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Abstract
An object-oriented parameter estimation code was devel-

oped to incorporate benefits of object-oriented programming 
techniques for solving large parameter estimation modeling 
problems. The code is written in C++ and is a formulation and 
expansion of the algorithms included in PEST, a widely used 
parameter estimation code written in Fortran. The new code is 
called PEST++ and is designed to lower the barriers of entry 
for users and developers while providing efficient algorithms 
that can accommodate large, highly parameterized problems. 
This effort has focused on (1) implementing the most popular 
features of PEST in a fashion that is easy for novice or experi-
enced modelers to use and (2) creating a software design that 
is easy to extend; that is, this effort provides a documented 
object-oriented framework designed from the ground up to be 
modular and extensible. In addition, all PEST++ source code 
and its associated libraries, as well as the general run manager 
source code, have been integrated in the Microsoft Visual  
Studio®6 2010 integrated development environment. The 
PEST++ code is designed to provide a foundation for an open-
source development environment capable of producing robust 
and efficient parameter estimation tools for the environmental 
modeling community into the future.

Introduction
Because of the inherent inability of mathematical simula-

tions to perfectly characterize a complex natural world, it 

1Computational Water Resource Engineering. 
2Flinders University and Watermark Numerical Computing. 
3U.S. Geological Survey.
4S.S. Papadopulos and Associates, Inc.
5Principia Mathematica, Inc.
6“Visual Studio” is a registered trademark of Microsoft Corporation in the 

is becoming well recognized that numerical models repre-
senting the natural world cannot make predictions without 
uncertainty. The uncertainty associated with environmental 
model predictions is usually much higher than is common for 
model predictions in sciences such as engineering and physics 
because the physical properties of environmental systems are 
highly variable and possess complex distributions that can 
never be known in sufficient detail. This recognition has led us 
to realize that forecasts of these systems need to be based on 
more probabilistic approaches (see, for example, Tonkin and 
Doherty, 2009): analysts realize that the calibration process 
is an inherently non-unique (underdetermined) problem and 
that infinitely many parameter sets can be found to calibrate 
a model. Hence, quantifying the accuracy of environmental 
models for real-world applications is becoming a larger part of 
the literature and, in turn, standard industry practice. Oreskes 
and others (1994), Saltelli and others (2004), Pilkey and 
Pilkey-Jarvis (2007), Beven (2009), and Doherty (2011) dis-
cuss underlying modeling and uncertainty issues in detail and 
offer suggestions on the appropriate roles and uses of models 
in environmental planning and decision making. 

At the same time, parameter estimation and uncertainty 
analyses are transitioning to a standard component of defen-
sible modeling. Doherty, Hunt, and Tonkin (2010) and Moore 
and others (2010) address this issue from the parameteriza-
tion and uncertainty-analysis standpoint by use of regular-
ized inversion and Pareto analysis techniques; Beven (2009), 
by use of the concept of equifinality; and Saltelli and others 
(2004), by use of rigorous sensitivity analysis. 

PEST (Doherty, 2010a) is a widely used parameter 
estimation code in the environmental modeling community, 
and it is notable for its sophisticated tools available for highly 
parameterized regularized inversion (Doherty and Hunt, 
2010), where “highly parameterized” refers to models hav-
ing more parameters than can be uniquely estimated from the 
calibration dataset. Because highly parameterized models are 
inherently non-unique, they require additional constraints. 
The use of regularized inversion—by which mathematics is 
employed to insert soft knowledge and stability into a model-
ing problem—has grown in recent years as computational United States and other countries.



2    Approaches in Highly Parameterized Inversion: PEST++, a Parameter ESTimation Code

power has increased. The propagation of relatively inexpen-
sive multicore processors to the desktop arena and the advent 
of cloud computing (Hunt and others, 2010), in conjunction 
with a greater need to shift the focus of modeling from simple 
calibration to portraying uncertainty, has motivated more 
modelers to learn and apply and these tools. One inherent 
aspect of a regularized-inversion approach is to embrace—
not artificially limit—investigation of parameters that may 
be important for a model prediction; in other words, “A 
regularized-inversion philosophy to parameterization, then, 
can be summarized as ‘if in doubt, include it’”(Doherty and 
Hunt, 2010).The corresponding increase in modeling problem 
size has pushed many existing software tools to their limits, 
especially as advancements to the science make the tools more 
sophisticated, and in turn has created a two-faceted need: to 
make these tools easier and more intuitive for new users but 
also more robust and efficient for those working on increas-
ingly complex and more highly parameterized problems. As 
such, this work is intended to fulfill a need for projects such 
as the Great Lakes Restoration Initiative, whereby Great 
Lake watershed-scale models are calibrated, climate and 
landuse scenarios are simulated, and uncertainty analyses are 
performed. 

Purpose and Scope
This report describes a reformulation and expansion of 

the algorithms included in PEST, a widely used parameter 
estimation code written in Fortran. This new program has been 
named PEST++, which reflects its being a C++ object-oriented 
adaptation of the original PEST. Source code and executable 
of PEST++ are available for download at http://pubs.usgs.gov/
tm/tm7c5/.

This report targets two types of readers. For the practi-
tioner interested in applying these powerful approaches, input 
instructions and an example problem are given in appendix 
5. Most of the report, however, presents the more advanced 
concepts of the program’s design in order to facilitate code 
development by others. All parameter-estimation-related 
terminology, concepts, file extensions, and so forth, use the 
conventions and derivations presented and cited by Doherty 
(2010a) and Doherty and Hunt (2010) and are omitted here for 
brevity.

The goals of PEST++ development are to (1) lower 
the barriers of entry for new users of parameter estimation 
software, (2) develop efficient parameter estimation tools 
and algorithms appropriate for implementing the techniques 
discussed by Doherty and Hunt (2010) for solving highly 
parameterized problems, and (3) develop an object-oriented 
framework to support future development. This report docu-
ments the object-oriented design techniques to achieve these 
goals, a design approach not available in the coding of the 
original PEST. The programming language C++ was chosen 
for the sake of efficiency and better support for large/highly 
parameterized problems. Given the change in programming 

language and the inclusion of object-orientated design, the 
report is structured to aid more advanced users in extending 
the code by providing programming concepts in the main 
report body and additional details in the appendixes.

PEST++ does not attempt to reproduce all the function-
ality of PEST but instead focuses on implementing the most 
used features and improving the modeler’s access to these fea-
tures, making them easier to use. Thus, this report focuses on 
differences and enhancements with respect to the widely used 
PEST code of Doherty (2010a). In particular, this reformula-
tion of PEST is geared toward making it easier to implement 
the parameter estimation guidelines provided by Doherty and 
Hunt (2010). These guidelines are founded on the use of a 
large number of parameters with soft-knowledge (Tikhonov) 
and subspace (singular value decomposition, or SVD) methods 
for regularization in a hybrid approach to ensure that “the twin 
ideals of parsimony—simple as possible, but not simpler—are 
fully met.” The reader is directed to Hunt and others (2007), 
Doherty and Hunt (2009, 2010), and Doherty, Hunt, and 
Tonkin (2010) for detailed discussion of these concepts.

Enhancements of and Changes to PEST
Although PEST++ is based on PEST (Doherty, 2010a, b), 

PEST++ implements only a subset of the most used PEST 
functions and focuses on providing a simpler interface to these 
selected features. To accomplish this, the PEST++ develop-
ment effort has added several new methods and has stream-
lined, combined, and/or enhanced several existing PEST meth-
ods. These enhancements and changes include the following:
1.	 PEST++ has the ability to automatically switch between 

native parameters and superparameters (Tonkin and 
Doherty, 2005) without user intervention.

2.	 Capabilities of the Gauss-Marquardt-Levenberg method 
for avoiding local minima have been supplanted by 
implementing an efficient and straightforward singular 
value decomposition approach that retains the important 
functionality of Marquardt lambda.

3.	 The PROPACK singular value decomposition routines 
for large and sparse matrices (Larsen, 2001) have been 
included for increased computational efficiency.

4.	 PEST++ has the ability to automatically normalize  
parameters.

5.	 The advanced calculation of superparameter derivatives is 
now possible.

6.	 An interface for the GENIE parallel run manager has  
been provided. GENIE (Muffels and others, 2011, 2012) 
is generalized run manager software that manages the  
task of scheduling and parallel running of models on  
multiple computers by using TCP/IP protocol for commu-
nication. It was developed in conjunction with this effort, 
and it is fully documented in Muffels and others (2012).
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In the next sections, background of PEST++ code design 
is provided and the enhancements are described in more detail. 
This description notwithstanding, it is expected that this list of 
enhancements will expand as PEST++ is applied to more real-
world problems in the future.

Design Background: Extensible Framework 
Based on Generic Transformations

Object-orientated design techniques were used to develop 
an extensible framework that can generalize the transforma-
tions operating in PEST (Doherty, 2010a) while facilitat-
ing incorporation of additional transformations in PEST++.
This framework is built around three parameter states, where 
“state” refers to how input provided by the user is fed to the 
parameter estimation process (fig. 1, first row). Although the 
original PEST does not formally define these three parameter 
states, it differentiates between them internally in the code as 
a means to improve the numerical performance and provide 
convenience and flexibility. PEST++ is similar to PEST in 
that—if the developer does not wish to use the parameter state 
formulation provided here—these states can share a common 
set of parameters (= one parameter state).

The numerical parameter state contains the parameter 
values used internally by PEST++ algorithms to solve the 
least-squares problem. The model parameters are the param-
eter values PEST++ uses to run the external model being 

calibrated, and the control file parameters are the parameter 
values that appear in the PEST control files (.pst) and param-
eter files (.par).The control file parameter state is not strictly 
required for PEST++; however, it has been added to retain 
backward compatibility with the PEST input and output files 
that use this state. The transformation sequences shown in 
the second row of figure 1 provide a mapping between the 
parameter states listed in the first row. Transformation, as 
used here, refers to the connecting of information contained 
in the three parameter states in known relations useful for 
parameter estimation. The “control file to numeric” transfor-
mation sequence provides a mapping between control file and 
numeric parameters; the “control file to model” transformation 
sequence provides a mapping between control file and model 
parameters. Transformation sequences provide both a forward 
and a reverse transformation. Transformation sequences are 
constructed from individual transformations; the third row of 
figure 1 lists the individual transformations that build transfor-
mation sequences and reproduce the current functionality of 
PEST in PEST++. 

A simple example demonstrating the interaction of the 
parameter states and the transformation sequences using actual 
parameter values is given in tables 1 and 2. Table 1 sum-
marizes the information about the parameters specified in a 
hypothetical PEST/PEST++ control file, and table 2 shows 
how this information is translated into the PEST++ parameter 
states and transformation sequences. 

Parameter states

Transformation sequences

Transformations used to
construct transformation
sequences reproducing
existing PEST functionality  

control file to
numeric 

control file to
model

scale
offset

tied
fixed

frozen
log

internal PEST++
algorithms  

PEST++ input
and output files 

model input 
files

Numeric
parameters

Control file
parameters 

Model
parameters

Figure 1.  PEST++ parameter states and transformation sequences.
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One-to-One Property
Accurate parameter/observation derivatives are important 

for proper function of the numerical methods employed in 
PEST and PEST++.To ensure the quality of these derivatives, 
PEST performs an extra step after writing the model input files 
and reads the parameter values back from the newly created 
model input files to correct for truncation errors that may 
have occurred while creating these files. Truncation errors 
can occur when the fields of an input file are of fixed width, 
limiting the precision in which the parameters can be writ-
ten. This correction feature can greatly improve the fidelity 
of derivatives and improve the performance of the numerical 
algorithms; however, it is possible to take advantage of this 
feature only when all transformations map a single numeric 
parameter to a single model parameter and vice versa. To 
identify this condition, PEST++ defines an attribute associ-
ated with elementary transformations to determine whether 
back substitution is applicable; that is, whether the one-to-one 
relationship holds. If all the elementary transformations in the 
“control file to numeric” and “control file to model” trans-
formation sequences are one to one, then PEST++ performs 
parameter back substitution.

Elementary Transformations
PEST++ uses the transformation sequences “control file 

to numeric” and “control file to model” to convert between 
parameter states. These sequences are composed of the 
elementary transformations that support forward and reverse 
transformations and contain the “one-to-one” attribute (dis-
cussed previously) to indicate whether they are compatible 
with parameter back substitution. A listing and short descrip-
tions of the elementary transformations included in PEST++ 
are given in appendix 2.

