
U.S. Department of the Interior
U.S. Geological Survey

Techniques and Methods, Book 7, Section C6

Great Lakes Restoration Initiative

Approaches in Highly Parameterized Inversion: GENIE, a
General Model-Independent TCP/IP Run Manager

Approaches in Highly Parameterized
Inversion: GENIE, a General Model-
Independent TCP/IP Run Manager

By Christopher T. Muffels, Willem A. Schreüder, John E. Doherty, Marinko
Karanovic, Matthew J. Tonkin, Randall J. Hunt, and David E. Welter

Great Lakes Restoration Initiative

Techniques and Methods, Book 7, Section C6

U.S. Department of the Interior
U.S. Geological Survey

U.S. Department of the Interior
KEN SALAZAR, Secretary

U.S. Geological Survey
Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2012

This and other USGS information products are available at http://store.usgs.gov/
U.S. Geological Survey
Box 25286, Denver Federal Center
Denver, CO 80225

To learn about the USGS and its information products visit http://www.usgs.gov/
1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to
reproduce any copyrighted materials contained within this report.

Suggested citation:
Muffels, C.T., Schreüder, W.A., Doherty, J.E., Karanovic, M., Tonkin, M.J., Hunt, R.J., and Welter, D.E., 2012,
Approaches in highly parameterized inversion—GENIE, a general model-independent TCP/IP run manager: U.S.
Geological Survey Techniques and Methods, book 7, section C6, 26 p.

iii

Contents
Abstract ..1
Introduction ..1

Purpose and Scope ...3
Design Concepts ...3

The Structure of a “Run” ..3
Model Independence ..3
C++ and Object-Oriented Program (OOP) Design ..4
Message-Passing Infrastructure ..4

The Run Manager—GMAN ..4
Scalability ..4
Load Balancing ...5

The Run Executor—GSLAVE ...5
Limitations of Version 1.0 ...5
Summary ...6
References ...6
Appendixes
 1: Input Instructions ...9
 2: Interacting With GENIE Through GENIE_INTERFACE ..10
 3: Example Application—Interfacing GENIE with PPEST ...20

Figure
 1. Flow of communication between the different components of the GENIE suite 2

Table
 1. The constituents of a model run ..3

Approaches in Highly Parameterized Inversion: GENIE, a
General Model-Independent TCP/IP Run Manager

By Christopher T. Muffels,1 Willem A. Schreüder,2 John E. Doherty,1 Marinko Karanovic,1 Matthew J.Tonkin,1

Randall J. Hunt,4 and David E. Welter5

Abstract
GENIE is a model-independent suite of programs that can

be used to generally distribute, manage, and execute multiple
model runs via the TCP/IP infrastructure. The suite consists of
a file distribution interface, a run manager, a run executer, and
a routine that can be compiled as part of a program and used
to exchange model runs with the run manager. Because com-
munication is via a standard protocol (TCP/IP), any computer
connected to the Internet can serve in any of the capacities
offered by this suite. Model independence is consistent with
the existing template and instruction file protocols of the
widely used PEST parameter estimation program. This report
describes (1) the problem addressed; (2) the approach used
by GENIE to queue, distribute, and retrieve model runs; and
(3) user instructions, classes, and functions developed. It also
includes (4) an example to illustrate the linking of GENIE
with Parallel PEST using the interface routine.

Introduction
A numerical modeling problem that includes multiple

independent calculations and requires little effort to sepa-
rate components of the problem into several parallel tasks is
termed “embarrassingly parallel” (Foster, 1995). Parameter
estimation, for which finite differences are used to approxi-
mate sensitivities, is an example of an embarrassingly parallel
problem (Hunt and others, 2010). As is commonly required by
parameter estimation, each calibration parameter of interest is
perturbed and a corresponding model run executed to assess
the observations’ sensitivity to the perturbation. Because only
one parameter is perturbed in a single run, the results of each
model run are completely independent from every other run

needed to calculate the sensitivity of all parameters. Exploit-
ing the embarrassingly parallel nature of parameter estimation
software is attractive because individual model run times can
be considerable, and simulations of the natural world are often
best performed by using a highly parameterized approach
(Hunt and others, 2007; Doherty and Hunt, 2010). Therefore,
the ability to queue, distribute, and retrieve a set of model
runs across a local network or the Internet has the potential
to greatly reduce the time of parameter estimation (Hunt and
others, 2010). Moreover, the corresponding increase in model-
ing problem size has created a need for robust and efficient
run management for those working on increasingly highly
parameterized problems. As such, this work is intended to
fulfill a need for projects such as the Great Lakes Restoration
Initiative, whereby Great Lake watershed-scale models are
calibrated, climate and land-use scenarios are simulated, and
uncertainty analyses are performed.

PEST (Doherty, 2010) is a popular parameter estimation
program that has recognized this need. It includes a local-
network parallel run manager/executer (PPEST/PSLAVE;
Doherty, 2010) and is available with a TCP/IP/MPI option
provided through BeoPEST (Schreüder, 2009). These pro-
grams are PEST-specific; thus, parallelization of model runs
can be obtained only in the context for which existing versions
of PEST require them. To generalize this capability beyond
PEST, a model/program-independent set of tools and functions
has been developed that can be used to efficiently manage and
execute distributed model runs. This functionality is docu-
mented here for a suite of programs called GENIE , which
includes

• a run manager, GMAN;

• a run executer, GSLAVE; and

• a routine, GENIE_INTERFACE, that is compiled as
part of other programs to handle the exchange of runs
with the GMAN run manager.

The GENIE run manager, GMAN, and the GENIE run
executer, GSLAVE, are intended to be stand-alone programs
that do not require modification by users. Users need only
modify their programs to call the provided integration routine
that is a conduit/entry point to GMAN, which in turn handles
all exchanges regarding the model runs. The run manager

1S.S. Papadopulos and Associates, Inc.
2Principia Mathematica, Inc.
3Flinders University and Watermark Numerical Computing.
4U.S. Geological Survey.
5Computational Water Resource Engineering.

2 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

receives runs and distributes them to the different slave
computers, where they are executed (fig. 1). The suite is fully
compatible with a file distribution interface for automatically
distributing model run files across a network.

As discussed by Schreüder and others (2011), functional
concerns of a program like GENIE are scalability and load
balancing. An efficient run manager should work as well with
thousands of slave computers as it does with just a few, with
optimization occurring to ensure that all the runs are com-
pleted in the least amount of time. Another functional concern
is choosing one of the many possible approaches to achieve
model independence. GENIE uses the template and instruction

file concept as implemented by PEST—the most widely
used in parameter estimation codes. The PEST template and
instruction file protocols adopted by GENIE facilitate seam-
less extension of GENIE to any PEST-type application in
which ASCII files are used for input and output. Therefore,
GENIE can be used to manage and execute model runs for a
wide range of purposes including, but not limited to, Monte-
Carlo simulations, parametric sweeps, and genetic algorithms.
Source code for the interface routine and executables for
GMAN and GSLAVE are available for download at http://
pubs.usgs.gov/tm/tm7c6/.

Figure 1. Flow of communication between the different components of the GENIE suite.

