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Preface 

Scientists and engineers have been using ground-water flow models to study ground-water flow 
systems for more than 20 years. The basic modeling process seems to be relatively straightfor- 
ward. Initially, a sound conceptual model is formed and is translated into a tractable, mathematical 
model. Contributing to (and following) this conceptualization process is the collection of field in- 
formation, such as (1) location and extent of hydrostratigraphic units, recharge areas, discharge 
areas, and system boundaries; (2) hydraulic head measurements; and (3) pumping discharges. These 
data form the basis for input to the flow model. Finally, the model is run, and the desired informa- 
tion such as head distribution or flux rates is extracted. However, people engaged in modeling 
usually observe that two pervasive problems considerably complicate the situation. One problem 
is that good, general methods of measuring (or computing) some of the variables that characterize 
the flow system and its geologic framework do not exist. One example is measurement of ground- 
water recharge. No direct ways of measuring recharge exist, and the accuracy of indirect methods 
is often unknown. Furthermore, many indirect methods are applicable only to unique situations. 
The second problem relates to errors in the measurements and their propagation into model results. 
No error-free measurement (or computation) methods for obtaining data on the flow system exist. 
Thus, even the variables that can be estimated will contribute to error, so that model results will 
always be unreliable to some extent. As a consequence of these two problems, measurement (or 
computation) of the necessary input variables, application of them to an adequate model, and 
calculation of the desired results to an acceptable accuracy generally are not possible. Other methods 
that recognize and deal with the problems of incompleteness and (or) inaccuracy of data must also 
be applied. The present text has been designed to teach these methods to scientists and engineers 
engaged in ground-water modeling. 

The basic methodology is multiple, nonlinear regression, in which the regression model is some 
type of ground-water flow model. As seen subsequently, this methodology is consistent with known 
aspects of the physical systems to be analyzed and requires relatively few assumptions. Even 
though the present text is directed specifically toward ground-water modeling, the procedures to 
be discussed are applicable to a number of different types of modeling problems. Thus, the methods 
are usually discussed in a general context; in other words, without reference to any specific model. 

Material in the present text evolved from notes developed for training courses in parameter 
estimation for ground-water flow models taught by the authors and others at the U.S. Geological 
Survey National Training Center, Denver Federal Center, Lakewood, Colo. The philosophy of these 
courses, and of this text, is to teach general methods that are applicable to a wide range of prob- 
lems and to teach these methods in sufficient depth so that students can apply them to many 
problem situations not considered in the courses or text. 

The main body of the text is organized into six major sections. The first section is an introduc- 
tion that discusses the general topic of modeling ground-water flow. This section shows that ground- 
water modeling problems are an incomplete combination of direct-type problems (solution for 
hydraulic head given values of flow system and framework variables) and inverse-type problems 
(solution for flow system and framework variables given values of hydraulic head) that commonly 
require solution by optimization procedures which give the best fit between observed and calculati 
results. Because the specific optimization approach employed here is regression and regression 
procedures are based on statistical concepts, the second section is included to provide the student 
with the necessary statistical background material. It is not designed to be an exhaustive review 
of basic statistics; rather, it presents material essential to understanding the following sections. 
The third section presents detailed material on linear and nonlinear regression. Although most 
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of the material on linear regression is fairly standard, some of the material on nonlinear regres- 
sion is not. In particular, specific modifications presented to induce convergence of the iterative 
solution procedure for nonlinear regression have not, to the writers’ knowledge, been presented 
elsewhere in the form given here. The fourth section applies the nonlinear regression method to 
the specific problem of developing a general fini tedifference model of steady-state ground-water 
flow. In the fifth section, statistical procedures are given to analyze and use general linear and 
nonlinear regression models. The tests and analytical procedures presented are not exhaustive; they 
are the ones that the writers have found to be most useful for analyzing the real systems examined 
to date The sixth section is designed to be supplemental to the preceding sections. Specialized 
procedures presented include nonlinear regression for models that cannot be solved directly for 
the dependent variable, a measure of model nonlinearity called Beale’s measure, and a statistical 
test for compatibility of prior information on parameters and parameter estimates derived from 
sample (observed head) information. 

A number of exercises have been included, and a complete discussion of the answers can be found 
in the seventh major section at the end of the text. These problems exercise the student on nearly 
all methods presented. In addition, three computer programs are documented and listed: the pro- 
gram for nonlinear-regression solution of ground-water flow problems of section four, a program 
to calculate Beale’s measure, and a program to calculate simulated errors in computed dependent 
variables such as hydraulic head. 

The mathematical background necessary to use this text includes basic mathematics through 
differential and integral calculus, including partial derivatives, and matrix algebra. A background 
in elementary statistics would be useful but is not essential. In addition, a sound knowledge of 
ground-water hydrology and ground-water flow modeling are needed to effectively apply the 
methods presented. 

References for cited material are given at the end of each major section. Good supplemental 
sources for the unreferenced material not peculiar to this text are presented as “Additional Reading” 
at the end of each reference list. It is expected that students who have difficulty with the material 
in this text will consult the more expanded developments in these supplemental sources. 

Several people, in addition to the writers, contributed extensively to this text. Charles R. Faust 
wrote earlier sections on statistical review and basic regression and contributed several exercises, 
Steven P. Larson wrote an earlier version and documentation of the nonlinearregression flow pro- 
gram of section four and contributed earlier versions of several exercises, James V. Tracy contributed 
to the documentation of the nonlinear-regression flow program, and Thomas Maddock III wrote 
the first version of the statistics review section. In addition, all of these people helped teach the 
training courses from which the present text evolved. Finally, the writers would like to thank the 
technical reviewers, Brent M. ‘Boutman and Allan L. Gutjahr, for their many hours of review work 
and the secretaries, Anita Egelhoff, Evelyn R. Warren, and Patricia A. Griffith, for their patience 
and care in typing the manuscript. 
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REGRESSION MODELING OF 
GROUND-WATER FLOW 

By Richard L. Cooley and Richard L. Naff 

1 Introduction 

1.1 Flow Equation and Bound- 
ary Conditions 

The most general form of the ground-water 
flow equation that we consider here is given as 

and T, and Tyy are continuous functions of x 
and y. 

(1.1-1) 

where 

Ttr (zc,y)= transmissivity (K&) in the 5=x 
or y direction; 

Ktt (x,y)= hydraulic conductivity of the 
aquifer in the 4 direction; 

b(x,y)= thickness of the aquifer; 
I&y)= hydraulic conductance (hydraulic 

conductivity divided by thick- 
ness) of sediments underlying a 
stream or of an aquitard underly- 
ing or overlying the aquifer: 

W(z,y,t)= source-sink term (positive for a 
source), distributed areally; 

N 
&~~~)Npb,)Qp=Dirac delta designation for 

t=l N wells, each one pumping at rate 
Qp (t) (positive for injection) and 
located at (u,,bd; 

S(sy)= storage coefficient; 
h(x,y,t)= hydraulic head in the aquifer; 

H(x,y,t)= head at the stream bottom or at 
the distal side of the aquitard; 

sy = Cartesian coordinates; 
t= time: 

With suitable internal boundary conditions, 
the region can be zoned with respect to T[[. 
Such boundary conditions involve head and 
specific discharge multiplied by thickness 
normal to the boundary (qn) and can be stated 
for a boundary between 5”[[ zones K and 4 as 

(1.1-2) 

(1.1-3) 

where ( .)k indicates that the quantity in paren- 
theses is evaluated just within the k side of the 
boundary and similarly for R Zonation with 
respect to R, IV, or S requires no internal bound- 
ary conditions. 

