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2.10 Tables of Probability Distributions 
[All tables modified from Wdpole and Myera (1972). with permission from the publisher] 

Table 2.10-l 

Arex 1 -n I h-k., thr Un,mr, f-at,". 
0 Na(0.1) 

I .._““, . -, _..“_. . ..” ..- . . . . “. -I..- 

1,IO.l I 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 009 

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 o.lm3 o.caO3 00003 0.0003 o.culo2 
-3.3 o.ooo5 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 O.OOQ4 0.0004 o.m3 
-3.2 0.0007 O.ooo? 0.0006 O.ooO6 O.OVD6 O.OOiI6 00K16 0.0005 O.WU5 
-3.1 0.0010 0.0009 O.ooo9 O.WO9 0.0008 
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 

“0%: 0.0008 8:%-i 0.0007 o.c@07 
0.001 I 0.001 I 0.0010 0.0010 

-2.9 0.0019 0.0018 0.0017 0.0017 0.0016 00016 0.0015 ’ 0.0014 0.0014 
-2.8 0.0026 0.0025 0.0024 0.0023 0 0023 0.0022 0.002 I 

8%: 
0.0019 

-2.7 0.0035 0.0034 0.0033 0.0032 0.003 I 0.0030 0.0029 0.0028 
“02% 

0.0026 
-26 0.0047 0.0045 0.0044 00043 0.0041 o.lw4o 0.0039 0.0038 0.0037 0.0036 
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.005 I 0.0049 0.0048 

-2.4 0.0082 E% 0 0078 0.0075 0.0073 00071 0.0069 0.0068 0.0066 0.0064 
-2.3 00107 88% 8.% 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 
- 2.2 0.0139 00136 

0.0170 0.0166 

0.0125 0.0122 0.01 I9 0.01 16 0.01 I3 0.01 IO 

-2.1 0.0179 00174 0.0162 0.0 I 58 0.0154 - 2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 El;; . 00:00148: 8:0012 

I ; :; 0.0287 0.028 I 0 0274 0.0256 
0.0359 0.0352 0.0344 

0.0268 0 
0336 

0.0262 0.0329 
0.0322 

0.0314 0.0250 0.0307 0.0244 0.0239 0.0233 
0.0301 0.0294 

- 1.7 0.0446 0.0436 0 0427 00418 0.0409 0.0401 0.0392 0.03 4 0.0375 0.0367 
- I .6 0.0548 0.0537 “,“oz 0.05 I6 0.0505 0.0495 0.0485 0.04 7 5 0 0465 0.0455 
- I.5 0.0668 0 0655 0.0630 0.06 I 8 00646 0.0594 0.0582 0.057 I 0 0559 

- 1.4 0.0808 0.0793 if%:: 0.0764 %4 0.0735 0.0722 0.0708 0.0694 0.068 I 
-1.3 00968 o.oY5 I 0.0918 0.0885 0.0853 0.0838 
-I 2 O.IISI 0.1131 0.1 I I2 0 1093 0:1075 0.1056 8% 0 I020 0.1003 %Z: 
- I.1 0. I357 0. I335 0. I292 0.1271 0. I25 I 
-1.0 0.1587 0. I562 %:9’ O.ISlS 0.1492 0.1469 t14’:: . ::i::i :I::: ;.:::9” 

-09 0.1841 0.1814 0. ,788 0.1762 0. ,736 0 1711 0.1685 0.1660 0.1635 0.161 I 
-0.8 0.2119 0 2090 0.2061 0.2033 cl.2005 0 1977 0.1949 :.:% l%: 0. I867 
-0.7 0.2420 0.2358 0.2327 0.2296 0.2266 0.2236 0.2148 
-06 0.2743 

%% 
0.2676 0.261 I 0.2578 0:2483 0.2451 

-0 5 0.3085 0.3050 0.3015 
00%: 

0.2946 0.2912 
i% “0% 

0.2810 0.2776 

- 0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3228 0.3192 0.3 I56 0.3121 
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 

EZ 
0.3557 0.3520 0.3483 

- 0.2 0.4207 
-0 I 0.4602 

Et: 0.4 I 29 0.4090 0.4052 0.4013 
i%: 

0.3897 0.3859 
0.4522 0.4483 0.4443 0.4404 0.4364 

8%; 
0 4286 0.4247 

-0.0 0 5ooo 0.4960 0 4920 0.4880 0.4840 0.4801 0.4761 0 4721 0.468 I 0.4641 

0.0 0.5cao o.so40 0.5080 

0.1 0.5398 OS438 “o.:z 

“0 :::v 8:::: 0.5199 0.5239 OS279 0.5319 0.5359 

0:5910 
0.5596 0.5636 0.5675 0.5714 

::: 8% 0.5832 0.5948 0.633 I 0.5987 0.6368 0.6026 
z%: 8.Z %Z 8%~ 

0.6064 0.6443 0.6103 0.6480 
“0::::: 

04 0.6554 0.6700 0.6736 0.61108 0.6844 8% 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 07123 0.7 I57 0 7190 0.7224 
0 6 0.1251 0.7291 0.7357 0.7422 0.7454 0.7486 0.7517 0.7549 
07 0.7580 0.761 I “o::iz 0.7673 “o:::Fii 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0 7881 0.7910 0 7939 0.7967 0.7995 0.8023 0.805 I 0.8078 0.B IO6 0.8133 
09 0.8159 0.8186 08212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

I.0 08413 0.8461 
1.1’ 0.8643 

8:% 
0.8686 

E% :88:2 0.8531 0.8554 0.8577 0.8599 0.8621 
0.8749 0.8770 0.8790 08810 0 8830 

I 2 0.8849 0.8869 
i%Z 

0.8907 0.8925 0 8980 0.8997 O.YOI5 
I.3 0.9032 0.9049 0.9082 0.9099 !.l.;.l.f’: tMf;f 09147 0.9162 09177 
1.4 0.9192 0.9207 0.9222 0.9236 0.925 I 0.9265 0.9278 0.9292 0.9306 0.9319 

I.5 0.9332 0.9345 0.9357 0 9370 EZ 0.9394 0 9406 0.94 I 8 0.9429 0.944 I 
I.6 0.9452 0.9463 0 9474 0.9484 0 9505 09515 0.9525 0.9545 
I.7 0.9554 00:99% 0.9573 0 9582 09591 0.9599 0.9608 09616 

8%: 
0.9633 

1.8 0.9641 0.9656 0.9664 09671 0.9678 0.9686 0 9693 0.9699 
1.9 0.9713 0.97 I 9 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 EE . 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 

:: %1 0.9864 0.9826 0.9830 0 9868 0.9834 Z:! 0.9878 0.9842 09881 0.9846 0.9884 0.9850 0.9854 8% 0.9890 
2.3 0.9893 0.9896 0.9898 %i I 0.9904 0 9906 0.9909 0.991 I ii%: 0.99 I 6 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.993 I 0.9932 0.9934 0.9936 

2.5 09938 0.9940 0.994 I 0.9943 0.9945 0.9946 0 9949 0.995 I 0.9952 

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 

EE 

0.9962 0.9963 2.7 0.9965 0.9966 0.9967 0.9968 
2 8 0.9974 0.9975 0.9976 0.9977 8.9’;;; 

0.9970 0.997 I 0.9972 0.9973 “o:% 
0.9978 0.9979 0.9979 0.9980 0.9981 

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3 0 0.9987 oop2: 8:ZE 0.9988 0.9988 0.9989 0.9990 0.9990 
31 0 9590 0.9991 0.9992 

22; 
X:E: 

EE 
0.5993 0.9993 

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 

3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 3.4 0.9997 0.9997 z% . 0.9997 0.9997 0.9997 z%;;; . 0 9997 0.9997 FiXi;;: 
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Table 2.10-2 

ritical dues of the Chi-Square Distribution Vi 

T- 
c4 

V 

- - 
0.995 0.99 0.975 0.95 0.05 

-- 
I 0.0.393 0.0’157 0.0'982 o.0239: 3.841 
2 0.0100 0.0201 0.0506 0.103 5.991 
3 0.0717 0.115 0.216 0.352 7.815 
4 0.207 0.297 0.484 0.711 9.488 
5 0.412 0.554 0.831 1.145 11.070 

t 
0.676 0.872 1.237 1.635 12.592 
0.989 1.239 1.690 2.167 14.067 

8 1.344 I .646 2.180 2.133 15.507 
9 1.735 2.088 2.700 3.325 16.919 

10 2.156 2.558 3.247 3.940 18.307 

11 2.603 3.053 3.816 4.515 19.675 
12 3.074 3.571 4.404 5.226 21.026 
13 3.565 4.107 5.009 5.892 22.362 
14 4.075 4.660 5.629 6.571 23.685 
15 4.601 5.229 6.262 7.261 24.996 

16 5.142 5.812 6.908 7.962 26.296 
17 5.697 6.408 7.564 8.672 27.587 
18 6.265 7.015 8.231 9.390 28.869 

:z 
6.844 7.633 8.907 I IO.117 30.144 
7.434 8.260 9.591 I 10.851 31.410 

21 8.034 8.897 ,0.283 I Il.591 32.671 
22 8.643 9.542 10.982 1 12.338 33.924 
23 9.260 IO.196 I I .689 I 13.091 35.172 

I’: 
9.886 0.856 12.401 I 13.848 36.415 

10.520 I .524 3.120 1 14.61 I 31.652 

5.024 6.635 7.819 
7.378 9.210 10.597 
9.348 1 I .345 12.838 

11.143 13.277 14.860 
12.832 15.086 16.750 

14.449 16.812 18.548 
16.013 18.475 20.278 
17.535 20.090 21.955 
19.023 21.666 23.589 
20.483 23.209 25.188 

21.920 24.725 26.757 
23.337 26.217 28.300 
24.736 27.688 29.819 
26.119 29.141 31.319 
27.488 30.578 32.801 

28.845 32.000 34.267 
30.191 33.409 35.718 
31.526 34.805 37.156 
32.852 36.191 38.582 
34.170 37.566 39.997 

35.419 38.932 41.401 
36.781 40.289 42.796 
38.076 41.638 44.181 
39.364 42.980 45.558 
40.646 44.314 46.928 

E 
11.160 .2.198 h3.844 1 15.379 38.885 
1 I .808 2.879 14.573 I 16.151 40.113 

ii 
12.461 3.565 ,5.308 I 16.928 41.337 
13.121 4.256 6.047 1 t7.708 42.557 

30 13.787 4.953 6.791 I 18.493 43.773 
-- 

Abridged from.Table 8 of Biomcrrika Tub/es for Sftr/ic/icicrm. 
E. S. Pearson and. the Riometrika Twtees. 

