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Part II. Duty’s Law 

Introduction 

Part II gives a development of Darcy’s than a plausibility argument, and is pre- 
law. This law relates ‘specific discharge, or sented in order to give the reader some 
discharge per unit area, to the gradient of appreciation for the physical significance of 
hydraulic heAd. It is the fundamental relation the relation. 
governing steady-state flow in porous media. Following the program section of Part II 
The development given here should not be a short discussion on generalization of 
taken as a rigorous derivation ; it is no more Darcy’s law is given in text format. 

In mechanics, when considering the steady 
motion of a particle, it is customary to equate 
the forces producing the motion to the fric- 
tional forces opposing it. The same approach 
may be followed in considering the steady 
movement of fluid through a porous medium. 
In studying the motion of a solid particle 
through a fluid, we find that the force of 
friction opposing the motion is proportional 
to the velocity of the particle. Similarly, in 
flow through a porous medium, we will 
assume that the frictional forces opposing the 
flow are proportional to the fluid velocity. Our 
approach, then, will be to obtain expressions 
for the forces driving a flow and to equate 
these to the frictional force opposing the 
flow, which will be assumed proportional to 
the velocity. More exactly, we will take the 
vector sum of the forces driving ,and opposing 
the flow and set this equal to zero. What we 
are saying is that because the fluid motion is 
steady-that is, because no acceleration is 
observed-the forces on the fluid must be in 
balance, and thxerefore that their vector sum 
is zero, at all points. The equation that we 
obtain from this process of balancing forces 

will be a form of Darcy’s law. We begin by 
considering the forces which drive the flow. 

QUESTION 

Suppose we have a pipe packed with sand, 
as in the diagram. The porosity of the sand is 
n. Liquid of density p is circulated through 
the pipe by means of a pump. The dotted 
lines mark out a small cylindrical segment 
in the pipe, of length Al, and of cross-sec- 
tional area A, equal to that of the pipe. A 

14 
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small volume, or element, of the moving stream face of the fluid element by the ad- 
fluid occupies this segment. The fluid pres- jacent fluid element? 
sure at point 1, at the upstream side of the Turn to Section: 

segment, is p,. PI A 25 
Which of the following expressions would p,nA 8 

best represent the force exerted on the up- PlPg 16 

Your answer in Section 19, which you have chosen is not incompatible 

- -$Q(Az-WA), 
with these assumptions, it does not fit them 
as well as one of the other answers. Your 

is not correct. Our assumptions were that the answer assumes the retarding force to be 

frictional retarding force wo,uld be propor- proportional more particularly to the full 

tional in some way to the dynamic viscosity discharge, Q, than to the specific discharge, 

(p), to the volume of fluid in the element Q’A’ 
(Al-n-A), and to the specific discharge, or Return to Section 19 and choose another 
flow per unit area (Q/A). While thme answer answer. 

Your answer in Section 26 is not correct. the density of the fluid, represents its mas8 
The term aZ*n*A gives the volume of fluid in per unit volume. 
the element; the question asked for the mass Return to Section 26 and choose another 
of fluid in the element. Keep in mind that p, answer. 

(4) 
Your answer in Section 35 is not correct. pression for the component of thixs total fosce 

The term d (Ax) 2 + (AZ) * is obviously equal in the direction of flow. We hlave seen that 
to Al, so that the answer you sehzcted is this component is given by the expression 

equivalent to the term p*n.A.g.hZ. But ‘ais we ! .n-A.g-Al.cos 7; the idea of the question 

saw in Section 15, this term gives the magni- 
1s to find a term equivalent to cos y and to 
substitute it into the above expression. 

tude of the total gravitational force on our Return to Section 35 and choose another 
fluid element; what we want here ia an ex- answer. 
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Your answer in Section 31, 

d*nA 
-ii’ 

is not correct. The expression obtained pre- 
viously for the net force was (p,-p,)nA, or 
- ApnA. You have substituted the pressure 
gradimt, 01” rate of pressure change per foot, 
for the small pressure change, -hp. To ob- 
tain a net change, or increment, from a gradi- 
ent, or rate of chlange per unit distance, we 
must multiply the rate per unit distance by 
the distance over which this change takes 
place. For example, dp/dZ in the figure repre- 
sents the slope of a graph of pressure, p, 
versus distance, 2. To obtain the pressure 
change, p, -p,, we must multipIy this slope 
by the length of the interval, AI; and since 
we actually require the quantity p, -p,, we 
must insert a negative sign. (In the situation 
shown at left, p, is greater Ihan p,-that is, 
pressure is decreasing in the direction of 
flow, 1. The derivative dp/dl is therefore an 

4 Distance, 2 -C 4 

-dp 
Pa - p, = Pressure change, &J = &IXA~ 

intrinsically negative quantity itself-the 
graph has a negative slope. By inserting an- 
other negative sign, we will obtain a positive 
result for the term p,-p,.) 

Return to Section 31 and choose another 
answer. 