External boundary conditions applying at the 
periphery of the domain being modeled are 
given as 

(1.1-4) 

where c&,y, t) and &y, t) are given functions, 
and { &,y),n,(x,y)) is the outward-pointing 
unit normal at the boundary. The sum of the 
first two terms is the flux qB normal to the 
boundary (positive for outflow). Equation 1.1-4 

1 
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incorporates the standard boundary conditions 
of specified flux (qB) and specified head (hB) 
but also allows for linear combinations to be 
given. 

1.2 Types of Solutions 

1.2.1 Direct Solution for Head 

The classical problem of mathematical 
physics (and, by assumption, of ground-water 
hydrology) is to directly solve equations 1.1-1 
through 1.1-4 for h=h(~,y,t). Given that any 
specific problem is properly posed, such a solu- 
tion will always exist. The conditions for prop 
erly posing a problem are the following. 

1. The positions of all internal boundaries 
are known exactly. Examples of internal 
boundaries are abrupt changes in TtE, R, 
S, or W; internal known flux (q,) bound- 
aries; and internal known head bound. 
aries. Note that a river is often treated as 
either an internal known head boundary 
where the river is assumed to have no 
width, or a zone of differing R where each 
bank is a zone boundary. 

2. The positions and types of all external 
boundaries are known exactly. External 
boundaries frequently are known flux (qB) 
types or known head (hB) types. Some- 
times some linear combination is known, 

3. Hydrogeologic variables T , R, and S 
and hydrologic variables Iv and Qp are 
known at all points in the region. 

4. All boundary-condition variables H, CY!, 
and /3 are known. The initial head (at t=O) 
is a boundary condition and must also be 
hOWll. 

Obviously, ground-water flow problems are 
not actually of the classical type because none 
of the conditions cited above ever are met ex- 
actly. Conditions 1 and 2 are often most close- 
ly fulfilled, but estimates (often crude) usually 
must suffice for the variables in conditions 3 
and 4. Any errors in these input variables are 
propagated directly into the solution. However, 
reasonable (but incorrect) estimates of the vari- 
ables can be shown to yield errors in predicted 
h(~,y,t) that have the characteristic of being 
bounded (that is, they do not tend to plus or 
minus infinity). Also, as the errors in the input 

variables tend to zero, the errors in computed 
head do also. 

1.2.2 Inverse Solution for 
Parameters 

An inverse solution involves solving equa- 
tions 1.1-1 through 1.1-4 for one or more of the 
variables Ttt, R, S, W, Qp, ar, or 8, over the 
region; these variables are termed parameters 
here. Because R, S, W, Qp, (Y, and fl are not in- 
volved in derivatives, theoretically they may be 
solved for algebraically. Unless Tt is constant, 
it is involved in derivatives and, t ii us, must be 
obtained by solving a differential equation. To 
understand this, note that equation 1.1-1 may 
be rearranged to give 

aL aqy a-+b 
ax 

-+cTz,+dTyy-F=O (1.2-1) 
aY 

where 

ah a(x,y,d= - ah 
ax ' b(sy, d=- 

ay ' 

a2h 
4x&t)= - 

a2h 
ax2 ’ 

4&Y, d=- 
aY2 

, ad 

F(syA=S $ -R(H-hL)- W-&ix-q)S(r-bJg,. 

In general, if T,, and Ty,, are known, condi- 
tions for finding R, S, W, Qot CY, or /3 are: 

1. Conditions 1 and 2 for the classical direct 
solution are met. 

2. Head distribution h(x,y,t) is known 
exactly. 

3. The solution for the desired combination 
of parameters to be obtained is unique. 

The latter condition is completely problem 
dependent. Because solution involves only 
algebraic manipulations, the condition reduces 
to the requirement that the system of algebraic 
equations involving the desired parameters has 
a unique solution. Generally, solution involves 
picking the required number of points spatial- 
ly and through time to yield the necessary 
number of equations. 

To find T,, and Tyy, more conditions are 

c 
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required than for finding R, S, W, Qp a, or 6. 
These conditions are: 

1. Conditions 1 and 2 for finding R, S, W, Qp 
CY, or 0 must be met. 

2. The direction of the velocity vector must 
be known everywhere, or TuclTyy must be 
known everywhere, or quantities a, b, c, 
d, and F in equation 1.2-1 must be known 
at two (or more) points in time to give a 
unique solution to equation 1.2-1 written 
in the form of a pair of simultaneous dif- 
ferential equations. These requirements 
result because 1.2-1 is one equation in 
two unknowns. Hence, an additional rela- 
tionship is required. If the velocity direc- 
tion is known everywhere, then by 
employing Darcy’s law the additional rela- 
tionship is derived as 

do not exist at all points and, where these 
measurements do exist, they are not exact. Fur- 
thermore, some measure of Ttt is virtually 
never available on the required curves, and in- 
formation on directions of flow vectors for even 
scattered locations usually is nonexistent. 
Assumptions concerning zonations in which 
T,/T,, and (or) T,, and T may be considered 
constant simplify the prob fY em, but the fact that 
h must be known still remains. 

Because the head distribution is not known 
exactly, coefficients u, b, c, d, and F in equation 
1.2-1 are in error. Furthermore, head appears 
as a derivative in all of these quantities. Hence, 
any error in h is propagated into the inverse 
solution as a derivative of error. The effects of 
this propagation are often disastrous because, 
if Q is defined as error in head, Q+O does not 
imply that 3~/3[+0. Also, I~Q/~[[>>[Q[ is 
common, and it can happen that ( 3 q/3 ,$ [+a 
even if ‘h is bounded. Therefore, the error in 
computed Ttr (or other parameter) may not ap- 
proach zero as Eh+O, and may, in fact, be quite 
large (Neuman, 1980, p. 342-344). 

T xx 99 -=-- 
T YY QYU 

(1.2-2) 

where e, b, and qnlq, (the ratio of the x 
and y direction fluxes) are known. 

3. 

B 

If either the direction of the velocity vec- 
tor or T,,/T,, is known, then either T,, 

Or TYY must be known on a possibly 
discontinuous curve crossing all flowlines. 
If solution is to be obtained by solving a 
simultaneous pair of differential equa- 
tions, then T,, must be known on a 
possibly discontinuous curve that spans 
the range of y, and Tyy must be known on 
a possibly discontinuous curve that spans 
the range of X. These are extensions of the 
Cauchy boundary condition for a first- 
order differential equation involving a 
single dependent variable and are re- 
quired for solution of the problem. 

4. The function F in equation 1.2-1 must be 
known everywhere. This means that all 
quantities in F must be known or that a 
mathematical form for F can be assumed. 