41.923 
43.194 
44.461 
45.122 
46.919 

0.025 

Vol. 

0.01 0.005 

45.642 48.290 
46.963 49.645 
48.278 50.993 
49.588 52.336 
50.892 53.672 

I. 

1 

permission of 
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2.10 Tables of Probability Distributions-Continued 

Table 2.10-3 

Critical Values of the F Distributvm 

l- 

yz 
- 

: 
3 
4 

1 2 3 4 

VI 

5 6 8 

161.4 199.5 215.7 
18.51 19.00 19.16 
10.13 9.55 9.28 
7.71 6.94 6.59 

-- 
224.6 

19.25 
9.12 
6.39 

230.2 234.0 236.8 238.9 240.5 
19.30 19.33 19.35 19.37 19.38 
9.01 8.94 8.89 8.85 8.81 
6.26 6.16 6.09 6.04 6.00 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 
6 5.99 5.14 4.16 4.53 4.39 4.28 4.21 4.15 4.10 
7 5.59 4.74 4.35 4.12 3.91 3.87 3.19 3.73 3.68 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 
9 5.12 4.26 3.86 3.63 3.48 3.31 3.29 3.23 3.18 

10 
11 
12 
13 
14 

4.96 

:.z 
4167 
4.60 

4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 
3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 
3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 
3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 
3.14 3.34 3.11 2.96 2.85 2.76 2.70 2.65 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 
16 4.49 3.63 3.24 3.01 2.85 2.14 2.66 2.59 2.54 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 

E 

f f 
24 

4.35 
4.32 
4.30 
4.28 
4.26 

3.49 
3.47 

:2! 
3:40 

3.10 2.87 2.71 2.60 2.51 2.45 2.39 
3.07 2.84 2.68 2.51 2.49 2.42 2.37 
3.05 2.82 2.66 2.55 2.46 2.40 2.34 
3.03 2.80 2.64 2.53 2.44 2.37 2.32 
3.01 2.18 2.62 2.51 2.42 2.36 2.30 

4.24 
4.23 
4.21 
4.20 
4.18 

3.39 2.99 2.76 
3.31 2.98 2.74 
3.35 2.96 2.13 
3.34 2.95 2.71 
3.33 2.93 2.10 

2'ti 
2157 
2.56 
2.55 

2.49 
2.47 
2.46 
2.45 
2.43 

z 
2137 
2.36 
2.35 

2.34 2.28 
2.32 2.27 
2.31 2.25 
2.29 2.24 
2.28 2.22 

30 
40 
60 

120 
03 

A 
permi 

4.17 
4.08 
4.00 
3.92 
3.84 

3.32 2.92 2.69 2.53 2.42 2.33 2.21 2.21 
3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 
3.15 2.16 2.53 2.37 2.25 2.17 2.10 2.04 
3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 
3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 

mducc 
ion of 

from 
s. 

Riomeftika Tables for 
Biometrika Trustees. 

Stalislicians, 11. I, by 

a 

c 
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Table 2.10-3 continued 

47 

V1 

: 
3 
4 

141.9 
19.40 
8.79 
5.96 

4.74 
4.06 

E 
3:14 

10 
11 
12 
13 
14 

2.98 
2.85 
2.75 
2.67 
2.60 

15 2.54 
16 2.49 
17 2.45 
18 2.41 
19 2.38 

20 
21 

f : 
24 

2.35 
2.32 
2.30 
2.27 
2.25 

25 

f t 

ii 

30 
40 
60 

120 
al 

2.24 
2.22 
2.20 
2.19 
2.18 

2.16 
2.08 
1.99 
1.91 
1.8.f 

T 
10 12 15 20 24 

143.9 
19.41 
8.74 
5.91 

!45.9 !48.0 !49.1 
19.43 19.45 19.45 
8.70 8.66 8.64 
5.86 5.80 5.77 

4.68 
4.00 
3.57 
3.28 
3.07 

4.62 4.56 4.53 
3.94 3.87 3.84 
3.51 3.44 3.41 
3.22 3.15 3.12 
3.01 2.94 2.90 

2.91 
2.79 
2.69 
2.60 
2.53 

2.85 2.77 2.74 
2.72 2.65 2.61 
2.62 2.54 2.51 
2.53 2.46 2.42 
2.46 2.39 2.35 

2.48 
2.42 
2.38 
2.34 
2.31 

I 
1 

, 

2.40 2.33 2.29 
2.35 2.28 2.24 
2.31 2.23 2.19 
2.27 2.19 2.15 
2.23 2.16 2.11 

2.28 
2.25 
2.23 
2.20 
2.18 

2.20 2.12 
2.18 2.10 
2.15 2.07 
2.13 2.05 
2.11 2.03 

2.16 
2.15 
2.13 
2.12 
2.10 

2.09 
2.07 
2.06 

::: 

2.01 
1.99 
I .97 
1.96 
1.94 

2.09 
2.00 
1.92 
1.83 
1.7: 

2.01 1.93 
1.92 1.84 
1.84 1.75 
1.75 1.66 
1.67 1.57 

2.08 2.04 I .99 1.95 i .9a 
2.05 2.01 1.96 1.92 1.87 
2.03 1.98 I .94 1.89 I .84 
2.01 I .96 1.91 1.86 1.81 
1.98 1.94 1.89 1.84 I .79 

1.96 1.92 1.87 1.82 1.77 
1.95 1.90 1.85 1.80 1.75 
1.93 1.88 1.84 1.79 1.73 
1.91 1.87 I .82 1.77 1.71 
1.90 1.85 1.81 1.75 1.7c 

1.89 1.84 1.79 1.74 1.68 
1.79 1.74 1.69 1.64 1.58 
1.70 1.65 1.59 1.53 1.47 
1.61 1.55 1.50 1.43 1.35 
1.52’ 1.46 1.39 1.32 1.2: 

VI 1 
250.1 251.1 252.2 253.3 

19.46 19.47 19.48 19.49 
8.62 8.59 8.57 8.55 
5.75 5.72 5.69 5.66 

4.50 4.46 4.43 4.40 
3.81 3.77 3.74 3.70 
3.38 3.34 3.30 3.27 
3.08 3.04 3.01 2.97 
2.86 2.83 2.79 2.75 

2.70 2.66 2.62 2.58 
2.57 2.53 2.49 2.45 
2.47 2.43 2.38 2.34 
2.38 2.34 2.30 2.25 
2.31 2.27 2.22 2.18 

2.25 2.20 2.16 2.11 
2.19 2.15 2.11 2.06 
2.15 2.10 2.06 2.01 
2.11 2.06 2.02 1.97 
2.07 2.03 1.98 1.93 

a3 

254.3 
19.50 
8.53 
5.63 

4.36 
3.67 
3.23 
2.93 
2.71 

2.54 
2.40 
2.30 
2.21 
2.13 

2.07 
2.01 
1.96 
1.92 
1.88 

1.84 
1.81 
1.78 
1.76 
1.73 

1.71 
1.69 
1.67 
1.65 
1.64 

1.62 
1.51 
1.39 
1.25 
1.00 
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By taking expected values of both sides, one 2.11 Appendices 
sees that 

2.11.1 Correlation of Two linearly 
Related Random Variables 

Consider a linear relationship between two 
random variables X and Y such that 

Y=a+bX+& (2.11-1) 

where & represents a zero-mean random error 
(independent of X). Then 

c+ b2c++c$ (2.11-2) 

because u,,=E[(X-~~)&]=0. By direct calcula- 
tion of uxy from equation 2.11-1, one obtains 

uxy=Ew-P~)( Y-Py)l 
=JWX-t(,)(W-cL,)+E)1 
=bgx . (2.11-3) 

Upon squaring both sides of equation 2.11-3 
and dividing by gxgy, one obtains 

“2x pgy= b2 $ (2.11-4) 
Y 

which, from equation 2.11-2, can be put in the 
form 

4 psy=l-- . 
“2y 

(2.11-5) 

Again from equation 2.11-2, it is seen that 

b%++-4 (2.11-6) 

and as b2gxis a nonnegative quantity, gymust 
be greater than or equal to o$. This shows that, 
for a linear relationship, psy is either less than 
unity or equal to one if f~$ is equal to zero. 

2.11.2 Expected Value of Variance 
Estimator 

The sample statistic Sg is defined as 

G= nix1 ’ ~ (Xi-~)2 . (2.11-7) 

= $ I i~~EWz-~x)21-EP(~-~x)21 1 (2.11-B) 

where use is made of the fact that t (Xi-fix) 
i=l 

=ng-px). Now the second expected value in 
equation 2.1 l-8 becomes 

E[P~.&~)~]= $ E iE, Urr~x) jE, (+-ccx) 1 

= $E jl ,E,~~,P~W+~~ I - - 1 c 
=; j, ,E,Cov[X$$. (2.11-9) 

- - 

AS Xi and Xi are randomly selected and 
therefore independent, 

1 2X i=j 
COV[Xi,Xj]= 0 iy . (2.11-10) 

Thus, equation 2.11-9 becomes 

E[4.hx)“l=~x (2.11-11) 

which allows us to write equation 2.11-8 as 

n-l =-& (2.11-12) 
n 

and demonstrates the desired result. Note 
that equation 2.11-11 also demonstrates that - 

4 - 
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a~2=2~lln 

as f~x~=E[(X-p~)~] . 

(2.11-13) 
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3 Regression Solution of 
Modeling Problems 
3.1 Introduction and 
Background 

(Kitanidis and Vomvoris, 1983). Stochastic- l 
process models are not considered further here. 

Ground-water flow models are members of a 
class of models known as mathematical models, 
in which the physical model of the flow system 
is replaced by mathematical expressions con- 
taining mathematical variables, parameters, 
and constants (Krumbein and Graybill, 1965, 
p. 15). Mathematical models always involve 
simplification of the actual (true) physical 
system. Krumbein and Graybill (1965, p. 15) 
argued that mathematical models can be classi- 
fied into several types, including deterministic 
models, statistical models, and stochastic- 
process models. 

A deterministic model is one in which the de 
pendent variable(s) can be exactly computed 
from an expression involving independent vari- 
ables, parameters, and constants. Note that de 
terministic models do not have to be physicahy 
based but may instead be completely empirical. 
The classical and inverse flow models discussed 
in section 1 are of the physically based 
deterministic type. In contrast, a statistical 
model is a deterministic model that has one or 
more random components added. These random 
components frequently involve measurement or 
other errors, but may involve separate sources 
of random variability as well. Incorporation of 
the errors in both observed heads and estimated 
parameters discussed in section 1 converts the 
deterministic flow model into a statistical 
model. 

