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5 Elementary Analysis 
and Use of the 

Regression Model 

5.1 Assumed Forms of Model 
Equations 

As a purely algebraic process, regression con- 
tains no assumptions other than those already 
mentioned. However, to statistically analyze 
results of, and predictions to be made by, the 
method, additional assumptions must be made. 
Based on these assumptions, an effective meth- 
odology has been developed (see, for example, 
Draper and Smith, 1981) to analyze and use a 
linear regression model. 

The statistical methods also may be applied 
to a nonlinear model, provided the model is close 
enough to being linear. Fortunately, whether or 
not the model is close enough can usually be 
determined. All statistics and procedures are, 
accordingly, derived for a linear, or effectively 
linear, model. To make the equations applicable 
for both a linear and nonlinear model, the basic 
types of models assumed are the incremental 
linear model and the nonlinear model as linear- 
ized using the Taylor series expansion. 

The model assumed, then, is of the form 

r~-foqe-~oo, (5.1-1) 

where strict equality applies for a linear model 
and, for a nonlinear model, X is assumed to be 
evaluated at kP Also, for simpplicity of notation, 
define 

fs=r(ia) (5.1-2) 

Based on equation 5.1-1, the true regression 
model is 

~-)px(~-bo)+~ (5.1-4) --- 

where strict equality only holds for a linear 
model because g is the true vector of disturb- 
ances. The estimated regression model derived 
from equation 5.1-4 is 

I-@gb-bo) +e (5.1-5) 

where, as for equation 5.1-4, strict equality only 
holds for a linear model because e is assumed 
to be the true vector of residuals defined by 
g=‘-fQ9 b). 

By mi&nizing S(b)=eToe with respect to & -- 
using the @ndardprocedure, Aexact best-fit 
estimates b of @ and $=Y-fl&&) of 5 are ob- 
tained. For a linear model2 is obtained exact- 
ly by using equation 5.1-i as the estimated 
regression model. For a nonlinear model, use of 
the linearized model Ifads to an approximate 
relationship to find b. Thus, by minimizing 
S(b) using equation 5.1-5 as the estimated 
regression model, normal equations 

xTux(k-~o)~xTo(Y-fo) (5.1-6) --- - -- 

that are approximate for a nonlinear model are 
derived. The regression model obtained by 
replacing general estimates b yd e in equation 
5.1-5 with best-fit estimates b and $ is 

y-fo~x(S-bJ-J+~ . (5.1-7) -- 

yy utiJizing the definition of e^ (&Y-f, where -- 
f=&@), in equation 5.1-7, a predictive model 

is obtained. 
A final point is the establishment of the gen- 

eral condition for a minimum in S(b). If b is set 
equal to $ in equation 5.1-6, then to=1 and 

XQ Y-f)=2 . (5.1-9) - -- 

Because any approximation Qrherent in equa- 
tion 5.1-6 is removed as bo+&, equation 5.1-9 
is exact for both linear and nonlinear models. 
The left side of equation 5.1-9 is the negative 
of the gradient of S(&. Thus, equation 5.1-9 
states that the gradient of S(b) is zero at a min- 
imum point of S(b). 

From here on, for simplicity the approximate 
equality sign in regression models and normal 
equations (for example, 5.1-L 5.1-4 through 
5.1-8) is replaced by an equal sign. However, 
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remember that all relationships derived by 
using the linearized model are approximate for 
a nonlinear model. 

5.2 Assumptions of Regression 
Modeling 

Some of-the assumptions listed below have 
already been mentioned; they are discussed 
more completely here. 

1. A true model exists: 

Y=f(t&& . ..&.@)+E . (5.2-l) 

The model response, Y, consists of two parts, 
a deterministic part, f, and an additive sto- 
chastic part, c. 