Ground-water flow modeling does not fit into 
the category of inverse solutions, although a 
significant part of most model studies is to find 
values of the parameters that allow values of 
calculated head to match those observed in the 
field. The difficulty is that the required condi- 
tions are almost never met. Head distribution 

. is never known exactly because measurements 

1.2.3 Solution Using Real Data 

In the previous section, we argued that prob- 
lems involving groundywater flow modeling of 
real field systems are neither of the classical nor 
inverse type, because the data necessary for the 
problems to be classified as either type are 
usually lacking. An estimate of the hydraulic 
head distribution based on measurements (that 
are in error with respect to the model) taken at 
selected points usually exist. Estimates of the 
parameters are usually either completely 
unknown or have been obtained by spot 
measurements, few of which are directly useful 
for construction of appropriate effective values 
for use in equation 1.1-1. That modeling prob- 
lems in ground-water hydrology involve an in- 
complete combination of several types of data 
in which error and error propagation are impor- 
tant considerations is evident. 

1.3 Sources of Error in Ground- 
Water Data 

Uncertainty (or errors) in ground-water data 
may have many sources, and enumeration of all 
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possible sources would be a nearly impossible 
task. However, a consideration of some of the 
more important sources of error serves to il- 
lustrate the importance of the error component. 

1.3.1 Sources of Error in Head Data 

Some major potential sources of random- 
appearing error in head data with respect to the 
model (equations 1.1-1 through 1.1-4) are: 

1. Areal ground-water models assume that 
the head used is the average over the ver- 
tical. However, wells may not be open 
over the entire interval modeled, and if 
they are, they may not measure the 
average. Flow into and (or) out of a well 
distorts the hydraulic head field in the 
vicinity of the well so that the recorded 
water level does not represent the average 
head. 

2. Permeability varies from point to point, 
which causes water levels to vary from 
values they would have if permeability 
were uniform. However, models usually 
do not take this detailed variation into ac- 
count. This phenomenon has been exten- 
sively studied during the last 10 years, 
and literature reviews are contsined in the 
works of Dagan (1986) and Gelhar (1984, 
1986). 

3. Water levels measured in wells in use may 
contain unknown amounts of residual 
drawdown. In addition, unused wells may 
be near wells that are in use, with result- 
ing unknown drawdown in the unused 
well. 

4. Measurement of well-head elevation may 
be in error. 

Actual total error from the above sources is 
highIy problem dependent, but it is easy to im- 
agine errors of several feet. It should be noted 
that measurement error in water levels was not 
mentioned as a major source of error because 
it commonly amounts to one- or two-tenths of 
one foot or less. Finally, major model error in 
equations 1.1-1 through 1.1-4 (for example, 
head dependence in one or more parameters or 
three-dimensional flow) was also not mentioned 
because error resulting from this source is bias 
and should be detected and eliminated by 
analysis of model results. 

1.3.2 Sources of Error in Parameter 8 
Data 

Because there are several different param- 
eters to be considered, and each can be esti- 
mated or measured in several different ways, a 
large number of sources of error exist in 
parameter data. Model error is not considered 
here, but other types of bias are potentially im- 
portant and are often difficult to detect. Some 
examples of errors in parameter data i.lIus- 
trating the nature of the problem are: 

1. Too few estimates of parameters are avail- 
able to compute stable estimates of statis- 
tics, such as mean and variance. 

2. Results of point sampling are often biased 
because a large amount of data does not 
necessarily allow computation of nearly 
true or effective values of a parameter and 
its variance. For example, permeability 
values from core analyses often are not 
representative of regional values, because 
flow through large fractures is not repro- 
duced by core analyses. Also, effective 
values of a parameter and its variability 
are usually not directly given by standard 
mean and variance formulas. c 

3. Transmissivities estimated from specific- 
capacity data collected by drillers are 
subject to numerous sources of error. 
Common sources include (1) mismeasur- 
ing water levels or pumping rates, (2) al- 
lowing the water level to recover after 
bailing, (3) clogging of the slots or screen, 
and (4) inaccurate reporting. There are 
so many sources of error that the errors 
may often appear to be random. A persist- 
ent source of bias results because drillers 
drill wells in favorable locations and 
only screen (or slot) the most productive 
zones. 

4. Transmissivities and storage coefficients 
estimated from pumping-test analysis are 
subject to many of the same errors as 
above, but the more carefully controlled 
tests should reduce their frequency and 
magnitude. In addition, a single test may 
not be representative of an entire hydro- 
stratigraphic unit. 

5. Transmissivities estimated from litholog- 
ical data are usually biased to an un- 
known degree. 1 
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a 1.4 Model Construction 

Ground-water models are constructed by 
using the types of data alluded to in the 
previous section. Hence, measured or estimated 
parameter data, either reliable or complete 
enough to employ directly in a model to 
reproduce measured head data with an accept- 
able model fit, are rare. As a result, adjustment 
of parameter values, and sometimes basic model 
structure, is used to improve model fit. Two 
basic groups of methods currently in use to ac- 
complish this are: (1) trial and error procedures 
and (2) optimization methods that minimize a 
formal objective function. 

1.4.1 Trial and Error Methods 

Trial and error is the method of repeated 
simulation until the calculated head distribution 
obtained with a reasonable set of parameters 
fits closely enough to satisfy the analyst. 
Sometimes an objective measure of goodness of 
fit, such as C(hC~-hobS)2, is used to aid the 
analyst in deciding whether or not a change in 

l parameters (or model structure) has improved 
the overall model fit. However, no matter how 
the method is applied, it has several inherent 
critical deficiencies: 

1. No methodology exists to guarantee that 
the simulations will proceed in a direc- 
tion that could lead to the best set of 
parameters. 

2. Determining when that best set has been 
reached is difficult. 

3. No practical way of determining how 
many other sets of parameters could yield 
similar correspondence between hCh and 
bobs exists. 

4. Deciding whether or not additional pa- 
rameters or a more refined model would 
significantly improve model fit is difficult. 

5. No way of quantitatively assessing 
the predictive reliability of the model 
exists. 

A method of model construction that addresses 
these deficiencies would allow construction and 
use of a model with a much greater degree of 
confidence than that provided by trial and error 
methods. Hence, attention is turned to formal 
optimization procedures. 

1.4.2 Formal Optimization 
Procedures I_ 

Optimization procedures utilize a formal 
criterion of goodness of fit, often called an ob- 
jective function. This function is minimixed (or 
sometimes maximized, depending on the form 
of the function) with respect to the parameters 
to yield an optimum or best-fit solution. Mini- 
mization (or m aximization) sometimes is subject 
to certain other criteria regarding values that 
the parameters, or pertinent functions of the 
parameters related to the model, may take on. 
These criteria are called constraints. 

Examples of objective functions are: 

%&I , 
P=l 

max Ih& , and 
P 

where 

*Fobserved head, 
hp=calculated head, 

p,=observed or prior estimate of a pa- 
rameter, 

&=calculated parameter value th,at, when 
used in the model, produces h,, 

wp=weight related to the reliability of the 
observation h,, 

k?n =similar weight applied to pm, 
n,=number of observations of head, and 
nP=number of observations of parameters. 

The last example is called a compound objective 
function because it contains both head and 
parameters explicitly. Note that minimization 
of each of the functions with respect to the 
parameters of the model produces a solution 
that is overall a best fit to the data, according 
to the objective function. If the signs of the 



6 TECHNIQUES OF WATEEBESOURCES INVESTIGATIONS 

functions were changed, maximization would 
produce the same result. 

Examples of constraints are: 

where a, b, c, and fare constants or known func- 
tions; superscript L refers to a lower limit; and 
superscript Urefers to an upper limit. The best- 
fit solution obtained by minimizing (or maxi- 
mizing) the appropriate objective function 
must simultaneously satisfy the appropriate 
constraints. 

