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PREFACE 

The series of manuals on techniques describes procedures for planning and 
executing specialized work in water-resources investigations. The material is 
grouped under major subject headings called books and further subdivided into 
sections and chapters; section B of book 3 is on ground-water techniques. 

Provisional drafts of chapters are distributed to field offices of the U.S. 
Geological Survey for their use. These drafts are subject to revision because of 
experience in use or because of advancement in knowledge, techniques, or 
equipment. After the technique described in a chapter is sufficiently developed, 
the chapter is published and is sold by the U.S. Geological Survey, 1200 South 
Eads Street, Arlington, VA 22202 (authorized agent of Superintendent of 
Documents, Government Printing Office). 
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TYPE CURVES FOR SELECTED PROBLEMS OF FLOW TO WELLS 

IN CONFINED AQUIFERS 

By J. E. Reed 

Abstract 
This report presents type curves and related material for 

11 conditions of flow to wells m confined aquifers. These 
solutions, compiled from hydrologic literature, span an 
interval of time from Theis (1935) to Papadopulos, Bre- 
dehoeft, and Cooper (1973). Solutions are presented for 
constant discharge, constant drawdown, and variable dis- 
charge for pumping wells that fully penetrate leaky and 
nonleaky aquifers. Solutions for wells that partially pene- 
trate leaky and nonleaky aquifers are included. Also, so- 
lutions are included for the effect of finite well radius and 
the sudden injection of a volume of water for nonleaky 
aquifers. Each problem includes the partial differential 
equation, boundary and initial conditions, and solutions. 
Programs in FORTRAN for calculating additional function 
values are included for most of the solutions. 

Introduction 
The purpose of this report is to assemble, 

under one cover and in a standard format, the 
more commonly used type-curve solutions for 
confined ground-water flow toward a well in an 
infinite aquifer. Some of these solutions are 
only published in several different journals; 
some of these journals are not readily obtain- 
able. Other solutions which are included in 
several references <for example, Ferris and 
others, 1962; Walton, 1962; Hantush, 1964a; 
Lohman, 19721 are included here for complete- 
ness. 

The need for a compendium of type curves for 
aquifer-test analysis was recognized by Robert 
W. Stallman, who initiated the work on it. 
However, ill health and the press of other 
duties prevented him from personally carrying 
out his concept, but he never ceased to advocate 
the need for the compendium. Although it is 
reduced in scope from his original concept, this 

report should be recognized to be a result of 
Stallman’s foresight and endeavors in the field 
of ground-water hydrology. 

The type-curve method was devised by C. V. 
Theis (Wenzel, 1942, p. 88) to determine the 
two unknown parameters, S and T, in the 
equations 

43 
s = (&/457T)W(u) 

and 

u = r’Sl(4Tt), 

where s is the drawdown in water level in re- 
sponse to the pumping rate Q in an aquifer 
with transmissivity T and storage coefficient S. 
The distance r from the pumping well, and the 
elapsed time t since pumping began, combine 
with S and T to define a dimensionless variable 
u and corresponding dimensionless response 
W(u). Briefly, the method consists of plotting a 
function curve or type curve, such as (lIu,W(u)l 
on logarithmic-scale graph paper, and plotting 
the time-drawdown (t-s) data on a second 
sheet having the same scales. This is equiva- 
lent to expressing the preceding equations as 

logs = log &/4nT + log W(u) 

and 

log llu = log t + log 4TIrSS. 

If the two sheets are superimposed and 
matched, keeping coordinate axes parallel, as 
shown in figure 0.1, the respective coordinate 

1 



2 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 
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log10 &- 
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Data plot 

/ 
.’ Match point 

/ + 
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I Type-curve plot 

4T 
-hl 2 1or s 

FIGURE O.l.-Relation of l/u,W(u) type curve and t, s data plot. Modified from Stallman (1971, p. 5, fig. 1). 

axes will be related by constant factors: 
s/W(u)=C, and t/(llu)=C,. The values of these 
two constants are 

C, =Ql(47rT) 

and 

Ce = r2Sl (4T). 

Thus, a common match point for the two curves 
may be chosen, and the four coordinate 
points-W(u), l/u, s, and t--‘recorded for the 
common match point. T can be obtained from 
the equation T=QW(uV(4m), and then S can 
be solved from the equation S =4Tutlr”, where 
W(u), l/u, s, and t are the match-point values. 

