
U.S. Department of the Interior
U.S. Geological Survey

Techniques and Methods, Book 7, Section C5

Great Lakes Restoration Initiative

Approaches in Highly Parameterized Inversion:
PEST++, a Parameter ESTimation Code Optimized for Large
Environmental Models

L a k e S u p e r i o r

L
a

k
e

 M
i c

h
i g

a
n

L a k e H
u

r o
n

L a k e E r i e

Lake Ontar io

Cover:  Image from http://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-09-06.

http://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-09-06

Approaches in Highly Parameterized
Inversion: PEST++, a Parameter
ESTimation Code Optimized for Large
Environmental Models

By David E. Welter, John E. Doherty, Randall J. Hunt, Christopher T. Muffels,
Matthew J. Tonkin, and Willem A. Schreüder

Great Lakes Restoration Initiative

Techniques and Methods, Book 7, Section C5

U.S. Department of the Interior
U.S. Geological Survey

U.S. Department of the Interior
KEN SALAZAR, Secretary

U.S. Geological Survey
Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2012

This and other USGS information products are available at http://store.usgs.gov/
U.S. Geological Survey
Box 25286, Denver Federal Center
Denver, CO 80225

To learn about the USGS and its information products visit http://www.usgs.gov/
1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to
reproduce any copyrighted materials contained within this report.

Suggested citation:
Welter, D.E., Doherty, J.E., Hunt, R.J., Muffels, C.T., Tonkin, M.J., and Schreüder, W.A., 2012, Approaches in highly
parameterized inversion—PEST++, a Parameter ESTimation code optimized for large environmental models: U.S.
Geological Survey Techniques and Methods, book 7, section C5, 47 p.

iii

Contents
Abstract ...1
Introduction ..1
Purpose and Scope ...2
Enhancements of and Changes to PEST ..2

Design Background: Extensible Framework Based on Generic Transformations3
One-to-One Property ...4
Elementary Transformations ..4

Periodic SVD Execution During an SVD-Assist Run ...4
Automatically Switching Between SVD and SVDA ...5
Prior Information ..5

The Marquardt Lambda and SVD Rotation Factor ..5
PROPACK ..6
Automatic Parameter Normalization ...6
Advanced Calculation of Superparameter Derivatives ..6
GENIE Run Manager ..7

Supported PEST Capabilities ...7
Derivative Calculation Modes ..7
Derivative Switching ..7
Parameter Back Substitution ..7

User Interface ..7
Development Environment ...7
Limitations of Version 1.0 ..8
Summary ...8
References ..8
Appendixes
	 1: Input Instructions ...13
	 2: PEST++ Elementary Transformations ...20
	 3: The Marquardt Lambda and SVD Rotation Factor Supporting Theory21
	 4: Considerations for Code Development ...22
	 5: Class List ..26
	 6: Simple Storage Model Example ..29

Figure
	 1.  PEST++ parameter states and transformation sequences ...3

Tables
	 1.  Parameter information specified in a hypothetical PEST/PEST++ control file4
	 2.  Parameter states and transformation sequences for hypothetical example4

Approaches in Highly Parameterized Inversion: PEST++,
a Parameter ESTimation Code Optimized for Large
Environmental Models

By David E. Welter,1 John E. Doherty,2 Randall J. Hunt,3 Christopher T. Muffels,4 Matthew J. Tonkin,4 and
Willem A. Schreüder5

Abstract
An object-oriented parameter estimation code was devel-

oped to incorporate benefits of object-oriented programming
techniques for solving large parameter estimation modeling
problems. The code is written in C++ and is a formulation and
expansion of the algorithms included in PEST, a widely used
parameter estimation code written in Fortran. The new code is
called PEST++ and is designed to lower the barriers of entry
for users and developers while providing efficient algorithms
that can accommodate large, highly parameterized problems.
This effort has focused on (1) implementing the most popular
features of PEST in a fashion that is easy for novice or experi-
enced modelers to use and (2) creating a software design that
is easy to extend; that is, this effort provides a documented
object-oriented framework designed from the ground up to be
modular and extensible. In addition, all PEST++ source code
and its associated libraries, as well as the general run manager
source code, have been integrated in the Microsoft Visual
Studio®6 2010 integrated development environment. The
PEST++ code is designed to provide a foundation for an open-
source development environment capable of producing robust
and efficient parameter estimation tools for the environmental
modeling community into the future.

Introduction
Because of the inherent inability of mathematical simula-

tions to perfectly characterize a complex natural world, it

1Computational Water Resource Engineering.
2Flinders University and Watermark Numerical Computing.
3U.S. Geological Survey.
4S.S. Papadopulos and Associates, Inc.
5Principia Mathematica, Inc.
6“Visual Studio” is a registered trademark of Microsoft Corporation in the

is becoming well recognized that numerical models repre-
senting the natural world cannot make predictions without
uncertainty. The uncertainty associated with environmental
model predictions is usually much higher than is common for
model predictions in sciences such as engineering and physics
because the physical properties of environmental systems are
highly variable and possess complex distributions that can
never be known in sufficient detail. This recognition has led us
to realize that forecasts of these systems need to be based on
more probabilistic approaches (see, for example, Tonkin and
Doherty, 2009): analysts realize that the calibration process
is an inherently non-unique (underdetermined) problem and
that infinitely many parameter sets can be found to calibrate
a model. Hence, quantifying the accuracy of environmental
models for real-world applications is becoming a larger part of
the literature and, in turn, standard industry practice. Oreskes
and others (1994), Saltelli and others (2004), Pilkey and
Pilkey-Jarvis (2007), Beven (2009), and Doherty (2011) dis-
cuss underlying modeling and uncertainty issues in detail and
offer suggestions on the appropriate roles and uses of models
in environmental planning and decision making.

At the same time, parameter estimation and uncertainty
analyses are transitioning to a standard component of defen-
sible modeling. Doherty, Hunt, and Tonkin (2010) and Moore
and others (2010) address this issue from the parameteriza-
tion and uncertainty-analysis standpoint by use of regular-
ized inversion and Pareto analysis techniques; Beven (2009),
by use of the concept of equifinality; and Saltelli and others
(2004), by use of rigorous sensitivity analysis.

PEST (Doherty, 2010a) is a widely used parameter
estimation code in the environmental modeling community,
and it is notable for its sophisticated tools available for highly
parameterized regularized inversion (Doherty and Hunt,
2010), where “highly parameterized” refers to models hav-
ing more parameters than can be uniquely estimated from the
calibration dataset. Because highly parameterized models are
inherently non-unique, they require additional constraints.
The use of regularized inversion—by which mathematics is
employed to insert soft knowledge and stability into a model-
ing problem—has grown in recent years as computational United States and other countries.

2   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

power has increased. The propagation of relatively inexpen-
sive multicore processors to the desktop arena and the advent
of cloud computing (Hunt and others, 2010), in conjunction
with a greater need to shift the focus of modeling from simple
calibration to portraying uncertainty, has motivated more
modelers to learn and apply and these tools. One inherent
aspect of a regularized-inversion approach is to embrace—
not artificially limit—investigation of parameters that may
be important for a model prediction; in other words, “A
regularized-inversion philosophy to parameterization, then,
can be summarized as ‘if in doubt, include it’”(Doherty and
Hunt, 2010).The corresponding increase in modeling problem
size has pushed many existing software tools to their limits,
especially as advancements to the science make the tools more
sophisticated, and in turn has created a two-faceted need: to
make these tools easier and more intuitive for new users but
also more robust and efficient for those working on increas-
ingly complex and more highly parameterized problems. As
such, this work is intended to fulfill a need for projects such
as the Great Lakes Restoration Initiative, whereby Great
Lake watershed-scale models are calibrated, climate and
landuse scenarios are simulated, and uncertainty analyses are
performed.

Purpose and Scope
This report describes a reformulation and expansion of

the algorithms included in PEST, a widely used parameter
estimation code written in Fortran. This new program has been
named PEST++, which reflects its being a C++ object-oriented
adaptation of the original PEST. Source code and executable
of PEST++ are available for download at http://pubs.usgs.gov/
tm/tm7c5/.

This report targets two types of readers. For the practi-
tioner interested in applying these powerful approaches, input
instructions and an example problem are given in appendix
5. Most of the report, however, presents the more advanced
concepts of the program’s design in order to facilitate code
development by others. All parameter-estimation-related
terminology, concepts, file extensions, and so forth, use the
conventions and derivations presented and cited by Doherty
(2010a) and Doherty and Hunt (2010) and are omitted here for
brevity.

The goals of PEST++ development are to (1) lower
the barriers of entry for new users of parameter estimation
software, (2) develop efficient parameter estimation tools
and algorithms appropriate for implementing the techniques
discussed by Doherty and Hunt (2010) for solving highly
parameterized problems, and (3) develop an object-oriented
framework to support future development. This report docu-
ments the object-oriented design techniques to achieve these
goals, a design approach not available in the coding of the
original PEST. The programming language C++ was chosen
for the sake of efficiency and better support for large/highly
parameterized problems. Given the change in programming

language and the inclusion of object-orientated design, the
report is structured to aid more advanced users in extending
the code by providing programming concepts in the main
report body and additional details in the appendixes.

PEST++ does not attempt to reproduce all the function-
ality of PEST but instead focuses on implementing the most
used features and improving the modeler’s access to these fea-
tures, making them easier to use. Thus, this report focuses on
differences and enhancements with respect to the widely used
PEST code of Doherty (2010a). In particular, this reformula-
tion of PEST is geared toward making it easier to implement
the parameter estimation guidelines provided by Doherty and
Hunt (2010). These guidelines are founded on the use of a
large number of parameters with soft-knowledge (Tikhonov)
and subspace (singular value decomposition, or SVD) methods
for regularization in a hybrid approach to ensure that “the twin
ideals of parsimony—simple as possible, but not simpler—are
fully met.” The reader is directed to Hunt and others (2007),
Doherty and Hunt (2009, 2010), and Doherty, Hunt, and
Tonkin (2010) for detailed discussion of these concepts.

Enhancements of and Changes to PEST
Although PEST++ is based on PEST (Doherty, 2010a, b),

PEST++ implements only a subset of the most used PEST
functions and focuses on providing a simpler interface to these
selected features. To accomplish this, the PEST++ develop-
ment effort has added several new methods and has stream-
lined, combined, and/or enhanced several existing PEST meth-
ods. These enhancements and changes include the following:
1.	 PEST++ has the ability to automatically switch between

native parameters and superparameters (Tonkin and
Doherty, 2005) without user intervention.

2.	 Capabilities of the Gauss-Marquardt-Levenberg method
for avoiding local minima have been supplanted by
implementing an efficient and straightforward singular
value decomposition approach that retains the important
functionality of Marquardt lambda.

3.	 The PROPACK singular value decomposition routines
for large and sparse matrices (Larsen, 2001) have been
included for increased computational efficiency.

4.	 PEST++ has the ability to automatically normalize
parameters.

5.	 The advanced calculation of superparameter derivatives is
now possible.

6.	 An interface for the GENIE parallel run manager has
been provided. GENIE (Muffels and others, 2011, 2012)
is generalized run manager software that manages the
task of scheduling and parallel running of models on
multiple computers by using TCP/IP protocol for commu-
nication. It was developed in conjunction with this effort,
and it is fully documented in Muffels and others (2012).

Enhancements of and Changes to PEST   3

In the next sections, background of PEST++ code design
is provided and the enhancements are described in more detail.
This description notwithstanding, it is expected that this list of
enhancements will expand as PEST++ is applied to more real-
world problems in the future.

Design Background: Extensible Framework
Based on Generic Transformations

Object-orientated design techniques were used to develop
an extensible framework that can generalize the transforma-
tions operating in PEST (Doherty, 2010a) while facilitat-
ing incorporation of additional transformations in PEST++.
This framework is built around three parameter states, where
“state” refers to how input provided by the user is fed to the
parameter estimation process (fig. 1, first row). Although the
original PEST does not formally define these three parameter
states, it differentiates between them internally in the code as
a means to improve the numerical performance and provide
convenience and flexibility. PEST++ is similar to PEST in
that—if the developer does not wish to use the parameter state
formulation provided here—these states can share a common
set of parameters (= one parameter state).

The numerical parameter state contains the parameter
values used internally by PEST++ algorithms to solve the
least-squares problem. The model parameters are the param-
eter values PEST++ uses to run the external model being

calibrated, and the control file parameters are the parameter
values that appear in the PEST control files (.pst) and param-
eter files (.par).The control file parameter state is not strictly
required for PEST++; however, it has been added to retain
backward compatibility with the PEST input and output files
that use this state. The transformation sequences shown in
the second row of figure 1 provide a mapping between the
parameter states listed in the first row. Transformation, as
used here, refers to the connecting of information contained
in the three parameter states in known relations useful for
parameter estimation. The “control file to numeric” transfor-
mation sequence provides a mapping between control file and
numeric parameters; the “control file to model” transformation
sequence provides a mapping between control file and model
parameters. Transformation sequences provide both a forward
and a reverse transformation. Transformation sequences are
constructed from individual transformations; the third row of
figure 1 lists the individual transformations that build transfor-
mation sequences and reproduce the current functionality of
PEST in PEST++.

A simple example demonstrating the interaction of the
parameter states and the transformation sequences using actual
parameter values is given in tables 1 and 2. Table 1 sum-
marizes the information about the parameters specified in a
hypothetical PEST/PEST++ control file, and table 2 shows
how this information is translated into the PEST++ parameter
states and transformation sequences.

Parameter states

Transformation sequences

Transformations used to
construct transformation
sequences reproducing
existing PEST functionality

control file to
numeric

control file to
model

scale
offset

tied
fixed

frozen
log

internal PEST++
algorithms

PEST++ input
and output files

model input
files

Numeric
parameters

Control file
parameters

Model
parameters

Figure 1.  PEST++ parameter states and transformation sequences.