The term “stochastic model” can be consid- 
ered to be synonymous with the term “statis- 
tical model” (Krumbein and Graybill, 1965, 
p. 19). A stochastic-process model may consider 
random effects such as those contained in the 
statistical model but in addition has a sto- 
chastic process built into it. Generation of a 
spatially varying permeability field in an aquifer 
has been considered to be a stochastic process 
by Bakr and others (1978), Gutjahr and others 
(1978), and Smith and Freeze (1979a, 1979b). 
Recently, this type of process has been in- 
corporated into a parameter estimation scheme 
for a steady-state ground-water flow model 

3.1.1 Assumed Model Structure 

Consider an experiment where two variables, 
5 and Y, are measured repeatedly. The inde 
pendent variable, [, is considered to be a pre- 
cisely defined quantity, whereas the dependent 
variable, Y, whose values depend upon values 
of the independent variable, contains some error 
resulting from the experimental process. A 
scatter diagram of the data might appear as in 
figure 3.1-1. 

From the scatter diagram or from physical 
considerations, the experimentalist may decide 
that an appropriate model equation for the data 
is 

Y,=& +P&+Q (3.1-1) 

where Pa and & are the intercept and slope of 
the equation for a straight line, subscript i 
represents the ith observation of ([,Y), and ei 
is the true error in Y for observation i. The 
quantity & +&[ is the deterministic part of the 
equation (the computed value of the dependent 
variable), and, because ci is the true error, c 
parameters & and & are the true parameters 
representing the deterministic part of the model 
response. True error ‘i, often called a disturb- 
bance, is a random variable and, thus, repre 
sents the stochastic part of the model response. 
Note that if the model is correct and no other 
source of bias in Ei exists, E(Ei)=O. 

Equation 3.1-1 is linear in parameters /3r and 
&. Another example of a model equation that 
is linear in the parameters is 

Yi=81+825i+P35f+Ei (3.1-2) 

which is the equation for a second degree poly- 
nomial. In equation 3.1-2 there is still only one 
independent variable, t, although the equation 
has two terms containing [. An alternate form 
for equation 3.1-2 is 

Yi=Xi,P,+Xi2P2+Xi3P3+Ei 9 

where 

(3.1-3) 

x,=1 
X,=E 

I 
(3.1-4) 

X3=E2 . 
( 
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Figure 3.3- 1 

In general, any equation that is. linear in 
parameters &, &, . . .,P,, where there are p 
parameters for the system, can be written in the 
form 

yi=xi181+Xi2f12+. . .+Xi,13,+~i (3.1-5) 

where 

Xij=Xij(tilrli21s - *vtik) (3.1-6) 

is a function of k independent variables that 
multiplies thejth parameter and does not con- 
tain the parameters. Because 

a - 
apj ( Xilpl+Xi2p2+. . . +X;Pl3p)=Xij ) (3.1-7) 

the X terms are often called sensitivity coeffi- 
cients or, simply, sensitivities. They indicate the 
change in the model response (the computed 
value of the dependent variable) at observation 
point i for a unit change in parameter ~j. Equa- 
tion 3.14 can be written compactly in matrix 
form as 

where 

‘3 
y2 . 
y?’ 

_y=xJ+g (3.1-8) 

(3.1-9) 

x11 x12 - - - Xl, 

z= 21 x22 - * - x2, 
. I i (3.1-10) . . 

4il **- xnp 

81 

e= 82 
. 

El 

c= 9, 
. . 

% 

(3.1-11) 

(3.1-12) 

and n observations are assumed. 
Often we are faced with models where the 

equation is no longer linear in the parameters, 
6. For example, suppose that the model equa- 
tion is 

Yi’ J+p, taXI (F Pi)+Ci * (3*1-13) 

Equation 3.1-13 cannot be reduced to the form 
of equation 3.1-5, and, thus, is not linear in the 
parameters. Equations of this type are written 
in the general vector form 

or, in more compact form, 

_y=f(.g) +g 
(3.1-15) 

where fis an n-vector, each element fi of which 
is a general function of the k independent vari- 
ables, EIP (P=l,2, . . .,k), and p parameters, 
Pj ti=192s . . .,p). Equation 3.1-15 incorporates 
equation 3.1-8 because 3.1-8 is simply the 
special case where fl@) =X(&)/j. 

Some equations may be nonlinear in @ but 
linear in some transformation of @. For exam- 
ple, the model 

x. 
yi=P1&) “i (3.1-16) 
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in which the error pi is multiplicative, is non- 
linear in & and &. However, equation 3.1-16 
may be written as 

log Yi=log 81+XilOg P,+lOg pi (3.1-17) 

which is linear in log p1 and log & and has an 
additive error term. Thus, it is of the standard 
linear form. Equations such as 3.1-16 are fre- 
quently best utilized in their transformed, thus 
linearized, form. However, all model analyses (to 
be discussed further on) would probably be 
made in terms of the transformed variables, and 
this would have to be remembered when results 
were interpreted. 

Types of models other than the linear and 
nonlinear ones discussed above also exist. Some 
types involve a complex model equation that 
cannot be solved explicitly for the dependent 
variable. In other cases the function f(k,@, 
which is assumed to be a known function of f, 
and & cannot be obtained and, therefore, must 
be replaced by a numerical formulation. How- 
ever, the basic model structure of equation 
3.1-15, where the error g in _Y is assumed to be 
additive to a deterministic dependent variable 
vector, is always assumed. Additional complex- 
ities of the other types of models are handled 
by auxiliary equations appended to equation 
3.1-15. The other models are introduced at ap- 
propriate places further on. 

3.1.2 Least-Squares Estimation 

Because the true parameter set @ and true 
error set c are generally unknown, the true 
model equation 3.1-15 must be regarded as 
unknown, even though the form of the model 
is known (or. at least assumed). Wado. however, 
have measurements to make up the independent 
variable set f and observation set 1. We would 
like to use these measurements and the form of 
the model to obtain estimates of @ and 5. The 
method explained in the following paragraphs 
is based on the idea that, if estimates of @ and 
E can be found such that the error structure of 
the true model is duplicated as closely as possi- 
ble, then the resulting model should, in some 
sense, be the best possible approximation of the 
true model. 

Assume that all pi (iz1.2,. . .,n) as random 

Var(g)=La2 . 

variables have finite common variance C? and 
that Ei and 4, i#j, are uncorrelated. Then 

The scalar variance aZ can be solved for by tak- 
ing the trace of both sides of equation 3.1-18: 

tr[Var(r)]= tr(i)a2 

or 

or 

E[(g-I.-Q)) T(~-~(~))l=~~ 
from which 

2 m@(g)) T(r-Jw)l (I= 
n 

(3.1-19) 

Ordinarily the assumptions would be made 
that the model being used is the correct one and 
that no other source of bias in c exists, so that 
E(g)=Cj and c 

(3.1-20) 

Equation 3.1-20 indicates that the sum of 
squared disturbances over all observations, 
averaged over many sets of observations, di- 
vided by n yields u2. 

As indicated previously, the investigator only 
has available the data and the form of the 
model, so that 5, u2, and B must all be con- 
sidered as unknowns. However, a good approx- 
imation of the true model would produce 
estimates of c that, for many observations, 
would yield a variance approaching 9. Let b be 
an estimator of & Then a linear model incor- 
porating & is 

_Y=g+e (3.1-21) 

where the vector e is an estimate of 5 cslled the 
residual vector. From equations 3.1-20 and 
3.1-21, an estimate of a2 is 

(3.1-22) 
i 
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Most arbitrary parameter sets are expected 
to yield values of g2 that are larger than a2 
because they would yield models that do not fit 
the data well. Of all possible parameter sets b, 
the one that fits the data the best and at the 
same time minimizes a2 is the set that mini- 
mizes the sum of squares function S(b), 

with respect to b. The process of finding esti- 
mates of a2 and fi by minimizing S(b) is termed 
least squares estimation. It is developed fully 
in sections 3.2 and 3.3. 

Recall that equation 3.1-18 and, hence, equa- 
tions 3.1-22 and 3.1-23 assume that the Q all 
come from the same distribution having 
variance a2 and that Q and Ej, i#j, are uncor- 
related. In some instances Ei and e. have dif- 
ferent variances, say C$ and #, and they may 
even be correlated so that they have nonzero 
covariance Uij . In this case, equation 3.1-18 
must be written in the more general form 

Var(g)=&2 (3.1-24) 

where vu2 is a symmetric, positive definite 
variance-covariance matrix defined as 

&v= 021 4 u23 a - * u2n (3.1-25) 

. . . 

unl un2 un3 * * * 4 . 

In equation 3.1-24, a2 is no longer the common 
variance of alI Ei but is instead another type of 
common variance. Its exact meaning can be 
discerned as follows. Define xX as the nonsin- 
gular symmetric matrix suck that VGVs=y. 

= = Then, from equation 3.1-24, 

pi var(~)p= v-‘/vv-?&2 
-- 

or 

Vaq-“g)=_Iu2 (3.1-26) 

from which a2 is seen to be the constant or com- 
mon variance of the transformed disturbances 

V% Equation 3.1-26 shows that these dis- 
&b-&es are uncorrelated. 

The more general conditions represented by 
equation 3.1-24 may easily be incorporated into 
the least squares procedure. All developments 
through equation 3.1-20 are repeated using 
E-X5 instead of e. The result is 

= Jw-yg) 
n 

(3.1-27) 

which suggests that 

S(b)=eW-‘e - -- - 

be minimized instead of equation 3.1-23. 
If equation 3.1-23 is minimized to find the 

parameter estimates when the more general 
error structure given by equation 3.1-24 is cor- 
rect, then the incorrect error structure will be 
reflected in parameter estimates that are less 
precise than if equation 3.1-28 were used. The 
proper sum of squares function to minimize 
when equation 3.1-24 represents the correct 
error structure is equation 3.1-28. 

Even more general cases can be postulated to 
yield S(b) in the form 

(3.1-29) 

where ; is a general symmetric positive definite 
weight matrix that subsumes 1-l. To apply 
equation 3.1-29,~ does not necessarily reflect 
the error structure of E. Instead it may reflect 
the investigator’s de&e to emphasize (or de 
emphasize) certain components of S(b). Equa- 
tion 3.1-29 is used in all developments to follow 
in which the general form is applicable. 

As a final note, least-squares estimation 
should be viewed as more than simply a 
parameter estimation procedure. The develop 
ment given in this section is intended to show 
that the procedure is an attempt to reproduce 
the true model structure: the variance, u2, the 
distribution of 5, and e. Although it is possi- 
ble to use least-squares estimation as just 
an algebraic process, making no assumptions 
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about structure, considerably more information 
can be gained by taking the more general ap 
preach to make model analysis, including anal- 
ysis of assumptions initially made concerning 
model structure, an integral part of the regres- 
sion process. 

