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Part VI. Nonequilibrium Flow to a Well 

Introduction 

In Part V we developed the equation 
a2h S ah 
-=-- 
ax2 T at 

for one-dimensional nonequilibrium flow in 
a homogeneous and isotropic conlined 
aquifer. We indicated, in addition, that ex- 
tension to two-dimensional flow would yield 
the equation 

a’h a2h S ah 
-z-m* 

gs+ayz T at 

In Part VI we consider a problem involv- 
ing flow aw$ay from (or toward) a well in 
such an aquifer. As in the steady&ate prob- 
lem of flow to a well, which we considered in 
Part III, we will find it convenient here to 
use polar coordinates. The two-dimensional 
differential equation 

a2h ph S ah 
-+-=-- 
ax= aY2 T at 

can be transformed readily into polar coordi- 
nates by using standard methods. However, 
it is both easy and instructive to derive the 

equation again from hydraulic principles in 
the form in which we are going to use it. 
After we have developed the differential 
equation in this way, we will consider one of 
its solutions, corresponding to an instantane- 
ous disturbance to the aquifer. In the ter- 
minology of systems analysis, this solution 
will give the “impulse response” of the well- 
aquifer system. In considering this solution, 
we will first show by differentiation that it 
satisfies the given differential equation ; we 
will then develop the boundary conditions ap- 
plicable to the problem and show that the 
solution satisfies these conditions. Following 
the programed section of Part VI, a discus- 
sion in text format has been added showing 
how the “impulse response” solution may be 
used to synthesize solutions corresponding to 
more complex disturbances to the aquifer. In 
particular, solutions are synthesized for the 
case of repeated withdrawal, or bailing, of 
a well and for the case of continuous pump- 
ing of a well. The latter solution, for the par- 
ticular case in which the pumping rate is 
constant, is the Theis equation, which is com- 
monly used in aquifer test analysis. 

-m 

1 + 

The figure shows ,a well penetrating a con- the inner surface of the element is at a 
fined aquifer. A cylindrical shell or prism, radius r1 from the axis of the well, which is 
coaxial with the well and extending through taken as the origin of the polar coordinate 
the full thickness, b, of the aquifer has been system ; and the outer surface of the element 
outlined in the diagram. The radial width of is at a radius rz from this axis. We assume 
this cylindrical element is designated Ar ; all flow to be in the radial direction, so that 

88 
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/ 
Well 

we need not consider variation in the vertical 
or angular directions. We further assume 
that we are dealing with injection of water 
into the aquifer through the well, so that flow 
is outward, away from the well, in the posi- 
tive r 
of the 
ity T, 

direction. The hydraulic. conductivity 
aquifer is denoted K, the transmissiv- 
and the storage coefficient S. 

If 
QUESTION 

(ah/w) 1 represents the hydraulic 
gradient at the inner face of the cylindrical 
element, which of the following expressions 
will be obtained for the flow through this 
face, by an application of Darcy’s law? 

Turn to Section: 

34 

Q 15 

Q 1= 36 

Your answer in Section 27, 

ah V -Z- e- (S?2/4Tt) 

’ ar 4xTt 
is not correct. 

You are correct in your intention to mul- 
tiply the derivative of e- (s+/4Tt) by the “con- 
stant” coefficient V/ (4*Tt) to obtain the 
derivative of the product 

V 
-e- (Sr2/4Tt) , 
4rrTt 

with respect to r. However, your differentia- 
tion of e-(S+/4Tt) is not correct. The deriva- 

tive of e raised to some power is not sim- 
ply e raised to the same power, as you have 
written, but the product of e raised to that 
power times the derivative of the exponent. 
That is, 

de” du 
-= eu-. 
dr dr 

Thus, in this case, we must obtain the deriva- 
tive of the exponent, - (Sr2/4Tt), and multi- 
ply e- (Sr2/4Tt) by this derivative to obtain the 
derivative of e- (sr2/4Tt) with respect to r. 

Return to Section 27 and choose another 
answer. 
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3 + 
Your answer in Section 35, 

ah V 
-= - . e-(S+/4Tt) 

at 4aTt 
is not cor.rect. In your answer, the term 
e- (Sr2/4Tt) is differentiated correctly with re- 
spect to time. However, your answer gives 
only the derivative of this factor times the 
first factor itself, V/(4rTt). According to 
the rule for differentiation of a product, we 
must add to this the second factor, e-(Sr’/4rt), 

times the derivative of the first factor. 
The first factor, V/(4rTt) was treated as a 
constant coefficient when we were differen- 
tiating with respect to r, since it does not 
contain r. It does, however, contain t and 
cannot be treated as a constant when we are 
differentiating with respect to t. Its deriva- 
tive with respect to t is given in the discus- 
sion of Section 35. 

Return to Section 35 and choose another 
answer. 

4 + 

Your answer in Section 27, 

ah - 2% 
--=e- (Sr2/4Tt) . - 

ar ( ) 4Tt ’ 

is not correct. 
When an expression is multiplied by a con- 

stant coefficient, the derivative of the product 
is simply the constant coefficient times the 
derivative of the expression. For example, 
the derivative of the expression x2, with re 
spect to x, is 2x; but if x2 is multiplied by 
the constant coefficient c, the derivative of 
the product, cxz, is c-2x. 

In the question of Section 27, the term 
e- (.%*/4rt) is actually the expression in which 

we must differentiate with respect to r. The 
term V/ (4xTt), represents a constant coeffi- 
cient--constant with respect to this differen- 
tiation, because it does not contain r. Thus 
whatever we obtain as the derivative of 
e- (S+/4Tt) must be multiplied by this coeffi- 
cient, V/ (4xTt), to obtain the derivative of 
the product 

V 
-e-- (S+/4Tt). 

4rrTt 
Your differentiation of e- (s+/4rt) is cor- 
rect, but your answer does not contain the 
factor V/(4rTt) and thus cannot be correct. 

Return to Section 27 and choose another 
answer. 

Your answer in Section 27, 

ah V -=zr pe- (S?2/4Tt) . 

ar 4aTt 
is correct. 

We now wish to differentiate this expres- 
sion for ah&r, in order to obtain a2h/ar2. 
To do this, we treat the expression as the 
product of two factors. The first is the func- 
tion we just differentiated, 

V 
-e- (Sr?/4Tt) ; 

4irTt 

the second is 

Once again we are differentiating with re- 
spect to r, so that t is treated as a constant. 
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QUESTION 

If we follow the ruIe for differentiation 
of a product (first factor times derivative 
of second, plus sqond factor times deriva- 
tive of first), which of the following results 
do we obtain for a2h/arz? 

