and others, 1993) is useful for identifying wet and dry 
periods from different regional climates and for comparing 
data that are not normally distributed, such as streamflow and 
precipitation data. Standardization is also helpful for identify-
ing anomalies, which can be analyzed by the spectral analysis 
and the EOF tools. The user can proceed to the section of the 
report that pertains to the tool and step of analysis that is of 
interest.

The data for the examples described in this report are also 
provided in the release package so that the user can perform 
each analysis step-by-step to recreate the results presented 
from the analysis with HydroClimATe. The example sec-
tions provide specific instructions on how to import data, the 
tools and options that were used to generate the results, and a 
summary of the important features in the results. The example 
problems provide a small subset of the potential uses of the 
software. Other examples of how these tools have been used in 
hydrologic and climatic studies are referenced throughout this 
report.

Following the introduction, which describes the overall 
purpose and scope of the report and the software, this report 
describes the user interface of the software, the computer 
requirements for running the software, and how to import and 
export vector and matrix data from and to ASCII and Excel® 
formats. The names of labels in the user interface are empha-
sized in the text of the report by bold lettering to help the user 
identify different parts of the user interface. The next section 
describes how to operate perform different statistical methods 
available in the user interface. The example section describes 
four different examples, how to replicate each example, and 
a summary of the important results from each example. The 
appendix includes descriptions of the mathematical techniques 
used by the software. 

http://www.microsoft.com/downloads
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User Interface
Each of the steps of analysis is completed by the selec-

tion of options that are displayed on a user interface (fig. 1). 
The user interface consists of a main form that contains 
tabs (Describe data, Preprocess data, Detrend, Fourier 
Analysis, MEM, SSA, EOF analysis, Regression and 
correlation, Projections) that are labeled for the different 
groups of tools or steps of analysis. The tools for each step 
of analysis are displayed in the main form by selecting a tab. 
In general, the most basic steps of analysis are displayed by 
selecting the tabs that are arranged in the left half of the main 
form. Other steps that could require some preprocessing of 
the data are organized in the tabs toward the right side of the 
main form. At the top of the main form are menu headers for 
various options. The tabs are organized so that the user can 
begin with the tabs on the left half and sequentially use the 
tabs to the right. A list of progress checkboxes at the bottom of 
the user interface indicates which tools, or steps of processing, 
have been completed for a data series. The progress check-
boxes are intended to give the user a quick summary or review 
of which steps were performed in an analysis. Additional 
forms are displayed when the user performs certain actions, 
such as importing and exporting data or generating plots.

The software is designed to have multiple time series 
available to the user to compare different data sets through 
regression and correlation analyses. Only one time series is 
active at any time while performing an analysis, however. 
The exception is that two time series can be active during the 
regression and correlation analysis. The active time series is 
selected by using the drop-down list at the top of the main 
form that is labeled Data series name. The drop-down list 
Data series name contains a list of all of the data series that 
the user has imported and, by default, will display the name of 
the most-recently imported time series.

Most of the tools require some input from the user, and 
an output time series is produced by pressing a button that 
is typically labeled Calculate, followed by the name of the 
tool. In general, the Calculate button and other buttons for 
displaying results are not enabled until all required inputs have 
been provided by the user. Whenever the Calculate button is 
clicked, by default, the program displays a plot of the results, 
unless the user deactivates Automatically generate plots 
under the menu header Options and Plotting.

A list of the time series that are stored in the program can 
be viewed in the Workspace form (fig. 2) by selecting the 
menu header View (fig. 1) and Workspace. Workspace con-
tains a list of the series names that are subsets of a data series. 

Data series name comboboxMenu headers

Progress message

Title bar

Progress checkboxes Statistical summary table

Tool tabs

sac13-0491_Figure 01

Figure 1.  User interface showing tabs and menus. 
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The data series is selected by a drop-down list labeled Data 
series name at the top of the Workspace form. Information 
for other data series and subset series can be displayed in the 
Workspace form by selecting another data series in the drop-
down list.

Each step of analysis calculates a new time series or 
table that is stored within the software. The name of each new 
time series or table is based on a root name plus the character 
“_” and an extension (fig. 2). The root name of each newly-
generated time series or table is equal to the name of the active 
time series. An extension is a short sequence of characters that 
are appended to the root and separated from the root by the 
character “_”. By default, an extension is a shortened version 
of the name of the tool that was just used, but the extension 
can be modified by the user. For example, the extension for 
the output from the standardizing tool is “std” and is “trd” 
for a trend. A new extension is appended to the series name 
each time a tool is used because the default extension of the 
most recent tool is appended to the previous extension. For 
example, a trend of a standardized series can be “root_std_trd” 
if the root name of the series is “root.” If a new time series is 
generated that has the name of an existing time series, the pre-
vious time series will be overwritten by the new time series. 
The previous time series can be retained by giving the new 
time series a different extension.

The time series and spectrum plots include a feature that 
allows the user to zoom into areas of interest (fig. 3). To zoom 
in, click on one part of the plot, which is one extent of the 
zoomed area, and drag and release at the other extent. The plot 
can be unzoomed by clicking on the circle at the lower left 
corner of the plot (fig. 3).

Data Requirements
Time-series data are required to be in a vector or matrix 

format. The vector format can represent a time series in a 
single dimension or a matrix where two or three dimensional 
data are looped along a single dimension. The file containing 
the data either can be in an ASCII file or an Excel® file. 

Vector Format for a Single Dimension

An example of a vector of a single dimension is a list of 
water levels at different times. A vector containing a single 
dimension is required to have two columns and n rows, where 
n is the number of values in the time series. The first column 
contains the time t of the value and the second column con-
tains the value of the time series a(t) at time t. The time values 
must be a real number. An example is the decimal year 1980.0, 
which represents the month of January 1980, or 1980.92, 
which represents the month of December 1980. (fig. 4). 

Vector Format for Two or Three Dimensions

An example of a vector of two or three dimensions is 
a series of maps of precipitation at different times, in which 
each row is stacked along a single dimension (fig. 5). A vector 
of two or three dimensions contains a single column that 
contains the value of the time series a(x,y) or a(x,y,t) at spatial 
coordinates x and y and map or time t. The matrix format 
consists of a two-dimensional matrix, usually of spatial values, 
that repeats n times, where n is the number of maps or time 
steps. An example is a series of two dimensional matrices that 
contain precipitation values that repeat for each time step. 

Importing Data And Exporting Data
Vector or matrix (gridded) time series data can be 

imported from a local file or by retrieval from the USGS 
NWIS. Data can be exported and saved to a local file.

Importing Vector or Matrix Time Series Data 
from a File

Data in a vector or matrix form can be imported by selecting 
the name of a local file. To import a vector time series, select 
the File menu and click “Import time series from file.” 
Then, select either ASCII file or Excel® file on the menu 
that appears to the right. This opens a separate form that has 
options for selecting a file, the separator between values, 
the encoding of the file, and if the file has column names in 
a header above each column (figs. 4 and 6). The time-series 
data must be assigned a name, which, by default, is the name 
of the loaded file without the file extension. The name can be 
changed by editing the name in the text box at the bottom of 
the form. 

Data series name combobox

Table of series names and sizes

sac13-0491_Figure 02

Figure 2.  Workspace form showing the series names, sizes of 
the stored data arrays that are subsets of the selected data series, 
and the root name and extensions of the data series for several 
outputs.
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Figure 3.  Procedure for zooming in and zooming out of plots. 
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Figure 4.  Options for importing data from a file in vector format.
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Figure 5.  Example of stacking a series of two-dimensional maps into a vector of a single dimension.

Figure 6.  Options for importing data from a file in matrix format.
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Importing Data from the National Water 
Inventory System (NWIS)

Groundwater-level data can be imported from the NWIS by 
using search criteria, such as site ID, site name, location, 
and length of record. To import data from NWIS, on the File 
menu, click Import time series from NWIS. This opens 
a separate form that has search criteria of site location, site 
identifier, and data attribute (fig. 7). After entering the search 
criteria, select the button Get sites, and the table on the 
form will fill with sites from NWIS that match the search 
criteria. To select a site, click the checkbox in the table that 
corresponds to the site. Finally, to import the data, select the 
button Get data at the bottom of the form. Future versions of 
this software are planned to include search options for surface 
water, water quality, and tree-ring data.

Exporting Data

Vector or matrix (gridded) time-series data can be 
exported and saved to a local file. The saved file can be ASCII, 
Excel®, or raster format. To save data, on the File menu, click 
either Export time series or Export grid, and select the file 
format from the options that appear to the right (figs. 8 and 9). 
A separate form appears that has options for the name of the 
time series to save and the name of the file to save to. Matrix 
data can be saved in a vector or matrix format. For the vector 
format, the data are saved in a vector that contains a repeating 
list of data in a single column for each increment along 
each dimension. In the matrix format, the data are saved as 
two-dimensional matrices that repeat for each time step.

Figure 7.  Options for importing data from the U.S. Geological Survey National Water Inventory System.
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Describe Data
Data descriptions can be provided in order to document 

the time-series data (fig. 1). These descriptions are optional 
and are not included in any of the steps of analysis. The 
data descriptions can be assigned on the tab Describe data 
on the main form. The types of descriptors include the site 
information, data type and time units, and the location of the 
site where the data were collected. These descriptors are only 
saved if the button “Save data description” is pressed. Some 
of these fields are automatically populated if the data series 
is imported from NWIS. The Describe Data tab displays a 
statistical summary table for the imported data series.

Preprocess Data
Several preprocessing steps that are available on the tab 

Preprocess Data could be necessary prior to using some of 
the other tools that are available on the other tabs. The prepro-
cessing steps are separated into different group boxes labeled 
Interpolate, Standardize, and Cumulative Departure 
(fig. 10). Interpolation can be used in some situations for 
estimating missing values. Standardization is often used, but 
not necessary prior to the SSA, EOF, and regression analysis. 
Cumulative departure is useful for removing values of zero 
that are common in some time series, such as precipitation 
records in arid environments, or making the data consistent 
with another data type, such as groundwater levels that repre-
sent a cumulative departure of changes in aquifer storage.

Interpolation for Missing Data

Hydrologic time series often include measurements at 
somewhat irregular intervals, which can range from daily to 
annual values. Hanson and others (2004) used interpolation to 
estimate missing values and to create a uniform time interval 
between the values in the time series. A uniform interval is 
generally necessary for the Fourier and SSA analysis tools. 
Interpolation can be required for measured data but could be 
unnecessary when analyzing simulated data from a model that 
are already available at uniform time intervals.

Tools for interpolating missing values in a vector time 
series are available in the groupbox labeled Interpolate. A 
vector time series can be selected from the drop-down list 
that is labeled Select series to interpolate. The interpola-
tion method can be selected from the drop-down list labeled 
Interpolation method. The available methods are linear 
interpolation, cubic spline, and Akima spline. The text box 
labeled Name of interpolation output is used to assign a 
series name to the output from the interpolation. By default, 
the series name has the extension _int added to the root name 
of the data series. The times at which interpolation is per-
formed are defined by clicking on the button Define interpo-
lation intervals, which opens a separate form that allows the 
user to define the number of points between the beginning and 
ending date or by loading a separate file that has a list of times 
for interpolation (fig. 11). After defining the interpolation 
times, interpolation can be calculated by clicking the button 
Calculate interpolation. Outputs can be viewed by clicking 
the buttons Plot interpolated data or View data table.

Figure 8.  Options for exporting data from a vector to an ASCII or Excel file.

sac13-0491_Figure 08

Figure 9.  Options for exporting data from a matrix to an ASCII or Excel file.
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Figure 10.  Options for interpolating, standardizing data, and calculating cumulative departure.

Figure 11.  Options for defining the times at which the time series is interpolated.
sac13-0491_Figure 10
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Standardize Data

 Data can be standardized to a normal distribution or 
a gamma-to-normal distribution by using the Standardized 
Precipitation Index (SPI) procedure described by McKee and 
others (1993) and Edwards and McKee (1997). Standardiza-
tion allows for comparisons across data types, such as precipi-
tation, streamflow discharge, and groundwater levels. Stan-
dardization by using SPI also allows for comparisons of data 
across regions having different climates. SPI is typically used 
for precipitation because these values often are not normally 
distributed, such as in arid and semiarid regions. SPI stan-
dardization is useful for analyzing continental-scale patterns 
of precipitation on interannual and interdecadal times scales 
because climates often vary spatially within continental scales 
(Castro and others, 2009). 

Tools for standardizing data in a time series are available 
in the groupbox labeled Standardize. Either a vector or a 
matrix time series can selected from the drop-down list that 
is labeled Select series to standardize. The standardiza-
tion method (Normal or Gamma to Normal (SPI)) can be 
selected from the drop-down list labeled Standardization 
method. The text box labeled Name of standardized output 
is used to assign a series name to the output from the stan-
dardization. By default, the series name has the extension _std 
added to the root name of the data series. The data can be 
standardized by clicking the button Calculate standardized 
series. Outputs can be viewed by clicking the buttons Plot 
standardized series or View data table. 