2. The disturbances, 5, have the following 
properties 

E(g) =Q (5.2-2) 

Var(,) =I2 (5.2-3) 

where the structure, x, of the variance 
covariance matrix Vu 2 is assumed to be sym- 
metric positive deGte and known. Alternative 
forms for equations 5.2-2 and 5.2-3 are ob- 
tained by premultiplying equation 5.2-2, and 
pre- and postmultiplying equation 5.2-3, by 
I-‘/ to obtain 

E(l/y’g)=cj (5.2-4) 

Var(py =$ . (5.2-5) 

The assumptions given by equations 5.2-2 
through 5.2-5 indicate that 5 is considered to 
be a vector of random variables with zero mean 
and variancecovariance matrix V$. Further- 
more, weighted disturbances V -% have con- 
stant variance 12 and are u&orrelated. To 
require the expezted value of p to be zero is to 
require that equation 5.2-l be the true (or un- 
biased) model and to require in addition that 5 
be unbiased. Although imperfections in most 
physical theories prevent the former assump 
tion from holding strictly true, a model should 
be constructed so that the absolute value of any 
E(Ej) is as small as possible. From the practical 

point of view, it is required that the bias not be 
significant. Criteria for this are developed later 
on. 

The full form of ,V is usually very difficult to 
obtain from the type of data usually available. 
However, if ,V is assumed to be diagonal so that 
there is no correlation among the E., then ,V can 
often be found by using graphic *ai methods of 
analyzing residuals, to be discussed later on. 

3. The matrices g and E” are equivalent; 
that is, 

g=p . (5.2-6) 

For a linear model at least, the Gauss-Markov 
theorem (Beck and Arnold, 1971, p. 233-234) 
establishes that the variance of bil V~(bj)l is a 
minimum if equatipn 5.2-6 is true. Furthermore, 
to compute Var(Zj correctly, whether or not 
equation 5.2-6 is true, Imust be known. Hence, 
assumption of another form for 2 (such as L, for 
example) would not avoid the problem of hav- 
ing to know ,V to analyze the model. However, 
for a linear model, equation 5.2-6 is not essen- 
tial to compute an unbiased estimate of e. This 
fact may be demopstrated as follows. Solve 
equation 5.1-6 for b-&, and take the expected 
value of it to obtain:. 

E&h) = (XTwX)-lXTuE( Y-to) -- II - 
=(XTwX)-lXT,X(P-~~)=-~~ (5.2-7) -- --- 

where the fact that E(g)=0 was used. From 
equation 5.2-7 it is seen that 

(5.2-8) 

If 1 is diagonal, then 

I 
1lWl I 

l/O2 

,v- ‘..llw (5.2-9) 
n 

where the double subscripts on w have been 
replaced by single subscripts to indicate the 
diagonal nature of 1. 

4. The disturbances are normally distrib- 
uted: 
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g-q0 V2) -‘- (5.2-10) 

or 

p+4v(~,.g) . (5.2-11) 

Assumption of either equation 5.2-10 or 5.2-11 
is only necessary if investigations using the F 
distribution are to be performed. 

That 5 (or KY’,) be normally distributed im- 
plies that the elements of E%c are neither 
systematic nor constant but are equally likely 
to be positive or negative. In addition, small er- 
rors are more frequent than large ones. Many 
types of models are subject to a number of 
sources of error, any one of which may or may 
not be normally distributed. However, in the 
case where a resultant error is the sum of a 
number of components, Central Limit Theorem 
implies that E (or V%) could be normally dis- 
tributed even-if itsyomponent vectors were not. 

Because 5 and @ are unknown, the assump 
tions (1 through 4) discussed cannot be checked 
directly. However, they may often be checked 
indirectly, which is a subject of model analysis. 