Because the solution obtained by an optimiza- 
tion procedure has known properties, it may be 
analyzed. The exact procedures used and the 
extent to which the model may be analyzed 
depend on the type of optimization method 
selected for use. Statistical regression pro- 
cedures handle, on a probabilistic basis, the 
propagation of data errors (with respect to the 
model) into the estimates of parameters and 
predictive capability of the model. Methods 
have been developed for estimating parameters, 
testing assumptions made during development 

of techniques, testing model fit, determining the 8 
reliability and significance of the model and the 
parameters contained in it, effecting corrective 
measures for violation of some assumptions, 
and estimating the reliability of predictions to 
be made with the model. These procedures and 
the statistical background necessary to apply 
them are detailed in the remainder of the text. 
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Casual observation of our environment in- 
dicates that many phenomena are not strictly 
predictable. We cannot, for instance, exactly 
say what the maximum air temperature at any 
particular location will be tomorrow, although 
we might be able to give a probable range. This 
probable range might be based on our past ex- 
perience, which would enable us to say that 
tomorrow’s high, considering the location and 
season, will probably fall within a specified in- 
terval. A more sophisticated forecasting model 
may enable us to reduce the range within which 
we think tomorrow’s high will fsll, but random 
elements in the forecasting procedure would 
preclude giving an exact answer. As another ex- 
ample of randomness, consider the toss of a 
coin. Prior to the toss, we can only give the 
possible outcomes, either a head or a tail, and, 
if the coin is fair, say that either have equal 
likelihood of occur-kg. However, this ability to 
state precisely that any’future outcome of this 

D 
experiment can, with equal probability, result 
in either a head or a tail is an important advan- 
tage over that offered for predicting tomorrow’s 
maximum temperature. In this latter case, 
because of the complex nature of the processes 
resulting in tomorrow’s maximum, the likeli- 
hood that we could give a precise statement con- 
cerning the probability that it will fall in our 
predicted interval is remote. Instead of attempt- 
ing to untangle these complexities, we might 
opt to study the history of maximum temper- 
atures at the location and annual date in 
question. By assuming that this history will ex- 
trapolate into the future (that is, that weather 
dynamics in future years will remain essentially 
unchanged from those in previous years), we 
could give an estimate of the likelihood that 
tomorrow’s maximum will fall in a particular in- 
terval. However, tools need to be developed to 
carry out this investigation. 

2.1 Basic Concepts 

Randomness itself can be considered to be 
centered around an experiment; the outcome of 
the experiment will have a random quality 

attached to it. For example, in a coin-toss exper- 
iment, the outcome is dominated by the random 
element (either a head or a tail). On the other 
hand, many experiments have a large deter- 
ministic factor. For example, in a chemical titra- 
tion experiment we measure the unknown and 
the amount of titrant used, then calculate the 
amount of a specific substance in the unknown. 
However, measurement error creeps into our 
technique, and results vary from realization to 
realization of the experiment. Some experi- 
ments, such as annual, peak river flows, are not 
ours to perform but only to observe. This ex- 
periment is an example of an event in nature 
that has a large random component which 
nature provides. As we attempt to measure 
these flows, we introduce additional random- 
ness, which we generally ignore. Hydraulic con- 
ductivities measured from core samples are 
similar to peak flows; nature has already pro- 
vided for randomness, which is constrained by 
certain deterministic factors, such as type of 
source material, distance of transport, climate, 
and diagenesis. Again, for every realization of 
this experiment, measurement error is intro- 
duced, which may not be small. 

All possible outcomes of an experiment are 
known as its sample space. The sample space of 
a coin-toss experiment consists of either a head 
(H) or tail (I?: 

S=(H,T}. 

If the experiment consists of the toss of two 
coins, then the sample space consists of 

On the other hand, if we are only interested in 
the total number of heads which might result 
from a single toss of two coins, we could define 
the experiment as this sum, which would result 
in the sample space 

S,={O,1,2}. 

In the case of S,, every member of the sample 
space is equally likely to occur, whereas for S,, 
a one is twice as likely to occur as either zero 
or two, provided that the coin is fair. 

The sample space for a hydraulic-conductivity 
experiment could be defined as all positive real 
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numbers; that is, measurements from cores 
might result in values (outcomes) which could 
be as small as zero or, if we stretch our imagina- 
tions, infinitely large. This space could be con- 
sidered to be a continuous equivalent of the S, 
space for the two-coin experiment. That is, a 
porous medium is an extremely complex 
random process itself. By conducting hydraulic- 
conductivity measurements on cores, we quan- 
tify this randomness in much the same way that 
counting heads quantifies an outcome of the 
two-coin experiment. However, by quantifying 
the randomness of the porous medium in this 
manner, we have never investigated the possi- 
ble existence of more basic, perhaps nonnumeric 
sample spaces similar to S, of the two-coin ex- 
periment for a porous medium. Even if we were 
to discover the existence of such a space, we 
would then need to find a rule, or algorithm, 
which would allow us to connect the two spaces. 
We shall not worry about the possibilities of an 
S1-like space for many processes; however, 
when they are available, they provide an ex- 
cellent mechanism for investigating the charac- 
teristics of &-like spaces. 

An event is defined as any subset of the 
sample space. The investigator is usually inter- 
ested in the relative frequency of occurrence of 
an event. In the case of the S, space and the 
two-coin experiment, it is apparent that half the 
time a realization experiment should result in 
a one. This event is equivalent to the event in 
the S, space corresponding to the union of 
(H,V and (T,H), which occurs with a relative 
frequency of one-half. Thus, the relative f’re 
quency of a head occurrence for the two-coin ex- 
periment is not dependent upon the definition 
of the sample space, but on the basic rsn- 
domness controlling the experiment. 

The investigator is frequently confronted 
with the problem of needing a numerical result 
for the outcome of a random, but not necessarily 
numerical, experiment. In the case of coin-toss 
experiments, the basic outcome is seen to be a 
particular arrangement of heads and (or) tails. 
By assigning a head a value of one and a tail 
a value of zero and then summing, it is possible 
to translate these basic results into something 
measurable. This process of assigning a 
numerical value to a nonnumerical outcome 
leads to the definition of a random variable. 

Definition: A random variable is a function l 
whose value is a real number determined by 
each element in a sample space. 

When the outcome of the experiment is 
numerical, then this result can be considered to 
be the random variable (this statement is merely 
a special case of the above definition). From the 
above definition, we see that a mathematical 
transformation of a random variable is also a 
random variable. (Throughout this review, a 
random variable is indicated by an upper case 
English or Greek letter, whereas a value that 
it may take on is indicated by another letter, 
usually lower case of the same type as used for 
the random variable.) 