Turn to Section: 

f~LJe-wTt~ . (;)+(IE) . ,-(ST2/4Tt) . (XT)) 35 

a*h V 
-=- . e- (.W/4Tt) 

ar* QnTt 
.(z)+(z). ,-LS+,4Ttl . (3 23 

9 

6 + 

Your answer in Section 18 is not correct. 
The answer which you chose states that out, or approaches zero, as radial distance 
head becomes infinite as radial dimstance be- becomes very large. 
comes small. The behavior which we are try- Return to Section 18 and choose another 
ing to describe is that in which head dies answer. 

ah 
( ) 

T- 
;; l 

( > 
T- 
ar 2 

0 

r 

\ 
Slope of 
tangent to curve 

Your answer in Section 15, 

a-c?*=24 (f),- (3 ), 
is correct. The term 

actually represents the change in the vari- 
able r (ah/ar) between the radial limits, r1 
and r2, of our element. If we imagine a plot 
of r (ah&r) versus r, as in the figure, we 
can readily see that this change will be given 
approximately by the slope of the plot times 

(continued on next page) 
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0 

the radial .increment, Ar. That is, approxi- 
mately 

(r!!t),- (r$),= ‘(lF)-Ar 

where the derivative 

ah 
a r- 

( ) ar 

ar 
represents the slope of our plot, at an ap 
propriate point within the element. This 
slope, or derivative, is negative in our illus- 
tration, so that 

The approximation inherent in the above 
equation becomes progressively more accur- 
ate as Ar decreases in size. 

QUESTION 
Recalling that the rule for differentiation 

of a product is “first factor times derivative 
of second plus second factor times derivative 
of first,” which of the following equations 
gives the derivative of r (ah/at+) with re- 
spectto r? 

Turn to Section: 

‘($) ‘(g) ah 
=r +- 26 

ar ar ar 

a2h ah =r-+- 28 
ar ar2 ar 

azh = Zr- 8 
ar arP 

8 + 

Your answer in Section 7, 

ah 
a r- 

( ) ar =f&? 
ar2’ 

ar 
is not correct. We are required to take the 
derivative of the product r(ah/ar) . The rule 
for differentiation of a product is easy to 
remember: first factor times derivative of 
second, plus second factor times derivative 
of first ; that is 

d(m) dv du 
-=u---+v- 

dx dx dx 
A derivation of this formula can be found 

in any standard text of calculus. Our first 
factor is r, and our second factor is ah&. 
Thus we must form the expression: r times 
the derivative of ah/ar with respect to r, 
plus ah/ar times the derivative of r with re- 
spect to r. 

Return to Section 7 and chooee another 
answer. 
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Your answer in Section 6, 

is not correct. If we remove the braces and 
separate your ,answer into two terms, we 
have 

aih V 
-= ___ . e- (S72/4Tt) . 

arz 4rTt 
($!)+(I.%) . &. e-~S7’/4Tt~. 

The first term, according to the rule for dif- 
ferentiation of a product, is correct, since it 
represents the first factor, 

V 
-* e- (S13/4Tt) 

4aTt 
multiplied by the derivative of the seco,nd 
(with respect to r) , which is simply 

-2s 

4Tt’ 
The second term of your answer, however, 
is not correct. 

- 2Sr 

4Tt 
is the second factor of the product we wish 
to differentiate but 

V 
-. e- (S72/4Tt) 

4nTt 
does not represent the derivative of the first 
factor. This first factor is itself 

V 
- . e - (S?Z/4Tt) 

4rTt 
and its derivative with respect to r was ob- 
tained in answer to the question of Section Return to Section 5 and choose another 
27. answer. 
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10 + 
Your answer in Section 21 is not correct. 

We established in the discussion of Section 
21 that the rise in head within the well at 
t = 0, due to injection of the volume V, would 
be given by V/A,, where A, is the cross-sec- 
tional area of the well bore. If the well radius 
approaches zero, A, must approach zero. The 
smaller A, becomes, the larger the quotient 
V/A, must become; for example, l/O.001 is 

certainly much greater than l/l. Your an- 
swer, that the head change is zero, could only 
be true if the area of the well were immea- 
surably large, so that thme addition of a finite 
volume of water would produce no measur- 
able effect. 

Return to Section 21 and choose another 
answer. 

77 + 
Your answer in Section 33 is not correct. 

The integration in the equation 

v= I’=” S-h,, .2irrdr 
r=O 

cannot be carried out until we substitute 
some clearly defined function of r for the 
term h,t. Until this is done, we do not even 
know what function we are trying to inte- 
grate. But even if the integration could be 
carried out and the result were found to be 

V 
- e- (+S/4Tt) 

4nTt 
then we would be left with the result 

V 
v=- e- (r2S/4Tt) 

4irTt 
which clearly can never be satisfied 
perhaps at isolated values of r and t. 

except 

Return to Section 33 and choose another 
answer. 

12 + 
Your answer in Section 28, 

dv+p ah 

dt at 
is not correct. The storage equation states 
that the rate of accumulation in storage is 
equal to the product of storage coefficient, 
rate of change of head with time, and base 
area of the element (prism) of aquifer under 
consideration. Your answer contains the 
storage coefficient, S, and the time rate of 
change, ah/at. However, the base area of 
the prism which we are considering is not 
given by &. 
This term gives the area of a circle extending 
from the origin to the radius r; our prism is 
actually a cylindrical shell, extending from 

the radius rl to the radius r2. Its base area 
is the area of the shaded region in the figure. 
This region has a radial width of AT and a 
mean perimeter of 291-r. 

Return to Section 28 and choose another 
answer. 
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Your answer in 
proposed solution, 
randtis 

Section 33 is correct. Our 
giving h as a function of 

h,t = pe- (r%S/4Tt). 

4rrTt 
To test this solution for’conformity with the 
required condition we substitute 

V 
--e- (+S/4Tt) 

4nTt 

for h,t4n the equation 

V= jr=* Se h,.,t * 2rrdr 
T-=0 

and evaluate the integral to see whether the 
equation is satisfied. The substitution gives 

V= rzms.Gt .e- (+S/4Tt) .&,.ydr. 

r=O ?r 

Constant terms may be taken outside the in- 
tegral ; in this case, we are integrating with 
respect to r, so t may be treated as a constant 
and taken outside the integral as well. We 
leave the factor 2 under the integral for the 
moment and take the remaining constants 
outside to give 

SV r=cQ V=- I e- (r2S/4Tt) .2rdr. 

4Tt r=O 

To evaluate the integral in this form, we 
make use of a simple algebraic substitution. 
Let 

x=r2: 

then 

dz=Brdr; 

and let 

S 
a=-. 

4Tt 

Substituting these terms in the above 
equation, we obtain : 

The indefinite integral of e-O2 is simply 

I 
--e-W; 

a 

that is, 

J 

1 
e-aqjx= --e-az+c 

a 
where c is a constant of integration. The in- 
finite upper limit in our problem is handled 
by the standard method ; the steps are as 
follows 

/ 

.Z=CO 

/ 

b 
e-uzdz=lim e-“zdz 

z=o b+ca 0 

1 1 
- --.- ( )I a e” 

+-f- 
a 

but 

’ 

so that 

/ 

ZZCO 1 
e-az& =- 

z=o a 
Therefore 

1 
aV e-az&=aV--= V. 

a 
This verifies that our function 

V 
-e- (r2S/4Tt) 

4xTt 
(continued on next page) 
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- 
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actually satisfies the required condition- 
that is, that when we substitute this term 
for h,,$ in the expression 

/ 
TECO 

r=O 
S.h,t.2~rdr 

and perform the integration, the result is 
actually equal to V, the volume of injected 
water, as required by the condition. 