4   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

One-to-One Property
Accurate parameter/observation derivatives are important

for proper function of the numerical methods employed in
PEST and PEST++.To ensure the quality of these derivatives,
PEST performs an extra step after writing the model input files
and reads the parameter values back from the newly created
model input files to correct for truncation errors that may
have occurred while creating these files. Truncation errors
can occur when the fields of an input file are of fixed width,
limiting the precision in which the parameters can be writ-
ten. This correction feature can greatly improve the fidelity
of derivatives and improve the performance of the numerical
algorithms; however, it is possible to take advantage of this
feature only when all transformations map a single numeric
parameter to a single model parameter and vice versa. To
identify this condition, PEST++ defines an attribute associ-
ated with elementary transformations to determine whether
back substitution is applicable; that is, whether the one-to-one
relationship holds. If all the elementary transformations in the
“control file to numeric” and “control file to model” trans-
formation sequences are one to one, then PEST++ performs
parameter back substitution.

Elementary Transformations
PEST++ uses the transformation sequences “control file

to numeric” and “control file to model” to convert between
parameter states. These sequences are composed of the
elementary transformations that support forward and reverse
transformations and contain the “one-to-one” attribute (dis-
cussed previously) to indicate whether they are compatible
with parameter back substitution. A listing and short descrip-
tions of the elementary transformations included in PEST++
are given in appendix 2.

Periodic SVD Execution During an SVD-Assist
Run

Doherty and Hunt (2010) describe what is desirable in
a calibration tool and how singular value decomposition can
fill this role: “When large numbers of parameters are added
to a model, some can be expected to be insensitive and others
highly correlated with other parameters. As a result, even
though a parameter may be estimable (therefore worth includ-
ing in the calibration process), it doesn’t mean that it actually
is estimable. What is needed is an intelligent calibration tool—
one that detects what can and cannot be inferred from the
calibration dataset and then estimates what it can and leaves
out what it can’t—all automatically, without user intervention.
Singular value decomposition (SVD) is such a tool.” The end
result is that SVD is a numerical approach that is simple to
use, robust, and inherently stable (Kalman, 1996), making it
appropriate for both novice and advanced users.

The power of SVD is currently available in PEST, where
the parameters are estimated on the basis of a reduced set
of orthogonal linear combinations of base parameters rather
than by attempting to estimate the full suite of base or native
parameters individually. Such an approach facilitates obtain-
ing an unconditionally stable solution. Although additional
description of SVD is beyond the scope of this report, an in-
depth description of this method as implemented in PEST can
be found in Doherty and Hunt (2010) and Doherty (2010a, b).
SVD as implemented in PEST, however, requires that the
parameter sensitivities to observations (that is, the Jacobian
matrix) be calculated by using all base parameters with each
PEST iteration. Thus, the overall computational burden is not
reduced; rather, the parameter estimation problem is ensured
to be tractable by the unconditional stability afforded by SVD.

In recognition of the need to reduce computational bur-
dens, Tonkin and Doherty (2005) describe the use of superpa-
rameters, whereby sensitivities and associated singular values
are calculated at initial parameter values that are assumed to
be representative for all parameter upgrades during the param-
eter estimation process. This approach allows the parameter
estimation process, after an initial calculation of sensitivities
of all base parameters, to perform all subsequent sensitivity
calculations needed to upgrade parameters on the sole basis
of the reduced number of superparameters. This technique
greatly reduces the number of forward model runs needed for
the parameter upgrades calculated in each PEST iteration. The
capability to solve the parameter estimation problem in terms

Table 1.  Parameter information specified in a hypothetical PEST/
PEST++ control file.

Parameter Value in .pst file Transformations
P1 2.0 scale = 2.0
P2 10.0 log
P3 4.0 none
P4 8.0 tied to P3

Table 2.  Parameter states and transformation sequences for hypothetical example.

Parameter
name

Numeric
parameter value

Control file to numeric
transformation sequence

Control file
parameter values

Control file to model
transformation sequence

Model
parameter values

P1 2.0 2.0  Scale transform  4.0

P2 1.0  Log transform  10.0 10.0

P3 4.0 4.0 4.0
P4 N/A  Tied transform  8.0 8.0

Enhancements of and Changes to PEST   5

of superparameters rather than base parameters is defined as
SVD-Assist, or SVDA, by Doherty (2010a). Because SVDA
works with a subset of the full spectrum of singular values,
it can greatly reduce the computational burden associated
with solving large highly parameterized problems. Moreover,
singular values in the null space (Moore and Doherty, 2005;
Doherty, Hunt, and Tonkin, 2010) are defined to have no
significant effect on the simulation of the weighted observa-
tions and thus can be dropped from the solution to reduce the
dimensionality of the problem. Because the optimal number
of superparameters can only be estimated at the beginning of
the parameter estimation process, Doherty and Hunt (2010)
suggest specifying more superparameters than thought to be
supported by observation data, then applying SVD on the
superparameters to ensure numerical stability.

Although SVDA can significantly reduce runtimes,
intermediate processing is needed to translate the base param-
eters and associated Tikhonov regularization to the superpa-
rameters. These translations are performed by PEST utilities
PICALC (Prior Information CALCulation) and PARCALC
(PARameter CALCulation), which are most often constructed
automatically by the PEST utility SVDAPREP (SVD-Assist
PREParation). In total, the entire PEST SVDA process
requires (1) building an initial Jacobian matrix of the base
parameters, (2) running SVDAPREP to create a PEST control
file of the superparameter problem, and (3) running PEST on
the PEST control file created by SVDAPREP. PEST++ obvi-
ates these steps and thus greatly simplifies the SVDA process
by reducing the entire operation to a single transformation
added to the end of the “control file to numeric” transforma-
tion sequence.

Automatically Switching Between SVD and
SVDA

Because switching between superparameters and base
parameters is seamless in PEST++, the modeler no longer
must assume that sensitivities calculated at initial values are
representative of those of all possible parameter upgrades—
an assumption that may or may not hold depending on the
problem. Highly nonlinear problems may cause differences
in sensitivities when calculated at initial and optimal values;
thus, the solution space and null space of the optimized param-
eters can differ from those of the initial parameters. PEST++
includes an option to solve the parameter estimation problem
by cycling between base parameters and superparameters,
automatically addressing the potential problem that can result
from the rigid SVDA assumption (Doherty and Hunt, 2010).

This ability to cycle between base parameters and super-
parameters has been incorporated to automatically account for
these issues and is supported via the variables N_ITER_BASE
and N_ITER_SUPER in the input control file (see appen-
dix 1).When these variables are specified, PEST++ will
perform N_ITER_BASE iterations using native parameters
followed by N_ITER_SUPER iterations using superparam-
eters. The overall iterative solution is similar to that used by

PEST, and the PEST variables NOPTMAN, PHIREDSTP,
NPHINORED, RELPARSTP, and NRELSTP, which control
the iterative solution process, retain all previous functionality.
The newly added variables N_ITER_BASE and N_ITER_
SUPER control only the type of solution performed each
iteration (that is, whether superparameters or base parameters
are used).

This automatic switching feature is most efficient when
a single base parameter iteration is followed a number of
superparameter iterations, followed by a single base parameter
iteration, followed by a number of superparameter iterations,
and so on. Periodically performing a base parameter iteration
allows automatic updates to the calculation and composition of
the superparameters used in subsequent parameter estimation.
Thus, the PEST++ parameter estimation takes advantage of
the fact that superparameters are computationally efficient, but
it also addresses the potential adverse results that can result
from rigidly adhering to the SVDA linearity assumptions,
which can become violated when the optimal parameters move
away from the initial values, especially when solving nonlin-
ear problems. We note that the current methodology that uses
N_ITER_BASE and N_SUPER_BASE does not fully exploit
potential gains in efficiency that can be realized by switch-
ing between base parameters and superparameters; that is, by
monitoring the progress of the SVDA run independently and
moving away from the single iteration loop in PEST, it may be
possible to realize additional gains in performance, a potential
that will be investigated in future work.

Prior Information
When using superparameters, PEST requires that the

prior-information section of the control file be calculated
outside of PEST and recast as observations (as performed
by PICALC.exe). PEST++ has removed this restriction, thus
simplifying the specification of prior information to be used in
conjunction with superparameters. This simplification makes
the SVD-Assist links between parameters and regularization
more transparent and allows the same control file to be used
for both native parameters and superparameters.

The Marquardt Lambda and SVD Rotation Factor

PEST provides the Gauss-Marquardt-Levenberg method
and SVD as numerical solution techniques for the least-
squares problem, but PEST++ retains only the SVD. This
simplification reduces numerical issues associated with mis-
specification of the Gauss-Marquardt-Levenberg parameters
that can commonly confound novice users, whose confusion
in turn confounds efficient parameter estimation of highly
parameterized problems. Briefly, the Marquardt lambda is a
component of the Gauss-Marquardt-Levenberg method, but
in practice it also functions in PEST as a solution supplement
to the SVD formulation in the following ways. When the
Marquardt lambda is zero, the upgrade vector is in the
direction of the Gauss-Newton solution, and increasing its

6   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

magnitude has the effect of rotating the upgrade vector in the
direction of the steepest gradient descent solution. This rota-
tion is accomplished by adding terms to the diagonal of the
normal equation matrix. Adding these terms tends to make the
matrix better conditioned, which has a stabilizing effect and
serves as a de facto form of regularization. Moreover, it can
provide sufficient regularization so as to make an ill-posed
problem solvable, but this regularization phenomenon is
often not apparent to the user. Use of the Marquardt lambda
is not an optimal regularization strategy, however, because
it does not restrain the solution in a physically meaningful
way. Indeed, such a regularization approach is contrary to
Tikhonov regularization, which identifies one or more
preferred conditions, and truncated SVD, which minimizes
changes for parameters whose influence on the inverse prob-
lem is overwhelmed by noise in the solution.

Despite undesirable de facto regularization, the
Marquardt lambda role for rotating the upgrade vector in
the direction of the gradient descent solution is valuable for
enhancing the search capability to the nonlinear least-squares
solution. Testing different values of the Marquardt lambda
allows PEST to explore a larger portion of parameter space,
helping to prevent its being trapped in a local minimum.
Because SVD incorporates subspace regularization, however,
it does not benefit from the Marquardt lambda’s ability to pro-
vide less-than-optimal regularization. Therefore, there is value
in retaining attractive aspects of the Marquardt lambda (robust
search capability to help avoid local minimum) while mini-
mizing the undesirable de facto regularization. Towards this
end, the Gauss-Marquardt-Levenberg method is supplanted in
PEST++ by an alternative method of providing a robust search
functionality analogous to a widely varying Marquardt lambda
in the SVD solution.

For large problems, performing an SVD factorization can
be computationally expensive. This makes the direct appli-
cation of Marquardt Lambda undesirable because it would
require a SVD factorization be performed for each value
of the Marquardt lambda. However, because SVD is inher-
ently stable, the role of the Marquardt lambda can be reduced
from adding a diagonal term to simply providing a means to
rotate the upgrade vector. To take advantage of this, PEST++
replaces the Marquardt lambda with a newly defined “rotation
factor,” which rotates the upgrade vector in the direction of the
gradient descent solution. This rotation is achieved through a
simple matrix multiplication and obviates SVD factorization
for each value of lambda. In addition, the physical meaning is
very clear, and the rotation factor must lie in the interval [0, 1],
as opposed to there being no clear upper limit on Marquardt
lambda. A more in-depth discussion and the mathematical
derivation of the rotation factor are included in appendix 3.

PROPACK

PROPACK is a software library containing an iterative
method for computing SVD factorizations (Larsen, 1998)
that is very efficient for large sparse matrices, making it ideal

for working with highly parameterized problems. Unlike the
LAPACK implementation of SVD commonly used in PEST,
which always calculates all of the singular vectors, PROPACK
is able to compute a subset of the singular vectors. In the
context of PEST++, this means that PROPACK can be used
to calculate only the singular vectors in the solution space
while ignoring unneeded calculation of remaining singular
vectors in the null space. This reduces computational bur-
den and the amount of memory necessary to perform a SVD
factorization on a large problem. For example, when Muffels
(2008) integrated PROPACK in the PEST utility PREDVAR1,
he found that PROPACK was able to compute the first 100
singular values in several seconds, whereas LAPACK SVD
took several minutes to compute the complete factorization. In
PEST++, PROPACK provides a powerful and efficient numer-
ical algorithm that can greatly improve performance when
solving large highly parameterized problems. PROPACK is
also an upgrade of the LSQR algorithm (Paige and Saunders,
1982a, b) included in PEST. Whereas LSQR typically does not
guarantee the orthogonality of the singular vectors, PROPACK
does.

Automatic Parameter Normalization

Normalizing parameters before solving the parameter
estimation problem can greatly improve the efficiency of the
underlying numerical techniques. In PEST++, normalization
transforms the parameters to a common scale by dividing by
the standard deviation. Adding normalization to the calibration
process in PEST++ is accomplished by simply adding the vari-
able AUTO_NORM(std) to the PEST++ section of the control
file, where std is the number of standard deviations repre-
sented by the difference between the maximum and minimum
allowable parameter values. When the upper and lower bounds
are assumed to be the 95-percent confidence interval, which is
their most common interpretation, std should be set to 4. In the
PEST++ code, the functionality of automatic parameter nor-
malization is implemented by adding the TranNorm transfor-
mation to “control file to numeric” transformation sequence.
It is performed after all of the other transformations, with the
exception of the SVDA transformation. The normalization fac-
tor is based on the transformed values of the parameter limits.

Advanced Calculation of Superparameter
Derivatives

When using superparameters in the parameter estimation
process, the magnitude of a singular value typically does not
provide a good reference point for computing perturbations
of derivatives. During the developmental stages of PEST++,
it was not uncommon for base model parameters to encroach
on the specified parameter bounds when the singular values
were used to compute the derivative increments. To mitigate
this problem and make derivative increments more consis-
tent across large and small singular values, increments for

Development Environment   7

superparameter derivatives are based on the increment
specified in the control file for the native parameter that
has the highest contribution to a particular singular vector.
Using this method, the native parameter with the highest con-
tribution to a singular vector is allowed to vary by the amount
it would have when computing the derivatives of native
parameters.

