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2.10 Tables of Probability Distributions
[All tables modified from Walpole and Myers (1972), with permission from the publisher]

1-a
Table 2.10-1 A / ,
0 Na (0,1}
Areas, 1-a, Under the Normal Curve
Nq(0,1}] 0.00 0.0t 0.02 0.03 0.04 0.05 0.06 0.07 0.08 009
—-34] 00003 00003 0.0003 0.0003 0.0003 0.0003 0.0003 00003 0.0003  0.0002
—-3.3 | 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
—3.2 { 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0 06006 0.0005 0.0005 0.0005
~3.1 | 0.0010 0.0009 0.0009 0.0009 0.0008 0 0008 0.0008 0.0008 0.0007 0.0007
—3.0 | 0.0013 0.0013 0.0013 0.0012 0.0012 0.00t1 0.0011 0.0011 0.0010 0.0010
—-29 100019 0.0018 0.0017  0.0017 0.0016 00016 0.0015 . 00015 0.0014 0.0014
—2.8 | 0.0026 0.0025 0.0024  0.0023 00023 0.0022 0.0021 0.0021 0.0020 0.0019
—2.7 | 00035 0.0034 0.0033 0.0032  0.0031 0.0030 0.0029 0.0028 0.0027  0.0026
—-26 | 0.0047 0.0045 0.0044 00043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
—2.5 100062 0.0060 0.0059 0.0057 0.0055 0.0054  0.0052  0.005t 0.0049  0.0048
—-2.4 | 0.0082 0.0080 00078 0.0075 0.0073 00071 0.0069 0.0068 0.0066 0.0064
—-2.3 100107 00104 §.6102 00099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-22 100139 00136 00132 00129 00125 00122 00119 00il6 00113 00110
-2.1 100179 00174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
—2.0 ] 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
—-1.9 | 0.0287 0.0281 00274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
—1.8 | 0.0359 0.0352 0.0344 00336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
—1.7 | 0.0446 0.0436 00427 00418 0.0409 0.040} 0.0392 0.0384 0.0375 0.0367
—1.6 | 0.0548 0.0537 00526 0.0516 0.0505 0.0495 0.0485 0.0475 00465 0.0455
—1.5 | 0.0668 0 0655 00643 0.0630 0.0618 0 0606 0.0594 0.0582 0.0571 00559
—1.4 {0.0808 0.0793 0.0778 0.0764 00749 0.0735 0.0722 0.0708 0.0694 0.0681
—~1.3 | 00968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
—-1210.115) 0.1131 0.1112 01093 0.1075 0.1056 0.1038 01020 0.1003 0.0983
—1.1 } 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 01170
~1.0 | 0.1587 0.1562 01539 0.1515 0.1492  0.1469 0.1446  0.1423  0.1401) 0.1379
~09 [0.1841 0.1814 0.1788 0.1762 0.1736 01711 0.1685 0.1660 0.1635 0.1611
—08 102119 0209  0.206} 0.2033 02005 01977 0.1949 01922 0.i1894 0.1867
-0.7 | 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
—06 | 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
—0S5 | 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
~0.4 10.3446 0.3409 0.3)72 0.3336 0.3300 03264 0.3228 0.3192 0.3156 0.3121
~0.3 | 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
—~0.2 ] 0.4207 04168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
~-01 | 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 04286 0.4247
-0.0 | 05000 0.4960 04920 0.4880 0.4840 0.4801 0.4761 04721 0.468t 0.4641
0.0 ] 0.5000 05040 0.5080 05120 0.5160 0.5199 0.5239  0.5279 0.5319  (.5359
0.1 | 0.5398 0.5438 05478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 | 06179 06217 06255 0.629) 0.6331 0.6368 0.6406  0.644) 0.6480  0.6517
04 | 0.6554 06591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 1 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 07423 0.7157 07190 0.7224
06 | 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
07 [0.7580 0.761] 0.7642 0.7673 0.7704 0.7734 0.7764  0.7794 0.7823  0.7852
0.8 | 0788i 0.7910 07939 0.7967  0.7995 0.8023  0.8051 08078 0.8106 0.8133
09 | 08159 0.8186 08212 0.8238 0.8264 0.8289 (0.8315 0.8340 0.8365 0.8339
1.0 | 08413 08438 0.8461 08485 0.8508 0.8531 08554 0.8577 0.8599  0.862]
1.1°] 0.8643 0.8665 08686 0.8708 08729 0.8749 0.8770 0.8790 08810 08830
12108840 08869 08888 0.8907 0.8925 0.8944 08962 08980 0.8997 0.9015
1.3 109032 09049 09066 09082 O. 09115 09131 09147 09162 09177
1.4 109192 09207 09222 09236 0.9251 0.9265 09278 09292 0.9306 09319
1.5 109332 09345 09387 09370 09382 0.9394 09406 09418 09429 09441
1.6 { 0.9452 0.9463 09474 0.9484 0.9495 0 9505 09515 0.9525 0.9535 0.9545
1.7 | 09554 0.9564 0.9573 09582 09591 0.9599 0.9608 09616 0.9625 0.9633
1.8 | 09641 09649 09656 09664 09671 09678 09686 09693 09699 0.9706
1.9 | 09713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
20 09772 09778 0.9783 0.9788 0.9793 0.9798  0.9803 0.9808 09812 09817
21 |0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
22 | 09861 0.9864 0 9868 0.9871 0.9875 0.9878 0988t 0.9884 0.9887 0.9890
2.3 109893 0.9896 0.9898 0.9901 0.9904 09906 0.9909 0.99114 09913 0.9916
2.4 09918 0.9920  0.9922 0.9925 09927 09929 0.9931 0.9932 0.9934 09936
2.5 109918 09940  0.9941 0.9943 0.9945 0.9946 09948 09949  0.995% 0.9952
2.6 109953 0.9955 0.9956 0.9957 0.9959 0.9960 09961 0.9962 0.9963 0.9964
2.7 | 0.9965 0.9966 0.9967 0.9968 09969 0.9970 0.9971 0.9972 0.9973 0.9974
28 109974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 | 0.9981 0.9982 0.9982 0.9983 0.9984 09984  0.9985 0.9985 0.9986 0.9986
30 | 09987 0.9987 0.9987 0.9988 0.9988 09989 0.9989 0.9989 0.9990 0.9990
31 {09990 09931 09991 0.9991 09992 0.9992 0.9992 09992 0.9993  0.9993
3.2 109993 09993 09994 0.9994 09994 09994 09994 09935  0.9995  0.9995
3.3 ) 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 109997 09997 0.9997 0.9997 09997  0.9997 0.9997 09997  0.9997 0.9998
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0 2
Table 2.10-2 X (v)
Critical Values of the Chi-Square Distribution
«

v 0.995 0.99 0.975 0.95 0.05 0.025 0.01 0.005
1 0.0*393| 0.0°157| 0.0°982| 0.02393} 3.841 5.024 6.635 7.879
2 0.0100 | 0.0201 0.0506 | 0.103 5.991 7.378 9.210 10.597
3 0.0717 | 0.115 0.216 0.352 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 11.070 12.832 15.086 16.750
6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278
8 1.34 1.646 2.180 2.733 15.507 17.535 20.090 | 21.955
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 | 23.589
10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 19.675 21.920 | 24.725 26.757
12 3.074 3.571 4.404 5.226 |21.026 | 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 |22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 24,996 | 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 126296 | 28.845 32.000 | 34.267
17 5.697 6.408 7.564 8.672 |27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 |28.869 31.526 | 34.805 37.156
19 6.844 7.633 8.907 10.117 |30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 31410 34.170 | 37.566 39.997
21 8.034 8.897 10.283 11.591 32.671 35479 38.932 | 41.401
22 8.643 9,542 10.982 12.338 33924 36.781 40.289 | 42.796
23 9.260 10.196 11.689 13.091 35.172 38.076 | 41.638 44.181
24 9.886 10.856 12.401 13.848 36415 39.364 | 42.980 | 45.558
25 10.520 11.524 13.120 14.611 37.652 | 40.646 | 44.314 | 46.928
26 11.160 12.198 13.844 15.379 38.885 | 41.923 | 45.642 | 48.290
27 11.808 12.879 14.573 16,151 40.113 43.194 | 46.963 49.645
28 12.461 13.565 15.308 16,928 |41.337 | 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 |42.557 | 45.722 | 49.588 52.336
30 13.787 14.953 16.791 18.493 |43.773 46.979 50.892 53.672

Abridged from-Table 8 of Biometrika Tables for Statisticians, Vol. I, by permission of

E. S. Pearson and-the Biometrika Trustees.
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2.10 Tables of Probability Distributions—Continued

[
Table 2.10-3 “
0 Fa(vy, v,)
Critical Values of the F Distribution
Fo.os("n Vz)
Vi
V2 1 2 3 4 5 6 7 8 9
111614 199.5 215.7 224.6 230.2 234.0 | 236.8 238.9 240.5
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 1.1 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 495 4.88 4.82 4.7
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 139
9 5.12 4.26 3.86 3.63 3.48 3.37 329 3.23 3.18

10 4.96 4.10 7t 3.48 3.33 322 3.14 3.07 3.02
il 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 349 3.26 3.1 3.00 291 2.85 2.80
13 4.67 3.8t 4 3.18 3.03 292 2.83 2.77 2.71
14 4.60 374 3.34 3.1 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 249
18 4.41 3.55 316 293 2N 2.66 2.58 2.51 2.46
19 4.38 3.52 313 2.90 2.74 2.63 2.54 2.48 242

20 4.35 3.49 310 2.87 2.71 2.60 2.51 245 2.39
21 4.32 347 3.07 2.84 2.68 2.57 2.49 242 2.37
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
24 4.26 3.40 3.01 2,78 2.62 251 242 2.36 2.30

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
26 4.23 337 2.98 2.74 2.59 247 2.39 2.32 2.27
27 4.21 335 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.20 334 2.95 271 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.70 2.55 243 2.35 2.28 2.22

30 4.17 3.32 2.92 2.69 2.53 2.42 233 2.27 2.21
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
60 4.00 315 2.76 2.53 2.37 2.25 2.17 2.10 2.04
120 3.92 3.07 2.68 245 229 2.17 2.09 2.02 1.96
] 3.84 3.00 2.60 2,37 2.21 2.10 2.01 1.94 1.88

Reproduced from Table 18 of Biometrika Tables for Statisticians, Vol. I, by
permission of E. S. Pearson and the Biometrika Trustees.