We have shown, then, that the expression 

V 
h= pe- (r?3/4Tt) 

4*Ti3 
satisfies the differential equation for radial 
flow in an aquifer and satisfies as well the 
boundary conditions associated with the in- 
stantaneous injection of a volume of water 
through a well at the origin, at t =O. It is, 
therefore, the particular solution required 
for this problem. It is an important solu- 
tion for two reasons. First, it describes ap- 
proximately what happens when a charge of 
water is suddenly added to a well in the 

standard “slug test” (Ferris and Knowles, 
1963) and provides a means of estimating 
transmissivity through such a test.’ Second, 
and more importantly, it gives the “impulse 
response” of the welLaquifer system-the 
solution corresponding to an instantaneous 
disturbance. Solutions for more complkated 
forms of disturbance, such as repeated in- 
jections or withdrawals. or continuous with- 
drawal, can be synthesized from this ele- 
mentary solution. Following Section 37, a 
discussion is given in text format outlining 
the manner in which solutions correspond- 
ing to repeated bailing and continuous pump- 
ing of a well may be built up from the im- 
pulse response solution. 

This concludes the programed instruction 
of Part VI. You may proceed to the text- 
format discussion following Section 37. 
Readers who prefer may proceed to Part VII. 

‘A subsequent publication (Cooper, Bredehoeft. and Papa- 
dopulos. 1967) has provided a more accurate description of the 
actual effect of adding a charge of water to a well, by con- 
sidering the inertia of the column of water in the well. This 
factor was neglected in the original analysis. 

14 + 

Your answer in Section 33 is not correct. equation. The solution actually represents 
The condition to be satisfied was the head, h,t ; if we substitute it for the quan- 

V:= r=%h,,t.2?rrdr. 
tity 27ir, as your answer suggests, there will 
be two terms, h,.,t and our solution, both rep- 

r=O resenting head in the resulting equation. 
A solution to our differential equation is by Moreover if the result of the integration 
definition an expression giving the head, h, were 2&’ we would be left with the result 
at any radius, r, and time, t, in a form that V=2&‘, which does not satisfy the required 
satisfies the differential equation. Here, the condition. 
idea is to test such a solution to see if it also Return to Section 33 and choose another 
satisfies the condition phrased in the above answer. 

15 
+ 

Your answer in Section 1, T, as before. The variable terms, r and ah/ 

&I= -KBxr,b 2 
( ) 

ar, may be combined and treated as a single 

ar 1’ 
variable, r (ah/ar) . The value of this vari- 
able at the inner face of the cylindrical ele- 

is correct. The terms 27, K, and b are all ment will be designated (rah/ar),. Using 
constants ; we will denote the product Kb by these notations, our expression for inflow 
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through the inner face of the cylindrical 
element is now 

Q,=-2nT r? 
( ) ar 1. 

QUESTION 

Suppose we continue to treat the product 
r(ah/ar) as a single variable, and let (rah/ 
ar)t denote the value of this variable at the 
outer face of the cylindrical element. The ex- 
pression for the outflow, Q2, through the 
outer cylindrical surface can then be written 
in terms of (9@/ar)2, in a form similar to 

that for the inflow. Which of the following 
equations would we then obtain for the in- 
flow minus outflow, Q1 - Q2, for our cylindri- 
cal element ? 

?urn to Section: 

QrQz=2rT((c),-(~$)~) 7 

,,-,.=~~T(Y~); (Y$)~ 30 

QcQ~=~~T(($)~-($)~ } 25 

16 + 

Your answer in Section 28, 

sah 
dV at 
-=-9 
dt 2arAr 

is not correct. The storage equation tells us 
that rate of accumulation in storage should 
equal the product of storage coefficient, rate 
of change of head with time, and base area 

of the element (prism) of aquifer with which 
we are dealing. Our element, or prism, of 
aquifer is a cylindrical shell extending from 
the radius rI to the radius r2. Its base area is 
given by the term %frAr. However, in your 
answer this area term is divided into the 
term S (ah/at). 

Return to Section 28 and choose ,another 
answer. 

17 + 

Your answer in Section 20, 

a”h 1 ah V -2s 2S2r2 
-+--e-e- (Sr=/4Tt) -+- 
3-2 r ar 4xTt 1 1 4Tt 16T2t2 ’ is not equal to 

2S2r2 
is not correct. The mistake in this answer re -. 
sults from an algebraic error in simplifying 16T2tZ 
the second term of the expression for a*h/ Return to Section 20 and choose another 
ar*. The nroduct answer. 
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18 + 0 

Your answer in Section 21 is correct; head 
is immeasurably great, or infinite, at the well 
at t = 0. Taking this result together with our 
requirement that head must be zero else- 
where in the aquifer at t = 0, we may phrase 
the boundary condition for t =0 as follows 

h+w, for r=O and t=O 
h=O, for r>Oand t=O. 

We now test our solution to see if it satis- 
fies this requirement. Probably the easiest 
way to do this is to expand the term 
e- (.%‘/4rt) in a Maclaurin series. The theory 
of this type of series expansion is treated in 
standard texts of calculus ; the result, ,as ap- 
plied to our exponential function, has the 
form 

e~=l+x+~+x~+*** 
. . 

or for a negative exponent, 
1 

e-a= 

1+x+;;+;+*** 
. . 

In our case, a: is the term r2S/4Tt, and 

e- (r’%/4Tt) =_ 

2 r2S 3 

(‘2”) (i) ( G ) 

l+ - + -+- +*** 

4Tt 2! 3! 
so that 

V 
-e- (+=S/rlTt) = 

4rrTt 

V 
. 

r4S2,rr Pi% 
4rTt + r*& + -+ +*** 

4Tt.2’ 16T2t2-3! . 
Now as t approaches zero, the first term in 

the denominator approaches zero ; the second 
remains constant, and the third and all 
higher terms become infinite, provided r does 
not also approach zero. If any term in the 

h 

h 

\ 

t=1 

h 

t=0.1 

T 
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denominator is infinite, the fraction as a 
whole becomes zero. Thus the expression 

V 
PC- (+S/4Tt) 

4xTt 
is zero for t =0 and r#O, and satisfies the 
first part of our condition. 

If r and t are both allowed to approach 
zero, the first two terms in the denominator 
of our fraction will be zero. The third will 
behave in the same manner as the fraction 
cx4/kx behaves as x approaches zero, since 
r-and t are both approaching zero in the same 
way. The limit of tx*/kx as x approaches 
zero is 0, since 

cx4 c 
-=-x3* 

kx k 
Therefore the third term in the denominator 
must also approach the limit zero as r and t 

approach zero. By a similar analysis it can 
be shown that the limit of every succeeding 
term in the denominator is zero as r and t 

approach zero. Thus the entire denominator 
is zero, and the fraction as a whole is infinite, 
so that the term 

V 
e- (+S/4Tt) 

zz 

is infinite when r and t are both zero, satisfy- 
the second part of our condition. 