Compiled together

User’s calling program
Modified to prepare runs (including
space for the results) in the required
format and pass them to the
GENIE_INTERFACE routine

GENIE_INTERFACE
CLIENT
Connects to GMAN to exchange runs

GMAN
HOST
Manages and exchanges runs with the
calling program and any connected
slave computers

GSLAVE
CLIENT
Executes any model
runs received

GSLAVE
CLIENT
Executes any model
runs received

GSLAVE
CLIENT
Executes any model
runs received

TCP/IP communication

TCP/IP communication

Design Concepts 3

Purpose and Scope

The purpose of this report is to describe GENIE, a suite
of programs that can be used to parallelize model runs over a
local network or the Internet, using the model independence
protocols of PEST (Doherty, 2010). This report is intended for
advanced users of programs like PEST. However, each pro-
gram in the GENIE suite was designed to be simply executed,
and beginning users looking to use GENIE with programs
for which it is already available (for example, Parallel PEST/
PPEST of Doherty (2010) or PEST++ of Welter and oth-
ers (2012)) can focus on the input instructions (appendix 1),
which forms a quick starting point for the primary GENIE
components (GMAN and GSLAVE).

A more sophisticated, higher level purpose of this report
is to facilitate the linking of existing software with GENIE to
make use of GENIE’s powerful programming classes (objects)
and tools. The majority of the appendixes detail these classes
and tools and provide an example and associated source code,
using PPEST, of how to link an existing program with the
interface routine. Therefore, although this report provides
simple instructions for users (appendix 1), most of its presen-
tation conveys the more advanced concepts of program design
in order to facilitate integrating code developed by others. All
parameter-estimation-related terminology and concepts use
the convention and derivations presented and cited by Doherty
(2010) and Doherty and Hunt (2010) and are omitted here for
brevity.

Design Concepts

The following descriptions detail the methods
employed by the GENIE suite of programs to ensure optimal
scalability and to minimize the total execution time for run
collections. A “run collection” is the series of runs being man-
aged by the run manager, GMAN. The definition of a “run,”
the low-level message-passing infrastructure developed for
GENIE, and the benefits of object-oriented programming for
GENIE are now discussed.

The Structure of a “Run”

The term “run” in this report will be used to describe
a single forward model run; for example, a MODFLOW
(Harbaugh, 2005) or MT3D (Zheng, 2010) model run. This
definition is used because it is consistent with terminology
employed by PEST and Monte Carlo simulations. Defini-
tion of a run in this manner implies that multiple runs are of
the same model type but with differing inputs—as would be
the case if doing parameter sensitivity runs such as used to
construct the Jacobian matrix. Moreover, the model input
values (or parameter values) are what distinguish one run from
another. Given this definition, the constituents of a run are
listed in table 1.

GENIE itself is not limited to this strict definition of a
run. In fact, GENIE was developed to be more flexible, in
that a run can be considered any call to a batch or executable
file; that is, a set of runs can be structured such that each run
is a different model with a unique executable, such as run
1 = a MODFLOW model and run 2 = a MT3D model. The
exchange of a run between the calling program and GMAN
and GSLAVE version 1.0 is memory intensive. Each con-
stituent is essentially a unique array (see appendix 2) with all
runs included in this array. For example, when linking with
the interface routine, an NRUN * NPAR element vector is
required, where NRUN is the number of runs and NPAR is the
number of parameters.

Model Independence

GENIE adopts the template (*.tpl) and instruction (*.ins)
file protocols of PEST to realize model independence. Tem-
plates of input files are used to interact with models. In the
broadest sense, a template file is simply a copy of a model
input file with instances of a particular parameter value
replaced with the corresponding parameter variable name.
Instructions are used to read required result values from
model output files. An instruction file is a list of instructions
that are interpreted to parse model output files and retrieve
the necessary simulated equivalents. Readers are referred to
Doherty (2010) for the specifics of template and instruction
files, including examples.

Table 1. The constituents of a model run.

Constituent Description

Executables Number and name.
Parameters Number, name, and value. Using the template protocols of PEST, the unique input set for each

model run is contained in the parameter values.
Desired model outputs (observations) Number, name, and value. The instruction protocols of PEST are used to extract model outputs.

These are returned to the calling program once a run is complete.
Template and model input files Number and name. For every template file, the corresponding model input file is required.
Instruction and model output files Number and name. For every instruction file, the corresponding model output file is required.

4 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

C++ and Object-Oriented Program (OOP) Design

GENIE was developed almost exclusively in C++, which
is an object-oriented programming (OOP) language and which
was used because objects provide a well-established, concise,
and extensible means of organizing the functionality of the
various programs available to GENIE. Objects are often con-
sidered to be overly complicated and sophisticated. Although
this can be true, especially for optimal object-oriented pro-
gramming, their use once coded is not difficult. In addition,
in the general sense, the overarching concept is similar to
modules in Fortran. Objects are an organizational tool; the
code contained within them is still linear—that is, it proceeds
from line 1 to the end according to the programmer’s logic,
just as in Fortran. In addition, because C++ is rooted in C,
it is readily compiled with other programming languages,
including Fortran, Java, and Python. The example in appen-
dix 3 illustrates how straightforward it is to compile the
GENIE_INTERFACE routine with the Fortran program
PPEST of Doherty (2010). The ease with which C++ inte-
grates with other languages notwithstanding, it is important
to note that language-specific differences may need to be for-
mally addressed. For example, Fortran stores two-dimensional
arrays as column-major, whereas C++ stores them as row-
major. This difference is highlighted in the example in
appendix 3.

Inheritance and polymorphism are perhaps two of the
most recognized advantages of OOP. With inheritance, an
object—a subclass or derived class—can inherit the attri-
butes and behavior of a pre-existing class (or superclass).
Polymorphism allows an object to have more than one form;
that is, objects of different types can be defined and invoke
methods or properties of the same name, but with type-
specific functionality. For example, two computers connected
via TCP/IP over the Internet are each nodes in this two-
computer network. One computer is the host, whereas the
other is the client. Host and client are different types of
nodes; the host accepts connections, and the client initiates
connection with a host. With C++, a generic node class can
be defined with properties and methods common to both the
client and host. CLIENT and HOST classes can then be
defined to inherit these common attributes, but with behav-
ior unique to their type. From a programming perspective,
this polymorphism allows code used to instantiate the host
in GMAN to be reused in GSLAVE to instantiate a client.
Indeed, at the most basic level, both GMAN and GSLAVE
offer the same functionality; what they do with a run is the
only difference. Such a design results in an extremely fluid
object library that developers can exploit to make robust and
sophisticated managers for their own software, more quickly
than if they had to program each object independently. More-
over, maintenance, extension, and debugging of the result-
ing object-orientated code are more efficient than traditional
procedural programming.

Message-Passing Infrastructure

GENIE version 1.0 uses only the TCP/IP infrastructure
to communicate between its different components. Although
other high-level, freely available interfaces exist, the most
popular, MPI (MPI Forum, 2009), requires a list of the
computers to be used in the network. In GENIE it was more
desirable to retain the most flexibility to add and remove nodes
(clients) given the dynamic nature of commonly available
computing resources, such as cloud computing. Rather than
invoking MPI, a low-level message-passing infrastructure was
developed to share information between the different compo-
nents of the program suite. A binary message is made of two
parts: a header and a data section. The header is of fixed size
and informs the recipient how to interpret the message; spe-
cifically, how many bytes are contained in the data portion of
the message and the type of that data, whether it is an array of
integers or a string or real number. This low-level approach is
flexible enough to be used to transmit and process a variety of
messages. Developers can use it to create their own messages,
furthering the independent nature of GENIE.

The Run Manager—GMAN
The following sections detail the approaches used by

GENIE to address the scalability and load-balancing issues
discussed by Schreüder and others (2011).