GENIE Run Manager

GENIE (Muffels and others, 2011, 2012) is a suite of
programs that manages and executes model runs in parallel
across a network, using the TCP/IP protocol. It was designed
for scalability and provides features to minimize bottlenecks
and automatically balance loads. Detailed documentation for
GENIE is provided in Muffels and others (2012) and is only
cursorily discussed here. To use GENIE with PEST++, the
GMAN_SOCKET variable must be specified in the PEST++
section of the control file (see appendix 1). It is likely that this
utility will be the primary approach for managing the large
numbers of runs required by PEST++.

Supported PEST Capabilities
In addition to enhancements to the existing PEST pro-

gram of Doherty (2010a), a subset of existing functionality
has been ported to PEST++ version 1.0, as listed below. The
reader is referred to Doherty (2010a) for detailed description
of these ported capabilities. It is expected the list of ported
PEST capability will expand as PEST++ is applied to more
real-world problems in the future.

Derivative Calculation Modes

Calculating derivatives of observations with respect to
parameters is a fundamental part of the least-squares solution.
Similar to PEST, PEST++ provides three methods for comput-
ing derivatives: (1) forward difference, (2) central difference
(outer), and (3) central difference (parabolic). These methods
provide the same functionality as their PEST counterparts. The
forward derivative option is the most efficient and requires
only one model run per parameter. Although the central dif-
ference options require two runs per parameter, they generally
result in better derivatives. Doherty (2010a) explains all three
methods in detail.

Derivative Switching

PEST++ provides the same support as PEST for auto-
matically switching from forward to central derivatives as
parameter estimation progress slows. This functionality is

described in detail in the PEST user’s manual Doherty (2010a)
and is specified in the parameter groups section of the PEST
control file.

Parameter Back Substitution

Accurate derivatives are important for the numerical
gradient methods employed by PEST++ to function properly.
To ensure the quality of these derivatives, PEST++ performs
an extra step after writing the model input files and reads
the parameter back in from the files to correct for truncation
errors. This feature was adapted from PEST and can greatly
improve the fidelity of the derivatives, thereby improving
performance of PEST++ when the model input files contain
truncation errors.

User Interface
To maintain compatibility with PEST, changes to the file

formats and user interfaces have been minimized. This consis-
tency facilitates switching between the enhancements avail-
able in PEST++ and the full capability of PEST and allows
the user to leverage the strengths of both while providing
PEST++ compatibility with the large set of utilities included
in the PEST suite of tools. PEST++ retains PEST’s format for
the template (.tpl), instruction (.ins), parameter value (.par),
and Jacobian matrix (.jco) files, thereby ensuring compat-
ibility with the majority of the PEST’s uncertainty utilities
(see Doherty 2010a, b; and Doherty, Hunt, and Tonkin, 2010).
PEST++ also retains support for PEST’s control file (.pst).
Where PEST++ offers additional functionality, these features
can be accessed through optional lines beginning with “++”
(see appendix 1). Because SVD is optional in PEST, PEST++
provides default values for the parameters in the SVD section
of the PEST input file if these values are not specified by the
user.

Development Environment
All the source code required to build PEST++ has

been consolidated in the Microsoft Visual Studio® 2010,
an integrated development environment. This includes the
source codes for (1) PEST++, (2) the GENIE interface,
(3) LAPACK++, and (4) the PEST Fortran code that processes
template and insertion files. The project is configured to build
a statically linked PEST++ executable without any external
dependencies. This simplifies and facilitates sharing the source
code and distributing the executable. The PEST++ Visual
Studio Project, as well as source code and executable, can be
obtained from http://pubs.usgs.gov/tm/tm7c5/.

8   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

Limitations of Version 1.0
In order to make PEST++ more accessible to new users,

some features of the full suite of PEST capability are not
available. Most notable are the following:

•	 Full observation covariance weights matrix is not sup-
ported.

•	 Automatic adjustment of the regularization weights via
the regularization mode in PEST is not supported.

•	 The GENIE interface supports only a single command
line. If multiple command lines are needed to run the
model, then a batch file must be created.

•	 Output is limited to .rec, .par and .jco files.

•	 PEST++ does not perform a final run with the best
parameters. A strategy needs to be developed to imple-
ment a final run when using GENIE (Muffels and
others, 2011, 2012).

•	 The Jacobian (.jco) file for superparameter iterations is
written in terms of the superparameters. This requires
that users map this model output back to the native
parameters if they wish to interrogate the contents of
the Jacobian matrix in detail.

•	 Moreover, although this program has been used by
the U.S. Geological Survey (USGS), no warranty,
expressed or implied, is made by the USGS or the U.S.
Government as to the accuracy and functioning of the
program and related program material nor shall the fact
of distribution constitute any such warranty, and no
responsibility is assumed by the USGS in connection
therewith.

Summary
An object-oriented parameter estimation model, PEST++,

was developed in C++ as a means of porting the popular PEST
parameter estimation code to an object-oriented language.
PEST++ does not reproduce all the functionality of PEST
but instead replicates the features most commonly of use in
parameter estimation of large, highly parameterized problems.
Focus on the most used features results in a less complex
learning curve, a more modern programming interface, and
an extensible code base. As computing power has increased
massively, parallel computing has become more accessible
for model calibration and uncertainty exercises. As a result,
problems being posed in a parameter estimation framework
are rapidly increasing in size and complexity. PEST++ has
been designed to account for these drivers; thus, this effort
has focused developing a tool for handling large and highly
parameterized problems while retaining much of the power

and commonly used elements of PEST. Towards this end,
PEST++ includes enhancements to PEST, such as linking to
the general GENIE run manager and the PROPACK SVD/
LSQR toolset. In addition, a subset of the PEST capabilities
has been ported to PEST++. All the code necessary to produce
a statically linked PEST++ executable has been consolidated
into the Microsoft Visual Studio® 2010 integrated develop-
ment environment.

References

Beven, K., 2009, Environmental modelling—An uncertain
future?: New York, Routledge, 310 p.

Doherty, J., 2010a, PEST, Model-independent parameter
estimation—User manual (5th ed., with slight additions):
Brisbane, Australia, Watermark Numerical Computing.

Doherty, J., 2010b, Addendum to the PEST manual: Brisbane,
Australia, Watermark Numerical Computing.

Doherty, J., 2011, Modeling—Picture perfect or abstract art?:
Ground Water, v. 49, no. 4, p. 455, doi:10.1111/j.1745-
6584.2011.00812.x.

Doherty, J., and Hunt, R.J., 2009, Response to comment on
“Two statistics for evaluating parameter identifiability and
error reduction”: Journal of Hydrology, v. 380, no. 3–4,
p. 489–496, doi:10.1016/j.jhydrol.2009.10.012.

Doherty, J.E., and Hunt, R.J., 2010, Approaches to highly
parameterized inversion—A guide to using PEST for
groundwater-model calibration: U.S. Geological Survey
Scientific Investigations Report 2010–5169, 59 p.

Doherty, J.E., Hunt, R.J., and Tonkin, M.J., 2010, Approaches
to highly parameterized inversion—A guide to using PEST
for model-parameter and predictive-uncertainty analysis:
U.S. Geological Survey Scientific Investigations Report
2010–5211, 71 p.

Hunt, R.J., Doherty, J., and Tonkin, M.J., 2007, Are models
too simple? Arguments for increased parameterization:
Ground Water, v. 45, no. 3, p. 254–262, doi:10.1111/j.1745-
6584.2007.00316.x.

Hunt, R.J., Luchette, J., Schreüder, W.A., Rumbaugh, J.O.,
Doherty, J., Tonkin, M.J., and Rumbaugh, D.B., 2010,
Using a cloud to replenish parched groundwater modeling
efforts: Ground Water, v. 48, no. 3, p. 360–365, doi:10.1111/
j.1745-6584.2010.00699.x.

Kalman, D., 1996, A singularly valuable decomposition—The
SVD of a matrix: College Mathematics Journal, v. 27, no. 1,
p. 2–23.

References   9

Larsen, R.M., 1998, Lanczos bidiagonalization with
reorthogonalization: Aarhus, Denmark, Aarhus University,
Computer Science Department, 90 p., accessed December
6, 2011, at http://soi.stanford.edu/~rmunk/PROPACK/paper.
pdf.

Larsen, R.M., 2001, Combining implicit restart and partial
reorthogonalization in Lanczos bidiagonalization: Stan-
ford University, notes from a presentation given in April
2001, accessed December 6, 2011, at http://soi.stanford.
edu/~rmunk/PROPACK/talk.rev3.pdf.

Moore, C., and Doherty, J., 2005, The role of the calibra-
tion process in reducing model predictive error: Water
Resources Research, v. 41, no. 5, W05050, 14 p.,
doi:10.1029/2004WR003501.

Moore, C., Wöhling, T., and Doherty, J., 2010, Efficient
regularization and uncertainty analysis using a global opti-
mization methodology: Water Resources Research, v. 46,
W08527, 17 p., doi:10.1029/2009WR008627.

Muffels, C.T., 2008, Application of the LSQR algorithm to
the calibration of a regional groundwater flow model—
Trout Lake Basin, Vilas County, Wisconsin: University of
Wisconsin-Madison, Department of Geology and Geophys-
ics, Master’s thesis, 106 p.

Muffels, C.T., Schreüder, W.A., Doherty, J., Karanovic, M.,
Tonkin, M.J., Hunt, R.J., and Welter, D.E., 2011, GENIE—
A model independent TCP/IP run manager in MODFLOW
and More 2011—Integrated Hydrologic Modeling, Proceed-
ings of the 10th International Conference of the Interna-
tional Ground Water Modeling Center: Golden, Colo.,
Colorado School of Mines.

Muffels, C.T., Schreüder, W.A., Doherty, J., Karanovic,
M., Tonkin, M.J., Hunt, R.J., and Welter, D.E., 2012,

Approaches in highly parameterized inversion—GENIE,
A general model independent TCP/IP run manager: U.S.
Geological Survey Techniques and Methods, book 7,
section C6, 26 p.

Oreskes, N., Shrader-Frechette, K., and Belitz, K., 1994,Verifi-
cation, validation, and confirmation of numerical models in
the earth sciences: Science, v. 263, p. 641–646.

Paige, C.C., and Saunders, M.A., 1982a, LSQR—An algo-
rithm for sparse linear equations and sparse least squares:
ACM Transactions on Mathematical Software, v. 8, no. 1,
p. 43–71.

Paige, C.C., and Saunders, M.A., 1982b, Algorithm
583LSQR—Sparse linear equations and least squares prob-
lems: ACM Transactions on Mathematical Software, v. 8,
no. 2, p. 195–209.

Pilkey, O.H., and Pilkey-Jarvis, L., 2007, Useless arithmetic—
Why environmental scientists can’t predict the future: New
York, Columbia University Press, 230 p.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.,
2004, Sensitivity analysis in practice—A guide to assess-
ing scientific models: West Sussex, England, John Wiley &
Sons Ltd., 219 p.

Tonkin, M.J., and Doherty, J., 2005, A hybrid regularized
inversion methodology for highly parameterized mod-
els: Water Resources Research, v. 41, W10412, 16 p.,
doi:10.1029/2005WR003995.

Tonkin, M., and Doherty, J., 2009, Calibration-constrained
Monte-Carlo analysis of highly parameterized models using
subspace techniques: Water Resources Research, v. 45,
no. 12, W00B10, , 17 p., doi:10.1029/2007WR006678.

http://soi.stanford.edu/~rmunk/PROPACK/paper.pdf
http://soi.stanford.edu/~rmunk/PROPACK/paper.pdf
http://soi.stanford.edu/~rmunk/PROPACK/talk.rev3.pdf
http://soi.stanford.edu/~rmunk/PROPACK/talk.rev3.pdf

Appendixes 1 through 6

Note: Although American spelling is used in the bulk of this report, British spelling is retained in
some of the code, nomenclature, and examples in the appendixes.

Appendix 1   13

Appendix 1: Input Instructions
The PEST++ Visual Studio Project, as well as source code and executable, are available for download at http://pubs.usgs.

gov/tm/tm7c5/. In order to facilitate use by experienced PEST users, PEST++ adopts many of the conventions, variable names,
and output formats of the original PEST (Doherty, 2010a). The intent is to make PEST++ input and output compatible with the
large number of existing PEST utilities (for example, Doherty, 2011a, 2011b). However, although having a similar appearance,
PEST++ does not contain all the capabilities of PEST. Most notably, the limitations of PEST++ version 1.0 are as follows:
1.	 Full observation covariance weights matrix is not supported.

2.	 Automatic adjustment of the regularization weights via the regularization mode in PEST is not supported.

3.	 The GENIE interface supports only a single command line. If multiple command lines are needed to run the model, then a
batch file must be created.

4.	 Output is limited to .rec, .par and .jco files.

5.	 PEST++ does not perform a final run with the best parameters. A strategy needs to be developed to implement a final run
when using GENIE (Muffels and others, 2011, 2012).

6.	 Jacobian .jco file for superparameter iterations is written in terms of the superparameters. This requires that users map this
model output back to the native parameters if they wish to interrogate the contents of the Jacobian matrix in detail.

As PEST++ is developed further, it is expected that the capabilities will increase and the disparity between PEST and PEST++
will decrease.

In addition, large problems (defined as having many parameters and/or observations) will often require parallel computing.
PEST++ relies on run managers to complete the forward model runs; version 1.0 provides two options. The GENIE run manager
is sophisticated and capable of performing parallel runs on a single machine or over a TCP/IP-enabled network. The serial rule
manager provides a simple alternative that duplicates the functionality currently in regular PEST (not Parallel PEST/PPEST).
The serial run manager is the default, but the GENIE run manager can be switched on by specifying the GMAN_SOCKET
variable in the control file.