Table 2.10-3 continued

REGRESSION MODELING OF GROUND-WATER FLOW

Fo.os(V1, ¥1)

Vi

V2 10 12 15 20 24 30 40 60 120 w©
1 12419 12439 |2459 |248.0 [249.1 |250.1 |251.1 |252.2 |253.3 |254.3
2 19.40| 19.41| 19.43| 19.45| 19.45| 19.46] 19.47| 19.48| 19.49| 19.50
3 879! 8.74| 8.70| 8.66| 8.64| 8.62| 859 8.57| 8.55| 8.53
4 596 591| 586| 580 5.77| 575| 572 5.69| S5.66| 5.63
5 474 4.68| 462 456 4.53| 4.50] 4.46| 4.43| 440| 4.36
6 4.06| 4.00f 394 387 3.84| 381 377 3.74| 3.70| 3.67
7 364 357 351} 3.44| 341 338] 3.34]| 330 327 3.23
8 335 328 3.22f 15| 3.12| 3.08] 3.04 301 297} 293
9 3.14| 3.07| 3.01| 294 290 2.86| 2.83| 279 2.75{ 2.71
10 298 2911 2.85| 277 274 2.70| 2.66| 2.62| 2.58| 2.54
1 2.85) 279 2.72| 265| 261| 257 2.53] 249| 245| 240
12 275 2.69] 2.62| 254| 251 247 243 238| 234 230
13 267 2.60] 253] 246| 242] 238] 234 2.30] 225| 221
14 260 2531 246| 239 235| 231 227 2227 218| 213
15 2.54| 248 240 2337 229 2.25| 2.20{ 216] 211| 207
16 2491 242) 235| 228 224} 2.19| 2.15] 211 206| 2.0t
17 245) 238; 231) 223 219 2.15| 2.10] 206| 201] 196
18 2411 234 2.27( 2.19( 2.15] 211} 206 2.02] 1.97| 1.92
19 238 231 223} 216 2.11| 207/ 203| 1.98f 193] 1.88
20 2351 2.28) 220 212 208] 2.04| 199 1.95| 190| 1.84
21 232 2251 218 210f 2.05| 2.01| 196| 1921 1.87| 1.81
22 230 223} 2.15] 2.07| 203 198 194" 1.89| 1.84| 178
23 227 220f 2.13] 2.05| 201] 196 191, 186 181 1.76
24 2.25| 218 2.11] 203} 198 1.94] 1.89] 1.84f 179} 173
25 224 216| 209 201| 196f 1.92| 1.87} 1.8} 177 1.7
26 2221 2151 207| 199] 195 1.90| 1.85{ 1.80| 1.75] 1.69
27 2200 243 206 1977 193 1.88] 1.84] 1.79] 1.73| 1.67
28 2,19 212 2.04| 196 191 1.87| 1.8 1.77] 1.71| 1.65
29 2.18) 210 2.03| 194} 190| 185 181 1.75| 1.70] . 1.64
30 2.16f 2.09( 201| 193] 1.89} 1.84] 1.79] 1.74] 1.68| 1.62
40 208 2.00| 192} 1.84] 1.79( 174 1.69 1.64| 1.58] 151
60 1991 1.92{ 1.84| L.75{ 1.70] 1.65| 1.59| 1.53| 147] 1.39
120 1917 1.83) 1.75{ 1.66] 1.61| 1.55| 1.50| 1.43| 1.35] 1.25
@ 1.83] L1751 1.671 1.57} 1.52] 1.46| 1.39( 132 1.22! 1.00

47



48 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

2.11 Appendices

2.11.1 Correlation of Two Linearly
Related Random Variables

Consider a linear relationship between two
random variables X and Y such that

=a+bX+& (2.11-1)

where & represents a zero-mean random error
(independent of X). Then

obeirof
because oy =FE[(X-1x)]=0. By direct calcula-
tion of oxy from equation 2.11-1, one obtains
oxy=E[X-pxY-py)]
=E[(X-px)b(X-px)+8E)]

Upon squaring both sides of equation 2.11-3
and dividing by 0% 02, one obtains

%

which, from equation 2.11-2, can be put in the
form

(2.11-2)

(2.11-3)

(2.11-4)

%

2 —1--8_

Y

Again from equation 2.11-2, it is seen that
ook ch-of

and as b20%is a nonnegative quantity, o3 must
be greater than or equal to a% This shows that,
for a linear relationship, 0% %y is either less than

unity or equal to one if 02 is equal to zero.

(2.11-6)

2.11.2 Expected Value of Variance
Estimator

The sample statistic Sy is defined as

SX—— E X-X)? . (2.11-7)

By taking expected values of both sides, one
sees that

st o
-141 -

=1 LEIE[(Xrux)zl-E[n(X-ux)zl] 2.11-8)

where use is made of the fact that )’f Xiux)

i=1
=n(X-py). Now the second expected value in
equation 2.11-8 becomes

EnZ-ngi= 2B E ) £ ) |

‘ 1 n n
=1H % T Krun

g
Ill:ﬂa

-1  CoviXi Xl (2.11-9)
ni=1j

As X; and X; are randomly selected and
therefore mdependent

% i
Cov[X,-,Xj]={0 i#j (2.11-10)
Thus, equation 2.11-9 becomes
EnX-px)l=0% (2.11-11)

which allows us to write equation 2.11-8 as

(2.11-12)

and demonstrates the desired result. Note
that equation 2.11-11 also demonstrates that
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og?=a%In (2.11-13)

as 0g?=E[(X-ux)¥.
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3 Regression Solution of
Modeling Problems

3.1 Introduction and
Background

Ground-water flow models are members of a
class of models known as mathematical models,
in which the physical model of the flow system
is replaced by mathematical expressions con-
taining mathematical variables, parameters,
and constants (Krumbein and Graybill, 1965,
p. 15). Mathematical models always involve
simplification of the actual (true) physical
system. Krumbein and Graybill (1965, p. 15)
argued that mathematical models can be classi-
fied into several types, including deterministic
models, statistical models, and stochastic-
process models.

A deterministic model is one in which the de-
pendent variable(s) can be exactly computed
from an expression involving independent vari-
ables, parameters, and constants. Note that de-
terministic models do not have to be physically
based but may instead be completely empirical.
The classical and inverse flow models discussed
in section 1 are of the physically based
deterministic type. In contrast, a statistical
model is a deterministic model that has one or
more random components added. These random
components frequently involve measurement or
other errors, but may involve separate sources
of random variability as well. Incorporation of
the errors in both observed heads and estimated
parameters discussed in section 1 converts the
deterministic flow model into a statistical
model.

The term “stochastic model”’ can be consid-
ered to be synonymous with the term ‘‘statis-
tical model” (Krumbein and Graybill, 1965,
p- 19). A stochastic-process model may consider
random effects such as those contained in the
statistical model but in addition has a sto-
chastic process built into it. Generation of a
spatially varying permeability field in an aquifer
has been considered to be a stochastic process
by Bakr and others (1978), Gutjahr and others
(1978), and Smith and Freeze (1979a, 1979b).
Recently, this type of process has been in-
corporated into a parameter estimation scheme
for a steady-state ground-water flow model

(Kitanidis and Vomvoris, 1983). Stochastic-
process models are not considered further here.

3.1.1 Assumed Model Structure

Consider an experiment where two variables,
¢ and Y, are measured repeatedly. The inde-
pendent variable, £, is considered to be a pre-
cisely defined quantity, whereas the dependent
variable, Y, whose values depend upon values
of the independent variable, contains some error
resulting from the experimental process. A
scatter diagram of the data might appear as in
figure 3.1-1.

From the scatter diagram or from physical
considerations, the experimentalist may decide
that an appropriate model equation for the data
is

where 8, and B, are the intercept and slope of
the equation for a straight line, subscript i
represents the ith observation of (£,Y), and ¢;
is the true error in Y for observation i. The
quantity 8;+8,¢ is the deterministic part of the
equation (the computed value of the dependent
variable), and, because ¢; is the true error,
parameters 3, and 8, are the true parameters
representing the deterministic part of the model
response. True error ¢;, often called a disturb-
bance, is a random variable and, thus, repre-
sents the stochastic part of the model response.
Note that if the model is correct and no other
source of bias in ¢; exists, E(e;)=0.

Equation 38.1-1 is linear in parameters 8, and
By Another example of a model equation that
is linear in the parameters is

Y; =B, +B2¢;+B8stF +e;

which is the equation for a second degree poly-
nomial. In equation 3.1-2 there is still only one
independent variable, £, although the equation
has two terms containing £. An alternate form
for equation 3.1-2 is

(3.1-2)

Y= ilBI+Xi232+Xi353+éi , (3.1-3)
where
X1=1
X,=¢ (3.1-4)
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Figure 3.3-1

In general, any equation that is. linear in
parameters §;, B, . . .,8,, Where there are p
parameters for the system, can be written in the
form

Yi=X;15+

Xi262+' . '+Xip6p+ei (3.1"5)

where
Xi=X;j& 1€ - Ein) (3.1-6)

is a function of k& independent variables that
multiplies the jth parameter and does not con-
tain the parameters. Because

; (Xilﬁl
j

X;oBot. . +XpB,)=X;;, (3.1-7)

the X terms are often called sensitivity coeffi-
cients or, simply, sensitivities. They indicate the
change in the model response (the computed
value of the dependent variable) at observation
point i for a unit change in parameter B;. Equa-
tion 3.1-5 can be written compactly i m matrix
form as

Y=XpB+e

{(3.1-8)

where

(3.1-9)

Xll X12 . e le

X=X21 X22 . e X2p (3.1_10)
X,y o0 Xy
B

8=| By (8.1-11)
BP
€

€=\ €& (3.1-12)
en

and n observations are assumed.