Your answer in Section 33 is not correct. 
The term p.n*Al.A*g gives the magnitude of 
the total gravitational force vector, F,. How- 
ever, we require the component of this force 
vector in the direction 1 since only this com- 
ponent is effective in producing flow along 
the pipe. In the vector diagram, the length 
of the arrow representing the gravitational 
force, F,, is proportional to the magnitude of 
that force, and the length of the arrows rep- 
resenting the two components, f, and f,,, are 
proportional to the magnitudes of those com- 
ponents. Using a diagram to show the resolu- 
tion of a vector into its components makes it 
easy to visualize the following general rule: 
the magnitude of the component of a vector 
in a given direction is obtained by multiply- 
ing the magnitude of the vector by the cosine 
of the angle between the direction of the 
vector and the direction in which the com- Return to Section 33 and choose an&her 
ponent is taken. answer. 
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f7\ 

Your answer in Section 28, 
Q dh -= 
A 

-K-, 
dl 

is correct. This relation between specific dis- 
charge and head gradient, or hydraulic gradi- 
ent, dh/dl, was obtained experimentally by 
Henri Darcy (1856) and is known as Darcy’s 
law for flow through porous media. Thse,con- 
stant K, in the current usage of the U.S. 
Geological Survey, is termed the hydraulic 
conductivity and has the dimensi’ons of a 
velocity. The constant k, again in the cur- 
rent usage of the Geological Survey, is 
termed the intrinsic permeability; it’s dimen- 
sions are (length) *, and its units depend 
upon the units of density and viscosity em- 
ployed. In the current usage of the Geologi- 
cal Survey; where p is measured in kg/m?, g 
in m/s*, and p in kg/ (m s) , k would have 
the units of m*. 

As noted in Section 28, hydraulic conduc- 
tivity, K, is related to intrinsic permeability, 
k, by the equation 

K&K 
P 

where p is the fluid density, p the dynamic 
viscosity of the fluid, ,and g the gravitational 
constant. Hydraulic conductivity thus in- 
corporates two properties of the fluid and 
cannot be considered ,a property of the porous 
medium alone. Intrinsic permeability, on the 
other hand, is normally considered to be only 
a property of the porous medium. In ground- 
water systems, variations in density aIre 
normally associated with variations in dis- 

solved-mineral content of the water, while 
variations in viscosity are usually due to 
temperature changes. Thus in problems in- 
volving significant variations in mineral con- 
tent or in water tem’perature, it is preferable 
to utilize intrinsic permeability. 

The entire theory of steady-state flow 
through porous media depends upon Darcy’s 
law. There are certain more general forms 
in which it may be expressed to deal with 
three-dimensional motion; some of these are 
considered in the text-format discussion at 
the end of this chapter. The development 
presented in this chapter involves numerous 
arbitrary assumptions, and thus should not 
be considered a theoretical derivation of 
Darcy’s law. It has been presented here to 
illustrate, in a general way, the physical 
significance of the terms appearing in the 
law. 

QUESTION 

Consider the following statements : 
(a) ground water flows from higher eleva- 

tions to lower elevations. 
(b) ground water flows in the direction of 

decreasing pressure. 
(c) ground water moves in the direction 

of decreasing head. 
Based on Darcy’s law as given in this chap- 

ter, which of these statements should always 
be considered true? 

Turn to Section: 

all three 29 
(b) and (c) but not (a) 13 
only Cc) 21 

(8) 
Your answer, p,nA, in Section 1 is cor- by the fluid area then gives the total force 

rect. The overall cross-sectiontal area of the on the fluid element th,rough the upstream 
upstream face of the segment is A. The face. Similarly, if p, is the fluid pressure 
area of fluid in the upstream face is nA, if at the downstream face, p,nA, gives the 
we assume the ratio between fluid ‘area and magnitude of the force exerted on the down- 

0 
overall area to be equal to the porosity. The stream face of the fluid element by the ad- 
pressure, or force per unit area, multiplied jacent downstream element. 
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(8) -Con. 

QUESTION 

Let us assume that the pressure p, is Turn to Section: 

greater than the pressure p,. Which of the p,nA + p,nA 23 
following expressions would best represent p,nA + pznA 
the net pressure-force on the element in 2 

12 

the direction of flow? p,nA - p,nA 31 

(9) 
Your answer in Section 28 is not correct. dh d(p/pg) dz 

We saw in Part I that head, h, was given by -=-+-* 
dl dl dl 

h=L+z. Use this result in selecting a new answer 
v to the question of Section 28. 

It follows that 

Your answer in Section 11 is not correct. 
We have obtained expressions for two forces 
acting in the direction of flow-the net 
pressure force, which was calculated as the 
difference between forces exerted on the up 
stream and downstream faces of the element 
by adjacent elemenb of fluid (see Section 
26) ; and the component of the gravitational 
force in the direction of flow (see Section 
11). The question asks for the combined net 
force due to both pressure and gravity. 

Forces are combined by means of vector ad- 
dition. In this cause, however, the net pressure 
force and the component of gravity we are 
considering are oriented in the same direc- 
tion-in the direction of flow. Vector addi- 
tion in this instance therefore becomes a 
simple addition of the magnitudes of the two 
terms. 

Return to Section 11 and choose another 
answer. 