Periodic SVD Execution During an SVD-Assist 
Run

Doherty and Hunt (2010) describe what is desirable in 
a calibration tool and how singular value decomposition can 
fill this role: “When large numbers of parameters are added 
to a model, some can be expected to be insensitive and others 
highly correlated with other parameters. As a result, even 
though a parameter may be estimable (therefore worth includ-
ing in the calibration process), it doesn’t mean that it actually 
is estimable. What is needed is an intelligent calibration tool—
one that detects what can and cannot be inferred from the 
calibration dataset and then estimates what it can and leaves 
out what it can’t—all automatically, without user intervention. 
Singular value decomposition (SVD) is such a tool.” The end 
result is that SVD is a numerical approach that is simple to 
use, robust, and inherently stable (Kalman, 1996), making it 
appropriate for both novice and advanced users.

The power of SVD is currently available in PEST, where 
the parameters are estimated on the basis of a reduced set 
of orthogonal linear combinations of base parameters rather 
than by attempting to estimate the full suite of base or native 
parameters individually. Such an approach facilitates obtain-
ing an unconditionally stable solution. Although additional 
description of SVD is beyond the scope of this report, an in-
depth description of this method as implemented in PEST can 
be found in Doherty and Hunt (2010) and Doherty (2010a, b). 
SVD as implemented in PEST, however, requires that the 
parameter sensitivities to observations (that is, the Jacobian 
matrix) be calculated by using all base parameters with each 
PEST iteration. Thus, the overall computational burden is not 
reduced; rather, the parameter estimation problem is ensured 
to be tractable by the unconditional stability afforded by SVD.

In recognition of the need to reduce computational bur-
dens, Tonkin and Doherty (2005) describe the use of superpa-
rameters, whereby sensitivities and associated singular values 
are calculated at initial parameter values that are assumed to 
be representative for all parameter upgrades during the param-
eter estimation process. This approach allows the parameter 
estimation process, after an initial calculation of sensitivities 
of all base parameters, to perform all subsequent sensitivity 
calculations needed to upgrade parameters on the sole basis 
of the reduced number of superparameters. This technique 
greatly reduces the number of forward model runs needed for 
the parameter upgrades calculated in each PEST iteration. The 
capability to solve the parameter estimation problem in terms 

Table 1.  Parameter information specified in a hypothetical PEST/
PEST++ control file.

Parameter Value in .pst file Transformations
P1 2.0 scale = 2.0
P2 10.0 log
P3 4.0 none
P4 8.0 tied to P3

Table 2.  Parameter states and transformation sequences for hypothetical example.

Parameter  
name

Numeric  
parameter value

Control file to numeric 
transformation sequence

Control file  
parameter values

Control file to model 
transformation sequence

Model  
parameter values

P1 2.0 2.0  Scale transform  4.0

P2 1.0  Log transform  10.0 10.0

P3 4.0 4.0 4.0
P4 N/A  Tied transform  8.0 8.0
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of superparameters rather than base parameters is defined as 
SVD-Assist, or SVDA, by Doherty (2010a). Because SVDA 
works with a subset of the full spectrum of singular values, 
it can greatly reduce the computational burden associated 
with solving large highly parameterized problems. Moreover, 
singular values in the null space (Moore and Doherty, 2005; 
Doherty, Hunt, and Tonkin, 2010) are defined to have no 
significant effect on the simulation of the weighted observa-
tions and thus can be dropped from the solution to reduce the 
dimensionality of the problem. Because the optimal number 
of superparameters can only be estimated at the beginning of 
the parameter estimation process, Doherty and Hunt (2010) 
suggest specifying more superparameters than thought to be 
supported by observation data, then applying SVD on the 
superparameters to ensure numerical stability.

Although SVDA can significantly reduce runtimes, 
intermediate processing is needed to translate the base param-
eters and associated Tikhonov regularization to the superpa-
rameters. These translations are performed by PEST utilities 
PICALC (Prior Information CALCulation) and PARCALC 
(PARameter CALCulation), which are most often constructed 
automatically by the PEST utility SVDAPREP (SVD-Assist 
PREParation). In total, the entire PEST SVDA process 
requires (1) building an initial Jacobian matrix of the base 
parameters, (2) running SVDAPREP to create a PEST control 
file of the superparameter problem, and (3) running PEST on 
the PEST control file created by SVDAPREP. PEST++ obvi-
ates these steps and thus greatly simplifies the SVDA process 
by reducing the entire operation to a single transformation 
added to the end of the “control file to numeric” transforma-
tion sequence.

Automatically Switching Between SVD and 
SVDA

Because switching between superparameters and base 
parameters is seamless in PEST++, the modeler no longer 
must assume that sensitivities calculated at initial values are 
representative of those of all possible parameter upgrades—
an assumption that may or may not hold depending on the 
problem. Highly nonlinear problems may cause differences 
in sensitivities when calculated at initial and optimal values; 
thus, the solution space and null space of the optimized param-
eters can differ from those of the initial parameters. PEST++ 
includes an option to solve the parameter estimation problem 
by cycling between base parameters and superparameters, 
automatically addressing the potential problem that can result 
from the rigid SVDA assumption (Doherty and Hunt, 2010).

This ability to cycle between base parameters and super-
parameters has been incorporated to automatically account for 
these issues and is supported via the variables N_ITER_BASE 
and N_ITER_SUPER in the input control file (see appen-
dix 1).When these variables are specified, PEST++ will 
perform N_ITER_BASE iterations using native parameters 
followed by N_ITER_SUPER iterations using superparam-
eters. The overall iterative solution is similar to that used by 

PEST, and the PEST variables NOPTMAN, PHIREDSTP,  
NPHINORED, RELPARSTP, and NRELSTP, which control 
the iterative solution process, retain all previous functionality. 
The newly added variables N_ITER_BASE and N_ITER_
SUPER control only the type of solution performed each 
iteration (that is, whether superparameters or base parameters 
are used).

This automatic switching feature is most efficient when 
a single base parameter iteration is followed a number of 
superparameter iterations, followed by a single base parameter 
iteration, followed by a number of superparameter iterations, 
and so on. Periodically performing a base parameter iteration 
allows automatic updates to the calculation and composition of 
the superparameters used in subsequent parameter estimation. 
Thus, the PEST++ parameter estimation takes advantage of 
the fact that superparameters are computationally efficient, but 
it also addresses the potential adverse results that can result 
from rigidly adhering to the SVDA linearity assumptions, 
which can become violated when the optimal parameters move 
away from the initial values, especially when solving nonlin-
ear problems. We note that the current methodology that uses 
N_ITER_BASE and N_SUPER_BASE does not fully exploit 
potential gains in efficiency that can be realized by switch-
ing between base parameters and superparameters; that is, by 
monitoring the progress of the SVDA run independently and 
moving away from the single iteration loop in PEST, it may be 
possible to realize additional gains in performance, a potential 
that will be investigated in future work.

Prior Information
When using superparameters, PEST requires that the 

prior-information section of the control file be calculated 
outside of PEST and recast as observations (as performed 
by PICALC.exe). PEST++ has removed this restriction, thus 
simplifying the specification of prior information to be used in 
conjunction with superparameters. This simplification makes 
the SVD-Assist links between parameters and regularization 
more transparent and allows the same control file to be used 
for both native parameters and superparameters.

The Marquardt Lambda and SVD Rotation Factor

PEST provides the Gauss-Marquardt-Levenberg method 
and SVD as numerical solution techniques for the least-
squares problem, but PEST++ retains only the SVD. This 
simplification reduces numerical issues associated with mis-
specification of the Gauss-Marquardt-Levenberg parameters 
that can commonly confound novice users, whose confusion 
in turn confounds efficient parameter estimation of highly 
parameterized problems. Briefly, the Marquardt lambda is a 
component of the Gauss-Marquardt-Levenberg method, but  
in practice it also functions in PEST as a solution supplement 
to the SVD formulation in the following ways. When the  
Marquardt lambda is zero, the upgrade vector is in the 
direction of the Gauss-Newton solution, and increasing its 
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magnitude has the effect of rotating the upgrade vector in the 
direction of the steepest gradient descent solution. This rota-
tion is accomplished by adding terms to the diagonal of the 
normal equation matrix. Adding these terms tends to make the 
matrix better conditioned, which has a stabilizing effect and 
serves as a de facto form of regularization. Moreover, it can 
provide sufficient regularization so as to make an ill-posed 
problem solvable, but this regularization phenomenon is  
often not apparent to the user. Use of the Marquardt lambda  
is not an optimal regularization strategy, however, because  
it does not restrain the solution in a physically meaningful 
way. Indeed, such a regularization approach is contrary to  
Tikhonov regularization, which identifies one or more 
preferred conditions, and truncated SVD, which minimizes 
changes for parameters whose influence on the inverse prob-
lem is overwhelmed by noise in the solution.

Despite undesirable de facto regularization, the  
Marquardt lambda role for rotating the upgrade vector in 
the direction of the gradient descent solution is valuable for 
enhancing the search capability to the nonlinear least-squares 
solution. Testing different values of the Marquardt lambda 
allows PEST to explore a larger portion of parameter space, 
helping to prevent its being trapped in a local minimum. 
Because SVD incorporates subspace regularization, however, 
it does not benefit from the Marquardt lambda’s ability to pro-
vide less-than-optimal regularization. Therefore, there is value 
in retaining attractive aspects of the Marquardt lambda (robust 
search capability to help avoid local minimum) while mini-
mizing the undesirable de facto regularization. Towards this 
end, the Gauss-Marquardt-Levenberg method is supplanted in 
PEST++ by an alternative method of providing a robust search 
functionality analogous to a widely varying Marquardt lambda 
in the SVD solution.

For large problems, performing an SVD factorization can 
be computationally expensive. This makes the direct appli-
cation of Marquardt Lambda undesirable because it would 
require a SVD factorization be performed for each value 
of the Marquardt lambda. However, because SVD is inher-
ently stable, the role of the Marquardt lambda can be reduced 
from adding a diagonal term to simply providing a means to 
rotate the upgrade vector. To take advantage of this, PEST++ 
replaces the Marquardt lambda with a newly defined “rotation 
factor,” which rotates the upgrade vector in the direction of the 
gradient descent solution. This rotation is achieved through a 
simple matrix multiplication and obviates SVD factorization 
for each value of lambda. In addition, the physical meaning is 
very clear, and the rotation factor must lie in the interval [0, 1], 
as opposed to there being no clear upper limit on Marquardt 
lambda. A more in-depth discussion and the mathematical 
derivation of the rotation factor are included in appendix 3.

PROPACK

PROPACK is a software library containing an iterative 
method for computing SVD factorizations (Larsen, 1998) 
that is very efficient for large sparse matrices, making it ideal 

for working with highly parameterized problems. Unlike the 
LAPACK implementation of SVD commonly used in PEST, 
which always calculates all of the singular vectors, PROPACK 
is able to compute a subset of the singular vectors. In the 
context of PEST++, this means that PROPACK can be used 
to calculate only the singular vectors in the solution space 
while ignoring unneeded calculation of remaining singular 
vectors in the null space. This reduces computational bur-
den and the amount of memory necessary to perform a SVD 
factorization on a large problem. For example, when Muffels 
(2008) integrated PROPACK in the PEST utility PREDVAR1, 
he found that PROPACK was able to compute the first 100 
singular values in several seconds, whereas LAPACK SVD 
took several minutes to compute the complete factorization. In 
PEST++, PROPACK provides a powerful and efficient numer-
ical algorithm that can greatly improve performance when 
solving large highly parameterized problems. PROPACK is 
also an upgrade of the LSQR algorithm (Paige and Saunders, 
1982a, b) included in PEST. Whereas LSQR typically does not 
guarantee the orthogonality of the singular vectors, PROPACK 
does.

Automatic Parameter Normalization

Normalizing parameters before solving the parameter 
estimation problem can greatly improve the efficiency of the 
underlying numerical techniques. In PEST++, normalization 
transforms the parameters to a common scale by dividing by 
the standard deviation. Adding normalization to the calibration 
process in PEST++ is accomplished by simply adding the vari-
able AUTO_NORM(std) to the PEST++ section of the control 
file, where std is the number of standard deviations repre-
sented by the difference between the maximum and minimum 
allowable parameter values. When the upper and lower bounds 
are assumed to be the 95-percent confidence interval, which is 
their most common interpretation, std should be set to 4. In the 
PEST++ code, the functionality of automatic parameter nor-
malization is implemented by adding the TranNorm transfor-
mation to “control file to numeric” transformation sequence. 
It is performed after all of the other transformations, with the 
exception of the SVDA transformation. The normalization fac-
tor is based on the transformed values of the parameter limits. 

Advanced Calculation of Superparameter 
Derivatives

When using superparameters in the parameter estimation 
process, the magnitude of a singular value typically does not 
provide a good reference point for computing perturbations 
of derivatives. During the developmental stages of PEST++, 
it was not uncommon for base model parameters to encroach 
on the specified parameter bounds when the singular values 
were used to compute the derivative increments. To mitigate 
this problem and make derivative increments more consis-
tent across large and small singular values, increments for 



Development Environment    7

superparameter derivatives are based on the increment  
specified in the control file for the native parameter that  
has the highest contribution to a particular singular vector. 
Using this method, the native parameter with the highest con-
tribution to a singular vector is allowed to vary by the amount 
it would have when computing the derivatives of native 
parameters.