5.3 Relationships Between 
Residuals and Disturbances 

Many of the investigations involving the 
regression model are based either directly or in- 
directly on relationships between residuals 2 
and disturbances E. Residuals may be written 
in terms of disturbances by employing equa- 
tions 5.1-6 and 5.1-7. First, equation 5.1-7 is 
written in the form 

~=y-f~-x(~-~~, . -- (5.3-l) 

Then equation 5.1-6 is solved for &-, and 
substituted into equation 5.3-l to obtain 

~=y-fo-x(xT~x,-lxTu( Y-f,) --- --- 

=(I-X(XTuX)-lXTo)( Y-to) . (5.3-2) P-P- -a- 

If ZJ~ is set equal to 0, then ~-[e=I/-fa=~ and 
equation 5.3-2 gives 

fj=(I-x(xTux)-lxTw)E p--E_ PP- * (5.3-3) 

It is frequently more convenient to work with 
weighted residuals, o”e”, and weighted disturb- 
ances, 0%. In this c&e-equation 5.3-3 becomes -- 

w’/?e^=(~-w”x(xTwx)-lxT,%),‘/n, a- w--m- -- a-- (5.3-4) 

An interesting and useful property of the 
matrix appearing in either equation 5.3-3 or 
5.3-4 is displayed, for equation 5.3-4 for exam- 
ple, as follows: 

In other words, the matrix times itself yields 
the original matrix. This result is true for both 
equations 5.3-3 and 5.3-4. For equation 5.3-4 
it is also true that the matrix is symmetric (as 
can be seen in the derivation of equation 5.3-5), 
so that the matrix times its transpose yields the 
original matrix. This type of matrix is known 
as a symmetric idempotent matrix. 

Another useful property can be derived based 
on the idempotency discussed above. For con- 
venience let 

+,“1x(~&,~-lxT,~ PP-- -- 

Then because R, is idempotent, 

(5.3-6) 

(I-R)(I-R) =I-R-R +R S-P- w-- - 

=I-R . -- (5.3-7) 

Hence, I-R is also idempotent. PP 

5.4 Some Statistical Measures 

The first step in model analysis should always 
be to examine some statistical measures that 
indicate (1) goodness of fit of the model to the 
data and (2) model conditioning as it affects 
reliability of the computed parameters. With 
the background given above, useful statistical 
measures can be derived. 
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5.4.1 The Error Variance, s2 

For a linear model this measure is an unbiased 
estimate of 8. For a nonlinear model, s2 is 
biased. A sketch of jhe derivation follows: The 
sum of squares, S(b), is defined as 

s(~,=e”Tc4Je^ -- 

=(w % A T ‘/a A e) (w e) . (5.4-l) a- a- 

Using equations 5.3-4,5.3-7, and the fact that 
tr(scaler)=scaler, equation 5.4-l becomes 

s(~)=(w’/pE)T(I-R)T(I-R)(wl/‘E) -- a- S-P- 

= tr[(W”E)T(l-R)(W”E)] P- e-m- 

=tr[(l-R)(o”E)(W”E)T] . (5.4-2) B-B -a - 

The expected value of equation 5.4-2 is 

E(S($))= tr{ (~-R)E[(o”E)(w”~)~]} a- P-B- 

=tr[(l-R)Var(w%)] P- a- 

= tr[(l-R)$] P- 

=(n-p)2 (5.4-3) 

from which 

Ed)) 
2=--q . (5.4-4) 

The fact that tr@=p can be demonstrated by 
. rearran 

mate, s P 
g the matrices within R,. The esti- 

, of B is 

(5.4-5) 

A useful modification of equation 5.4-5 that 
is exact for a linear model and almost exact for 
a nonlinear one is obtained by choosing b in 
equation 5.1-7 to be very near b. Then 

2 
(y-fo-x(G-~,),Tw(Y-fo-x(~-~~)) --- -- -- 

S= 
n-p 

= 
n-p (5.4-6) 

where use was made of equation 5.1-6. For a 
linear model be may be chosen to be 0. For a 
nonlinear model a bias exists in equations 5.4-5 
or 5.4-6 that results from the fact that develop- 
ment is based on assumption of a linear model. 

Even when biased, s2 gives a useful measure 
of overall goodness of fit of the model. The 
standard deviation or scatter is given by s. In 
general, s/AY, should be small, where AY, is the 
difference between maximum and minimum 
values of Y,. 