Scalability

The goal of optimizing scalability is to mitigate potential
bottlenecks in the job flow. A bottleneck occurs when all the
computers in the network wait until one or more nodes work
to complete a task. In the case of an embarrassingly paral-
lel problem, this bottleneck is typically the host computer
attempting to exchange and process messages with potentially
thousands of slave computers (Schreüder and others, 2011). To
ensure scalability, the simplest and best solution is to mini-
mize the amount of work the host (or run manager) is respon-
sible for and, following that, to distribute this workload by
parallelizing the host itself. In GENIE, GSLAVE utilizes the
smart slave concept discussed by Schreüder (2009) to reduce
the workload of the run manager. A smart slave is respon-
sible for its own overhead because it writes and reads model
files and exchanges only the smallest amount of information
needed—exchanging parameter input values and retrieving
run results—with the run manager. Utilizing smart slaves, the
main tasks left to the run manager are the following:

• exchanging messages with the different slave comput-
ers (including disconnects),

• acting upon these messages, and

• distributing/managing the runs (load balancing).

Limitations of Version 1.0 5

There are three primary approaches to handling multiple client
requests:

1. The synchronous approach, in which the host
continuously polls each connected socket and pro-
cesses messages sequentially. It is apparent that this
approach can result in a bottleneck because a mes-
sage must be received and processed in its entirety
before another can be handled.

2. The asynchronous approach, in which the host
“waits” upon all clients simultaneously. This
approach is event driven, so the host no longer polls
sockets continuously. Instead, the host is “flagged”
by the operating system (OS) when a communication
on any socket is pending. However, this approach
can result in a bottleneck because the host is still
required to process each message sequentially.

3. The multi-threaded approach, in which a unique
process or “thread” is spawned to handle each client.
Although this approach is well suited to mitigate
potential bottlenecks, it is conceivable that a CPU
can become hindered by thousands of threads con-
tinuously polling their assigned sockets.

GMAN version 1.0 uses a hybrid approach of the asyn-
chronous and multi-threaded approaches above, in which
each client is assigned a unique, secondary thread to handle
communication asynchronously for the host. With such an
approach, the multi-threaded feature allows several messages
to be handled simultaneously, while the asynchronous aspect
ensures that threads are active only while processing a mes-
sage. In addition, this approach reduces the responsibility
of the host’s primary thread to managing and balancing the
runs.

Load Balancing

The primary concern of effectively managing the model
simulations is optimally balancing the total run load to ensure
the total time needed to finish all the runs is minimized. If
all the slaves are exactly the same speed and the time to
complete each model run is consistent, load balancing is
straightforward. However, this cannot be expected for every
GENIE application, where it is likely slaves of varying speed
will be used. In this case, if faster machines are idling while
slower ones are still executing their runs, these same runs will
be started on the faster machines. The result is accepted from
the first slave to finish and the run terminated on the other.
When a potential slave first connects to the run manager, it
sends a series of introductory messages including some mea-
sure of its speed1, which GMAN then uses to prioritize or

1 Based on the Linpack Benchmark (Dongarra, 2011) used to rate the top
supercomputers. It solves a dense system of linear equations using LU factor-
ization and reports the “MegaFLOPS” rating, or the millions of floating point
operations per second.

rank the available slaves. GMAN organizes the complete
set of runs into different queues according to their progress
state: to do, in progress, complete, or sent. The primary thread
in GMAN simply waits for a signal from one of the client
threads and then updates the status of each run to reflect its
progress.

The Run Executor—GSLAVE
Use of the smart computer slave concept (Schreüder,

2009) in the GENIE suite minimizes the functional role of the
run manager, GMAN, making it more scalable. A smart slave
is one that is responsible for much of its own run overhead,
especially the writing and reading of model files. Information
needed for an entire run must be sent by GMAN to GSLAVE;
however, only the results and the “true” parameter values
need be returned (including the index of the run). Runs are not
started as system calls by GSLAVE. Instead they are started
as processes. By starting runs in this manner, their operating-
system-specific process ID number is readily available and
can be used to monitor the progress of that run—and regain
control of that run in the event GSLAVE fails (connection with
GMAN is lost) and is subsequently restarted. In addition, the
process ID provides a mechanism by which orphan processes
can be tracked and handled. GSLAVE uses an asynchronous
polling approach to monitor communication with GMAN. A
single thread is used because GSLAVE is communicating only
with GMAN. The polling is timed, which means for a user-
specified time GSLAVE is idle and is only “active” for the
fraction of a second required to check on the status of the run
it is executing. With this approach, GSLAVE is not consuming
CPU resources that are better used by a model run.

Limitations of Version 1.0
In order to make GENIE accessible to most applications,

the design is extensible. To better extend GENIE, the limita-
tions of version 1.0 are included here.

• Unlike BeoPEST of Schreüder (2009), which includes
MPI and TCP/IP communication, GENIE version 1.0
supports only TCP/IP communication.

• Only IP v4 is supported by the GENIE version 1.0
suite. Although relatively trivial to include compat-
ibility to IP v6, there existed no means to test such an
extension. Thus, a release of an IP v6 compatible ver-
sion of GENIE is a topic of ongoing work.

• GENIE version 1.0 is interfaced only with PPEST of
Doherty (2010) (also known as GPEST) and PEST++
(Welter and others, 2012).

6 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

• The GENIE interface routine is memory intensive: a
block of memory is required to hold all of the param-
eter values and results for each run, though creating
a more memory-lean interface is a topic of ongoing
work.

• GENIE version 1.0 is programmed only for the
Windows®2 operating system, though porting to UNIX/
Linux®3 is a topic of future work.

• Although this program has been used by the U.S.
Geological Survey (USGS), no warranty, expressed or
implied, is made by the USGS or the U.S. Government
as to the accuracy and functioning of the program and
related program material nor shall the fact of distribu-
tion constitute any such warranty, and no responsibility
is assumed by the USGS in connection therewith.

Summary
The concepts of GENIE, a model-independent suite of

programs, are documented herein. GENIE can be used to gen-
erally distribute, manage, and execute multiple model runs via
the TCP/IP infrastructure. For uses where GENIE has already
been combined with the program of interest, the user can
simply invoke GENIE by using the instructions in appendix 1.
This functionality is available for PPEST of Doherty (2010)
and PEST++ (Welter and others, 2012). In addition to the run
manager and run executer that are of most use to the majority
of users, the full suite also includes a GENIE_INTERFACE
routine that can be compiled as part of any program and
used to exchange model runs with the run manager. Because
communication is via TCP/IP, any computer connected to the
Internet can serve in any of the capacities offered by this suite.
Model independence is consistent with the existing template
and instruction file protocols of the widely used PEST pro-
gram. Source code for the interface routine and executables
for GMAN and GSLAVE are available for download at http://
pubs.usgs.gov/tm/tm7c6/.

References

Doherty, J., 2010, PEST, Model independent parameter
estimation—User Manual (5th ed., with slight additions):
Brisbane Australia, Watermark Numerical Computing,
336 p.

2 “Windows” is a registered trademark of Microsoft Corporation in the
United States and other countries.

3 “Linux” is the registered trademark of Linus Torvalds in the U.S. and
other countries.

Doherty, J.E., and Hunt, R.J., 2010, Approaches to highly
parameterized inversion—A guide to using PEST for
groundwater-model calibration: U.S. Geological Survey
Scientific Investigations Report 2010–5169, 59 p.