Often we are faced with models where the
equation is no longer linear in the parameters,
B. For example, suppose that the model equa-
tion is

B, +B

JBI+B tan‘ E,’+e . (3.1-13)

Equation 3.1-13 cannot be reduced to the form
of equation 3.1-5, and, thus, is not linear in the
parameters. Equations of this type are written
in the general vector form

Z=ﬂ§1,§2, v -1§k;61962, o -pr)+§ (3-1_14)
or, in more compact form,
Y=f({,0)+¢

(3.1-15)

where f is an n-vector, each element f; of which
is a general function of the k independent vari-
ables, {;, (¢=1,2,...k), and p parameters,
B;(=1,2,...p). Equation 3.1-15 incorporates
equatlon 3.1-8 because 3.1-8 is simply the
special case where fl£,8)=X (£)B.

Some equations may be nonlinear in 8 but
linear in some transformation of 8. For exam-
ple, the model

Y, =8,(82)"%; (3.1-16)



52 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

in which the error ¢; is multiplicative, is non-
linear in 8, and 8,. However, equation 3.1-16
may be written as

log Y;=log B;+Xlog B, +log ¢; (3.1-17)
which is linear in log 8, and log 8, and has an
additive error term. Thus, it is of the standard
linear form. Equations such as 3.1-16 are fre-
quently best utilized in their transformed, thus
linearized, form. However, all model analyses (to
be discussed further on) would probably be
made in terms of the transformed variables, and
this would have to be remembered when results
were interpreted.

Types of models other than the linear and
nonlinear ones discussed above also exist. Some
types involve a complex model equation that
cannot be solved explicitly for the dependent
variable. In other cases the function f(£,8),
which is assumed to be a known function of £
and §, cannot be obtained and, therefore, must
be replaced by a numerical formulation. How-
ever, the basic model structure of equation
3.1-15, where the error ¢ in Y is assumed to be
additive to a deterministic dependent variable
vector, is always assumed. Additional complex-
ities of the other types of models are handled
by auxiliary equations appended to equation
3.1-15. The other models are introduced at ap-
propriate places further on.

3.1.2 Least-Squares Estimation

Because the true parameter set § and true
error set ¢ are generally unknown, the true
model equation 3.1-15 must be regarded as
unknown, even though the form of the model
is known (or, at least assumed). We.do, however,
have measurements to make up the independent
variable set £ and observation set Y. We would
like to use these measurements and the form of
the model to obtain estimates of 8 and ¢. The
method explained in the following paragraphs
is based on the idea that, if estimates of § and
¢ can be found such that the error structure of
the true model is duplicated as closely as possi-
ble, then the resulting model should, in some
sense, be the best possible approximation of the
true model.

Assume that all ¢ ((=1,2,...,n) as random

variables have finite common variance o2 and
that ¢; and ¢;, i#j, are uncorrelated. Then

Var(g=Io? . (3.1-18)

The scalar variance ¢2 can be solved for by tak-
ing the trace of both sides of equation 3.1-18:

tr[Var(e)l=tr(I)o>

or
tr{E((e-Ele)e-E(e) T)=no?
or
El(e-E(e) T(e-E(e))}=no?
from which

_ Elle-E(e) T(e-Ele))]
n

o2 (3.1-19)

Ordinarily the assumptions would be made
that the model being used is the correct one and
that no other source of bias in ¢ exists, so that
E(e)=0 and

_ ETe
- n

o2

(3.1-20) _

Equation 3.1-20 indicates that the sum of
squared disturbances over all observations,
averaged over many sets of observations, di-
vided by n yields 2.

As indicated previously, the investigator only
has available the data and the form of the
model, so that ¢, ¢%, and 8 must all be con-
sidered as unknowns. However, a good approx-
imation of the true model would produce
estimates of ¢ that, for many observations,
would yield a variance approaching ¢2. Let b be
an estimator of 8. Then a linear model incor-
porating b is

Y=Xb+e (3.1-21)
where the vector e is an estimate of ¢ called the
residual vector. From equations 3.1-20 and
3.1-21, an estimate of o2 is

n (3.1-22)
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Most arbitrary parameter sets are expected
to yield values of 32 that are larger than o2
because they would yield models that do not fit
the data well. Of all possible parameter sets b,
the one that fits the data the best and at the
same time minimizes ¥2 is the set that mini-
mizes the sum of squares function S(b),

S(Q)=ng (3.1-23)
with respect to b. The process of finding esti-
mates of 02 and 8 by minimizing S(b) is termed
least squares estimation. It is developed fully
in sections 3.2 and 3.3.

Recall that equation 3.1-18 and, hence, equa-
tions 3.1-22 and 3.1-23 assume that the ¢; all
come from the same distribution having
variance o? and that ¢; and ¢;, i#/, are uncor-
related. In some instances ¢; and ¢; have dif-
ferent variances, say or? and cr]?, andl they may
even be correlated so that they have nonzero
covariance o;;. In this case, equation 3.1-18
must be written in the more general form

Var(e)=Vo? (3.1-24)

where Vo? is a symmetric, positive definite
variance-covariance matrix defined as

021’ 012 013 --- O1p
Vo2=|091 08 o093 ... 0, (3.1-25)
On1 Opg Opg .. O,’Zl

In equation 3.1-24, 62 is no longer the common
variance of all ¢; but is instead another type of
common variance. Its exact meaning can be
discerned as follows. Define V** as the nonsin-
gular symmetric matrix such that V%V*=V.
Then, from equation 3.1-24,

L/—'/z Var(g)‘_/‘l/’=_1:‘l/’_‘i"l/’62
or
Var(Z"/’g)=£¢72

(3.1-26)

from which o2 is seen to be the constant or com-
mon variance of the transformed disturbances

V-"¢. Equation 3.1-26 shows that these dis-
turbances are uncorrelated.

The more general conditions represented by
equation 3.1-24 may easily be incorporated into
the least squares procedure. All developments
through equation 3.1-20 are repeated using
V"¢ instead of e. The result is

_ E[(V-1gT(V-%d)

(,2
n
E(TV-1¢)
=_ " = - (3.1-27)
n
which suggests that
Sb)=eTV-1le (3.1-28)

be minimized instead of equation 3.1-23.

If equation 3.1-23 is minimized to find the
parameter estimates when the more general
error structure given by equation 3.1-24 is cor-
rect, then the incorrect error structure will be
reflected in parameter estimates that are less
precise than if equation 3.1-28 were used. The
proper sum of squares function to minimize
when equation 3.1-24 represents the correct
error structure is equation 3.1-28.

Even more general cases can be postulated to
yield S(b) in the form

S)=eTwe (3.1-29)
where w is a general symmetric positive definite
weight matrix that subsumes V-1. To apply
equation 3.1-29, w does not necessarily reflect
the error structure of ¢. Instead it may reflect
the investigator’s desire to emphasize (or de-
emphasize) certain components of S(b). Equa-
tion 3.1-29 is used in all developments to follow
in which the general form is applicable.

As a final note, least-squares estimation
should be viewed as more than simply a
parameter estimation procedure. The develop-
ment given in this section is intended to show
that the procedure is an attempt to reproduce
the true model structure: the variance, ¢2, the
distribution of ¢, and §. Although it is possi-
ble to use least-squares estimation as just
an algebraic process, making no assumptions
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about structure, considerably more information
can be gained by taking the more general ap-
proach to make model analysis, including anal-
ysis of assumptions initially made concerning
model structure, an integral part of the regres-
sion process.

3.1.3 Inclusion of Prior Information

The model structure given by equation 3.1-15
is general. Nothing is implied about the nature
of Y except that it is a dependent variable
vector, in error by the amount e. A very general
interpretation of equation 3.1-15 is to assume
that Y, £, and ¢ are each composed of two parti-
tions, one giving sample information and one
giving prior information on parameters. This
viewpoint amounts to an expansion of the
original formulation given in the previous sec-
tion where only sample information was consid-
ered (Theil, 1963).

For example, suppose that an investigator
collects data (£,Y) on a process for which the
model equation is given by equation 3.1-2.
However, suppose that he or she also has
developed methods to collect some data direct-

ly on parameters 8; and 83 and suppose that
these data can be represented by the equations

Py=ay,8;tu,

{3.1-30)
Py=aq,8)+ay3Bstu,

where a;; is a constant and u; is a random error.
If a;,=1, then P, is a direct observation, sub-
ject to error u;, of 3,. The entire set of equa-
tions representing the system, then, can be
written

Y =81+§18,H£183+¢;
Yy=B+£58,+E3B5+¢s
Yn=61+£n52+f,2,ﬁ3+en (8.1-31)
Py=a,y,8,tu,

P2=az131+¢12363+u2

If Y, X, and ¢ are augmented to include the prior
information, then equation 3.1-31 is of the form
3.1-8 where

Y, €

Y, €9
y=|.. =

Yn en

Py uy

Py hu2

1 g &

1 & £
}_{=

1 &, £

a; 0 O

221 0 ay

Note that the number of observations is now the
number of equations giving sample information
(n) plus the number of equations giving prior in-
formation (2).

Although the equations giving prior informa-
tion are often linear, they do not need to be.
Hence, a general form of equation 3.1-15 to in-
clude the prior information may be assumed:

Y=f,6)+e (3.1-32)
where
Y fs €
Y=|_ = e=|" (3.1-33)
Y b &

and subscripts s and p indicate partitions of the
respective vectors pertaining to sample and
prior information, respectively. Corresponding
to these partitions, it is convenient to redefine
n as the total number of observations,
n=n,+n,, where n, is the number of items
(or equations) of sample information and n, is
the number of items (or equations) of prior
information.