Your answer, 
AZ 

pen. Al.A.g-, 
Al 

in Section 35, is correct. Ax/Al is the equiva- 
lent of cos y ; it simply gives the chlange in 
elevation per unit distance along the path of 
flow. (It thus differs from slope which by 
definition is the change in elevation per unit 
horizontal distance.) In the notation of cal- 
CUIUS, AZ/A~ would be represented by the 
derivative, dx/dZ, implying the limiting value 

of the ratio AZ/AZ as smaller and smaller 
values of Al are liken. The force component 
along the pipe must be positive, or oriented 
in the direction of flow, if x decreases in the 
direction of flow-that is, if dz/dZ is negac 
tive. It must be negative, or oriented against 
the flow, if x increases in the direction of 
flow-that is if dx/dl is positive. We there- 
fore introduce a negative sign, so that we 
have finally 

f,= -p.n.A.al*g*dz/dl 
where 4 is the component of the gravitational 
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(11)~con. 
force parallel to the pipe, as in Section 33. Turn to Section: 

The total force driving the flow is the sum 
of this gravity component and the pressure 
force. 

( -;-pg!f)nl.n.A 19 

dp dz 
QUESTION 24 

Which of the following expressions would 
---$os 7 +p.n.Al+A.g.- 

dl 

give the net force on the fluid in the direction dz dp 
of flow, due to pressure and gravity together? 

-p.~~.~l.A-g.--- 10 
dl dl 

(12) 

Your answer in Section 8 is not correct. 
The expression (p,nA -+p2nA) /2 would be 
approximately equal to the force in the di- 
rection of flow against a cross-sectional area 
taken at the midpoint of our fluid element; 
it does not give the net force on the element 
itself in the direction of flow. 

The fluid element extends along the pipe 
a short distance. Over this distance, pressure 
decreases from p, at the upstream face to p, 
at the downstream face. The force on the 
element at the upstream face is the force 
acting in the direction of flow; the force on 

the element at the downstream face is a 
force acting agaisnf the direction of flow. 
That is, it is a “back push” from the adjacent 
fluid element, against the element we are 
considering. Its magnitude is again given as 
a product of pressure, porosity, and face 
area, p,nA, but we now insert a negative sign 
to describe the fact that it acts in opposition 
to the force previously considered. The net 
force in the direction of flow is obtained by 
algebraic addition of the two force terms. 

Return to Section 8 and choose another 
answer. 

Your answer in Section 7 is not correct. that Darcy’s law relates flow per unit area to 
Ground water frequently percolates down- the gradient of head, not to the gradient of 
ward from the water table ; the pressure is pressure. 
greater at depth than at the water table, so Return to section 7 and choose another 
in these cases water is moving in the direc- answer. 
tion of increasing pressure. Keep in mind 

Your answer in Section 31 is not correct. pressure change term, --hp. To obtain an 
We have seen that the net pressure force was expression for a change, or an increment, 
equal to --hpnA. It cannot be equal to this from a derivative, it is necessary to multiply 
and to Ap(dp/dl)nA (unless dp/dl happens the derivative--that is, the rate of change 
to equal -1, in a particular case). per unit distance--by the distance over 

We wish to substitute an expression in- which the increment or change occurs. For 
volving the derivative, dp/dZ, in place of the example, the diagram shows a graph of pres- 
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- (Id)-Con. 

PI --.-_ 

I 

Slope 
dp of -5 

R Jdl graph . 
2 
2 
; P2 --.- -__----_-- _______ 
PC 

Al 

4 Distance, I - 12 

sure versus distance. The slope of this graph 
is the derivative, dp/dl. If we wish to ob- 
tain the change in pressure, p,--p, occurring 
over the interval A& we must multiply the 
rate of change per unit distance, dp/dl, by 
the distance Al. Since we actually require the 
negative of this quantity, pl--p2, we must 
insert a negative sign. (As shown on the 
graph, p, exceeds p 2-pressure is decreasing 
in the direction of flow, 1. The derivative of 
pressure with respect to distance, dp/dl, is 
therefore a negative quantity itself-that is, 
the graph has a negative slope. By inserting 
another negative sign, we will obtain a posi- 

P2 - p, = Pressure change, Ap = $XAl tive result for the term pl-p2.) 
Return to Section 31 and choose another 

answer. 

(15) 
Your answer, m=p-Al-n.A, in Section 26 

is correct; mass density, p, times volume of 
fluid, n.Al*A, where n is porsity, gives the 
mass of fluid. The magnitude of the total 
force of gravity on our fluid element will, 
therefore, be p .Al.n*A.g. This gravitational 
force acts vertically downward. As a force, 
however, it is a vector quantity; and like any 
other vector quantity it can be resolved into 
components acting in other directions. 

QUESTION 

The diagram again shows the flow system 
we have postulated. Which of the following 
statements is correct? 

d----J, 
The entire gravitational force is effect- 

tive in causing flow along the pipe. 22 
Only the component of the gravitational 

force parallel to the axis of the pipe 
contributes to flow along the pipe. 33 

Only the horizontal component of the 
gravitational force contributes to flow _ . 
along the pipe. 18 

0 
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(16) 
Your answer in Section 1 is not correct. 

The force on the element will be given by 
plied by the area of fluid against which the 
pressure acts. 

the pressure, or force per unit area, multi- Return to Section 1 and choose another 
answer. 