The PEST Control File

For ease of reference, variables within the PEST control file are listed below, and the variables used by PEST++ are
highlighted. PEST++ relies on the structure of the input file to deduce the algorithmic parameters and read only those
algorithmic parameters that are absolutely necessary. For example, there is no need to read the NOBS variable because each line
in the “observation data” section of the control file specifies an observation; however, it is necessary to read the NPAR variable
to know where specification of parameters ends and information on tied parameters begins. This list is followed by short
explanation of each variable used by PEST++.
pcf

* control data

RSTFLE PESTMODE

NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]

NTPLFLE NINSFLE PRECIS DPOINT [NUMCOM JACFILE MESSFILE]

RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE] [LAMFORGIVE]

RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND] [ABSPARMAX]

PHIREDSWH [NOPTSWITCH] [SPLITSWH] [DOAUI] [DOSENREUSE]

NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN]

[PHIABANDON]

ICOV ICOR IEIG [IRES] [JCOSAVE] [VERBOSEREC] [JCOSAVEITN] [REISAVEITN] [PARSAVEITN]

Appendix 1

14   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

* automatic user intervention

MAXAUI AUISTARTOPT NOAUIPHIRAT AUIRESTITN

AUISENSRAT AUIHOLDMAXCHG AUINUMFREE

AUIPHIRATSUF AUIPHIRATACCEPT NAUINOACCEPT

* singular value decomposition

SVDMODE

MAXSING EIGTHRESH

EIGWRITE

* lsqr

LSQRMODE

LSQR_ATOL LSQR_BTOL LSQR_CONLIM LSQR_ITNLIM

LSQRWRITE

* svd assist

BASEPESTFILE

BASEJACFILE

SVDA_MULBPA SVDA_SCALADJ SVDA_EXTSUPER SVDA_SUPDERCALC SVDA_PAR_EXCL

* sensitivity reuse

SENRELTHRESH SENMAXREUSE

SENALLCALCINT SENPREDWEIGHT SENPIEXCLUDE

* parameter groups

PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD [SPLITTHRESH SPLITRELDIFF

SPLITACTION]

(one such line for each of NPARGP parameter groups)

* parameter data

PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM

(one such line for each of NPAR parameters)

PARNME PARTIED

(one such line for each tied parameter)

* observation groups

OBGNME [GTARG] [COVFLE]

(one such line for each of NOBSGP observation group)

* observation data

OBSNME OBSVAL WEIGHT OBGNME

(one such line for each of NOBS observations)

* derivatives command line

Appendix 1   15

DERCOMLINE

EXTDERFLE

* model command line

COMLINE

(one such line for each of NUMCOM command lines)

* model input/output

TEMPFLE INFLE

(one such line for each of NTPLFLE template files)

INSFLE OUTFLE

(one such line for each of NINSLFE instruction files)

* prior information

PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME

(one such line for each of NPRIOR articles of prior information)

* predictive analysis

NPREDMAXMIN [PREDNOISE]

PD0 PD1 PD2

ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH

ABSPREDSWH RELPREDSWH

NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP

* regularisation

PHIMLIM PHIMACCEPT [FRACPHIM] [MEMSAVE]

WFINIT WFMIN WFMAX [LINREG][REGCONTINUE]

WFFAC WFTOL IREGADJ [NOPTREGADJ REGWEIGHTRAT [REGSINGTHRESH]]

* pareto

PARETO_OBSGROUP

PARETO_WTFAC_START PARETO_WTFAC_FIN NUM_WTFAC_INC

NUM_ITER_START NUM_ITER_GEN NUM_ITER_FIN

ALT_TERM

OBS_TERM ABOVE_OR_BELOW OBS_THRESH NUM_ITER_THRESH (only if ALT_TERM is non-zero)

NOBS_REPORT

OBS_REPORT_1 OBS_REPORT_2 OBS_REPORT_3..(NOBS_REPORT items)

++# This line is a comment as are all lines that begin with “++#”

++# PEST++ input is parsed using key words that can be specified in any order

++ GMAN_SOCKET(host:socket)

++ SUPER_NMAX(max_super) SUPER_EIGTHRES(eig_thres)

++ N_ITER_BASE(base_iter) N_ITER_SUPER(super_iter)

16   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

Variables in “control data” section of PEST control file.

Variable Type Values Description

RSTFLE Text “restart” or “norestart” Instructs PEST whether to write restart data.
PESTMODE Text “estimation”, “prediction”,

“regularisation”, “pareto”
PEST’s mode of operation.

NPAR Integer greater than 0 Number of parameters.
NUMCOM Integer optional; greater than zero Number of command lines used to run model.
RELPARMAX Real greater than 0 Parameter relative change limit.
FACPARMAX Real greater than 1 Parameter factor change limit.
FACORIG Real between 0 and 1 Minimum fraction of original parameter value in evaluating relative

change.
PHIREDSWH Real between 0 and 1 Sets objective function change for introduction of central derivatives.
NOPTMAX Integer −2, −1, 0, or any number

greater than 0
Number of optimization iterations.

PHIREDSTP Real greater than 0 Relative objective function reduction triggering termination.
NPHISTP Integer greater than 0 Number of successive iterations over which PHIREDSTP applies.
NPHINORED Integer greater than 0 Number of iterations since last drop in objective function to trigger

termination.
RELPARSTP Real greater than 0 Maximum relative parameter change triggering termination.
NRELPAR Integer greater than 0 Number of successive iterations over which RELPARSTP applies.

Variables in optional “singular value decomposition” section of PEST control file.

Variable Type Values Description

MAXSING Integer greater than 0 Number of singular values at which truncation occurs.
EIGTHRESH Real 0 or greater, but less than 1 Eigenvalue ratio threshold for truncation.
EIGWRITE Integer 0 or 1 Determines content of SVD output file.

Variables required for each parameter group in “parameter groups” section of PEST control file.

Variable Type Values Description

PARGPNME Text 12 characters or less Parameter group name.
INCTYP Text “relative”, “absolute”, “rel_

to_max”
Method by which parameter increments are calculated.

DERINC Real greater than 0 Absolute or relative parameter increment.
DERINCLB Real 0 or greater Absolute lower bound of relative parameter increment.
FORCEN Text “switch”, “always_2”,

“always_3”, “switch_5”,
“always_5”

Determines whether central derivatives calculation is undertaken and
whether three points or four points are employed in central deriva-
tives calculation.

DERINCMUL Real greater than 0 Derivative increment multiplier when undertaking central derivatives
calculation.

DERMTHD Text “parabolic”, “outside_pts”,
“best_fit”, “minvar”,
“maxprec”

Method of central derivatives calculation.

Appendix 1   17

Variables required for each parameter in “parameter data” section of PEST control file.

Variable Type Values Description

PARNME Text 12 characters or less Parameter name.
PARTRANS Text “log”, “none”, “fixed”,

“tied”
Parameter transformation.

PARCHGLIM Text “relative”, “factor”, or
absolute(n)

Type of parameter change limit.

PARVAL1 Real any real number Initial parameter value.
PARLBND Real less than or equal to

PARVAL1
Parameter lower bound.

PARUBND Real greater than or equal to
PARVAL1

Parameter upper bound.

PARGP Text 12 characters or less Parameter group name.
SCALE Real any number other than 0 Multiplication factor for parameter.
OFFSET Real any number Number to add to parameter.
DERCOM Integer 0 or greater Model command line used in computing parameter increments.
PARTIED Text 12 characters or less The name of the parameter to which another parameter is tied.

Variables required for each observation group in “observation groups” section of PEST control file.

Variable Type Values Description

OBGNME Text 12 characters or less Observation group name.

Variables required for each observation in “observation data” section of PEST control file.

Variable Type Values Description

OBSNME Text 20 characters or less Observation name.
OBSVAL Real any number Measured value of observation.
WEIGHT Real 0 or greater Observation weight.
OBGNME Text 12 characters or less Observation group to which observation assigned.

Variables in “model command line” section of PEST control file.

Variable Type Values Description

COMLINE Text system command Command to run model.

Variables in “model input/output” section of PEST control file.

Variable Type Values Description

TEMPFLE Text a filename Template file.
INFLE Text a filename Model input file.
INSFLE Text a filename Instruction file.
OUTFLE Text a filename Model output file.

18   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

Variables in “prior information” section of PEST control file.

Variable Type Values Description

PILBL Text 20 characters or less Name of prior information equation.
PIFAC Text real number other than 0 Parameter value factor.
PARNME Text 12 characters or less Parameter name.
PIVAL Real any number “Observed value” of prior information.
WEIGHT Real 0 or greater Prior information weight.
OBGNME Text 12 characters or less Observation group name.

Variables in optional “regularization” section of PEST control file.

Variable Type Values Description
PHIMLIM Real greater than 0 Target measurement objective function.
PHIMACCEPT Real greater than PHIMLIM Acceptable measurement objective function.
FRACPHIM Real optional; 0 or greater, but less

than 1
Set target measurement objective function at this fraction of
current measurement objective function.

MEMSAVE Text “memsave” or “nomemsave” Activate conservation of memory at cost of execution speed
and quantity of model output.

WFINIT Real greater than 0 Initial regularization weight factor.
WFMIN Real greater than 0 Minimum regularization weight factor.
WFMAX Real greater than WFMIN Maximum regularization weight factor.
LINREG Text “linreg” or “nonlinreg” Informs PEST that all regularization constraints are linear.
REGCONTINUE Text “continue” or “nocontinue” Instructs PEST to continue minimizing regularization

objective function even if measurement objective function
is less than PHIMLIM.

WFFAC Real Greater than 1 Regularization weight factor adjustment factor.
WFTOL Real Greater than 0 Convergence criterion for regularization weight factor.
IREGADJ integer 0, 1, 2, 3, 4 or 5 Instructs PEST to perform inter-regularization group weight

factor adjustment, or to compute new relative weights for
regularization observations and prior information equations.

NOPTREGADJ integer 1 or greater The optimization iteration interval for recalculation of
regularization weights if IREGADJ is 4 or 5.

REGWEIGHTRAT Real absolute value of 1 or greater The ratio of highest to lowest regularization weight; spread
is logarithmic with null space projection if set negative.

REGSINGTHRESH Real less than 1 and greater than 0 Singular value of xtqx (as factor of highest singular value)
at which use of higher regularization weights commences if
IREGADJ is set to 5.

PEST++ Additions to the PEST Control File

Information in the PEST control specific to PEST++ is specified on lines starting with “++”. Although the previous exam-
ple places all the PEST++ input in a single section at the end of the PEST control file, this is not a requirement. This informa-
tion does not need to be contiguous and can reside anywhere in the PEST control file. Lines starting with “++#” are considered
comments and are ignored.

Unlike the rest of the PEST control file, PEST++ uses keywords rather than location to specify variables. Lines are parsed
using the space, tab, and parenthesis characters as separators. The example uses parentheses to more clearly delineate the values
assigned to the variable, but these could just as well be replaced by white spaces. The following table includes a listing and
explanation of the permissible PEST++ keywords.

Appendix 1   19

Variable Type Values Description

GMAN_SOCKET Text character string containing
host and port separated by
“:”

Socket of the GENIE GMAN run manager. The socket
contains the hostname and port of the GMAN run manager
that will be used to make the model runs. For example,
if GMAN is running on the computer “my_computer”
listening to port 24772, then this variable should be
specified as my_computer:24772.

N_ITER_BASE Integer 1 or greater Number of base parameter iterations performed for each
superparameter iteration.

N_ITER_SUPER Integer 0 or greater Number of superparameter iterations performed for each
base parameter iteration.

SUPER_EIGTHRES Real any positive number
(typically should be greater
than 1.0e−7)

PEST++ will not include any superparameters whose ratio
with the largest superparameter is less than this ratio. This
value can as small as zero if the user wants to specify the
number of superparameters solely with SUPER_NMAX.
Because PEST++uses SVD on the superparameter
problem, a low value for this SUPER_EIGTHRES will not
adversely impact the stability of the solution.

SUPER_NMAX Integer integer between 1 and the
minimum of maximum
number of parameters and
the maximum number of
observations

Maximum number of superparameters to use in the
superparameter iterations.

References

Doherty, J., 2011a, PEST surface water utilities: Brisbane, Australia, Watermark Numerical Computing.

Doherty, J., 2011b, Groundwater data utilities: Brisbane, Australia, Watermark Numerical Computing.

Muffels, C.T., Schreüder, W.A., Doherty, J., Karanovic, M., Tonkin, M.J., Hunt, R.J., and Welter, D.E., 2011, GENIE—A model
independent TCP/IP run manager in MODFLOW and More 2011—Integrated Hydrologic Modeling, Proceedings of the 10th
International Conference of the International Ground Water Modeling Center: Golden, Colo., Colorado School of Mines.

Muffels, C.T., Schreüder, W.A., Doherty, J., Karanovic, M., Tonkin, M.J., Hunt, R.J., and Welter, D.E., 2012, Approaches in
highly parameterized inversion: GENIE, a general model independent TCP/IP run manager: U.S. Geological Survey Tech-
niques and Methods, book 7, section C6, 27 p.

20   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

Appendix 2

Appendix 2: PEST++ Elementary
Transformations
Transformation sequences are groups of (elementary) transfor-
mations. PEST++ uses the transformation sequences “con-
trol file to numeric” and “control file to model” to convert
between parameter states. These sequences are composed
of the elementary transformations that support forward and
reverse transformations and contain the “one-to-one” attribute
to indicate whether they are compatible with parameter back
substitution.

TranScale

TranScale provides scaling or multiplication by a fixed value.
The forward transformation is multiplication, and the reverse
transformation is division. TranScale is one-to-one.

TranOffset

TranOffset provides an offset or addition by a fixed value.
The forward transformation is addition, and the reverse
transformation is subtraction. TranOffset is one-to-one.

TranFixed

TranFixed provides a transformation for fixing values.
The forward transformation adds an additional parameter
with a fixed value, and the reverse transformation removes
the parameter. TranFixed is considered to be a one-to-one
transformation because it is compatible with parameter back-
substitution.