Dongarra, J.J., 2011, Performance of various computers using
standard linear equations software: Knoxville, Tenn., Uni-
versity of Tennessee, Computer Science Technical Report
Number CS-89-85, 107 p., accessed December 13, 2011, at
http://www.netlib.org/benchmark/performance.ps.

Foster, I., 1995, Designing and building parallel programs:
Reading, Mass., Addison-Wesley Pearson Education, 430 p.

Harbaugh, A.W., 2005, MODFLOW-2005, the U.S. Geologi-
cal Survey modular ground-water model—The ground-
water flow process: U.S. Geological Survey Techniques and
Methods 6–A16 [variously paged].

Hunt, R.J., Doherty, J., and Tonkin, M.J., 2007, Are models
too simple? Arguments for increased parameterization:
Ground Water, v. 45, no. 3, p. 254–262.

Hunt, R.J., Luchette, J., Schreuder, W.A., Rumbaugh, J.O.,
Doherty, J., Tonkin, M.J., and Rumbaugh, D.B., 2010,
Using a cloud to replenish parched groundwater modeling
efforts: Ground Water, v. 48, no. 3, p. 360–365, doi:10.1111/
j.1745-6584.2010.00699.x

MPI Forum, 2009, MPI—A Message-Passing Interface
Standard (version 2.2): Accessed December 2009 at
http://www.mpi-forum.org.

Schreüder, W.A., 2009, Running BeoPEST, in Tonkin, M.J.,
ed., Proceedings, PEST Conference 2009, Potomac, Md.,
November 1–3, 2009: Bethesda, Md., S.S. Papadopulos and
Associates, p. 228–240.

Schreüder, W.A., Muffels, C., Tonkin, M., Doherty, J., Hunt,
R.J., and Welter, D., 2011, Efficient use of parallel resources
using PEST, in MODFLOW and More 2011, Integrated
Hydrologic Modeling, International Ground Water Model-
ing Center, Colorado School of Mines, Golden, Colo.,
June 6–8, 2011: v. 1, p. 787–791.

Welter, D.E., Doherty, J.E., Hunt, R.J., Muffels, C.T., Tonkin,
M.J., and Schreüder, W.A., 2012, Approaches in Highly
Parameterized Inversion—PEST++, a Parameter
ESTimation code optimized for large models: U.S.
Geological Survey Techniques and Methods, book 7,
section C5, 47 p.

Zheng, Chunmiao, 2010, MT3DMS v5.3—Supplemental
user’s guide: Tuscaloosa, Ala., University of Alabama
Department of Geological Sciences, Technical Report to
the U.S. Army Engineer Research and Development Center,
51 p.

http://www.netlib.org/benchmark/performance.ps
http://www.mpi-forum.org

Appendixes 1 through 3

Appendix 1 9

Appendix 1: Input Instructions

GMAN

GMAN is started by executing the gman.exe file. For example, this file can be copied to the desktop (or a shortcut to
another folder that contains it) and simply double-clicked to start—actions most easily accessed when running models over a
local network only. In the event slave computers are to be used across the Internet, then optional command line switches may be
required.

Options
The following are optional switches that can be used to define a specific socket for GMAN to communicate on:

Switch Description
/ip Used to specify an IP address to use for communication. Switch is not case sensitive. Only IP v4 is supported

currently.
Example: /ip 192.168.0.1

/port Used to specify a PORT to use for communication. This switch is most likely to be required when communi-
cating with slave computers over the Internet. In most cases a specific PORT must be opened in the firewall to
allow Internet communication for GMAN. This switch is used to provide that PORT to GMAN. Viable ports are
between 1024 and 65535. Switch is not case sensitive.
Example: /port 4040

For example, if PORT number 4040 is opened in a firewall, GMAN is started at the command prompt as follows:
gman /port 4040

GSLAVE

GSLAVE is started by executing the gslave.exe file at the command line. The following details the two required switches:
Switch Description

/host Used to specify the socket GMAN is listening on. Switch is not case sensitive.
Example: /host 192.168.0.1:90210

/name Used to uniquely identify the slave computer to GMAN. Switch is not case sensitive.
Example: /name S-1

The switches can be specified in any order. For example:
gslave /interval 1.0 /console on /name S-1 /host 192.168.0.1:4040

Options
The following are optional switches that can be used to define a specific socket for GSLAVE to communicate on:

Switch Description
/ip Used to specify an IP address to use for communication. Switch is not case sensitive. Only IP v4 is supported in

version 1.0.
Example: /ip 192.168.0.1

/port Used to specify a PORT to use for communication. This switch is most likely to be required when communi-
cating with slave computers over the Internet. In most cases a specific PORT must be opened in the firewall to
allow Internet communication for GMAN. This switch is used to provide that PORT to GMAN. Viable ports
are between 1024 and 65535. Switch is not case sensitive.
Example: /port 4040

/interval The number of seconds GSLAVE is idle before checking on a run. For long model run times, this number can
be higher. If this number is unnecessarily low, GSLAVE will consume more CPU resources than it should. For
short run times it is important to make this number small (0.1). The default is 10 seconds.
Example: /interval 0.1

/console Indicates whether the RUN should be executed in a visible console window or not. This switch can be either
ON or OFF. If it is ON, then the RUN console is visible. The default is OFF.
Example: /console ON

Appendix 1

10 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

Appendix 2: Interacting With GENIE Through GENIE_INTERFACE

The Interface Routine

The interface routine is called GENIE_INTERFACE and is available in a file of the same name with extension .cpp. The
purpose of this routine is to provide a conduit for information regarding the exchange of model runs and associated results with
GMAN for the outside program. The outside program needs to prepare the model run information in the array format required
by GMAN and then needs to call the GENIE_INTERFACE routine. The routine returns control to the outside program when all
of the runs are complete, after which the outside program can process the results. The routine is written in C++ but contains the
necessary external interface for compilation with Fortran. Example source code for such an operation is presented in appendix 3.

The following figure shows the routine declaration, and the table below discusses each required parameter. Parameters are
passed by reference (indicated by the * in C++).

int GENIE_INTERFACE(int *nrun,
 int *nexec,
 char *execnams,
 int *npar,
 int *nobs,
 char *_apar,
 char *_aobs,
 double *pval,
 double *oval,
 int *ntpl,
 int *nins,
 char *_tplfle,
 char *_infle,
 char *_insfle,
 char *_oufle,
 char *host,
 char *id,
 int *ikill)

Figure 2–1. The GENIE_INTERFACE routine declaration.

Parameter Type Description

NRUN integer The number of model runs to be managed and executed.
NEXEC integer The number of executable files to be processed as part of a run; currently must

be 1 and multiple executables listed in a batch file.
_EXECNAMS string Array, of size NEXEC, listing each executable file.

(NEXEC)
NPAR integer Number of parameters.
NOBS integer Number of observations.
_APAR string Array, of size NPAR, listing each parameter name.

(NPAR)
_AOBS string Array, of size NOBS, listing each observation name.

(NOBS)

Appendix 2

Appendix 2 11

PVAL double

C/C++: (NRUN,NPAR)
Fortran: (NPAR,NRUN)

Array, of size NRUN * NPAR, listing each parameter value for each run.
Values must be listed in the same order as for _APAR; that is, PVAL(1,1)
is the value corresponding to the parameter named _APAR(1,1). Can be
2D array (NRUN,NPAR) or an equivalent 1D array. Because Fortran is
column-major, the equivalent Fortran array must be dimensioned and filled as
(NPAR,NRUN).