(17) 
Your answer in Section 26 is not correct. aleA is occupied by fluid ; the balance is oc- 

The term p.Al.A would give the mass of a cupied by solid sand grains, so that the actual 
fluid element having a volume h1.A. In our volume of fluid is less than AZ-A. 
problem, however, only a part of the volume Return to Section 26 and choose another 

answer. 

Your answer in Section 15 is not correct. 
Gravity, as we are considering it, has no 
horizontal component. No vector can have a 
component perpendicular to its own direc- 
tion. For our purposes we consider the gravi- 
tational force vector, F, to be always di- 
rected vertically downward ; there can be 
no horizontal component of this force. 

The diagram shows the gravitational force 
vector resolved into two components---one 
parallel to the direction of flow, fi, and one 
perpendicular to the direction of flow, f,,. 
Fluid velocity itself may be considered a vec- 
tor, in the direction 1. As such, it has no com- 
ponent in the direction of f,, normal to the 
pipe-and a force component normal to the 

pipe could not contribute in any way to the 
fluid velocity, 

Return to Section 15 and choose another 
answer. 

Your answer in Section 11, 

is correct. The net force per unit volume of 
fluid due to pressure and gravity would thus 
be 

/ dp dz\ - 
t -+pps- , 

dl dl I 
since AZ.n.A gives the voiume of the fluid 
element. 

Our approach in this development is to 
equate the net force driving the flow to the 
frictional force opposing it; ‘more exactly, we 
will obtain the vector sum of these opposing 
forces ,and :set the result equal to zero. The 
resulting equation will ,be a &atement of 
Darcy’s law. We have obtained an expression 
for the net force driving the flow. We now 
consider the force opposing the motion. This 
force is due primarily to friction between the 
moving fluid land tie porous medium. In some 
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(19) -Con. 

other systems of mechanics-for ,example in 
the case of a particle moving through a vis- 
cous fluid at moderate speed-the frictional 
retarding force is olbserved to be proportional 
to the velocity of movement. By anlalogy we 
assume a similar relation to hold for our 
element ‘of fluid. However, Ia,s indicated in 
Part I, [the actual (pore) velocity varies from 
point to point and is difficult or impossible to 
determine. For practical purpos’es therefore, 
we consider the frictional force on our fluid 
element to be proportional to the s)pecific dis- 
charge, or flow per unit clross-sectional ‘area, 
through the porous material. (See Section 
14, Part I.) The specific discharge, which has 
the dimensions of ‘a velocity (land is in fact a 
sort of ,a,pplarent velocity), lis determined by 
the statistical distribation of pore vel,ocities 
within the fluid element; and we axe, in ef- 
fect, assnming that (the ,total frictional re- 
tarding force on the element is likewise de- 
termined by this statistical dietribution of 
pore velocities. In addition, we assume the 
totial frictional retarding force on the fluid 
element to <be. proportional ;to the volume of 
fluid in the ~elem~ent, ‘on the ;tiheory that the 
total ‘area of fluid-solid contact within the 
element, and therefore the total frictioaal 
drag on the element, increases in proportion 
to the volume of the element. Finslly, we as- 
sume thlat (the retarding force is proportional 
to the dynamic viscosity of the flaid, since 
we would expect a fluid of low viscosity to 
move throjugh a porous medium more readily 
th’an ia highly viscous liquid. 

Porosity = n 

2 

QUEStl0t.l 

Following the various assumptions out- 
lined above, which of the following expres- 
eiolns would you choose as best representing 
the frictional retarding force on the fluid ele- 
ment of ,Section 1. (Shown again in the di:a- 
gram. ) 

Turn to Section: 

k A1.n.A 

20 

where l/k indioates a constant of propor- 
tionality, p is the dynamic viscosity of the 
fluid, and Q is the flulid discharge through the 
,pipe. 

Your #answjer in ,Section 19, changing with time, or in other words, that 

Q 
-+p(~le~eA)7 

there is no fluid acceleration. In this condi- 
tion, 6he forces producing the motion must 
be in balance with the frictional retarding 

is correct. The negative sign is employed to force. The vector sum of these forces must 
indicate *that ,&he frictional retarding force therefore be zero; and ,beoause the force 
will be opposite in di~rection to the fluid move- components contribuGng to ‘the ,motion are 
ment. We assume that our fluid motion is all dire&ed along ,tie pipe, this v&or sum 
steady-that is, &hat the fluid velocity i,s not is simply an algebraic sum. 
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(20)-con* 
QUESTION 

We have seen that the net driving force on 
the fluid element-that is, the net force in 
the direction of flow due to pressure and 
gravity together-is given by 

/dr, dx\ 
- 

Suppose we take the algebraic sum of this 
force and our retarding force, and set the 
result equal to zero. Which the following 

equations may then be derived from 
sult? 

Turn 
dp dz P Q 
--$pg-+-.-=Al~n~A 

dl k A 
k dp dz Q 

-- 
( ) 

-+pgji =A 
P dl 

PQ Al.n.A=-- 
kA 

the re- 

to Section: 

36 

28 

27 

Your !answer in Section 7 is correct. 
Darcy’s law, as fan equation containing a 
derivative, is actually a differential equation. 
It relates flow per unit (area, or flux, to the 
energy consumed per unit distance by fric- 
tion. Analogies can readily be recognized 
between Darcy’s law and the differential 
equations governing the steady flow of heat 
or electricity. The hydraulic c’onductivity, 
X, is analogous to thermal or electrical con- 
ductivity; while hydraulic head, h, is a po- 

tential an’alogous to temperature or voltage. 
(To be more correct, the term Kh constitutes 
a ground-water velocity potential-that is, a 
function whose derivative yields the flow 
velocity-provided both the fluid and the 
porous medium are homogeneous and the 
medium is isotropic.) 