TranFrozen

TranFrozen provides a transformation for freezing values.
The forward transformation adds an additional parameter that
is assigned the frozen value specified by this transformation,
and the reverse transformation removes the parameter. The
functionality of TranFrozen is identical to that of TranFixed.
It has been implemented as an independent transformation
for organization and tracking purposes. Like TranFixed,

TranFrozen is considered to be a one-to-one transformation
because it is compatible with parameter back-substitution.

TranTied

TranTied provides a transformation that ties the value of
one parameter to that of another parameter. The forward
transformation adds an additional parameter that is assigned
a value such that the ratio between the new parameter to
the value of the parameter it is tied to is maintained at the
level specified in transformation. The inverse transformation
removes the tied parameter from the parameter set. TranTied
is considered a one-to-one transformation because it is
compatible with parameter back substitution.

TranLog10

TranLog10 provides a base 10 logarithmic transformation.
The forward transformation is the base 10 logarithm, and the
inverse transformation is the exponential. TranLog10 is one-
to-one.

TranSVD

TranSVD provides a transformation between superparameters
and base parameters. The forward transformation maps base
parameters to superparameters, and the inverse transformation
maps superparameters to base parameters. This transformation
is used to implement the functionality of PEST’s SVD-Assist
internally in PEST++. Additional details on SVD-Assist and
this approach are provided in the next section. TranSVD is not
one-to-one.

TranNorm

TranNorm provides a transformation that automatically
normalizes the parameters based on the assumption that
the parameter range specified for each parameter in the
input control file is indicative of its variance. The forward
transformation divides each parameter by its variance, and
the inverse transformation multiplies each parameter by its
variance. TranNorm is one-to-one.

Appendix 3   21

Appendix 3: The Marquardt Lambda
and SVD Rotation Factor Supporting
Theory

The Marquardt lambda is typically a component of the
Gauss-Marquardt-Levenberg method, but its use in PEST has
been extended to supplement SVD. In the Gauss-Marquardt-
Levenberg method, the Marquardt lambda is a weighting
factor that interpolates between the Gauss-Newton method and
the method of gradient descent. The Gauss-Newton solution
for the nonlinear weighted least-squares problem can be
written as

	 () 1T Tu J QJ J Qr
−

= 	 (1)

where is u the upgrade vector, J is the Jacobian, Q is the
observation weights matrix and r is a vector containing the
residuals of the observations. The matrix JTQJ in equation 1
is commonly referred to as the “normal equations matrix.” A
full derivation is provided in Doherty (2010a).When the
Marquardt lambda is added this equation becomes

	

() 1T Tu J QJ λI J Qr
−

= ±
	 (2)

where I is the identity matrix and λ is the Marquardt lambda.
From equation 2, it is apparent that the Marquardt lambda
adds terms to the diagonal of the normal equation matrix being
inverted. Adding large terms to the diagonal of a matrix tends
to make it better conditioned and provides a de facto form of
regularization. However, this is not a desirable regularization
strategy because it does not restrain the solution in a physi-
cally meaningful way—contrary to Tikhonov regularization
(which identifies one or more preferred conditions) or trun-
cated SVD (which minimizes changes for parameters whose
influence on the inverse problem is overwhelmed by noise
in the solution). So, although use of the Marquardt lambda
regularization is not recommended, it can nonetheless make an
ill-posed problem solvable and is often unknowingly used in
this capacity by new users.

Two of the Marquardt lambda’s roles have been
discussed: rotating the solution vector in the direction of the
gradient descent solution and providing a de facto form of
regularization for ill-posed problems. In the authors’ view, it
is also commonly used to add a more robust search capability
to the nonlinear least-squares solution. Testing different
values of the Marquardt lambda during each iteration allows
PEST to explore a larger portion of parameter space, helping
to prevent it from becoming trapped in a local minimum.
When this technique is used in conjunction with parallel
PEST, the impact on the overall runtime is minimal because
parallelization of testing parameter upgrades computed using
different values of the Marquardt lambda allows these runs
to be made with no increase in overall clock time. Because

Appendix 3

SVD incorporates subspace regularization, it does not benefit
from the Marquardt lambda’s ability to provide suboptimal
regularization; however, SVD can greatly benefit from the
addition of a more robust search capability to help avoid local
optima, which is why the Marquardt lambda and SVD are
commonly used together in PEST.

Although PEST++ does not need to support the Gauss-
Marquardt-Levenberg method, it still needs to provide an
analogous functionality to a widely varying Marquardt
lambda in the SVD solution. For large problems, performing
an SVD factorization can be computationally expensive, and
equation 2 requires that a SVD factorization be performed for
each value of the Marquardt lambda because it is contained
within the normal equation matrix being inverted. However,
because SVD is unconditionally stable, the role of the
Marquardt lambda can be reduced from adding a diagonal
term to merely providing a means to rotate the upgrade
vector in the direction of the gradient descent solution. To
take advantage of this simplification, PEST++ replaces the
Marquardt lambda with a newly defined rotation factor. The
equation for the upgrade vector can be derived by using SVD
and defining a unit vector pointing in the same direction to
yield to following equations:

	 u Q J Q rsvd = ()−1 2 1 2/ / 	 (3)

	 SVD
svd

SVD

û
u
u

= 	 (4)

where the symbol “-” denotes the generalized inverse and
||uSVD|| denotes the L2 norm of the upgrade vector. Simi-
larly, the upgrade vector for the direction method of gradient
descent and its associated unit vector can be expressed as

	 u J Qrgd
T= −2 	 (5)

	
gd

gd
gd

û
u

u
= 	 (6)

Equations 4 and 6 can be used to rotate equation 3 in
the direction of the gradient descent solution to produce
equation 7:

	 	 (7)

where α is the rotation factor and u is the rotated upgrade vec-
tor. This technique avoids SVD factorization for each value of
lambda, and its physical meaning is very clear. In addition, the
rotation factor must lie in the interval [0, 1], whereas there is
no clear upper limit on Marquardt lambda.

22   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

Appendix 4: Considerations for Code
Development

Design Goals

The initial goal of PEST++ development was to build a
basic framework and create a program that makes the powerful
features of PEST accessible to more users and developers
while maintaining a robust and efficient design. In particular,
the following items were identified as important.
1.	 Portability.—It is important that a well-established

standard language be used and that the use of external
dependencies be minimized.

2.	 Efficiency.—Because this program will be used for large
problems, it must be efficient in two regards. First, it must
be computationally efficient; and second, it must be effi-
cient in its use of memory and maintain a “small memory
footprint.” In particular, it must be possible to store and
access nonstandard sparse information efficiently.

3.	 Extensibility.—The code must incorporate a modular or
object-oriented design that promotes code extensibility
and reuse.

4.	 Ease of use.—The code should automate processes and
depend on default parameters when possible, thereby
requiring as little user input as possible while providing
the user with a simple interface for the required input
data. Providing a more seamless interface to superparam-
eters was identified as a key objective, given that users
sometimes struggle with maintaining proper intermediate
files and modified control file and batch files when using
SVD-Assist in PEST. Also included in ease of use is sup-
port for robust error checking and handling.

Language Selection

Selecting a language in which to build PEST++ was not
obvious. During the pseudocode process, it became appar-
ent that no single programming language was optimum in
all aspects for fully attaining the design goals. Much of the
initial development of PEST++ was done in Python to take
advantage of its concise syntax and friendly development

environment. Use of Python at the outset allowed for rapid
development and testing of an initial prototype. However, it
became apparent that handling many of the sparse data struc-
tures efficiently would be difficult if using Python’s standard
data types and packages. To avoid these issues and ensure
that adequate options will be available to resolve performance
issues as they arise, the code was migrated to C++. C++ was
chosen for this project because it offers the following ben-
efits: (1) It is a mature language, governed by ISO standards.
(2) It is widely available on many different platforms. (3) The
standard library that is included in the standard language
provides a rich set of tools, including the standard template
library (STL). (4) C++ includes exception handling, which
can handle usage errors in an efficient manner. (5) An experi-
enced programmer can develop fast and efficient code. (6) It is
relatively easy to produce statically linked executables, which
are easy to distribute.

External PEST++ dependencies have been limited
to BLAS, LAPACK, LAPACK++ and PROPACK, where
LAPACK++ is an object-oriented wrapper for the BLAS and
LAPACK linear algebra libraries and PROPACK is an itera-
tive solver for computing SVD factorizations.

Integration in Visual Studio Integrated
Development Environment (IDE)

All the source code required to build PEST++ has been
consolidated in the Microsoft Visual Studio 2010 IDE. This
includes the source codes for (1) PEST++, (2) the GENIE
interface, (3) LAPACK++, and (4) the PEST Fortran code that
processes template and insertion files. The project is config-
ured to build a statically linked PEST++ executable without
any external dependencies. This simplifies and facilitates
sharing the source code and distributing the executables. The
PEST++ Visual Studio Project, as well as source code and
executable, are available for download at http://pubs.usgs.gov/
tm/tm7c5/.

Naming Convention

The naming convention used for PEST++ code is sum-
marized in table 4–1 and follows that of the standard template
library. Although PEST++ code follows this convention, the
LAPACK++ library used by PEST++ adheres to a different
naming convention.

Table 4–1.  PEST++ naming convention.

Items Convention Example

Class names Camel-case. Names start with capitals and new words are delineated by capitals. Class MyClass
Class instances
Class methods
Variables
Functions

Names start with lower case and boundaries are delineated with “_”. MyClass my_class
void MyClass.do_something(int a)
double my_value
int my_function(int a)

Appendix 4   23

Inheritance and Polymorphism in PEST++

Polymorphism is an object-orientated programming
feature that allows data types sharing a common interface
to be used interchangeably within a program. PEST++ uses
polymorphism based on inheritance to define interfaces for
run managers, elemental transformations, and SVD solutions.

Appendix 4

In the case of the run manager, this shields the PEST++ code
from having to specify which run manager is being used and
makes the code compatible with any run manager that con-
forms to the ModelRunManagerAbstract base class. Figures
4–1, 4–2, and 4–3 show the inheritance trees for the run man-
ager, elementary transformations, and the SVD-based solution.

Figure 4–3.  SVD Solution inheritance tree.

Figure 4–2.  Elemental transformation inheritance tree.

Figure 4–1.  Run manager inheritance tree.

RunManagerGenie

RunManagerSerial

RunManagerAbstract

TranSetBase

TranSVD

TranInvLog10

TranLog10

TranOffset

TranScale

TranFixed TranFrozen

TranTied

TranMapBase

Transformation

SVDASolverSVDSolver

24   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

Overall Program Flow and Design

The following flowcharts (figs. 4–4 through 4–6)
describe the overall flow of PEST++, SVDSolver::solve, and
SVDSolver::iteration.

Cleanup
and Release Memory

Build Data Structures

Base Parameter Iteration(s)
Call SVDSolver::solve

Superparameter Iteration(s)
Call SVDASolver::solve

Iteration
Criteria

Satisfied?

Main PEST++ Program

Read Control
File

yes

no

Figure 4–4.  Flowchart for main PEST++ program.

Figure 4–5.  Flowchart for SVDSolver::solve.

Return

Call SVDSolver::iteration

Iteration
Criteria

Satisfied?

yes

no

SVDSolver::solve

Appendix 4   25

Figure 4–6.  Flowchart forSVDSolver::iteration.

no

Calculate Jacobian
Call Jacobain::calculate

Compute Upgrade Vectors
Based on Newton’s Method

and Method of Gradient
Descent

Use Rotation Factors to
Compute Upgrade Vectors
and Build the Associated

Model Runs

Test Upgrade Vectors—Run
Model

Save Updated Parameters and
Jacobian

Freeze Parameters as
Necessary

New
Parameters

Frozen?

yes

no

SVDSolver::iteration

26   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

Appendix 5: Class List

FileManager

This class encapsulates the I/O filenames and iostream
handles associated with a PEST++ run. It has a copy of the
pathname in which the PEST++ simulation is running and
a reference to the file stream associated with the record file.
The rest of the class in PEST++ program relies on this class
to supply the iostream handle to the record file, as well as the
appropriate names of all PEST++ input and output files.

Jacobian

This class provides support for building and accessing the
Jacobian. It includes code for calculating derivatives and pro-
vides support for forward difference, central difference(outer),
and central difference(parabolic), as well as the ability to
switch to from forward derivatives to central derivatives as the
optimization process slows down. This class uses the GENIE
interface to perform the actual model runs and is able to return
the Jacobian as a LAPACK++ LaGenMatDouble matrix that
can be used in numerical computations and save the Jacobian
to disk PEST’s .jco data format.

ModelExecInfo

This class contains the commands and filenames required
to make a model run. It encapsulates the names of the template
files, input files, insertion files, and output files. In addition,
it also contains the model command lines necessary to start a
model run.

ModelRun

ModelRun is a child of ModelRunAbstractBase and is
designed to consolidate the information associated with a
model run. Because ModelRunAbstractBase is an abstract
class, it cannot be directly instantiated. ModelRun is the pri-
mary child class that is used most often to store the parameter
and simulated observations associated with a model run.

ModelRunAbstractBase

This is the abstract base class for all classes associated
with a model run. These classes are designed to consolidate
the information associated with a model run, which includes
the parameters, transformations, and the observed values, as
well as their simulated counterparts. In addition, these classes
also contain the information necessary to compute the objec-
tive function and contain methods that perform this task.
Although ModelRunAbstractBase cannot be instantiated,

it defines the methods that all classes derived from it must
implement.

ModelRunShallowCopy

This is a lightweight copy of a ModelRun class. It con-
tains its own set of parameters and simulated observations, but
it uses the transformations associated with the ModelRun class
it was created from.

ObjectiveFunc

This class handles all aspects of the objective function.
It contains the measured observations and prior information,
along with all the associated in information such as weights
and groups, and is able to calculate the objective function and
produce a report that includes the contributions to the objec-
tive function of all of all the observation groups.

ObservationGroupRec

This class stores the information associated with an
observation group.

ObservationInfo

This class compliments the Observations class. Because
the Observations class was designed to be very lightweight, it
only stores the measured values of the observation. The Obser-
vationInfo class uses an unorder_map of the ObservationRec
class to store the rest of the information associated with the
observations, which includes their weights and the groups that
they are associated with.