The concepts of a random experiment, sample 
space, and random variable are flexible. For in- 
stance, if in the case of the toss of two coins, 
the experiment is defined as the total number 
of heads appearing, then the 23, sample space 
is an automatic result, and the random variable 
can also be considered to be this result. How- 
ever, if the experiment is defined to be the ar- 
rangement of heads and (or) tails resulting from 
a toss (that is, the S, space), then the same ef- 
fect can be obtained by letting the random c 
variable over the S, space be a function that 
assigns a one to a head and a zero to a tail and 
then sums the result. The investigator usually 
defines the sample space, or experiment, to suit 
a particular objective. As a matter of conveni- 
ence, the space is usually selected such that the 
relative frequencies of occurrence of events 
within the space are definable. Access to such 
basic sample spaces as S, for the two-coin ex- 
periment allow for the calculation of relative fre 
quencies for events in both S, and S2 Without 
the existence of a space like S,, determining the 
true relative frequency of occurrence for an 
event in S, is difficult, if not impossible. This 
situation is also evident from the hydraulic- 
conductivity experiment, where only an S$ike 
sample space is available to the investigator. 

A random variable can also be described as 
either being discrete, as in the coin-toss experi- 
ment, or continuous, as represented by the 
hydraulic-conductivity experiment. A discrete 
random variable is defined over a sample space 
whose elements are discrete, although there 
may be as many as there are whole numbers 

4 
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a (mathematicians refer to this phenomenon as 
being countably infinite). A continuous random 
variable is defined over a continuous sample 
space whose elements are infinite in number 
(therefore these elements are uncountably 
infinite). 

2.2 Frequencies and 
Distributions 

2.2.1 Discrete Random Variables 

Although frequencies of occurrence are usual- 
ly associated with events in a sample space, they 
are also associated with values of random vari- 
ables, since random variables are functions of 
the elements in a sample space That is, partic- 
ular values of a random variable correspond to 
particular events in the sample space and, there 
fore, have frequencies of occurrence. Even 
though we will speak of the relative frequency 
of occurrence for particular values of a random 
variable, we are, in reality, speaking of a corm- 

B 

sponding event in the sample space. In fact, we 
frequently use a range of values of a random 
variable to define an event in a sample space, 
thus avoiding the task of describing which 
elements of the sample space compose the event. 

Frequencies of occurrence for events in many 
discrete sample spaces cau be deduced from the 
following axiomatic premise: If an experiment 
can result in any one of N different equally like- 
ly outcomes, and if exactly n of these outcomes 
correspond to event A, then the relative fre 
quency of occurrence of A is n/N. As a simple 
example of employment of this premise, con- 
sider au experiment consisting of a toss of a die. 
The sample space consists of the integers 1 
through 6 and, for any realization of the experi- 
ment, each element of the sample space has 
equal likelihood of occurrence. By considering 
each element of the sample space to be an event, 
one can calculate the frequency of occurrence, 
j&), with which a random variable takes on the 
value xi. For this experiment, only the integer 
values 1 through 6 of Xi have frequencies of oc- 
currence other than 0; Axi) can be graphically 
represented as shown in figure 2.2-l. In this 
case, f(Xi) is referred to as the discrete 

B 

density function of the discrete random variable 

1 2 3 4 5 6 
xi 

Figure 2.2-l 

consisting of the outcome of a toss of a single 
die. 

When two dice are cast, the experiment can 
be defined either as the sum that results from 
the toss or simply as all possible arrangements 
that could appear on the dice. If the sum is 
chosen, then the sample space consists of the 
integers 2-12, which would also be the range of 
values that the random variable could take on. 
The elements of this space, however, are not 
equally likely to occur. The sample space con- 
sisting of all arrangements of the numbers ap- 
pearing on the two dice, presented graphically 
in table 2.2-1, has elements which are equally 
likely to occur. 

Table 2.2-l 

Second 
die 1 

1 (1,l) 
2 (12) 
3 (193) 
4 UP41 
5 (1,s) 
6 (1,6) 

First die 

2 3 4 5 6 

cm (3,l) (4,l) (591) NW 
c&2) (3A (42) 62) (6.2) 
(23) (3,3) (493) (593) (631 
@A (3.4) (494) (5,4) (6,4) 
@X4 (3,s) (4,s) (595) (6.5) 
CWI (3,6) (4-6) (5-6) PM) 

The relative frequency of occurr ence of an event 
corresponding to any subset of elements in this 
space can be calculated by using the premise 
concerning equally likely outcomes. 

A random variable, consisting of the sum that 
results from any outcome of the two dice experi- 
ment, takes on the integer values 2-12 over the 
sample space represented by table 2.2-l. The 
discrete density function for this random 
variable can now be derived from the basic 
premise concerning outcomes that are equally 
likely, since each value for this discrete random 
variable corresponds to a particular event con- 
sisting of a particular subset of elements in the 
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sample space indicated by table 2.2-l. Thus, the 
value of Xi=3 corresponds to the event contain- 
ing the elements (2,l) and (1,2) and has a relative 
frequence of occurrence of 2/36. Letting xi 
represent the integer values that this random 
variable can obtain, its density function, Axi), 
can be represented as shown in figure 2.2-2. 

Note that had the first definition of the ex- 
periment been used, then every element of the 
sample space consisting of the integers 2-12 
would have frequencies of occurrence, when con- 
sidering each element as an event, equivalent 
to those shown in figure 2.2-2. 

Frequencies of occurrence, or deduced fre 
quencies of occurrence as indicated in figures 
2.2-l and 2.2-2, are indications of the future. 
We can make probability statements concem- 
ing the possibility of a random variable taking 
on future values from such knowledge. In a 
craps (two-dice) game, we know that the prob- 
ability of rolling a natural, an outcome of 7 or 
11 on the first cast, is 2/9 simply because these 
values of the random variable for the two-dice 
experiment correspond to elements in the 
sample space which occur with a relative fre 
quency of 2/9. Formally, the statement that this 
discrete random variable X take on the values 
of 7 or 11 with a probability of 2/9 is written 

P(X=7 or X=11)=2/9. 

The probability that this random variable 
takes on any integer value between 2 and 12 is 

obtainable directly from its frequency density, l 
figure 2.2-2. 

A probability statement that is frequently en- 
countered concerns the probability that a ran- 
dom variable is less than or equal to a specific 
value. For the random variable corresponding 
to the sum of outcomes of the cast of two dice, 
we may ask, what is the probability that the 
random variable X is less than or equal to 5? 
The probability of this event is equal to the 
probability that X take on any integer value 2 
through 5: 

P(X<5)=P(X=2 or X=3 or X=4 or X=5). 

This probability is the sum of the probabilities 
of the individual events that X take on the in- 
teger values 2 through 5: 

P(X<5)=1/36+2/36+3/36+4/36=5/18. 

(If the student is not convinced of this relation- 
ship, he or she should examine the elements of 
the sample space represented by table 2.2-l to 
ascertain that it holds.) Note that P(Xsl2) is 
unity; that is, an event which occurs with a prob- 
ability of one will, undoubtedly, take place A 
probability of zero indicates, on the other hand, c 

that the event of concern cannot possibly occur. 
The probability statement P(X+z), where a 

is any real number, is given a special definition 
for both discrete and continuous random vari- 
ables. That is, F(a)=P(XQz) is known as the 

6l36 

5l36 

4l36 

3l36 

2/36 

l/36 

0 

- 

- Ij 
6 7 8 

Figure 2.2-2 



cumulative distribution function of the random 
variable X. For the case of the sum of outcomes 
for two dice, F(a) appears as illustrated in figure 
2.2-3. Because a random variable represents a 
functional mapping from the sample space to 
the real number space, we can be assured that 
the probability of the event X<u exists and is 
equal to the sum of the probabilities of all 
events corresponding to values of the random 
variable which are less than or equal to a. In 
general, for discrete random variables, the 
cumulative distribution function can be 
evaluated by summing the appropriate relative 
frequencies of occurrence: 

The cumulative distribution function for all 
random variables, discrete or continuous, has 
the following properties: 

1. F(a) is a nondecreasing function of a, 

REGRESSION MODELING OF GROUND-WATER FLOW 

2. lim F(a)=l, 
a-- 

3. lim F(a)=O. 
a+-00 

11 

These properties will be demonstrated in detail 
for continuous random variables in a later sec- 
tion. For a discrete random variable, these prop- 
erties reflect the fact that, by definition, the 
discrete density function can never have a nega- 
tive frequency of occurrence and that the sum 
of frequencies must equal one. 