To apply the least squares procedure to equa-
tion 3.1-15 as augmented by the prior informa-
tion, it is assumed for now that

Var(e)=V, o (3.1-34)

Var(e,)=V,0° (3.1-35)
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Covle,, gp)=2 (3.1-36)
where V is symmetric, positive definite and of
order ng, and V,, is symmetric, positive definite
and of order n,,. Equation 3.1--36 indicates that
sample disturbances ¢, and prior information
disturbances ¢, are not correlated with each
other. With use of equations 3.1-34 through
3.1-36, equation 3.1-24 becomes

&| [Varle) 0
ar =
& 0 Varle)

=2

IS

(54
<

= Vo? (3.1-37)
With use of equation 3.1-37, 3.1-28 becomes

S@)=eTV e

(2 ft &2

=elVle +elVsle

eTVle, (3.1-38)

where the residual vector is defined as

s
e= (3.1-39)
ép
and
Yo
Vi= y-1 (3.1-40)
2 %

The least-squares procedure may be general-
ized even further by using equation 3.1-29 in-
stead of equation 3.1-28 to define S(b). In this
case the weight matrix w is defined by

([ =)

€

w= (3.1-41)

(=]
LS

where w, is a symmetric positive definite sub-
matrix of order n, that pertains to the sample
information and w, is a symmetric positive
definite submatrix of order n, that pertains to
the prior information. Because equation 3.1-41
is of block diagonal form like equation 3.1-37,
zero correlation of sample and prior information
is again assumed. Thus, S(b) may be written in
the same form as equation 3.1-38, or as

S)=elw.e,+elw e

eppep (3.1-42)

Problem 3.1-1

You are charged with a ground-water study
in the vicinity of Lake Ohpupu (figure 1). Esti-
mates of transmissivity and recharge for the
confined aquifer surrounding the lake are neces-
sary for the completion of your report. Taking
advantage of the unusually colinear equipoten-
tial contours on the west side of the lake (con-
structed from an unbiased source, of course),
you decide that estimates based on a uniform
stream tube will suffice. Recharge to the aquifer
is largely from precipitation and is uniform over
the region. Assume that the boundary heads at
the range front and the lake are imprecisely
known; estimates of these parameters will also
be necessary. Your project has limited funds to
bore n, holes along the stream tube and obtain
measurements of head at n; locations of dis-
tance, s, from the range front.

The steady-state flow equation for a stream
tube is

4 %)+ wp=0 (1)
ds ds

where

T=transmissivity (ft2/d);
W=recharge (ft/d);
D=width of stream tube (ft);
h=hydraulic head (ft); and
s=distance along tube from the range front
(ft).

The boundary conditions are taken to be

h=h, at s=0
h=hb at §=s8

(2)
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By integrating the flow equation twice with
respect to s (assuming 7, D, and W to be con-
stant) and using the above boundary conditions,
the solution for hydraulic head & along the
stream tube is found to be:

b= 2 syslshy & +h( _s). (3)

Sy
Let
Bi=h,  Bs=WIT X2=:—b
. _ } "
b=S (sp-s)s
Bp=hy Xy=—— Xz=—
b

and write the above solution (equation 3) to the
flow equation using the definitions of 8; and X;
(i=1,2,3). Then write the system of n  linear
regression equations in the three unknown
parameters using matrix notation and indicate
the contents of each matrix. Identify dependent
variable(s), independent variable(s), sensitivi-
ties, and parameters.

Let b; be an estimate of §;, and

a. Assume that Var(e)=1 o%. Write S(b) using
the matrix form of the model equation
3.1-21 with the estimated parameters b,.
Write a few terms of S(b) using algebraic
notation.

b. Assume that a unique estimate of the
variance of the error associated with
every head observation is available
and that these errors are uncorrelated.
Indicate the contents of the resulting
weight matrix w—Vl Write S(b) using
the matrix form of the model equation
with parameters b;. Write a few terms of
S(b) using welghts w;; and algebraic
notation.

¢. Assume case a above, except that there
is a prior estimate of k2, having a stand-
ard deviation of o,. Indicate the con-
tents of the resulting weight matrix
w=V-1. Write S(b) using the matrix form
of the model equation with parameters b;.
Write a few terms of S(b) using algebralc
notation. Include the term involving the
prior information.

3.2 Regression When the
Model is Linear

3.2.1 Derivation of Solution
The linear model assumed is

where the X; are not functions of the
parameters. If n observations are used, then an
equation of the form of equation 3.2-1 is writ-
ten for each observation, so that the system can

be written in matrix form as

Y=Xp+e

To find estimates of 8 and ¢, the weighted
error sum of squares S(b),

(3.2-2)

S(b)=eTwe

=(Y-Xb)T(Y-Xb) (3.2-3)
is minimized with respect to b.

To minimize S(b) with respect to b means to
take the derivative of S(b) with respect to each
element of b, b; (j=1,2,...,p), and set the results

to zero, or

) 2

g S p=p= S (Y-XB) T Y-XD)|p=

2%, O)p=p ab[ X0)lp=¢
=0,j=1,2,...,p, (3.2-4)

where |,_j signifies that é is the set of
parameters that causes the derivatives of S(b)
to be zero. By employing the rule of differen-
tiating a product and noting that v is independ-

ent of b, it can be seen that

9 _ [(y-Xb)Tu(Y-XblI= [—— (Y-Xb)Tjo(Y-Xb)
ab; ab;

HT-XB0)Tw -2 (Y-Xb).  (3.2-5)
X0 =, (X
To evaluate 9—(Y—X 5)7, note that taking the

derivative of a vector, Y- X b, with respect to a
scalar, ly means takmg the derivative of each
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entry of the vector and, thus, yields a new
vector. Therefore, because observations Y are
independent of b,

3 s |2 Al
33;@5‘.}597‘:%‘ Y| -Xy Xogn Xl |8y

~

=-x7 (3.2-6)

where X is the jth column vector of matrix X.
Also, the first and second terms on the right
side of equation 3.2-5 are equal because the
transpose of a scalar is the scalar, and v is sym-
metric so that w=w’. Hence, transposing the
second term on the right side of equation 3.2-5
gives

@

2
Y-X0)Tw ——(Y-Xb)=[(Y-Xb)Tw— (Y-XB)|T
(Y- )eabJ -Xb)=[(Y-X) eabj(_ Xb)]

Q)

[ (Y—Xb)T]w(Y—Xb) (3.2-7)

The combination of equstions 3.2-4 through
3.2-7 yields

~2XTAY-Xb)=0 (3.2-8)

or

b=X%Y, j=12....p. (3.2-9)

__]

The system of equations implied by equation
3.2-9 can be written as

A
Xs |wXb= |X2|wY. (3.2-10)
T T
%p Xp

Each vector )_(JT in equation 3.2-10 is a row
vector, so that, by definition,

XT
XT =xT (3.2-11)
T
X,
and equation 3.2-10 becomes
X Xb-—X wY. (3.2-12)

The set of equations symbolized in matrix form
by equation 3.2-12 are called the normal equa-
tions, and parameters b are called the esti-
mates of 8. The estimates are found from
b=(xTuX) ' XTuY (3.2-13)

Students not comfortable with the preceding
development should read Draper and Smith
(1981, p. 5-17, 70~-80, 85-87). This material
covers fitting a straight line without and with
matrix nomenclature, and then extends the
results to the general linear situation. Weighted
least squares (where w#I) is covered in Draper
and Smith (1981, p. 108-116).

Elements of X are often of vastly differing
magnitudes. Thus, when working with a
calculator or computer, round-off error can
cause serious errors to develop when solving
equation 3.2-13. It is often useful to scale equa-
tion 3.2-12 with respect to a matrix C, which
is a diagonal matrix defined as follows: Let
XTwX=A. Then C=diag{1/A{},/A%,...,
1/AI{; , where A;; is a diagonal entry of A.
Thus, equation 3.2-12 can be transformed to
become

CTXTuXCCh=CTX"0Y  (3.2-14)
or
STwSa=STwY (3.2-15)
where
S=XC (3.2-16)
a=Cc1b (3.2-17)
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The effect. gf the scaling is to preserve the sym-
metry of XTwX while at the same time to pro-
duce a matrix havmg all diagonal entries equal
to unity. Thus, variability from entry to entry
of the S S matrix is usually reduced con-
51derably over that of X wX.

It is also sometimes useful to transform equa-
tion 3.2-2 and equation 3.2-12 to incremental
form. By definition

fgb=Xb .

Then, subtractin g
s in

tion 3.2-2 result

eounation 3.2-18 from emua-
equation 3.2-13 from e

Y- b)=X(8-b)+e (3.2-19)
which is an incremental linear model. To obtain
the analog to equatlon 3.2-12, premultiply equa-
tion 3.2-18 by X w and subtract the result
from equation 3.2-12 to obtain

XToX(b-b)=X"To(Y-fED) . (3.2-20)

Equation 3.2-20 can be transformed to obtain

a result analogous to equation 3.2-15:
Twsd=ST

w(Y-£%, b)) (3.2-21)

where

§=C1(6-b) . (3.2-22)

If 13 as calculated initially using equations
3.2-15 and 3.2-17 is in error because of round-
off, then b can be used to calculate fi£, b) b) which
then can be substituted into equation 3.2-21 to
calculate 4. By using equation 3.2-22, a new
1mproved estimate of b can be obtained.
Writing equation 3.2-2 in incremental form also
provides a basis for procedures, involving sta-
tistical analysis of the model, that apply for
both linear and (with restrictions) nonlinear
models. These are discussed later on.