OVAL double
C/C++: (NRUN,NPAR)
Fortran: (NPAR,NRUN)

Array, of size NRUN * NOBS, listing each observation value for each run.
Values must be listed in the same order as for _AOBS; that is, OVAL(1,1)
is the value corresponding to the observation named _AOBS(1,1). Can be
2D array (NRUN,NOBS) or an equivalent 1D array. Because Fortran is
column-major, the equivalent Fortran array must be dimensioned and filled as
(NOBS,NRUN).

NTPL integer Number of template files.
NINS integer Number of instruction files.
_TPLFLE string

(NTPL)
Array, of size NTPL, listing the template file names.

_INFLE string
(NTPL)

Array, of size NTPL, listing the model input file names. These file names
must be listed in the same order as for _TPLFLE; that is, _INFLE(1) is the
model input file whose template is provided by file _TPLFLE(1).

_INSFLE string
(NINS)

Array, of size NINS, listing the instruction file names.

_OUFLE string
(NINS)

Array, of size NINS, listing the model output file names. These file names
must be listed in the same order as for _INSFLE; that is, the instructions to
read _OUFLE(1) are listed in file _INSFLE(1).

HOST string A string containing the socket that GMAN is listening on.
ID string A string identifying the calling program to the run manager – for example,

“ppest” or “pest++”
IKILL integer A flag indicating whether GMAN and all connected GSLAVE instances are

to be terminated (0, terminate GMAN; 1, keep GMAN alive). This option is
superseded by the GENIE_KILL_GMAN routine.

The interface routine returns a value of non-zero if there is an error and a value of zero otherwise. An example of using the
interface with Fortran is provided in appendix 3 of this report.

Terminating GMAN and Any Connected Slave Computers (GSLAVE)

A routine, GENIE_KILL_GMAN, is available with genie_interface.cpp that can be called to terminate GMAN and any
connected instances of GSLAVE. The necessary external interfaces for compilation with Fortran are provided in the source code.
An example of compiling this routine with Fortran is available in appendix 3 of this report. The routine declaration is shown in
the figure below, and the table below contains a description of each parameter.

GENIE_KILL_GMAN(char *id,char *host)

Figure 2–2. The GENIE_KILL_GMAN subroutine declaration.

Parameter Type Description

ID string A string identifying the calling program to the run manager; for example, “ppest” or
“pest++”.

HOST string A string containing the socket that GMAN is listening on.

12 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

Output

The GENIE_INTERFACE routine writes to a log file called genie_interface.log. This file is opened in “append” mode,
which means log entries are appended to the end of the file. It is up to the developer/user to reset (clear) this file as needed. Each
time the GENIE_INTERFACE routine is called, a header “New call for runs --->” is written to the file. The following is
a list of log entries recorded to the file:

• Creating synchronization objects

• Preparing executable(s)

• Preparing arrays

• Preparing run collection

• Ready to execute XX runs (where XX is the number of model runs)

• Connecting ID to GENIE RUN MANAGER (where ID is the ID listed in the table above)

• Sending introductory messages to GENIE RUN MANAGER

• Starting RECEIVOR thread to handle communication with GMAN

• Sending RUNS to GMAN

• “Waiting for runs to complete --->” (IDs of completed runs follow)

If there is an error during any of these steps, it is recorded to the log file. Otherwise, upon successful completion of the
routine “All runs are complete” is written to the file, followed by a listing of the secondary threads that are terminated. This file
can be used to help debug issues when linking with the interface routine.

GENIE Classes

This section details some of the classes developed for the GENIE suite that will be of use to developers interested in link-
ing existing programs with GENIE. The following is a list of the generic classes developed for the GENIE suite of programs.
Programming-specific details of these classes are provided in the subsections that follow.

Class (or Object) Used by Description

Network programming classes

NODE GMAN, Contains the bulk of the functionality required to start a node
GSLAVE, and
GENIE_INTERFACE

(client or host) using TCP/IP for communication.

HOST GMAN The host instance of the NODE class. This class inherits
the properties and methods of the NODE class, with unique
functionality for opening and listening on a socket to accept
incoming client connections.

CLIENT GMAN, The client instance of the NODE class. This class inherits
GSLAVE, and the properties and methods of the NODE class, with unique
GENIE_INTERFACE functionality for connecting to a host.

Message-passing classes

HEADER GMAN, The header portion of a message.
GSLAVE, and
GENIE_INTERFACE

Appendix 2 13

Class (or Object) Used by Description

BUFFER GMAN,
GSLAVE, and GENIE_INTER-
FACE

A generic buffer class typically used to store the data portion
of a message.

MESSAGE GMAN,
GSLAVE, and
GENIE_INTERFACE

The low-level message-passing infrastructure developed for
GENIE.

Multi-threading classes

THREAD GMAN,
GSLAVE, and
GENIE_INTERFACE

The generic class used to create a new thread. Specific func-
tionality for a thread is contained in other classes.

CONNECTOR GMAN An instance of the thread class with specific functionality for
accepting connection requests from clients.

RECEIVOR GMAN,
GSLAVE, and
GENIE_INTERFACE

An instance of the thread class with specific functionality for
receiving messages between two nodes.

SENDOR GMAN An instance of the thread class with specific functionality for
sending messages between two nodes.

TERMINATOR GMAN An instance of the thread class with specific functionality for
terminating connections between a client and host and ending
the RECEIVOR thread handling communication.

“Run” classes

MODELRUN GMAN,
GSLAVE, and
GENIE_INTERFACE

The definition of a complete model run.

MODELRESULT GMAN,
GSLAVE, and
GENIE_INTERFACE

The result portion of a model run, including functionality to
send and receive this aspect of a run.

Support classes

DEFINITIONS GMAN,
GSLAVE, and
GENIE_INTERFACE

A generic set of definitions containing specific message types,
connection types, and error codes.

COMMANDLINE GMAN,
GSLAVE, and
GENIE_INTERFACE

Retrieves the arguments for different command line switches.

EXECUTABLE GMAN,
GSLAVE, and
GENIE_INTERFACE

The properties of a model executable; namely, the file name,
path, and any arguments.

LINPACK_BENCH GSLAVE Returns a measure of the speed of a computer.

SOCKET_UTILITIES GMAN,
GSLAVE, and
GENIE_INTERFACE

A set of routines used by the node, client, and host classes to
check different aspects of a socket.

14 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

The following subsections detail the specific methods and properties of classes that will be of most use to developers;
namely, those related to TCP/IP communication, the message-passing infrastructure, and multi-threading. These classes are very
general and do not necessarily have to be used together to write a run-management-type program.

Network programming: NODE
The NODE class contains all the common functionality of HOSTs and CLIENTs. The HOST and CLIENT classes inherit

these properties and methods and define the functionality for those methods qualified as virtual.