This concludes the programed instruction 
of Part II. A discussion in text format deal- 
ing with generalizations of Darcy’s law be- 
gins on the page following Section 37. 

Your answer in Section 15 is not correct. 
The diagram shows the gravitational force 
vector, F,, resolved into two components, one 
parallel to the direction of flow, fi, and one 
perpendicular to it, f,. If the flow were ver- 
tically downward,-that is, colinear with F, 
-the entire gravitational force would be ef- 
fective in producing flow. In the situation 
shown, however, one component of the gravi- 
tational forceL--fn, or that perpendicular to 
the flow-is balanced by static forces ex- has no component in the direction of f,. The 
erted by the walls of the pipe. To view this force component f, can therefore contribute 
in another way, we may note that the fluid nothing to the fluid velocity. 
velocity itself is a vector, in the direction 2. 
No vector can have ‘a component perpendicu- Return to Section 15 and choose another 
lar to its own direction ; so the velocity vector answer. 
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Your answer in Section 8 is not correct. 
The pressure at a ,point in a fluid is a scalar 
quantity; it is not directional in character, 
and we say that it “acts in all directions.” 
However, if we choose any small crossasec- 
tional area within the fluid, we can measure 
a force against this area attributable to the 
pressure, regardless of the orientation of the 
area. This force is a vector, or directed quan- 
tity; it acts in a direction normal to the small 
area and has a magnitude equal to the prod- 
uct of the pressure and the area. In the ex- 
ample of Sections 1 land 8, we consider the 
pressure at two points, tie upstream and 
downstream faces of our fluid element. At 
the upstream face we write an expression 

pInA for the magnitude of the force in the 
direction of the flow. At the downstream face 
we are interested ia a force oppoeing the 
flow-that is, acting in a direction opposite 
to the flow. The magnitude of this force is 
again given as a product of pressure, poros- 
i’ty, and face area, p,nA; but because we are 
interested in the force acting against the 
flow, or in a direction opposite to that .orig- 
inally taken, we now introduce a negative 
sign. The net force on the fluid element along 
the axis of the pipe can now be obtained by 
algebraic addition of the two force expres- 
sions. 

Return to Section 8 and choose another 
answer. 

Your answer in Section 11 i,s not correct. 
The idea here is s,imply to combine the ex- 
pressions obtained for the net pressure force 
(see Section 26) and for the component of 
the gravitation’al force parallel to the pipe 
(see Section 11). Forces are alwam combined 
by means of vector addition. In this case, 
however, the two vectors we are considering 
are oriented in the same direction. That is, 

both the net pressure force and our com- 
ponent of the gravitational force are oriented 
in the direction of the flow. In this case, 
therefore, vector addition amounts to no 
more &an the simple scalar addition of the 
magnitudes of the two components. 

Return to Section 11 and choose another 
answer. 

Your answer in Section 1 is not correct. If face of the fluid element. For our purposee 
we were dealing with open flow in the pipe, here, we may assume that the ratio of fluid 
the force on the fluid element would indeed area ,to total <area is equal to the porosity, n. 
be given by the term pIA. Here, however, a 
part of the area A is occupied by solid sand Return to Section 1 and choose another 
grains and the remainder by the upstream answer. 
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Your answer in Section 31, 
dp 

- -AlnA, 
dl 

is correct. The gradient or derivative of pres- 
sure, dp/dl, multiplied by the length inter- 
val, Al, gives the change in pressure, p,-p,, 
occurring in that interval. Since we require 
the term p, -p,, we use a negative sign. 
Multiplication by the fluid area, nA, then 
gives the net pressure force on the element. 

Our purpose in this chapter is to develop 
Darcy’s law by equating the fo,rces driving 
a flow to the frictional force retarding it. 
We have considered the pressure force, which 
is one of the forces driving the flow. In addi- 
tion to this pressure force, the element of 
fluid is acted upon directly by the force of 
gravity. The total gravitational force on the 
element is given by the acceleration due to 
gravity, g, multiplied by the mass, m, of fluid 
in the element. 

I I Porosity = n 

i 

QUESTION 

Which of the following equations for the 
mass of fluid in our element, which is shown 
again in the diagram, is correct? 

Turn to Section: 

m=Al+n.A 3 
m=p-Al-A 17 
m=P.Al.n.A 15 

Your answer, representing the volume of fluid in the ele- 

PQ ment. When these force terms are added and 
&-n-A=--- 

kA 
their sum set equal to zero, the term AIsn-A 
may be divided out of the equation. 

in Section 20 is not correct. Each of the force 
terms-the net driving force and the retard- Return to Section 20 and choose another 
ing force--contains the expression AZ.n.A answer. 