GENIE Run Manager

GENIE (Muffels and others, 2011, 2012) is a suite of 
programs that manages and executes model runs in parallel 
across a network, using the TCP/IP protocol. It was designed 
for scalability and provides features to minimize bottlenecks 
and automatically balance loads. Detailed documentation for 
GENIE is provided in Muffels and others (2012) and is only 
cursorily discussed here. To use GENIE with PEST++, the 
GMAN_SOCKET variable must be specified in the PEST++ 
section of the control file (see appendix 1). It is likely that this 
utility will be the primary approach for managing the large 
numbers of runs required by PEST++. 

Supported PEST Capabilities
In addition to enhancements to the existing PEST pro-

gram of Doherty (2010a), a subset of existing functionality 
has been ported to PEST++ version 1.0, as listed below. The 
reader is referred to Doherty (2010a) for detailed description 
of these ported capabilities. It is expected the list of ported 
PEST capability will expand as PEST++ is applied to more 
real-world problems in the future. 

Derivative Calculation Modes

Calculating derivatives of observations with respect to 
parameters is a fundamental part of the least-squares solution. 
Similar to PEST, PEST++ provides three methods for comput-
ing derivatives: (1) forward difference, (2) central difference 
(outer), and (3) central difference (parabolic). These methods 
provide the same functionality as their PEST counterparts. The 
forward derivative option is the most efficient and requires 
only one model run per parameter. Although the central dif-
ference options require two runs per parameter, they generally 
result in better derivatives. Doherty (2010a) explains all three 
methods in detail.

Derivative Switching

PEST++ provides the same support as PEST for auto-
matically switching from forward to central derivatives as 
parameter estimation progress slows. This functionality is 

described in detail in the PEST user’s manual Doherty (2010a) 
and is specified in the parameter groups section of the PEST 
control file. 

Parameter Back Substitution

Accurate derivatives are important for the numerical 
gradient methods employed by PEST++ to function properly. 
To ensure the quality of these derivatives, PEST++ performs 
an extra step after writing the model input files and reads 
the parameter back in from the files to correct for truncation 
errors. This feature was adapted from PEST and can greatly 
improve the fidelity of the derivatives, thereby improving 
performance of PEST++ when the model input files contain 
truncation errors.

User Interface
To maintain compatibility with PEST, changes to the file 

formats and user interfaces have been minimized. This consis-
tency facilitates switching between the enhancements avail-
able in PEST++ and the full capability of PEST and allows 
the user to leverage the strengths of both while providing 
PEST++ compatibility with the large set of utilities included 
in the PEST suite of tools. PEST++ retains PEST’s format for 
the template (.tpl), instruction (.ins), parameter value (.par), 
and Jacobian matrix (.jco) files, thereby ensuring compat-
ibility with the majority of the PEST’s uncertainty utilities 
(see Doherty 2010a, b; and Doherty, Hunt, and Tonkin, 2010).
PEST++ also retains support for PEST’s control file (.pst).
Where PEST++ offers additional functionality, these features 
can be accessed through optional lines beginning with “++” 
(see appendix 1). Because SVD is optional in PEST, PEST++ 
provides default values for the parameters in the SVD section 
of the PEST input file if these values are not specified by the 
user.

Development Environment
All the source code required to build PEST++ has 

been consolidated in the Microsoft Visual Studio® 2010, 
an integrated development environment. This includes the 
source codes for (1) PEST++, (2) the GENIE interface, 
(3) LAPACK++, and (4) the PEST Fortran code that processes 
template and insertion files. The project is configured to build 
a statically linked PEST++ executable without any external 
dependencies. This simplifies and facilitates sharing the source 
code and distributing the executable. The PEST++ Visual 
Studio Project, as well as source code and executable, can be 
obtained from http://pubs.usgs.gov/tm/tm7c5/.
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Limitations of Version 1.0
In order to make PEST++ more accessible to new users, 

some features of the full suite of PEST capability are not 
available. Most notable are the following:

•	 Full observation covariance weights matrix is not sup-
ported.

•	 Automatic adjustment of the regularization weights via 
the regularization mode in PEST is not supported.

•	 The GENIE interface supports only a single command 
line. If multiple command lines are needed to run the 
model, then a batch file must be created.

•	 Output is limited to .rec, .par and .jco files.

•	 PEST++ does not perform a final run with the best 
parameters. A strategy needs to be developed to imple-
ment a final run when using GENIE (Muffels and 
others, 2011, 2012).

•	 The Jacobian (.jco) file for superparameter iterations is 
written in terms of the superparameters. This requires 
that users map this model output back to the native 
parameters if they wish to interrogate the contents of 
the Jacobian matrix in detail.

•	 Moreover, although this program has been used by 
the U.S. Geological Survey (USGS), no warranty, 
expressed or implied, is made by the USGS or the U.S. 
Government as to the accuracy and functioning of the 
program and related program material nor shall the fact 
of distribution constitute any such warranty, and no 
responsibility is assumed by the USGS in connection 
therewith.

Summary
An object-oriented parameter estimation model, PEST++, 

was developed in C++ as a means of porting the popular PEST 
parameter estimation code to an object-oriented language. 
PEST++ does not reproduce all the functionality of PEST 
but instead replicates the features most commonly of use in 
parameter estimation of large, highly parameterized problems. 
Focus on the most used features results in a less complex 
learning curve, a more modern programming interface, and 
an extensible code base. As computing power has increased 
massively, parallel computing has become more accessible 
for model calibration and uncertainty exercises. As a result, 
problems being posed in a parameter estimation framework 
are rapidly increasing in size and complexity. PEST++ has 
been designed to account for these drivers; thus, this effort 
has focused developing a tool for handling large and highly 
parameterized problems while retaining much of the power 

and commonly used elements of PEST. Towards this end, 
PEST++ includes enhancements to PEST, such as linking to 
the general GENIE run manager and the PROPACK SVD/
LSQR toolset. In addition, a subset of the PEST capabilities 
has been ported to PEST++. All the code necessary to produce 
a statically linked PEST++ executable has been consolidated 
into the Microsoft Visual Studio® 2010 integrated develop-
ment environment.
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Appendixes 1 through 6

Note: Although American spelling is used in the bulk of this report, British spelling is retained in 
some of the code, nomenclature, and examples in the appendixes.
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Appendix 1: Input Instructions
The PEST++ Visual Studio Project, as well as source code and executable, are available for download at http://pubs.usgs.

gov/tm/tm7c5/. In order to facilitate use by experienced PEST users, PEST++ adopts many of the conventions, variable names, 
and output formats of the original PEST (Doherty, 2010a). The intent is to make PEST++ input and output compatible with the 
large number of existing PEST utilities (for example, Doherty, 2011a, 2011b). However, although having a similar appearance, 
PEST++ does not contain all the capabilities of PEST. Most notably, the limitations of PEST++ version 1.0 are as follows:
1.	 Full observation covariance weights matrix is not supported.

2.	 Automatic adjustment of the regularization weights via the regularization mode in PEST is not supported.

3.	 The GENIE interface supports only a single command line. If multiple command lines are needed to run the model, then a 
batch file must be created.

4.	 Output is limited to .rec, .par and .jco files.

5.	 PEST++ does not perform a final run with the best parameters. A strategy needs to be developed to implement a final run 
when using GENIE (Muffels and others, 2011, 2012).

6.	 Jacobian .jco file for superparameter iterations is written in terms of the superparameters. This requires that users map this 
model output back to the native parameters if they wish to interrogate the contents of the Jacobian matrix in detail.

As PEST++ is developed further, it is expected that the capabilities will increase and the disparity between PEST and PEST++ 
will decrease.

In addition, large problems (defined as having many parameters and/or observations) will often require parallel computing. 
PEST++ relies on run managers to complete the forward model runs; version 1.0 provides two options. The GENIE run manager 
is sophisticated and capable of performing parallel runs on a single machine or over a TCP/IP-enabled network. The serial rule 
manager provides a simple alternative that duplicates the functionality currently in regular PEST (not Parallel PEST/PPEST).
The serial run manager is the default, but the GENIE run manager can be switched on by specifying the GMAN_SOCKET 
variable in the control file.

The PEST Control File

For ease of reference, variables within the PEST control file are listed below, and the variables used by PEST++ are 
highlighted. PEST++ relies on the structure of the input file to deduce the algorithmic parameters and read only those 
algorithmic parameters that are absolutely necessary. For example, there is no need to read the NOBS variable because each line 
in the “observation data” section of the control file specifies an observation; however, it is necessary to read the NPAR variable 
to know where specification of parameters ends and information on tied parameters begins. This list is followed by short 
explanation of each variable used by PEST++.
pcf

* control data

RSTFLE PESTMODE

NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]

NTPLFLE NINSFLE PRECIS DPOINT [NUMCOM JACFILE MESSFILE]

RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE] [LAMFORGIVE]

RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND] [ABSPARMAX]

PHIREDSWH [NOPTSWITCH] [SPLITSWH] [DOAUI] [DOSENREUSE]

NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN] 

[PHIABANDON]

ICOV ICOR IEIG [IRES] [JCOSAVE] [VERBOSEREC] [JCOSAVEITN] [REISAVEITN] [PARSAVEITN]

Appendix 1
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* automatic user intervention

MAXAUI AUISTARTOPT NOAUIPHIRAT AUIRESTITN

AUISENSRAT AUIHOLDMAXCHG AUINUMFREE

AUIPHIRATSUF AUIPHIRATACCEPT NAUINOACCEPT

* singular value decomposition

SVDMODE

MAXSING EIGTHRESH

EIGWRITE

* lsqr

LSQRMODE

LSQR_ATOL LSQR_BTOL LSQR_CONLIM LSQR_ITNLIM

LSQRWRITE

* svd assist

BASEPESTFILE

BASEJACFILE

SVDA_MULBPA SVDA_SCALADJ SVDA_EXTSUPER SVDA_SUPDERCALC SVDA_PAR_EXCL

* sensitivity reuse

SENRELTHRESH  SENMAXREUSE

SENALLCALCINT  SENPREDWEIGHT  SENPIEXCLUDE

* parameter groups

PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD [SPLITTHRESH SPLITRELDIFF 

SPLITACTION]

(one such line for each of NPARGP parameter groups)

* parameter data

PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM

(one such line for each of NPAR parameters)

PARNME PARTIED

(one such line for each tied parameter)

* observation groups

OBGNME [GTARG] [COVFLE]

(one such line for each of NOBSGP observation group)

* observation data

OBSNME OBSVAL WEIGHT OBGNME

(one such line for each of NOBS observations)

* derivatives command line
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DERCOMLINE

EXTDERFLE

* model command line

COMLINE

(one such line for each of NUMCOM command lines)

* model input/output

TEMPFLE INFLE

(one such line for each of NTPLFLE template files)

INSFLE OUTFLE

(one such line for each of NINSLFE instruction files)

* prior information

PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME

(one such line for each of NPRIOR articles of prior information)

* predictive analysis

NPREDMAXMIN [PREDNOISE]

PD0 PD1 PD2

ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH

ABSPREDSWH RELPREDSWH

NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP 

* regularisation

PHIMLIM  PHIMACCEPT [FRACPHIM] [MEMSAVE] 

WFINIT  WFMIN  WFMAX  [LINREG][REGCONTINUE]

WFFAC  WFTOL IREGADJ [NOPTREGADJ REGWEIGHTRAT [REGSINGTHRESH]]

* pareto

PARETO_OBSGROUP  

PARETO_WTFAC_START PARETO_WTFAC_FIN NUM_WTFAC_INC  

NUM_ITER_START NUM_ITER_GEN NUM_ITER_FIN

ALT_TERM

OBS_TERM ABOVE_OR_BELOW OBS_THRESH NUM_ITER_THRESH (only if ALT_TERM is non-zero)

NOBS_REPORT

OBS_REPORT_1 OBS_REPORT_2 OBS_REPORT_3..(NOBS_REPORT items)

++# This line is a comment as are all lines that begin with “++#” 

++# PEST++ input is parsed using key words that can be specified in any order

++ GMAN_SOCKET(host:socket)

++ SUPER_NMAX(max_super)  SUPER_EIGTHRES(eig_thres)

++ N_ITER_BASE(base_iter)  N_ITER_SUPER(super_iter)
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Variables in “control data” section of PEST control file.

Variable Type Values Description

RSTFLE Text “restart” or “norestart” Instructs PEST whether to write restart data.
PESTMODE Text “estimation”, “prediction”, 

“regularisation”, “pareto”
PEST’s mode of operation.