Attribute Description
terminate (property – boolean)

True if node is to be disconnected.
False otherwise.

type (property – integer)
The connection type of the node, where type is defined in definitions.h and can be one of the
following:
TYPE_NOT_SET: Not set.
TYPE_MODEL: The calling program; for example, PEST connects to GMAN as type “model”
TYPE_SLAVE: A slave-computer /client connection.
TYPE_FACE: Option not currently used.

status (property – integer)
The current status of a CLIENT node. Can be one of the following, as defined in definitions.h:
WAITING_FOR_RUN: Signals the HOST that it is ready to receive a run.
RUN_FAILED: Signals the HOST that the run it is charged with completing failed.
READY_TO_START: Not used.
RUN_COMPLETE: Signals the HOST that the run it is charged with completing was successful
and to expect results.

rating (property – double)
The speed rating of the computer as returned by LINPACK_BENCH. This rating is used to sort
the collection of CLIENTS according to their relative speed.

name (property – string)
The name of the node.

sock (property – socket)
The socket of the node as set by the operating system for a given IP and PORT.

run_start (property – collection, list of type clock_t)
The start time of each model run executed by the node, where time is the number of seconds
since the program was executed.

run_end (property – collection, list of type clock_t)
The end time of each model run executed by the node, where time is the number of seconds
since the program was executed.

initialize (virtual method – integer)
The routine called to initialize the properties of a node prior to the node actually starting. Re-
turns 0 if the function fails.

start (virtual method – integer)
The routine that starts the node: In the case of the CLIENT it initiates connection to the HOST,
or in the case of a HOST it enters into a listening state to accept incoming connection requests.
Returns 0 if the function fails.

stop (method – void)
Disconnects the node and frees any allocated memory.

makenonblocking (method – integer)
Sets the non-blocking property of the socket to true. Returns 0 if the function fails.

settype (method – void)
Sets the type property of the node.

Appendix 2 15

The following methods are used to share the different message types between the different components of GENIE. Devel-
opers who require their own messages must first create the message and then use the templates provided by these methods to
send the message.

sendrun (method – integer)
Send a run.

sendtype (method – integer)
Send the type of the node.

sendspeed (method – integer)
Send the rating of the node.

sendname (method – integer)
Send the name of the node.

sendcommand (method – integer)
Send a command to a node.

sendstatus (method – integer)
Send the status of the node.

Network programming: HOST
The HOST class inherits the properties and a few of the methods contained in the NODE class. In addition to two unique

methods, this class defines the functionality of the virtual methods of the NODE class.

Attribute Description

initialize (method – integer)
Routine to initialize the properties of the host prior to its actually starting. Returns 0 if the
function fails.

start (method – integer)
Routine to start the node. Opens a socket and listens for new connections. Returns 0 if the
function fails.

acceptnewconnection (method – socket)
Routine to accept a new client connection. Returns a SOCKET to the client.

waitforcommunication (method – integer)
Routine to a wait a specified amount of time on a set of SOCKETs until communication is
pending on at least one of them or the time expires.

Network Programming: CLIENT
The CLIENT class inherits the properties and a few of the methods contained in the NODE class. This class defines the

functionality of the virtual methods of the NODE class.

Attribute Description

initialize (method – integer)
Routine to initialize the properties of a client prior to its actually starting. Returns 0 if the
function fails.

start (method – integer)
Routine to start the node. Initiates connection to the HOST. Returns 0 if the function fails.

setsocket (method – void)
Routine to set the socket of the CLIENT.

16 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

Message Passing

HEADER
The HEADER class is a set of properties comprising the header of a message. The header is a fixed size (16 bytes cur-

rently) that dictates how to read the rest of a message.

Attribute Description

type (property – integer)
The type of the message. Can be one of the following defined in definitions.h: COMMAND,
STATUS_UPDATE, CONNECTION_TYPE, CONNECTION_NAME, CONNECTION_
SPEED, or RUN

bytesize (property – integer)
The number of bytes constituting a single element of the buffer portion of a message.

nbytes (property – integer)
The number of elements in the buffer portion of a message.

compression (property – integer)
Currently not used.

BUFFER
The BUFFER class is used to store the data portion of a message.

Attribute Description

size (property – integer)
The type of the message. Can be one of the following defined in definitions.h: COMMAND,
STATUS_UPDATE, CONNECTION_TYPE, CONNECTION_NAME, CONNECTION_
SPEED, or RUN

buf (property – character pointer)
The number of bytes constituting a single element of the buffer portion of a message.

alloc (method – void)
Allocate buf to the user-specified size.

dealloc (method – void)
Deallocate buf.

copyfrom (method – void)
Copy source memory block into buf. Uses C memcpy function.

copyto (method – void)
Copy buf to a user-specified memory block. Uses C memcpy function.

Appendix 2 17

MESSAGE
The MESSAGE class is used to prepare, send and receive a message.

Attribute Description

msgsize

datasize

header

data

alloc

dealloc

setmsgsize

setdatasize

waitformessage

receiveheader

receivedata

sendme

(property – integer)
The total number of bytes in the message, including header and data components.
(property – integer)
The number of bytes in the data component of the message.
(property – header)
The header. See header class.
(property – buffer)
The data portion of the message. See buffer class.
(method – void)
Wrapper for the buffer class alloc method.
(method – void)
Wrapper for the buffer class dealloc method.
(method – void)
Routine to set the size of the message. Sets msgsize.
(method – void)
Routine to set the size of the data portion of the message. Sets datasize.
(method – integer)
Routine to a wait a specified amount of time for communication on a specific CLIENT SOCK-
ET.
(method – integer)
Routine to receive the header portion of a message from a CLIENT.
(method – integer)
Routine to receive the data portion of a message from a CLIENT according to the header.
(method – integer)
Sends a message to a CLIENT.

Multi-threading

The following class works for the Windows OS, the only operating system for which GENIE is available currently.

THREAD
The THREAD class contains most of the code required to start a secondary thread. It can be used to initialize and start a

thread—the specific function of the thread is defined in a subclass. By separating the functionality in this manner, it is easy to
create threads to handle a variety of purposes or create collections of threads as required for multiple client connections. The
GENIE suite implements four different thread types.

Attribute Description

handle

h_thEnd

threaded

(property – handle)
The handle of the thread (handles are used by Windows to uniquely identify different compo-
nents).
(property – handle)
A handle to the mutex used to signal termination of the thread.
(property – unsigned integer)
A unique ID assigned to the thread. Not used except in error messages.

18 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

execute (virtual method – integer)
The specific routine executed by the thread. What distinguishes the different threads started as
part of GENIE is their implementation of this routine; for example, the RECEIVOR and SEN-
DOR threads.

ThreadEntryPoint (method – static unsigned _stdcall)
A required pointer function to the execute routine.

initialize (method – integer)
Initializes the properties.

start (method – void)
Starts the thread.

Events and mutexes are used to communicate between the different threads. An event is simply a flag that can be used to
trigger actions in other threads. A mutex is a type of event typically used to sign in and out a shared memory resource to prevent
multiple threads from accessing a block simultaneously.

set_event_comm (method – void)
Set event by which this thread can signal the primary thread.

set_mutex_comm (method – void)
Set mutex by which this thread can share memory with the primary thread.

get_parent_end (method – handle)
Returns the primary thread’s end event handle. Used to terminate any secondary threads from
the primary thread.

Model Run

MODELRUN
The MODELRUN class contains all the properties and methods required to define a model run and exchange it between the

different components of the GENIE suite.

Attribute Description
id (property, pointer – integer)

Assigned by GENIE_INTERFACE, ID is a unique identifier for a run within a run collection.
npar (property, pointer – integer)

The number of parameters.
nobs (property, pointer – integer)

The number of observations.
ntpl (property, pointer – integer)

The number of template files.
nins (property, pointer – integer)

The number of instruction files.
nexec (property, pointer – integer)

The number of executables (currently assumed to be 1).
tplfiles (property, pointer – string)

A pointer to an ntpl-element array that contains the name of each template file.
insfiles (property, pointer – string)

A pointer to an nins-element array that contains the name of each instruction file.
infiles (property, pointer – string)

A pointer to an ntpl-element array that contains the name of each model input file.
outfiles (property, pointer – string)

A pointer to an nins-element array that contains the name of each model output file.