Another and very instructive way to in- 

vestigate the behavior of the function 
V 

PC- (+S/4Tt) 

4rTt 
is to construct plots of this function versus 
r, for decreasing values of time. The figures 
show the form that such a series of plots 
will take. It may be noted that as time ap- 
proaches zero the function approaches the 
shape of #a sharp “spike,” or impulse, at r= 
0. The shape of ,these curves suggests a head 
distribution which we might sketch intutive- 
ly, if we were asked to describe the response 
of an aquifer to the injection of a small 
volume of water. It is suggested that the 
reader construct a few of these plots, in 
order to acquire a feeling 
of the function. 

for the behavior 

QUESTION 

The aquifer is assumed to be infinite in 
extent, and the volume of water injected is 
assumed to be small. We would therefore ex- 
pect the effects of the injection to die out at 
great radial distances from the well. Which 
of the following exprwsions is ,a mathema- 
tical formullation of this behavior and could 
be used as a boundary condition for our 
problem? 

Turn to Section: 

h+O as r-) 00 33 
h+co as t+co 29 
h+oo as r+O 6 

19 + 

Your answer in Section 21 is not correct. 
We established in the discussion of Section 
21 that the rise in water level in the well at 
t =0 should be given by the expression h= 
V/A,, where A, is the cross-sectionial area of 
the well bore and V is the volume of water 
injected. In order fo,r h to have the instan- 
taneous value of 1 foot, V, in cubic feet, 
would have to be numerically equal to A,, 
in square feet. However, we are assuming 

the well to have an infinitesimally small 
radius, so that A,, its cross-sectional area, 
approaches zero. If smaller and smaller 
values are. assigned to the denominator, A,, 
while the numerator, V, is held constant, 
the fraction V/A, must take on larger and 
larger values. 

Return to Section 21 and choose another 
answer. 
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20 + 

Your answer in Section 35, 

is correct. If the term 
V 

-e- (Sr?/4Tt) 

4rrTt 
is factored from this expression we have 

ah v -=-me- (S+/4Tt) 
at 4rTt 

and if we multiply this equation by S/T, we 
obtain 

Sah V 
_-c--g- (S+/4Tt) --- . 
T at 4rrTt 

Our expression for ah&, obtained in an- 
swer to the question of Section 27 WM 

ah ‘v 
-=-n-(Srs/4Tt) . 

ar 4rTt 
The term (l/r) (ah/ar) is therefore given 
by 

lab V 
-w=: -e- (W/4Tt) . 

r ar 4=Tt 
In answering the question of Section 5, 

we saw that the expression for a2h/ar2 was 
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QUESTION 

Which of the following expreasions is ob- 
tained for 

a*h 1 ah 
-+--, 
ar* r ar 

by combining the two expressions given 
above and factoring out the term 

V 

4rTt 

. e-’ (Sr2/4Tt) 7 . 

a*h 1 ah V 
-+--= 
ar2 

-e- WW{;+~] 
r ar 4*Tt 

a*h 1 ah V 
-+--=- 
ar2 r ar 4rTt 

e- (S+‘/4Tt, ( ;+l?} 

a*h 1 ah V 
-+--=- 
arz r ar 4rrTt 

e- W.tI(;+~) 

Turn to Section: 

21 

17 

24 

21 + 

Your answer in Section 20, 

a*h 1 ah V 
-+--=- 
a+ r ar 4=Tt 

,- WWTt~( ;+&}, 

is correct. Now note that this expression is 
identical to that given for (S/T) (ah/at) in 
Section 20. Thus we have shown that if head 
is given by 

V 
h=- .e- (.%=/4Tt) 

4,rTt 
then it is true that 

a2h 1 ah S ah 
-+--=----; 
ar* T ar T at 
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In other words, the expression 
V 

h= pe- (Sr2/4Tt) 

4,rTt 
satisfies the partial differential equation, or 
constitutes one particular solution to it. In 
fact, this expression is the solution which 
describes the hydraulic head in an infinite, 
horizontal, homogeneous, and isotropic arte- 
sian aquifer, after a finite volume of water, 
V, is injected suddenly at t =0 into a fully 
penetrating well of infinitesimal radius lo- 
cated at r = 0, ass,uming that head was every- 
where at the datum prior to the injection- 
that is, assuming h was everywhere zero 
prior to t = 0. 

Proof that our function is the solution 
corresponding to this problem requires, in 
addition to the demonstration that it satis- 
fies the differential equation, proof that it 
satisfies the various boundary conditions 
peculiar to the problem. We now wish to 
formulate these conditions. 

The charge of fluid is added to the well at 
the instant t = 0. At this instant, there has 
been no time available for fluid to move 
away from the well, into the aquifer. There- 
fore, at all points in the aquifer except at 
the well (that is, except at r=O), the head 
at t =0 must still be zero. In the well, on the 
other hand, the addition of the volume of 

water produces an instantaneous rise in 
head. For a well of measurable radius, this 
instantaneous head buildup, Ah, would be 
given by 

v v 
Ah=--=--, 

A, n-rwz 
where A,,, is the cross-sectional area of the 
well blare, and rw i,s the well radius. For ex- 
ample, if A, is 1 square foot and we inject 
1 cubic foot of water, we should observe an 
instantaneous rise in head of 1 foot in the 
well ; and because head was originally at 0 
(datum level), we can say that the head in 
the well at t =0 should be 1 foot. If A were 
0.5 square foot, the head in the well at t = 0 
should be 2 feet; and so on. 

QUESTION 

For purposes of developing the boundary 
conditions, we have assumed the radius of 
our well ,to be infinitesimally small-th,at is, 
to approach zero. Which of the follo,wing 
statements describes the behavior of head at 
the well at t =0, subject to this assumption? 

Turn to Section: 

head at the well will be 0 feet at t = 0 10 
head at the well will be 1 foot at t = 0 19 
head at the well will be immeasurably large 

-that is, infinite-at t= 0 18 

22 + 
Your answer in Section 37 is not correct. dV ah 

The expression obtained in Section 28 for in- -=s2n?Ar-. 
flow minus outflow was dt at 

The expression for inflow minus outflow may 

~,-4&=2+~+3AT. 
be equated to that for dV/dt, and the result 
simplified to yield the correct answer. 

Return to Section 37 and choose another 
Our expression for dV/dt was answer. 
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23 + 

Your answer in Section 6, 

aah V 
-= -.e-(s~a,4Tt)(~)+(~).e-(s~2,4Tt).(4~), 
ar2 4rTt 

is not correct. The rule for differentiation of 
a product is: first factod times derivative of 
second plus second factor times derivative of 
first. The two factors, in this case, are 

V 
-e- (S+/4Tt) 

4xTt 
(which-we have already differentiated in the 
question of Section 27) and 

- 2Sr 

4Tt _ 
The first term of your answer is correct; the 
first factor, 

V 
-e- (.%-=/4Tt) 
4,rTt 

is multiplied by the derivative of the second, 
which is 

-2s 

4Tt 

(t is simply treated as part of the constant 
coefficient of r, since we are differentiating 
with respect to r). The second term of your 
answer, however, is not correct; you have 
written the derivative of the first factor as 

-2Sr 
e- (S+/4Tt) . - . 

( ) 4Tt 

Compare this with the correct answer to the 
question of Section 27 and you will see that 
it does not represent the derivative of 

V 

anTt 
e - (S+a/4Tt) Return to Section 5 and choose another 

answer. 
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24 + 

Your ansbwer in Section 20, 
a’h 1 ah V 
-+---=- of the two terms 
ar2 r ar 4rTt 

is not correct. This answer contains alge- 
braic errors, both in the addition of the two 
tX9lllS Return to Section 20 and choose another 

answer. 