3.1.3 Inclusion of Prior Information 

The model structure given by equation 3.1-15 
is general. Nothing is implied about the nature 
of &’ except that it is a dependent variable 
vector, in error by the amount 5. A very general 
interpretation of equation 3.1-15 is to assume 
that x, f, and E are each composed of two parti- 
tions, one g&g sample information and one 
giving prior information on parameters. This 
viewpoint amounts to sn expansion of the 
original formulation given in the previous sec- 
tion where only sample information was consid- 
ered (The& 1963). 

For example, suppose that an investigator 
collects data (&Y) on a process for which the 
model equation is given by equation 3.1-2. 
However, suppose that he or she also has 
developed methods to collect some data direct- 
ly on parameters P1 and OS and suppose that 
these data can be represented by the equations 

where aij is a constant and Ui is a random error. 
If all=l, then P, is a direct observation, sub- 
ject to error uI, of &. The entire set of equa- 
tions representing the system, then, can be 

(3.1-31) 

If x, &, and c are augmented to include the prior 
information, then equation 3.1-31 is of the form 
3.1-8 where 

Yl 

y2 

_u= - * * 

yn 

Pl 

p2 

1 
1 

X_= 
1 

3 

El 

e2 

‘ , 

% 

Ul 

u2 

Note that the number of observations is now the 
number of equations giving sample information 
(n) plus the number of equations giving prior in- 
formation (2). 

Although the equations giving prior informa- 
tion are often linear, they do not need to be. 
Hence, a general form of equation 3.1-15 to in- 
clude the prior information may be assumed: (I 

x=AQ)+E (3.1-32) 

where 

and subscripts s andp indicate partitions of the 
respective vectors pertaining to sample and 
prior information, respectively. Corresponding 
to these partitions, it is convenient to redefine 
n as the total number of observations, 
n=?z,+n where n, is the number of items 
(or equa&ns) of sample information and nP is 
the number of items (or equations) of prior 
information. 

To apply the least squares procedure to equa- 
tion 3.1- 15 as augmented by the prior informa- 
tion, it is assumed for now that 

Var(s)=v&f (3.1-34) 

var($)=_v,2 (3.1-35) 

C 
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Cov(g.$, cpP,=g (3.1-36) 

where L is symmetric, positive definite and of 
order n,, and 5 is symmetric, positive definite 
and of order n . Equation 3.1--36 indicates that 
sample distur 73 antes 5 and prior information 
disturbances 4 are not correlated with each 
other. With use of equations 3.1-34 through 
3.1-36, equation 3.1-24 becomes 

= &J2 . (3.1-37) 

With use of equation 3.1-37, 3.1-28 becomes 

S(b)=eWle -- - 

=eTV1e +eTV1e -sps --s -P-P -P (3.1-38) 

where the residual vector is defined as 

and 

(3.1-39) 

(3.1-40) 

The least-squares procedure may be general- 
ized even further by using equation 3.1-29 in- 
stead of equation 3.1-28 to define S(b). In this 
case the weight matrix 0 is defined by 

2ss Cd= I I = 03 (3.1-41) 

where s is a symmetric positive definite sub- 
matrix of order n, that pertains to the sample 
information and 3 is a symmetric positive 
definite submatrix of order np that pertains to 
the prior information. Because equation 3.1-41 
is of block diagonal form like equation 3.1-37, 
zero correlation of sample and prior information 
is again assumed. Thus, S(b) may be written in 
the same form as equation 3.1-38, or as 

s@)=eJ&?&+~&&gp . (3.1-42) 

Problem 3.1- 1 

You are charged with a ground-water study 
in the vicinity of Lake Ohpupu (figure 1). Esti- 
mates of transmissivity and recharge for the 
confined aquifer surrounding the lake are neces- 
sary for the completion of your report. Taking 
advantage of the unusually colinear equipoten- 
tiai contours on the west side of the lake (con- 
structed from an unbiased source, of course), 
you decide that estimates based on a uniform 
stream tube will suffice. Recharge to the aquifer 
is largely from precipitation and is uniform over 
the region. Assume that the boundary heads at 
the range front and the lake are imprecisely 
known; estimates of these parameters wiIl also 
be necessary. Your project has limited funds to 
bore n, holes along the stream tube and obtain 
measurements of head at n, locations of dis- 
tance, s, from the range front. 

The steady-state flow equation for a stream 
tube is 

+lg)+wD=o (1) 

where 

T=transmissivity (ftzld); 
W=recharge (ftld); 
D=width of stream tube (ft); 
h=hydrauiic head (ft); and 
s=distance along tube from the range front 

w. 

The boundary conditions are taken to be 

h=h, at s=O 
h=h, at s=sb 
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POTENTIOMETRIC SKETCH MAP FOR THE VICINITY OF 
LAKE OHPUPU 

EXPLANATION 

I SKETCH EQUIPOTENTIAL LINE 
SHOWING DIRECTION 
OF EQUAL HEAD. 

w--m 

STREAMTUBE 
---- 

t\ 
N 

LAKE OHPUPU 

Figure 1 
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By integrating the flow equation twice with 
respect to s (assuming T, D, and W to be con- 
stant) and using the above boundary conditions, 
the solution for hydraulic head h along the 
stream tube is found to be: 

h= $s*-s)s+hb ; +h, F . 1 I (3) 

Let 

P1=ho &= W/T X2=; 

sb-s 
&=hb X,=- 

(sb-Sk 

Sb 
x”=y- 1 (4) 

and write the above solution (equation 3) to the 
flow equation using the definitions of & and Xi 
(i=1,2,3). Then write the system of n, linear 
regression equations in the three unknown 
parameters using matrix notation and indicate 
the contents of each matrix. Identify dependent 
variable(s), independent variable(s), sensitivi- 
ties, and parameters. 

Let bi be an estimate of Pi, and: 
a. Assume that Var(f)=L~?. Write S(b) using 

the matrix form of the model equation 
3.1-21 with the estimated parameters bi. 
Write a few terms of S(b) using algebraic 
notation. 

b. Assume that a unique estimate of the 
variance of the error associated with 
every head observation is available 
and that these errors are uncorrelated. 
Indicate the contents of the resulting 
weight matrix z=rl. Write S(b) using 
the matrix form of the model equation 
with parameters bi. Write a few terms of 
S(bJ using weights wjj and algebraic 
notation. 

c. Assume case a above, except that there 
is a prior estimate of h, having a stand- 
ard deviation of ahb. Indicate the con- 
tents of the resulting weight matrix 
w= V-l. Write S(b) using t.he matrix form 
zf t& model equkon with parameters bi. 
Write a few terms of S(b) using algebraic 
notation. Include the term involving the 
prior information. 

3.2 Regression When the 
Model is Linear 

3.2.1 Derivation of Solution 

The linear model assumed is 

Y=x,p,+x,p,+. . . +xppp+’ (3.2-l) 

where the Xi are not functions of the 
parameters. If n observations are used, then an 
equation of the form of equation 3.2-l is writ- 
ten for each observation, so that the system can 
be written in matrix form as 

_y=xJ+c . (3.2-2) 

To find estimates of @ and 5, the weighted 
error sum of squares S(k),, 

S(b)=eToe - 

=(y->b)%(Y-Xb) (3.2-3) -(_r_ --- 

is minimized with respect to b. 
To minimize S(b) with respect to k means to 

take the derivative of S(b) with respect to each 
element of 4 bj u=1,2 ,..., p), and set the results 
to zero, or 

[(Y-Xb)T~(Y-Xb)llb=$ - - 

=O, j=1,2 ,..., p, (3.2-4) 

where I& signifies that L is the set of 
parametGrsFthat causes the derivatives of S(b) 
to be zero. By employing the rule of differen- 
tiating a product and noting that 2 is independ- 
ent of b, it can be seen that 

k [( Y-Xb)?JY-Xb)]= [5 (Y-Xb,qE( Y-Xb) 
j i 

+( Y-Xb)% +b (Y-Xb). (3.2-5) --- 
i 

To evaluate &( Y-Xb)T, note that taking the 

derivative of a v&or, x-g, with respect to a 
scalar, 9, means taking the derivative of each 
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entry of the vector and, thus, yields a new 
vector. Therefore, because observations _Y are 
independent of &, 

&-- (Y-Xb)T= $g 
i j 

(3.2-6) 

where ~j is the jth column vector of matrix &. 
Also, the first and second terms on the right 
side of equation 3.2-5 are equal because the 
transpose of a scalar is the scalar, and 2.k sym- 
metric so that z=wT. Hence, transposmg the 
second term on the%ght side of equation 3.2-5 
gives 

( Y-Xb)To --- &4 Y-Xb) =I( Y-XblTz &y ( Y-Xb)lT 
i i 

= [ k (Y-Xb)q$Y-Xb). (3.2-7) 
i 

The combination of equstions 3.2-4 through 
3.2-7 yields 

-2x%( Y-X&)=0 --I-- c (3.24) 

or 

X&Xb=X,%Y, j=1,2 ,..., p. (3.2-9) 

The system of equations implied by equation 
3.2-9 can be written as 

x_l: xz - . . 
i; 

rrT 
c.oxk= x,T OY. (3.2-10) - -s 

. 

Each vector &F in equation 3.2-10 is a row 
vector, so that, by definition, 

XT 
XT -2 =x,’ 
. . 

k 

and equation 3.2-10 becomes 

(3.2-11) 

(3.2-12) 

The set of equations symbolized in matrix form 
by equation 3.2-12 are c$led the normal equa- 
m, and parameters fi are called the esti- 
mates of @. The estimates are found from 

~=(XT6&XTwr . (3.2-13) -- -- 

Students not comfortable with the preceding 
development should read Draper and Smith 
(1981, p. 5-17, 70-80, 85-87). This material 
covers fitting a straight line without and with 
matrix nomenclature, and then extends the 
results to the general linear situation. Weighted 
least squares (where o#I) is covered in Draper 
and Smith (1981, p. TO:-116). 

Elements of X are often of vastly differing 
magnitudes. f%s, when working with a 
calculator or computer, round-off error can 
cause serious errors to develop when solving 
equation 3.2-13. It is often useful to scale equa- 
tion 3.2-12 with respect to a matrix c, which 
is a diagonal matrix defined as follows: Let 
XToX=‘-;4. Then c=diag{ 1/A~I,1/A~2,. . ., -- - 
1/A;; , where Aii is a diagonal entry of A,. 
Thus, equation 3.2-12 can be transformed to 
become 

cTxTuxcclG=cTxTwY (3.2-14) II- - --- 

or 

STt.&=STwY (3.2-15) -- -- 

where 

a 

;=c-‘g . (3.2-17) 
d 
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The effect of the scaling is to preserve the sym- 
metry of XTwX while at the same time to pro- 
duce a maTaaving all diagonal entries equal 
to unity. Thus, variability from entry to entry 
of the ST& matrix is usually reduced con- 
siderably Gr that of XTwX. 