Appendix 2 19

Attribute Description
parnams (property, pointer – string)

A pointer to an npar-element array that contains the name of each parameter.
obsnams (property, pointer – string)

A pointer to an nobs-element array that contains the name of each observation.
parvals (property, pointer – double)

A pointer to an npar-element array that contains the value of each parameter.
obsvals (property, pointer – double)

A pointer to an nobs-element array that contains the value of each observation.
exec (property, pointer – EXECUTABLE)

A pointer to an instance of the EXECUTABLE class.
init (method – void)

Initializes the pointer variables.
alloc (method – void)

Initializes the pointer arrays.
dealloc (method – void)

Deallocates pointer variables and arrays.
set_exec (method – integer)

Sets the exec properties from a string.
send (method – integer)

Sends the run to the specified socket.
set_frm_msg (method – integer)

Sets the variables and arrays of this class from a message object.
write_input (method – integer)

Only available to GSLAVE.
An interface to the PEST Fortran subroutine used to write model input files from template files.

read_output (method – integer)
Only available to GSLAVE.
An interface to the PEST Fortran subroutine used to read model output files according to the
instructions in the instructions files.

delete_output (method – integer)
Only available to GSLAVE.
A system call to delete the model output files from a folder before a run is executed.

MODELRESULT
Similar to the MODELRUN class, but contains only the properties and methods required to send and process model

results—the observation values and the adjusted parameter values given the precision they could be written to the model input
file.

20 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

Appendix 3: Example Application—Interfacing GENIE with PPEST
This section describes in detail the steps taken to link Parallel PEST (PPEST; Doherty, 2010) to GENIE. The link primarily

consists of exchanging model runs required and associated results with the run manager, GMAN, using the GENIE_INTER-
FACE. There are four instances in which PPEST may execute a model run or a collection of runs:

• in the initial model run to get the current objective function,

• during sensitivity matrix calculation,

• during parameter update calculation if using the Levenberg-Marquardt technique, and

• in the final model run using best parameter values.
The PPEST parallel run manager is encapsulated in a subroutine called DORUNS in source file parpest.f. This routine

serves a role similar to GMAN—it is responsible for distributing and collecting model results as they become available. It is
called during each of the four instances listed above. PPEST stores the parameter and observation values for different model
runs in direct-access binary files. The runs distributed by the DORUNS routine are constructed from these files. The most sig-
nificant change to the PPEST program was development of an additional source file called genie.f that contains the routines that
prepare the PEST data for use with GENIE_INTERFACE and then call this routine. This file is of most interest to developers
wishing to link with the GENIE suite.

Most important in the genie.f file is a DORUNS-like routine called DORUNS_GENIE. DORUNS_GENIE gathers
runs from the various binary files used by PEST to store parameter and observation information, puts them in the necessary
arrays required by the GENIE_INTERFACE routine, calls the routine, and finally processes the results in a manner similar
to DORUNS so that upon exit from the routine PPEST can continue as normal. All of the modules and subroutines contained
within genie.f are listed below. The complete source code is listed at the end of this appendix.

Subroutine Description

GENIE_DATA Module. Contains the host socket information. These values are set within pest.f from the
command line.

checkhost Routine to verify the host provided is valid. Currently this check is limited to IP:PORT division.
DORUNS_GENIE Routine equivalent to PEST routine DORUNS for use with GENIE.
END_GENIE Terminates GMAN and any connected GSLAVES.

All of the changes made to the existing PPEST source code are contained within GENIE preprocessor definitions. The fol-
lowing lists the subroutines that were modified, including the source file they belong to.

Subroutine File Description Change

slavdat1 parpest.f Opens the run manager file and reads the
number of slaves.

Initializes the variables set by this
routine because the details are not
required.

slavedat2 parpest.f Reads part of the run manager file and
tests part of the information in it.

Skips details and writes host socket
and other details to PPEST run
management record (RMR) file.

writslv2 parpest.f Summarizes slave properties to the RMR
file.

Added property statements to reflect
use of GENIE.

run_pest runpest.f Main PEST subroutine. Executes the
functionality of PEST.

Added calls to GENIE_INTERFACE
and GENIE_KILL_GMAN to
terminate.

parse_command_
line

pest.f Parses the PEST command line. Modified to get host socket.

pest pest.f Main program—initialization and call to
run_pest.

Modified to indicate use of GENIE.

Appendix 3

Appendix 3 21

genie.f Source Code

c ---
 module GENIE_DATA
 implicit none

 integer :: port,ikill
 character*25 :: ip
 character*50 :: host

 contains

c ***
 subroutine checkhost(ifail,host_)
 implicit none
c CTM Mar 2011
c routine to verify the host provided is valid
c currently this check is limited to ip:port division
c ***

 integer :: ifail,idiv,ierr
 character(len=*) :: host_

 ifail=0

 host=’’
 ip=’’
 port=-999

c look for : (separator between port and host)
 idiv=index(host_,’:’)
 if(idiv.eq.0) then
 ifail=1
 return
 end if

c parse host into port and ip sections
 ip=host_(1:idiv-1)
 read(host_(idiv+1:len_trim(host_)),*,iostat=ierr) port
 if(ierr.ne.0) then
 ifail=1
 return
 end if

 host=host_

c write(*,*) trim(ip),’,’,port,’,’,trim(host)

 return

 end subroutine checkhost

c ***
 subroutine DORUNS_GENIE(ifail,nrun,pitn,ippp,ippo,ptunit,ptfile,
 + npar,nobs,ntpl,nins,parregfile,obsregfile,

22 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

 + parnam,obsnam,scale,offset,numcom,comlin,
 + tplfle,infle,insfle,outfle,irestart)
 implicit none
c CTM Apr 2011
c routine equivalent to PEST routine DORUNS for use with GENIE
c ***

c Variables associated with call to this routine
 integer :: gfail
 integer :: ifail,nrun,ippp,ippo,npar,nobs,ntpl,
 + nins,ptunit,numcom,irestart,pitn
 double precision :: scale(npar),offset(npar)
 character*20 :: id
 character*200 :: c_parregfile,c_comlin(numcom),ptfile
 character*(*) :: parregfile,obsregfile,parnam(npar),
 + obsnam(nobs),comlin(numcom),
 + tplfle(ntpl),infle(ntpl),
 + insfle(nins),outfle(nins)

c Routine specific variables
 integer :: jfail,n,ierr,ptcount,titn,itemps,jj,
 + i,ntodo
 integer,allocatable :: istatr(:)
 double precision,allocatable :: workvec(:),parval(:,:),obsval(:,:)
 character*11 :: atemp
 character*2000 :: cline

c GENIE INTERFACE ROUTINE
 integer :: GENIE_INTERFACE

 ifail=0

c null terminate Fortran strings
 id=”PPEST”//CHAR(0)
 host=host//CHAR(0)
 ip=ip//CHAR(0)
 c_parregfile=trim(adjustl(parregfile))//CHAR(0)

c can’t simply pull all “words” out of comlin array as
c each element may contain both an executable name and
c commandline arguments.
c add ‘fake’ end-of-line delimiter to be parsed by C++
 do n=1,numcom
 c_comlin(n)=trim(adjustl(comlin(n)))//’|’
 end do

c the restart file situation is handled
 allocate(workvec(max(nobs,npar)),istatr(nrun))
 ptcount=0
 istatr=0
 workvec=0.0d0
 if(irestart.eq.1) then
 call ffopen(jfail,-ptunit,’w’,ptfile,25,cline)
 if(jfail.ne.0)then
 jfail=0
 irestart=0