Your answer in Section 20, bg 
K=-. 

is correct. For the case of a fluid of’ uniform 
Using this new constant we may rewrite 

our equation in the form 
density and viscosity, the terms p and P are 
constants and may be com,bined with the 
other constants in the problem to form a new 
constant, K, defined as 

-Kc!- ?+“) Q =-* 
pg dl iii A 

(continued on next page) 
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(28)~con* 
0 

QUESTION 

Keeping in mind that the term l/pg is a 
constant, so that 

d2 
0 1 dp pg --= 

pg dl dl ’ 

which of the equations given below consti- 
tutes a valid expression of the equation we 
have just obtained? 

Q Kdh 
-=- - 

A dl 

Turn to Section: 

7 

that is, 

h=p+z. 
Pg 

Your answer in Section 7 is not correct. 
Ground water frequently discharges upward 
into stream valleys ; and in the figure, upward 
flow occurs in the shorter arm of the U-tube. 
Thus statement (a) of Section 7 cannot 
always be true. 

Return to Section 7 and choose another 
answer. 

(30) 
Your answer in Section 28 is not correct. 

We saw in Part I that hydraulic head, h, was 
given by 

h=p+z. 

The derivative of h w?gth respect to distance, Using this relation, return to Section 28 
I, is therefore given by and choose another answer. 

0 
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Your answer in Section 8 is correct. The 
net force in the direction of flow is given by 
the difference between the two opposing 
forces exerted upon the oppoeite faces of the 
element by the adjacent elements of fluid. 
We may now factor out the common term 
nA and obtain as our expression for net pres- 
sure force (p, -p2) nA, or - ApnA, where 
Ap indicates the small pressure difference, 
p, -pl, between the downstream face of the 
fluid element and the upstream face. 

Since pressure is varying from point to 
point within our system, we may speak of a 
pressure gradi’ent; that is, a rate 09 change 
of pressure with distance, I, along the flow 
path. This gradient might be expressed, for 
example, in pounds per square inch (of pres- 
sure) per foot (of distance) ; it is represented 
by the symbol dp/dl, and is referred to as the 
derivative of pressure with respect to dis- 
tance in the direction 1. If we were to plot a 
graph of pressure versus distance, dp/dl 
would represent the slope of the graph. 

QUESTION 

Which of the following expressions is ap- 
proximately equivalent to the net pressure 

Pipe packed 
with sand 

i I 
I Porosity = n 

+ I 
Pressure=p, 

B 
Pressure=p* 

Pz - PI = AP 

force, - ApnA, on our element of fluid 
(‘shown again in the diagram) ? 

Turn to Section: 

dp 
--ah4 
dl 
dp 
-nA 
dl 

dP 
Ap-nA 

dl 
14 

Your answer, p.n*Al*A*g~sin y, in Section angle 7. It is true, however, that the idea of 
35 is not co,rrect. We have already seen that this question Ps ,to find an equivalent term for 
the magnitude of our force component is cos y Iand subfstitute it in our previous expreis- 
given by p.n.Al.A-g.cos y. In the answer sion for the force component. 
you have chosen, sin y has been substituted 
for cos y in our original expression-and this Return to Section 35 and choose another 
can be true only for ,a particular value of the answer. 
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Your answer in Section 15 is correct; we 
may resolve the gravitational force, F, into 
two orthogonal components, 4 and f,, parallel 
to and perpendicular to the axis of the pipe 
as shown in the figure. There is no movement 
perpendicular to the pipe; the component of 
the gravitational force in this direction is 

balanced by static forces exerted against the 
fluid element by the wall of the pipe. The 
component parallel to the pipe does contribute 
to ,the motion and must be taken into account 
in equations describing the flow. 

QUESTION 

The magnitude of the total gravitational 
force upon the element is given by the mass 
of the element multiplied by the acceleration 
due to gravity ; that is, F, =mg, where m is 
the mass of the fluid element. Referring to 
the diagram shown, which of the following 
expressions gives the magnitude of the com- 
ponent of the gravitational force parallel to 
the axis of the pipe? 

Turn to Section: 

f,=, .n.Al.A.g 6 
fl=P *n-Al -A-g-cay 
fl==n*AZ.A*g*tany 

Your answer in Section 19, 
1 Q2P 

-~al.n.A 
is not correct. Our assumptions were that the 
retarding force would be proportional in 
some way Ito the dynamic viscosity (p) , to the 
volume of fluid in the element (AZVZ~A) , and 
to the specific discharge, or flow per unit area 
(Q/A), Your answer represents the retard- 

ing force as proportional to the square of 
fluid discharge, which might be compatible 
with *the assumptions, but ae inversely pro- 
portional to the volume of fluid in the ele- 
ment, which is not compatible with the 
assumptions. 

Return to Section 19 and choose an&her 
answer. 
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Your answer, p*n.Al*A.g*cos 7, in Section 
33 is correct. The mass of the fluid element, 
as we have seen, is pen. AI-A; multiplication 
by the acceleration, g, gives the total gravi- 
tational fo,rce on the element. The component 
of this force parallel to the pipe, as indicated 
by the vector diagram, will be found by multi- 
plying the total force by the cosine of 7. 

QUESTION 

Suppose we now draw a small right tri- 
angle, taking the hypotenuse as AI, the length 
of our fluid element, and constructing the 
two sides Ax and Ax as in the diagram. Which 
of the following expressions may then be 
used for the magnitude (without regard to 
sign) of the component of gravitational force 
parallel to the flow? 