5.4.2 The Correlation, R, Between 
~“1 and ~~1 

I 

This measure is defined as 

my=! oh&% 
i-l 

(5.4-7) 

(5.4-8) 
a 

(5.4-9) 

(5.4-10) 

(5.4-11) 

i=vector of ones, 
and C$ is row i of gS. The correlation R, is 
another measure of goodness of fit. Usually it 
should be greater than about 0.9 to indicate a 
good fit to the reliable data. 

5.4.3 The yariance-Covariance 
Matrix for b 

This measure may be derived directly from 
equation 5.1-6 and is 

= (Y-fo)Tw(Y-fo)-2(~-~~)~~~~(~-~)+(~-~)TXT~(~-~) 
n-p a 



167 REGRESSION MODELING OF GROUND-WATER FLOW 

Var(~)=Var[(XTwX)-lXTw(Y-fO)+bOl -- --- 

=(xGx)-lxT&u( Y)cdx(xTdQ-l a- -a -E_-- 

=(x%.x)-12 -- (5.4-12) 

where assumptions from equations 5.2-3 and 
5.2-6 and the fact that Var(&‘)=Var(~-,$)=g%s 
were employed. The estimate of Var(6, is 

var(~)=(xTux)-1s2 . (5.4-13) - -P 

The standard error of the estimate for the ith 
parameter is given by the square root of the ith 
diagonal component of (XTwx)-‘s2. This esti- 
mate is a measure of they’aF over which the 
respective parameter may be varied to produce 
a similar solution for $he dependent variable as 
that obtained using b. 

5.4.4 The Correlatiop, rip Fetween 
any Two Parameters bi and bi 

By definition 

r. .= 
COV&,~j) 

” [var( ~;)Var( ~j~ 

(5.4-14) 

where the variance and covariance terms are 
components of either (X’L&)%~ or (XT&)%?. 
This measure gives an?&tGate of thydrpe of 
linear dependence of one parameter on another 
throughout the course of repeated experiments 
if such experiments were to be carried out. As 
discussed earlier, it is an indication of the degree 
of linear dependency in the sensitivity matrix. 

Problem 5.4-l 

This problem is concerned with preliminary 
analysis of the linear regression solution of prob- 
lem 3.2-l. The measures (except s/AY,), to be 
computed in a, b, and c below, also are calculated 
by the computer model of problem 4.2-l. Check 
your computations against the computer 
generated results. 

a. Using equation 5.4-6, compute s2. Com- 
pute slAY,. Would you say that the fit is 
very good? 

b. Using equation 5.4-13, compute Va&. 
Are the parameters determined very 
precisely? 

c Using,equation 5.4-14, determine r, the 
correlation matrix. Are there any eGdent 
problems with conditioning? 

5.5 Analysis of Residuals 

Examination of the statistics discussed in the 
previous section should give a preliminary in- 
dication of general model conditioning and 
model fit to the data. However, a thorough 
analysis of residuals is necessary in order to ex- 
amine the validity of the assumptions given in 
section 5.2. Interest is focused primarily on in- 
dications of nonrandomness of the residuals and 
on indications that the residuals are not distrib- 
uted normally. The analysis should include both 
sample and prior information partitions of the 
residuals so that any incompatibility between 
the two partitions can be detected as differences 
between the two partitions. Although the tech- 
niques given in the present section are usually 
adequate to detect any incompatibility, a formal 
test given in section 6.3 also can be applied if 
desired. 

Analytical methods used here are graphical. 
Draper and Smith (1981, p. 141-192) give a 
number of methods for examining residuals, and 
they emphasize that graphical procedures in- 
volving visual analysis are the most valuable 
tools because violations of assumptions serious 
enough to require corrective action generally am 
apparent on the various plots. However, to use 
the procedures effectively it is necessary to de 
termine the properties that the residuals should 
be expected to exhibit under ideal conditions. 