NPAR Integer greater than 0 Number of parameters.
NUMCOM Integer optional; greater than zero Number of command lines used to run model.
RELPARMAX Real greater than 0 Parameter relative change limit.
FACPARMAX Real greater than 1 Parameter factor change limit.
FACORIG Real between 0 and 1 Minimum fraction of original parameter value in evaluating relative 

change.
PHIREDSWH Real between 0 and 1 Sets objective function change for introduction of central derivatives.
NOPTMAX Integer −2, −1, 0, or any number 

greater than 0
Number of optimization iterations.

PHIREDSTP Real greater than 0 Relative objective function reduction triggering termination.
NPHISTP Integer greater than 0 Number of successive iterations over which PHIREDSTP applies.
NPHINORED Integer greater than 0 Number of iterations since last drop in objective function to trigger 

termination.
RELPARSTP Real greater than 0 Maximum relative parameter change triggering termination.
NRELPAR Integer greater than 0 Number of successive iterations over which RELPARSTP applies.

Variables in optional “singular value decomposition” section of PEST control file.

Variable Type Values Description

MAXSING Integer greater than 0 Number of singular values at which truncation occurs.
EIGTHRESH Real 0 or greater, but less than 1 Eigenvalue ratio threshold for truncation.
EIGWRITE Integer 0 or 1 Determines content of SVD output file.

Variables required for each parameter group in “parameter groups” section of PEST control file.

Variable Type Values Description

PARGPNME Text 12 characters or less Parameter group name.
INCTYP Text “relative”, “absolute”, “rel_

to_max”
Method by which parameter increments are calculated.

DERINC Real greater than 0 Absolute or relative parameter increment.
DERINCLB Real 0 or greater Absolute lower bound of relative parameter increment.
FORCEN Text “switch”, “always_2”, 

“always_3”, “switch_5”, 
“always_5”

Determines whether central derivatives calculation is undertaken and 
whether three points or four points are employed in central deriva-
tives calculation.

DERINCMUL Real greater than 0 Derivative increment multiplier when undertaking central derivatives 
calculation.

DERMTHD Text “parabolic”, “outside_pts”, 
“best_fit”, “minvar”, 
“maxprec”

Method of central derivatives calculation.
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Variables required for each parameter in “parameter data” section of PEST control file.

Variable Type Values Description

PARNME Text 12 characters or less Parameter name.
PARTRANS Text “log”, “none”, “fixed”, 

“tied”
Parameter transformation.

PARCHGLIM Text “relative”, “factor”, or 
absolute(n)

Type of parameter change limit.

PARVAL1 Real any real number Initial parameter value.
PARLBND Real less than or equal to  

PARVAL1
Parameter lower bound.

PARUBND Real greater than or equal to 
PARVAL1

Parameter upper bound.

PARGP Text 12 characters or less Parameter group name.
SCALE Real any number other than 0 Multiplication factor for parameter.
OFFSET Real any number Number to add to parameter.
DERCOM Integer 0 or greater Model command line used in computing parameter increments.
PARTIED Text 12 characters or less The name of the parameter to which another parameter is tied.

Variables required for each observation group in “observation groups” section of PEST control file.

Variable Type Values Description

OBGNME Text 12 characters or less Observation group name.

Variables required for each observation in “observation data” section of PEST control file.

Variable Type Values Description

OBSNME Text 20 characters or less Observation name.
OBSVAL Real any number Measured value of observation.
WEIGHT Real 0 or greater Observation weight.
OBGNME Text 12 characters or less Observation group to which observation assigned.

Variables in “model command line” section of PEST control file.

Variable Type Values Description

COMLINE Text system command Command to run model.

Variables in “model input/output” section of PEST control file.

Variable Type Values Description

TEMPFLE Text a filename Template file.
INFLE Text a filename Model input file.
INSFLE Text a filename Instruction file.
OUTFLE Text a filename Model output file.
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Variables in “prior information” section of PEST control file.

Variable Type Values Description

PILBL Text 20 characters or less Name of prior information equation.
PIFAC Text real number other than 0 Parameter value factor.
PARNME Text 12 characters or less Parameter name.
PIVAL Real any number “Observed value” of prior information.
WEIGHT Real 0 or greater Prior information weight.
OBGNME Text 12 characters or less Observation group name.

Variables in optional “regularization” section of PEST control file.

Variable Type Values Description
PHIMLIM Real greater than 0 Target measurement objective function.
PHIMACCEPT Real greater than PHIMLIM Acceptable measurement objective function.
FRACPHIM Real optional; 0 or greater, but less 

than 1
Set target measurement objective function at this fraction of 
current measurement objective function.

MEMSAVE Text “memsave” or “nomemsave” Activate conservation of memory at cost of execution speed 
and quantity of model output.

WFINIT Real greater than 0 Initial regularization weight factor.
WFMIN Real greater than 0 Minimum regularization weight factor.
WFMAX Real greater than WFMIN Maximum regularization weight factor.
LINREG Text “linreg” or “nonlinreg” Informs PEST that all regularization constraints are linear.
REGCONTINUE Text “continue” or “nocontinue” Instructs PEST to continue minimizing regularization 

objective function even if measurement objective function 
is less than PHIMLIM.

WFFAC Real Greater than 1 Regularization weight factor adjustment factor.
WFTOL Real Greater than 0 Convergence criterion for regularization weight factor.
IREGADJ integer 0, 1, 2, 3, 4 or 5 Instructs PEST to perform inter-regularization group weight 

factor adjustment, or to compute new relative weights for 
regularization observations and prior information equations.

NOPTREGADJ integer 1 or greater The optimization iteration interval for recalculation of 
regularization weights if IREGADJ is 4 or 5.

REGWEIGHTRAT Real absolute value of 1 or greater The ratio of highest to lowest regularization weight; spread 
is logarithmic with null space projection if set negative.

REGSINGTHRESH Real less than 1 and greater than 0 Singular value of xtqx (as factor of highest singular value) 
at which use of higher regularization weights commences if 
IREGADJ is set to 5.

PEST++ Additions to the PEST Control File

Information in the PEST control specific to PEST++ is specified on lines starting with “++”. Although the previous exam-
ple places all the PEST++ input in a single section at the end of the PEST control file, this is not a requirement. This informa-
tion does not need to be contiguous and can reside anywhere in the PEST control file. Lines starting with “++#” are considered 
comments and are ignored.

Unlike the rest of the PEST control file, PEST++ uses keywords rather than location to specify variables. Lines are parsed 
using the space, tab, and parenthesis characters as separators. The example uses parentheses to more clearly delineate the values 
assigned to the variable, but these could just as well be replaced by white spaces. The following table includes a listing and 
explanation of the permissible PEST++ keywords.
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Variable Type Values Description

GMAN_SOCKET Text character string containing 
host and port separated by 
“:” 

Socket of the GENIE GMAN run manager. The socket 
contains the hostname and port of the GMAN run manager 
that will be used to make the model runs. For example, 
if GMAN is running on the computer “my_computer” 
listening to port 24772, then this variable should be 
specified as my_computer:24772.

N_ITER_BASE Integer 1 or greater Number of base parameter iterations performed for each 
superparameter iteration.

N_ITER_SUPER Integer 0 or greater Number of superparameter iterations performed for each 
base parameter iteration.

SUPER_EIGTHRES Real any positive number 
(typically should be greater 
than 1.0e−7)

PEST++ will not include any superparameters whose ratio 
with the largest superparameter is less than this ratio. This 
value can as small as zero if the user wants to specify the 
number of superparameters solely with SUPER_NMAX. 
Because PEST++uses SVD on the superparameter 
problem, a low value for this SUPER_EIGTHRES will not 
adversely impact the stability of the solution.

SUPER_NMAX Integer integer between 1 and the 
minimum of maximum 
number of parameters and 
the maximum number of 
observations

Maximum number of superparameters to use in the 
superparameter iterations.
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Appendix 2

Appendix 2: PEST++ Elementary 
Transformations
Transformation sequences are groups of (elementary) transfor-
mations. PEST++ uses the transformation sequences “con-
trol file to numeric” and “control file to model” to convert 
between parameter states. These sequences are composed 
of the elementary transformations that support forward and 
reverse transformations and contain the “one-to-one” attribute 
to indicate whether they are compatible with parameter back 
substitution.

TranScale

TranScale provides scaling or multiplication by a fixed value. 
The forward transformation is multiplication, and the reverse 
transformation is division. TranScale is one-to-one. 

TranOffset

TranOffset provides an offset or addition by a fixed value. 
The forward transformation is addition, and the reverse 
transformation is subtraction. TranOffset is one-to-one.

TranFixed

TranFixed provides a transformation for fixing values. 
The forward transformation adds an additional parameter 
with a fixed value, and the reverse transformation removes 
the parameter. TranFixed is considered to be a one-to-one 
transformation because it is compatible with parameter back-
substitution.

TranFrozen

TranFrozen provides a transformation for freezing values. 
The forward transformation adds an additional parameter that 
is assigned the frozen value specified by this transformation, 
and the reverse transformation removes the parameter. The 
functionality of TranFrozen is identical to that of TranFixed. 
It has been implemented as an independent transformation 
for organization and tracking purposes. Like TranFixed, 

TranFrozen is considered to be a one-to-one transformation 
because it is compatible with parameter back-substitution.

TranTied

TranTied provides a transformation that ties the value of 
one parameter to that of another parameter. The forward 
transformation adds an additional parameter that is assigned 
a value such that the ratio between the new parameter to 
the value of the parameter it is tied to is maintained at the 
level specified in transformation. The inverse transformation 
removes the tied parameter from the parameter set. TranTied 
is considered a one-to-one transformation because it is 
compatible with parameter back substitution.

TranLog10

TranLog10 provides a base 10 logarithmic transformation. 
The forward transformation is the base 10 logarithm, and the 
inverse transformation is the exponential. TranLog10 is one-
to-one.

TranSVD

TranSVD provides a transformation between superparameters 
and base parameters. The forward transformation maps base 
parameters to superparameters, and the inverse transformation 
maps superparameters to base parameters. This transformation 
is used to implement the functionality of PEST’s SVD-Assist 
internally in PEST++. Additional details on SVD-Assist and 
this approach are provided in the next section. TranSVD is not 
one-to-one.

TranNorm

TranNorm provides a transformation that automatically 
normalizes the parameters based on the assumption that 
the parameter range specified for each parameter in the 
input control file is indicative of its variance. The forward 
transformation divides each parameter by its variance, and 
the inverse transformation multiplies each parameter by its 
variance. TranNorm is one-to-one. 
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Appendix 3: The Marquardt Lambda 
and SVD Rotation Factor Supporting 
Theory

The Marquardt lambda is typically a component of the 
Gauss-Marquardt-Levenberg method, but its use in PEST has 
been extended to supplement SVD. In the Gauss-Marquardt-
Levenberg method, the Marquardt lambda is a weighting 
factor that interpolates between the Gauss-Newton method and 
the method of gradient descent. The Gauss-Newton solution 
for the nonlinear weighted least-squares problem can be 
written as

	 ( ) 1T Tu J QJ J Qr
−

= 	 (1) 

where is u the upgrade vector, J is the Jacobian, Q is the 
observation weights matrix and r is a vector containing the 
residuals of the observations. The matrix JTQJ in equation 1  
is commonly referred to as the “normal equations matrix.” A  
full derivation is provided in Doherty (2010a).When the  
Marquardt lambda is added this equation becomes

	

              

( ) 1T Tu J QJ λI J Qr
−

= ±
	 (2)

where I is the identity matrix and λ is the Marquardt lambda.
From equation 2, it is apparent that the Marquardt lambda 
adds terms to the diagonal of the normal equation matrix being 
inverted. Adding large terms to the diagonal of a matrix tends 
to make it better conditioned and provides a de facto form of 
regularization. However, this is not a desirable regularization 
strategy because it does not restrain the solution in a physi-
cally meaningful way—contrary to Tikhonov regularization 
(which identifies one or more preferred conditions) or trun-
cated SVD (which minimizes changes for parameters whose 
influence on the inverse problem is overwhelmed by noise 
in the solution). So, although use of the Marquardt lambda 
regularization is not recommended, it can nonetheless make an 
ill-posed problem solvable and is often unknowingly used in 
this capacity by new users.