25 + 

Your aneiwer in Section 15, 

Q1+24(3-(3 ), 

is not correct. The expression for inflow 
through the inner cylindrical face was shown 
tobe 

Applying Darcy’s law in a similar fashion to 
the outer c.ylindrical face, at radius r,, the 

expression for outflow through this face is 
found to be 

ah 
Q 2=-2rT r- ,. 

( ) ar 2 
These two equations may be subtracted to 

obtain an expression for inflow minus out- 
flow. The radius, r, does not disappear in 
this subtraction. Your answer, which does 
not include radius, must therefore be wrong. 

Return to Section 15 and choose another 
answer. 

26 + 

Your answer in Section 7, 

a(lrg) a($) ah 
---=r +-v-, 

ar ar ar 
is not correct. The derivative of a product is 
given by the first factor multiplied by the 
derivative of the second, plus the second 
factor multiplied by the derivative of the 
first. Your first term, above is correct; the 
first factor, r, is multiplied by the derivative 
of ‘ah&, a.lthough it would be more conven- 
tional ti use the second derivative notation, 

azh 
-s 
ar* I 

rather than 

ar ’ 
Your second term, however, is not correct. 
The derivative of r with respect to r is not 
equal to r. 

Return to Section 7 and. choose another 
answer. 



PART VI. NONEQUILIBRIUM FLOW TO A 

0 

Your answer in Section 37 is correct. The 
basic differential equation for the problem is 

a2h 1 ah S ah 
-+--=--* 
ar* r ar T at 

In seeking a solution to this equation, we 
are seeking an expression giving h as a func- 
tion of r and t, such that when ah/ar, a2h/ 
ar2, and ah/at are obtained by differentia- 
tion and substituted into this equation, the 
equation is found to be satisfied. For ex- 
ample, consider the function 

V 
h= p. e- (S72/4Tt) 

4rrTt 
in which V (as well as S and T) is constant 
and e is the base of natural logarithms. This 
happens to be an important function in the 
theory of well hydraulics, as we shall see ; 
and we wish now to test it, to see whether 
it satisfies the above differential equation. To 
do this we must differentiate the expression 
once with respect to t and twice with respect 
to r; these operations are not difficult if the 
rules of differentiation are applied carefully. 
First we will differentiate with respect to 

27 + 

r; in doing so, we treat t as a constant, so 
that the factor V/ (4rTt) becomes simply a 
constant coefficient. In the exponent, as well, 
the term - (S/4Tt) may be considered a 
constant coefficient of r2 ; and the problem is 
essentially one of finding the derivative of 
e- (~4~~) 7’ and multiplying this by the 
constant factor V/ (4rTt). The derivative of 
a function e” with respect to a variable r is 
given simply by e”* (du/dr) . Here, u is the 
term - (S/4Tt) r2. 

QUESTION 

Following the procedure outlined above, 
which of the following expressions is found 
for ah&? 

Turn to Section: 

4 

-=- 

ah V -=- e- (SP’j4Tt) 

ar 4=Tt 
2 

28 + 

Your answer in Section 7, 

a2h ah =r- +-9 
ar af-2 ar 

is correct. Our expression for 

may therefore be written 

Our expression for inflow minus outflow 
therefore becomes 

(continued on next page) 



106 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

28 + -Con. 

Ql-Q.=2A7( (T$),- (?-3} 

As before, we wish to equate thi,s expres- 
sion for inflow minus outflow to the rate of 
accumulation of water tin storage in our ele- 
ment. The surface area of the cylindrical ele- 
ment is given approximately by 

A = 2flAr. 

The term 2~ is the perimeter of a circle 
taken along the midradius of the element; 
multiplioation by the radial width, Ar gives 
the surface area, or base area, of the cylin- 
drical shell. 

QUESTION 

Using this expression for the surface area 
of the cylindrical element, and letting ah/ 
at denote the time rate of head buildup in 
the element, which of the following expres- 
sions is obtained for the rate of accumula- 
tion of water in storage in the element? 

dV ah 
Turn to Section: 

- = S2xrAr- 
dt at 

z!L&Jp- 
ah 

dt at 

ST!!- 
dV at 
-=- 
dt %rAr 

37 

12 

16 

29 + 

Your answer in Section 18 is not correct. as going to infinity, rather than disappear- 
The behavior we are trying to describe is ing; and it describes a restriction on h with 
the disappearance of the effect of injection, time, rather than with distance. 
at great radial distances from the well. The Return to Section 18 and choose another 
answer which you chose describes head, h, answer. 

30 + 

Your answer in Section 16, 

is not correct. We established in Sections 1 
and 15 that inflow through the inner cylin- 
drical face of the element is given by 
Darcy’s laws as 

Using a similar approach, we can show that 
outflow through the outer cylindrical face is 
given by 

These two equations can be subtracted to ob- 
tain an expression for inflow minus outflow 
for the cylindrical element. 

Return to Section 15 and choose another 
answer. 



PART VI. NONEQUILIBRIUM FLOW TO A WELL 107 

32 + 

Your answer in Section 35, 

ah V SF 
-= -+ e- (S72/4Tt) . 

at 4rTt’4Tt” 

Recall that the derivative of an exponential, 
e”, with respect to t is given bye”du/dt. Let- 
ting u represent - (Sr2/4Tt), your answer 
gives only au/at in the place where it should 
give 

is not correct. Application of the product 
rule-first factor times derivative of sec- 
ond plus second factor times derivative of 
first-is correct; but your expression for the 
time derivative of e- (~‘4~~) is not correct. 

au 
e”-. 

at 
Return to Section 35 and choose another 

answer. 

32 + 

Your answer in Section 37 is not correct. 
In Section 28, we saw that the expression 
for inflow minus outflow could be written 

,,T( c++r 

and 

I a2h ah 
Ql-Qz=2rT r-+- I AT 

0 I arz arl 

while the expression we obtained 
dt was 

dV ah 
-=SBflar-. 
dt at 

If we equate the terms 

ah 
S2flAr- 

at 
for dV/ and then divide through the resulting equa- 

tion by 

2TTrar, 
we obtain the correct answer to the ques- 
tion of Section 37. 

Return to Section 37 and choose another 
answer. 

33 + 

Your answer in Section 18, h+O as r+co is 
correct. From a mathematical point of view, 
we should perhaps have used, instead, the 
condition that (ah&) +O as r+w . This con- 
dition is required as r increases toward in- 
finity, because the cross sectional area of flow 
within the aquifer-a cylindrical area co- 
axial with the well-expands toward in- 
finity. Thus if we were to apply Darcy’s law 
to determine the flow of the injected water 
away from the well, we would obtain the re- 
sult that this flow increases toward an in- 
finite value with increasing distance from the 
well, unless we postulated that the head 

gradient, ah&r, decreased toward zero with 
increasing r. However, the condition that h 
approaches a constant, 0, as r+co implies 
that ah& must also approach zero as r in- 
creases; and it is a somewhat easier condi- 
tion to establish. 