In the next section, an estimator for the den- 
sity function of continuous random variables is 
developed, which will eventually allow us to ex- 
plore the nature of density and cumulative 
distribution functions of continuous random 
variables. 

Problem 2.2-l 

An urn contains one red, one white, and two 
blue balls, all of equal dimensions. A ball is 

819 - 

719 - 

619 - 

519 - 

419 - 

319 - 

219 - 

II9 - 

0 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

a 

Figure 2.2-3 
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drawn from the urn, replaced, and then another 
draw is made. 

a. What possible arrangements (red, white, 
and (or) blue) of the two balls, consider- 
ing order of selection, could occur (see, for 
example, table 2.2-l for two dice)? 

b. What is the frequency of occurrence of 
any of the above events? (Hint: let the 
balls be represented by the symbols R, W, 
Bl, and B2.) 

c. A value of one is assigned to a blue ball, 
two to a red ball, and three to a white. A 
random variable consists of the sum of 
any outcome consisting of two draws with 
replacement. Develop a discrete density 
function for this random variable. 

d. What is the probability that this random’ 
variable takes on a value of 4? What ar- 
rangements of balls correspond to this 
value of the random variable? 

2.2.2 Histograms 

In many cases, we do not have access to all 
values of random variables in a sample space 
(in particular, for many continuous random vari- 
ables). We sample the population consisting of 
ah possible values of the random variable and 
hope to draw inferences from this sample. The 
inferences we draw are usually in the form of 
statistics, which we refer to as sample statistics. 
We like to think that sample statistics estimate 
values of population parameters, which are con- 
stants reflecting the true frequency distribution 
of the random variable.-This is frequently the 
case if the observations composing samples are 
made randomly and without bias. Samples com- 
posed of such observations are referred to as 
random samples and are expected to be repre 
sentative of the population. 

Estimates of density functions for random 
variables are frequently made from random 
samples. Although certain experiments, such as 
a coin toss, allow for the deduction of frequen 
ties of occurrence of events, other experiments 
defy a theoretical calculation, forcing us to 
estimate from a random sample. These esti- 
mates, known as histograms, are generally 
constructed by repeating the experiment a large 
number of times (thus, sampling the population 

of all possible outcomes), dividing the range of a 
these outcomes into class intervals, and calcu- 
lating the relative number of points that fall in 
each interval. We might imagine, for example, 
that we could watch a craps game and note the 
outcome of each roll of dice. After a thousand 
rolls, we would calculate the relative percentage 
of each integer, 2-12, which occurred. If these 
sample frequencies of occurrence were not close 
to that shown previously for the theoretical 
result, we would suspect that the dice had been 
tampered with. 

As an example of a histogram constructed 
from observed values of a continuous random 
variable, consider the transmissivity data 
shown in table 2.2-2. Figure 2.2-4 represents 
a histogram constructed directly from these 
data, which constitute a random sample from 
the population of transmissivities as deter- 
mined from specific capacities of wells in car- 
bonate rocks of central Pennsylvania. A second 
histogram, figure 2.2-5, was constructed from 
a logarithmic transformation of these data as 
shown in table 2.2-3. The first histogram was 
constructed by using a class interval of 50,000 
gal/d/f& and the second is based upon an inter- 
val of onehalf a loglo cycle. The first histogram c 
is not very illustrative because most of the wells 
have transmissivities less than 50,000 gal!d/ft 
(the underlying population frequency is prob- 
ably heavily skewed to the right). By logarith- 
mically transforming of the random variable, we 
scale the abscissa so as to remove the skewness 
in the histogram, causing it to be more bell 
shaped. This type of transformation is fre- 
quently used on random variables that have a 
zero lower bound, causing the transformed 
variable to have tails that tend to infinity in 
both directions. The transformation also tends 
to remove any right skewness in the frequency 
distribution of these random variables. With 
regard to the transformed variate, the histo- 
gram in figure 2.2-5 suggests a bell-shaped 
population frequency distribution. More data 
and smaller class intervals, as suggested in the 
following paragraphs, should cause the histo- 
gram shown in figure 2.2-5 to approach its 
population shape, which we may suspect to 
be a normal distribution; the untransformed 
random variable would then result from a 
log-normal distribution. 
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Table 2.2-2 
porn Siddiqui (1969. p. 433-436)] 

13 

Transmissivfty 
gdmt 

bgi’,T 

15.0 1.176 2,370.O 3.375 
18.0 1.255 2.440.0 3.387 
21.0 
29.0 
32.0 

184.0 

35.0 1.544 

2.265 

50.0 1.699 

202.0 

52.0 1.716 

2.305 

56.0 1.748 

264.0 

62.0 1.792 

2.422 

84.0 1.924 
92.0 1.964 

106.0 2.025 
118.0 2.072 
142.0 2.152 

160.0 2.204 
175.0 2.243 

354.0 2.549 17,700.o 4.248 
370.0 2.568 19,700.o 4.294 
374.0 2.573 23,100.O 4.364 
455.0 2.658 24,200.O 4.384 
463.0 2.666 26,400.O 4.422 

515.0 2.712 33,400.o 4.524 
528.0 2.723 34,700.o 4.540 
615.0 2.789 42,400.O 4.627 
705.0 2.848 46.300.0 4.666 
753.0 2.877 52,000.0 4.716 

800.0 
984.0 

1.150.0 
1,290.o 
1,500.o 

2.903 
2.993 

EY 
3:176 

66,500.O 4.823 
68,400.O 4.835 

132,000.0 5.121 
152,000.0 5.182 
423,000.0 5.626 

1,580.O 3.199 423,000.0 5.626 
1,670.O 3.223 528,000.0 5.723 
1,850.O 3.267 528,000.0 5.723 
2,310.O 3.364 528.000.0 5.723 

Transmissivity : L%lT 
gakvft 

2;54O.b 3.405 
2,800.O 3.447 
2,820.O 3.450 

3,380.O 3.529 
4.410.0 3.644 
4;520.0 3.655 
5.500.0 3.740 
5,650.O 3.752 

6,030.O 3.780 
6.240.0 3.795 
6;340.0 3.802 
7,290.o 3.863 
8,130.O 3.910 

ll,ooo.o 4.041 
13.100.0 
13;700.0 

4.117 
4.137 

14,500.o 4.161 
17.200.0 4.236 

Table 2.2-3 

1.0-1.5 
1.5-2.0 
2.0-2.5 
2.5-3.0 
3.0-3.5 
3.5-4.0 
4.0-4.5 
4.5-5.0 
5.0-5.5 
5.5-6.0 

Total . . . . . . . . . . 