Cumulative Departure

The cumulative departure transformation provides serial 
correlation for intermittent temporal processes, such as precip-
itation and ephemeral streamflow. This allows for comparison 
to many geophysical time series that have persistence between 
subsequent values, such as groundwater-level data (Hanson 
and others, 2004). On the cumulative departure curve, an inter-
val of time with a positive slope generally indicates that the 
short-term mean of the period is greater than the overall mean, 
and a negative slope generally indicates that the short-term 
mean is less than the overall mean.

The cumulative departure tool is available in the 
groupbox labeled Cumulative Departure. A vector time 
series can be selected from the drop-down list that is labeled 
Select series for cumulative departure. The text box labeled 
Name of cumulative departure output is used to assign a 
series name to the output. By default, the series name has the 
extension _cdep added to the root name of the data series. The 
cumulative departure can be calculated by clicking the button 
Calculate Cumulative departure. Outputs can be viewed by 
clicking the buttons Plot cumulative departure or View data 
table.

Detrend
A trend in a time series is generally a gradual change in 

the values of the series. Here, detrending is a mathematical 
operation that removes a trend from a time series. Detrending 
is often used to remove a characteristic that distorts features 
of the time series that are of interest. The methods for evaluat-
ing time series described by Hanson and others (2004) include 
the identification and removal of non-stationary elements and 
any low-frequency cycles in order to prepare the time series 
for techniques that assume stationarity. In hydrologic data, 
non-stationary elements are trends in the mean or variance 
that are typically caused by (1) human activity or changes in 
watershed characteristics, such as urbanization or geomorphic 
changes to a stream channel, or (2) changes in climate that 
available information cannot identify as a repeating cycle. 
Non-stationary trends can follow a linear pattern, curvilinear 
pattern, a step-change pattern, or other pattern. Low-frequency 
cycles can be removed because the Fourier analysis and MEM 
tools cannot identify low-frequency cycles that are longer than 
half the period of record. The autocorrelation tool can identify 
persistence in time series that can be attributed to a trend or 
low-frequency cycle. The trend or low-frequency cycle can 
be removed by differencing or by using a least-squares fit of 
a linear or polynomial fit to the trend or cycle. The Fourier 
analysis, MEM, and SSA tools can then use the residuals from 
the fitted relation. The approaches to detrending that are avail-
able in the software are differencing and curve fitting. Tools 
for these methods are available on the tab Detrend and are 
separated into groupboxes labeled Differencing and Curve 
fitting (fig. 12).

Autocorrelation

In a general sense, a time series is assumed to be 
stationary if its statistical properties are the same after it has 
been shifted through time. The autocorrelation function (ACF) 
is a tool that can be used to identify any persistence between 
subsequent values in a time series. The ACF tool produces 
a plot of the correlation between a time series and the same 
series after being shifted by an integer number of lags. A time 
series with persistence will have a small autocorrelation at any 
lag other than zero. By definition, the autocorrelation at a lag 
of zero is equal to one. The ACF tool is available on the tab 
labeled Detrend. The maximum number of lags to be consid-
ered can be assigned by entering an integer value in the text 
box labeled Number of lags. The text box labeled Name of 
ACF output is used to assign a series name to the output. By 
default, the series name has the extension _ACF added to the 
root name of the data series. The ACF is calculated by clicking 
the button Calculate ACF, and the output can be viewed by 
clicking the buttons Plot ACF or View ACF data table.
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Differencing

Differencing (Brockwell and Davis, 2002) can be used 
to remove non-stationarity in the mean of a time series. 
The differencing tool is available in the groupbox labeled 
Differencing on the tabbed page Detrend. A vector time 
series can be selected from the drop-down list that is labeled 
Select series to detrend. The order of the differencing (from 
one to three) can be selected from a drop-down list labeled 
Order of differencing. The order indicates the number of 
times that a first difference is calculated (Brockwell and Davis, 
2002). The text box labeled Name of trend output is used 
to assign a series name of the output. By default, the series 
name has the extension _trd added to the root name of the 
data series. The results from the differencing can be calculated 
by clicking the button Calculate trend and save residuals. 
Outputs can be viewed by clicking the buttons Plot residuals 
or View data table.

Curve Fitting

Curve fitting uses a fitted function of time to represent the 
trend. The residuals of the time series from the trend can rep-
resent the time series with the trend removed. The curve-fitting 
tool is available in the groupbox labeled Curve fitting on the 
tabbed page Detrend. A vector time series can be selected 
from the drop-down list that is labeled Select series to 
detrend. The curve-fitting method (linear fit, 2nd order polyno-
mial fit, 3rd order polynomial fit, and 4th order polynomial fit) 
can be selected from a drop-down list labeled Curve fitting 
method. The shape of the fitted polynomial is controlled by 
the order. Hanson and others (2004) used polynomial fits to 
remove persistent changes that appeared to be trends, such 
as long-term declines in water levels that they attributed to 
groundwater withdrawals. The text box labeled Name of 
trend output is used to assign a series name to the output. By 
default, the series name has the extension _trd added to the 
root name of the data series. The fitted curve (the trend) and 
the residuals from the trend can be calculated by clicking the 
button Calculate trend and save residuals. Outputs can be 
viewed by clicking the buttons Plot trend and data series 
to see how well the fitted curve represents the changes in the 
time series, Plot residuals to view a plot of the residuals, or 
View data table to view the values of the residuals in a table.

Figure 12.  Options for assessing for autocorrelation and for detrending by using differencing or curve fitting.
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Fourier Analysis
Fourier analysis is useful for interpreting a time or space 

series as a superposition of harmonic functions that have a 
characteristic time or space scale. The goal is to obtain a plot 
of the variance of a time series as a function of wave number, 
frequency, or period of fitted periodic functions, which is 
called a spectrum. The discrete Fourier transform (DFT) and 
spectral averaging tools can be used to compute the spectrum 
of a time series. Fourier analysis is useful because many time 
series include variability that can be caused by reoccurring 
physical mechanisms, and an analysis of the variability could 
provide insight on the relation to these mechanisms. Spectral 
averaging is useful for increasing the number of degrees of 
freedom of the spectral estimates, which increases the reliabil-
ity of each spectral estimate. Approaches to spectral averaging 
include averaging adjacent spectral estimates and averaging 
separate realizations of spectra. Windowing is useful for 
addressing the phenomena known as “spectral leakage,” which 
results from analyzing a discrete time series with a beginning 
and end instead of the continuous time series that is theoreti-
cally required by DFT. Other approaches for obtaining the 
spectrum (Blackman-Tukey method, Multi-taper method, 
and maximum entropy method) are available in the freely-
available software SSA-MTM Toolkit available at http://www.
atmos.ucla.edu/tcd/ssa/ (Dettinger and others, 1995b).

Tools for DFT and spectral averaging are available in 
the tabbed page labeled Fourier analysis (fig. 13). A vector 
time series can be selected from the drop-down list that is 
labeled Select series for spectral analysis. The selected time 
series can contain raw values, but is often the output from 
the preprocessing or detrending tools. The text box labeled 
Name of spectrum output is used to assign a series name of 
the spectrum. By default, the series name has the extension 
_stm added to the root name of the data series. The sampling 
interval, which is the interval between values in the time series 
used in the Fourier analysis, is specified by entering an integer 
in the textbox labeled Sampling interval. For example, a 
value of one indicates all values are used, and a value of two 
indicates every other value is used. A windowing function 
(for example, boxcar, Hann, Hamming, or Parzen), which 
is applied to the time series prior to the DFT calculation, is 
selected from a down-down list labeled Select windowing 
function. The importance of selecting a windowing function 
for addressing spectral leakage is addressed in many texts on 
time series analysis (for example, Otnes and Enochson, 1978). 
The significance of the spectrum in relation to a red-noise null 
hypothesis can be evaluated by either a Chi-squared or F test, 
which is chosen from the drop-down list labeled Significance 
test. Default values can be assigned by clicking on the button 
Get default settings, which resets the sampling interval to 
one, the windowing function to Hann, the significance test to 
Chi-squared, and turns off the spectral averaging options. The 
Hann window is considered to be the most commonly used 

window in meteorological applications. The spectral averag-
ing option is turned off because the user could want to begin 
with no averaging and test the effects of different averaging 
approaches.

The reproducibility of the spectrum can be improved by 
increasing the degrees of freedom at each specified frequency. 
The degrees of freedom can be increased by increasing the 
bandwidth, or range of frequencies, for each spectral estimate 
through spectral averaging. This means that the power of 
a component is obtained for a range of frequencies. This 
approach could be reasonable in many applications because 
geophysical phenomena are typically not strictly periodic at a 
single frequency, but often operate within a range of frequen-
cies. Increasing the bandwidth reduces the resolution of the 
computed power spectrum, however. Without spectral averag-
ing, a spectrum estimates the power spectrum at N/2 frequen-
cies, and the estimate of the power at each frequency only 
has 2 degrees of freedom, which is not reproducible in many 
situations. The degrees of freedom for each spectral estimate 
can generally equal N/M *, where N is the total number of 
values in the time series, and M * is the total number of degrees 
of freedom in the spectrum. For example, if a time series has 
1,000 values and the spectrum has 500 independent spectral 
estimates, each spectral estimate has 2 degrees of freedom. 
Adjacent spectral estimates can be averaged (for example, 
a moving average) to increase the degrees of freedom. If 
10 adjacent spectral estimates within a single spectrum are 
averaged, then the total number of spectral estimates is 100, 
and each spectral estimate has 10 degrees of freedom. The 
degrees of freedom can also be increased by averaging spec-
tral realizations. If the original time series is split into separate 
segments of equal length, a spectral realization, or separate 
spectrum, for each segment can be calculated. If the spectra 
for each segment are averaged at each frequency, then the 
degrees of freedom for each spectral estimate is approximately 
2N/Mch , where Mch is the number of values in each segment. 
For example, if a times series of 1,000 values is separated into 
10 segments (each has 100 values), each spectral estimate has 
20 degrees of freedom. 

Spectral averaging options are enabled by clicking the 
checkbox labeled Use spectral averaging. The two spectral 
averaging options are Average adjacent spectral estimates 
and Average spectral realizations. The Average adjacent 
spectral estimates method uses a moving average to smooth 
the spectrum, and the width of the smoothing window is speci-
fied by the textbox labeled Width of smoothing window. 
The Average spectral realizations method splits the time 
series into separate segments of the original time series and 
computes a spectrum for each segment. The final spectrum 
is an average of the spectra for each frequency. The number 
of separate segments used is specified by entering an integer 
in the textbox labeled Number to average. An option for 
averaging spectral realizations is to use the Welch Overlapping 
Segment Analysis (WOSA; Welch, 1967), in which half of the 

http://www.atmos.ucla.edu/tcd/ssa
http://www.atmos.ucla.edu/tcd/ssa


14    HydroClimATe—Hydrologic and Climatic Analysis Toolkit

length of a time-series segment overlaps with the adjacent by 
half of the length. To use WOSA, click the checkbox labeled 
Overlap spectral realization by half length. The spectrum is 
calculated by clicking the button labeled Calculate spectrum. 
Outputs can be viewed by clicking the buttons Plot spectrum 
and View data table.

The plot of the spectrum includes options for displaying 
confidence intervals and for displaying each component as the 
wave number, frequency, or period. The values on the x-axis 
on the plots range from zero to the Nyquist frequency, which 
is the highest frequency that can be resolved. Frequency is 
equal to the number of cycles completed over the length of the 
time series. The x-axis can be changed by clicking on View 
on the menu bar and selecting Wave number, Frequency, or 
Period under the menu Change x axis. Significance tests can 
be plotted by clicking on View and selecting Red noise null 
hypothesis, 90%, 95%, or 99% on the menu Show sig. test. 
The scale of the x-axis and y-axis can be modified by click-
ing View and Log scale, and selecting X-axis linear, 
X-axis base e, X-axis base 10, Y-axis linear, Y-axis base e, 
or Y-axis base 10.

Maximum Entropy Method
The maximum entropy method (MEM; Burg, 1967; 

Childers, 1978) can be used to estimate a spectrum of a time 
series. MEM is efficient for identifying frequencies that con-
tribute most of the variance of a stationary time series. MEM 
obtains a spectrum by identifying an autoregressive (AR) 
model that is similar to the original time series. The coeffi-
cients of the AR model correspond to the location and width of 
the peaks in the spectrum. The output spectrum is dependent 
on the number of the coefficients, which is referred to as the 
number of poles, or order M, of the AR model. Greater values 
of M provide more resolution and identification of more peaks 
in the spectrum, but some of the peaks can be spurious. Lesser 
values of M produce a smoother spectrum, but the peaks of 
interest sometimes are not identified (Press and others, 1988). 
In practice, M should be several times greater than the total 
number of sharp spectral peaks that are desired in the spectrum 
(Press and others, 1988).

Figure 13.  Options for harmonic analysis by using a discrete Fourier transform and spectral averaging.
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Tools for maximum entropy method are available on 
the tab MEM (fig. 14). This page has options for defining 
the input time series and naming output spectrum, as well as 
the sampling interval and the MEM order M. By default, the 
spectrum name has the extension _MEMstm added to the root 
name of the data series. Default values can be assigned by 
clicking on the button Get default settings. This automati-
cally and arbitrarily sets the sampling interval to 1 and M to 
10. The spectrum is computed by clicking the button labeled 
Calculate spectrum. To view the output, click the buttons 
labeled Plot spectrum or View data table.