Appendix 3 23

 else
 write(ptunit,iostat=ierr) pitn
#ifdef FLUSHFILE
 call flush(ptunit)
#endif
 end if
 elseif(irestart.eq.2) then
 ptcount=0
 call ffopen(jfail,-ptunit,’r’,ptfile,22,cline)
 if(jfail.ne.0) then
 jfail=0
 else
 titn=0
 read(ptunit,iostat=ierr) titn
 if(pitn.eq.titn) then
 do
 read(ptunit,iostat=ierr) itemps
 if(ierr.ne.0) exit
 do jj=1,nobs
 workvec(jj)=-1.1d300
 end do
 istatr(itemps)=-99
 ptcount=ptcount+1
 read(ptunit,iostat=ierr) (workvec(jj),jj=1,nobs)
 if(ierr.ne.0) exit
 call store_parallel_register(jfail,nobs,ippo,itemps,
 + workvec,obsregfile)
 if(jfail.ne.0) then
 ifail=1
 close(unit=ptunit,iostat=ierr)
 deallocate(workvec)
 deallocate(istatr)
 return
 end if
 end do
 close(unit=ptunit,status=’delete’,iostat=ierr)
 if(itemps.ne.0) then
 do jj=1,nobs
 if(workvec(jj).lt.-1.0d300)then
 ptcount=ptcount-1
 istatr(itemps)=0
 exit
 end if
 end do
 end if
 call writint(atemp,ptcount)
 write(*,10) trim(atemp)
c#ifdef INTEL
c icflag=1
c#endif
c iirun=ptcount
c ncall=ncall+ptcount
 call ffopen(jfail,-ptunit,’w’,ptfile,25,cline)
 if(jfail.ne.0)then
 jfail=0
 irestart=0

24 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

 else
 write(ptunit,iostat=ierr) pitn
 if(ptcount.ne.0)then
 do i=1,nrun
 if(istatr(i).eq.-99) then
 call retrieve_parallel_register
 + (jfail,nobs,ippo,i,workvec,obsregfile)
 if(jfail.ne.0) then
 ifail=1
 close(unit=ptunit,iostat=ierr)
 deallocate(workvec)
 deallocate(istatr)
 return
 end if
 write(ptunit,iostat=ierr)i
 write(ptunit,iostat=ierr)(workvec(jj),jj=1,nobs)
 end if
 end do
 end if
#ifdef FLUSHFILE
 call flush(ptunit)
#endif
 if(ptcount.eq.nrun) then
 deallocate(workvec)
 deallocate(istatr)
 return
 end if
 end if
 end if
 end if
 end if
#ifdef LAHEY
10 format(‘+ Results from ‘,a,
 + ‘ model runs read from restart file.’,/)
#else
10 format(‘ Results from ‘,a,
 + ‘ model runs read from restart file.’,/)
#endif

c create run buffer
c Fortran is column-major order - C++ is row-major
 ntodo=nrun-ptcount
 allocate(parval(npar,ntodo),obsval(nobs,ntodo))
 ntodo=0
 do n=1,nrun
 if(istatr(n).ne.-99) then
 ntodo=ntodo+1
 call retrieve_parallel_register(jfail,npar,ippp,n,
 + parval(1:npar,ntodo),parregfile)
 do i=1,npar
 if(scale(i).ge.-1.0d35.and.scale(i).ne.0.0d0) then
 if(scale(i).ne.1.0d0.or.offset(i).ne.0.0d0) then
 parval(i,ntodo)=parval(i,ntodo)*scale(i)+offset(i)
 end if
 end if
 end do

Appendix 3 25

 end if
 end do

c call GENIE to execute remaining runs
 gfail=GENIE_INTERFACE(ntodo,numcom,c_comlin,npar,nobs,parnam,
 + obsnam,parval,obsval,ntpl,nins,tplfle,
 + infle,insfle,outfle,host,id,ikill)
 if(gfail.ne.1) then
 write(*,20)
 ifail=1
 deallocate(workvec)
 deallocate(istatr)
 deallocate(parval)
 deallocate(obsval)
 return
 end if
20 format(2/,3x,’Genie encountered an error executing runs.’)

c save parameter values in case they have changed due to precision demands
 ntodo=0
 do n=1,nrun
 if(istatr(n).ne.-99) then
 ntodo=ntodo+1
 do i=1,npar
 if(scale(i).ge.-1.0d35.and.scale(i).ne.0.0d0) then
 if(scale(i).ne.1.0d0.or.offset(i).ne.0.0d0) then
 parval(i,ntodo)=(parval(i,ntodo)-offset(i))/scale(i)
 end if
 end if
 end do
 call store_parallel_register(jfail,npar,ippp,n,
 + parval(1:npar,ntodo),parregfile)
 end if
 end do

c store the results and save to restart file
 ntodo=0
 do n=1,nrun
 if(istatr(n).ne.-99) then
 ntodo=ntodo+1
 call store_parallel_register(jfail,nobs,ippo,n,
 + obsval(1:nobs,ntodo),obsregfile)
 if(irestart.ne.0) then
 write(ptunit,iostat=ierr) n
 write(ptunit,iostat=ierr) obsval(1:nobs,ntodo)
 end if
 end if
 end do
 if(irestart.ne.0) close(unit=ptunit,iostat=ierr)

c deallocate memory
 deallocate(workvec)
 deallocate(istatr)
 deallocate(parval)
 deallocate(obsval)

26 Approaches in Highly Parameterized Inversion: GENIE, a General Model-Independent TCP/IP Run Manager

 end subroutine DORUNS_GENIE

c ***
 subroutine END_GENIE(ifail)
 implicit none
c CTM May 2011
c terminate GMAN and any connected GSLAVES
c ***

c Routine specific variables
 integer :: ifail
 character*20 :: id

c GENIE INTERFACE ROUTINE
 integer :: GENIE_KILL_GMAN

c null terminate Fortran strings
 id=”PPEST”//CHAR(0)
 host=host//CHAR(0)

c call kill routine
 ifail=GENIE_KILL_GMAN(id,host)
 if(ifail.ne.1) then
 write(*,20)
 ifail=1
 return
 end if
20 format(2/,3x,’Genie encountered an error terminating GMAN.’)

 ifail=0

 end subroutine END_GENIE

Reference

Doherty, J., 2010, PEST, Model independent parameter estimation—User Manual (5th ed., with slight additions): Brisbane Aus-
tralia, Watermark Numerical Computing, 336 p.

Publishing support provided by
Columbus and Lafayette Publishing Service Center

M
uffels and others—

A
pproaches in H

ighly Param
eterized Inversion: G

EN
IE—

Techniques and M
ethods, Book 7, Section C6

	Contents
	Abstract
	Introduction
	Figure 1
	Purpose and Scope

	Design Concepts
	The Structure of a “Run”
	Model Independence
	Table 1
	C++ and Object-Oriented Program (OOP) Design
	Message-Passing Infrastructure

	The Run Manager—GMAN
	Scalability
	Load Balancing

	The Run Executor—GSLAVE
	Limitations of Version 1.0
	Summary
	References
	Appendixes 1 through 3
	Appendix 1: Input Instructions
	Appendix 2: Interacting With GENIE Through GENIE_INTERFACE
	Appendix 3: Example Application—Interfacing GENIE with PPEST