It is also sometimes uG&iZo transform equa- 
tion 3.2-2 and equation 3.2-12 to incremental 
form. By definition 

3. Solve equation 3.2-15 (or q.2-21) for 4. 
4. Solve equation 3.2-17 for b. 

Problem 3.2- 1 

flgJ.j=g * (3.2-18) 

Then, subtracting equation 3.2-18 from equa- 
tion 3.2-2 results in 

E-fl&, &) =X(&b) +g --- (3.2-19) 

which is an incremental linear model. To obtain 
the analog to equation 3.2-12, premultiply equa- 
tion 3.2-18 by XTw and subtract the result 
from equation 3,?-i2 to obtain 

a. By using g from case c, problem 3. l-l, 
write out the normal equations used to 
estimate parameters fi explicitly in sum- 
of-product (algebraic) form. (Use equation 
3.2-12.) 

b. By using either data set 1 (table 1) or 2 
(table 2). generate the least squares coef- 
ficient matrix @GJX) and then compute -- 
its inverse. Do not round off any inter- 
mediate calculations or the final inverse. 
To aid in the calculations, table 3 gives 
the sums of products for the sample in- 
formation from the two data sets. You 
must add the prior information to com- 
plete the sums of products. 

c. Find the vector b. Do not round off the 
results. 

XToX(~-b)=XTw(Y-~~b)) . ----- --- (3.2-20) Table l.-Data set 1 

3 
Equation 3.2-20 can be transformed to obtain 
a result analogous to equation 3.2-15: 

*j (ft) 41 X 12 xi3 

s%s&=s%( Y-fit b)) -- mm- d- (3.2-21) 

where 

j=c-l(&, . (3.2-22) 

If 4 as calculated initially using equations 
3.2-15 and 3.2-17 is in error because of round- 
off, then & can be used to calculate fl&k) which 
then can be substituted into equation 3.2-21 to 
calculate 6 By using equation 3.2-22, a new 
improved-estim.ate of s can be obtained. 
Writing equation 3.2-2 in kcremental foL-m also 
provides a basis for procedures, involving sta- 
tistical analysis of the model, that apply for 
both linear and (with restrictions) nonlinear 
models. These are discussed later on. 

50 0.95 0.05 23,750 48.33 
150 .85 .15 63,750 45.76 
250 .75 .25 ' 93,750 42.08 
350 .65 .35 113,750 38.34 
450 .55 .45 123,750 35.30 
550 .45 .55 123,750 31.00 
650 .35 .65 113,750 25.85 
750 .25 .75 93,750 21.76 
850 .15 .85 63,750 16.11 

950 .05 .95 23,750 12.48 

Assume $=0.25 ft2, sb= 1,000 ft, and prior information 
as follows: hb=ll ft and oh =l.l ft. 

b 

Table 2.-Data set 2 

sj (ft) xjl xj3 xj3 

3.2.2 Solution Algorithm 

Sequential steps to follow are: 
1. Form XT& and XTw Y. P -- 

1 

2. Transform equatiG?%12 to 3.2-15. 

100 0.9 0.1 45,000 47.13 
200 .8 .2 80,000 44.14 
300 .7 .3 105,000 39.89 
400 .6 .4 120,000 36.36 
,500 .5 .5 125,000 32.48 
600 .4 .6 120,000 29.70 
700 .3 .7 105,000 24.33 
800 .2 .8 80.000 19.10 
900 .l .9 45,000 14.96 

Assume c?=O.25 ft2, s,=l,OOO ft, and prior information 
as follows: h,=m ft and crh =0.95 ft. 

b 

Obmrvedhaad, 
Y, (fi) 

Obeervedhead. 
Y, (ft) 
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Table 3.--Sums of products of sample informotion 

Data Set 1 DataSat - 

,vj lxj 1 

cxjlxj2 i 
Ex. x. 

j JI Ja 

i”xiSj2 

Jmj&j2 

i"xSj2 

Jmj 1 'j 

=j2yi i 

3.3250 2.8500 

1.6750 1.6500 

418,750 412,500 

3.3250 2.8500 

418,750 412.500 

83,340,625.000 83,325,000,000 

192.18350 168.2030 

124.82650 119.8870 

26,879,687.5 26,583,550 

3.23 Singularity and Conditioning 

Singularity of the least-squares coefficient 
matrix occurs whenever columns of the sen- 
sitivity matrix, & are linearly dependent 
because this causes rows (or columns) of the 
coefficient matrix XToX to be linearly depend- 
ent. Linear dependencein & may be stated as 

xc=0 -- (3.2-23) 

where not all components of the vector c of 
order p are zero. By premultiplying equation 
3.2-23 by J(rw - -’ 

xTuxc=o --- (3.2-24) 

which shows that columns of flwX (or rows 
since flwX is symmetric) are gexy depend- 
ent. N~k~at transformation of XT&C to ST& -- -- 
alters only the form of c. 

Near-singularity, also referred to as ill- 
conditioning, occurs whenever the columns of 
X (or g) are almost linearly dependent. Often, 
zs condition is indicated by a high degree of 
correlation among two or more parameter esti- 
mates. This correlation reflects the redundancy 
in the problem. As a result of ill-conditioning, 
computed parameters can be affected greatly by 
accumulation of round-off error generated by 
solving the normal equations. Also, computed 
variances of the parameters, which are propor- 
tional to the diagonal elements of w&)-l, will I- 
be large. 

A common form of ill-conditioning results if 

a column of z approaches zero so that 
c=[O,O, . . .,l,O, . . .,OJT, where the one appears 

a 

k the row corresponding to the zero column in 
X. This condition indicates that the model is in- 
znsitive to the parameter corresponding to the 
zero cohmm in X, and that the parameter should 
be eliminated from the model. The problem is 
readily detected by examining the X matrix. 
Another readily detected form of ill-co~ditioning 
results if two columns of z are nearly propor- 
tional, or 

&X %lCj (3.2-25) 

so that c=[O,O, . . .,cy,O,. . .,-l,O,. . .,OIT, where 
cr appears in row i and -1 appears in row j of 
c. In this case 

so that 

n+1 (3.2-26) 

Thus, to detect this problem, one need only ex- 
amine the ST& matrix for an off-diagonal 
entry nearly ezal to -t 1. This type of linear 
dependence indicates that parameters bi, and 
bj should be combined because the model can 
be written as 

Y=Xlbl+ . . . +Xibi+ . . . +Xjbj+ . . . +Xpbp 

sx,b,+ . . . +Xi(bi+abj)+ . . . +Xpbp 

=Xlbl+ s s a +XibT+ a . a +Xp-lbpp-1 (3.2-27) 

where bf replaces bi++, and all subsequent 
variables are shifted by one so that the last 
variable number is p-l. 

An excellent way to detect general ill- 
conditioned (or completely linearly dependent) 
problems is to orthogonalize the columns of the 
scaled sensitivity matrix, g (Draper and Smith, 
1981, p. 275-278). If the columns are all linear- 
ly independent, then they can all be transformed 
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so as to be orthogonal to one another; that is, 
such that 

i2Tiil=Li (3.2-28) 

where $ is the nonzero transformation of S, and 
&J is a full-rank diagonal matrix. If iinear 
dependence exists in S, then equation 3.2-28 is 
replaced by a similar &gonal form except that 
one or more diagonal entries will be zero. The 
technique is to successively transform columns 
such that each new column is orthogonal to all 
of the previously transformed columns. If 
column dependence exists, then eventually a 
column will be calculated that exists entirely of 
very small numbers (theoretically all zeros for 
a linearly dependent problem). This column, 
then, is almost (or completely) linearly depend- 
ent on one or more of the previous columns. 

The transformation procedure is called Gram- 
Schmidt orthogonalization and takes the follow- 
ing form: 

81=S1 

j-l 

I 

(3.2-29, 
~j=s,- J1 Cij&9 .i=Z 39 * * -9 P 

where 

&=the transformed vector orthogonal to 
vectors already in 2, 

$=the next column vector of 8 to be 
transformed. 

3.3 Regression When the 
Model is Nonlinear 

3.3.1 Modified Gauss-Newton 
Method 

If the model is nonlinear in the parameters 
but is linear in the dependent variable, then the 
model may be written in the standard form for 
nonlinear regression: 

Y=f(S1, E21 - - &: Pl, Pz, * * .a,,+E * (3.3-U 

Because of the nonlinearity, f cannot be writ- 
ten in the form f=X1P1+X2/32+ . . . +X$$,. 
The case more complicated than equation 3.3-1, 
where the model is nonlinear in both the param- 
eters and the dependent variable, is treated in 
section 6.1. When there are n observations, 
equation 3.3-l may be written in matrix form as 

_y=fC&fi, +’ (3.3-2) 

or, in terms of general estimate b of @ and esti- 
mate e of f, 

_Y=&,b,+g * (3.3-3) 

As for the linear case, the regression solution 
,of equation 3.3-3 is obtained by minimizing the 
weighted error sum of squares: 

S@)=eToe -- 
=cy-fcb~),TwcY-fc~,b,) * (3.3-4) 

However, because equation 3.3-3 is nonlinear, 
solution of the problem is not as direct as it was 
for the linear case. 

A convenient and robust solution method is 
obtained by linearizing equation 3.3-3 around 
an initial estimate of parameters, then pro- 
ceeding as if the problem were linear. This yields 
a new set of parameters that minimizes equa- 
tion 3.3-4 where f is replaced by the linear ap- 
proximation. The new parameters are then 
substituted for the initial set, and the process 
is repeated to yield a better set of parameters. 
The iterative process stops whenever the 
change in calculated parameters from one itera- 
tion to the next is small. At that point the 
minimum of equation 3.3-4 has been found. 

To derive the method, first f(&@ is expanded 
about the initial set of parameters &-, by using 
a truncated Taylor series to obtain a linear ap 
proximation for f(f,&): 

(3.3-6) 
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3.3-8 in the same manner as for linear regres- 8 and fi is f calculated at the ith observation 
point. The components of 5 are recognized as 
sensitivity coefficients, or simply sensitivities. 

sion (equations 3.2-14 through 3.2-17), 
although another type of scaling that is useful 
for some types of problems is introduced in 
problem 3.3-l. Scaling equation 3.3-8 produces 

By using equation 3.3-5, equation 3.3-3 may 
be written as 

g(g,z&o) 2 g&-&)o)+g (3.3-7) 

which is of the form of the incremental linear 
model of section 3.2. Note that if the model is 
linear so that f(&&)=~($Jb, then the truncated 
Taylor series and hence equation 3.3-7 are 
exact. In this case expansion in a Taylor series 
is another way of deriving the incremental linear 
model. If the model is nonlinear, equation 3.3-7 
is the approximate (linearized) model for param- 
eters in the vicinity of kc, as illustrated by a 
simple one-parameter example in figure 3.3-l. 