Singular Spectrum Analysis
Periodic or quasi-periodic components can be identified 

by using the singular spectrum analysis (SSA) tool. SSA is a 
form of empirical orthogonal analysis (or principal component 
analysis) of a lagged covariance matrix (Broomhead and King, 
1986; Vautard and others, 1992) and is useful for identify-
ing oscillatory signals in short and noisy time series. This 
approach has an advantage over harmonic analysis through a 
Fourier transform because the fitted functions are not defined 
a priori, but are based on structures determined through 
eigenanalysis. Another advantage is that detrending is not 
required—the trend can be identified as a structure. 

The goal of SSA is to obtain temporal structures that 
explain the maximum possible amount of covariance in time 
through an eigenanalysis of the lagged covariance matrix. The 
structures are explained by the eigenvectors, and the explained 
covariance per structure is obtained from its corresponding 
eigenvalue. The structures are often called the “temporal 
empirical orthogonal functions” (T-EOFs; Dettinger and 
others, 1995a), and the manner in which the T-EOFs change 
through time is described by the “temporal principal com-
ponents” (T-PCs). The reconstructed structures in real time 
are called “reconstructed components” (RCs). The review 
paper by Ghil and others (2002) and the documentation for 
the SSA-MTM Toolkit (Dettinger and others, 1995b) provide 
extensive details of SSA. Further details on the T-EOFs and 
T-PCs are provided in the section “Empirical Orthogonal 
Function analysis.”

Tools for SSA are available in the tabbed page labeled 
SSA (fig. 15). This page has options for defining the inputs, 
SSA options, and options for viewing and exporting outputs. A 
vector time series can be selected from the drop-down list that 
is labeled Select series for SSA. Text boxes labeled Name of 
spectrum output, Name of output T-EOF matrix, Name 
of output T-PC matrix, and Name of output RC matrix 
are used to assign output names to be stored internally by the 
software. By default, the series names have the extensions 
_SSAstm, _TEOFs, _TPCs, and _RCs added to the root name 
of the data series accordingly. 

Figure 14.  Options for maximum entropy analysis.
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The options for SSA are the sampling interval, window 
length, and method of calculating error bars of the spectral 
estimates. The window length needs to be wide enough to 
contain sufficient data over the interval of the oscillatory 
component that is of interest. For example, if components that 
vary from 20 to 30 years are of interest, and the samples are 
available at 12 points per year, then the window length needs 
to be at least 360. Vautard and others (1992) suggest that the 
window length be less than one-fifth of the total number of 
points in the time series. By default, the program sets the 
window length to be one-tenth of the total number of points. 
The spectrum is computed by clicking the button labeled 
Calculate SSA. 

Ad hoc significance tests for the spectrum proposed 
by Ghil and Mo (1991), Vautard and Ghil (1989), and Unal 
and Ghil (1995) are selected from a drop-down list labeled 
Error bars. Significance of the components can be assessed 
by visual inspection of the spectrum and the error bars. Sig-
nificant components contribute more variance than that from 
noise background and tend to be separated from the compo-
nents on the flatter, right side of the spectrum by the length of 
the error bars. Ghil and others (2002) provide extensive details 
on assessing the significance of the components.

Plotting options for SSA are available for viewing the 
spectrum, T-EOFs, T-PCs, and reconstructed components 
(RCs). The spectrum can be plotted with the number of the 
SSA components, or frequency along the x-axis, and the 

variance, or percentage of variance along the y-axis, for each 
component or frequency. A time series of the RCs can be 
plotted for each individual RC or as a sum of selected RCs. 
A vector of the time series for the RCs can be stored inter-
nally by specifying a name of a series for exporting. Click the 
button labeled Save RC vector to store the vector. The amount 
of variance explained by the modes can be viewed by clicking 
on the button labeled View data table on the tab SSA. A 
sum of multiple RCs can be generated by entering multiple 
RC numbers, such as “1 2” for RC1 and RC2, in the text box 
labeled Select RCs and saved by clicking on the button Save 
RCs and residuals vector. A single RC or a sum of RCs can 
be plotted by clicking the button Plot RC(s), and the residu-
als of the RCs from analyzed time series can be plotted by 
clicking the button Plot residuals.

Empirical Orthogonal Function 
Analysis

Empirical orthogonal function (EOF) analysis is useful 
for identifying spatial and temporal structures that explain 
the most variance in two-dimensional data sets. EOF analysis 
is a form of principal component analysis that is commonly 
used in the atmospheric sciences to identify patterns in a time 
series of gridded spatial data. One dimension of the data set 

Figure 15.  Options for singular spectrum analysis.
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often contains the physical values in which structures are to 
be found, and the other dimension contains realizations of the 
physical values. An example of such a data set is spatially dis-
tributed precipitation along the dimension of physical values 
and the time for the precipitation along the dimension of the 
realizations. For this example, EOF analysis produces struc-
tures in the spatially distributed precipitation, which are called 
“empirical orthogonal functions.” EOF analysis also produces 
structures in the realization, or time, dimension called “prin-
cipal components,” or “PCs,” which explain how each “EOF” 
pattern varies through time. An application of EOF analysis 
to precipitation data in the southwestern U.S. is described in 
example 2.

Tools for EOF analysis are available on the tab EOF 
analysis (fig. 16). This page has options for defining the input 
series and naming the spectrum, EOF matrix, PC matrix, and 
the scaled EOF matrix. For large spatial datasets that span a 
wide range of latitudes and are gridded by using a non-equal-
area projection, the values at higher latitudes are representa-
tive of smaller spatial areas and will dominate the results of 
the EOF analysis. In order to reduce the influence of the values 
at higher latitudes, the gridded values of the anomaly can be 
scaled by area at particular latitudes by selecting the checkbox 

labeled Weight grids for latitude. If this option is used, the 
user is required to specify the minimum and maximum lati-
tudes for the data in the textboxes labeled Latitude minimum 
and Latitude maximum. The EOF analysis is computed by 
clicking the button labeled Calculate EOFs.

The resulting spectrum of the eigenvalues for each EOF 
and PC pair can be displayed by clicking the button Plot 
spectrum. To plot the spectrum as the variance explained by 
each EOF/PC pair, click the checkbox Show percent variance 
and click on the button Plot spectrum. A table of the values 
in the spectrum can be displayed by clicking the button View 
data table.

Individual PC time series and scaled EOF matrix outputs 
must be saved before the software can export the output. The 
individual PC time series and scaled EOF matrices repre-
sent the temporal and spatial patterns, respectively, that are 
associated with each eigenvalue. For example, if a dataset 
includes gridded precipitation data at 30 different times, the 
output from the EOF analysis includes 30 PCs and 30 EOFs. 
The scaled EOF matrices are scaled to be in the same units 
as the input data. In order to save a PC for analysis in the 
software or in order to export it, the PC must be saved by 
specifying a series name for the PC in the textbox labeled 

Figure 16.  Options for empirical orthogonal function (EOF) analysis.
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Name of output for selected PC and by clicking the button 
Save PC vector. A plot of any of the PC time series can be 
displayed by selecting a PC number in the textbox labeled 
Select PC and clicking the button Plot PC. A gridded plot of 
the EOFs cannot currently be generated by the software, but 
the gridded data can be exported to an ASCII raster file that 
can be imported and displayed in GIS software.

Linear Regression And Correlation
Linear regression and evaluation of the correlation 

between data series are useful for exploring linear relations 
between time series or for modeling one series (the predic-
tand) as a function of the other series (the predictor). A lag 
correlation is useful for investigating the phase shift (for 
example, months) of the dependent time series that results in 
the strongest correlation.

Tools for regression and correlation analysis are available 
on the tab Regression and correlation (fig. 17). To specify 
the predictor, first, select a series in the drop-down list in 
the upper right corner that is labeled Data series name and, 
then, select a series name for the predictor in the drop-down 
list labeled Select series. The series that are available are 
subsets of the data series that is selected in the drop-down list 

at the upper right corner. To select a predictand, first, select a 
data series name in the drop-down list Data series name for 
predictand and, then, select a series name in the underlying 
drop-down list Select series. The series names will be subsets 
of the data series for the predictand. The series for the predic-
tor and predictand must have an equal number of records. 
Either a one-tailed or two-tailed significance test using a t test 
at the 90, 95, or 99 percent confidence level can be selected to 
evaluate the significance of the correlation coefficient. These 
are calculated after clicking the button Calculate regression, 
and the results of the t test can be viewed by clicking View 
regression statistics.

The results of the lag correlation can be plotted as a cross 
correlation plot, which shows the correlation coefficient as 
a function of the lag, or time shift, between two time series. 
The two time series can be plotted together, where one series 
is lagged by the amount that has either the greatest positive 
correlation, or, when the series are expected to be negatively 
correlated, the series can be lagged by the amount that has 
the greatest negative correlation. The maximum forward and 
backward lags can also be specified, which is useful if there is 
an a priori expectation that a lag cannot be greater or less than 
a certain amount. The lag correlation can be performed by 
clicking the button Calculate CCF, and a plot of the lagged 
series at either the maximum positive or negative correlation 
can be generated by clicking the buttons Plot lagged series.

Figure 17.  Options for assessing relations through regression and correlation analyses.
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Projections
Time-series projections can be generated by using a com-

bination of time series modeling, random-number synthesis, 
and extrapolation of the time series as described by Keppenne 
and Ghil (1992) and Jiang and others (1995) and implemented 
by Hanson and others (2003). An autoregressive (AR) math-
ematical model is the method used in the software to represent 
the persistence, or autocorrelation, in a time series. The persis-
tence is used to extrapolate a time series under the assumption 
that the behavior in the past is useful for generating values at a 
future time.

The tools for AR modeling and generating projections 
are available on the tab Projections (fig. 18). To create an 
AR model of order p, the series to be modeled can be selected 
in the drop-down list Select series to model, and several 
options are available for selecting the order p. The order 
can be selected by checking Identify and fit from multiple 
models or Fit only one model. If multiple models are used, 
the software will calculate AR models having orders from 1 
to the highest specified order. The order indicates how many 
values in the past will be used to generate a new value. A 
single order is specified if only one model is selected. In either 
case, the corrected Akaike information criteria (AICc), Akaike 

information criteria (AIC), or Akaike’s final prediction error 
(FPE) tests can be used to select a model. These tests identify 
a model that minimizes the error between the data and model 
while accounting for parsimony. A model that has an order that 
minimizes the goodness-of-fit statistic, or, if only one model 
is desired, that has a specified order, is identified by clicking 
the button Calculate models. Additional results are plotted 
in tables by clicking the buttons View table of fit statistics 
and View table of fitted AR coefficients. The time series and 
the simulated values can be displayed by clicking Plot AR 
simulated values or View data table of simulated values. 
The residuals of the time series from the simulated values can 
be displayed by clicking Plot residuals best fit and View data 
table of residuals. The autocorrelation function for the residu-
als can be shown by clicking Plot ACF of residuals and View 
data table of ACF of residuals. The autocorrelation function 
plot is useful for evaluating whether the residuals are random, 
in which case the plotted values are near zero.

The fitted AR(p) model can be used to generate future 
values by entering values in the textbox Length of projection 
and Number of realizations (fig. 18). The length of the 
projection is an integer number of values that the time series 
is stepped forward past the last value in the time series. The 
number of realizations is the number of different projec-
tions (realizations of the stochastic process) with random 

Figure 18.  Options for fitting autoregressive models and generating projections.
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components that are generated past the last value in the time 
series. A large set of realizations is useful for generating a 
range of possible values of the projection. The projection is 
created by clicking the button Calculate projection, and the 
results can be displayed by clicking Plot a single projection 
or Plot projection envelope. If plotting a single projection, 
the plotted series is selected randomly from the set of real-
izations. The projection envelope includes the mean of the 
realizations at each time, the upper and lower values of an 
envelope that contains 90 percent of the realizations, and three 
randomly selected realizations.

Multiple projections can be summed in order to generate 
a single projection by selecting more than one projection in the 
table Projections to be summed (fig. 18). This can be useful 
when a time series is decomposed into several reconstructed 
components by SSA, and each reconstructed component is 
projected separately. If the time series is reconstructed compo-
nents, residuals from the sum of the reconstructed components 
from the original time series can be added into the sum of the 
projections by checking Include residuals of the summed 
projections from the original series. The final projection is 
created by clicking Calculate sum of selected projections, in 
which the selected projections are checked in the table, and the 
results can be displayed by clicking Plot projection envelope 
and View data table.

Examples
The following examples demonstrate several ways of 

using the tools in HydroClimATe to assess relations between 
hydrologic and climatic time series and for generating time-
series projections.