Two of the Marquardt lambda’s roles have been 
discussed: rotating the solution vector in the direction of the 
gradient descent solution and providing a de facto form of 
regularization for ill-posed problems. In the authors’ view, it 
is also commonly used to add a more robust search capability 
to the nonlinear least-squares solution. Testing different 
values of the Marquardt lambda during each iteration allows 
PEST to explore a larger portion of parameter space, helping 
to prevent it from becoming trapped in a local minimum. 
When this technique is used in conjunction with parallel 
PEST, the impact on the overall runtime is minimal because 
parallelization of testing parameter upgrades computed using 
different values of the Marquardt lambda allows these runs 
to be made with no increase in overall clock time. Because 
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SVD incorporates subspace regularization, it does not benefit 
from the Marquardt lambda’s ability to provide suboptimal 
regularization; however, SVD can greatly benefit from the 
addition of a more robust search capability to help avoid local 
optima, which is why the Marquardt lambda and SVD are 
commonly used together in PEST.

Although PEST++ does not need to support the Gauss-
Marquardt-Levenberg method, it still needs to provide an 
analogous functionality to a widely varying Marquardt 
lambda in the SVD solution. For large problems, performing 
an SVD factorization can be computationally expensive, and 
equation 2 requires that a SVD factorization be performed for 
each value of the Marquardt lambda because it is contained 
within the normal equation matrix being inverted. However, 
because SVD is unconditionally stable, the role of the 
Marquardt lambda can be reduced from adding a diagonal 
term to merely providing a means to rotate the upgrade 
vector in the direction of the gradient descent solution. To 
take advantage of this simplification, PEST++ replaces the 
Marquardt lambda with a newly defined rotation factor. The 
equation for the upgrade vector can be derived by using SVD 
and defining a unit vector pointing in the same direction to 
yield to following equations:

	 u Q J Q rsvd = ( )−1 2 1 2/ / 	 (3)

	 SVD
svd

SVD

û
u
u

= 	 (4)

where the symbol “-” denotes the generalized inverse and 
||uSVD|| denotes the L2 norm of the upgrade vector. Simi-
larly, the upgrade vector for the direction method of gradient 
descent and its associated unit vector can be expressed as

	 u J Qrgd
T= −2 	 (5)

	
gd

gd
gd

û
u

u
= 	 (6)

Equations 4 and 6 can be used to rotate equation 3 in 
the direction of the gradient descent solution to produce 
equation 7:

	 	 (7)

where α is the rotation factor and u is the rotated upgrade vec-
tor. This technique avoids SVD factorization for each value of 
lambda, and its physical meaning is very clear. In addition, the 
rotation factor must lie in the interval [0, 1], whereas there is 
no clear upper limit on Marquardt lambda.
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Appendix 4: Considerations for Code 
Development

Design Goals

The initial goal of PEST++ development was to build a 
basic framework and create a program that makes the powerful 
features of PEST accessible to more users and developers 
while maintaining a robust and efficient design. In particular, 
the following items were identified as important.
1.	 Portability.—It is important that a well-established 

standard language be used and that the use of external 
dependencies be minimized.

2.	 Efficiency.—Because this program will be used for large 
problems, it must be efficient in two regards. First, it must 
be computationally efficient; and second, it must be effi-
cient in its use of memory and maintain a “small memory 
footprint.” In particular, it must be possible to store and 
access nonstandard sparse information efficiently.

3.	 Extensibility.—The code must incorporate a modular or 
object-oriented design that promotes code extensibility 
and reuse.

4.	 Ease of use.—The code should automate processes and 
depend on default parameters when possible, thereby 
requiring as little user input as possible while providing 
the user with a simple interface for the required input 
data. Providing a more seamless interface to superparam-
eters was identified as a key objective, given that users 
sometimes struggle with maintaining proper intermediate 
files and modified control file and batch files when using 
SVD-Assist in PEST. Also included in ease of use is sup-
port for robust error checking and handling.

Language Selection

Selecting a language in which to build PEST++ was not 
obvious. During the pseudocode process, it became appar-
ent that no single programming language was optimum in 
all aspects for fully attaining the design goals. Much of the 
initial development of PEST++ was done in Python to take 
advantage of its concise syntax and friendly development 

environment. Use of Python at the outset allowed for rapid 
development and testing of an initial prototype. However, it 
became apparent that handling many of the sparse data struc-
tures efficiently would be difficult if using Python’s standard 
data types and packages. To avoid these issues and ensure 
that adequate options will be available to resolve performance 
issues as they arise, the code was migrated to C++. C++ was 
chosen for this project because it offers the following ben-
efits: (1) It is a mature language, governed by ISO standards. 
(2) It is widely available on many different platforms. (3) The 
standard library that is included in the standard language 
provides a rich set of tools, including the standard template 
library (STL). (4) C++ includes exception handling, which 
can handle usage errors in an efficient manner. (5) An experi-
enced programmer can develop fast and efficient code. (6) It is 
relatively easy to produce statically linked executables, which 
are easy to distribute.

External PEST++ dependencies have been limited 
to BLAS, LAPACK, LAPACK++ and PROPACK, where 
LAPACK++ is an object-oriented wrapper for the BLAS and 
LAPACK linear algebra libraries and PROPACK is an itera-
tive solver for computing SVD factorizations.

Integration in Visual Studio Integrated 
Development Environment (IDE)

All the source code required to build PEST++ has been 
consolidated in the Microsoft Visual Studio 2010 IDE. This 
includes the source codes for (1) PEST++, (2) the GENIE 
interface, (3) LAPACK++, and (4) the PEST Fortran code that 
processes template and insertion files. The project is config-
ured to build a statically linked PEST++ executable without 
any external dependencies. This simplifies and facilitates 
sharing the source code and distributing the executables. The 
PEST++ Visual Studio Project, as well as source code and 
executable, are available for download at http://pubs.usgs.gov/
tm/tm7c5/.

Naming Convention

The naming convention used for PEST++ code is sum-
marized in table 4–1 and follows that of the standard template 
library. Although PEST++ code follows this convention, the 
LAPACK++ library used by PEST++ adheres to a different 
naming convention.

Table 4–1.  PEST++ naming convention.

Items Convention Example

Class names Camel-case. Names start with capitals and new words are delineated by capitals. Class MyClass
Class instances
Class methods
Variables
Functions

Names start with lower case and boundaries are delineated with “_”. MyClass my_class
void MyClass.do_something(int a)
double my_value
int my_function(int a)
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Inheritance and Polymorphism in PEST++

Polymorphism is an object-orientated programming 
feature that allows data types sharing a common interface 
to be used interchangeably within a program. PEST++ uses 
polymorphism based on inheritance to define interfaces for 
run managers, elemental transformations, and SVD solutions. 
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In the case of the run manager, this shields the PEST++ code 
from having to specify which run manager is being used and 
makes the code compatible with any run manager that con-
forms to the ModelRunManagerAbstract base class. Figures 
4–1, 4–2, and 4–3 show the inheritance trees for the run man-
ager, elementary transformations, and the SVD-based solution.

Figure 4–3.  SVD Solution inheritance tree.

Figure 4–2.  Elemental transformation inheritance tree.

Figure 4–1.  Run manager inheritance tree.

RunManagerGenie
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Overall Program Flow and Design

The following flowcharts (figs. 4–4 through 4–6) 
describe the overall flow of PEST++, SVDSolver::solve, and 
SVDSolver::iteration.

Cleanup
and Release Memory

Build Data Structures

Base Parameter Iteration(s)
Call SVDSolver::solve

Superparameter Iteration(s)
Call SVDASolver::solve

Iteration
Criteria

Satisfied? 

Main PEST++ Program

Read Control
File 

yes

no

Figure 4–4.  Flowchart for main PEST++ program.

Figure 4–5.  Flowchart for SVDSolver::solve.

Return

Call SVDSolver::iteration

Iteration
Criteria

Satisfied? 

yes

no

SVDSolver::solve
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Figure 4–6.  Flowchart forSVDSolver::iteration.

no
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Call Jacobain::calculate

Compute Upgrade Vectors
Based on Newton’s Method

and Method of Gradient
Descent  
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Appendix 5: Class List

FileManager

This class encapsulates the I/O filenames and iostream 
handles associated with a PEST++ run. It has a copy of the 
pathname in which the PEST++ simulation is running and 
a reference to the file stream associated with the record file. 
The rest of the class in PEST++ program relies on this class 
to supply the iostream handle to the record file, as well as the 
appropriate names of all PEST++ input and output files.

Jacobian

This class provides support for building and accessing the 
Jacobian. It includes code for calculating derivatives and pro-
vides support for forward difference, central difference(outer), 
and central difference(parabolic), as well as the ability to 
switch to from forward derivatives to central derivatives as the 
optimization process slows down. This class uses the GENIE 
interface to perform the actual model runs and is able to return 
the Jacobian as a LAPACK++ LaGenMatDouble matrix that 
can be used in numerical computations and save the Jacobian 
to disk PEST’s .jco data format.

ModelExecInfo

This class contains the commands and filenames required 
to make a model run. It encapsulates the names of the template 
files, input files, insertion files, and output files. In addition, 
it also contains the model command lines necessary to start a 
model run.

ModelRun

ModelRun is a child of ModelRunAbstractBase and is 
designed to consolidate the information associated with a 
model run. Because ModelRunAbstractBase is an abstract 
class, it cannot be directly instantiated. ModelRun is the pri-
mary child class that is used most often to store the parameter 
and simulated observations associated with a model run.

ModelRunAbstractBase

This is the abstract base class for all classes associated 
with a model run. These classes are designed to consolidate 
the information associated with a model run, which includes 
the parameters, transformations, and the observed values, as 
well as their simulated counterparts. In addition, these classes 
also contain the information necessary to compute the objec-
tive function and contain methods that perform this task. 
Although ModelRunAbstractBase cannot be instantiated, 

it defines the methods that all classes derived from it must 
implement.

ModelRunShallowCopy

This is a lightweight copy of a ModelRun class. It con-
tains its own set of parameters and simulated observations, but 
it uses the transformations associated with the ModelRun class 
it was created from.

ObjectiveFunc

This class handles all aspects of the objective function. 
It contains the measured observations and prior information, 
along with all the associated in information such as weights 
and groups, and is able to calculate the objective function and 
produce a report that includes the contributions to the objec-
tive function of all of all the observation groups.

ObservationGroupRec

This class stores the information associated with an 
observation group.

ObservationInfo

This class compliments the Observations class. Because 
the Observations class was designed to be very lightweight, it 
only stores the measured values of the observation. The Obser-
vationInfo class uses an unorder_map of the ObservationRec 
class to store the rest of the information associated with the 
observations, which includes their weights and the groups that 
they are associated with.

ObservationRec

This class stores the weight and observation groups asso-
ciated with an observation.

Observations

This class stores the measured values of the observations. 
It is a child of the Transformable class and is compatible the 
transformations used for the parameters, but the current code 
does not make use of this functionality.

OperSys

This class encapsulates all the features and parameters 
that are operating-system dependent. These include the char-
acter used to separate the different components of a pathname 
and the end-of-line or carriage-return character(s).
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ParameterGroupInfo

This class stores the information associated with the 
parameter groups.

ParameterGroupRec

This class stores the information associated with a param-
eter group.

ParameterInfo

This class compliments the Parameters class. Because 
the Parameters class was designed to be lightweight, it stores 
only the parameter values. The ParameterInfo class uses an 
unorder_map of the ParameterRec class to store the rest of the 
information associated with parameter, which includes their 
bounds, change limit methodology, and the groups they are 
associated with.

ParameterRec

This class stores the bounds, change limit methodology, 
and the group for a parameter.

Parameters

This class stores parameter values. It is a child of the 
Transformable class and is designed be compatible the Param-
TransformSeq class.

ParamTransformSeq

This class handles transformations for the parameters. 
It contains the transformation sequences to convert between 
control and numeric parameters, as well as those required to 
convert between control and model parameters.

Pest

This class consolidates the information contained in the 
control file and contains instances of the following classes: 
ControlInfo, SVDInfo, Parameters, ParameterInfo, Param-
eterGroupInfo, BaseGroupInfo, Observations, Observation-
Info, PriorInformation, ModelExecInfo, PestppOptions, and 
ParamTransformSeq.

PestConversionError, PestError, PestFileError, 
PestIndexError, PestParsingError

These classes define error states and are used to throw 
exceptions.

PestppOptions

This class stores the PEST++ input options that are not 
available in PEST.

PIAtom

This class is used by the PriorInformationRec class. It 
stores information associate with a single parameter in a prior 
information expression. This information includes the name 
of the parameter, whether the parameter is log transformed, 
and the factor by which the parameter is to be multiplied in the 
prior information expression.

PriorInformation

This class contains all for the prior information records 
associated with a PEST++ simulation.

PriorInformationRec

This class stores a complete prior information record 
and contains a method to compute that item’s residual and 
contribution to the objective function. Each prior information 
equation in the control file is stored by using an instance of 
this class.

QSqrtMatrix

This class contains the weights matrix for the observa-
tions and the prior information. It contains methods that return 
the product of this matrix with a LAPACK++ LaGenMat-
Double matrix.