An approximate best estimate of @ (which is 
exact for a linear model) can be obtained bv 
minimizing S(~)=eTwe~~~-f(i,~o)-X,(~-~)jT 
*w(&‘-f(&,&XJ&,)~th respect to &. This 
process is carried out exactly like it was for the 
linear model and yields the set of normal 
equations 

X,Twx,d~ =x&4 Y-&Q) -I- (3.3-8) 

where subscript 1 indicates the first approx- 
imate solution and 

cz,=ty~. (3.3-9) 

To reduce round-off error in nonlinear regres- 
sion, it is generally useful to scale equation 

f(E, bl) 

bi 

Figure 3.3- 1 

bl 

EO=Z0GO (3.3-11) 

fi =cJ31 (3.3-12) 

~=diag(cA~1)-'/4,(A~z)-'/',...,~~~)-~}(3.3-13) 

&=X$,&) (3.3-14) 

and Afi is a diagonal component of do. 
Because equation 3.3-8 is not exact, equation 

3.3-4 is not truly minimized, and b1 is not ac- 
tually the optimal set. Hence, &, is substituted 
for &,, and the entire process is repeated to 
yield another, hopefully improved, estimate. As 
a general iteration equation, 3.3-10 may be writ- a 

ten in the form 

S&=&c, (3.3-16) 

and Ali is defined analogously to Ayi. As the 
process conver 
becomes Y-f(L,-)=g. At the same point 6 min- f 

es, $+l+O and equation 3.3-7 

imizes S(b) in equation 3.3-4, or S&~-f 
(&&))T~(~&&)), which is a minimum for the 
nonl&ar equation. This process for finding the 
minimum of S(b) is known as the Gauss-Newton 
method. 

A sketch of progression of the iterations to the 
minimum for a hypothetical two-parameter 
problem is given in figure 3.3-2. As diagrammed 
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bz 

Figure 3.372 

in figure 3.3-2, the solution often does not 
progress directly toward the minimum. 

Modifications to the Basic Procedure. It is 
well known that the Gauss-Newton method as 
defined by equation 3.3-15, does not always 
converge. To help induce convergence, a damp 
ing parameter, p, is introduced by modifying 
equation 3.3-17 to give 

br+1=&+1+br * (3.3-19) 

where c&+~=C&+~. If O<p<l, the changes in 
computed parameters are less than would result 
for p=l; thus the method is an interpolation 
method. Similarly, if p>l, the method is an ex- 
trapolation method. 

Inspection of equation 3.3-19 reveals that p 
changes the magnitude of the displacement 
from & to &+1. However, because all com- 
ponents of the displacement vector &+1 are 
scaled by the same multiplier p, the direction of 
the displacement vector is not altered. If the dis- 
placement vector &+ 1 is oriented in a direction 
nearly parallel to a contour in the sum of 
squares surface (S(b)), then little, if any, im- 
provement (in terms of reducing S(b)) can result 
from solution of equation 3.3-15. In this case 
it would be desirable to alter the direction of 
d -r+l to point closer to a down-gradient direc- 

B 
tion. For example, in figure 3.3-3 vector &+1 

yields no improvement in estimates &,, but vec- 
tor %+I Y ields a significant improvement in 
the estimates. 

A modification that accomplishes the desired 
alteration of direction of &+1, and reduces its 
magnitude as well, consists of adding a positive 
parameter cl, known as the Marquardt param- 
eter (Marquardt, 1963), to the main diagonal of 
thecoefficient matrix S,Tws, of equation 3.3-15. 
Scaling is needed so that ~1 can have the same 
effect on each entry of the main diagonal of the 
coefficient matrix. The scaling accomplishes 
this effect because each entry of the main 
diagonal of the scaled matrix S~US, is unity. 
Mathematically, the Marquardt modification 
can be stated as follows. 

Solution Algorithm. The sequential steps 
implementing the modified Gauss-Newton pro- 
cedure are: 

1. Calculate f(&&) and 5 using initial 
parameters & and the combination of 
equation 3.3-6 (with index r replacing 0) 
and equation 3.3-16. 

2. Solve equation 3.3-20 for &+1. 
3. Solve equation 3.3-17 for &+1. 
4. Solve equation 3.3-19 for &+1. 
5. Test to determine if Idi+‘/cJ>E, where E is 
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bz 

Figure 3.3-3 

a small number such as 0.01, c=bf for 
bf 20, and c=l for b{=O. 

6. If J@%\>E, increment r by one and 
return to 1. If not, then the process has 
converged. 

Problem 3.3- 1 

The Theis equation for flow to a well in a con- 
fined, nonleaky aquifer is 

(1) 

where t=time (d); 
s=drawdown (ft); 

r,,=radial distance to observation well 
(ft); 

Q=discharge (ftals); 
T= transmissivity (ft%); and 
S=storage coefficient. 

The integral can be evaluated by summing the 
infinite series 

Q, p? 
5 u 

z dz=-0.577216-lnu+u 

u2 + u3 -- - - - . . (2) u4 + 
2*2! 3.3! 4*4! * 

where n!=n*(n-l)*(n-2). . .3*2*1. 

The Theis equation is nonlinear in the param- 
eters T and S. Using the information in section 
3..3.1, develop an algorithm for solving this 
equation for T and S, given time and drawdown 
data. 

a. Let 

f(t, ro; T, S)= & W(u) (3) 

where u=r$!zV4Tt and W(u) is the integral 
in equation 2. Find the sensitivities for T 
and S. (See equation 3.3-6. Hint: 

b. Assume that initial estimates of trans- 
missivity and storage coefficient, To 
and So, exist. In equation 3.3-6 let j=T 
indicate the sensitivity for T, and j=S 
indicate the sensitivity for S. Then 
note that X$ can be scaled to become 
Z~~=X~~T,-,, 
become 20 

and Xys can be scaled to 

‘8 
=Xf’&,. Modify the func- a 

tions for X,, and Xg computed in step 
a to become the scaled functions Zio, 
and Zio,. Do you see any resulting sim- 
plifications in arithmetic? Do you think 
that the scaled sensitivities Zio, and Zfs 
might be more nearly uniform in value 
for any fixed i than X& and X$? What 
do you think this uniformity in value 
accomplishes? 

c. Construct, for n time observations at a 
single spatial location, the incremental 
linear model (equation 3.3-7). Then trans- 
form this model so that scaled sensitiv- 
ities Zi, and Zis are used instead of Xi, 
and Xi9 How does the parameter dis- 
placement vector d transform? How can 
you recover @ from the transformed 
displacement vector? (Hint: equations 
3.3-10 through 3.3-14 are analogous to 
the present scaling problem.) 

Figure 1 is a flow diagram for programming 
the steps indicated in section 3.3.1. Obtain a 
coding sheet and proceed to write code accord- 
ing to this flow diagram. Helpful hints, 
numbered on the flow diagram, follow: 

4 
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Let dmw= ~+l 
andr=l 

T,= To 
s,=so 

(61 

Calculate 

(7) 

T,,=Tr(l+pA+ 
r 

S,,=S,(l+&j 
s 

/J 

(2) 
Compute 
iho& T,, SJ 4 r+r+l 

Compute scaled sensitivities 

b 

I 

(8) 

No Is f = rmx? 

-2- 
Yes 

I 

Yes 

(4) Form g:g 
a~d&~~r,,~;T,, S, 1) 

Fiaure 1 
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1. n=number of observations: 
r,,=radial distance to observation well; 
q=time of each observation; 
si=observed drawdown for each time ti; 

To=initial guess, transmissivity; 
So=initial guess, storage coefficient; 
Q=discharge; 
p=damping parameter; 
E =convergence criterion; 

r ,2=maximum number of iterations. 

2. fi(r~,ti;T~SJ= ~ W(r,, ti;T,,S,) . 
-r r 

You will have to program a finite number 
of terms of the infinite series to evaluate 
W(r,,ti;T,,S,). Note that one computation 
of fi wiII occur for every time observation 
ti. These computations form the column 
vector fi 

3. The sensitivities wiI.I form an nX2 array 
(one sensitivity for each parameter T and S; 
sensitivities are evaluated for each observa- 
tion). Use the information in parts a and b 
above. 

4. Matrix multiplication is done with the basic 
algorithm 

Cij= ii aikbkj 
k=l 

where aik, bk -, and Cij are elements of 
matrices A_, -, d and c, respectively, and 

. If A_=gT, then 

Cij= kilbkibkj 
= 

because b: = bki. simildy, if b=gT, then 
_C=As becomes 

cij= kildk#kj . 

Note that the model error variance Var(c) is 
assumed to be 12. 

5. Use the defir&on of the inverse to con- 
struct the inverse. 

SB3 part c above. Also, note that &+, 
=D~r+#,+,l. 

7. Include the damping parameter p in your 
calculation of the new regression param- 
eters. If convergence does not occur, then 
you may be best advised to set p to a value 
less than one. 

8. This is the end of the iteration loop. 
9. You may wish to compute the final estimate 

of residuals e=f-2, then print them also. 

Because convergence problems may arise, Iimit 
the number of passes that can be made through 
the algorithm. Test your code using the follow- 
ing data. 

36-Hour Pumping Test 
Test starts: 12 February 1976, 0805 h. 
Test ends: 13 February 1976, 2005 h. 
Production weII was pumped varying between 
517 gal/min and 530 gaI/min. Time and draw- 
down data at observation well 175 ft from pro- 
duction well appear in table 1. 

Table 1 
@ata from S.P. Larson, presently of S.S. Papadopulos and 

Associates (formerly U.S. Geological Survey). 19781 

480 1.71 
1,020 2.23 
1,500 2.54 
2,040 2.17 
2.700 3.04 
3,720 3.25 
4,920 3.56 

To aid in debugging your computer program, 
some example calculations follow. Assume that 
To=O.l ft2/s, S,=O.O005, Q=1.16 ft3/s, and 
r,,=175 ft. Then 

(L r30 
%-- = 

(175)2(0.0005) =38 28125,t 

4Toti 4(O.l)ti ’ 
i 

f+ & W(l@= $&w(up=o.923099w(u~ 
0 a . 

Use of these values for z$ and f p allows for 
calculation of the following data. 
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‘i up 

480 0.0797526 2.02980 1.87371 
1.020 .0375306 2.74256 2.53165 
1,500 .0255208 3.11640 2.87675 
2,040 .0187653 3.41721 3.15442 
2,700 .0141782 3.69296 3.40897 
3,720 .0102907 4.00957 3.70123 
4,920 .00778074 4.28665 3.95700 

Data for ZA! and fi are used to compute $‘T and 
zo! 