Example 1—Spectral Analysis of a Synthetic 
Time Series

Spectral analysis of time series is a powerful tool for 
identifying repeating, frequency-dependent variability that 
could be related to a causal physical mechanism. Example 
1 demonstrates how to use the spectral analysis tools and 
provides some guidance for interpreting the computed spec-
trum. The spectrum is a plot of the variance of a time series 
as a function of wave number, frequency, or period of fitted 
periodic functions. The spectrum can be used to identify an 
underlying pattern that explains much of the variability in a 
time series and can provide some insight into what physical 
processes could cause the variability. Examples of how spec-
tral analysis has been used extensively in tree-ring research 
include the identification of relations between precipitation 
and temperature on growth rates of trees (LaMarche, 1974), 
and between tree-rings and solar cycles (La Marche and Fritts, 
1972). This example demonstrates the following tools: 

1.	 Discrete Fourier analysis.

2.	 Maximum entropy method.

3.	 Singular spectrum analysis.
This example demonstrates that the choice of the spec-

tral method can produce differences in the power spectrum. 
Discrete Fourier analysis, maximum entropy method (MEM), 
and singular spectrum analysis (SSA) are demonstrated on 
a synthetic time series (fig. 19A, B) having several periodic 
components and noise that was created by Professor David W. 
J. Thompson at Colorado State University. Two of the main 
periodic components that compose most of the variance in the 
time series are reconstructed by using a convolution of the 
T-EOFs and T-PCs obtained from SSA. The first part of the 
example demonstrates how to perform the analysis using the 
software, and the last part describes the output and the conse-
quences of selecting different options.

Several of the discrete Fourier analysis options are 
used to generate four different spectra, each having different 
amounts of noise in the spectra and significant spectral peaks. 
The options include the application of windowing functions 
and spectral averaging. The purpose of using these options is 
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Figure 19.  The synthetic time series used in example 1: A, the 
sum of the first and second reconstructed components; B, the 
sum of the third and fourth reconstructed components.
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to increase the number of degrees of freedom (d.o.f.) of the 
spectral estimates and, therefore, to increase the repeatability 
of the spectral estimates. This can reduce some of the noise in 
the spectrum, but comes with a loss of resolution. 

The first step in this analysis is to import the time series 
by selecting the File menu, clicking Import time series from 
file, and selecting ASCII file on the menu that appears to the 
right. The file “timeseries1.csv” is selected, the checkbox 
First row has column names is selected to skip the headers 
on each column, and it is named “timeseries1” in the textbox 
labeled Data Series Name. Click OK to close this window 
and import the data. The discrete Fourier analysis is performed 
by selecting the tab labeled Fourier analysis and selecting 
“timeseries1” in the drop-down list Select series for spectral 
analysis. The window is selected in the drop-down list Select 
windowing function (boxcar and Hann are used in this 
example). Spectral averaging options are selected by clicking 
the checkbox Use spectral averaging, entering the smooth-
ing window width, the total number of spectral realizations 
to average, and then clicking the checkbox Overlap spectral 
realizations by half length. MEM is performed by select-
ing the tab labeled MEM and selecting “timeseries1” in the 
drop-down list Select series for MEM, specifying an order 
of 40, which is arbitrary and assumed to provide a reasonable 
spectral resolution, and then clicking Calculate spectrum. 
SSA is performed by selecting the tab labeled SSA, specify-
ing a sampling interval of 1 and window length of 200, which 
is one-fifth of the total number of points in the time series, as 
recommended by Ghil and others (2002). Ghil and Mo error 
bars were selected in order to assess the statistical significance 
of the eigenvalues.

Discrete Fourier Analysis Using a Boxcar 
Window and No Spectral Averaging or 
Smoothing

Spectral estimates of the synthetic time series by the 
discrete Fourier analysis include a relatively noisy spectrum 
when using only boxcar windowing function and no spectral 
averaging (fig. 20A). This spectrum indicates two main sig-
nificant spectral peaks at 99 percent confidence level (using a 
chi-squared test) at frequencies of 0.015 and 0.05. 

Discrete Fourier Analysis Using a Boxcar 
Window and Spectral Smoothing

The spectrum is smoothed by taking the mean of the 
spectrum within a moving window of width 5 (fig. 20B). The 
smoothing of the spectrum increases the d.o.f., but reduces 
the resolution of the spectral peaks. The loss of resolution is 
accompanied by a larger bandwidth for any spectral power 
estimate. It also appears that the spectral power is decreased 
for the two peaks that were obtained without smoothing 
(fig. 20A), and additional peaks that are next to the two 

significant peaks are now significant because the power associ-
ated with the two peaks in figure 20A are “spread out.” The 
spectral smoothing increases the d.o.f. because the five-point 
window uses five data points to calculate the power for each 
wave number. In this case, the d.o.f. equals 2 d.o.f. per esti-
mate times 5 points per estimate equals 10 d.o.f. per averaged 
power estimate.

Discrete Fourier Analysis Using a Boxcar 
Window and Spectral Averaging

The spectral averaging tool subdivides the original time 
series into separate time “chunks,” runs the discrete Fourier 
transform on each time chunk to obtain a spectral realization, 
and then takes the mean of the spectral realizations at each 
frequency. This example averages 10 spectral realizations 
and does not use the overlapping option. The spectral averag-
ing (fig. 20C) increases the d.o.f., but drops the information 
about the lowest frequencies in the data. The lowest frequen-
cies are lost because the discrete Fourier transform algorithm 
obtains N/2 spectral estimates, so as N (total number of points) 
decreases, so does the number of spectral power estimates. 
The lowest frequencies are obtained by fitting the longest sine 
and cosine functions to the time series, and the lowest resolved 
frequency is 2π per N/10, instead of per N, as is the case for 
the whole dataset N.

After applying spectral averaging, only one significant 
peak remains at the lower frequencies. The spectral averaging 
increases the d.o.f. because the 10 subsets use 10 data points to 
calculate the power for each frequency. In this case, the d.o.f. 
equals 2 d.o.f. per estimate times 10 points per estimate, which 
equals 20 d.o.f. for each averaged power estimate. 

Discrete Fourier Analysis Using a Hann Window 
and Spectral Averaging with Overlap

The Hann window tapers the ends of the time series, 
which partially cancels out the negative side lobes of the 
rectangular response function and lessens spectral leakage (for 
example Otnes and Enochson, 1978). The disadvantage of 
the Hann window is that it smooths and broadens the central 
lobe, which means that the spectrum will be slightly smoothed 
compared to a rectangular boxcar window (fig. 20D). The 
spectrum is averaged by overlapping the windows by exactly 
one half of the chunk length, so each datum point is given the 
same weight in the resulting spectrum. This counteracts how 
the Hann window broadens the central lobe and weakens the 
pinched out ends; by moving the window by half of the chunk 
length, each section is broadened and weakened at least once. 
The exceptions are for the first and last points in the original 
time series. Because the analysis uses 9 chunks of time series, 
the d.o.f. is equal to 2 d.o.f. per spectral line times 9, which is 
equal to 18 for the averaged spectrum.
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Figure 20.  Spectra for a synthetic time series obtained by different methods: A, Discrete Fourier transform using a boxcar window and 
no spectral averaging; B, Discrete Fourier transform using a boxcar window and averaging adjacent spectral estimates; C, Discrete 
Fourier transform using a boxcar window and averaging of 10 spectral realizations; D, Discrete Fourier transform using a Hann window, 
averaging of nine overlapping spectral realizations; E, Maximum entropy method; F, Singular spectrum analysis.
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The two main significant peaks obtained without using 
spectral averaging (fig. 20A) have returned, and the overall 
pattern of the spectrum resembles the spectrum obtained by 
using only spectral smoothing and a boxcar window (fig. 20B). 
Overall, the spectrum resembles the spectrum obtained with-
out smoothing or averaging (fig. 20A), but has more degrees 
of freedom because of the averaging. This case also has two 
additional significant peaks at the 99 percent confidence level 
(using a chi-squared test) at frequencies of 0.135 and 0.17 that 
were not significant in the other tests.

Maximum Entropy Method
The resulting power spectrum indicates two main spectral 

peaks at different frequencies—the first one is centered near 
frequencies of 0.014 and 0.016 and the second one is centered 
near frequencies of 0.047, 0.048, and 0.042 (fig. 20E). The 
overall shape of the spectrum is very similar to the spectrum 
obtained by the discrete Fourier analysis.

Singular Spectrum Analysis
The spectrum obtained by SSA (fig. 20F) contains two 

main spectral peaks that were also identified by the discrete 
Fourier analysis and MEM. The first peak is at a frequency 
of 0.015 and the second is at 0.05. The first and second 
eigenvalues, as well as the third and fourth eigenvalues are 
nearly equal pairs. The sum of the reconstructed components 
for the first and second T-EOFs and T-PCs, which correspond 
to the first peak, explain approximately 13 percent of the total 
variance (fig. 19A). The second peak is related to the third and 
fourth T-EOFs and T-PCs and their reconstructed components 
(fig. 19B). A visual comparison between the spectra for the 
synthetic time series (fig. 19A, B) obtained by SSA, discrete 
Fourier analysis, and MEM indicate that, in general, two 
main oscillatory features dominate both the spectral power 
and percentage of variance. Differences among the spectra 
occur because of the use of different spectral estimation and 
averaging methods.

Example 2—Correlations Between Spatial 
and Temporal Modes in Winter Precipitation 
in the Southwestern United States to Winter 
Multivariate ENSO Index from 1980 to 2009

This example demonstrates how to use EOF analysis 
to extract spatial and temporal modes (patterns) in a grid-
ded time series of precipitation data and how to use correla-
tion to identify relations between the precipitation modes 
to ENSO. This type of analysis can be useful in other appli-
cations in which a physical process could be contributing 
to much of the variability in a gridded time series. Other 
examples of possible relations that can be assessed with 

these tools include (1) streamflow and remotely sensed 
vegetation data, (2) streamflow and gridded temperature data, 
and (3) groundwater withdrawals and remotely sensed land 
subsidence. This example uses the following tools: 
1.	 Standardization by using the gamma to normal (SPI) tool.

2.	 Empirical orthogonal function analysis.

3.	 Linear regression.
Relations between winter precipitation in the 

southwestern U.S. and winter values of multivariate ENSO 
Index (MEI) are briefly explored for the period of 1980–2009. 
Spatial and temporal modes (patterns) in precipitation are 
extracted by using empirical orthogonal function analysis 
of precipitation that is first normalized using the standard-
ized precipitation index (SPI; McKee and others, 1993). 
The relations between MEI and the principal components 
(PC) obtained by the EOF analysis are assessed by using 
linear regression and by evaluation of statistically significant 
correlations. 

Winter precipitation for the months of October through 
February are compiled for the southwestern U.S. for the 
spatial extent of 43°N to 30.5°N and 121°W to 102°W and the 
temporal period of the water year 1980 (beginning October 
1979) to 2009 (ending September 2009). Precipitation data 
are extracted from the Parameter-Elevation Regressions on 
Independent Slopes Model PRISM dataset (http://www.prism.
oregonstate.edu/, accessed November 29, 2011). These data 
from PRISM are available at month and year intervals at 4-km 
resolution (0.042 degrees). For this example, precipitation data 
are resampled to a coarser 0.208 degree resolution (92 rows 
and 60 columns) because of computer memory limitations that 
can occur during the EOF analysis. 

Prior to importing the data into the software, the pre-
cipitation values for each month are summed to represent the 
winter precipitation for a single year. The winter sum for each 
year includes the October, November, and December values 
for the preceding year. For example, the winter value for 
1980 is the sum of the precipitation from October, November, 
and December of 1979, and the precipitation for January and 
February of 1980.

The data are saved into a single ASCII file, which has 
a single column (vector format) and 165,600 rows, and are 
organized by the pattern shown in figure 5 so that the software 
reads the data by using three loops. The first loop reads data 
in the eastward direction, the second loop reads the data in 
a northward direction, and the third loop reads the data for 
successive years. The first value in the file corresponds to the 
most westward and most southern point at the earliest time. 
The last value in the file corresponds to the most eastward and 
the most northern point at the latest time. For this example, the 
sizes of the loops are 92, 60, and 30 for the first, second, and 
third loop, respectively. The sizes of these loops correspond 
to the size of the 30 grids (one for each year) of precipitation 

http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
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data that are resampled to 92 rows and 60 columns. These 
loop sizes are entered into the form Import matrix in vector 
format from ASCII file at the textboxes labeled First loop 
size, Second loop size, and Third loop size. The data are 
assigned the data series name “ONDJF_total_precip” in the 
Data Series Name textbox.

The first processing step is to normalize the winter 
precipitation by using the standardized precipitation index 
(McKee and others, 1993) to characterize anomalous precipi-
tation over the 30 years. The data are standardized by selecting 
“ONDJF_total _precip” in the drop-down list Select series to 
standardize and selecting the Gamma to Normal (SPI) stan-
dardization method on the Preprocess Data tab. The standard-
ized data are saved to the output “ONDJF_total_precip_std.” A 
time series of the standardized precipitation from a randomly 
selected spatial location can be plotted by clicking Plot 
standardized series. The plot can be used to check if the 
standardization produced reasonable values and if the data are 
imported correctly.

The EOF analysis is performed by selecting the standard-
ized series “ONDJF_total_precip_std” in the drop-down list 
Select series for EOF analysis on the EOF analysis tab. The 
checkbox Weight grids for latitude is selected, 30.5 was 
entered in the textbox Latitude minimum, and 43 is entered 
in the textbox Latitude maximum. The EOFs are calculated 
by clicking the button Calculate EOFs. 