It is apparent that the type curves, and data, 
can be plotted in several ways. That is, the 
function curve, using W(u) as an example, 
could be plotted as (u,W(u)) with corresponding 

data plots of (llt,s) or (rYt,s); or could be plotted 
as (llu,W(u)) with corresponding data plots of 
(t,s) or (t/r2,s). The type-curve method is cov- 
ered more fully by Ferris, Knowles, Brown, and 
Stallman (1962, p. 94). 

The type curves presented in this report are 
shown on two different plots. One plot has both 
logarithmic scales with 1.85 inches per log- 
cycle, such as K and E 467522.’ The other plot 
is arithmetic-logarithmic scale with the 
logarithmic scale 2 inches per log-cycle and the 
arithmetic scale with divisions at multiples of 
0.1, 0.5, and 1.0 inches, such as K and E 
466213. 

Other methods exist for analysis of aquifer- 
test data. Among them are methods based on 
plots of data on semi-log paper, developed by 

‘The use of brand names in this report IS for ldentlficatmn purposes only 
and does not Imply endorsement by the U S GeologIcal Survey 
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Jacob (Ferris and others, 1962, p. 98) and by 
Hantush (1956, p. 703). These methods are 
useful, but they are beyond the scope of this 
report. 

Aquifer tests deal with only one component 
of the natural flow system. The isolation of the 
effects of one stress upon the system is based 
upon the technique of superposition. This tech- 
nique requires that the natural flow system 
can be approximated as a linear system, one in 
which total flow is the addition of the individ- 
ual flow components resulting from distinct 
stresses. 

The use of the principle of superposition is 
implied in most aquifer-test analyses. The 
term “superposition,” as here applied, is de- 
rived from the theory of linear differential 
equations. If the partial-differential equation 
is linear (in the dependent variable and its de- 
rivatives), two or more solutions, each for a 
given set of boundary and initial conditions, 
can be summed algebraically to obtain a solu- 
tion for the combined conditions. For instance, 
consider a situation (fig. 0.2) where a well has 
been pumping for some time at a constant rate 
Q,,, and the drawdown trend for that pumping 
rate has been established. Assume that the 
pumping rate increases by some amount AQ at 

some time t,. Then the drawdown for that step 
incrase in rate will be the change in drawdown 
from that occurring due to the pumpage Q,,. 

Programs, written in FORTRAN, for cal- 
culating additional function values are in- 
cluded for most of the solutions. Some of the 
type-curve solutions would require an unrea- 
sonably long tabulation to include all the pos- 
sible combinations of parameters. An alterna- 
tive to a tabulation is the computer program 
that can calculate type-curve values for the pa- 
rameters desired by the user. The programs 
could be easily modified to calculate aquifer re- 
sponse to more than one well, such as well 
fields or image-well systems (Ferris and others, 
1962, p. 144). The programs have been tested 
and are probably reasonably free from error. 
However, because of the large number of possi- 
ble parameter combinations, it was possible to 
test only a sample of possible parameter val- 
ues. Therefore, errors might occur in future use 
of these programs. 

“An aquifer test is a controlled field experi- 
ment made to determine the hydraulic prop- 
erties of water-bearing and associated rocks” 
(Stallman, 1971). The area1 variability of hy- 
draulic properties in an aquifer limits aquifer 
tests to integrating these properties within the 

Extrapolated trend, 

I 
t1 

TIME 

FIGURE 0.2.-The application of the principle of superposition to aquifer tests. 



4 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

cone of depression produced during the test. 
Aquifer-test solutions are based on idealized 
representations of the aquifer, its boundaries, 
and the nature of the stress on the aquifer. The 
type-curve solutions presented in this report 
all have certain assumptions in common. The 
common assumptions are that the aquifer is 
horizontal and infinite in area1 extent, that 
water is confined by less permeable beds above 
and below the aquifer, that the formation pa- 
rameters are uniform in space and constant in 
time, that flow is laminar, and that water is 
released from storage instantaneously with a 
decline in head. Also implicit is the assumption 
that hydraulic potential or head is the only 
cause of flow in the system and that thermal, 
chemical, density, or other forces are not affect- 
ing flow. In addition to these common assump- 
tions are special assumptions that characterize 
each solution summary. An important first 
step in aquifer-test analysis is deciding which 
simplified representations most closely match 
the usually complex field conditions. 