3.2.2 Solution Algorithm

Sequential steps to follow are:
1. Form X X and X wY,
2. Transform equatmn 3.2-12 to 3.2-15.

.
Y41
3. Solve equation

Problem 3.2-1

a. By using w from case c, problem 3.1-1,
write out the normal equations used to
estimate parameters § explicitly in sum-
of-product (algebraic) form. (Use equation
3.2-12.)

b. By using either data set 1 (table 1) or 2
(table 2), generate the least squares coef-
ficient matrix (X7wX) and then compute
its inverse. Do not round off any inter-
mediate calculations or the final inverse.
To aid in the calculations, table 3 gives
the sums of products for the sample in-
formation from the two data sets. You
must add the prior information to com-
plete the sums of products.

c. Find the vector b. Do not round off the

results.
Table 1.—Data set 1
Observed head,

s; #t) X X2 Xig se;'j {tt)

50 0.95 0.05 23,750 48.33
150 .85 .15 63,750 45.76
250 .75 .25 < 93,750 42.08
350 .65 .35 113,750 38.34
450 .65 .45 123,750 35.30
550 .45 .65 123,750 31.00
650 .35 .65 113,750 256.85
750 .25 .75 93,760 21.76
850 .15 .85 63,750 16.11
950 .05 .95 23,750 12.48

Assume 02=0.25 ft, 5,=1,000 ft, and prior information
as follows: h, =11 ft and o, =1.1 ft.
b

Table 2.—Data set 2

5 X, X, X, Obse;:e((fit )haad.
100 0.9 0.1 45,000 47.13
200 .8 2 80,000 44.14
300 q 3 105,000 39.89
400 .6 4 120,000 36.36
500 .5 .5 125,000 32.48
600 4 6 120,000 29.70
700 3 7 105,000 24.33
800 2 8 80,000 19.10
200 1 9 45,000 14.96

Assume 0%=0.25 ft? s,=1,000 ft, and prior information
as follows: hb=9.5 ft and ahb=0.95 ft.
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Table 3.—Sums of products of sample information

Data Set 1 Data Set 2
XXy 3.3250 2.8500
EX;3X;s 1.6750 1.6500
XX 418,750 412,500
EX;0X 3.3250 2.8500
X4 418,750 412,500
JEX,- X3 83,340,625,000 83,325,000,000
}:leYj 192.18350 168.2030
JEXJ.ZYJ 124.82650 119.8870
IX..Y 26,879,687.5 26,583,650

3.2.3 Singularity and Conditioning

Singularity of the least-squares coefficient
matrix occurs whenever columns of the sen-
sitivity matrix, X, are linearly dependent
because this causes rows (or columns) of the
coefficient matrix X7wX to be linearly depend-
ent. Linear dependence in X may be stated as

Xc=0 (3.2-23)
where not all components of the vector ¢ of
order p are zero. By premultiplying equation
3.2-23 by X7o,

XTwXc=0 (3.2-24)
which shows that columns of XT «X (or rows
since XT wX is symmetric) are linearly depend-
ent. Note that transformation of XTwX to STwS
alters only the form of c.

Near-singularity, also referred to as ill-
conditioning, occurs whenever the columns of
X (or S) are almost linearly dependent. Often,
this condition is indicated by a high degree of
correlation among two or more parameter esti-
mates. This correlation reflects the redundancy
in the problem. As a result of ill-conditioning,
computed parameters can be affected greatly by
accumulation of round-off error generated by
solving the normal equations. Also, computed
variances of the parameters, which are propor-
tional to the diagonal elements of (X7wX)"!, will
be large.

A common form of ill-conditioning results if

a column of X approaches zero so that
¢=[0,0, ...1,0,...,0)7, where the one appears
in the row correspondmg to the zero column in
X. This condition indicates that the model is in-
sensitive to the parameter corresponding to the
zero column in X and that the parameter should
be eliminated from the model. The problem is
readily detected by examining the X matrix.
Another readily detected form of 111-cond1t10nmg
results if two columns of X are nearly propor-
tional, or

(3.2-25)

so that ¢=[0,0, .. .,2,0, .. .,-1,0, .. .,0]7, where
« appears in row i and -1 appears in row j of
c. In this case

T ~ T
ol o7
= %X
so that
XToX,
STwS;= - —=
J()_(g _w)_{,-)(gj _Oﬁj)
= +] . {3.2-26)

Thus, to detect this problem, one need only ex-
amine the STwS matrix for an off-diagonal
entry nearly equal to 1. This type of linear
dependence indicates that parameters b;, and
b; should be combined because the model can
be written as

+Xpb,

Y=X1b1+
2X b+

=X,b,+

CHXpt X
.. +Xi(bl+abj)+ v +Xpbp

CHXE X 6, (8:2-27)
where b, replaces b;+ab;, and all subsequent
variables are shifted by one so that the last
variable number is p-1.

An excellent way to detect general ill-
conditioned (or completely linearly dependent)
problems is to orthogonalize the columns of the
scaled sensitivity matrix, S (Draper and Smith,
1981, p. 275-278). If the columns are all linear-
ly independent, then they can all be transformed
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so as to be orthogonal to one another; that is,
such that

QTQ=D (3.2-28)
where @ is the nonzero transformation of S, and
D is a fullrank diagonal matrix. If linear
dependence exists in S, then equation 3.2-28 is
replaced by a similar diagonal form except that
one or more diagonal entries will be zero. The
technique is to successively transform columns
such that each new column is orthogonal to all
of the previously transformed columns. If
column dependence exists, then eventually a
column will be calculated that exists entirely of
very small numbers (theoretically all zeros for
a linearly dependent problem). This column,
then, is almost (or completely) linearly depend-
ent on one or more of the previous columns.

The transformation procedure is called Gram-
Schmidt orthogonalization and takes the follow-
ing form:

=5,
j-1 {3.2-29)
Q=5 iEI €;jQiJ=2,3,...p

where

Q;=the transformed vector orthogonal to
vectors already in @,

S;=the next column vector of S to be
transformed.

3.3 Regression When the
Model is Nonlinear

3.3.1 Modified Gauss-Newton
Method

If the model is nonlinear in the parameters
but is linear in the dependent variable, then the
model may be written in the standard form for
nonlinear regression:

Y=f(£1, E21 .. vsk; Bl1 621 ..

Because of the nonlinearity, f cannot be writ-
ten in the form f=X131+X262+ oo +Xpo.
The case more complicated than equation 3.3-1,
where the model is nonlinear in both the param-
eters and the dependent variable, is treated in
gection 6.1. When there are n observations,
equation 3.3-1 may be written in matrix form as

Y=£(§,8)+¢

Bp)te . (3.3-1)

(3.3-2)

or, in terms of general estimate b of 8 and esti-
mate e of ¢,
Y=f(,b)te . (3.3-3)

As for the linear case, the regression solution

.of equation 3.3-3 is obtained by minimizing the

weighted error sum of squares:
S(b)=¢"we

=(Y-fig,NT(Y-f£D) . (3.3-4)
However, because equation 3.3-3 is nonlinear,
solution of the problem is not as direct as it was
for the linear case.

A convenient and robust solution method is
obtained by linearizing equation 3.3-3 around
an initial estimate of parameters, then pro-
ceeding as if the problem were linear. This yields
a new set of parameters that minimizes equa-
tion 3.3-4 where f is replaced by the linear ap-
proximation. The new parameters are then
substituted for the initial set, and the process
is repeated to yield a better set of parameters.
The iterative process stops whenever the
change in calculated parameters from one itera-
tion to the next is small. At that point the
minimum of equation 3.3-4 has been found.

To derive the method, first f(£,b) is expanded
about the initial set of parameters b, by using
a truncated Taylor series to obtain a linear ap-
proximation for f(£,b):

[(&:) =f(£,b0)+X(b-by) (3.3-5)

where

af;

={X0)={20 (3.3-6)
U
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and f; is f calculated at the ith observation
point. The components of X, are recognized as
sensitivity coefficients, or simply sensitivities.
By using equation 3.3-5, equation 3.3~3 may
be written as
Y-flgby = Xolb-bgh+e  (3.3-7)
which is of the form of the incremental linear
model of section 3.2. Note that if the model is
linear so that f(£,b)=X(£)b, then the truncated
Taylor series and hence equation 3.3-7 are
exact. In this case expansion in a Taylor series
is another way of deriving the incremental linear
model. If the model is nonlinear, equation 3.3-7
is the approximate (linearized) model for param-
eters in the vicinity of b, as illustrated by a
simple one-parameter example in figure 3.3-1.
An approximate best estimate of 8 (which is
exact for a linear model) can be obtained by
minimizing S(b)=eTweX(Y~f(§ bo)-Xo(b-bNT
*(Y-f(£ bo)-X,(b- bo)) with respect to b. This
process is carried out exactly like it was for the
linear model and yields the set of normal
equations

=XJulY-figbe)  (3.3-8)

7
XowXods

where subscript 1 indicates the first approx-
imate solution and
dy=b-by . (3.3-9)

To reduce round-off error in nonlinear regres-
sion, it is generally useful to scale equation

f{E by

|
|
l f(&,b9+X3(br-b)
|
|

b3 b1

Figure 3.3-1

3.3-8 in the same manner as for linear regres-
sion (equations 3.2-14 through 3.2-17),
although another type of scaling that is useful
for some types of problems is introduced in
problem 3.3-1. Scaling equation 3.3-8 produces

SPwSed;=SFe(Y-fi§ by) (3.3-10)
where
Sp=XoCo (8.3-11)
8 =C;ld; (3.3-12)
Cy=diag{(4%;)%,(4%,)*....(49,)"}(3.3-13)
Ay=X{uX, (3.3-14)

and A0 is a diagonal component of A,-

Because equation 3.3-8 is not exact, equation
3.3-4 is not truly minimized, and b, is not ac-
tually the optimal set. Hence, b, is substituted
for b, and the entire process is repeated to
yield another, hopefully improved, estimate. As
a general iteration equation, 3.3-10 may be writ-
ten in the form

STwS,5,41=STeY-f(Eb,)  (3.3-15)

where -
S,=X.C; (3.3-16)
8 41=C by 1-0)=C"d, 4y (3.3-17)

C,=diag{(A],) " (A50) ",....(A} )} (3.3-18)

and AJ; is defined analogously to AY;. As the
process converges, 8,410 and equation 3 3-7
becomes Y—f(§ =e. At the same point,
imizes S(b) m equation 3.3-4, or S(é) (Y—[
(£, 50T Y~f(£,b)), which is a minimum for the
nonlinear equation. This process for finding the
minimum of S(b) is known as the Gauss-Newton
method.