0.051 
.103 
.103 
.154 
.154 
.128 
.128 
.090 
.026 
.064 

.257 

.411 

.565 

.693 

.821 

.911 

.937 
1.001 

‘Based on logloT, table 2.2-2 
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TRANSMISSIVITY GPD/Fl- o(1O-5) 

Figure 2.2-4 

LOGlo (TRANSMISSIVITY/l.O GPD/FT) 

Figure 2.2-5 
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We are now in position to estimate the prob- 
ability of occurmnce of an event associated with 
the log-transformed random variable. Let 
X=log$’ represent the transformed variate 
plotted in figure 2.2-5, and assume that the 
histogram for X is representative of the popula- 
tion frequency. The estimated probability that 
X is less than or equal to 5.0 but greater than 
4.5, P(4.5G<5.0), then, is the sample f’requen- 
cy of occurrence of this event (equal to 0.09). The 
probability that X is less than or equal to 5.0 
can be estimated by summing the frequencies 
of occurrence of all events smaller than 5.0; thus 
P(X<5.0) = 0.911. Thus, the chances are about 
91 in 100 that the transmissivity of the car- 
bonate rocks in central Pennsylvania, as deter- 
mined by any random well, will be less than or 
equal to 1 X105 gal/d/ft. The reader should 
realize that these results are only approximate, 
as the histogram is an approximation of the true 
population frequency distribution. 

An estimate of the cumulative distribution 
function can also be constructed from a random 
sample. Let F,(a) represent this estimate. 

B 

known as the sample distribution function; an 
appropriate estimator for F,(a) is the sum of all 
estimated relative frequencies for values of the 
random variable X less than a: 

P(X<a) = F,(u)= c g 
i<alAz 

(2.2-2) 

where 

fi*= ?Zi/?l=sanlple frequency of occurrence of 
an event represented by the ith class 
interval, 

Az=size of class interval, 
ni=number of outcomes having values in in- 

terval 6 and 
n=size of random sample. 

An application of this procedure for the loga- 
rithmic transformation of transmissivity is 
shown in figure 2.2-6. 

2.2.3 Continuous Random Variables 

The definition of frequency fi’ used in equa- 
tion 2.2-2 suffers from the deficit that it is 
dependent upon the size of the class interval, 
that is, if AZ decreases in size while n remains 
constant, then h* must also decrease, as we are 
also effectively decreasing the value of ni within 
this interval Indeed, even if n were allowed to 
become large as A.r decreases, thus causing ni 
for any arbitrary interval to be large, fi’ could 
still be made arbitrarily small by decreasing the 
interval size sufficiently. However, this phe 
nomenon would prevent us from defining a fre 
quency for a single point in a continuous 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 

LOG,, (TRANSMISSIVITY/l.O GPD/FT) 

Figure 2.2-6 
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random variable, unless we are content to 
associate it with some arbitrary class interval. 
To overcome this problem, probabilists have 
defined a different measure of frequency for con- 
tinuous random variables that consists of the 
frequency of occurrence fi* scaled by its class 
interval: 

fi=fi*iAx .I (2.2-3) 

This normalized frequency, referred to as the 
sample density, should be relatively stable for 
reasonable choices of A.z and n, and in the 
limiting case of n approaching infinity and A.z 
approaching zero, fi should be constant. An ad- 
ditional ordinate has been added to figure 2.2-5 
to show the sample-density distribution of the 
log,oT data. 

The sample distribution function of equation 
2.2-2 can now be redefined in terms of equation 
2.2-3 as follows: 

F,(a)= c fiAx . 
i<alkc 

(2.2-4) 

This definition lends itself to an exploration of 
the population equivalents of F,(a) and fi. If the 
random sample is of sufficient size to sample 
every member of the sample space and AZ is 
taken infinitely small, then the population 
equivalents of F,(a) and fi should be ap- 
proached. By letting n become large and AZ 
small, we see that 

where Ax), the population equivalent of fi, is 
known as the probability density function. 
Because fix) is the population equivalent of fi, 
then the integral representation in equation 
2.2-5 of summing these scaled frequencies must 
be the population equivalent of F,(a), which of 
course is the same cumulative distribution func- 
tion defined earlier in section 2.2.1: 

F(u)=~ajw.z=P(x~u) . (2.2-6) -co 

However, because a random sample, whether it 
be finite or infinite, is countable, equation 2.2-5 
must be given a special interpretation. Note 
that, because fly) is the continuous analog of fi, 
it is always a non-negative quantity. 

A stronger statement than equation 2.2-5 can 
be made concerning the equivalence of F(a) and 
F,(a) for large sample sizes by noting that F,(u), 
prior to sampling, is a random variable. That 
is, if we were to collect different samples of the 
same size n from the same population, we would 
not expect that F,(u), computed from each ran- 
dom sampling, would have the same value. We 
would only hope that, as n becomes large, these 
different values would approach some constant. 
Indeed, probabilists have shown that, with a 
probability of one, F,(u) becomes the constant 
F(u) as n goes to infinity. This result is 
particularly remarkable if we first consider 
that F,(u) can only take on a countable number 
of values k/n, O<k<n, where k is an integer 
(see equation 2.2-2). Thus, although the values 
of F(a) are uncountably infinite (continuous), 
F,(u) can only be, in the case that the random 
sample is infinitely large, at most, countably 
infinite. We will use this result loosely by 
allowing equation 2.2-5 to take on the indicated 

c 

limits, 

lim F,(u)=F(u) (2.2-7) 
Ax-0 
n-- 

and noting that this result only can occur with 
a probability of one. 

Both f(x) and F(x) are continuous functions 
of values of the random variable X. For the pre- 
viously illustrated case of X=log,eT, the den- 
sity function might appear as in figure 2.2-7. 
Figure 2.2-7 represents the population equiva- 
lent of figure 2.2-5, as if all possible outcomes 
of the random variable were available to us. 
Similarly, the cumulative frequency distribu- 
tion, the population equivalent of figure 2.2-6, 
for this random variable might appear as in 
figure 2.2-8. 

Because of equation 2.2-6, the density 
function fix) can be defined in terms of the 
cumulative distribution function F(x) by 
differentiation: 

4 
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dF(a) d a 
Ad- da --=-&x)d2. (2.2-8) 

This result follows directly from the fundamen- 
tal theorem of integral calculus, and is appli- 
cable only to density functions of continuous 
random variables. Equation 2.2-8 is one of three 
concepts which defines density functions of 
continuous random variables. The other two 
state that fix) must be greater than or equal to 
zero for any possible value of the random 
variable and, as will be demonstrated in the 
next section, that the total mass under the fre- 
quency curve must be unity. All density func- 
tions of continuous random variables have these 
concepts in common. 