Generally the best start in the analysis of 
aquifer-test data is with the most general set of 
type curves that apply to the situation, kz;D nng 
ip mind limitations of the method and en’ects 
that cause departures from the theoretical re- 
sults. For example, the most general set of type 
curves for constant discharge presented in this 
report is for leaky aquifers with storage of 
water in the confining beds, solution 5. This 
includes, as a limiting case, the curve for a non- 
leaky aquifer. The most severe limitation on 
this set of curves is that they apply only at 
early times, as specified in solution 5. 

Some of the effects that cause departure from 
the theoretical curves are partial penetration, 
finite well radius, and variable discharge for 
the pumped well. The effects of partial penetra- 
tion must be considered when rlb<1.5, and be- 
cause vertical-horizontal anisotropy is prob- 
ably a common condition, these effects should 
be considered for rlb<lO. The effect of finite 
well radius should be considered for early 
times, as specified in solution 8. The effects of 
variable discharge depend upon the manner of 
the variation. A change in discharge is more 
important if the change is monotonic, either 
continually increasing or decreasing. This fact 
is shown by the type curves for solution 11, 

where a monotonic change of 10 percent caused 
a significant departure from the Theis curve. If 
the discharge variation consists of random 
“noise” about a constant discharge, a lo- 
percent variation is not significant. The most 
general set of type curves for tests on flowing 
wells is solution 7, for leaky aquifers, which 
includes nonleaky aquifers as a limiting case. 
The only set of curves for slug tests is given in 
solution 9. 

A recurring problem in type-curve solution 
for unknown hydrologic parameters is that of 
nonuniqueness. That is, function curves for dif- 
ferent parameter values sometimes have simi- 
lar shapes. An example of this is given by 
Stallman (1971, p. 19 and fig. 6). He indicated 
that the selection of the conceptual model is 
very important in interpreting the test results. 
Equally important is adequate testing of the 
conceptual model. Corroboration of the concep- 
tual model is indicated by similar results for 
hydrologic parameters from data collected at 
varying distances from the pumped well, 
depths within the aquifer, and at different ob- 
servation times. However, proof of suitability 
of the conceptual model ultimately rests on 
field investigations and not on curve matching. 

As an example of similar curve shapes for 
different situations, consider the case of con- 
stant discharge in a nonleaky aquifer with ex- 
ponentially varying thickness. The thickness, 
b, is equal to b,)exp[-2(X-X,,)la], where b. 
and X,, are the thickness and X-coordinate, re- 
spectively, at the site of the discharging well 
and a is a parameter. The drawdown for this 
situation is given by Hantush (1962, p. 1529): 

s = (&/4xKb ,,I exp (r/a cos 8) W(u,rla), 

where 

x 

W(u,P)= 
J 

(exp(-y-/Y/4yY~) dy, 
u 

u =r’S,/4Kt, 

Q is the discharge, r is the distance from the 
discharging well, 8 is the angle, with apex at 
the discharging well, between the observation 
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0 well and the positive X-axis, K is the hydraulic 
conductivity of the aquifer, and S, is the 
specific storage coefficient of the aquifer. This 
solution is similar to the equation describing 
drawdown in a leaky artesian aquifer (Han- 
tush, 1956, p. 702),which is 

s = (&/47rT) W(u,rlB), 

with T=Kb, B=d Tb’lK’, and b’ and K’ are 
the thickness and hydraulic conductivity, re- 
spectively, of the leaky confining bed. The 
other symbols are used as above. 

These two functions have the same shape 
when plotted on logarithmic paper, and draw- 
down resulting from one function could be 
matched to a type curve of the other function. 
Suppose, as an example, that the “observed 
data” are described by the function for the 
aquifer with exponentially changing thickness. 
Suppose, also, that the hydrologist is unaware 
of the variation in thickness and that the fam- 
ily of type curves for leaky aquifers without 
storage in the confining beds, solution 4, has 