ObservationRec

This class stores the weight and observation groups asso-
ciated with an observation.

Observations

This class stores the measured values of the observations.
It is a child of the Transformable class and is compatible the
transformations used for the parameters, but the current code
does not make use of this functionality.

OperSys

This class encapsulates all the features and parameters
that are operating-system dependent. These include the char-
acter used to separate the different components of a pathname
and the end-of-line or carriage-return character(s).

Appendix 5

file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_file_manager.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_jacobian.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_model_exec_info.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_model_run.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_model_run_astract_base.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_model_run_astract_base.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_model_run_astract_base.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_model_run_astract_base.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_model_run_shallow_copy.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_objective_func.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_observation_group_rec.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_observation_info.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_observation_rec.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_observations.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_oper_sys.html

Appendix 5   27

ParameterGroupInfo

This class stores the information associated with the
parameter groups.

ParameterGroupRec

This class stores the information associated with a param-
eter group.

ParameterInfo

This class compliments the Parameters class. Because
the Parameters class was designed to be lightweight, it stores
only the parameter values. The ParameterInfo class uses an
unorder_map of the ParameterRec class to store the rest of the
information associated with parameter, which includes their
bounds, change limit methodology, and the groups they are
associated with.

ParameterRec

This class stores the bounds, change limit methodology,
and the group for a parameter.

Parameters

This class stores parameter values. It is a child of the
Transformable class and is designed be compatible the Param-
TransformSeq class.

ParamTransformSeq

This class handles transformations for the parameters.
It contains the transformation sequences to convert between
control and numeric parameters, as well as those required to
convert between control and model parameters.

Pest

This class consolidates the information contained in the
control file and contains instances of the following classes:
ControlInfo, SVDInfo, Parameters, ParameterInfo, Param-
eterGroupInfo, BaseGroupInfo, Observations, Observation-
Info, PriorInformation, ModelExecInfo, PestppOptions, and
ParamTransformSeq.

PestConversionError, PestError, PestFileError,
PestIndexError, PestParsingError

These classes define error states and are used to throw
exceptions.

PestppOptions

This class stores the PEST++ input options that are not
available in PEST.

PIAtom

This class is used by the PriorInformationRec class. It
stores information associate with a single parameter in a prior
information expression. This information includes the name
of the parameter, whether the parameter is log transformed,
and the factor by which the parameter is to be multiplied in the
prior information expression.

PriorInformation

This class contains all for the prior information records
associated with a PEST++ simulation.

PriorInformationRec

This class stores a complete prior information record
and contains a method to compute that item’s residual and
contribution to the objective function. Each prior information
equation in the control file is stored by using an instance of
this class.

QSqrtMatrix

This class contains the weights matrix for the observa-
tions and the prior information. It contains methods that return
the product of this matrix with a LAPACK++ LaGenMat-
Double matrix.

RunManagerGenie

This class is a wrapper for the GENIE run manager.
GENIE is a generic parallel run manager that uses TCP/IP
for communication and allows runs to be performed over the
Internet in remote locations. This class converts PEST++ data
structures to GENIE data structures and calls GENIE to make
the model runs.

SVDASolver

This class is a child of the SVDSolver class that is spe-
cialized to work with superparameters. The changes needed to
accommodate superparameters are minimal; the only meth-
ods that are modified are the method that limits parameter
upgrades, limit_parameters_ip, and the method that freezes
parameters, freeze_parameters.

file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_parameter_group_info.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_parameter_group_rec.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_parameter_info.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_parameters.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_parameters.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_parameter_rec.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_parameter_rec.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_parameters.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_param_transform_seq.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_param_transform_seq.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_param_transform_seq.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_pest.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\classpest__conversion__error.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\classpest__error.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\classpest__file__error.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\classpest__index__error.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\classpest__parsing__error.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_pestpp_options.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_p_i_atom.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_prior_information_rec.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_prior_information.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_prior_information_rec.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_q_sqrt_matrix.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_run_manager_genie.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_s_v_d_a_solver.html

28   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

SVDInfo

This class stores the information in the SVD section of
the control file.

SVDSolver

This class solves the least-squares problem by using
singular value decomposition (SVD). The bulk of the work is
performed in the iteration method, which sets up and solves
a single iteration. This class relies on the Jacobian class to
compute the Jacobian.

TerminationController

This class manages the termination criteria for the least-
squares solution.

TranFixed

This class implements a transformation for fixed values.

TranFrozen

This class implements a transformation for frozen values.

TranLog10

This class implements a logarithmic transformation.

TranMapBase

This is a base class for transformations built around the
standard template library (STL) map class.

TranOffset

This class implements the offset transformation.

TranScale

This class implements a scaling transformation.

TranSetBase

This is a base class for transformation that use the STL
Set container to store a list of items.

Transformable

This is an abstract base class that provides compatibility
with the Transformation class and all of the class derived
from it. The Parameters and Observation classes are derived
from this class; however, at present, only the Parameters class
makes use of the functionality it provides.

TransformableValueError

This class defines an error state and is used to throw an
exception.

Transformation

This is the abstract base class for all transformations. It
cannot be instantiated, but it defines the methods that all of its
children must possess.

TranSVD

The Transformation implements SVD-A or a
transformation between superparameters and base parameters.

TranTied

This transformation ties one parameter to another. The
tied parameter is maintained at a fixed ratio to the parameter it
is tied to.

file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_s_v_d_info.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_s_v_d_solver.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_termination_controller.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_tran_fixed.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_tran_frozen.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_tran_log10.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_tran_map_base.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_tran_offset.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_tran_scale.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_tran_set_base.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_transformable.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_transformable__value__error.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_transformation.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_tran_s_v_d.html
file:///C:\Users\dwelter\Documents\Visual%20Studio%202010\Projects\pestalito\pestalito\doxygen\html\class_tran_tied.html

Appendix 6   29

Appendix 6: Simple Storage Model
Example

Introduction

This example demonstrates the use of PEST++ with
a simple storage model developed by John Doherty as a
workshop problem for use in PEST training classes. The brief
description contained herein is taken from that exercise. The
outputs of both PEST and PEST++ are presented so that users
can review and verify the results.

Description of the Model

Figure 6–1 shows a simple storage. The storage is filled
with a porous medium of storage coefficient S. The storage
receives water as recharge at a constant rate R. Water is able to
drain from the storage at a rate that is proportional to the head
of water in the storage. Rate of water outflow is thus given by

	 q = Kh	 (1)

where
	 q 	 is the outflow rate,
	 h 	 is the head of water in the storage, and
	 K 	 is the conductance of the storage outlet. Initial

head in the storage is designated as h1.

Appendix 6

The rate of change in the amount of water held in storage
at any time is equal to the difference between inflow and out-
flow. Mathematically, this is expressed by the equation

	

dhS R Kh
dt

= − 	 (2)

For constant R, the solution of equation 2 is

	 1 1 1
Kt
SRh h h e

K

−  = + − −  
  

	 (3)

where, as mentioned previously, h1 is the head in the storage
when t (the elapsed time) is zero. It is apparent from equa-
tion 3 that the equilibrium storage water level is given by

	
Rh
K

= 	 (4)

where h in equation 4 is the water level in the storage at which
recharge inflow is exactly balanced by drainage outflow, the
latter being given by equation 1.

When t is small, equation 3 asymptotically approaches
the equation

	
1 1

R Kth h h
K S

 = + − 
 

	 (5)

If the initial head is zero, equation 5 becomes

	

Rth
S

= 	 (6)

It is apparent from equations 3 to 6 that when a new
recharge regime is introduced to the storage, the level of
water in the storage changes to its new level in a manner that
is linear at first but, with time, assymptotically approaches
its final level. The time constant pertaining to the water-level
adjustment process is given by the ratio of S to K. Notice that
the recharge rate R does not figure in calculation of the time
constant and that the storage coefficient S is not represented
in the equation for the final, equilibrium water level in the
storage.

Figure 6–2 shows the variation of water level in the
storage with time under the assumption that the initial water
level is 20 units, the recharge rate is 10−1 units, the outlet
conductance is 10−3 units, and the storage coefficient is 0.2.
From equation 4, it is easily established that the final equilib-
rium water level in the storage under these conditions is
100 units.

The basic storage unit pictured in figure 6–1 forms an
important building block of many lumped-parameter environ-
mental models. Hence, lessons learned in this practical session
will be applicable in many circumstances where much more
complex environmental models are deployed to simulate the
behavior of natural systems.Figure 6–1.  Graphical depiction of a model of a storage volume

filled with a porous medium.

h

Recharge R

q = Kh

Conductance K

Storage coefficient S

30   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

Figure 6–3.  A program to compute storage water levels using equation 3.

Figure 6–2.  Water level in the storage depicted in figure 6–1; see text for details.

0 400 800 1200
Time

20

40

60

80

100

W
at

er
 le

ve
l

program storage

implicit none

real recharge, conductance, storage, inithead, time,
 +coeff, factor

open(unit=10,file='input.dat',status='old')
open(unit=20,file='output.dat')
read(10,*) recharge, conductance, storage
read(10,*) inithead
read(10,*)

coeff=(recharge/conductance-inithead)
factor=conductance/storage
write(20,10)
10 format(' Time Water_Level')
do
read(10,*,end=100) time
write(20,20) time,inithead+coeff*(1.0-exp(-factor*time))
20 format(1x,1pg14.7,2x,1pg14.7)
end do
100 end

A Computer Program to Simulate the Storage

Operation of the storage depicted in figure 6–1 can be
simulated by using a simple computer program based on

equation 3. Such a program, written in Fortran, is listed in
figure 6–3. See also file storage.for in the working directory
for this session.

Appendix 6: Simple Storage Model Example    31

Program STORAGE reads an input file named input.dat.
The first line of this file should contain, in order, the recharge,
outlet conductance, and storage coefficient of the storage. The
next line should contain the initial storage water level. A blank
line should follow that, followed by a listing of the times at

Figure 6–4.  An input file for program STORAGE.

Figure 6–5.  An output file written by program STORAGE.

which water-level computation is required. A typical input file
for the STORAGE program is illustrated in figure 6–4.
STORAGE writes an output file called output.dat. Figure 6–5
shows the output.dat file corresponding to the input.dat file
depicted in figure 6–4.

1.0e-1 1.0e-3 0.2 / recharge conductance storage_coefficient
0.0 / initial head

0.1 / elapsed times
0.2
0.5
1.0
2.0
5.0
10.0
20.0
50.0
100.0
200.0
500.0
1000.0
2000.0
5000.0
10000.0

Time Water_Level
0.1000000 4.9987502E-02
0.2000000 9.9950016E-02

0.5000000 0.2496878
1.000000 0.4987521
2.000000 0.9950166
5.000000 2.469009
10.00000 4.877058
20.00000 9.516258
50.00000 22.11992
100.0000 39.34694
200.0000 63.21206
500.0000 91.79150
1000.000 99.32620
2000.000 99.99546
5000.000 100.0000
10000.00 100.0000

32   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

PEST++ Model Run

The example problem can be run with PEST++ by typing the command

Pest++ storage5

The output written to the screen by PEST++ and the contents of the storage5.recoutput file are presented below.

PEST++ ver. 1.0 Output Written to the Screen

C:\Users\dwelter\examples\stor>..\pest++ storage5
PEST++ Version 1.0.0

using control file: “storage5”

initializing serial run manager

OPTIMISATION ITERATION NUMBER: 1
 Iteration type: base parameter solution
calculatingjacobian... (3/3 runs complete)
testing upgrade vectors... (7/7 runs complete)
 Starting phi = 594.589; ending phi = 22.7623 (3.82825% starting phi)

OPTIMISATION ITERATION NUMBER: 2
 Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
 Starting phi = 22.7623; ending phi = 14.9341 (65.6089% starting phi)

OPTIMISATION ITERATION NUMBER: 3
 Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
 Starting phi = 14.9341; ending phi = 0.749557 (5.01909% starting phi)

OPTIMISATION ITERATION NUMBER: 4
Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
 Starting phi = 0.749557; ending phi = 0.438044 (58.4404% starting phi)

OPTIMISATION ITERATION NUMBER: 5
 Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
Starting phi = 0.438044; ending phi = 0.437872 (99.9609% starting phi)

OPTIMISATION ITERATION NUMBER: 6
 Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
Starting phi = 0.437872; ending phi = 0.437865 (99.9982% starting phi)

Simulation Complete - Press RETURN to close window

Appendix 6   33

PEST++ storage5.rec Output File
PEST++ Version 1.0.0

Control file = storage5”

OPTIMISATION ITERATION NUMBER: 1
 Iteration type: base parameter solution
 Model calls so far : 0
 Starting phi for this iteration Total : 594.589
 Contribution to phi from observation group “OBSGROUP” : 594.589

 SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.727904
angle to direction of greatest descent: 45.2942 deg

 Rotation Factor = 0.00 (0.00 deg); phi = 213.625 (35.93% starting phi)
 Rotation Factor = 0.01 (0.41 deg); phi = 208.455 (35.06% starting phi)
 Rotation Factor = 0.10 (4.19 deg); phi = 162.589 (27.34% starting phi)
 Rotation Factor = 0.20 (8.59 deg); phi = 114.48 (19.25% starting phi)
 Rotation Factor = 0.50 (22.65 deg); phi = 22.7623 (3.83% starting phi)
 Rotation Factor = 0.70 (32.12 deg); phi = 124.385 (20.92% starting phi)
 Rotation Factor = 1.00 (45.29 deg); phi = 522.574 (87.89% starting phi)

 Parameter Upgrades (Control File Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND 0.00184708 0.005 2.70697 0.630584
 SCOEFF 0.15 0.05 3 -2
 RECHARGE 0.1 0.1 1 0

 Parameter Upgrades (Transformed Numeric Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND -2.73351 -2.30103 1.18795 -0.187952
 SCOEFF -0.823909 -1.30103 1.57909 0.366726