Figure 2.2-7 

a 

Figure 2.2-8 

Problem 2.2-2 

a. Construct histograms for the following 
specific-conductance data using class intervals 
of 100 and 200 &ro/cm, such that the abscissa 
and ordinate of both histograms are scaled 
equally. What is the effect of changing the class 
interval? 

b. Construct a cumulative frequency distri- 
bution from your 100 pmhokm class-interval 
results. Let X represent the specific-conductance 
random variable: what is 

P(X<600)? 
P(X>400)? 
P( 4OO<x<600)? 
P(X51300)? 
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Ordered specific-conductance data 
KM-a in pmhkm for wells in carbonate rocks of Marylend. F’mm Nuttar. 1973.9. 63-931 

357 469 
359 471 
363 473 

389 477 
407 487 
408 490 

411 492 
413 493 
417 493 
418 499 

63 423 
76 433 

168 439 

278 440 
301 440 
304 440 

310 444 
315 452 
319 452 

452 
456 
462 

501 582 685 836 
504 596 697 839 
509 598 700 876 

512 600 704 882 
518 710 895 
518 

ii::: 
721 897 

527 620 723 904 
529 627 724 906 
533 629 726 915 

537 
538 
542 

948 
968 
969 

552 647 750 982 
562 659 764 997 
564 659 765 1,030 

564 
565 
566 

661 

E 

779 1,080 
783 1,106 
789 1,120 

570 670 808 
575 673 808 
578 675 815 
582 677 820 

1,170 
1,230 

2.2.4 Properties of Cumulative 
Distribution Functions 

In the previous section, the cumulative dis- 
tribution function F(a), defined by the probabili- 
ty statement P(X<u), was noted to have the 
integral form of equation 2.2-6 for continuous 
random variables. We state ail manner of prob- 
ability statements in terms of the cumulative 
distribution function, as this is a standard form. 
For this purpose, properties of cumulative 
distribution functions, with applications to 
other probability statements, are developed in 
this section. 

The probability that a random variable X 
takes on a value in the interval (a,b] can be ex- 
pressed in terms of cumulative distribution 
functions as 

This statement is a direct result of integral 
calculus, whereby integration is used to sum 
all the frequencies of occurrences of values of 
the random variable between a and b. From 

equation 2.2-9 one sees that the cumulative 
distribution function is a nondecreasing func- 
tion of x, because 

That the total mass under the sample density 
curve fi is unity is evident from equation 2.2-4; 
that is, 

linlF,(a)=lim c fiL\x=l . (2.2-10) 
a-- a-- i<alAx 

Because the probability density function fix) of 
a continuous random variable X is a limiting 
form of the sample density fi, the mass under 
its curve is also unity: 

limF(a)=lim ~=fl&7!.z=l . 
a-00 a-00 --oo 

(2.2-11) 

Equation 2.2-11 is a property of ah cumulative 
distribution functions. Similarly, 

c 
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which follows from integral calculus, is also a 
property of cumulative distribution functions. 

Equation 2.2-11 allows one to express pVna) 
as 

P(X>u)= ~&ix=l- jaffr)dx=l-F(u). (2.2-13) a -co 

which is also a result of Riemannian integration. 
An alternate statement of equation 2.2-13 is 
that P(X>u) = 1 -P(X<a). 

By considering equation 2.2-9 in a limit form, 
we can also find the probability that X=u: 

P(X=u)=lim P(uucgz+Ax) ( AX-O 
=lim [F(u+A+F(u)]=O. (2.2-14) AX-0 

This result is unique to continuous random vari- 
ables, in contradistinction to discrete random 
variables. From equation 2.2-14 one sees that 
P(X<u) is equivalent to P(X<u) for continuous 
random variables, as the endpoint, a, of the 
semi-infinite interval does not contribute mass 

B 
to the probability statement. 

Equations 2.2-9, 2.2-11, and 2.2-13 can be 
demonstrated for discrete random variables by 
using the summation form of the cumulative 
distribution function (equation 2.2-l). In con- 
tradistinction to continuous random variables, 
the endpoint in P(X<u) for a discrete random 
variable can contribute significant mass to the 
statement. 

. 

Y 

A number of frequency densities that result 
from randomness in nature, or probabilistic 
models of random events, have been investi- 
gated and published. Cumulative distributions 
of these densities are frequently tabulated 
and are found in many reference books on 
probability and statistics. Equations 2.2-9 
and 2.2-13 are especially useful in evaluating 
probability statements of tabulated random 
variables. 

2.2.5 An Example: The Normal 
Distribution 

Let the random variable Y represent the 
amount of titrant used in a titration experiment 
to neutralize measured amounts of the unknown 
x. A scatter diagram of titrant versus unknown 
might appear as in figure 2.2-9. The solid line 
represents the true stoichiometric balance be- 
tween titrant and unknown. The dots, repre- 
senting repetitions of the experiment, deviate 
from this line by an amount E, which represents 
a value of the measurement error G. These errors 
represent a continuous random variable that 
could theoretically vary from --oo to +a (the 
graphed points only represent a random sam: 
ple from the population). If the experimental ap 
paratus is functioning properly, however, we 
would expect these dots to be concentrated in 
the general vicinity of the solid line. 

A distribution that is frequently used to 
model errors that are symmetrically distrib- 
uted about some common point is the normal 

. 

X 

Figure 2.2-9 
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distribution. The density of the normal distribu- 
tion is a bell-shaped curve, symmetric about its 
mean pE, and with most of the mass concen- 
trated within one standard deviation aa of the 
mean (see figure 2.2-10). In the case of the titra- 
tion experiment, we would hope that the most 
frequently found value of the error would be 
near-zero and expect that pLE would equal zero. 
The standard deviation a& is a measure of the 
dispersion, or spread, of the errors about the 
mean and is equal to the distance from the mean 
to an inflection point on the curve f(e). The mean 
and standard deviation will be formally defined 
in a later section. 

A normal random variable is frequently 
standardized with its mean and standard devia- 
tion by the following transformation: 

Z=(E-pL,)/u, . (2.2-15) 

The cumulative distribution for this standard 
normal random variable is tabulated (table 
2.10-l) for use by the investigator, since its prob- 
ability density function, fdz), is parameter free: 

fdz)=yg . (2.2-16) 

Given the density function for the standard nor- 
mal random variable, it is natural to inquire 
about the form of density, f&), of the unnor- 
malized random variable E. Consider the 
cumulative frequency distribution for 2. By 
making the change of variables z=(s-&/us, 

=& ,&p [ -( ?);2] ds (2.2-17) 

results where e=auE+pE is a value of the unnclr- 
malized random variable. Since differentiation 
is the inverse operator of integration, equation 
2.2-17 is differentiated with respect to E to find 
f&e) (see also equation 2.243): 

1 
=-exp- - 

Js?rac I I 
( 1 

-% y2 . (2.2-18) 
a& 

Figure 2.2-10 

Note that equation 2.2-18 is not parameter free, 
as this density is a function of the parameters 
clg and up 

2.3 Expectation and the 
Continuous Random Variable 

The discussion in this section is largely 
presented with continuous random variables in 
mind. All the results, however, are applicable 
to discrete random variables: whenever a quan- 
tity is defined by an integration over a probabili- 
ty density function for the continuous case, this 
same quantity can almost invariably be defined 
by a summation over the discrete density func- 
tion for the discrete case. The reader should 
demonstrate the veracity of this statement. 

23.1 The Mean 

The mean is a measure of central tendency of 
a population. As an estimator of this central 
tendency, consider a finite random sample con- 
sisting of n values xi of the random variable X. 
If the sample frequency of occurrence f: is 
estimated from this random sample, then a 
logical estimator of the central tendency is to 
sum the product of the central value Zi of each 
class interval and the frequency of occurrence 
for that interval: 

“=i,E,~ ~* pi= C fi Zi ~ (2.3-l) 
-m i<z&x 
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