l 
been chosen for analysis of the “observed data.” 
Matching the data plots to the type curves and 
solving for unknown parameters by the 
methods suggested in solution 4 gives for the 
ratio of K,, the apparent hydraulic conductiv- 
ity, to K, the true hydraulic conductivity, K,l 
K=exp((r/a) cos 8). The ratio would be close to 
one only in the vicinity of the discharging well. 
The diffusivity, KIS,?, would be determined cor- 
rectly, but the apparent specific storage coeffi- 
cient would have the same percentage error as 
the apparent hydraulic conductivity. Most im- 
portant of all, the erroneous conclusion would 
be that the aquifer is leaky, with leakage pa- 
rameter B = w = a. This somewhat 
contrived example illustrates a principle in the 
interpretation of aquifer-test data. Conclusions 
about the hydrologic constraints on the re- 
sponse of the aquifer to pumping should not be 
based on the shape of the data curves. Infer- 
ences may be made from these curves, but they 
must be verified by other hydrologic and 
geologic data. Therefore, proof of the suitabil- 
ity of the conceptual model must come from 
field investigations. 

Many of the old reports of the U.S. Geological 

B 
Survey contain references to the terms “coeffi- 

cient of transmissibility” and “field coefficient 
of permeability.” These terms, which were ex- 
pressed in inconsistent units of gallons and 
feet, have been replaced by transmissivity and 
hydraulic conductivity (Lohman and others, 
1972, p. 4 and p. 13). Transmissivity and hy- 
draulic conductivity are not solely properties of 
the porous medium; they are also determined 
by the kinematic viscosity of the liquid, which 
is a function of temperature. Field determina- 
tions of transmissivity or hydraulic conductiv- 
ity are made at prevailing field temperatures, 
and no corrections for temperature are made. 

Summaries of Type-Curve 
Solutions for Confined 
Ground-Water Flow 

Toward a Well in an Infinite 
Aquifer 

Solution 1: Constant discharge 
from a fully penetrating well in a 
nonleaky aquifer (Theis equation) 

Assumptions: 
1. Well discharges at a constant rate, Q. 
2. Well is of infinitesimal diameter and 

fully penetrates the aquifer. 
3. Aquifer is not leaky. 
4. Discharge from the well is derived ex- 

clusively from storage in the aquifer. 

Differential equation: 

d’sl8r’ + (l/r) (&,l&-) = (SIT)(ds/8t) 

Boundary and initial conditions: 

s(r,O) = 0, r20 
s(x,t) = 0, tao 

Q= 
I 

o,t<o 

constant >O, t20 

limr*=- Q t>O 
r--O dr m’ ’ 

(1) 
(2) 

(3) 

(4) 

Equation 1 states that initially drawdown is 
zero everywhere in the aquifer. Equation 2 



6 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

states that the drawdown approaches zero as 
the distance from the well approaches infinity. 
Equation 3 states that the discharge from the 
well is constant throughout the pumping 
period. Equation 4 states that near the pump- 
ing well the flow toward the well is equal to its 
discharge. 

Solution (Theis, 1935): 

r”S 
U=x’ 

where 

I 

m 
e-” dy = W(u) = -0.577216 - log& + u 

u y 

-U2+Jc-d+ .....,.. 
2!2 3!3 4! 4 

Comments: 
Assumptions made are applicable to artesian 

aquifers (fig. 1.1). However, the solution may 
be applied to unconfined aquifers if drawdown 
is small compared with the saturated thickness 

0 

t 

]I Static level 

of the aquifer and if water in the sediments 
through which the water table has fallen is dis- 
charged instantaneously with the fall of the 
water table. According to assumption 2, this 
solution does not consider the effect of the 
change in storage within the pumping well. 
Assumption 2 is acceptable if 

t >2 5 Y 10’rYT .’ c 

(Papadopulos and Cooper, 1967, p. 2421, where 
r,, is the radius of the well casing in the interval 
over which the water-level declines, and other 
symbols are as defined previously. Figure 1.2 
on plate 1 is a logarithmic graph of 
W(u)=4rrsT/Q plotted on the vertical coordi- 
nates versus l/u = 4Tt/(r‘%) plotted on the 
horizontal coordinates. The test data should be 
plotted with s on the vertical coordinates and 
corresponding values oft or t/r2 on the horizon- 
tal coordinates. 

Values of W(u) for u between 0 and 170 may 
be computed by using subroutine EXPI of the 
IBM System/360 Scientific Subroutine Pack- 
age. Table 1.1 gives values of W(u) for selected 
values of l/u between 1 x 10-l and 9x lo”, as 
calculated by this subroutine. 