The outputs from the EOF analysis include a spectrum of 
the spectral power and the percentage of variance explained 
for each EOF/PC pair, time series of the PCs, and scaled 
EOFs. The eigenvalue spectrum displays the spectral power 
and percentage of the variance explained by each EOF/PC 
pair (fig. 21). The North test (North and others, 1982) is used 
to assess the statistical significance of the EOF/PC pairs at the 
95 percent level. For the North test, the sampling error (Δλ) is 
calculated for each eigenvalue and plotted as a length above 
and below the eigenvalue on the spectrum. Each year of data 
is assumed to be statistically independent, and the effective 
sample size is equal to 30. For the North test, an EOF/PC pair 
is significant if the error bars of its eigenvalue do not overlap 
vertically with the error bars of the neighboring eigenvalues. 
In this example, only the first two eigenvalues are separated 
from each other, and none of the other eigenvalues are sepa-
rated vertically by their error bars. A null hypothesis of red 
noise could explain the EOFs if the percentage of explained 
variance by each eigenvalue decreased exponentially. A 
null hypothesis of white noise could explain the EOFs if the 
eigenvalues plot along a flat line on the spectrum. The North 
test indicates that the first two eigenvalues do not decrease 
exponentially, thus the null hypothesis that these are attribut-
able to red noise is rejected at the 95 percent confidence level.

The first two combined EOFs for normalized Oct–Feb 
precipitation (figs. 22 and 23) explain approximately 
60 percent of the total variance, and the remaining variance is 
explained by the higher modes. The first EOF for Oct–Feb and 
its PC explains 40 percent of the variance (fig. 22) and is nega-
tive everywhere in the map. The most negative areas are in the 

central part of the map, and the values become less negative 
toward the edges of the map. The second EOF for Oct–Feb 
captures 20 percent of the variance (fig. 23) and includes steep 
gradients in areas of high topography, such as in the Rocky 
Mountains of Colorado and Utah. Another pattern in the 
second EOF that reflects topography is a triangular area over 
the Mojave Desert area of southern California. In this second 
mode, the values are positive for much of the southern and 
eastern part of the study area and negative for the northwestern 
corner and in areas of high topographic areas in Colorado and 
Utah. Because this mode also has smooth gradients in areas 
of high topography, such as in New Mexico, influences other 
than orography are likely contributing to the patterns in this 
EOF map. The sign (positive or negative) of the patterns in 
the EOF maps and the PC time series is arbitrary in the EOF 
analysis, meaning that there is no physical reason for the sign. 
The magnitude, whether the value is positive or negative, 
however, is useful for assessing the strength of a spatial or 
temporal pattern.

The plots of the PCs of the first and second leading 
modes indicate how the strength of the first and second EOFs 
varies through time (fig. 24). A significant correlation of 
–0.41 at the 90 percent level (two tailed) between the first 
PC (composing 40 percent of the variance) with MEI for 
November through April suggest a teleconnection among 
winter atmospheric and oceanic conditions and precipitation 
for winter precipitation in the southwestern U.S. The negative 
correlation coefficient does not suggest that there is a negative 
correlation between a physical process that is identified by 
the first EOF and MEI. Because the sign of the EOF and PC 
is arbitrarily positive or negative, the correlation coefficient 
is also arbitrarily positive or negative. Previous investigators 
have identified positive correlation between precipitation and 
ENSO in the southwestern U.S. (for example, Redmond and 
Koch, 1991), and the results of the EOF analysis need to be 
interpreted in the context of physical processes. The sign of 
the values of the scaled EOFs and the time series values in the 

Figure 21.  Panel showing spectrum of the eigenvalues from 
Empirical Orthogonal Function (EOF) analysis of Standardized 
Precipitation Index (SPI) normalized October through February 
precipitation in the southwestern U.S. from 1980 to 2009. PC, 
principal component.
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Figure 22.  First scaled empirical orthogonal function (EOF) from analysis of standardized precipitation index (SPI) normalized October 
through February precipitation in the southwestern U.S. from 1980 to 2009. PC, principal component.

EOF expressed as
regressed PC
on SPI values

EXPLANATION

.9

–1.0

0

sac13-0491_Figure 22

105°110°115°120°

40°

35°

–0.5

–0.4

–0.6
–0.3

–0.2

–0.1

–0
.7

–0.8

–0
.2

–0
.5

–0.8

–0.8

–0.6

–0
.3

–0.8

–0
.6

–0.8

–0.7

–0
.3

–0
.6

–0
.5

–0
.3

–0
.3

–0.5

–0.5

–0.7

–0
.5

–0.2

–0.1

–0.4

–0
.6

–0
.5

–0.5

–0.8

–0.4

–0.4

–0
.7

–0.3

–0.6

–0.3

–0
.6

–0.2

–0.4

–0.6

–2
.0

–0.8

–0.4

–0.2

–0
.6

–0.7–0
.7

–0.4
–0.8

–0.4

–0
.4

–0
.1

–0
.7

–0.5

–0
.8

–0.4

–0.8

–0.2

–0
.5

–0.8

–0.3

–0.2

–0.2

–0
.1

–0
.5–0

.3

–0
.7

–0
.3

–0
.3

–0.5

–0.7

–0
.4

–0.4

–0.2

–0.8

–0.6

–0
.5

–0
.7

–0.6

–0
.3

–0.7

–0.7

–0.4

–0.4

–0
.5

–0.5

–0.1 –0.8
–0.8

–0.3

–0.8

–0.8

–0
.8

–0.3

–0
.6

–0.3

–0.5

–0
.8

–0.3

–0
.6

–0.5

–0.2

–0
.8

–0.5

–0
.8

–0.6

–0.4

–0
.8

–0.8

–0.4

–0.8

–0
.8

–0
.3

–0.7

–0.2

–0.3

–0
.7

–0.5

–0.4

–0.6
–0.3

–0.2

–0.1

–0
.7

–0.8

–0
.2

–0
.5

–0.8

–0.8

–0.6

–0
.3

–0.8

–0
.6

–0.8

–0.7

–0
.3

–0
.6

–0
.5

–0
.3

–0
.3

–0.5

–0.5

–0.7

–0
.5

–0.2

–0.1

–0.4

–0
.6

–0
.5

–0.5

–0.8

–0.4

–0.4

–0
.7

–0.3

–0.6

–0.3

–0
.6

–0.2

–0.4

–0.6

–0.8

–0.4

–0.2

–0
.6

–0.7–0
.7

–0.4
–0.8

–0.4

–0
.4

–0
.1

–0
.7

–0.5

–0
.8

–0.4

–0.8

–0.2

–0
.5

–0.8

–0.3

–0.2

–0.2

–0
.1

–0
.5–0

.3

–0
.7

–0
.3

–0
.3

–0.5

–0.7

–0
.4

–0.4

–0.2

–0.8

–0.6

–0
.5

–0
.7

–0.6

–0
.3

–0.7

–0.7

–0.4

–0.4

–0
.5

–0.5

–0.1 –0.8
–0.8

–0.3

–0.8

–0.8

–0
.8

–0.3

–0
.6

–0.3

–0.5

–0
.8

–0.3

–0
.6

–0.5

–0.2

–0
.8

–0.5

–0
.8

–0.6

–0.4

–0
.8

–0.8

–0.4

–0.8

–0
.8

–0
.3

–0.7

–0.2

–0.3

–0
.7



26    HydroClimATe—Hydrologic and Climatic Analysis Toolkit

sac13-0491_Figure 23

0

–0
.1

–0
.2

0.10.2

–0.3

–0.4

–0
.5

–0
.6

0.3

–0
.7

0.4
0.5

–0
.8

0.6

0.2
0.1

0.
2

–0.7

0.3

–0.2

–0
.7

0.
4

–0.8

0.1

–0.3

0.3

0

–0
.8

0

–0
.3

0.2

–0.8

–0
.1

–0.8

0

0.
4

–0
.2

0.
5

–0.5

0.2

0.4

–0.7

0.
2

–0.7

0.3

0.4

–0.7

0
–0.6

0.1
–0

.5

–0.4

–0.3

–0.1 0.3

–0.6

–0.2

0.2

0.5

0

0.
4 0.

4

–0
.2

–0
.1

0.1

–0.8

–0.3

0.4

–0.7

0.
1

–0.1

0.4

0.
5

0.1

0.2

0.
3

–0
.6

–0
.7

0.
4

0.
2

–0
.7

0.
4

–0.5

0.
5

–0.7

–0
.3

0.
1

0.3

0.
3

–0
.1

–0
.4

0.4

–0.4

0

–0.6–0.7

0.
2

0

0.4

0.5

0.3

0.
1 0.4

0

0.
2

–0
.2

0

–0
.1

0.
4

0.
5

–0
.8

0.2

–0.5

0.5

0.5

0.3

–0
.1

0.6

–0.8

0.2

–0
.4

0.
5

–0.4

–0
.6

–0
.7

–0
.1

–0.8

–0
.5

–0.7

0.
2

0.
4

0.2

0.5

0.1

0.50.1

0

–0.2

–0
.3

–0.4

–0.1

–0
.3 0.4

–0.2

0.
4

–0
.8

EOF expressed as
PC regressed
on SPI values

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

–1.0
–0.9
–0.8
–0.7
–0.6
–0.5

–0.2
–0.3
–0.4

–0.1
0

EXPLANATION

105°110°115°120°

40°

35°

Figure 23.  Second scaled empirical orthogonal function (EOF) from analysis of standardized precipitation index (SPI) normalized 
October through February precipitation in the southwestern U.S. from 1980 to 2009. PC, principal component.
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Figure 24.  Results of the empirical orthogonal function (EOF) analysis of the standardized precipitation index (SPI) normalized October 
through February precipitation from 1980 to 2009 as A, the first principal components (PC) time series; B, a scatter plot and linear fit of 
the first PC and Oct–Feb values of Multivariate ENSO Index (MEI); C, the second PC time series; D, a scatter plot and linear fit of the 
second PC and values of MEI.
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first EOF and PC pair can be switched so that these match the 
expected relation between this pattern and ENSO. The correla-
tion coefficient of 0.29 between the second PC and MEI was 
not significant at the 90 percent level (two tailed), suggesting 
that the physical process identified by the second EOF and PC 
pair is not physically related to MEI. 

Example 3—Assessing Temporal Relations 
Between the Multivariate ENSO Index and 
Hydrologic Time Series in the Upper San Pedro 
Basin, Southeastern Arizona

This example demonstrates how to use lag correlation 
analysis to identify a temporal relation between streamflow 
discharge and groundwater levels to ENSO. Lag correla-
tion analysis is useful for determining the time lag between a 
potentially causal physical process and an observed response. 
In many complex hydrologic systems, the time lags for such 
causal relations are generally undetermined, and this type of 
analysis provides insight into a system without a dynamic 
model. Other examples of possible relations that could be 
assessed with these tools include the lag between (1) changes 
in streamflow and precipitation or groundwater withdrawals, 
(2) temperature and vegetation responses, and (3) runoff 
events and changes in water quality.

This example uses of the following tools:
1. Transformation by using the cumulative departure tool.

2. Detrending by using curve fitting.

3. Standardization by using the normal distribution.

4. Lag correlation.
Relations between streamflow and groundwater levels in

the Upper San Pedro basin and ocean or atmosphere phenom-
ena, as indicated by ENSO events, are briefly explored here by 
using a lag correlation analysis. The Multivariate ENSO Index 
(MEI; Wolter and Timlin, 2011), which is an index of six vari-
ables (sea-level pressure, surface air and sea-surface tempera-
tures, zonal and meridional wind components, cloudiness frac-
tion) in the tropical Pacific, is correlated, at different monthly 
lags, to monthly streamflow and groundwater-level data in the 
San Pedro River from 1980 to 2009. The monthly discharge 
time series at the San Pedro River at Charleston, Arizona 
(09471000; fig. 25A) contains long periods of low flow that 
are less than 20 cubic feet per second (cfs). These low flows 
are primarily groundwater discharge to the stream channel as 
base flow. Large discharge events (from 20 cfs to 650 cfs) gen-
erally occur after runoff-producing precipitation from frontal 
systems or cutoff, low-pressure systems in the winter and from 
monsoonal convective systems in the summer. 

The monthly discharge time series at the San Pedro River 
at Charleston, Arizona (09471000) (fig. 25A), contains long 
periods of low values near zero that are separated by large 
flow events. For this example, the low values are removed 
by transforming the time series into a monthly cumulative 
departure (fig. 25B). The cumulative departure transformation 
also adds persistence to the time series, which can indicate 
intra-annual or interannual periods in which discharge was 
either greater than or less than the average value. In general, 
wet climatic periods are indicated by the rising limb, and dry 
climatic periods by the falling limb, of the cumulative depar-
ture curve.

A trend in the discharge time series could be related to 
anthropogenic effects, or part of a low-frequency climatic 
forcing that cannot be resolved within the 30-year time series. 
A trend is estimated by fitting a cubic polynomial to the cumu-
lative departure time series (fig. 25C). Differences in the time 
series from the trend are obtained by subtracting the cumula-
tive departure series from the polynomial fit (fig. 25D). The 
residuals are standardized using a normal distribution to allow 
for comparison between the series and the normalized MEI 
index (fig. 25E).

Well D-23-21 06CCC2 is within 30 meters of an ephem-
eral channel that routes runoff from the nearby Huachuca 
Mountains to the San Pedro River. The groundwater levels 
appear to fluctuate in response to time-varying recharge rates 
that could be related to variable precipitation (fig. 26A). The 
temporal relation between MEI to both discharge and the 
water levels in the well are assessed by comparing the correla-
tion coefficients at the different lags. This identifies the lags 
having the greatest correlation, which can indicate how much 
time passes before the oceanic and atmospheric processes that 
drive responses in MEI could produce responses in streamflow 
and groundwater levels. 