RunManagerGenie

This class is a wrapper for the GENIE run manager. 
GENIE is a generic parallel run manager that uses TCP/IP 
for communication and allows runs to be performed over the 
Internet in remote locations. This class converts PEST++ data 
structures to GENIE data structures and calls GENIE to make 
the model runs.

SVDASolver

This class is a child of the SVDSolver class that is spe-
cialized to work with superparameters. The changes needed to 
accommodate superparameters are minimal; the only meth-
ods that are modified are the method that limits parameter 
upgrades, limit_parameters_ip, and the method that freezes 
parameters, freeze_parameters.
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SVDInfo

This class stores the information in the SVD section of 
the control file.

SVDSolver

This class solves the least-squares problem by using 
singular value decomposition (SVD). The bulk of the work is 
performed in the iteration method, which sets up and solves 
a single iteration. This class relies on the Jacobian class to 
compute the Jacobian.

TerminationController

This class manages the termination criteria for the least-
squares solution.

TranFixed

This class implements a transformation for fixed values.

TranFrozen

This class implements a transformation for frozen values.

TranLog10

This class implements a logarithmic transformation. 

TranMapBase

This is a base class for transformations built around the 
standard template library (STL) map class.

TranOffset

This class implements the offset transformation.

TranScale

This class implements a scaling transformation.

TranSetBase

This is a base class for transformation that use the STL 
Set container to store a list of items.

Transformable

This is an abstract base class that provides compatibility 
with the Transformation class and all of the class derived 
from it. The Parameters and Observation classes are derived 
from this class; however, at present, only the Parameters class 
makes use of the functionality it provides.

TransformableValueError

This class defines an error state and is used to throw an 
exception.

Transformation

This is the abstract base class for all transformations. It 
cannot be instantiated, but it defines the methods that all of its 
children must possess. 

TranSVD

The Transformation implements SVD-A or a 
transformation between superparameters and base parameters.

TranTied

This transformation ties one parameter to another. The 
tied parameter is maintained at a fixed ratio to the parameter it 
is tied to.
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Appendix 6: Simple Storage Model 
Example 

Introduction

This example demonstrates the use of PEST++ with 
a simple storage model developed by John Doherty as a 
workshop problem for use in PEST training classes. The brief 
description contained herein is taken from that exercise. The 
outputs of both PEST and PEST++ are presented so that users 
can review and verify the results.

Description of the Model

Figure 6–1 shows a simple storage. The storage is filled 
with a porous medium of storage coefficient S. The storage 
receives water as recharge at a constant rate R. Water is able to 
drain from the storage at a rate that is proportional to the head 
of water in the storage. Rate of water outflow is thus given by

	 q = Kh	 (1)

where 
	 q 	 is the outflow rate, 
	 h 	 is the head of water in the storage, and 
	 K 	 is the conductance of the storage outlet. Initial 

head in the storage is designated as h1.

Appendix 6

The rate of change in the amount of water held in storage 
at any time is equal to the difference between inflow and out-
flow. Mathematically, this is expressed by the equation

	

dhS R Kh
dt

= − 	 (2)

For constant R, the solution of equation 2 is

	 1 1 1
Kt
SRh h h e

K

−  = + − −  
  

	 (3)

where, as mentioned previously, h1 is the head in the storage 
when t (the elapsed time) is zero. It is apparent from equa-
tion 3 that the equilibrium storage water level is given by

	
Rh
K

= 	 (4)

where h in equation 4 is the water level in the storage at which 
recharge inflow is exactly balanced by drainage outflow, the 
latter being given by equation 1.

When t is small, equation 3 asymptotically approaches 
the equation

	
1 1

R Kth h h
K S

 = + − 
 

	 (5)

If the initial head is zero, equation 5 becomes

	

Rth
S

= 	 (6)

It is apparent from equations 3 to 6 that when a new 
recharge regime is introduced to the storage, the level of  
water in the storage changes to its new level in a manner that 
is linear at first but, with time, assymptotically approaches 
its final level. The time constant pertaining to the water-level 
adjustment process is given by the ratio of S to K. Notice that 
the recharge rate R does not figure in calculation of the time 
constant and that the storage coefficient S is not represented 
in the equation for the final, equilibrium water level in the 
storage.

Figure 6–2 shows the variation of water level in the  
storage with time under the assumption that the initial water 
level is 20 units, the recharge rate is 10−1 units, the outlet  
conductance is 10−3 units, and the storage coefficient is 0.2. 
From equation 4, it is easily established that the final equilib-
rium water level in the storage under these conditions is  
100 units.

The basic storage unit pictured in figure 6–1 forms an 
important building block of many lumped-parameter environ-
mental models. Hence, lessons learned in this practical session 
will be applicable in many circumstances where much more 
complex environmental models are deployed to simulate the 
behavior of natural systems.Figure 6–1.  Graphical depiction of a model of a storage volume 

filled with a porous medium.

h

Recharge R

q = Kh

Conductance K

Storage coefficient S
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Figure 6–3.  A program to compute storage water levels using equation 3.

Figure 6–2.  Water level in the storage depicted in figure 6–1; see text for details.
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program storage 
 
implicit none 
 
real recharge, conductance, storage, inithead, time, 
     +coeff, factor 
 
open(unit=10,file='input.dat',status='old') 
open(unit=20,file='output.dat') 
read(10,*) recharge, conductance, storage 
read(10,*) inithead 
read(10,*) 
 
coeff=(recharge/conductance-inithead) 
factor=conductance/storage 
write(20,10) 
10    format('   Time           Water_Level') 
do 
read(10,*,end=100) time 
write(20,20) time,inithead+coeff*(1.0-exp(-factor*time)) 
20      format(1x,1pg14.7,2x,1pg14.7) 
end do 
100   end 
 

A Computer Program to Simulate the Storage

Operation of the storage depicted in figure 6–1 can be 
simulated by using a simple computer program based on 

equation 3. Such a program, written in Fortran, is listed in 
figure 6–3. See also file storage.for in the working directory 
for this session.
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Program STORAGE reads an input file named input.dat. 
The first line of this file should contain, in order, the recharge, 
outlet conductance, and storage coefficient of the storage. The 
next line should contain the initial storage water level. A blank 
line should follow that, followed by a listing of the times at 

Figure 6–4.  An input file for program STORAGE.

Figure 6–5.  An output file written by program STORAGE.

which water-level computation is required. A typical input file 
for the STORAGE program is illustrated in figure 6–4.
STORAGE writes an output file called output.dat. Figure 6–5 
shows the output.dat file corresponding to the input.dat file 
depicted in figure 6–4.

1.0e-1  1.0e-3  0.2   / recharge conductance storage_coefficient
0.0                   / initial head

0.1                   / elapsed times
0.2
0.5
1.0
2.0
5.0
10.0
20.0
50.0
100.0
200.0
500.0
1000.0
2000.0
5000.0
10000.0

Time           Water_Level
0.1000000       4.9987502E-02
0.2000000       9.9950016E-02

0.5000000       0.2496878
1.000000       0.4987521
2.000000       0.9950166
5.000000        2.469009
10.00000        4.877058
20.00000        9.516258
50.00000        22.11992
100.0000        39.34694
200.0000        63.21206
500.0000        91.79150
1000.000        99.32620
2000.000        99.99546
5000.000        100.0000
10000.00        100.0000
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PEST++ Model Run

The example problem can be run with PEST++ by typing the command

Pest++ storage5

The output written to the screen by PEST++ and the contents of the storage5.recoutput file are presented below.

PEST++ ver. 1.0 Output Written to the Screen

C:\Users\dwelter\examples\stor>..\pest++ storage5
PEST++ Version 1.0.0

using control file: “storage5”

initializing serial run manager

OPTIMISATION ITERATION NUMBER: 1
  Iteration type: base parameter solution
calculatingjacobian... (3/3 runs complete)
testing upgrade vectors... (7/7 runs complete)
  Starting phi = 594.589;  ending phi = 22.7623  (3.82825% starting phi)

OPTIMISATION ITERATION NUMBER: 2
  Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
  Starting phi = 22.7623;  ending phi = 14.9341  (65.6089% starting phi)

OPTIMISATION ITERATION NUMBER: 3
  Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
  Starting phi = 14.9341;  ending phi = 0.749557  (5.01909% starting phi)

OPTIMISATION ITERATION NUMBER: 4
Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
  Starting phi = 0.749557;  ending phi = 0.438044  (58.4404% starting phi)

OPTIMISATION ITERATION NUMBER: 5
  Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
Starting phi = 0.438044;  ending phi = 0.437872  (99.9609% starting phi)

OPTIMISATION ITERATION NUMBER: 6
  Iteration type: base parameter solution
calculatingjacobian... (2/2 runs complete)
testing upgrade vectors... (7/7 runs complete)
Starting phi = 0.437872;  ending phi = 0.437865  (99.9982% starting phi)

Simulation Complete - Press RETURN to close window
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PEST++ storage5.rec Output File
PEST++ Version 1.0.0

Control file = storage5”

OPTIMISATION ITERATION NUMBER: 1
    Iteration type: base parameter solution
    Model calls so far : 0
    Starting phi for this iteration                     Total : 594.589
    Contribution to phi from observation group     “OBSGROUP” : 594.589

      SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.727904
angle to direction of greatest descent: 45.2942 deg

      Rotation Factor = 0.00 (0.00 deg);  phi = 213.625 (35.93% starting phi)
      Rotation Factor = 0.01 (0.41 deg);  phi = 208.455 (35.06% starting phi)
      Rotation Factor = 0.10 (4.19 deg);  phi = 162.589 (27.34% starting phi)
      Rotation Factor = 0.20 (8.59 deg);  phi = 114.48 (19.25% starting phi)
      Rotation Factor = 0.50 (22.65 deg);  phi = 22.7623 (3.83% starting phi)
      Rotation Factor = 0.70 (32.12 deg);  phi = 124.385 (20.92% starting phi)
      Rotation Factor = 1.00 (45.29 deg);  phi = 522.574 (87.89% starting phi)

    Parameter Upgrades (Control File Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND            0.00184708         0.005       2.70697      0.630584
    SCOEFF                0.15          0.05             3            -2
    RECHARGE               0.1           0.1             1             0

    Parameter Upgrades (Transformed Numeric Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND              -2.73351      -2.30103       1.18795     -0.187952
    SCOEFF           -0.823909      -1.30103       1.57909      0.366726

   Maximum changes in transformed numeric parameters:
     Maximum relative change = 0.366726   [SCOEFF]
     Maximum factor change = 1.57909   [SCOEFF]

OPTIMISATION ITERATION NUMBER: 2
    Iteration type: base parameter solution
    Model calls so far : 10
    Starting phi for this iteration                     Total : 22.7623
    Contribution to phi from observation group     “OBSGROUP” : 22.7623

      SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.233686
angle to direction of greatest descent: 24.3818 deg

      Rotation Factor = 0.00 (0.00 deg);  phi = 14.9341 (65.61% starting phi)
      Rotation Factor = 0.01 (0.24 deg);  phi = 15.4713 (67.97% starting phi)
      Rotation Factor = 0.10 (2.39 deg);  phi = 20.7701 (91.25% starting phi)
      Rotation Factor = 0.20 (4.81 deg);  phi = 27.5767 (121.15% starting phi)
      Rotation Factor = 0.50 (12.19 deg);  phi = 52.672 (231.40% starting phi)
      Rotation Factor = 0.70 (17.13 deg);  phi = 71.9359 (316.03% starting phi)
      Rotation Factor = 1.00 (24.38 deg);  phi = 101.828 (447.35% starting phi)
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    Parameter Upgrades (Control File Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND            0.00118955    0.00184708       1.55276      0.355985
    SCOEFF            0.204449          0.15       1.36299     -0.362992
    RECHARGE               0.1           0.1             1             0

    Parameter Upgrades (Transformed Numeric Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND              -2.92462      -2.73351       1.06991    -0.0699115
    SCOEFF           -0.689416     -0.823909       1.19508      0.163238

   Maximum changes in transformed numeric parameters:
     Maximum relative change = 0.163238   [SCOEFF]
     Maximum factor change = 1.19508   [SCOEFF]

OPTIMISATION ITERATION NUMBER: 3
    Iteration type: base parameter solution
    Model calls so far : 19
    Starting phi for this iteration                     Total : 14.9341
    Contribution to phi from observation group     “OBSGROUP” : 14.9341

      SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.176581
angle to direction of greatest descent: 73.4767 deg