-r- 
Impermeable bed 

\ 

FIGURE I.l.-Cross section through a discharging well in a nonleaky aquifer. c 
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Solution 2: Constant discharge 
from a partially penetrating well 

in,a nonleaky aquifer 

Assumptions: 
1. Well discharges at a constant rate, Q. 
2. Well is of infinitesimal diameter and is 

screened in only part of the aquifer. 
3. Aquifer has radial-vertical aniso- 

tropy 
4. Aquifer is not leaky. 
5. Discharge from the well is derived ex- 

clusively from storage in the aquifer. 

Differential equation: 

a’=K,IK, 

This is the differential equation for nonsteady 
radial and vertical flow in a homogeneous con- 
fined aquifer with radial-vertical anisotropy. 

Boundary and initial conditions: 

s(r, z,O)=O, r>O, OCz<b (1) 
s(=, z$)=O, tao (2) 

&(r,O,t)l&z=O, r>O, t>O (3) 
&s(r,b,t)l&=O, r>O, ts0 (4) 

ds i”; O<z<d 
lim r -= -&/(2nK,.(Z-d)), d< .z<Z 

r-0 dr IO 
(5) 

lc z<b 

Equation 1 states that initially the draw- 
down is zero everywhere in the aquifer. Equa- 
tion 2 states that the drawdown approaches 
zero as the distance from the pumped well ap- 
proaches infinity. Equations 3 and 4 state that 
there is no vertical flow at the upper and lower 
boundaries of the aquifer. This means that ver- 
tical head gradients in the aquifer are caused 
by the geometric placement of the pumping 
well screen, and not by leakage. Equation 5 
states that near the pumping well the flow is 
radial, that the flow toward the well is equal to 
its discharge, that the discharge is distributed 
uniformly over the well screen, and that no ra- 
dial flow occurs above and below the screen. 

Solution: 
I. For the drawdown in a piezometer, a solu- 
tion by Hantush (1961a, p. 85, and 1964a, p. 
353) is given by 

where 

J 

x 
W(u) = c dy 

u y 

and 

i 
sin& 

b 
- sin ?lrrd __ 

b 
cos y w (4 y) (7) 

I 

x 

W(u, x) = (exp(-y-x’V4y)ly) dy 
u 

r”S 
U=4Tt 

- 
a = mK,. 

An alternate form of this solution for a=1 is 
given by Hantush (1!361a, p. 85): 

’ =8nT(l -d) 
Qb [A+, ,F)- + iv+, y) 

in which 

f’ (16, $ ;, $) = T [jqu, y+*) 

2nb-x-z + M(u 2nb+x-z ____ 9 r r 
_ M(u 2nb-r+z’ 

’ r I )I 

(8) 

(9) 

c 
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a 

0 

M(u,P)= 

erf(x) = 2 
v5 

e-l” dy . 

II. For the drawdown in an observation well 
(Hantush, 1961a, p. 90, and 1964a, p. 3531, 

, (10) 

where W (U 1 is as defined previously 
and 

. 
t 
sin l?$l - sin - “y’) 1v(u,y), (11) 

where W&x) and u are as defined previously. 

Comments: 
Assumptions apply to conditions shown in 

figure 2.1. The effects of partial penetration 
need to be considered for arlb ~1.5. There must 
be a type curve for each value of arlb, dlb, lib, 
and either zlb for piezometer, or l’lb and d’lb for 
observation wells. Because the number of pos- 
sible type curves is large, only samples of 
curves for selected values of the parameters are 
shown in figure 2.2 on plate 1. 

For large values of time, that is,for t>b*Sl 
(2a’T) or t>bSl(2K,), the effects of partial 
penetration are constant in time, and 

w(u,y) 

can be approximated by 

n7rar 
2K,, b i ) 

(Hantush, 1961a, p. 92). R,,(X) is the modified 
Bessel function of the second kind of order zero. 

Equation 6 then becomes 

s = & W(u) + as = & [W(u) +fJ , 

Impermeable bed / / / / t 
d ’ z 

I 
A- 

b i 
I 

Aquifer 

Impermeable bed 

FIGURE 2.1.-Cross section through a discharging well that is screened in a part of a nonleaky aquifer. 
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where 

and fs is given in equation 7 

with W (u, y) replaced by 2K,, (y) 

Figure 2.3 shows plots of fs as tabulated by 
Weeks (1969, p. 202-207). In using these 
curves, it should be noted that fs for a given r, 
b, andz,, l,, d, is equal tof, for the same r, b, 
and z2=b-z,, 12=b-d,, and d2=b-1,. Figure. 
2.3 can be used to find fs by interpolation and 

then constructing type curves of W(u)+f, in the 
manner described by Weeks (1964, p. b195). 