Several preprocessing steps are completed before the lag 
correlation analysis between MEI and two hydrologic time 
series. First, the number of values in the two time series used 
in the lag correlation analysis must be equal. Often, both time 
series are chosen to be coincident in time at a lag of zero, and 
each lag is the amount of time that the time series are shifted 
away from being coincident. If the time series are measured 
over the same interval of time, then the values are often 
obtained at some uniform interval, such as the case of daily, 
monthly, or annual values. This would ensure that the two time 
series have the same number of values. However, a time series 
of water levels in wells are often measured at irregular times 
and have non-uniform time intervals between measurements. 
In order to allow for correlation with another time series with 
uniform intervals, interpolation can be used to generate values 
at some uniform interval that is coincident with the other time 
series. For this example, the water-level records for wells 
D-23-21 06CCC1 and D-23-21 06CCC2 (fig. 26A), which are 
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Figure 25.  The steps for processing the discharge record at San Pedro River at Charleston, Arizona (09471000), from 1980 to 2009: A, 
the monthly discharge values; B, the monthly cumulative departure of the time series; C, a fitted cubic polynomial to the cumulative 
departure; D, the residuals from the fitted cubic polynomial; E, the residuals after standardization using a normal distribution; F, the 
power spectrum of the standardized residuals obtained by SSA; and G and H, the first and second reconstructed components obtained 
by SSA.
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Figure 26.  The steps for processing the water level record at well D-23-21 06CCC1,2: A, the water level time series in elevation above 
NGVD29; B, the interpolated time series; and C, the standardized time series using a normal distribution.
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in close proximity, were combined into a single time series 
for the period of 1980–2009. The Akima spline tool is used to 
generate monthly values from 1980 to 2009, and the resulting 
series 360 values (fig. 26B). The splined time series is stan-
dardized using a normal distribution to obtain a series that can 
be compared visually to the normalized MEI index (fig. 25C). 

The cross-correlation function (CCF) for MEI and 
cumulative departure of streamflow at Charleston (fig. 27A) 
and for MEI and water levels at well D-23-21 CCC1,2 is used 
to explore how the correlation varies as a function of lag. The 
CCF is also used to identify the lag, from 0 to 60 months, 
at which the positive correlation coefficient is greatest. The 
positive correlation is of interest because of a prior expecta-
tion that increased precipitation during periods of positive 
MEI will produce larger discharge values. For cumulative 
departure of streamflow, the correlation coefficient is nega-
tive from 0 to 32 months, and is significant at the 95 percent 
confidence interval up to 31 lags. The correlation is near zero 
for lags 32 and 33, then becomes positive until a lag of 57, 
after which it is near zero. The maximum positive correlation 

at a lag of 43 months (3.6 years) suggests that long-term 
changes in the cumulative departure of streamflow do not 
occur rapidly (within several months) with atmospheric 
conditions, but could be influenced by the storage proper-
ties in the groundwater system. Pool (2005) reported that in 
southeastern Arizona, variations in groundwater recharge 
are related to ENSO events, in which greater amounts of 
precipitation generally correspond to El Niño conditions, 
while lesser precipitation conditions generally correspond to 
La Niña conditions. As a result of the increased precipitation, 
groundwater recharge rates are three times greater during the 
period of frequent El Niño conditions (1977–98) than during a 
period of frequent La Niña conditions (1941–57; Pool, 2005). 
The lag at the maximum positive correlation could be related 
to the time required for the stored groundwater from increased 
recharge to propagate through the aquifer system before it 
discharges as base flow in the San Pedro River. Several major 
features of the lagged cumulative departure series appear to 
coincide with rapid changes in the MEI index, such as a large 
increase in both series in 1983 and 1998 (fig. 27B).

Figure 27.  A, The cross correlation function plot between monthly values of normalized residuals of cumulative departure of discharge 
at San Pedro River at Charleston and the multivariate ENSO index (MEI) from 1980 to 2009; B, the discharge record at San Pedro River 
at Charleston, MEI, and the discharge record lagged 43 months; C, the cross correlation plot between monthly values of normalized 
residuals of water levels at well D-23-21 06CCC1,2 and MEI; D, the water level record at D-23-21 06CCC1,2, MEI, and the water level 
record lagged 9 months.
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The CCF for MEI and the water levels in well D-23-21 
06CCC2 indicates that the correlation is generally posi-
tive from lags of 0 to 60 months (fig. 27C). The lag at the 
maximum positive correlation is 9 months (fig. 27D), which 
is shorter in time than the lag for streamflow at Charleston. 
This shorter lag could indicate that infiltration and recharge 
of runoff-producing precipitation related to ENSO occurs on 
a scale of several months near the well. The well is within 
30 meters of a large ephemeral wash that routes runoff from 
the Huachuca Mountains. ENSO events in 1983 and 1998 also 
correspond with increases in the lagged groundwater-level 
time series.

Example 4—Projecting Streamflow in the 
San Pedro River, Southeastern Arizona

This example demonstrates a method for generating a 
projection of streamflow at the San Pedro River at Charleston, 
Arizona (09471000). The projection is based on an autore-
gressive time series model that was fitted to the observations 
over part of the record. Projections of time series are useful 
for generating inputs and boundary conditions in predictive 
models. These methods are based on the projection methods 
described by Keppenne and Ghil (1992) and demonstrated for 
the Southern Oscillation Index, and as applied by Hanson and 
others (2003) for precipitation in the Santa Clara-Calleguas 
Basin, California. While the range of data types that can be 
projected is practically unlimited, potential hydrologic exam-
ples include (1) water quality data, (2) vegetation indices, and 
(3) groundwater withdrawals. This example uses the following 
tools:
1.	 Singular spectrum analysis (SSA).

2.	 Autoregressive modeling (AR).

3.	 Projection of autoregressive models.
The time series at Charleston from 1980 to 2010 was 

used to project streamflow for 15 years from 2011 to 2025 by 
using several steps of transformation of the streamflow time 
series, autoregressive (AR) time-series modeling, and extrapo-
lation of two reconstructed components obtained by SSA. This 
streamflow time series was used in example 3. The steps for 
generating the cumulative departure time series and obtaining 
the residuals from the trend are also explained in the descrip-
tion for example 3. These processing steps were completed in 
order to obtain and project the long-term changes in the cumu-
lative departure and to remove low frequency components that 
typically explain most of the variance of the series and that 
dominate the RCs obtained through SSA.

The first step in the projection was to obtain quasi-
periodic modes from the residuals by using SSA. The modes 
are useful for generating a projection because the modes 
usually vary regularly within a narrow frequency range 
and are generally more predictable than the original time 
series. On the tab SSA, the time series of residuals named 

“Charleston_monthly_streamflow_1980_2009_cdep_curv_
res_std” was selected in the drop-down list Select series for 
SSA. Using a default window length of 36 (one tenth of the 
residual time series length), 83 percent of the total variance 
could be explained by two oscillatory modes—the first mode 
explains 48 percent of the variance, the second mode explains 
35 percent, and the remaining 15 percent of the variance is 
explained by modes that are not directly used in the projec-
tion. The reconstructed components of the first and second 
modes (RC1 and RC2) have the same length as the original 
time series, and both oscillated at approximately a period 
of 90 months (7.5 years). RC1 and RC2 were summed to 
create a single series (RC12) having a period of 90 months 
(fig. 28A). These are summed by entering “1 2” in the text box 
Select RCs.

The next step in the analysis is to obtain an AR(p) 
time-series model to RC12 that can be used to generate future 
values of the time series. A first step in creating an AR(p) 
model is to estimate the order p of the model, and then to fit 
the coefficients of the model by using a least squares minimi-
zation of the residuals between the simulated and observed 
values. In this analysis, models having orders of 1 up to 180 
(half the length of the time series) are evaluated by using the 
corrected Akaike information criteria (AICc), which calculates 
a goodness-of-fit statistic that is penalized by the complexity 
of the model. Another test of the fit is that the residuals of the 
time series from the AR model are random, and the residu-
als are not autocorrelated in time. On the tab Projections, the 
time series “RC12” is selected in the drop-down list Select 
series to model. The lowest AICc statistic is produced when 
using an order of 141. However, the simulated values are 
either less or greater than the observations over continuous 
intervals of the time series (fig. 29A). Instead, an order of 120 
is selected so that the projection is based on a considerable 
number of values from the previous 10 years and so that the 
simulated values have better agreement with the observations 
(fig. 29B). For the final 10 years, the standardized residuals of 
cumulative departure of streamflow contains two periods of 
increasing values and one period of low values. The autocorre-
lation function plot of the residuals indicates that the residu-
als become less autocorrelated within a smaller lag distance 
from a lag of zero for the AR(120) model (fig. 29C) than the 
AR(141) model (fig. 29D).

After selecting the order of the AR model, the model can 
be projected for additional time steps by using a combination 
of stepping forward in time and random number generation. 
Numerous projections can also be done to create an envelope 
of realizations, and each one is equally as plausible. The model 
is stepped forward in time by selecting a starting time t – 1. 
The software automatically selects t – 1 to be the final value 
of the simulated time series. In this example, t – 1 = 2009.92 
is the decimal year for December 2009, and t = 2010.00 is the 
decimal year for January 2010. A random number is sampled 
from a normal distribution, in which the mean and variance 
parameters are equal to the sample mean and sample variance 
of the residuals between RC12 and the simulated time series. 



Examples    33

Figure 28.  A, The processed monthly discharge at San Pedro River at Charleston described in example 3, and the sum of the first two 
reconstructed components (RC); B, projected discharge from 2010 to 2025 without adding the residuals between the processed monthly 
discharge and the sum of the first two reconstructed components; C, the projected discharge after adding the residuals. 
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Figure 29.  A, The sum of the first two RCs and the simulated values from an autoregressive AR(141) model; B, the sum of the first 
two RCs and the simulated values from an AR(120) model; C, the autocorrelation function of the residuals shown in A; and D, the 
autocorrelation function of the residuals shown in .

For each projected time, a new random number is sampled and 
added to the series. Additionally, 1,000 separate AR models 
were projected to create a range of possible conditions.

The projection of streamflow cumulative departure based 
on the 1,000 different realizations contains quasi-periodic 
characteristics of RC12, including a period of approximately 
7.5 years and similar amplitude (fig. 28B). The projection of 
RC12 does not contain all of the variability contained in the 
cumulative departure time series of streamflow, however. Fol-
lowing the method described by Hanson and others (2003), 
the remaining variance is added by creating a separate time 
series of residuals of the cumulative departure time series from 
RC12. The starting time for the time series of added residu-
als is selected randomly from between the start and end date 
of the modeled time series and restarts at the beginning of 
the series if the time extends past the end date of the mod-
eled series. The resulting projection of streamflow cumulative 
departure (fig. 28C) contains similar features as the original 
modeled time series, including a continuation of wetting and 
drying that repeat at approximately 7–8 years. The addition of 
residuals adds the remaining variance that was not explained 
by RC1 and RC2, and the total variability of the projection 
overall appears to be plausible.

Evaluation of Coded Procedures
The coded procedures in the software were evaluated by 

comparison to analytical solutions when these were available, 
a statistical test to ensure that the results have a required 
statistical property, or to other published software that perform 
similar types of analysis. The following sections describe how 
each method was evaluated.

Standardization

Standardized series were evaluated by checking for a 
mean of zero and a standard deviation of one.

Interpolation

The interpolation tool was evaluated by visual inspection 
of interpolated values along linear and nonlinear time series. 
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Cumulative Departure

Visual comparison was used to ensure that periods of 
greater-than-average values in a time series coincided with 
periods during which the cumulative departure had a posi-
tive slope. Similarly, periods of less-than-average values in 
the time series were also evaluated for coincident periods of a 
negative slope in the cumulative departure series. The tool was 
also evaluated to ensure that the final value was always zero, 
which is required in a cumulative departure time series.

Differencing

The differencing tool was evaluated by comparison 
with results produced by software by Dr. David Meko at the 
University of Arizona. The comparison used the same datasets 
to ensure that the results produced by both programs were 
reasonably similar.

Curve Fitting

The curve fitting tool was evaluated by comparison with 
results produced by the software Excel®. The comparison 
used the same datasets to ensure that the results produced by 
both programs were reasonably similar.

Discrete Fourier Transform

The discrete Fourier transform tool was evaluated by 
comparing the output spectrum to the spectrum produced by 
the SSA-MTM toolkit (Dettinger and others, 1995b). The time 
series used for the evaluation comprised a sum of sinusoidal 
functions having different frequency and amplitude. The spec-
tra from the SSA-MTM toolkit were produced by using MEM 
and SSA. Because the time series was simple, the resulting 
spectra were nearly identical. The windowing and averag-
ing features are not available in the SSA-MTM toolkit, and 
the testing of the results from these features was limited to a 
visual comparison of the output spectra to the spectra pro-
duced by the SSA-MTM toolkit. 