 Maximum changes in transformed numeric parameters:
 Maximum relative change = 0.366726 [SCOEFF]
 Maximum factor change = 1.57909 [SCOEFF]

OPTIMISATION ITERATION NUMBER: 2
 Iteration type: base parameter solution
 Model calls so far : 10
 Starting phi for this iteration Total : 22.7623
 Contribution to phi from observation group “OBSGROUP” : 22.7623

 SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.233686
angle to direction of greatest descent: 24.3818 deg

 Rotation Factor = 0.00 (0.00 deg); phi = 14.9341 (65.61% starting phi)
 Rotation Factor = 0.01 (0.24 deg); phi = 15.4713 (67.97% starting phi)
 Rotation Factor = 0.10 (2.39 deg); phi = 20.7701 (91.25% starting phi)
 Rotation Factor = 0.20 (4.81 deg); phi = 27.5767 (121.15% starting phi)
 Rotation Factor = 0.50 (12.19 deg); phi = 52.672 (231.40% starting phi)
 Rotation Factor = 0.70 (17.13 deg); phi = 71.9359 (316.03% starting phi)
 Rotation Factor = 1.00 (24.38 deg); phi = 101.828 (447.35% starting phi)

34   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

 Parameter Upgrades (Control File Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND 0.00118955 0.00184708 1.55276 0.355985
 SCOEFF 0.204449 0.15 1.36299 -0.362992
 RECHARGE 0.1 0.1 1 0

 Parameter Upgrades (Transformed Numeric Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND -2.92462 -2.73351 1.06991 -0.0699115
 SCOEFF -0.689416 -0.823909 1.19508 0.163238

 Maximum changes in transformed numeric parameters:
 Maximum relative change = 0.163238 [SCOEFF]
 Maximum factor change = 1.19508 [SCOEFF]

OPTIMISATION ITERATION NUMBER: 3
 Iteration type: base parameter solution
 Model calls so far : 19
 Starting phi for this iteration Total : 14.9341
 Contribution to phi from observation group “OBSGROUP” : 14.9341

 SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.176581
angle to direction of greatest descent: 73.4767 deg

 Rotation Factor = 0.00 (0.00 deg); phi = 0.937774 (6.28% starting phi)
 Rotation Factor = 0.01 (0.55 deg); phi = 0.749557 (5.02% starting phi)
 Rotation Factor = 0.10 (5.90 deg); phi = 1.5011 (10.05% starting phi)
 Rotation Factor = 0.20 (12.61 deg); phi = 9.06701 (60.71% starting phi)
 Rotation Factor = 0.50 (36.74 deg); phi = 84.7025 (567.17% starting phi)
 Rotation Factor = 0.70 (53.36 deg); phi = 147.327 (986.51% starting phi)
 Rotation Factor = 1.00 (73.48 deg); phi = 179.343 (1200.90% starting phi)

 Parameter Upgrades (Control File Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND 0.000792229 0.00118955 1.50152 0.334008
 SCOEFF 0.20644 0.204449 1.00974 -0.00973847
 RECHARGE 0.1 0.1 1 0

 Parameter Upgrades (Transformed Numeric Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND -3.10115 -2.92462 1.06036 -0.0603604
 SCOEFF -0.685207 -0.689416 1.00614 0.00610503

 Maximum changes in transformed numeric parameters:
 Maximum relative change = -0.0603604 [COND]
 Maximum factor change = 1.06036 [COND]

OPTIMISATION ITERATION NUMBER: 4
 Iteration type: base parameter solution
 Model calls so far : 28
 Starting phi for this iteration Total : 0.749557
 Contribution to phi from observation group “OBSGROUP” : 0.749557

 SVD information:

Appendix 6   35

number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.0343731
angle to direction of greatest descent: 79.2524 deg

 Rotation Factor = 0.00 (0.00 deg); phi = 0.439216 (58.60% starting phi)
 Rotation Factor = 0.01 (0.57 deg); phi = 0.438044 (58.44% starting phi)
 Rotation Factor = 0.10 (6.10 deg); phi = 0.533744 (71.21% starting phi)
 Rotation Factor = 0.20 (13.21 deg); phi = 0.927359 (123.72% starting phi)
 Rotation Factor = 0.50 (39.63 deg); phi = 4.2616 (568.55% starting phi)
 Rotation Factor = 0.70 (57.95 deg); phi = 6.85316 (914.29% starting phi)
 Rotation Factor = 1.00 (79.25 deg); phi = 8.26179 (1102.22% starting phi)

 Parameter Upgrades (Control File Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND 0.000731946 0.000792229 1.08236 0.0760929
 SCOEFF 0.206576 0.20644 1.00066 -0.000660826
 RECHARGE 0.1 0.1 1 0

 Parameter Upgrades (Transformed Numeric Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND -3.13552 -3.10115 1.01108 -0.0110835
 SCOEFF -0.68492 -0.685207 1.00042 0.000418703

 Maximum changes in transformed numeric parameters:
 Maximum relative change = -0.0110835 [COND]
 Maximum factor change = 1.01108 [COND]

OPTIMISATION ITERATION NUMBER: 5
 Iteration type: base parameter solution
 Model calls so far : 37
 Starting phi for this iteration Total : 0.438044
 Contribution to phi from observation group “OBSGROUP” : 0.438044

 SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.00227503
angle to direction of greatest descent: 71.7733 deg

 Rotation Factor = 0.00 (0.00 deg); phi = 0.437873 (99.96% starting phi)
 Rotation Factor = 0.01 (0.55 deg); phi = 0.437872 (99.96% starting phi)
 Rotation Factor = 0.10 (5.82 deg); phi = 0.438302 (100.06% starting phi)
 Rotation Factor = 0.20 (12.42 deg); phi = 0.439937 (100.43% starting phi)
 Rotation Factor = 0.50 (35.89 deg); phi = 0.453779 (103.59% starting phi)
 Rotation Factor = 0.70 (52.03 deg); phi = 0.466782 (106.56% starting phi)
 Rotation Factor = 1.00 (71.77 deg); phi = 0.479919 (109.56% starting phi)

 Switching to central derivatives:

 Parameter Upgrades (Control File Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND 0.000728163 0.000731946 1.0052 0.00516841
 SCOEFF 0.206736 0.206576 1.00077 -0.000771491
 RECHARGE 0.1 0.1 1 0

 Parameter Upgrades (Transformed Numeric Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND -3.13777 -3.13552 1.00072 -0.000717723

36   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

 SCOEFF -0.684585 -0.68492 1.00049 0.000488999

 Maximum changes in transformed numeric parameters:
 Maximum relative change = -0.000717723 [COND]
 Maximum factor change = 1.00072 [COND]

OPTIMISATION ITERATION NUMBER: 6
 Iteration type: base parameter solution
 Model calls so far : 46
 Starting phi for this iteration Total : 0.437872
 Contribution to phi from observation group “OBSGROUP” : 0.437872

 SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.000495033
angle to direction of greatest descent: 79.207 deg

 Rotation Factor = 0.00 (0.00 deg); phi = 0.437867 (100.00% starting phi)
 Rotation Factor = 0.01 (0.57 deg); phi = 0.437865 (100.00% starting phi)
 Rotation Factor = 0.10 (6.10 deg); phi = 0.437889 (100.00% starting phi)
 Rotation Factor = 0.20 (13.20 deg); phi = 0.437975 (100.02% starting phi)
 Rotation Factor = 0.50 (39.60 deg); phi = 0.438744 (100.20% starting phi)
 Rotation Factor = 0.70 (57.92 deg); phi = 0.439424 (100.35% starting phi)
 Rotation Factor = 1.00 (79.21 deg); phi = 0.439956 (100.48% starting phi)

 Parameter Upgrades (Control File Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND 0.000727346 0.000728163 1.00112 0.001122
 SCOEFF 0.206777 0.206736 1.0002 -0.00019962
 RECHARGE 0.1 0.1 1 0

 Parameter Upgrades (Transformed Numeric Parameters)
 Parameter Current Previous Factor Relative
 Name Value Value Change Change
 ------------ ------------ ------------ ------------ ------------
 COND -3.13826 -3.13777 1.00016 -0.000155382
 SCOEFF -0.684498 -0.684585 1.00013 0.000126624

 Maximum changes in transformed numeric parameters:
 Maximum relative change = -0.000155382 [COND]
 Maximum factor change = 1.00016 [COND]

Appendix 6   37

PEST Model Run

The storage example problem can be run using PEST by typing the command:

pest storage5

The output written to the screen by PEST and the contents of the storage5.rec output file are presented below.

PEST Output Written to the Screen

C:\Users\dwelter\Desktop\alpha_0.0.1\stor>pest storage5

PEST Version 12.0.1.Watermark Numerical Computing.

PEST is running in parameter estimation mode.

PEST run record: case storage5
(See file storage5.rec for full details.)

Model command line:
storage1

Running model

 Running model 1 time....
 Sum of squared weighted residuals (ie phi) = 594.59

OPTIMISATION ITERATION NO. : 1
 Model calls so far : 1
 Starting phi for this iteration: 594.59

 Calculating Jacobian matrix: running model 2 times
 2 runs completed.

 Lambda = 5.0000 ----->
running model
 Phi = 178.26 (0.300 of starting phi)

 No more lambdas: phi is less than 0.3000 of starting phi
 Lowest phi this iteration: 178.26

38   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

 Maximum factor change: 1.747 [“cond”]
 Maximum relative change: 0.7351 [“scoeff”]

OPTIMISATION ITERATION NO. : 2
 Model calls so far : 4
 Starting phi for this iteration: 178.26

 Calculating Jacobian matrix: running model 2 times
 2 runs completed.

 Lambda = 2.5000 ----->
running model
 Phi = 99.133 (0.556 of starting phi)

 Lambda = 1.2500 ----->
running model
 Phi = 96.104 (0.539 of starting phi)

 Lambda = 0.62500 ----->
running model
 Phi = 93.707 (0.526 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 93.707
 Maximum factor change: 2.241 [“scoeff”]
 Maximum relative change: 1.241 [“scoeff”]

OPTIMISATION ITERATION NO. : 3
 Model calls so far : 9
 Starting phi for this iteration: 93.707

 Calculating Jacobian matrix: running model 2 times
 2 runs completed.

 Lambda = 0.31250 ----->
running model
 Phi = 8.0233 (0.086 of starting phi)

 No more lambdas: phi is less than 0.3000 of starting phi
 Lowest phi this iteration: 8.0233
 Maximum factor change: 1.517 [“cond”]
 Maximum relative change: 0.3410 [“cond”]

OPTIMISATION ITERATION NO. : 4
 Model calls so far : 12
 Starting phi for this iteration: 8.0233

 Calculating Jacobian matrix: running model 2 times
 2 runs completed.

 Lambda = 0.15625 ----->
running model
 Phi = 4.3394 (0.541 of starting phi)

 Lambda = 7.81250E-02 ----->
running model
 Phi = 4.2460 (0.529 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 4.2460
 Maximum factor change: 1.398 [“cond”]
 Maximum relative change: 0.2845 [“cond”]

Appendix 6   39

OPTIMISATION ITERATION NO. : 5
 Model calls so far : 16
 Starting phi for this iteration: 4.2460

 Calculating Jacobian matrix: running model 2 times
 2 runs completed.

 Lambda = 3.90625E-02 ----->
running model
 Phi = 0.49781 (0.117 of starting phi)

 No more lambdas: phi is less than 0.3000 of starting phi
 Lowest phi this iteration: 0.49781
 Maximum factor change: 1.243 [“cond”]
 Maximum relative change: 0.1953 [“cond”]

OPTIMISATION ITERATION NO. : 6
 Model calls so far : 19
 Starting phi for this iteration: 0.49781

 Calculating Jacobian matrix: running model 2 times
 2 runs completed.

 Lambda = 1.95313E-02 ----->
running model
 Phi = 0.43883 (0.882 of starting phi)

 Lambda = 9.76563E-03 ----->
running model
 Phi = 0.43913 (0.882 of starting phi)

 Lambda = 3.90625E-02 ----->
running model
 Phi = 0.43856 (0.881 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 0.43856
 Maximum factor change: 1.088 [“cond”]
 Maximum relative change: 8.1179E-02 [“cond”]

OPTIMISATION ITERATION NO. : 7
 Model calls so far : 24
 Starting phi for this iteration: 0.43856

 Calculating Jacobian matrix: running model 2 times
 2 runs completed.

 Lambda = 3.90625E-02 ----->
running model
 Phi = 0.43788 (0.998 of starting phi)

 Lambda = 1.95313E-02 ----->
running model
 Phi = 0.43787 (0.998 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 0.43787
 Relative phi reduction between optimisation iterations less than 0.1000
 Switch to central derivatives calculation
 Maximum factor change: 1.010 [“cond”]
 Maximum relative change: 9.4250E-03 [“cond”]

40   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

OPTIMISATION ITERATION NO. : 8
 Model calls so far : 28
 Starting phi for this iteration: 0.43787

 Calculating Jacobian matrix: running model 4 times
 4 runs completed.

 Lambda = 9.76563E-03 ----->
running model
 Phi = 0.43786 (1.000 of starting phi)

 Lambda = 4.88281E-03 ----->
running model
 Phi = 0.43787 (1.000 times starting phi)

 Lambda = 1.95313E-02 ----->
running model
 Phi = 0.43786 (1.000 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 0.43786
 Maximum factor change: 1.001 [“cond”]
 Maximum relative change: 5.7673E-04 [“cond”]

Optimisation complete: the 3 lowest phi’s are within a relative distance
ofeachother of 1.000E-02
 Total model calls: 35

Running model one last time with best parameters.....

Recording run statistics

See file storage5.rec for full run details.
See file storage5.sen for parameter sensitivities.
See file storage5.seo for observation sensitivities.
See file storage5.res for residuals.