5.5.1 Distribution of Residuals 

Investigation of the distribution of weighted 
residuals $$, where ov is a row of We, made 
in order to infer the &tribution ofkeighted 
disturbances $$, is difficult because, even if 
the assumption given by equation 5.2-5 holds 
so that the elements W% are uncorrelated and 
have equal variance, e ements of 0% are cor- I - 
related and have unequal variance. &how this 
for the linearized model, equations 5.3-4 and 
5.3-6 can be combined to give 
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(p&(I-RpJE (5.5-l) -- WI-- 

from which 

E(o%)=(I-R)c.Alz(~) a- *I- 

=g (5.5-2) 

and 

Var(w%)=Var[(I-R)w%J w- -II 
=(I-R)var(w”e)(I-R)T *- m-m- 

=(I-R)(14QT2 m-s- 
=(I-R)2 . (5.5-3) -- 

Hence, if assumptions given by equations 5.2-4 
through 5.2-6, and 5.2-11 hold, 

c&=12 l-v Iv@,(I-R)2) (5.5-4) a- - w- 

where for convenience, the definition is made 
that o’/pe^=h. 

It & be shown that I-R+1 as n-p*-. 
Whenever n-p becomes srr&.i.i c&relation and 
unequal variance become significant. Most tests 
for distribution of residuals assume equal (or, 
a common) variance and no correlation because 
all residuals are assumed to have come from the 
same univariate distribution. Therefore, correla- 
tion and unequal variance of the hj are serious 
problems with regard to testing for normality 
when the number of parameters is not small 
compared to the number of observations. 

Another difficulty concerns the determination 
of whether or not the model fits the data. If the 
model fits the data and correlation of the values 
of ~j is not significant, then these residuals 
should appear to be nearly random. However, 
if correlation is significant, then the correlation 
will be reflected in the residual values. Patterns 
could develop in some of the plots (to be dis- 
cussed), and these patterns could be mistaken- 
ly attributed to lack of model fit. 

5.5.2 Graphical Procedures 

The first step in using graphical procedures 
is to develop a control group. Several sets of 

simulated residuals distributed as in equation 
5.5-4 form the control group. These sets are 
then compared graphically with the true 
weighted residuals 12 to help decide whether 
the distribution of c differs to a visually de- 
tectable extent from a normal distribution and 
whether correlation could cause an apparently 
nonrandom (or non-normal) pattern of residuals 
to develop in the residual plots. 

A set of simulated residuals may be generated 
by generating a set of uncorrelated random 
normal deviates d so that E(d)=0 and Var(d) 
=Is2, then forming linear coml&aGons of these 
de%ates that have the covariance given by 
equation 5.5-3. The method of generating the 
simulated residuals from the uncorrelated 
random deviates can be derived as follows. 
Assume, as a working hypothesis, that 

g=g (5.5-5) 

where g is the set of simulated residuals, and 
fi is a symmetric and nonstochastic matrix to 
be determined. Vector g must be generated so 
that E(g)=e and Var(g)=(J-g)s (equations 
5.5-2 and 5.5-3). From equation 5.5-5 

mg)=gQg 

=g (5.5-6) 

as required. By definition 

where the definition of Var@ and the symmetry 
of fi were used. Hence, g must be defined so that 

fi2=I-R . (5.543) w- 

However, because 1-R is idempotent, (I-R) 
=(I-R)2, and equati&?.5-8 may be simplipfi~ 
to PbeTome 

g=I-R (5.5-9) w- 

so that equation 5.5-5 assumes as its final form 

g=(I-R)d . s-- (5.5-10) 
c 
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To generate a set of simulated residuals, g, 
it is a simple matter to generate a set of uncor- 

where mi is the number of values of 4 (for 

related random normal deviates, d, then use 
example) smaller than or equal to pi, and n is 
the number of observations. Use of n + 1 in the 

equation 5.5-10. This procedure is followed for 
the number of sets (usually at least three) 