Maximum Entropy Method

The maximum entropy method tool was evaluated by 
comparing the output spectrum to the spectrum produced by 
the SSA-MTM toolkit (Dettinger and others, 1995b). The 
time series was identical to the time series used for evaluat-
ing the discrete Fourier transform tool and the time series in 
example 1. The spectrum from the SSA-MTM toolkit was also 
produced by MEM, and the results for both tested time series 
were identical.

Singular Spectrum Analysis

The singular spectrum analysis tool was evaluated by 
comparing the output spectrum to the spectrum produced by 
the SSA-MTM toolkit (Dettinger and others, 1995b). The 
tested time series was identical to the time series used for 
evaluating the discrete Fourier transform tool and the time 
series in example 1. The spectrum from the SSA-MTM toolkit 
was also produced by SSA, and the results for both tested time 
series were identical.

Empirical Orthogonal Function Analysis

The empirical orthogonal function analysis tool was 
evaluated by comparing the output EOF maps to published 
maps in previous investigations (for example, Wallace and 
Gutzler, 1981). Results of the EOF tool were also compared 
to the results of homework sets for the “Objective Analysis 
in the Atmospheric and Related Sciences” course presented 
by Dr. Christopher Castro in the Department of Atmospheric 
Sciences at the University of Arizona. The authors of this 
report are not aware of any commercially available software 
packages that perform EOF analysis that could have been used 
to evaluate the results of the EOF tool.

Linear Regression and Correlation

The linear regression and correlation tools were evalu-
ated by comparing the fitted linear models from example 3 
to the fitted linear models produced by the software Excel©. 
HydroClimATe and Excel© produced reasonably similar 
results.

Projections

The autoregressive model (AR) generation and selection 
procedures were evaluated by comparison to the results from 
software by Dr. David Meko at the University of Arizona. The 
generated projections produced by the AR models were not 
evaluated by comparing with independently-produced results. 
Instead, the projections were evaluated by ensuring that the 
mean and variance of the projected series were preserved in 
the projected values.
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Summary
This report documents the software package 

HydroClimATe (Hydrologic and Climatic Analysis Toolkit), 
which automates the use of several objective methods for 
assessing relations between climate variability and variability 
in hydrologic time series. The methods include standardiza-
tion, detrending, regression and correlation, Fourier analy-
sis, maximum entropy method, singular spectrum analysis, 
Empirical Orthogonal Function analysis, and autoregressive 
time series modeling. These tools have been used extensively 
to identify relations between climatic indicators and meteoro-
logical and hydrologic data to hydrologic conditions in previ-
ous HydroClimATeic investigations (Dettinger and others, 
1995a; Dettinger and Diaz, 2000; Dickinson and others, 2004; 
Hanson and others, 2004, 2006; Gochis and others, 2007a, b; 
Kumar and Duffy, 2009). A possible advantage of this soft-
ware is that it presents these methods in a sequential order that 
can be useful for evaluating relations between hydrologic and 
climatic time series. The software includes all of the methods 
for assessing relations between climatic and hydrologic time 
series described by Hanson and others (2004) and imple-
mented by Hanson and others (2003). 

HydroClimATe includes tools for (1) identifying 
responses of hydrologic systems to climate variability; (2) 
quantifying statistical relations between multiple time series 
and climate indices, such as the Multivariate Enso Index 
(Wolter and Timlin, 2011); and (3) projecting hydrologic time 
series by using time-series models and spectral analysis. The 
software consists of a graphical user interface that is execut-
able in Windows operating system with the .NET Framework 
version 4.0. Software inputs can be any long-term time-series 
data, such as groundwater levels, streamflow, precipitation, 
tree-ring data, air temperature, and climate indices. Other 
types of time-series data, such as economic data, could be 
applicable. The methods of analyses are demonstrated in 
this report for climatic and hydrologic time series, however. 
Software output can be exported to files that are read by a text 
editor, Microsoft Excel®, or geographic information system 
(GIS) software. Example analyses are presented for assessing 
relations between global climate indices and hydrologic time 
series for sites in the southwestern U.S.

The results from the tools were mainly evaluated by 
comparison to results from other available software pack-
ages or for simple analytical examples where the result is 
already known. The SSA-MTM toolkit (Dettinger and others, 
1995b) was used extensively to evaluate the results of the 
discrete Fourier transform, maximum entropy method, and 
singular spectrum analysis tools. In some cases, other soft-
ware packages for these tools were not available and the tools 
were tested by comparing the results to the results that were 
expected for certain data sets.
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Appendix

Symbol Definition
κ Set of components
ut Normalization factor
Lt Lower bound of summation
Ut Upper bound of summation

Meof Temporal dimension in an EOF analysis
Neof Spatial dimension in an EOF analysis
X Meof by Neof matrix of gridded time series observations

CEOF Meof by Meof covariance matrix
AEOF Meof by Meof matrix of eigenvectors (T-PCs)
λEOF Vector of eigenvalues of length Meof
EEOF Neof by Meof matrix of the EOFs (S-EOFs)
DEOF Neof by Meof  matrix of scaled EOFs

ns Sample size in EOF analysis
ui ith vector in matrix U
U Meof by Meof matrix of normalized time series of the PCs
N* Effective sample size
Δλ North test sampling error
c Predictand
d Predictor
ĉ Estimate of c
β0 Fitted regression coefficient
β1 Fitted regression coefficient
ε Regression error term
c̅ Mean of c
d̅ Mean of d
c' Difference between c and c̅
d' Difference between d and d̅
r Correlation coefficient
σc Standard deviation of c
σd Standard deviation of d
n* Effective sample size for linear regression
r1,c First-order autocorrelation coefficient for c
r1,d First-order autocorrelation coefficient for d
ai Autoregressive model coefficient
p Order of the autoregressive model

yt–i Time series value at lag t–i
np Number of autoregressive model parameters
V Variance of the autoregressive model residuals

Symbol Definition
x Observed time series
̅x̅ Mean of x
x' Difference between x and x̅
̅x̅'̅2̅ Sample variance of x
t Time of observation
N Number of values in a time series
z Standardized value in a time series
q Probability of a zero value in a time series
w1 Value of the first differenced time series
u2 Value of the second differenced time series
y Temporal signal regressed against harmonic functions
Ak Regression coefficient
Bk Regression coefficient
Ck Regression coefficient
k Wave number
T Length of a period of record
Δt Temporal spacing between records

Φred Continuous theoretical red noise power spectrum
Φsig Continuous significant power spectrum 
ω Angular frequency
Te e-folding time
r1 Lag-1 autocorrelation
rn Lag-n autocorrelation
χ2 Chi-squared statistic
ν Degrees of freedom

M* Number of spectral estimates
fω Factor relating to smoothing of spectrum by a window

w(t) Windowing function
Px(ω) Power spectrum from MEM

ak Autoregressive coefficient at MEM pole k
Mp Order (number of poles) for MEM
NT Number of columns in a trajectory matrix
MT Embedding dimension
D MT by NT trajectory matrix
C MT by MT covariance matrix
E MT by MT matrix of eigenvectors (T-EOFs)
λ Vector of eigenvalues of length MT or Meof
A MT by NT matrix of principal components (T-PCs)

Rκ(t) Reconstructed component for a set κ

Table A1.  Definition of symbols used in the equations in the appendix.
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Standardization to Normal Distribution
The standardization tool transforms a set of normally dis-

tributed variables xi to a new variable zi that is also normally 
distributed and has a sample mean x̅ equal to zero and sample 
standard deviation s equal to one. The sample mean x̅ of xi is 
calculated as follows:

	 x
N

xii

N
=

=∑1
1 	 (1)

where 
	 N 	 is the number of x values.

The sample standard deviation s is calculated as follows:

	 s x= '2 	 (2)

where
	 xʹ	 is the difference between xi and x̅; and

	 x '2 	 is sample variance, which is the mean of the 
squared values of xʹ.

The variable x can be normalized, or transformed, into a new 
variable z:

	 z
x x
si

i=
−

	 (3)

Standardized Precipitation Index
The Standardized Precipitation Index described by 

McKee and others (1993) and Edwards and McKee (1997) fits 
a gamma probability density function g(x) to a frequency dis-
tribution (data histogram). The cumulative probability G(x) of 
each value is transformed to a standard normal variable z with 
a mean of zero and variance of 1. G(x) is modified in order 
to account for zero values that are common in precipitation 
records because the gamma function is undefined for x = 0. 
To account for zero values, a modified cumulative probability 
H(x) is calculated:

	 H(x) = q + (1 – q)G(x)	 (4)

where 
	 q 	 is the probability of a zero value.

H(x) is transformed to the standard normal random variable Z, 
which is equal to the value of SPI: 
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in which 0 < H(x) ≤ 0.5 and 
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in which 0.5 < H(x) < 1.0, as described by Edwards and 
McKee (1997) and Abramowitz and Stegan (1965). The 
coefficients are given as follows:

	 c0 = 2.515517	 (9)

	 c1 = 0.802853 	 (10)

	 c2 = 0.010328 	 (11)

	 d1 = 1.432788 	 (12)

	 d2 = 0.189269 	 (13)

	 d3 = 0.001308 	 (14)

Cumulative Departure
Cumulative departure is calculated as the sum of the dif-

ferences between consecutive values in a time series and the 
mean of the series:

	 Ʃ (xi – x̅)	 (15)

where
	 xi	 is the value at time i and
	 x̅	 is the mean of the time series.



42    HydroClimATe—Hydrologic and Climatic Analysis Toolkit

Interpolation
The interpolation tool uses linear interpolation, natural 

cubic spline, or Akima spline. These are calculated by using 
the mathematical routines available in the ALGLIB (www.
alglib.net) library. Please see www.alglib.net for details.

Differencing
Non-stationarity in the mean of a time series (for exam-

ple, a trend in the mean) can be removed by taking the first 
difference (Brockwell and Davis, 2002), which is calculated as 
follows:

	 w1(t) = x(t) – x(t – 1)	 (16)

where
	 w1(t)	 is the value of the first difference at time t;
	 x(t)	 is the value of the time series at time t; and
	 x(t – 1)	 is the value of the time series x at time t – 1.

Sometimes the trend in the mean is also changing. This 
can be removed by second-order differencing, which is the 
first difference of the first difference:

	 u2(t) = w1(t) – w1(t – 1)	 (17)

where
	 u2(t)	 is the value of the second difference at time t, 

and
	 w1(t – 1)	 is the value of the first difference at time t – 1.

A third-order differencing is then the first difference of the 
second difference.

Curve Fitting
The curve fitting tool fits polynomials using a barycentric 

form using the mathematical routines available in the ALGLIB 
(www.alglib.net) library. Please see www.alglib.net for details. 
The residuals for a time series x(t) are calculated as the 
difference between the fitted polynomial and the time series at 
time t.

Discrete Fourier Transform, 
Windowing, and Spectral Smoothing

The power spectrum of a continuous series can be evalu-
ated by using a discrete Fourier transform (DFT). The DFT 
uses a least-squares procedure to find the coefficients of the 
expansion:
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where
	 y(t)	 is a continuous function of t; 
	 T	 is the length of the period of record;
	 N	 is the number of grid points or time steps;
	 k	 is the wave number, which equals 1 to 

N/2 – 1; and
	 Ak and Bk	 are regression coefficients for each wave 

number k.

The solutions for the Ak and Bk coefficients are as follows:
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where
	 ∆t	 is the temporal spacing between points, and
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	 BN/2 = 0.	 (22)

The variance explained by each wave number k is as follows:

	
C A Bk k k

2 2 2

2 2
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where

	 Ck
2

2
	 is the variance explained for wave number k, 

for k = 1 to N/2.

http://www.alglib.net
http://www.alglib.net
http://www.alglib.net
http://www.alglib.net
http://www.alglib.net


Discrete Fourier Transform, Windowing, and Spectral Smoothing    43

The red noise spectrum (null hypothesis) is constructed 
using the following relation:

	 Φ( )
red
T
T

=
+

2
1 2 2 	 (24)

where
	 Φred	 is the red noise spectrum,
	 ω	 is angular frequency, and
	 Te	 is the e-folding time.

Te  is calculated as follows:

	 Te = –∆t/ln(r1)	 (25)

where 
	 r1	 is the lag-1 autocorrelation.

The lag-n autocorrelation rn is calculated as follows:
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Significance Testing

The statistical significance of the ratio of the power 
spectrum to the red noise spectrum can be evaluated by using 
either a chi-squared or F test. The null hypothesis is that the 
time series is not periodic and is simply red noise. The null 
hypothesis is rejected if the spectral peak is greater in ampli-
tude than the critical value at a specified level of significance. 
The amplitude Φ(ω)sig of the spectral peak for a level of sig-
nificance at frequency ω is compared to the amplitude Φ(ω)red 
of a peak that would be produced for red noise. 

If the chi-squared test is used, the critical values of the 
spectrum at frequency ω are calculated as follows:

	 Φ(ω)sig = Φ(ω)red * χ2/v	 (27)

where
	 χ2	 is the chi-squared statistic with parameter v at 

a specified significance level, and
	 v	 is the number of degrees of freedom, 

calculated as follows:

	 v N
M

f= *  	 (28)

where
	 N	 is the total sample size;
	 M *	 is the number of spectral estimates;
	 ƒω	 is a factor related to smoothing by a 

windowing function, which is specified to 
be 1.2 if a Hamming window is used, or 
1.0 if Boxcar, Hann, or Parzen windows 
are used.