Our task, then, is to show that the func- 
tion 

V 
e- (r2S/4Tt) 

4rTt 

satisfies this condition-that is, we must test 
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this function to see whether its value ap- 
proaches zero as r approaches infinity. It is 
easy to show that for any finite value of 
time the condition is satisfied. However, we 
are also interested in what happens as t ap- 
proaches infinity along with r-that is, we 
would like our condition to be satisfied for 
all times, even those immeasurably large. 
For this reason, it is convenient to use the 
the series expansion form given in Section 
18 ; that is we use 

V 
- e- (+:5/4Tt) 

4,Tt 
V 

= 
r4s2?r rwx 

4rrT t + r2Sx + -+ 
4Tt.2! 16T2tZ-3! 

In order that the fraction on the right ap- 
proach zero, it is sufficient that any one of 
the individual terms in the denominator be- 
comes infinite. If r and t both approach in- 
finity, the first two terms clearly become in- 
finite; in fact, the remaining terms become 
infinite as well, although we need not show 
this. If one! term is infinite, the entire de- 
nominator is infinite, and the fraction is 
zero. For a finite value of t, all terms except 
the first clearly become infinite as @co, and 
again the expression as a whole tends to 
zero. Thus the expression 

V 
-e- (r’S/rlTt) 

4rTt 

satisfies the condition of tending to zero as 
*CO, for any value of time. Again, this can 
be demonstrated by extending the plots de- 
scribed in Section 18 to large values of r. 

We could also add the condition that h 
must approach zero as time becomes infinite, 
everywhere in the aquifer-that is, that the 
effect of the injection must eventually die 
out with time everywhere throughout the 
aquifer, since we are injecting a finite vol- 

ume of water into an aquifer which is as- 
sumed to be infinite in extent. We have just 
shown that h approaches zero at infinite 
time, as r also becomes infinite ; we need only 
show that this behavior holds when r is 
finite. We will show this through direct use 
of the function, although it is also evident 
using the series expansion form. As t be- 
comes infinitely large the factor 

V 

4rTt 
must approach zero ; the factor 

- e- (+S/4Tt) 

which is equivalent to 

1 

e(r?S/4Tt) 

must approach the value 

or 

1 

eo, 

if r is finite. But e” is simply 1, so that the 
product 

V 

4,Tt’ 

e- (+‘%/4Tt) 

must approach zero as t becomes infinitely 
large, at any finite value of r. 

We now consider the last condition which 
our function should satisfy. In the sketch, 
the aquifer has been divided into cylindrical 
elements of radial width Ar, coaxial with the 
well. At any given time t after injection, the 
injected volume of fluid, V, is distributed in 
some way among these cylindrical elements. 
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We assumed head to be at the datum, or zero, 
prior to injection, so that h actually repre- 
sents only the head increase due to the in- 
jection. From the definition of storage co- 
efficient, the quantity of the injected fluid 
contained within a given cylindrical element 
will be given by 

where r is the median radius of the element, 
so that 2wrAr is the base area of the element; 
hr,t gives the average head in the element 
(that is, at the radius r) at the time in ques- 
tion ; and S is the storage coefficient. (Recall 
the definition of storage coefficient--the 
volume in storage is the product of storage 
coefficient, head, and base area.) Now if we 
sum the volumes in storage in every cylin- 
drical element in the aquifer, the total must 
equal the injected volume, V, at any time 
after injection. That is, 

where the summation is carried out over all 
of the cylindrical elements in the aquifer. 
Again, it should be kept in mind that h,,, 
represents only the head increase associated 
with the injection, so that its use in the stor- 
age equation leads only to the volume of 
water injected, not to the total volume in 
storage. Now since we are dealing with a 
continuous system, we replace the summa- 
tion in the above equation by an integration. 

That is, we let the width of each element 
become infinitesimally small, denoting it dr, 
so that the number of elements becomes in- 
finitely great; and we rewrite our equation 
as 

v= [l-y S - h,t - Bnrdr. 

The limits of integration extend from T= 0 
to r= co, indicating that the cylindrical ele- 
ments extend over the entire aquifer. This 
equation then is the final condition which 
our function should satisfy if it is in fact 
the solution we are seeking. 

QUESTION 

How do you think our proposed solution 
should be tested to see if it satisfies this 
boundany condition? 

Turn to Section: 

The integration indicated in the equation 
should be carried out. The result should 
equal 

V 
-e- (rW/4Tt). 11 
4rTt 

The expression 

V 
- e- (rV/4Tt) 

4rTt 
should be substituted for 

27fr 
in the equation, and the integration should 
be carried out ; the result should be 

27s. 14 
The expression 

V 
- e- (+*S/4Tt) 

4,rTt 
should be substituted for 

h r,t 
in the equation, and the integration should 
be carried out ; the result should equal 

V. 13 
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Your answer in Section 1, 

ah 
Q 1=-Krr12 - 

( ) ar 1 

is not correict. Darcy’s law states that flow is 
given by the product of hydraulic conduc- 
tivity, head gradient in the direction of flow, 
and cross-sectional area normal to the di- 
rection of ,flow. In this problem as in the 
steady flow to a well treated in Part III, the 

direction of flow is the radial, or r, direction. 
An area which is everywhere normal to the 
radial coordinate would be a cylindrical 
area, coaxial with the well. That is, the flow 
area that we require here is a cylindrical 
area-in particular, the inner face of the 
cylindrical prism shown in Section 1. The 
area of a cylinder is given by the product 
of its height and its perimeter. 

Return to Section 1 and choose another 
answer. 

35 + 

Your answer in Section 6, 

is correct. We now wish to differentiate the 
equation 

V 
h= -. e- (Sr=/4Tt) 

4mTt 
with respect to time, to obtain an expression 
for ah/at. In doing this, we consider r to be 
a constant, and treat our expression as the 
product of t.he two functions of t, 

V 

4rrTt 
and 

e- (Sr’/rlTt) . 

The derivative of 
V V 

-, or--‘t-l 
4rTt 4,7T 

with respect to t is 
V -V 

------.t-2,0r -. 
4rT 4rTt= 

To differentiate 
e- (S+‘/4Tt) 

we again apply the rule 

de” du 
-= eu-, 
dt dt 

where u is 

- ST-2 - Sr2 
-, or-*t-l, 

4Tt 4T 

and its derivative with respect to t is 

Sr2 ST2 
--‘k2, or-. 

4T 4Tt2 

QUESTION 

Applying the rule for differentiation of a 
product, together with the above results, 
which of the following expressions is ob- 
tained for ah/at? 
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ah V 
-=-. e-(S+/4Tt) 

at 4aTt 
ah V 
-=p. e-. (S+/4Tt) + e-(Sr*/4Tt) . 

at 4,rTt 
ah v Sr” 

-=- .-+ e- (S+/4Tt) 

at 4aTt 4Tt2 

Turn to Section: 

3 

20 

31 

36 + 

Your answer in Section 1, 

Q1= , 
2fl1 

is not correct. Darcy’s law tells us that flow 
is given by the product of hydraulic conduc- 
tivity, head gradient in the direction of flow, 
and cross-sectional area normal to the direc- 
tion of flow. In this case, as in the steady 
state flow to a well in Part III, the direction 

of flow is the radial direction and the cross- 
sectional area normal to the flow is a cylin- 
drical surface-the inner surface of the cy- 
lindrical shell shown in Section 1. In your 
answer, however, there is no factor repre- 
senting the area of this surface. The height 
of the cylinder, which is b, appears in the 
numerator of your answer; its perimeter, 
which is %rl, appears in the denominator of 
the answer which you chose. 