denominator adjusts for the fact that F, can- 
not be equal to 1 because the tail of the normal 

desired to form the control group. distribution extends to infinity. An example of 
Normalprobability p&S.-These are graphs a normal probability plot for i is illustrated in 

of cumulative frequency, F, versus values of the 
elements of vectors p, d, or g. Cumulative fre- 

figure 5.5-l. 
To determine the effects of correlation and 

quency corresponding to the ith element of one 
of the vectors (4, for example) is computed 

unequal variance, normal probability plots for 
the sets d and the sets g may be compared. If 

from the formula the plots for d and R are very similar, then a 
normal probability plot of & would not be 

Fi=mi/(n+l),i=l,2, . . . . n (5.5-11) expected to be affected to a great extent by 
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correlation and unequal variance. Other types 
of plots involving i probably would not be af- 
fected much by correlation and unequal vari- 
ance either. Significant departures of the plots 
for g from those for d suggest serious correla- 
tion and unequal variance effects in 4 also. 

Whether or not i departs to a visually 
detectable extent (which is considered to be 
synonymous with significant here) from a nor- 
mal distribution can be determined by compar- 
ing plots for the generated set g with the plot 
for & If the plot for i has a trend similar to 
the set of curves for g, then the distribution for 
% probably does not differ enough from equa- 
tion 5.5-4 to consider abandoning the normali- 
ty assumption. When examining the plots, it 
must be remembered that, because of correla- 
tion and unequal variance, the plots will not 
necessarily exhibit the linear trend expected for 
a univariate normal distribution. 

Other residualplots.-In the following discus- 
sion it is assumed that the effects of correlation 
and unequal variance resulting from equation 
5.5-3 are negligible so that other effects may 
be investigated. This assumption might hold 
true even if a normal probability plot is affected 
by correlation and unequal variance. However, 

if one or more patterns (or trends) appear to be 
present in one or more of the residual plots, then 
analogous plots using g instead of i also 
should be prepared and examined. If the 
suspicious patterns also are present in the plots 
using g, then the patterns probably result from 
correlation and unequal variance inherent in 
(I-R)s2 and not from model error. 
-see tpes of plot are often useful: (1) Plot 
of 4 VS. fi; (2) plots of 2. VS. independent vti- 

rl ables (Q; (3) plot of u. vs. Cartesian coor- 
dinates of point j. If o=- was employed in the i 
regression, then ~j=~~ Additional discussion 
of the first two types of plots may be found in 
Draper and Smith (1981, p. 147-148). 

1. Plot of z$ vs. fi. This type of plot is il- 
lustrated in figure 5.5-2. Under the given 
assumptions, the plot should display a roughly 
horizontal band of residuals having no apparent 
trend as sketched in figure 5.5-3. In this and 
succeeding figures 5.5-4 through 5.5-6, the 
dashed line outlines the limits of the data. A 
standard runs test (Draper and Smith, 1981, 

Figure 5.5-2 

+I 
1 __---- __---- --- 

“‘c------” 
Figure 5.3-3 

p. 157-162) could be used to te,gt for ran- 
domness of signs of 1;j along the fi axis. 

Three principal types of abnormalities in the 
plot Of ~j vs. fi are often apparent: 

a. Unequal band width (figure 5.5-4). 
This type of trend (or one opposite to it) general- 
ly indicates that the variance of 11, is not con- 
stant. In figure 5.5-4 the oblervations would 
appear to be less reliable as fi increases. 