      Rotation Factor = 0.00 (0.00 deg);  phi = 0.937774 (6.28% starting phi)
      Rotation Factor = 0.01 (0.55 deg);  phi = 0.749557 (5.02% starting phi)
      Rotation Factor = 0.10 (5.90 deg);  phi = 1.5011 (10.05% starting phi)
      Rotation Factor = 0.20 (12.61 deg);  phi = 9.06701 (60.71% starting phi)
      Rotation Factor = 0.50 (36.74 deg);  phi = 84.7025 (567.17% starting phi)
      Rotation Factor = 0.70 (53.36 deg);  phi = 147.327 (986.51% starting phi)
      Rotation Factor = 1.00 (73.48 deg);  phi = 179.343 (1200.90% starting phi)

    Parameter Upgrades (Control File Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND           0.000792229    0.00118955       1.50152      0.334008
    SCOEFF             0.20644      0.204449       1.00974   -0.00973847
    RECHARGE               0.1           0.1             1             0

    Parameter Upgrades (Transformed Numeric Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND              -3.10115      -2.92462       1.06036    -0.0603604
    SCOEFF           -0.685207     -0.689416       1.00614    0.00610503

   Maximum changes in transformed numeric parameters:
     Maximum relative change = -0.0603604   [COND]
     Maximum factor change = 1.06036   [COND]

OPTIMISATION ITERATION NUMBER: 4
    Iteration type: base parameter solution
    Model calls so far : 28
    Starting phi for this iteration                     Total : 0.749557
    Contribution to phi from observation group     “OBSGROUP” : 0.749557

      SVD information:
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number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.0343731
angle to direction of greatest descent: 79.2524 deg

      Rotation Factor = 0.00 (0.00 deg);  phi = 0.439216 (58.60% starting phi)
      Rotation Factor = 0.01 (0.57 deg);  phi = 0.438044 (58.44% starting phi)
      Rotation Factor = 0.10 (6.10 deg);  phi = 0.533744 (71.21% starting phi)
      Rotation Factor = 0.20 (13.21 deg);  phi = 0.927359 (123.72% starting phi)
      Rotation Factor = 0.50 (39.63 deg);  phi = 4.2616 (568.55% starting phi)
      Rotation Factor = 0.70 (57.95 deg);  phi = 6.85316 (914.29% starting phi)
      Rotation Factor = 1.00 (79.25 deg);  phi = 8.26179 (1102.22% starting phi)

    Parameter Upgrades (Control File Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND           0.000731946   0.000792229       1.08236     0.0760929
    SCOEFF            0.206576       0.20644       1.00066  -0.000660826
    RECHARGE               0.1           0.1             1             0

    Parameter Upgrades (Transformed Numeric Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND              -3.13552      -3.10115       1.01108    -0.0110835
    SCOEFF            -0.68492     -0.685207       1.00042   0.000418703

   Maximum changes in transformed numeric parameters:
     Maximum relative change = -0.0110835   [COND]
     Maximum factor change = 1.01108   [COND]

OPTIMISATION ITERATION NUMBER: 5
    Iteration type: base parameter solution
    Model calls so far : 37
    Starting phi for this iteration                     Total : 0.438044
    Contribution to phi from observation group     “OBSGROUP” : 0.438044

      SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.00227503
angle to direction of greatest descent: 71.7733 deg

      Rotation Factor = 0.00 (0.00 deg);  phi = 0.437873 (99.96% starting phi)
      Rotation Factor = 0.01 (0.55 deg);  phi = 0.437872 (99.96% starting phi)
      Rotation Factor = 0.10 (5.82 deg);  phi = 0.438302 (100.06% starting phi)
      Rotation Factor = 0.20 (12.42 deg);  phi = 0.439937 (100.43% starting phi)
      Rotation Factor = 0.50 (35.89 deg);  phi = 0.453779 (103.59% starting phi)
      Rotation Factor = 0.70 (52.03 deg);  phi = 0.466782 (106.56% starting phi)
      Rotation Factor = 1.00 (71.77 deg);  phi = 0.479919 (109.56% starting phi)

      Switching to central derivatives:

    Parameter Upgrades (Control File Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND           0.000728163   0.000731946        1.0052    0.00516841
    SCOEFF            0.206736      0.206576       1.00077  -0.000771491
    RECHARGE               0.1           0.1             1             0

    Parameter Upgrades (Transformed Numeric Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND              -3.13777      -3.13552       1.00072  -0.000717723
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    SCOEFF           -0.684585      -0.68492       1.00049   0.000488999

   Maximum changes in transformed numeric parameters:
     Maximum relative change = -0.000717723   [COND]
     Maximum factor change = 1.00072   [COND]

OPTIMISATION ITERATION NUMBER: 6
    Iteration type: base parameter solution
    Model calls so far : 46
    Starting phi for this iteration                     Total : 0.437872
    Contribution to phi from observation group     “OBSGROUP” : 0.437872

      SVD information:
number of singular values used: 2/2
upgrade vector magnitude (without limits or bounds) = 0.000495033
angle to direction of greatest descent: 79.207 deg

      Rotation Factor = 0.00 (0.00 deg);  phi = 0.437867 (100.00% starting phi)
      Rotation Factor = 0.01 (0.57 deg);  phi = 0.437865 (100.00% starting phi)
      Rotation Factor = 0.10 (6.10 deg);  phi = 0.437889 (100.00% starting phi)
      Rotation Factor = 0.20 (13.20 deg);  phi = 0.437975 (100.02% starting phi)
      Rotation Factor = 0.50 (39.60 deg);  phi = 0.438744 (100.20% starting phi)
      Rotation Factor = 0.70 (57.92 deg);  phi = 0.439424 (100.35% starting phi)
      Rotation Factor = 1.00 (79.21 deg);  phi = 0.439956 (100.48% starting phi)

    Parameter Upgrades (Control File Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND           0.000727346   0.000728163       1.00112      0.001122
    SCOEFF            0.206777      0.206736        1.0002   -0.00019962
    RECHARGE               0.1           0.1             1             0

    Parameter Upgrades (Transformed Numeric Parameters)
     Parameter      Current       Previous       Factor       Relative
        Name         Value         Value         Change        Change
    ------------  ------------  ------------  ------------  ------------
    COND              -3.13826      -3.13777       1.00016  -0.000155382
    SCOEFF           -0.684498     -0.684585       1.00013   0.000126624

   Maximum changes in transformed numeric parameters:
     Maximum relative change = -0.000155382   [COND]
     Maximum factor change = 1.00016   [COND]
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PEST Model Run

The storage example problem can be run using PEST by typing the command:

pest storage5

The output written to the screen by PEST and the contents of the storage5.rec output file are presented below.

PEST Output Written to the Screen

C:\Users\dwelter\Desktop\alpha_0.0.1\stor>pest storage5

PEST Version 12.0.1.Watermark Numerical Computing.

PEST is running in parameter estimation mode.

PEST run record: case storage5
(See file storage5.rec for full details.)

Model command line:
storage1

Running model .....

   Running model 1 time....
   Sum of squared weighted residuals (ie phi) =   594.59

OPTIMISATION ITERATION NO.        : 1
   Model calls so far             : 1
   Starting phi for this iteration:   594.59

   Calculating Jacobian matrix: running model 2 times .....
   2 runs completed.

       Lambda =   5.0000     ----->
running model .....
          Phi =   178.26      (  0.300 of starting phi)

   No more lambdas: phi is less than 0.3000 of starting phi
   Lowest phi this iteration:   178.26
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   Maximum   factor change:  1.747     [“cond”]
   Maximum relative change: 0.7351     [“scoeff”]

OPTIMISATION ITERATION NO.        : 2
   Model calls so far             : 4
   Starting phi for this iteration:   178.26

   Calculating Jacobian matrix: running model 2 times .....
   2 runs completed.

       Lambda =   2.5000     ----->
running model .....
          Phi =   99.133      (  0.556 of starting phi)

       Lambda =   1.2500     ----->
running model .....
          Phi =   96.104      (  0.539 of starting phi)

       Lambda =  0.62500     ----->
running model .....
          Phi =   93.707      (  0.526 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:   93.707
   Maximum   factor change:  2.241     [“scoeff”]
   Maximum relative change:  1.241     [“scoeff”]

OPTIMISATION ITERATION NO.        : 3
   Model calls so far             : 9
   Starting phi for this iteration:   93.707

   Calculating Jacobian matrix: running model 2 times .....
   2 runs completed.

       Lambda =  0.31250     ----->
running model .....
          Phi =   8.0233      (  0.086 of starting phi)

   No more lambdas: phi is less than 0.3000 of starting phi
   Lowest phi this iteration:   8.0233
   Maximum   factor change:  1.517     [“cond”]
   Maximum relative change: 0.3410     [“cond”]

OPTIMISATION ITERATION NO.        : 4
   Model calls so far             : 12
   Starting phi for this iteration:   8.0233

   Calculating Jacobian matrix: running model 2 times .....
   2 runs completed.

       Lambda =  0.15625     ----->
running model .....
          Phi =   4.3394      (  0.541 of starting phi)

       Lambda =  7.81250E-02 ----->
running model .....
          Phi =   4.2460      (  0.529 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:   4.2460
   Maximum   factor change:  1.398     [“cond”]
   Maximum relative change: 0.2845     [“cond”]
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OPTIMISATION ITERATION NO.        : 5
   Model calls so far             : 16
   Starting phi for this iteration:   4.2460

   Calculating Jacobian matrix: running model 2 times .....
   2 runs completed.

       Lambda =  3.90625E-02 ----->
running model .....
          Phi =  0.49781      (  0.117 of starting phi)

   No more lambdas: phi is less than 0.3000 of starting phi
   Lowest phi this iteration:  0.49781
   Maximum   factor change:  1.243     [“cond”]
   Maximum relative change: 0.1953     [“cond”]

OPTIMISATION ITERATION NO.        : 6
   Model calls so far             : 19
   Starting phi for this iteration:  0.49781

   Calculating Jacobian matrix: running model 2 times .....
   2 runs completed.

       Lambda =  1.95313E-02 ----->
running model .....
          Phi =  0.43883      (  0.882 of starting phi)

       Lambda =  9.76563E-03 ----->
running model .....
          Phi =  0.43913      (  0.882 of starting phi)

       Lambda =  3.90625E-02 ----->
running model .....
          Phi =  0.43856      (  0.881 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:  0.43856
   Maximum   factor change:  1.088     [“cond”]
   Maximum relative change: 8.1179E-02 [“cond”]

OPTIMISATION ITERATION NO.        : 7
   Model calls so far             : 24
   Starting phi for this iteration:  0.43856

   Calculating Jacobian matrix: running model 2 times .....
   2 runs completed.

       Lambda =  3.90625E-02 ----->
running model .....
          Phi =  0.43788      (  0.998 of starting phi)

       Lambda =  1.95313E-02 ----->
running model .....
          Phi =  0.43787      (  0.998 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:  0.43787
   Relative phi reduction between optimisation iterations less than 0.1000
   Switch to central derivatives calculation
   Maximum   factor change:  1.010     [“cond”]
   Maximum relative change: 9.4250E-03 [“cond”]
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OPTIMISATION ITERATION NO.        : 8
   Model calls so far             : 28
   Starting phi for this iteration:  0.43787

   Calculating Jacobian matrix: running model 4 times .....
   4 runs completed.

       Lambda =  9.76563E-03 ----->
running model .....
          Phi =  0.43786      (  1.000 of starting phi)

       Lambda =  4.88281E-03 ----->
running model .....
          Phi =  0.43787      (  1.000 times starting phi)

       Lambda =  1.95313E-02 ----->
running model .....
          Phi =  0.43786      (  1.000 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:  0.43786
   Maximum   factor change:  1.001     [“cond”]
   Maximum relative change: 5.7673E-04 [“cond”]

Optimisation complete: the  3 lowest phi’s are within a relative distance
ofeachother of 1.000E-02
   Total model calls:     35

Running model one last time with best parameters.....

Recording run statistics .....

See file storage5.rec for full run details.
See file storage5.sen for parameter sensitivities.
See file storage5.seo for observation sensitivities.
See file storage5.res for residuals.
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PEST storage5.rec Output File

                     PEST RUN RECORD: CASE storage5

PEST run mode:-

   Parameter estimation mode

Case dimensions:-

   Number of parameters                           :     3
   Number of adjustable parameters                :     2
   Number of parameter groups                     :     3
   Number of observations                         :    16
   Number of prior estimates                      :     0

Model command line(s):-

   storage1

Jacobian command line:-

na

Model interface files:-
   Templates:
      input.tpl
for model input files:
      input.dat

   (Parameter values written using single precision protocol.)
   (Decimal point always included.)