Return to Section 1 and choose another 
answer. 

37 + 

Your answer in Section 28, 
dV ah 
-=%irAr-, 
dt at 

is correct. As before, we will next use the 
equation of continuity to link the storage 
and flow equations. 

QUESTION 

If the expression obtained for inflow 
minus outflow is equated to that given above 

for rate of accumulation in storage, which 
of the following equations may be obtained? 

Turn to Section: 

a*h 1 ah 
r-+--z SZ 22 

ar2 2fl ar at 

32 

azh 1 ah S ah 
-+--=-- 
arz r af- T at 

27 
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Development of Addi tional Solutions by 
Superposition 

The differential equation 

a’h 1 ah S ah 
-+--=-- 
a@ r ar T at 

is linear in h ; that is, h and the various deri- 
vatives of h occur only in the first power- 
they are not squared, cubed, or raised to any 
power except 1, in any term of the equation. 
Equations of this type have the property 
that solutions corresponding to two individ- 
ual disturbances may be added to obtain a 
new solution describing the effect of the two 
disturbances in combination. This is termed 
superposition of solutions; it is a technique 
which is often used intuitively by hydrolo- 
gists-for example when calculating the 
drawdown produced by several wells, by add- 
ing drawdowns calculated for individual 
operation. 

The solution obtained in the preceding 

programed instruction was developed for an 
injection of fluid at t =O: If the injection 
does not occur at t =0, the term t in the solu- 
tion is simply replaced by At, the time inter- 
val between the injection and the instant of 
head measurement. For example, if the in- 
jection occurs at time t’, and the head change 
due to this inj,ection is measured at -some 
later time t, the interval t-t’ is used in the 
solution in place of t, giving 

V 
h,t = 

-LIIs-t., > 
*e . 

4rT(t-t’) 

Now suppose two injections occur, one at 
t,’ and one at t,‘, and the head is measured 
at some time t following both injections. Us- 
ing superposition, the head change due to 
the combined disturbances is 

VI v2 
h 

-LT(t--tp’) / 

r’t=47rT(t-t,‘) 
me + -e 

4rT(t-t,‘) 

where V, is the volume injected at t,’ and 
V, is the volume injected at t,‘. 

If we consider removal of a volume of 
water from the well, rather than injection, 
we need only introduce a change of sign, 
taking V as negative. For example, if a 
bailerfull of water is removed at t = tl’, the 
head change at time t, due to this removal is 

h,t = -e 
4?rT(t-t,‘) 

where V, is the volume removed by the 
bailer. If the well is bailed repeatedly, as 
may happen during completion, the head 
change due to bailing is obtained by super- 
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0 posing the disturbances due to each individ- 
ual withdrawal : 

h,t = - 
47rT(t-t,‘) I 

V, -4rT::t2 ‘^-(..;:J 
- se ***- SC! 

4,rT(t-t,‘) 4,rT(t-tn’) - 
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where t is the time at which h is measured ; 
tl’,&‘,ta’, * * * t,’ are the times at which the 
individual withdrawals are made ; and V,,, 
Vz, V,, * * * V,, are the volumes removed by 
the bailer in the successive withdrawals. The 
“bailer method” of determining transmissiv- 
ity from the residual drawdown of a well 
that has been bailed was developed from this 
equation (Skibitzke, 1963) . 

Pumping 
rate, Q 

Q(f) ------ 

t 
Time 

Now suppose a well is pumped continuous- 
ly during the time interval from zero to t, 
and we wish to know the head change at 

time t due to this continuous withdrawal. 
The rate of pumping, in volume of water per 
unit time, may vary from one instant to the 
next. The figure shows a plot of pump- 
ing rate verus time for a hypothetical case. 
Pumping starts at time = 0 and extends 
to time = t, the instant at which we wish to 
know the head change. We consider first the 
head change at t due to the action of the 
pump at one particular instant, t’, during 
the course of pumping. We consider an in- 
finitesimal time interval, dt’, extending to 
either side of the instant t’ ; the average rate 
of pumping during this interval is denoted 
Q (t’) . The volume of water withdrawn from 
the well during the interval is the product of 
the pumping rate, Q (t’) , and the time inter- 
val, dt’ ; that is, 

-V= -Q(t’)dt’. 
Again negative signs are used to indicate 
withdrawal as opposed to injection. The 
product Q (t’)dt’ is equal to the area of the 
shaded element in the graph shown in the 
preceding figure ; the height of this element 
is Q (t’), and its width is dt’. The time in- 
terval betwen the instant of withdrawal and 
the instant of head measurement is t-t’. Us- 
ing the solution obtained in the programed 
instruction for the head change due to in- 
stantaneous withdrawal of a volume of 
water, the head change at time t due to the 
withdrawal at t’ is given by 
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-v -(u;Ist*) > -Q(t’)dt’ -( ,T;lsf,) 
-c! = *I3 

4*T(t-t’) - 

The total head change at t, due to the con- 
tinuous withdrawal from zero to t, is ob- 
tained through superposition, by adding the 
head changes due to the instantaneous with- 
drawals throughout the interval from zero 
to t. 

- Q(t’) -.e-( +;;i> 
.&7 T(t -- t’) 

I I, l---kct - U-jTime t, 
0 t' t ' 

The figure shows a graph in which, instead 
of plotting only discharge versus time, we 
plot the entire function 

--Q(t’) 
-e 

4?rT(t-t’) 

versus time. The area of the element at t’ 
is now 

-Q(t’) 
--. e .dt’ 
42rT(t-t’) 

4*T(t-t’) - 

-thus it is just equal in magnitude to the 
head change at t, caused by the withdrawal 
at t’. If elements of the type shown in the 
figure are constructed all along the time 
axis, from zero to t, the area of each ele- 
ment will give the head change at t due to 
operation of the pump during the time inter- 
val represented by the element; the total 
head change at t due to all of the instan- 
taneous withdrawals throughout the inter- 
val from zero to t will therefore be equal to 
the sum of these areas, or the total area un- 
der the curve from zero to t. This total area 
is the integral of the function 

-Q(V) -(*T:f) > 

4,rT(t-t’) 

over the interval from zero to t, that is, the 
total head change is given by 

h= 
-Q(t’) -i u(t--ty / 

-e dt’. 
4rT(t-t’) 

It should be noted that we are now using t’ 
to denote the time variable or variable of in- 
tegration, rather than to specify one par- 
ticular instant. The function being inte- 
grated involves the difference, t-t’, between 
the upper limit of integration and the vari- 
able of integration. Evaluation of the inte- 
gral will yield a function of the upper limit, 
t, and of r; that is, the head change due to 
the pumping will be specified as a function 
of r and of t (the time of head measure- 
ment.) 

For the particular case when the rate of 
discharge is a constant, Q, the integral equa- 
tion can be transformed directly into a form 
suitable for computation. We have 
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/ 7-s \ 

- 4T(t-t') k ) 
.e dt’. 

The value of + corresponding to the upper 
limit of integration, t’= t, is 

h= 

The term -Q/4xT is a constant and may 
be taken outside the integral, giving 

-( 4TZ) 
dt’. 