Turn to Section: 

P en. Al * A + g + sin y 32 
p - n . A . g . am+ (Ax)~ 4 

AX 
p * n * Al * A . g . - 11 

Al 

(36) 
Your answer in Section 20 is not correct. 

If the sum of the two force expressions is set 
We may divide through by the term Al.n.A, 
representing the volume of fluid in the ele- 

equal to zero, we have ment, and rearrange the resulting equation 
to obtain the required result. 

-.$(Al. n. A)?=& 

Return to Section 20 and choose another 
answer. 

A 
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Your ansrver in Section 33 is not correct. 
The total gravitational force on Ithe element 
is gtien by mg, where m is the masIs of fluid 
in the element and g is the acceleration due 
to gravity. ‘The mass of fluid in the element 
is in turn given by the volume of fluid in the 

elemem multiplied by the mass per unit vol- 
ume, or mass density, of the fluid, which we 
have designated P. The volume of fluid in the 
element, as we hlave seen is n.Al*A, where 
n is the porosity. The mass is therefore 
,,.n*al.A; and the total fo’rce of gravity on 
the fluid element is given by 

We require the component of thi:s gravita- 
tional foroe parallel to the axis of the pipe. 
The sketch #shows a vector diagram in which 
the length of each arrow is proportional to 
the fo;rce or component lit [represents. The 
gravi’tational force is represented hy the 
arrow F, land the components are represented 
by the ,arrows fi and f,. The rule for the res- 
olution of a vector ~i,nto components can be 
visualized from geometric considerations. 
The miagnitude of Ithe component of a vector 
in a given direction is the product of the mag- 
nitude of the vector land the cosine of the 
angle between the direction of the vector and 
the given direction. 

Return to Section 33 and choose another 
answer. 
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Generalizations of Darcy’s LOW 

The form of Darcy’s law considered in the 
preceding program is useful only for one- 
dimensional flow. The discussion in this sec- 
tion indicates, in general outline, the manner 
in which Darcy?s law is extended to cover 
more complex situations. Vector nobation is 
used for economy of presentation, and this 
discussion is intended primarily fo,r readers 
familiar with this notation. Those concepts 
which are essential to mat&al covered later 
in the program ,are treated again as they are 
required in the development-without the use 
of vector notation. The material presented 
here is not difficult, and readers not familiar 
with vector notation may find it possible to 
follow the mathematics by reference to a 
standard text on vector analysis. However, 
those who prefer may simply read through 
this section for familiarity with quaNative 
aspects of the material and may then proceed 
directly to Part III. 

For three-dimensional flow, we may con- 
sider the specific discharge, q or Q/A, to be 
a vector quantity, with components iq,, jqy, 
and kq, in the three coordinate directions. 
i, j, and k represent the standard unit 
vectors of the Cartesian system. We consider 
a small area, A,, oriented at right angles to 
the 2 axi’s at a point 0, and observe the fluid 
discharge through this area to be Q,; the 
limiting value of the ratio &,/A,, as A, is 
made to shrink toward the point 0, gives the 
value of q. applicable at point 0. qV and qs 
are similarly defined for the 2/ and z direc- 
tions. The specific discharge at point 0 is 
given by the vector sum 

Q 
q=T=iqn+ jqv+kq,. 

q is thus a vector point function; its magni- 

tude and direction may vary with location in 
steady flow and with location and time in 
unsteady flow. 

If the porous ,medium is homogeneous and 
isotropic ‘and if the fluid is of unifo’rm density 
and viscosity, the components ,of the specific- 
discharge vector are each given by a form of 
Darcy’s law, utilizing the partial derivative 
of head with respect to di:stance in the direc- 
tion in question. That is, the components are 
given by 

qa= -KCh 
ax 

ah 
qV= -K- 

ay 

qz= -Kch 
ax 

where K is the hydraulic conductivity. 
It follows th,at the specific-discha.rge vector 

in this case will be given by 

q= -K i-+ j-+k- I 
ah ah ah 

1 
t ax av ax’ 

q=-Kvh 
or 

where v h denotes the head-gradient vector. 
Thus, if the medium is isotropic and homo- 

geneous, - Kh confstitutes a velocity poten- 
tial; and the various methods of potential 
theory, as applied in studying heat flow and 
electricity, may be utilized in studying the 
ground-water motion. Since the specific- 
discharge vector is colinear with v h, it will 
be oriented at right angles to the surfaces of 
equal head, and flownet analysis immediately 
suggests itself as a useful method of solving 
field problems. 
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In praotice, one does not usually find homo- 
geneous and isotropic aquifers with which to 
work ; frequently, however, simply for lack 
of more detailed data, aquifers ‘are assumed 
to be homogeneous and isotropic in obtaining 
initial or approximate ‘solutions to ground- 
water problems. 