If the abnormal plot resulted from a least 
squares analysis where E!=I had been assumed, 

then a diagonal form of o #L might be in- 
dicated. In the illustration,-uj should decrease 
with 4. However, if some form of 2 # L had 
originally been assumed, then an abnormal plot, 
of the form shown in figure 5.5-4, involving ~j 
would suggest the 4 are not of equal reliability 
and that o is not correct. Hence, ; should be 
modified, &d the regression performed again. If 
a full form of g is required by the true model, 

+ 
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this form cannot generally ,be discovered 
type of analysis. Before a weighted least 
squares is performed, the underlying cause of 
the variable reliability problem should be in- 
vestigated so that the diagonal weights can be 
added according to a rational criterion. 

b. Sloping band (figure 5.5-5). This type of 
problem often indicates model error. Typically, 
it is caused by omitting an intercept from the 
m:del. For a linear model having an intercept, 
CU,fi=O always. Hence in this case an overall 
slope such as depicted in figure 5.5-5 cannot 
result from correlation and unequal variance in 
(I-E)s2. Also, if the model is linear (or effec- 
t&zy so) and E(c)=& then Cov(&i=O even if 
there is no intercept. Thus, it might be zxpected 
that a plot such as shown in figure 5.5-5 would 
usually not result from correlation and unequal 
variance if the model is correct and if the observ- 
ed data are adequate. 

c. Curved or irregularly shaped band (figure 
5.5-6). This is another indication of model error. 
The model is inadequate because it does not ac- 
count for all of the sources of variability in the 

D 
observed data. More, or different, terms should 
be added to the regression equation. For the 
plot shown, it is possible that a quadratic term 
should be added. 

2. Plots of I;j VS. independent variables (&). 
These plots are interpreted in much the same 
way as the first type of plot; they simply pro- 
vide a different viewpoint. 

3. For trend surface types of regression: 
plot Of hj VS. Cartesian coordinates of point j 
(for one or two-dimensional systems). Three- 
dimensional systems can sometimes be reduced 
to two dimensions by using cross sections. 
Systematic highs and lows in the residual pat- 
tern usually suggest that the model does not fit 
the data well. In general, the easier it is to con- 
tour the residual map, the more nonrandom the 
residuals are likely to be. 

Problem 5.5-l 

To the program for computing T and S using 
the Theis equation (problem 3.3-l), add the 
code necessary 10 compute s2 using equation 
5.4-5 and %i@) using equation 5.4-13. You 
will have to unscale the entries of (ZTZ)-l to P_p 

3 
obtain G(6). Examination of the calculation - 
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procedures for obtaining ZTZ and (ZTZ)-’ 
will indicate how the unsF&g shozd-be 
accomplished. 

Conduct a graphical analysis of residuals p 
resulting from the Theis equation problem 
(problem 3.3-l). Compute five sets of random 
normal deviates d and simulated residuals g 
using the residuals analysis program (appendix 
5.31). Plot d and g on normal probability paper. 
Does the plot of 1 differ significantly from the 
plots of g? What can you conclude about the 
distribution of & Does the Theis model appear 
to be adequate? 

The code given in appendix 5.8.1 is designed 
to read COV(I,J) (which is (XT&Y)-‘s2), W(l) 
(which is 5) and X(&J) (whi&‘iX,) in unfor- 
matted form from a file labeled ITB. Normally, 
these data would be read to file ITB from the 
numerical nonlinear regression program of ap- 
pendix 4.3.4. However, the Theis data are not 
obtained from the numerical nonlinear regres- 
sion program. The easiest way to read the Theis 
data is to modify the residuals analysis program 
by replacing READ(ITB) in statements reading 
data sets B, C, and D with READ(IIN,B). Data 
for the program should then be coded as ex- 
plained in appendix 5.8.1, except that the data 
for data sets B, C, and D will now be coded in 
format 8FlO.O. 
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Problem 5.5-2 

Use the output from the two-dimensional flow 
model to analyze the model results of problem 
4.2-2. 

a. What is the value of s2? R,? Compute 
s/AY,. 

b. Is there any evidence of ill-conditioning 
in the results? If there is, what is the 
problem? Which parameters are well- 
determined and which are not? Why? 

c. Conduct a graphical analysis of residuals. 
Develop four sets of random normal 
deviates @ and simulated residuals g, com- 
puted by using the residuals analysis pro- 
gram (appendix 5.8.1). Plot d and g on 
normal probability paper using equation 
5.5-11. Are correlation effects evident? 
Plot i (why 4 instead of p?) on normal 
probability paper. Does the plot differ 
signific@ly from the plots of g? Plot h. 