2$*=-e+ & &=-ff+0.923099 e-u: 

P+& pL()g23()gge-UP 
0 

Note that 2$!!=X$To and 2$,=X$$So are calcu- 
lated directly, without first calculating sen- 
sitivities @! and X& then formally making the 
multiplication. These scaled sensitivities result 
from the following scaled linearized model. 

The computed values for 2$!! and Z$ are: 

-1.02137 -0.852339 
-1.64255 -.889097 
-1.97691 -.899839 
-2.24848 -.905938 
-2.49887 -.910103 
-2.78758 -.913648 
-3.04106 -.915944 

Use of the computed values for L?$~ and 9, 
yields the entries in the ZTZ matrix: a- 

~(@=35.96800209 ~(@s)2=5.649402682 i i 

~Z$Z&=13.75336059 

b 
i 

Elements of the gT(g-&) vector are computed 
in the following manner. 

-1.02137 1.71 1.87371 0.1672084827 
-1.64255 2.23 2.53165 .4954752075 
-1.97691 2.54 2.87675 .6657244425 
-2.24048 2.77 3.15442 .8643606816 
-2.49887 3.04 3.40897 .9220080639 
-2.78758 3.25 3.70123 1.257839723 
-3.04106 3.56 3.95700 1.20730082 

~~~ Si-~)= 5.579917421 
i 

-0.852339 1.71 1.87371 0.1395364177 
-.889097 2.23 2.53165 .2681961101 
-.899839 2.54 2.87615 .3030207833 
-.905938 2.71 3.15442 .3462606860 
-.910103 3.04 3.40897 .3358007039 
-.913648 3.25 3.70123 .4122653870 
-.915944 3.56 3.95700 .3636297680 

c@S ki-$)= 2.170709856 
i 

Finally, the two elements of the scaled displace 
ment vector (AT,/T,, AS&So) are computed and 
used to compute Tl and S,, the new estimates 
for T and S. 

+f! = (2.170709856-(13.75336059) 
SO * (5.579917421)/35.96800209) 

/(5.649402682-(13.75336059)2 
135.96800209) 

= o’03707407158 =() 09495829097 
0.3904247981 ' 

AT1 -=(5.579917421 
TO 

- (0.09495829097)(13.75336059)) 
135.96800209 

=0.1188256660 

S, = (1+0.0949583)(0.0005)=0.000547479 

Tl = (1+0.118826)(0.1)=0.111883 
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Some similar calculations for’the second iter- 
ation are: 

1 (175)2(o.ooo54747g) =37 4645/t. z&i = 
4(0.111883)ti ’ ’ 

f+ 1.16 
41r(O.111883) 

W(u;)=O.S25057W(u~) 

480 0.0780510 2.04973 1.69114 
1020 .0367299 2.76334 2.27991 
1500 .0249763 3.13743 2.58856 
2040 .0183650 3.43838 2.83686 
2700 .0138757 3.71423 3.06445 
3720 .0100711 4.03091 3.32573 
4920 .00761474 4.30805 3.55439 

Z&=-f: +0.825057&i 

Z&=- 0.825057P1i 

-0.928031 -0.763109 
-1.48461 -.795303 
-1.78385 -.804705 
-2.02682 -.810043 
-2.25076 -.813688 
-2.50894 -.816789 
-2.73559 -.818798 

3.3.2 Nonlinear Regression When 
the Model Is Numerical 

The basic model equations assumed in all 
previous developments have been of the closed 
form or analytical type where the dependent 
variable f is a known function of k and 8. In 
many cases such models may either not exist 
or be too complicated for practical use. In these 
cases the basic equation relating the dependent 
variable to the independent variables and 
parameters may be a numerical solution that 
can be stated in the general form 

Equation 3.3-21 is a nonlinear matrix equation 
in which b is the solution (dependent variable) 
vector of order m; 0, is a nonsingular coefficient 
matrix of order m that is a function of h, k, and 
@; and p is a vector of order m that is a function 

Order m is not related to the 
number of observations n, but instead is sim- 
ply the order required to give a good numerical 
alpproximation to the solution of the problem. 

If equation 3.3-21 is linear in & so that 0, and 
4 are not functions of &, then equation 3.3-21 
may be solved directly for &. In this case the 
Grauss-Newton method may be used to obtain 
the regression solution. (The nonlinear case is 
considered in section 6.1.2.) The procedure is as 
follows. First write equation 3.3-21 in the form 

(3.3-22) 

which is explicit in the dependent variable h. 
Next, note that & in equation 3.3-22 and f g 
equation 3.3-2 (or, as an estimate, equation 
3.3-3) are expressions of the same quantity, the 
only difference between them being that 
elements of b are values of the dependent 
variable computed at points defined by the 
numerical solution, and elements of fare values 
of the dependent variable computed at obser- 
vation points. If all n, observation points are 
contained in the set of points required for the 
numerical solution, which implies that m&z,, 
then fis obtained from & simply by eliminating 
those entries in & not corresponding to obser- 
vation points. In other instances the points in 
nz may not correspond to those in n,. For these 
instances an interpolation scheme would be 
used to obtain f from b. In either case, the 
vector f(&, &) is obtained by using & computed 
from equation 3.3-22 in which 4 was used to 
evaluate 0, and p. 

The final step in forming the Gauss-Newton 
solution is to derive the sensitivity matrix g. 
To accomplish this step, write equation 3.3-21 
in terms of a general parameter set b, then dif- 
ferentiate it with respect to b to yield 

+Eh = f% ,j=1,2,. . .,p (3.3-23) 
a bj- abj 

or 

8 =P-‘(f$ - %),j=1,2,. . ~~(3.3-24) 

The quantity a&/a bj forms a column of the sen- 
sitivity matrix for points in m. Sensitivity 

4 
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matrix 5 would be found by first computing 
3bla bj using equation 3.3-24 written in terms 
of & and b then following one of the two pro- 
cedures described above for obtaining f from &. 
By incorporating the procedures to compute 
numerical estimates of f&b,) and X, the 
algorithm given for the Gauss-Newton method 
may be followed exactly to find the regression 
solution of equation 3.3-22. 

By studying the sequence of calculations in 
the solution algorithm carefully, it will be noted 
that to calculate fir and X,, g g computed 
using &) must already have been computed. 
This requires one of two possible calculation 
schemes. Either 0, and p matrices of the form 
( ~D/ZJ b jr must be formed at the same time and 
stzed -h efore & and X, are calculated, or 3 
must be formed before & is calculated and then 
each matrix ( ~D/ZI bj)r formed as needed to 
calculate each c&mn (that is, gj) of XX’ The 
first alternative could require a considerable 
amount of computer memory or the use of 
scratch files, whereas the second alternative 
could require repetitive calculation because 

3 

many arithmetic operations could be the same 
for forming both 3 and (32/a bj)r Often, 
however, matrices ( ag/3 bj)~ can be written in 
a condensed or decomposed form to conserve 
computer memory. In this way 0, and the 
decomposed form of (ag/a bj)r GUI be computed 
together without using a significant amount of 
extra memory. Then each matrix (ag/a bj)~ 
may be assembled as needed without perform- 
ing numerous repetitive calculations. 

A significant amount of computer memory 
can also be wasted unless care is taken when 
forming X,. The general procedure is to form 
the CO~UIIUI vector (ag/abj)r-(ag/abj)& then 
use equation 3.3-24 to form the vector 
(ah/a bj)l, which replaces the first vector in cen- 
tral computer memory. From this, vector 3 is 
immediately formed and stored. The matrix 
composed of vectors (3&/a bj)r should not be 
stored in central computer memory because it 
is often large. If desired, it may be stored col- 
umn by column on a scratch file for later 
retrieval and printing. 

Problem 3.3-2 

Assume the finite difference representation of 

b 
a flow problem shown in figure 1. 

%=O 
h =hsl 

7 

48’ 0 

4 

qs=o L T,,w, 

1 

qs=o 

8 q8=o 9 

%= %l 

6 Ax=Ay=a 

qL?=o 

3 

a=0 
Figure 1 

Finite difference equations for this problem can 
be written as follows. 

1. ~AyTl(h2-hl)lllX+‘/z~Tl(hr-hl)lAy 
=-l/aAdhAyWl. 

2. %AyT2(h3-h2)lAr ?4zAyTl(h2-hl)lAx 
+%AxTl(h5-h2)/Ay+YizhzT2(h5-h2)/Ay 
=-1/AxY~AyW1-1hAxY~AyW2. 

3. -%AyT2(h3-h2)1Ax+%AxT2(h6-h3)lAy 
=-1hAx1%AyW2. 

4. AyTl(h5-h4)1Ax+I/AxTl(hB1-h4)lAy 
-‘%&T~(h4-hl)/Ay=-WAixAy WI. 

5. AyTz(hg-h&lx-AyTl(h5-h4)/Aix 
+ %A.rT~(hg-hs)/Ay + %AzT2(h8-h5)/Ay 
-%AxTl(h5-hz)/Ay-‘AxT2(h5-h2)/Ay 
=-1hAxAyW,-1hAxAyW2, 

6. -AyTz(hg-h&k+ %AxT2(hg-h,$Ay 
-‘/zhxTz(h6-h3)iAy=-‘/zhzAyW2-‘/2AyqB1. 

7. hT=hBl. 
8. %AyT~(hg-h&x-%AyTl(h~-h~l)/A.z 

-%AxTl(ha-hS)/Ay-%AxT2(h8-h5)/Ay 
=-%Axl/zAyWI-%Ax1hAyW2. 

9. -%AyTz(hg-h&x-‘/zAxT2(hg-h6)/Ay 
=-‘%A&AyW&zAyqB1. 

Or, by assuming that Ax=Ay=u, 

1. Tl(h2-h1)+Tl(h4-hl)=-%&WI. 
2. Tdhrhd-Tl(hz-hd+(Tl+T2)(h5-hz) 

=-Yhq WI+ W,). 
3. -T2(h3-hz)+Tz(hg-h3)=-%u2W2. 
4. 2Tl(h5-h4)+Tl(hBl-h4)-Tl(h4-hl) 

=-a2 w,. 
5. 2T2(h6-h5)-2Tl(h5-h4)+(Tl+T2)(htrh5) 

-(T1+T2)(h5-h2)=-u2( WI+ W2). 
6. -2T2(hG-h5)+T2(hg-h6)-T2(hg-h$ 

=-122W2-i29Bl. 
7. hT=hBl. 
8. T2(hg-h8)-Tl(h8-hsl)-(Tl+T2)(h8-h5) 

=-%u2( WI+ W2). 
9. -Ts(hg-hg)-Tz(hg-he)=-%u2W2-uqB1. 
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a. Verify the finite difference equations so that 
you understand their physical basis. (Hint: 
read appendix, section 4.3.1.) 

b. Write the equations in matrix form: 

by explicitly writing out g, 4, and p. 
C. Let vectors ( 3~/L/a bj)~- ( 3~/a bj),h,=~, and 

develop JJ(j=1,2,3,4) for the parameters 
B1=T,,, P2= T,, &=w,, and 04=qsl. 

d. Using the modified Gauss-Newton method, 
develop the algorithm (not computer pro- 
gram) to solve for the parameters. Assume 
that all nodes except number 7 are obser- 
vation points. 

In general, the rate of convergence has been 8 
found to be related to the number of parameters 
being estimated, as predicted by theory. That 
is, the greater the number of parameters, the 
slower the rate, alI other things being equal. It 
is also related to the conditioning of the problem 
and to the nearness of the initial set of param- 
eters to the optimum set, in that the rate of con- 
vergence is usually much faster near a minimum 
of S(b). As a rule of thumb, one may often ex- 
pect convergence within a number of iterations 
equal to either 5 or twice the number of param- 
eters, whichever is greater. Fewer iterations are 
required for well-conditioned problems. 

3.3.3 Convergence and Conditioning 

A value of p, O<&l, can be shown to exist for 