For small values of time 

t< (2b-l-z)% 
20T 

(Hantush, 1961b, p. 3.72), equation 8 can be ap- 
proximated by 

-2 

-4 ,’ ’ 

< 2.00” , 

-6 ’ “I I I I III 

s = jj--&-q[M~1,~) -q&y 

+ M(u,$q - il+,gj. 

0.06 0.10 0.20 0.60 1 .oo 2.00 0.06 0.10 0.20 0.50 1 .oo 2.00 

ar/b 

FIGURE 2.3.-The drawdown correction factor& versus arlb, from tables; of Weeks (1969). 
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,An extensive table of M(u,P) has been pre- 
pared by Hantush (1961c). 

Although r/b for a given observation well 
probably would be known, however, the con- 
ductivity ratio a2 would,not be. Thus, it would 
not be known which arlb curve should be 
matched. In other words, not only T and S, but 
also the conductivity ratio a2 must be deter- 
mined. A criterion for determining the match 
between data curves and type curves is that the 
values of arlb for different observation wells 
should all indicate the same “a”. Plotting the 
drawdown data for several observation wells 
on a single tlr2 plot and matching to sets of type 

curves, a different set for each “a”, is a useful 
approach. 

Figure 2.2 was prepared from data calcu- 
lated by the FORTRAN program listed in table 
2.1. This program computes “s” from either 
equation 6 or 10, depending on the input data. 
The input data consist of cards containing the 
parameters coded in specific formats. Readers 
unfamiliar with FORTRAN format items 
should consult a FORTRAN language manual. 
The first card contains: the aquifer thickness 
(b), coded in columns 1-5, in format F5.1; the 
depth to bottom of pumped well screen (11, 
coded in columns 6-10, in format F5.1; the 

-6 
0.06 0.10 0.20 0.60 1.00 2.00 

w/b 

FIGURE 2.3.-Continued. 
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depth to top of pumped well screen (d 1, coded in tiplied by the square root of the ratio of the 
columns 11-15, in format F5.1; the number of vertical to horizontal conductivity (rm), 
observation wells and (or) piezometers, coded in columns 1-5, in format F5.1; depth to bot- 
in columns 16-20, in format 15; the smallest tom of observation well screen (I ‘), coded in 
value of l/u for which computation is desired, columns 6-10, in format F5.1; depth to top of 
coded in columns 21-30, in format E10.4; the observation well screen Cd’), coded in columns 
largest value of l/u for which computation is 11-15, in format F5.1.. A card would be coded 
desired, coded in columns 31-40, in format for a piezometer as follows: distance from 
E10.4. The ratio of the largest l/u value to the pumped well multiplied by the square root of 
smallest l/u value should be less than 1012. the ratio of the vertical to horizontal conductiv- 
Following this card is a group of cards contain- ity (rm), in columns 1-5, in format F5.1; 
ing one card for each observation well or and total depth of piezometer (z), in columns 
piezometer. These cards are coded for an obser- 11-15, in format F5.1. The output from this 
vation well as: distance from pumped well mul- program is tables of computed function values, 

%.06 0.10 0.20 0.50 1 .oo 2.00 0.06 0.10 0.20 0.60 1.00 2.00 

ar/b 

FIGURE 2.3.-Continued. 
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an example of which is shown in figure 2.4. 
Subroutines DQL12, BESK, and EXPI are 
from the IBM Scientific Subroutine Package 
and a discussion of them is in the IBM SSP 
manual. 

Solution 3: Constant drawdown in 
a well in a nonleaky aquifer 

Assumptions: 
1. Water level in well is changed instan- 

taneously by s,, at t = 0. 
2. Well is of finite diameter and fully pen- 

etrates the aquifer. 

+6 

3. Aquifer is not leaky. 
4. Discharge from the well is derived ex- 

clusively from storage in the aquifer. 
Differential equation: 

This is the differential equation describing 
nonsteady radial flow in a homogeneous iso- 
tropic confined aquifer. 
Boundary and initial conditions: 

s(r,O) = 0, r 2 r,, (1) 

2.00 0.05 

ar/b 

FIGURE 2.3.-Continued. 
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