If the F test is used, the critical values of the spectrum at 
frequency ω are calculated as follows:

	 Φ(ω)sig = Φ(ω)red * F	 (29)

where
	 F	 is the F statistic with parameters v and 

infinity (degrees of freedom for red noise 
spectrum) at the specified significance 
level.

Windowing

Windowing modifies the original data series before 
performing spectral analysis. Windowing is necessary because 
the continuous Fourier transform presumes the time series 
extends from t = –∞ to ∞ and that the true spectrum can be 
calculated exactly by an analytical function. In reality, a time 
series is observed through a “window” in time (for example, 
from the beginning to the end of an observed time series), 
and the window of observation has a finite length (Otnes 
and Enochson, 1978). A main purpose of windowing is to 
reduce the discontinuities at the beginning and end of a finite 
time series (Otnes and Enochson, 1978). “Windowing” here 
means to apply a function to a time series of data, which can 
reduce the errors of applying the analytical Fourier transform. 
Windowing also can enhance some feature of the spectrum if 
a function is applied to a moving window that is chosen to be 
shorter than the time-series length. 
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Boxcar
The boxcar window, also known as a square or rectangu-

lar window, is calculated as follows:

	 w t T
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≤ ≤
0
1 0          

    	 (30)

where
	  w(t)	 is the transformed value in the time series at 

time t, and
	 T	 is the length of the period of record.

Hann
The Hann (or Hanning) window (Otnes and Enochson, 

1978) tapers the ends of the time series by applying a cosine-
shaped bell curve to the time series and is calculated as 
follows
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Hamming
The Hamming window (Otnes and Enochson, 1978) is a 

slight modification of the Hann window:
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Parzen
The Parzen window is calculated as follows:

	 w t
t
T

m

t T
t T( ) = 










−










>
≤ ≤

0
01

 
    

	 (33)

Maximum Entropy Method
The maximum entropy method (MEM; Burg, 1967; 

Parzen, 1968; Ghil and others, 2002) tool is based on the 
implemented in the SSA-Toolkit (Dettinger and others, 
1995b). According to the Wiener-Khinchin theorem, a wide-
sense-stationary random process has a power spectrum that is 
equal to the Fourier transform of its autocorrelation function. 
MEM fits an autoregressive process of order M having correla-
tion coefficients φX that mimics a stationary time series X. The 
power spectrum is then identified as follows (Press and others, 
1988):

	  P
a

a e
x

k
ik

k

M p




( ) =
+

=

−∑
0

1

1 2
1 	 (34)

where
	 Px(ω)	 is the power spectrum,
	 ω	 is the frequency,
	 a0	 is the variance of the time series,
	 ak	 are autoregression coefficients at pole k, and
	 Mp	 is the order (number of poles) of the 

autoregressive process.

Singular Spectrum Analysis
The singular spectrum analysis (SSA) tool is based on 

the methods for extracting information from short and noisy 
time series described by Broomhead and King (1986), Vautard 
and Ghil (1998), and Ghil and others (2002). The software 
implements the approach proposed by Broomhead and King 
(1986), which utilizes a trajectory matrix X that is composed 
of a series of windows of the time series that are of length M. 
The dimensions of X are MT by NT ,

where
	 NT	 is equal to N–M+1, 
	 N	 is the number of time steps in the time series, 

and 
	 MT	 is the embedding dimension of X. 

The second step is the construction of the covariance 
matrix C:

	 C DDT
=
NT

	 (35)

where
	 C	 is an MT by MT covariance matrix,
	 D	 is an MT by NT trajectory matrix, and
	 DT	 is the transpose of X.

The eigenvectors and eigenvalues of C are obtained by 
an eigenanalysis of C. Broomhead and King (1986) obtained 
the eigenvectors and eigenvalues by performing singular value 
decomposition for C (SVD; see Golub and Van Loan, 1996), 
which provides equivalent results. Eigenanalysis is used 
instead of SVD because the computer memory requirements 
are lower, which permits the analysis of larger datasets. The 
eigenanalysis of C takes the following form:

	 CE = λE	 (36)

where
	 E	 is an MT by MT matrix of the eigenvectors, and
	 λ	 is the vector of eigenvalues of length MT.
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The eigenvectors are commonly referred to as the T-EOFs. A 
matrix of the principal components A, also called the T-PCs, is 
obtained by projecting the eigenvectors E onto the trajectory 
matrix D, as described by Ghil and others (2002) and Wilks 
(2011):

	 A = ETD	 (37)

where
	 E	 is an MT by MT matrix of the eigenvectors, and
	 A	 is an MT by NT matrix of the principal 

components.

The reconstructed components (RCs) are formed by con-
volution of the principal components with the eigenvectors as 
described by Ghil and others (2002):
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where
	 Κ	 is the set of eigenvectors that are used in the 

reconstruction,
	 Mt	 is a normalization factor,
	 Lt	 is a bound of summation, and
	 Ut	 is a bound of summation.

The values of Mt , Lt , and Ut vary depending on interval 
within the times series:
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Empirical Orthogonal Function 
Analysis

The empirical orthogonal function (EOF) tool performs a 
principal component analysis for spatial and temporal patterns 
in gridded time series data as described by Wallace and 
Gutzler (1981), Dettinger and others (1998), and Wilks (2011). 
The EOF tool uses an eigenanalysis of a covariance matrix to 
obtain the EOFs (spatial patterns), PCs (temporal patterns), 
and the eigenvalues. An example of a hydrological dataset 
commonly used in EOF analysis is a series of maps of gridded 
precipitation values at monthly intervals. 

Several processing steps are automatically completed 
prior to the eigenanalysis. First, the gridded time series are 
converted to a space-by-space-by-time matrix. An optional 
step is to weight each value in the gridded time series by the 
square root of the cosine of latitude to account for smaller area 
within the grids with increasing latitude. Next, the space-by-
space-by-time matrix is condensed to a time by space matrix 
X of dimensions Meof by Neof,

where
	 Meof	 is the number of time steps, and 
	 Neof	 is the spatial dimension that is equal to the 

total number of grid points in each map. 

The second step is the construction of the covariance 
matrix C :

	 C XXT

EOF
sn

= 	 (39)

where
	 CEOF	 is an Meof by Meof matrix,
	 X	 is an Meof by Neof matrix,
	 XT	 is the transpose of X, and
	 ns	 is the sample size.

C is usually smaller if it is calculated by using XXT, 
instead of XTX, because Meof is typically smaller than Neof . 
The eigenvectors and eigenvalues of C are obtained by an 
eigenanalysis of C, which takes the following form:

	 CEOF AEOF = λEOF AEOF	 (40)

where
	 AEOF	 is an Meof by Meof matrix of the eigenvectors, 

and
	 λEOF	 is the vector of eigenvalues of length Meof .

Since CEOF is obtained by XXT, the eigenvectors are the PCs 
or S-PCs. A matrix of the EOFs EEOF , also called the S-EOFs, 
is obtained by projecting the eigenvectors AEOF onto X, as 
described by Wilks (2011):

	 EEOF = AEOF
TX	 (41)

where
	 EEOF	 is an Neof by Meof matrix of the EOFs.
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The scaled EOFs DEOF are calculated by regressing X 
(the original unweighted data in an M by N matrix) onto the 
normalized UT: 

	 �u
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where
	 DEOF	 is an Neof by Meof matrix of scaled EOFs,
	 U	 is a matrix Meof by Meof matrix of 

normalized time series of the PCs,
	 UT	 is the transpose of U, and
	 ui 	 is the ith vector in the matrix U. 

The eigenvalue spectrum displays the percentage of the 
variance explained by each EOF. The North test (North and 
others, 1982) is used to evaluate the statistical significance 
at the 95 percent level. For the North test, the sampling error 
(Δλ) is calculated for each eigenvalue and is plotted as a 
length above and below the eigenvalue on the spectrum. A 
significant EOF is separated from the others within a sampling 
error of its eigenvalue. The sampling error is calculated as 
follows:

	 ∆ = EOF N
2

* 	 (44)

where 
	 Δλ	 is the sampling error obtained from the North 

test (North and others, 1982), and
	 N* 	 is the effective sample size.

 In practice, the effective sample size is difficult to 
quantify. If the data were dominated by red noise, the 
eigenvalue spectrum would decrease slowly and exponentially. 
A null hypothesis of red noise can be rejected if the eigenvalue 
spectrum decreases faster than exponentially, in which the 
eigenvalues along the left side of the spectrum are typically 
much greater than the values along the flatter right side. This 
typically occurs if the eigenvalues are either above or below 
the error bars for the adjacent eigenvalue. If the data were 
mainly white noise, then the eigenvalue spectrum would plot 
along a flat line. A null hypothesis of white noise can also be 
rejected for the eigenvalues if the consecutive values do not 
plot along a flat line.

Linear Regression And Correlation
Linear regression analysis approximates the relation 

between a predictor x and a predictand y using the following 
expression:

	 c d= + +β β ε0 1ˆ 	 (45)

where 
	 ĉ	 is the estimate of predictand c,
	 d	 is a predictor,
	 β0 and β1 	 are fitted coefficients, and
	 ε	 is the normally-distributed error term.

The error is minimized by using the method of least squares. 
The solutions for the coefficients are as follows:

	 1 2=
d c
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	 (46)

	  0 1= −y x 	 (47)

where 
	 d̅	 is the mean of d, and
	 c̅	 is the mean of c.

dʹ and cʹ 	are calculated as follows:

	 dʹ = d – d̅ 	 (48)

	 cʹ = c – c̅	 (49)

β1 is also equal to the correlation coefficient r multiplied by 
the ratio of the standard deviations:

	 β
σ
σ1 = r
c

d

 	 (50)

β1 indicates how c and d change relative to each other, whereas 
the correlation coefficient r is a measure of the fit of the 
regression line and is determined as follows:

	 r d c

d c

=
' '

 
	 (51)
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The statistical significance of the sample correlation 
is evaluated by using the t statistic, which accounts for the 
sample size and the size of r. In order to evaluate the signifi-
cance using the t statistic, several assumptions are made:

•	 The samples are from populations that are distributed 
normally.

•	 The samples are drawn completely randomly from the 
population.

•	 The correlation coefficient ρ of the population is zero.
The significance of the correlation coefficient can be evalu-
ated by comparing the computed t statistic for the regression 
coefficient to user-specified upper and lower limits for the t 
distribution. The first step is to select a confidence level and 
either a one-tailed or two-tailed test. The one-tailed test can be 
used when either positive or negative correlations are of inter-
est. The one-tailed test considers the following hypotheses:

H0: the correlation coefficient is zero.

H1: the correlation coefficient is significantly greater 
than zero (for a positive test) or less than zero 
(for a negative test).

The two-tailed test can be used when the correlation coef-
ficient that is different than zero is of interest. The two-tailed 
test considers these hypotheses:

H0: the correlation coefficient is zero.

H1: the correlation coefficient is significantly 
different than zero.

The t statistic is calculated as follows:

	 t r N
r

=
−

−

' 2

1 2
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where
	 n*	 is the effective sample size, and
	 r	 is the correlation coefficient.

The effective sample size is calculated as follows:
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where
	 N 	 is the number of samples,
	 r1,c	 is the first-order autocorrelation coefficient 

for c, and
	 r1,d	 is the first-order autocorrelation coefficient 

for d.

Autoregressive Model And Projections
For a stationary time series x, the autoregressive (AR) 

model tool represents a value xt as a linear function of its pre-
vious values (Brockwell and Davis, 2002). The order p of the 
AR(p) model is the number of the most recent values that are 
included in the model. 

The general form of an AR(p) model is as follows:

	 x a yt i t i ti

p
= +−=∑ 

1 	 (54)

where
	 ai	 is an autoregressive model coefficient,
	 yt – i	 is a time series value at lag t – i;
	 p	 is the order of the AR model, and
	 εt	 is an error term.

The values of coefficients ai are estimated by minimizing 
the residuals εt between the AR(p) predictions and observa-
tions of xt by using the Yule Walker equations. The selection 
of the order of the model is not straightforward, and higher 
orders can give lower residuals at the expense of a more com-
plex model. The Akaike’s final prediction error (FPE), Akaike 
information criterion (AIC), and AIC with correction (AICc) 
can be used to evaluate the relative goodness of fit of the 
model while balancing model accuracy and complexity.

FPE is calculated as follows (Ljung, 1999):

	 FPE np N
np N

V=
+
−

1
1

/
/ 	 (55)

where
	 np	 is the number of parameters in the model,
	 N	 is the length of the time series, and
	 V	 is the variance of the model residuals.

AIC is calculated as follows (Ljung, 1999):

	 AIC V np
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AICC is calculated as follows:

	 AIC AIC
np np
N npC = +

+( )
− −

2 1
1 	 (57)

A projection of a time series that has the same proper-
ties as the observations can be simulated by using a fitted AR 
model. The projection tool generates projections by manipu-
lating an ensemble of randomly generated time series from 
a fitted AR model. The projections are randomly generated 
because a new error et is obtained for each time step t and for 
each projection in the ensemble. Hanson and others (2002) 
used this approach to develop projections of precipitation by 
AR models of oscillatory reconstructed components obtained 
by singular spectrum analysis. 
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