A sketch of progression of the iterations to the
minimum for a hypothetical two-parameter
problem is given in figure 3.3-2. As diagrammed



REGRESSION MODELING OF GROUND-WATER FLOW 63

Figure 3.3-2

in figure 3.3-2, the solution often does not
progress directly toward the minimum.

Modifications to the Basic Procedure. 1t is
well known that the Gauss-Newton method as
defined by equation 3.3-15, does not always
converge. To help induce convergence, a damp-
ing parameter, p, is introduced by modifying
equation 3.3-17 to give

(3.3-19)

where d,. . =C,8,, ;. If 0<p<1, the changes in
computed parameters are less than would result
for p=1; thus the method is an interpolation
method. Similarly, if p>1, the method is an ex-
trapolation method.

Inspection of equation 3.3-19 reveals that p
changes the magnitude of the displacement
from b, to b,,;. However, because all com-
ponents of the displacement vector d,,, are
scaled by the same multiplier p, the direction of
the displacement vector is not altered. If the dis-
placement vector d, , ; is oriented in a direction
nearly parallel to a contour in the sum of
squares surface (S(b)), then little, if any, im-
provement (in terms of reducing S(b)) can result
from solution of equation 3.3-15. In this case
it would be desirable to alter the direction of
d,+1 to point closer to a down-gradient direc-
tion. For example, in figure 3.3-3 vector d,.;

yields no improvement in estimates b,, but vec-
tor d',, yields a significant improvement in
the estimates.

A modification that accomplishes the desired
alteration of direction of d,, ;, and reduces its
magnitude as well, consists of adding a positive
parameter u, known as the Marquardt param-
eter (Marquardt, 1963), to the main diagonal of
the coefficient matrix §,T wS, of equation 3.3-15.
Scaling is needed so that u can have the same
effect on each entry of the main diagonal of the
coefficient matrix. The scaling accomplishes
this effect because each entry of the main
diagonal of the scaled matrix §f wS, is unity.
Mathematically, the Marquardt modification
can be stated as follows.

(STwS, +ul)3, 1 =STu(Y-f(5b,) . (3.3-20)

Solution Algorithm. The sequential steps
implementing the modified Gauss-Newton pro-
cedure are:

1. Calculate f(£b,) and S, using initial
parameters b, and the combination of
equation 3.3-6 (with index r replacing 0)
and equation 3.3-16.

Solve equation 3.3-20 for 6., ;.
Solve equation 3.3-17 for d ;.
Solve equation 3.3-19 for b, ;.
Test to determine if |7 /c|>e, where € is

vk N
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Contour of
constant S (b)

by

Figure 3.3-3

a small number such as 0.01, ¢=b} for
b} #0, and c=1 for b]=0.

6. If |dEt1/e|>e, increment by one and
return to 1. If not, then the process has
converged.

Problem 3.3-1

The Theis equation for flow to a well in a con-
fined, nonleaky aquifer is

4=T r2S/4Tt z

where t=time (d);
s=drawdown (ft);
ro=radial distance to observation well
(ft);
Q=discharge (ft3/s);
T=transmissivity (ft%/s); and
S=storage coefficient.
The integral can be evaluated by summing the
infinite series

® -2
| £~ dz=-0.577216-Inu+u
i 4

u2 .yl ut

- - +... (2
2-2! 3-3! 4-4

where n!=n-(n-1)-(n-2)...3-2-1.

The Theis equation is nonlinear in the param-
eters T and S. Using the information in section
3.3.1, develop an algorithm for solving this
equation for T and S, given time and drawdown
data.

a. Let

M = _g_
flt, ro; T, S) T Wiu) 3)

where u=r(2,S/4Tt and W (u) is the integral
in equation 2, Find the sensitivities for T
and S. (See equation 3.3-6. Hint:

o Tf(x)dx o) ZEA d““"’ )

b. Assume that initial estimates of trans-
missivity and storage coefficient, T,
and S, exist. In equation 3.3-6 let j=T
indicate the sensitivity for 7, and j=S
indicate the sensitivity for S. Then
note that X9 can be scaled to become
ZzT—XzTTO’ and Xls can be scaled to
become Z) ; SSO Modify the func-
tions for X or and X9 computed in step
a to become the scaled functions Z
andZ . Do you see any resulting 31m-
phflcatlons in arithmetic? Do you thjnk
that the scaled sensitivities Z and Z
might be more nearly umform in value
for any fixed i than X5 and X?S‘r What
do you think this umformlty in value
accomplishes?

c. Construct, for n time observations at a
single spatial location, the incremental
linear model (equation 3.3-7). Then trans-
form this model so that scaled sensitiv-
ities Z; and Z;g are used instead of X,
and X;c. How does the parameter dis-
placement vector d transform? How can
you recover d from the transformed
displacement vector? (Hint: equations
3.3-10 through 3.3-14 are analogous to
the present scaling problem.)

Figure 1 is a flow diagram for programming
the steps indicated in section 3.3.1. Obtain a
coding sheet and proceed to write code accord-
ing to this flow diagram. Helpful hints,
numbered on the flow diagram, follow:



) (2)

REGRESSION MODELING OF GROUND-WATER FLOW

(3)

FLOW CHART
Calculate
(AT, T,.AS_./S,)
(6) and
o Readn ar,T, d, Fmax (ATM AS,,1/S,)
Sp P& T LS H
l y
CalculateT
Let dmx= €+1 ,‘_1—T(1+P—Tl*-1)
andr=1 {7) y
¢ S,.1=S, (1+p )
v
§,=5,
r / Write r, T, -and$s_,
Compute (8)
firy, £7.S,) [€———r€—r+] No
Y
Compute scaled sensitivities
Yes
=T
o
Writ
Is dmx< €? Yes Z _far:ldiz

(4)

Form 2’z
and Z](s-f(r,, t tT S, )

(5)

l

r
Invert =Z,.=Z,

;

Figure 1
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n=number of observations;
ro,=radial distance to observation well;
t;=time of each observation;
s;=observed drawdown for each time z;;
Ty=initial guess, transmissivity;
Sy=initial guess, storage coefficient;
Q=discharge;
p=damping parameter;
e=convergence criterion;

x=maximum number of iterations.

fl( o’ l’ ’Sr)=

Q
T Wir,,t;;T,,S,) .

Ty

You will have to program a finite number
of terms of the infinite series to evaluate
Wirot;;T,,S,). Note that one computation
of f will occur for every time observation
¢;. These computations form the column
vector f.

The sensitivities will form an nX2 array
(one sensitivity for each parameter 7'and S;
sensitivities are evaluated for each observa-
tion). Use the information in parts a and b
above.

Matrix multiplication is done with the basic
algorithm

n
C: = E a:1.by;
ij h=1 ikYkj
where a;;, b,;, and c;; are elements of
matrices A, é and C respectlvely, and

=AB. IfA—BT then

n
¢;;= L byby;
ij k=1kzk]

because b£=bki. Similarly, if é =Q_T, then
C=AB becomes

n
c;;= L dyby;.
ij k___lk;k_]

Note that the model error variance Varf(e) is
assumed to be £az.
Use the definition of the inverse to con-
struct the inverse.

6. See part c¢ above. Also, note that d,.;
=[AT, +1,AS; 44}

7. Include the damping parameter p in your

calculation of the new regression param-

eters. If convergence does not occur, then

you may be best advised to set p to a value

less than one.

This is the end of the iteration loop.

You may wish to compute the final estimate

of residuals e=f-s, then print them also.

© ®

Because convergence problems may arise, limit
the number of passes that can be made through
the algorithm. Test your code using the follow-
ing data.

36-Hour Pumping Test

Test starts: 12 February 1976, 0805 h.

Test ends: 13 February 1976, 2005 h.
Production well was pumped varying between
517 gal/min and 530 gal/min. Time and draw-
down data at observation well 175 ft from pro-
duction well appear in table 1.

Table 1
[Data from S.P. Larson, presently of S.S. Papadopulos and
Associates (formerly U.S. Geological Survey), 1978]

Time (s} Drawdown (ft)
480 1.71
1,020 2.23
1,500 2.54
2,040 2.77
2,700 3.04
3,720 3.25
4,920 3.66

To aid in debugging your computer program,
some example calculations follow. Assume that
Ty=0.1 ft2/s, S;=0.0005, @=1.16 ft3/s, and
r,=175 ft. Then

r2s (175)%(0.0005)

wl= 20 = =38.28125/t,
4T,t; 4(0.1)¢
Q Oy 1.16 16

== = W) =0.923099 W/

= gar, = 2m0.0) )= ()

Use of these values for u? and f allows for
calculacion of the following data.
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X ?
480 0.0797526 2.02980 1.87371
1,020 .0375306 2.74256 2.53165
1,500 10255208 3.11640 2.87675
2,040 .0187653 3.41721 3.15442
2,700 0141782 3.69296 3.40897
3,720 .0102907 4.00957 3.70123
4,920 00778074 4.28665 3.95700

Data for u? and f? are used to compute ZJ and
S

_ Q .0 2
Zh=-f+ Ty vi=-f2+0.923099 e
0= 9 -ui=_0.923099¢
is 41I'T0

Note that Z=X%T, and Z%=X%S, are calcu-
lated directly, without first calculating sen-
sitivities XJ and X%, then formally making the
multiplication. These scaled sensitivities result
from the following scaled linearized model.