which the Gauss-Newton procedure, as modified 
using equation 3.3-19, will converge to the 
global minimum value of S(b) provided that: 

1. An initial estimate of the parameters can 
be found such that they lie within a 
parameter region R bounded by sets of 
parameters b* defined by 

(3.3-25) 

and the global minimum point lies within 
this region. 

2. For ail b belonging to R, X is a continuous 
and u&que matrix func3on. 

3. The matrix ST& is nonsingular and is a 
continuous &Zion of b. 

Condition 2 is almost always met. Condition 
1 requires that the system be well enough 
understood that intelligent initial estimates of 
parameters can be made. Difficulties frequent- 
ly arise in connection with condition 3. Unless 
the problem is correctly specified, the least 
squares coefficient matrix (for example, ST&) 
can be singular. Moreover, problems ofteg& 
because of ill-conditioning (that is, near- 
singularity) of the matrix. Although the addi- 
tion of the Marquardt parameter, ~1, is intended 
to help these cases, convergence can be difficult 
to obtain. In the following paragraphs, the 
general question of convergence is considered 
first. This is followed by discussions of singu- 
larity and ill-conditioning. 

A problem that frequently retards the con- 
vergence rate, or even causes divergence, is 
overshoot. This happens when the parameter 
correction vector &+ 1 has a favorable orienta- 
tion but is much longer than an ideal value. The 
result is that the new set of parameters &+l is 
almost as far as (or even further than) the old 
set 5 from the optimum value. A two- 
parameter example is illustrated in figure 3.3-4. 

Overshoot is detected as large oscillations 
with accompanying changes in sign of com- 
ponents of &+I from one iteration to the next. 
The remedy is to decrease the value of p such a 

that o<p<l. In figure 3.3-4, a good value would 
be p=O& which would give &+1 at point 1. 

Care must be taken not to make p too smaIl 
so that undershoot becomes a problem. Under- 
shoot occurs when p&+1 is too small, and it 
manifests itself as small steps P&,+~, the com- 
ponents of which usually do not change sign. 
The remedy is to increase the value of p, in rare 
occasions such that p>l. As a practical guide, 
the best value of p is one that causes some 

Figure 3.3-4 
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oscillations in sign of a few components of &+I 
from one iteration to the next. 

Sometimes the solution may converge to a 
local minimum instead of the global minimum. 
Most commonly this can occur (1) if p is too 
large and the overshoot causes the search 
vector &,+r to escape from the region defined 
by equation 3.3-25, or (2) if the initial estimate 
&, is not in the region defined by equation 
3.3-25. Detection of this problem is accom- 
plished through adequate knowledge of the 
system so that the wrong solution can be ryg- 
nixed. If the computed parameter vector b is 
physically illogical or the model analysis 
discussed in section 5 suggests that the model 
is not correct, then one might suspect that a 
local minimum has been reached. The remedy 
to the problem is to decrease p and (or) choose 
another initial estimate &. If be is changed, 
vsually the distance between h and the vector 
b computed for the local minimum should be 
&creased. Thus, if some components of 6 are 
far too large to be realistic, then the same-corn- 
ponents of be should be reduced in value. If 

3 

several attempts at than * g p and (or) b do 
not produce a change in 77 , then the cause of 
the poor results is probably not a local 
minimum. 

As for the linear case, singularity of the least- 
squares coefficient matrix occurs whenever col- 
umns of the sensitivity matrix are linearly 
dependent. Near-singularity, caused by near 
linear dependence, is a more frequent occurrenca 
As a result of ill-conditioning, step sizes %+1 
can be highly erratic, appearing to head toward 
no well-defined point and can be dominated by 
overshoot. In addition, some problems may start 
fairly well conditioned for the initial parameters 
but may become progressively more poorly con- 
ditioned during the iterative solution process. 

The same techniques for analysis of poorly 
conditioned problems as are used for linear 
problems may be used for nonlinear problems 
as well. Whenever a problem is poorly condi- 
tioned, the sensitivity matrix g may be exam- 
ined for a near-zero column, and ST& may be 
examined for off-diagonal cornlkiits near 
unity. Also, the orthogonal transformation may 
be used to indicate that ill-conditioning exists 
and to point out possible columns where linear 

B 
dependency occurs. 

Use of the Marquardt parameter, p, is in- 
tended to improve conditioning by adding a 
small quantity to the main diagonal of the least- 
squares coefficient matrix. Although condition- 
ing is always artificially improved by employ 
ing ~1. the parameters resulting from applying 
the least squares process to a very poorly con- 
ditioned problem may be considerably in error 
unless the actual causes of the poor condition- 
ing are discovered and the conditioning im- 
proved without using )L. 

3.3.4 Computation of p and p 

For best efficiency, both ~1 and p should be 
recomputed at each iteration, r. A number of 
schemes exist in the literature for making these 
computations, but virtually all schemes involve 
assuming several trial values of p and p, then 
performing all of the calculations for iteration 
r for each of the trial values. The best values 
to use are then computed so as to minimize or 
substantially decrease S(b). The problem with 
these schemes is that they require so much time 
that one is often much better off settling for ap- 
proximate values of p and p computed by using 
a much simpler scheme. 

The scheme adopted here is derived from the 
considerations discussed in section 3.3.3. 
Parameter p is used only when the problem is 
so poorly conditioned that the search direction 
S must be altered. Overshoot and undershoot 
are controlled primarily through use of p. 

Because the Marquardt parameter is used 
with a scaled problem formulation, computa- 
tions must be made using scaled quantities (see 
equation 3.3-16). By direct computation, it can 
be verified that the scaled gradient ( 3 S(b)/ 3 bi) 
.Cjj (j=1,2,...,p) of the sum of squares S(b) 1~ 

given by 

as(b) 
c’ a(, ,4! L =-g=-ST (x-&g) . (3.3-26) 

- 

Thus, by definition (Spiegel, 1959, p. 16), the 
angle between g, which points directly down the 
sum of squares surface, and displacement 
vector 6 is given for the rth iteration by 

case= !?+1& 
,J@ar+1)~) * 

(3.3-27) 
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For two parameters, b, and b,, the relation- 
ships given by equation 3.3-27 are illustrated 
in figure 3.3-5, (Note the use of scaled param- 
eters; see equation 3.3-17.) 

If 0=90”, then, as discussed in section 3.3.1, 
no improvement in parameters is likely to result 
from application of the Gauss-Newton pro- 
cedure. However, application of the Marquardt 
parameter, +O, will result in 8<90” (Mar- 
quardt, 1963) because vector 4 is shifted pro- 
gressively toward g as p increases. Thus, a 
viable scheme for choosing p is to define a max- 
imum value of 0, 8,,<90°, and compute p so 
that 8 never exceeds C,,. This can be ac- 
complished rather simply. At the beginning of 
the regression set pe=O. Then at each iteration 
r, check and recompute p as necessary: 

/+=I$ 

if ~+l~O~emkf+l~+l)&~ or 

&+&~~+0.001 
(3.3-28) 

At the beginning of iteration r, P=l and 
Pp=Ppl- Then equation 3.3-20 is solved and 
equation 3.3-28 is applied. If the second part 
of equation 3.3-28 is employed, equation 3.3-20 
is resolved using pp+ r, P is incremented by one, 
and equation 3.3-28 is used again. This process 
is continued until the first part of equation 
3.3-28 is used, at which point the appropriate 
value of ~1 for iteration r has been found. The 
formula for computing pp+ 1 from crp is empirical 
but gives what experience has shown to be a 
good range in values of p. For each resolution 
of equation 3.3-20, S& & and gr are not recom- 
puted. Thus, the calculations are not extensive. 

Computation of p is designed to prevent 
disastrous overshoot and to keep p4 within the 
region R defined by equation 3.3-25. A simple 
but usually effective scheme is to estimate the 
maximum fraction that any of the parameters 
could change and still remain within R and then 
to prevent any parameter from changing any 
more than this amount over any iteration. ILet 
t, be this maximum fractional change. Then 
at iteration r, p is calculated as follows: 

t=max)d~+%J (3.3-,29) 
i 

w22 

Figure 3.3-5 

p=l if t<t- or 

p = t-It if t>tmz 

where c=bfif b:P 0 and c=l if bI=O. 

3.4 Regression Including Prior 
Information a 

3.4.1 Model Structure 

Recall that the standard nonlinear regression 
model including prior information on the param- 
eters may be written in the form (equation 
3.1-32) 

X=&B +s (3.4-l) 

where 

41, 
_Y= 

XIJ 

53 
E= 

4 

(3.4-2) 

(3.4-3) 

(3.4-4) 

4 


	TWRI 3-B4 - Regression Modeling of Ground-Water Flow
	Review of probability and statistics (cont'd)
	Tables of probability distributions
	Appendices
	Correlation of two linearly related random variables
	Expected value of variance estimator

	References cited
	Additional reading

	Regression solution of modeling problems
	Introduction and background
	Assumed model structure
	Least-squares estimation
	Inclusion of prior information
	Problem 3.1-1

	Regression when the model is linear
	Derivation of solution
	Solution algorithm
	Problem 3.2-1
	Singularity and conditioning

	Regression when the model is non-linear
	Modified Gauss-Newton method
	Problem 3.3-1
	Nonlinear regression when the model is numerical
	Problem 3.3-2
	Convergence and conditioning
	Computation of µ and p