The situation in many aquifers can be rep- 
resented more successfully by a sllightly more 
general form of Darcy’s law, in which a dif- 
ferent hydraulic conductivity is assigned to 
each of the coordinate dir&ions. Darcy’s law 
then takes the form 

ah 
qa= -KS- 

ZW 

qv= -K: 
aY 

qs= -Kz 
ax 

where K,, K,, and K, represent the hydraulic 
conduotivities in the X, y, and x directions, 
respectively, and again 

This form of Darcy’s law can be applied 
only to those anisotropic aquifers which are 
characterized by three principal axes of hy- 
draulic conductivity (or permeability) which 
are mutually orthogonal, so that the direction 
of maximum hydraulic conductivity is at 
right angles to the direction of minimum hy- 
draulic conductivity. These axes must corres- 
pond with the X, y, and x axes used in the 
analysis. The implication is that one of the 
principal axes of conductivity must be ver- 
tical; for unless the x axis is taken in the 
vertical direction, the term ah/ax cannot be 
used to represent the sum of the vertical 
pressure gradient and Itbe gravitational fowe 
term. 

It is easily demonstrated that the specific- 
discharge vector and the lines of flow are no 
longer orthogonal to the surfaces of equal 
head in this anistropic case, and that the 
conditions for the existence. of a velocity 
potential are no longer satisfied. Formal 
mathematical ,solutions to field problems are 
essentially as easy to obtain ais in the iso- 
tropic ease, however, since a relatively simple 

transformation of scales can be introduced 
which converts the anisotropic system to an 
equivalent isotropic system (Muskat, 1937). 
The problem may then be solved in the 
equivalent isotropic system, and the solution 
retransformed to the original anisotropic 
system. 

Probably the most common form of aniso- 
tropy encountered in the field is fiat exhib- 
ited by stratified sedimentary material, in 
which the permeability or hydraulic conduc- 
tivity aormal to the bedding is less than that 
parallel to the bedding. If the bedding is hori- 
zontal, the form of Darcy’s law given above 
may be applied, using K, = KY. The anisotropy 
in this case is two-dimensional, with the axis 
of minimum permeability normal to the bed- 
ding, and the axis of maximum permeability 
parallel to it. In many cases, aquifers are 
assumed to exhibit simple two-dimensional 
anisotropy of this sort when in fact they are 
characterized by heterogeneous stratification 
and discrete alternations of permeability. 
This type of simplifying assumption fre- 
quently enables one to obtain an approximate 
solution, where otherwise no solution at all 
would be possible. 

For many problems, however, this gen- 
eralized farm of Darcy’s law is itself inade- 
qu,ate. A,s fan example, one may consider a 
stratified aquifer, exhibiting simple two- 
dimensional ~anisotropy, which is not hori- 
zontal, but ,rather is dipping at an appreciable 
angle. The direction of minimum permeabil- 
ity, normal to the bedding, does not in this 
case coincide with the vertical. One may 
choose new coordinate axes to conform to the 
new principal directions of conductivity. If 
this is done, tbe component of the specific dis- 
charge in each-of these new coordinate direc- 
tions ~must be expressed in terms of the pres- 
sure gradient in the direction concerned, and 
the component of the gravitational force in 
that direction. Reduction of the equations to 
the simple form already given, using the prin- 
cipal directional derivatives of h, is not pas- 
sible. Alternatively, one may retain the hori- 
zontal-vertical coordinate system, in which 
case the principal ax- of conductivity do not 
coincide with ,the coordinate axes. In this 
case, hydraulic conductivity ,must be ex- 
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pressed as a tensor; the component of the 
specific discharge in one coordinate direction 
will not depend solely on the head gradient in 
that direction, but upon the head gradients in 
the other coordinate directions as well. 

In addition to these considerations regard- 
ing aquifer anisotropy, practical problems 
require that attention be paid to heterogen- 
eity, both of the aquifer and of the fluid. If 
the aquifer is heterogeneous, hydraulic con- 
ductivity must be treated as a function of the 
space coordinates ; in this case, hydraulic 
conductivity (or in some cases intrinsic 
permeability) is usually defined ‘as a tensor 
which varies with position in the aquifer. 

the fluid varies in both density and viscosity. 
Darcy’s law fo’r this case may be written 

kz aP 
CL= - -- 

PX>zl,2 ax 
~~, aP 

q,,= -- - 

If the fluid is heterogeneou,s, its viscosity 
and density cannot be treated as constants, 
as was done in the program section of Part 
II. Equations cannot be reduced to terms of 
the hydraulic c’onductivity and head gradi- 
ents, but must rather be retained in terms of 
specific permeability, vi,scosity, pressure 
gradients, and components of the gravib- 
tional force (which depend upon fluid den- 
sity, and will vary with position, ,and possibly 
with time, as fluid density varies). A special 
case of some importance is that in which the 
aquifer is horizontal, with principal axes of 
permeability in the X, y, and x directions, but 

Qz= -~$ps,/$g) 

and again 

In these equations, k,, k, and k, are the 
intrinsic permeabilities in the x, y, and x 
directions ; P,,~,~ is the dynamic viscosity func- 
tion ; P~,~,~ is the density function; and the 
other terms are as previously defined. Since 
gravity is a’ssumed to have no components in 
the horizontal plane, density does not enter 
into the expressions for q3: and ql/. In natural 
aquifers, variations in density mare related 
primarily to variations in dissolved-solid con- 
tent of the water, while variations in vis- 
cosity are relsated primarily to variations of 
ground-water temperature. The equations 
given above thus have utility in situations 
where water quality and water temperature 
are known to vary in an aquifer. 
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