Appendix 6   41

PEST storage5.rec Output File

 PEST RUN RECORD: CASE storage5

PEST run mode:-

 Parameter estimation mode

Case dimensions:-

 Number of parameters : 3
 Number of adjustable parameters : 2
 Number of parameter groups : 3
 Number of observations : 16
 Number of prior estimates : 0

Model command line(s):-

 storage1

Jacobian command line:-

na

Model interface files:-
 Templates:
 input.tpl
for model input files:
 input.dat

 (Parameter values written using single precision protocol.)
 (Decimal point always included.)

 Instruction files:
 output.ins
for reading model output files:
 output.dat

PEST-to-model message file:-

na

Derivatives calculation:-

Param Increment IncrementIncrement Forward or Multiplier Method
group type low bound central (central) (central)
recharge relative 1.0000E-02 none switch 2.000 parabolic
cond relative 1.0000E-02 none switch 2.000 parabolic
scoeff relative 1.0000E-02 none switch 2.000 parabolic

Parameter definitions:-

Name Trans- Change Initial Lower Upper
formation limit value bound bound
recharge fixed na 0.100000 nana
cond log factor 5.000000E-03 1.000000E-10 1.000000E+10
scoeff log factor 5.000000E-02 1.000000E-10 1.000000E+10

Name Group Scale Offset Model command number

42   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

rechargerecharge 1.00000 0.00000 1
condcond 1.00000 0.00000 1
scoeffscoeff 1.00000 0.00000 1

Prior information:-

 No prior information supplied

Observations:-

Observation name Observation Weight Group
head1 4.998750E-02 1.000 obsgroup
head2 9.995002E-02 1.000 obsgroup
 head3 0.249688 1.000 obsgroup
 head4 0.498752 1.000 obsgroup
 head5 0.955017 1.000 obsgroup
 head6 2.66901 1.000 obsgroup
 head7 4.67706 1.000 obsgroup
 head8 9.81626 1.000 obsgroup
 head9 21.8199 1.000 obsgroup
 head10 40.8469 1.000 obsgroup
 head11 63.2121 0.000 obsgroup
 head12 91.7915 0.000 obsgroup
 head13 99.3262 0.000 obsgroup
 head14 99.9955 0.000 obsgroup
 head15 100.000 0.000 obsgroup
 head16 100.000 0.000 obsgroup

Control settings:-

 Initial lambda : 5.0000
 Lambda adjustment factor : 2.0000
 Sufficient new/old phi ratio per optimisation iteration : 0.30000
 Limiting relative phi reduction between lambdas : 3.00000E-02
 Maximum trial lambdas per iteration : 10
 Forgive model run failure during lamda testing : no

 Perform Broyden’s update of Jacobian matrix : no

Maximum factor parameter change (factor-limited changes) : 3.0000
 Maximum relative parameter change (relative-limited changes) :na
 Fraction of initial parameter values used in computing
change limit for near-zero parameters : 1.00000E-03
 Allow bending of parameter upgrade vector : no
 Allow parameters to stick to their bounds : no

 Relative phi reduction below which to begin use of
central derivatives : 0.10000
 Iteration at which to first consider derivatives switch : 1

 Relative phi reduction indicating convergence : 0.10000E-01
 Number of phi values required within this range : 3
 Maximum number of consecutive failures to lower phi : 3
 Minimal relative parameter change indicating convergence : 0.10000E-01
 Number of consecutive iterations with minimal param change : 3
 Maximum number of optimisation iterations : 30

 Attempt automatic user intervention : no

 Attempt reuse of parameter sensitivities : no

File saving options: -

Appendix 6   43

 Save multiple JCO files : no
 Save multiple REI files : no

 OPTIMISATION RECORD

INITIAL CONDITIONS:
 Sum of squared weighted residuals (ie phi) = 594.59

 Current parameter values
recharge 0.100000
cond 5.000000E-03
scoeff 5.000000E-02

OPTIMISATION ITERATION NO. : 1
 Model calls so far : 1
 Starting phi for this iteration: 594.59

 Lambda = 5.0000 ----->
 Phi = 178.26 (0.300 of starting phi)

 No more lambdas: phi is less than 0.3000 of starting phi
 Lowest phi this iteration: 178.26

 Current parameter values Previous parameter values
recharge 0.100000 recharge 0.100000
cond 2.861794E-03 cond 5.000000E-03
scoeff 8.675662E-02 scoeff 5.000000E-02
 Maximum factor change: 1.747 [“cond”]
 Maximum relative change: 0.7351 [“scoeff”]

OPTIMISATION ITERATION NO. : 2
 Model calls so far : 4
 Starting phi for this iteration: 178.26

 Lambda = 2.5000 ----->
 Phi = 99.133 (0.556 of starting phi)

 Lambda = 1.2500 ----->
 Phi = 96.104 (0.539 of starting phi)

 Lambda = 0.62500 ----->
 Phi = 93.707 (0.526 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 93.707

 Current parameter values Previous parameter values
recharge 0.100000 recharge 0.100000
cond 2.108721E-03 cond 2.861794E-03
scoeff 0.194440 scoeff 8.675662E-02
 Maximum factor change: 2.241 [“scoeff”]
 Maximum relative change: 1.241 [“scoeff”]

OPTIMISATION ITERATION NO. : 3
 Model calls so far : 9
 Starting phi for this iteration: 93.707

 Lambda = 0.31250 ----->
 Phi = 8.0233 (0.086 of starting phi)

44   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

 No more lambdas: phi is less than 0.3000 of starting phi
 Lowest phi this iteration: 8.0233

 Current parameter values Previous parameter values
recharge 0.100000 recharge 0.100000
cond 1.389632E-03 cond 2.108721E-03
scoeff 0.169866 scoeff 0.194440
 Maximum factor change: 1.517 [“cond”]
 Maximum relative change: 0.3410 [“cond”]

OPTIMISATION ITERATION NO. : 4
 Model calls so far : 12
 Starting phi for this iteration: 8.0233

 Lambda = 0.15625 ----->
 Phi = 4.3394 (0.541 of starting phi)

 Lambda = 7.81250E-02 ----->
 Phi = 4.2460 (0.529 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 4.2460

 Current parameter values Previous parameter values
recharge 0.100000 recharge 0.100000
cond 9.943230E-04 cond 1.389632E-03
scoeff 0.203611 scoeff 0.169866
 Maximum factor change: 1.398 [“cond”]
 Maximum relative change: 0.2845 [“cond”]

OPTIMISATION ITERATION NO. : 5
 Model calls so far : 16
 Starting phi for this iteration: 4.2460

 Lambda = 3.90625E-02 ----->
 Phi = 0.49781 (0.117 of starting phi)

 No more lambdas: phi is less than 0.3000 of starting phi
 Lowest phi this iteration: 0.49781

 Current parameter values Previous parameter values
recharge 0.100000 recharge 0.100000
cond 8.001240E-04 cond 9.943230E-04
scoeff 0.203811 scoeff 0.203611
 Maximum factor change: 1.243 [“cond”]
 Maximum relative change: 0.1953 [“cond”]

OPTIMISATION ITERATION NO. : 6
 Model calls so far : 19
 Starting phi for this iteration: 0.49781

 Lambda = 1.95313E-02 ----->
 Phi = 0.43883 (0.882 of starting phi)

 Lambda = 9.76563E-03 ----->
 Phi = 0.43913 (0.882 of starting phi)

 Lambda = 3.90625E-02 ----->
 Phi = 0.43856 (0.881 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 0.43856

Appendix 6   45

 Current parameter values Previous parameter values
recharge 0.100000 recharge 0.100000
cond 7.351710E-04 cond 8.001240E-04
scoeff 0.206478 scoeff 0.203811
 Maximum factor change: 1.088 [“cond”]
 Maximum relative change: 8.1179E-02 [“cond”]

OPTIMISATION ITERATION NO. : 7
 Model calls so far : 24
 Starting phi for this iteration: 0.43856

 Lambda = 3.90625E-02 ----->
 Phi = 0.43788 (0.998 of starting phi)

 Lambda = 1.95313E-02 ----->
 Phi = 0.43787 (0.998 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 0.43787
 Relative phi reduction between optimisation iterations less than 0.1000
 Switch to central derivatives calculation

 Current parameter values Previous parameter values
recharge 0.100000 recharge 0.100000
cond 7.282420E-04 cond 7.351710E-04
scoeff 0.206731 scoeff 0.206478
 Maximum factor change: 1.010 [“cond”]
 Maximum relative change: 9.4250E-03 [“cond”]

OPTIMISATION ITERATION NO. : 8
 Model calls so far : 28
 Starting phi for this iteration: 0.43787

 Lambda = 9.76563E-03 ----->
 Phi = 0.43786 (1.000 of starting phi)

 Lambda = 4.88281E-03 ----->
 Phi = 0.43787 (1.000 times starting phi)

 Lambda = 1.95313E-02 ----->
 Phi = 0.43786 (1.000 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 0.43786

 Current parameter values Previous parameter values
recharge 0.100000 recharge 0.100000
cond 7.278220E-04 cond 7.282420E-04
scoeff 0.206756 scoeff 0.206731
 Maximum factor change: 1.001 [“cond”]
 Maximum relative change: 5.7673E-04 [“cond”]

Optimisation complete: the 3 lowest phi’s are within a relative distance
ofeachother of 1.000E-02
 Total model calls: 35

 The model has been run one final time using best parameters.
 Thus all model input files contain best parameter values, and model
output files contain model results based on these parameters.

 OPTIMISATION RESULTS

46   Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

Adjustable parameters ----->

Parameter Estimated 95% percent confidence limits
value lower limit upper limit
cond 7.278220E-04 5.770578E-04 9.179754E-04
scoeff 0.206756 0.198685 0.215154

Note: confidence limits provide only an indication of parameter uncertainty.
 They rely on a linearity assumption which may not extend as far in
parameter space as the confidence limits themselves - see PEST manual.

Fixed parameters ----->

Parameter Fixed value
recharge 0.100000

See file storage5.sen for parameter sensitivities.

Observations ----->

Observation Measured Calculated Residual Weight Group
valuevalue
head1 4.998750E-02 4.835774E-02 1.629764E-03 1.000 obsgroup
head2 9.995002E-02 9.669846E-02 3.251564E-03 1.000 obsgroup
head3 0.249688 0.241619 8.069500E-03 1.000 obsgroup
head4 0.498752 0.482812 1.593980E-02 1.000 obsgroup
head5 0.955017 0.963928 -8.910700E-03 1.000 obsgroup
head6 2.66901 2.39715 0.271856 1.000 obsgroup
head7 4.67706 4.75249 -7.542500E-02 1.000 obsgroup
head8 9.81626 9.34058 0.475676 1.000 obsgroup
head9 21.8199 22.1744 -0.354540 1.000 obsgroup
head10 40.8469 40.7702 7.675000E-02 1.000 obsgroup
head11 63.2121 69.4424 -6.23030 0.000 obsgroup
head12 91.7915 113.760 -21.9688 0.000 obsgroup
head13 99.3262 133.330 -34.0040 0.000 obsgroup
head14 99.9955 137.276 -37.2804 0.000 obsgroup
head15 100.000 137.396 -37.3962 0.000 obsgroup
head16 100.000 137.396 -37.3962 0.000 obsgroup

See file storage5.res for more details of residuals in graph-ready format.

See file storage5.seo for composite observation sensitivities.

Objective function ----->

 Sum of squared weighted residuals (ie phi) = 0.4379

Appendix 6   47

Correlation Coefficient ----->

 Correlation coefficient = 0.9999

Analysis of residuals ----->

 All residuals:-
 Number of residuals with non-zero weight = 10
 Mean value of non-zero weighted residuals = 4.1430E-02
 Maximum weighted residual [observation “head8”] = 0.4757
 Minimum weighted residual [observation “head9”] = -0.3545
 Standard variance of weighted residuals = 5.4733E-02
 Standard error of weighted residuals = 0.2340

 Note: the above variance was obtained by dividing the objective
function by the number of system degrees of freedom (ie. number of
observations with non-zero weight plus number of prior information
articles with non-zero weight minus the number of adjustable parameters.)
 If the degrees of freedom is negative the divisor becomes
the number of observations with non-zero weight plus the number of
prior information items with non-zero weight.

K-L information statistics ----->

 AIC = -25.28434
AICC = -21.28434
 BIC = -24.37658
 KIC = -16.25440

Parameter covariance matrix ----->

condscoeff
cond 1.9110E-03 -3.0938E-04
scoeff -3.0938E-04 5.6236E-05

Parameter correlation coefficient matrix ----->

condscoeff
cond 1.000 -0.9437
scoeff -0.9437 1.000

Normalized eigenvectors of parameter covariance matrix ----->

 Vector_1 Vector_2
cond 0.1603 -0.9871
scoeff 0.9871 0.1603

Eigenvalues ----->

 5.9913E-06 1.9612E-03

Publishing support provided by
Columbus and Lafayette Publishing Service Centers

W
elter and others—

A
pproaches in H

ighly Param
eterized Inversion: PEST++, a Param

eter ESTim
ation Code—

Techniques and M
ethods, Book 7, Section C5

	Contents
	Abstract
	Introduction
	Purpose and Scope
	Enhancements of and Changes to PEST
	Design Background: Extensible Framework Based on Generic Transformations
	Figure 1
	Table 1
	One-to-One Property
	Elementary Transformations

	Periodic SVD Execution During an SVD-Assist Run
	Table 2
	Automatically Switching Between SVD and SVDA
	Prior Information

	The Marquardt Lambda and SVD Rotation Factor
	PROPACK
	Automatic Parameter Normalization
	Advanced Calculation of Superparameter Derivatives
	GENIE Run Manager

	Supported PEST Capabilities
	Derivative Calculation Modes
	Derivative Switching
	Parameter Back Substitution

	User Interface
	Development Environment
	Limitations of Version 1.0
	Summary
	References
	Appendixes 1 through 6
	Appendix 1: Input Instructions
	Appendix 2: PEST++ Elementary Transformations
	Appendix 3: The Marquardt Lambda and SVD Rotation Factor Supporting Theory
	Appendix 4: Considerations for Code Development
	Appendix 5: Class List
	Appendix 6: Simple Storage Model Example