=1 +X0raT) +X%AS,

=f; +X?TT0(70—’+X?SSO ‘S_o,

AT, AS,
=f; +Z?T_TTO_ +Z Sy

The computed values for Z% and ZY are:

Zr Zs
-1.02137 -0.852339
-1.64255 -.889097
-1.97691 ~-.899839
-2.24848 -.905938
-2.49887 -.910103
-2.78758 ~.913648
-3.04106 -.915944

Use of the computed values for ZJ and ZX
yields the entries in the ng matrix:

L(2%) =35.96800209 L(z%)’=5.649402682
13 H

Lz02%=13.75336059
)

Elements of the gT(_s_—[o) vector are computed
in the following manner.

Z:')T 5 fio Z?T‘si-fio)
-1.02137 1.71 1.87371 0.1672084827
-1.64255 2.23 2.53165 4954752075
-1.97691 2.54 2.87675 6657244425
-2.24848 2.77 3.15442 8643606816
-2.49887 3.04 3.40897 9220080639
-2.78758 3.25 3.70123 1.257839723
-3.04106 3.56 3.95700 1.20730082
?Z?Asi-f?)= 5579917421

Zi A Zie )
-0.852339 1.71 1.87371 0.1395364177

-.889097 2.23 2.53165 2681961101
-.899839 2.54 2.87675 .3030207833
-.905938 2.77 3.15442 3462606860
-.910103 3.04 3.40897 .3358007039
-.913648 3.25 3.70123 4122653870
-.915944 3.56 3.95700 3636297680

2% fs~f)=2.170709856
13

Finally, the two elements of the scaled displace-
ment vector (AT,/T, AS,/S,) are computed and
used to compute T'; and S;, the new estimates
for T and S.

AS—I = (2.170709856-(13.75336059)

So - (5.579917421)/35.96800209)
/(5.649402682~(13.75336059)?
135.96800209)

_0.03707407158

= =0.09495829097
0.3904247981

AT,
—— = (5.579917421
Ty

— (0.09495829097)(13.75336059))
135.96800209

= 0.1188256660
S; = (1+0.0949583)(0.0005)=0.000547479

T; = (1+0.118826)0.1)=0.111883



68 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Some similar calculations for the second iter-
ation are:

1= (175)%(0.000547479)
' 4(0.111883)¢,

1 1.16

=37.4645/t;

1= 220 W(u})=0.825057TW(u})
= 4m0.111883) g
t u W) A
480 0.0780510 2.04973 1.69114
1020 0367299 2.76334 2.27991
1500 0249763 3.13743 2.58856
2040 .0183650 3.43838 2.83686
2700 .0138757 3.71423 3.06445
3720 .0100711 4.03091 3.32573
4920 00761474 4.30805 3.55439

Z=-f'+0.825057¢ s
Z}g=-0.82505T¢ "

1 1
iT Z

Z iS

-0.928031 -0.763109
-1.48461 -.795303
-1.78385 -.804705
-2.02682 -.810043
-2.25076 -.813688
-2.50894 -.816789
-2.73559 -.818798

3.3.2 Nonlinear Regression When
the Model Is Numerical

The basic model equations assumed in all
previous developments have been of the closed
form or analytical type where the dependent
variable f is a known function of £ and 8. In
many cases such models may either not exist
or be too complicated for practical use. In these
cases the basic equation relating the dependent
variable to the independent variables and
parameters may be a numerical solution that
can be stated in the general form

Dt Oh=q(h.Ef) - (3.3-21)
Equation 3.3-21 is a nonlinear matrix equation
in which A is the solution (dependent variable)
vector of order m; D is a nonsingular coefficient
matrix of order m that is a function of &, & and
B; and ¢ is a vector of order m that is a function

of h, £, and g. Order m is not related to the
number of observations n, but instead is sim-
ply the order required to give a good numerical
approximation to the solution of the problem.

If equation 3.3-21 is linear in & so that D and
q are not functions of &, then equation 3.3-21
may be solved directly for A. In this case the
Gauss-Newton method may be used to obtain
the regression solution. (The nonlinear case is
considered in section 6.1.2.) The procedure is as
follows. First write equation 3.3-21 in the form

h=D"lg (3.3-22)
which is explicit in the dependent variable A.
Next, note that & in equation 3.3-22 and f in
equation 3.3-2 (or, as an estimate, equation
3.3-3) are expressions of the same quantity, the
only difference between them being that
elements of 2 are values of the dependent
variable computed at points defined by the
numerical solution, and elements of f are values
of the dependent variable computed at obser-
vation points. If all n_ observation points are
contained in the set of points required for the
numerical solution, which implies that m>n,,
then fis obtained from % simply by eliminating
those entries in & not corresponding to obser-
vation points. In other instances the points in
m may not correspond to those in n.. For these
instances an interpolation scheme would be
used to obtain f from h. In either case, the
vector f(£, b,) is obtained by using & computed
from equation 3.3-22 in which b, was used to
evaluate D and g.

The final step in forming the Gauss-Newton
solution is to derive the sensitivity matrix X,
To accomplish this step, write equation 3.3-21
in terms of a general parameter set b, then dif-
ferentiate it with respect to b to yield

3h aD aq
D— + —=h= —,j=12,...p (3.3-23)

or

2
I —=_),j=1,2,. . .p.(3.3-24)

The quantity 34/3b; forms a column of the sen-
sitivity matrix for points in m. Sensitivity
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matrix X, would be found by first computing
dh/9b; using equation 3.3-24 written in terms
of h_and b,, then following one of the two pro-
cedures described above for obtaining f from A.
By incorporating the procedures to compute
numerical estimates of f({,b) and X, the
algorithm given for the Gauss-Newton method
may be followed exactly to find the regression
solution of equation 3.3-22.

By studying the sequence of calculations in
the solution algorithm carefully, it will be noted
that to calculate 4, and X,, D, (D computed
using b,) must already have been computed.
This requires one of two possible calculation
schemes. Either D, and p matrices of the form
(8D/8b;), must be formed at the same time and
stored {aefore h, and X, are calculated, or D,
must be formed before h, is calculated and then
each matrix (3D/3b;), formed as needed to
calculate each column (that is, X’ ) of X,. The
first alternative could require a consuderable
amount of computer memory or the use of
scratch files, whereas the second alternative
could require repetitive calculation because
many arithmetic operations could be the same
for forming both D, and (aD/ab;),. Often,
however, matrices (aD/ 2 b ), can be written in
a condensed or decomposed form to conserve
computer memory. In this way D, and the
decomposed form of (3D/3b;), can be computed
together without using a SIgmflcant amount of
extra memory. Then each matrix (3D/ab ),
may be assembled as needed without perform-
ing numerous repetitive calculations.

A significant amount of computer memory
can also be wasted unless care is taken when
forming X,. The general procedure is to form
the column vector (3g/3b;),-(D/3b;),k,, then
use equation 3.3-24 to form the vector
(2h/2b;),, which replaces the first vector in cen-
tral computer memory. From this, vector X]' is
immediately formed and stored. The matrix
composed of vectors (9h/3b;), should not be
stored in central computer memory because it
is often large. If desired, it may be stored col-
umn by column on a scratch file for later
retrieval and printing.

Problem 3.3-2

Assume the finite difference representation of

' a flow problem shown in figure 1.
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q5=0 8 gg=0 9
7
hy=hg
qg=0 n.W n.W, Q=g
4 5 6 Ax=Ay=a
Gg=0 h.wWy W, qs=0
1 2 3
qp=0 qg=0
Figure 1

Finite difference equations for this problem can
be written as follows.

1. ‘/szTl(hz—hl)/Ax + l/zAle(h4—h1)/Ay
=-12AxV2AyW).

2. Y2AyTolhg-ho)Ax—Y2AyTi(ho-h1)/ Ax
+Y%2AxT(hs-ho) Ay +YaAxTo(hs-ho)/ Ay
=-YAxVe AyW1-Y2Ax Ve Ay Wo.

3. -Y2AyTolhg-ho)Ax+V2AxTolhe-h3) Ay
=-YVoAxV2AyWo.

4. AyTl(h5—h4)/Ax + 1/2AxT1(h31—h4)/Ay
—1/zAxT1(h4-—h1)/Ay=-‘/z»AxAy Wl.

5. AyTolhg-hs) Ax-AyTiths-h4)/Ax
+ 1/2AxT1(h8—h5)/Ay + 1/2AxT2(h3—h5)/Ay
-V AxTy(hs-ho)Ay-YaAxTolhs-ha)l Ay
=-LAxAyW,-Y2AxAy W,

6. —AyTz(hG—h5)/ Ax+ VzAxTz(hg—hs)/ Ay

-Y2AxT 2(h6—h3)/Ay =-YaAxAyWo-Y2Ayqp).
h7=hp

VszTg(hg-hg)/Ax VeAyTy(hg-hpg1)Ax

-V AxT(hg-hs) Ay-YaAxTolhg-hs)/ Ay
=-VAxV2AyW1-VeAxVeAy Wy

9. -YaAyTolhg-hg)/Ax-YaAxTolho-he) Ay
=-LLAxV2AyWy-Y2Ayqp;.

Or, by assuming that Ax=Ay=a,

1. Tilhg-h1)+T1(hg-h1)=-Y2a2W;.
. Talhg—hg)-Ty(ho-hy)+(Ty+To)h5-ho)

w3

2
=-Yea2(W1+ Wy).

3. -Tolhs-ho)+Tolhg-hg)=-Y2a2W,.

4. 2T)(h5-hg)+T1(hp1-hg)-T1(h4-h))

=-q2 Wl.

2To(he~hs)-2T1(hs~hg)+(T1+ Tl hg-hs)

=(Ty+ To)h5~-hg)=~-a2(W1+Wp).