We introduce the algebraic change of 
variable, 

$= r”S 
4T(t-t’) ’ 

We differentiate this expression with respect 
to t’, treating t, at this stage, as a constant; 
this gives 

d* r2S.4T r2S 1 
-= 
dt’ (4T(t-t’))2= 

.- 
4T(t-t’) t-t’ 

r2S 

= 4T(t-t’) 

Therefore 

and 

r2S 

4T(t- t’) 

9% 

4T 

$” 
d+=- . dt’ 

PS 

ICI” =-* 
r2S 

4T 

r2S 
tit= = 00. 

4T(t-t) 

While the value of + corresponding to the 
lower limit of integration, t’ = 0, is 

qo= r”S - r2S . 
4T(t-0) 4Tt 

We now return to our integral equation 
and substitute JI for 

r2S 

4T(t-t’)’ 

r% d+ 
-.- 

4T Q 

for 

dt’ ; 

and the values obtained above for the limits 
of integration. This gives 

-Q 
h=- 

L 

co 1 r2S d+ 
-.e-* .-.-* 

4?rT y r’s t-t’ 4T q,” 

zi 

But since 

4T 
the above integral becomes 

r%’ d+ 
&‘=- -. 

4T +” 4Tt 
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c?-* Values of the integral for various values 
of the lower limit have been computed, using 
this series, and tabulated. In the hydrologic 
literature, the value of the integral is com- 
monly referred to as W(u) or “well function 
of u.” Tables of W(u) versus u are avail- 
able in the reference by Ferris, Knowles, 
Brown, and Stallman (1962) and in numer- 
ous other references. In the forms presented 
above, the equations yield the head change, 
or simply the head, assuming h was zero 
prior to pumping. If head was at some other 
constant level, h,, prior to pumping, the ex- 
pressions are still valid for head change, 
h-h,. That is, we have 

i 
\ 
'\ 
\ 
\ 
\ 
\ 

\ 

I\ 

I' 
I' 
I/ 

I // 

/ 

//i/ // 

0 Lower 
/'O//$ 

limit 

U 

This integral is called the exponential in- 
tegral. It is a function of its lower limit, as 
suggested by the figure, which shows a graph 
of the function e-*Y/+ versus +. The area un- 
der this graph is equal to the value of the 
integral. The upper limit is infinite, and the 
function e-*/q approaches zero as + becomes 
infinite ; the area under the curve, or the 
value of the integral, depends only upon the 
point where the lower limit is taken-that 
is, upon the value of r%/4Tt. This term is 
often denoted u in the literature, so that the 
equation for head change is often written 

where 

PS 
u=-. 

4Tt 

It can be shown that the above integral is 
equal to an infinite series involving the lower 
limit. Specifically, 

r. W e-r u2 u3 f.64 
y oT+ = -0.5772 -In(u) +u-- -- -+ *** 

2.2!+3.3! 4*4! 

(24) 

where 

r “S 
?A=- 

4Tt 

or in terms of drawdown, h, - h, we have 

Q s=h,-h=- s 
00 e-u Q e-d,/,=- *W(u) 4rTu + 47rT 

The result we have obtained here is 
known as the Theis equation, after C. V. 
Theis who first applied it in hydrology 
(Theis, 1935). An excellent discussion of the 
significance of this equation in hydrology is 
given in another paper by Theis (1938). 

It was recognized by Cooper and Jacob 
(1946) that at small values of u, (that is, 
at large values of t), the terms following 
In (u) in the series expansion for 
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become negligibly small. In this condition 
the value of the integral is given simply by 

- 0.5772 -In (u) , 

or 

-0.5772--In 

The sign of the logarithmic term may be 
changed by inverting the expression in 
brackets, 

and the constant, 0.5772, may be expressed 
as the natural logarithm of another con- 
stant, 

0.6772 = In 

so that 

-0.5772+(;) -In($) -In(&) 

=*n(T)=2.3 l*gl0(:)- 

Thus when pumping has continued for a 
sufficient length of time so that u, or r2S/ 
4Tt, is small we may write 

Q 
s 
03 e-r 2.3Q 

a=- - d+- lofhl 
4=T u ti 4aT 

This is the modified nonequilibrium for- 
mula, which forms the basis of the “semilog 
plot” techniques often used by hydrologists 
in the analysis of pumping test data. These 
techniques are generally applied for values 
of u less than 0.01. 

The Theis equation and the modified non- 
equilibrium formula are extremely useful 
hydrologic tools, provided they are used 
within the limits of application established 
by the assumptions made in their derivation. 
Before leaving this subject, we will briefly 
review the assumptions that have been ac- 
cumulated during the course of the deriva- 
tion. We first developed the equation 

by 
1. 
2. 
3. 

4. 

5. 

a2h 1 ah S ah 
-+--=-- 
w2 r ar T at 

assuming that : 
The aquifer was confined ; 
There was no vertical flow; 
All flow was directed radially toward (or 

away from) the origin ; 
S and T were constant--that is, the 

aquifer was homogeneous and iso- 
tropic ; 

There was no area1 recharge applied to 
the aquifer 

In writing the solution corresponding to 
instantaneous discharge or input of a vol- 
ume of water, V, we added the assumptions 
that : 

6. The aquifer was infinite in extent; 
7. There was no lateral discharge or re- 

charge except at the well 
8. The head was uniform and unchanging 

throughout the aquifer prior to t =O. 
9. All of the injected water was taken into 

storage (or conversely, all discharged 
water was derived from storage). 

10. The well was of infinitesimal radius. 
Finally, when we integrated the above solu- 

tion to obtain the continuous discharge solu- 
tion 

Q 

J 

co e-e 
9=&--h=- --@ 

4rT 1s JI 

4Tt 
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ers have examined the problem of discharge 0 we added the condition that 
11. The discharge, &, was constant through- 

out the duration of pumping. 
These assumptions should be kept in mind 

whenever the Theis equation is applied. The 
assumption that all flow is lateral implies 
that the well must fully penetrate the aqui- 
fer and that the aquifer is horizontal. 

If the semilog approximation is used, we 
add the assumption that the time is great 
enough and radius small enough that the 
term r%S’/4Z’t is less than 0.01, and the later 
terms in the series expression for the inte- 
gral can therefore be neglected. 

The Theis equation was the first equation 
to describe flow of water to a well under 
nonequilibrium conditions. In subsequent 
work, Papadopulos and Cooper (1967 
have accounted for the effects of a finite well 
radius ; Jacob (1963) and several other writ- 

from partially penetrating wells ; Stallman 
(1963a), Lang (1963), and numerous other 
investigators have utilized image theory to 
account for lateral aquifer boundaries ; 
Jacob and Lohman (1952) have analyzed dis- 
charge at constant drawdown, rather than 
at constant rate ; numerous writers, includ- 
ing in particular Jacob (1946)) Hantush 
(1959, 1960 1967a 196713) and Hantush 
and Jacob (1955) have treated the problem 
of discharge from an aquifer replenished by 
vertical recharge through overlying and un- 
derlying strata ; and several writers, includ- 
ing Boulton (1954)) have attacked the gen- 
eral problem of three-dimensional flow to a 
well. Weeks (1969) has applied various as- 
pects of the theory of flow toward wells to 
the problem of determining vertical perme- 
ability from pumping test analysis. 
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