   Instruction files:
      output.ins
for reading model output files:
      output.dat

PEST-to-model message file:-

na

Derivatives calculation:-

Param        Increment   IncrementIncrement   Forward or   Multiplier  Method
group        type                    low bound   central      (central)   (central)
recharge     relative    1.0000E-02   none         switch       2.000     parabolic
cond         relative    1.0000E-02   none         switch       2.000     parabolic
scoeff       relative    1.0000E-02   none         switch       2.000     parabolic

Parameter definitions:-

Name         Trans-            Change       Initial        Lower          Upper
formation         limit        value          bound          bound
recharge     fixed               na       0.100000          nana
cond         log               factor     5.000000E-03   1.000000E-10   1.000000E+10
scoeff       log               factor     5.000000E-02   1.000000E-10   1.000000E+10

Name         Group          Scale         Offset        Model command number
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rechargerecharge      1.00000        0.00000            1
condcond          1.00000        0.00000            1
scoeffscoeff        1.00000        0.00000            1

Prior information:-

   No prior information supplied

Observations:-

Observation name        Observation       Weight       Group
head1                  4.998750E-02      1.000       obsgroup
head2                  9.995002E-02      1.000       obsgroup
 head3                  0.249688          1.000       obsgroup
 head4                  0.498752          1.000       obsgroup
 head5                  0.955017          1.000       obsgroup
 head6                   2.66901          1.000       obsgroup
 head7                   4.67706          1.000       obsgroup
 head8                   9.81626          1.000       obsgroup
 head9                   21.8199          1.000       obsgroup
 head10                  40.8469          1.000       obsgroup
 head11                  63.2121          0.000       obsgroup
 head12                  91.7915          0.000       obsgroup
 head13                  99.3262          0.000       obsgroup
 head14                  99.9955          0.000       obsgroup
 head15                  100.000          0.000       obsgroup
 head16                  100.000          0.000       obsgroup

Control settings:-

   Initial lambda                                               :  5.0000    
   Lambda adjustment factor                                     :  2.0000    
   Sufficient new/old phi ratio per optimisation iteration      : 0.30000    
   Limiting relative phi reduction between lambdas              : 3.00000E-02
   Maximum trial lambdas per iteration                          :  10
   Forgive model run failure during lamda testing               : no

   Perform Broyden’s update of Jacobian matrix                  : no

Maximum  factor  parameter change (factor-limited changes)   :  3.0000
   Maximum relative parameter change (relative-limited changes) :na
   Fraction of initial parameter values used in computing
change limit for near-zero parameters                        : 1.00000E-03
   Allow bending of parameter upgrade vector                    : no
   Allow parameters to stick to their bounds                    : no

   Relative phi reduction below which to begin use of
central derivatives                                          : 0.10000             
   Iteration at which to first consider derivatives switch      :   1

   Relative phi reduction indicating convergence                : 0.10000E-01
   Number of phi values required within this range              :   3
   Maximum number of consecutive failures to lower phi          :   3
   Minimal relative parameter change indicating convergence     : 0.10000E-01
   Number of consecutive iterations with minimal param change   :   3
   Maximum number of optimisation iterations                    :  30

   Attempt automatic user intervention                          : no

   Attempt reuse of parameter sensitivities                     : no

File saving options: -
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   Save multiple JCO files                                      : no
   Save multiple REI files                                      : no

                            OPTIMISATION RECORD

INITIAL CONDITIONS: 
   Sum of squared weighted residuals (ie phi) =   594.59    

      Current parameter values
recharge        0.100000    
cond            5.000000E-03
scoeff          5.000000E-02

OPTIMISATION ITERATION NO.        : 1
   Model calls so far             : 1
   Starting phi for this iteration:   594.59    

       Lambda =   5.0000     ----->
          Phi =   178.26      (  0.300 of starting phi)

   No more lambdas: phi is less than 0.3000 of starting phi
   Lowest phi this iteration:   178.26    

      Current parameter values                 Previous parameter values
recharge        0.100000                 recharge         0.100000    
cond            2.861794E-03             cond             5.000000E-03
scoeff          8.675662E-02             scoeff           5.000000E-02
   Maximum   factor change:  1.747     [“cond”]
   Maximum relative change: 0.7351     [“scoeff”]

OPTIMISATION ITERATION NO.        : 2
   Model calls so far             : 4
   Starting phi for this iteration:   178.26    

       Lambda =   2.5000     ----->
          Phi =   99.133      (  0.556 of starting phi)

       Lambda =   1.2500     ----->
          Phi =   96.104      (  0.539 of starting phi)

       Lambda =  0.62500     ----->
          Phi =   93.707      (  0.526 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:   93.707    

      Current parameter values                 Previous parameter values
recharge        0.100000                 recharge         0.100000    
cond            2.108721E-03             cond             2.861794E-03
scoeff          0.194440                 scoeff           8.675662E-02
   Maximum   factor change:  2.241     [“scoeff”]
   Maximum relative change:  1.241     [“scoeff”]

OPTIMISATION ITERATION NO.        : 3
   Model calls so far             : 9
   Starting phi for this iteration:   93.707    

       Lambda =  0.31250     ----->
          Phi =   8.0233      (  0.086 of starting phi)
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   No more lambdas: phi is less than 0.3000 of starting phi
   Lowest phi this iteration:   8.0233    

      Current parameter values                 Previous parameter values
recharge        0.100000                 recharge         0.100000    
cond            1.389632E-03             cond             2.108721E-03
scoeff          0.169866                 scoeff           0.194440    
   Maximum   factor change:  1.517     [“cond”]
   Maximum relative change: 0.3410     [“cond”]

OPTIMISATION ITERATION NO.        : 4
   Model calls so far             : 12
   Starting phi for this iteration:   8.0233    

       Lambda =  0.15625     ----->
          Phi =   4.3394      (  0.541 of starting phi)

       Lambda =  7.81250E-02 ----->
          Phi =   4.2460      (  0.529 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:   4.2460    

      Current parameter values                 Previous parameter values
recharge        0.100000                 recharge         0.100000    
cond            9.943230E-04             cond             1.389632E-03
scoeff          0.203611                 scoeff           0.169866    
   Maximum   factor change:  1.398     [“cond”]
   Maximum relative change: 0.2845     [“cond”]

OPTIMISATION ITERATION NO.        : 5
   Model calls so far             : 16
   Starting phi for this iteration:   4.2460    

       Lambda =  3.90625E-02 ----->
          Phi =  0.49781      (  0.117 of starting phi)

   No more lambdas: phi is less than 0.3000 of starting phi
   Lowest phi this iteration:  0.49781    

      Current parameter values                 Previous parameter values
recharge        0.100000                 recharge         0.100000    
cond            8.001240E-04             cond             9.943230E-04
scoeff          0.203811                 scoeff           0.203611    
   Maximum   factor change:  1.243     [“cond”]
   Maximum relative change: 0.1953     [“cond”]

OPTIMISATION ITERATION NO.        : 6
   Model calls so far             : 19
   Starting phi for this iteration:  0.49781    

       Lambda =  1.95313E-02 ----->
          Phi =  0.43883      (  0.882 of starting phi)

       Lambda =  9.76563E-03 ----->
          Phi =  0.43913      (  0.882 of starting phi)

       Lambda =  3.90625E-02 ----->
          Phi =  0.43856      (  0.881 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:  0.43856    
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      Current parameter values                 Previous parameter values
recharge        0.100000                 recharge         0.100000    
cond            7.351710E-04             cond             8.001240E-04
scoeff          0.206478                 scoeff           0.203811    
   Maximum   factor change:  1.088     [“cond”]
   Maximum relative change: 8.1179E-02 [“cond”]

OPTIMISATION ITERATION NO.        : 7
   Model calls so far             : 24
   Starting phi for this iteration:  0.43856    

       Lambda =  3.90625E-02 ----->
          Phi =  0.43788      (  0.998 of starting phi)

       Lambda =  1.95313E-02 ----->
          Phi =  0.43787      (  0.998 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:  0.43787    
   Relative phi reduction between optimisation iterations less than 0.1000
   Switch to central derivatives calculation

      Current parameter values                 Previous parameter values
recharge        0.100000                 recharge         0.100000    
cond            7.282420E-04             cond             7.351710E-04
scoeff          0.206731                 scoeff           0.206478    
   Maximum   factor change:  1.010     [“cond”]
   Maximum relative change: 9.4250E-03 [“cond”]

OPTIMISATION ITERATION NO.        : 8
   Model calls so far             : 28
   Starting phi for this iteration:  0.43787    

       Lambda =  9.76563E-03 ----->
          Phi =  0.43786      (  1.000 of starting phi)

       Lambda =  4.88281E-03 ----->
          Phi =  0.43787      (  1.000 times starting phi)

       Lambda =  1.95313E-02 ----->
          Phi =  0.43786      (  1.000 of starting phi)

   No more lambdas: relative phi reduction between lambdas less than 0.0300
   Lowest phi this iteration:  0.43786    

      Current parameter values                 Previous parameter values
recharge        0.100000                 recharge         0.100000    
cond            7.278220E-04             cond             7.282420E-04
scoeff          0.206756                 scoeff           0.206731    
   Maximum   factor change:  1.001     [“cond”]
   Maximum relative change: 5.7673E-04 [“cond”]

Optimisation complete: the  3 lowest phi’s are within a relative distance
ofeachother of 1.000E-02
   Total model calls:     35

   The model has been run one final time using best parameters. 
   Thus all model input files contain best parameter values, and model 
output files contain model results based on these parameters.

                            OPTIMISATION RESULTS
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Adjustable parameters ----->

Parameter        Estimated         95% percent confidence limits
value             lower limit       upper limit
cond           7.278220E-04       5.770578E-04      9.179754E-04
scoeff         0.206756           0.198685          0.215154    

Note: confidence limits provide only an indication of parameter uncertainty.
      They rely on a linearity assumption which  may not extend as far in 
parameter space as the confidence limits themselves - see PEST manual.

Fixed parameters ----->

Parameter      Fixed value
recharge       0.100000    

See file storage5.sen for parameter sensitivities.

Observations ----->

Observation            Measured       Calculated     Residual       Weight     Group
valuevalue
head1                 4.998750E-02   4.835774E-02   1.629764E-03    1.000      obsgroup
head2                 9.995002E-02   9.669846E-02   3.251564E-03    1.000      obsgroup
head3                 0.249688       0.241619       8.069500E-03    1.000      obsgroup
head4                 0.498752       0.482812       1.593980E-02    1.000      obsgroup
head5                 0.955017       0.963928      -8.910700E-03    1.000      obsgroup
head6                  2.66901        2.39715       0.271856        1.000      obsgroup
head7                  4.67706        4.75249      -7.542500E-02    1.000      obsgroup
head8                  9.81626        9.34058       0.475676        1.000      obsgroup
head9                  21.8199        22.1744      -0.354540        1.000      obsgroup
head10                 40.8469        40.7702       7.675000E-02    1.000      obsgroup
head11                 63.2121        69.4424       -6.23030        0.000      obsgroup
head12                 91.7915        113.760       -21.9688        0.000      obsgroup
head13                 99.3262        133.330       -34.0040        0.000      obsgroup
head14                 99.9955        137.276       -37.2804        0.000      obsgroup
head15                 100.000        137.396       -37.3962        0.000      obsgroup
head16                 100.000        137.396       -37.3962        0.000      obsgroup

See file storage5.res for more details of residuals in graph-ready format.

See file storage5.seo for composite observation sensitivities.

Objective function ----->

  Sum of squared weighted residuals (ie phi)                =  0.4379
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Correlation Coefficient ----->

  Correlation coefficient                                   =  0.9999

Analysis of residuals ----->

  All residuals:-
     Number of residuals with non-zero weight                       =    10
     Mean value of non-zero weighted residuals                      =  4.1430E-02
     Maximum weighted residual [observation “head8”]                =  0.4757
     Minimum weighted residual [observation “head9”]                = -0.3545    
     Standard variance of weighted residuals                        =  5.4733E-02
     Standard error of weighted residuals                           =  0.2340

     Note: the above variance was obtained by dividing the objective 
function by the number of system degrees of freedom (ie. number of 
observations with non-zero weight plus number of prior information 
articles with non-zero weight minus the number of adjustable parameters.)
     If the degrees of freedom is negative the divisor becomes 
the number of observations with non-zero weight plus the number of 
prior information items with non-zero weight.

K-L information statistics ----->

  AIC   =  -25.28434    
AICC  =  -21.28434    
  BIC   =  -24.37658    
  KIC   =  -16.25440    

Parameter covariance matrix ----->

condscoeff
cond           1.9110E-03  -3.0938E-04
scoeff        -3.0938E-04   5.6236E-05

Parameter correlation coefficient matrix ----->

condscoeff
cond            1.000      -0.9437    
scoeff        -0.9437        1.000    

Normalized eigenvectors of parameter covariance matrix ----->

              Vector_1     Vector_2   
cond           0.1603      -0.9871    
scoeff         0.9871       0.1603    

Eigenvalues ----->

               5.9913E-06   1.9612E-03

Publishing support provided by
Columbus and Lafayette Publishing Service Centers
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