6. -2T(hg-hs)+Tolhg-he)-Tolhe~h3)
=-a2W3-aqp.

7. hq=hp;.

8. Tylhg-hg)-T(hg-hp1)~(T1+Tolhg-hs)
=-Ysa2(W1+Ws).

9. -Talhg-hg)-Tolhg~he)=-Y2a2W2-aqp;.

o,
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a. Verify the finite difference equations so that
you understand their physical basis. (Hint:
read appendix, section 4.3.1.)

b. Write the equations in matrix form:

Dh=q

by explicitly writing out D, h, and gq.

c. Let vectors (9g/0b;),- (0D/3b;),h,=J}, and
develop .Z;(i=1,2,3,4) for the parameters
B1=Ty, By= Ty, B3=W), and B,=gp,.

d. Using the modified Gauss-Newton method,
develop the algorithm (not computer pro-
gram) to solve for the parameters. Assume
that all nodes except number 7 are obser-
vation points.

3.3.3 Convergence and Conditioning

A value of p, 0<p<1, can be shown to exist for
which the Gauss-Newton procedure, as modified
using equation 3.3-19, will converge to the
global minimum value of S(b) provided that:

1. Aninitial estimate of the parameters can

be found such that they lie within a
parameter region R bounded by sets of
parameters b* defined by

S(bo)<minS(b*)
b*

(3.3-25)

and the global minimum point lies within
this region.
2. For all b belonging to R, X is a continuous
and unique matrix function.
3. The matrix S7wS is nonsingular and is a
continuous function of b.
Condition 2 is almost always met. Condition
1 requires that the system be well enough
understood that intelligent initial estimates of
parameters can be made. Difficulties frequent-
ly arise in connection with condition 3. Unless
the problem is correctly specified, the least
squares coefficient matrix (for example, §T_c=o_§)
can be singular. Moreover, problems often arise
because of ill-conditioning (that is, near-
singularity) of the matrix. Although the addi-
tion of the Marquardt parameter, u, is intended
to help these cases, convergence can be difficult
to obtain. In the following paragraphs, the
general question of convergence is considered
first. This is followed by discussions of singu-
larity and ill-conditioning.

In general, the rate of convergence has been
found to be related to the number of parameters
being estimated, as predicted by theory. That
is, the greater the number of parameters, the
slower the rate, all other things being equal. It
is also related to the conditioning of the problem
and to the nearness of the initial set of param-
eters to the optimum set, in that the rate of con-
vergence is usually much faster near a minimum
of S(b). As a rule of thumb, one may often ex-
pect convergence within a number of iterations
equal to either 5 or twice the number of param-
eters, whichever is greater. Fewer iterations are
required for well-conditioned problems.

A problem that frequently retards the con-
vergence rate, or even causes divergence, is
overshoot. This happens when the parameter
correction vector pd,, ; has a favorable orienta-
tion but is much longer than an ideal value. The
result is that the new set of parameters b, is
almost as far as (or even further than) the old
set b, from the optimum value. A two-
parameter example is illustrated in figure 3.3-4.

Overshoot is detected as large oscillations
with accompanying changes in sign of com-
ponents of pd_, ; from one iteration to the next.
The remedy is to decrease the value of p such
that 0<p<1. In figure 3.3-4, a good value would
be p=0.5, which would give b,,; at point 1.

Care must be taken not to make p too small
so that undershoot becomes a problem. Under-
shoot occurs when p§,,; is too small, and it
manifests itself as small steps o8, ,, the com-
ponents of which usually do not change sign.
The remedy is to increase the value of p, in rare
occasions such that p>1. As a practical guide,
the best value of p is one that causes some

Contour of
constant S{b)

b,

Figure 3.3-4

|
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oscillations in sign of a few components of p3,. ;
from one iteration to the next.

Sometimes the solution may converge to a
local minimum instead of the global minimum.
Most commonly this can occur (1) if p is too
large and the overshoot causes the search
vector pd, ; to escape from the region defined
by equation 3.3-25, or (2) if the initial estimate
b, is not in the region defined by equation
3.3-25. Detection of this problem is accom-
plished through adequate knowledge of the
system so that the wrong solution can be recog-
nized. If the computed parameter vector b is
physically illogical or the model analyms
discussed in section 5 suggests that the model
is not correct, then one might suspect that a
local minimum has been reached. The remedy
to the problem is to decrease p and (or) choose
another initial estimate b,. If b, is changed,
ysually the distance between by and the vector
b computed for the local minimum should be
increased. Thus, if some components of b are
far too large to be realistic, then the same com-
ponents of b, should be reduced in value. If
several attempts at changing p and (or) b, do
not produce a change in b, then the cause of
the poor results is probably not a local
minimum.

As for the linear case, singularity of the least-
squares coefficient matrix occurs whenever col-
umns of the sensitivity matrix are linearly
dependent. Near-singularity, caused by near-
linear dependence, is a more frequent occurrence.
As a result of ill-conditioning, step sizes §,,,
can be highly erratic, appearing to head toward
no well-defined point and can be dominated by
overshoot. In addition, some problems may start
fairly well conditioned for the initial parameters
but may become progressively more poorly con-
ditioned during the iterative solution process.

The same techniques for analysis of poorly
conditioned problems as are used for linear
problems may be used for nonlinear problems
as well. Whenever a problem is poorly condi-
tioned, the sensitivity matrix X may be exam-
ined for a near-zero column, and S «S may be
examined for off-diagonal components near
unity. Also, the orthogonal transformation may
be used to indicate that ill-conditioning exists
and to point out possible columns where linear
dependency occurs.

Use of the Marquardt parameter, u, is in-
tended to improve conditioning by adding a
small quantity to the main diagonal of the least-
squares coefficient matrix. Although condition-
ing is always artificially improved by employ-
ing u, the parameters resulting from applying
the least squares process to a very poorly con-
ditioned problem may be considerably in error
unless the actual causes of the poor condition-
ing are discovered and the conditioning im-
proved without using ..

3.3.4 Computation of x and p

For best efficiency, both u and p should be
recomputed at each iteration, ». A number of
schemes exist in the literature for making these
computations, but virtually all schemes involve
assuming several trial values of 4 and p, then
performing all of the calculations for iteration
r for each of the trial values. The best values
to use are then computed so as to minimize or
substantially decrease S(b). The problem with
these schemes is that they require so much time
that one is often much better off settling for ap-
proximate values of y and p computed by using
a much simpler scheme.

The scheme adopted here is derived from the
considerations discussed in section 3.3.3.
Parameter p is used only when the problem is
so poorly conditioned that the search direction
6 must be altered. Overshoot and undershoot
are controlled primarily through use of p.

Because the Marquardt parameter is used
with a scaled problem formulation, computa-
tions must be made using scaled quantities (see
equation 3.3-16). By direct computation, it can
be verified that the scaled gradient (3 S(b)/d bj)

C;; (=1,2,...,p) of the sum of squares S(p) is
given by

aS(b
:.C.‘T—(I;l =-g=-ST(Y-£(£.)) .

(3.3-26)

Thus, by definition (Spiegel, 1959, p. 16), the
angle between g, which points directly down the
sum of squares surface, and displacement
vector & is given for the rth iteration by

(3.3-27)
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For two parameters, b; and b,, the relation-
ships given by equation 3.3-27 are illustrated
in figure 8.3-5, (Note the use of scaled param-
eters; see equation 3.3-17.)

If ©=90°, then, as discussed in section 3.3.1,
no improvement in parameters is likely to result
from application of the Gauss-Newton pro-
cedure. However, application of the Marquardt
parameter, p>0, will result in 6<90° (Mar-
quardt, 1963) because vector § is shifted pro-
gressively toward g as p increases. Thus, a
viable scheme for choosing u is to define a max-
imum value of 6, ©,,,<90°, and compute p so
that © never exceeds ©,,,. This can be ac-
complished rather simply. At the beginning of
the regression set ;=0. Then at each iteration
r, check and recompute p as necessary:

Br=Hy
if 87, 1£,>¢080,,,\(6% 15,4+ 1)lg'g,) or

3 (3.3-28)
Pog1 =§'M£+0.001

: YA IRYPY Y
if 87, 1£,<€080,,, 1671 15, 1)eT2,)

At the beginning of iteration r, f=1 and
p~#,_1- Then equation 3.3-20 is solved and
equation 3.3-28 is applied. If the second part
of equation 3.3-28 is employed, equation 3.3-20
is resolved using p,., 1, £is incremented by one,
and equation 3.3-28 is used again. This process
is continued until the first part of equation
3.3-28 is used, at which point the appropriate
value of p for iteration r has been found. The
formula for computing u,, ; from 4, is empirical
but gives what experience has shown to be a
good range in values of u. For each resclution
of equation 3.3-20, S% S, and g, are not recom-
puted. Thus, the calculations are not extensive.

Computation of p is designed to prevent
disastrous overshoot and to keep pé within the
region R defined by equation 3.3-25. A simple
but usually effective scheme is to estimate the
maximum fraction that any of the parameters
could change and still remain within R and then
to prevent any parameter from changing any
more than this amount over any iteration. Let
i, be this maximum fractional change. Then
at iteration r, p is calculated as follows:

(3.3-29)

t=max|d]*/c|
2

byCy

b‘l/cﬂ
Figure 3.3-5
p=1if t<t,, . or

(3.3-30)
p=t, It if t>t,,

where c=b] if b]# 0 and c=1 if b]=0.

3.4 Regression Including Prior
information

3.4.1 Model Structure

Recall that the standard nonlinear regression
model including prior information on the param-
eters may be written in the form (equation
3.1-32)

Y=f(¢.B8)+¢ (3.4-1)
where
Y,
Y= (3.4-2)
Y,
1.8
f£.8)= (3.4-3)
p(6:8)
&
€= (3.4-4)
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