(I versus fi. Is there an abnormal pattern. 
Plot ~j versus Cartesian coordinates Of 
point j (omitting the prior information). 
Again, is there a pattern to the residuals? 
What do you conclude about the ade 
quacy of the model? 

& 
e= & I I 

k!OO= 
ho1 I 1 ko2 

5.6 Investigation of 
Alternative Parameter Sets 

5.6.1 Generalized W Statistic 

Suppose we want to test the null hypothesis 
that some subset ,Q2 of parameter set @ cannot 
be distinguished from some corresponding 
given subset e2. That is, test 

ITJ~:@~=~~ versus HI&#&. 

The linearized model assumed is 

_Y=f,+.&@-bo)+E 

=fo+~~(el-l?ol)+~2(e2-~~2)+~ (5.6-U 

where g, @, and &e are conformably partitioned 
as follows: 

&=&&I (5.6-2) 

(5.6-3) 

. 

Based on equation 5.6-1, we may state a predic- 
tive model of the form 

~=fo+~1~1-~001)+~2(Q2-~2) (5.6-4) 

where & is sn estimate of & and, under the null 
hypothesis, & is assumed to be given by &. 

The W statistic, which is stated explicitly 
later on, is based on a corn ariso_n of the 

-4 restricted sum of squares (x-0 $x-fl and the 
unrestricted sum of squares (Y-fi’~(Y-A. The 
unrestricted sum of squares G obt-&ed from 
the standard least squares analysis. The re 
stricted sum of squares is obtained by 
minimizing 

with respect to & while holding & constant. 
For a linear model this results in the normal 
equations: 

-1 -o1 =(XTWX~,-~XTW(Y-~-~~(~~-~~~,, (5.6-6) 8 -b -- -P- 

where &,, and ho2 can be set to zero if desired. 
If the model is nonlinear, then-equation 5.6-5 
is minimized with respect to &I by-using the 
standard procedures, except that & is held 
constant. 

If many repeat experiments using linear 
normal equation 5.6-6 were performed, and if 
assumptions given by equations 5.2-5, 5.2-6, 
and 5.2-10 held true, then it would be found 
that 

m F(q, n-p) (5.6-7) 
c 
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where q is the order of &, which is the number 
of restrictions in Ho, and equation 5.4-5 was 
used. The symbol W stands for a random 
variable. For each experiment, a value w of the 
random variable W could be computed. Accord- 
ing to equation 5.6-7, by repeating the experi- 
ment many times, the probability of the ratio 
W having a value of w or a smaller value would 
be found to be given by the cumulative density 
function F. 

Because equation 5.6-7 is proportional to the 
difference between the restricted and un- 
restricted sums of squares divided by the 
unrestricted sum of squareslone might suspect 
the null hypothesis Ho:&=& to be true if w is 
small. However, if w is large, then one might 
suspect that Ho is incorrect. The rejection 
region for the hypothesis test is determined by 
the probability statement P(W>F,(q,n-p))=a, 
where a is the significance level of the test and 
F,(q,n-p) is the upper lOOa% point of the F 
distribution with q and n-p degrees of freedom. 
If the ratio w is greater than F,(q,n-p), as 
found in any table of critical values for the F 
distribution, then the null hypothesis is rejected 
because values of w greater than F,(q,n-p) form 
the rejection region. 

An alternative form for the numerator of 
equation 5.6-7 may be derived by manipulating 
the linearized models. The result, after exten- 
sive algebra, is 

(y-f)*td( Y-j-)-&)*g(y-p) a- 

=(e2-~2,T~(~T~,-1~*]-1(~2-~2) (5.6-8) 

where 

!i=b!* LJ(qXp) , (5.6-9) 

&=identity matrix of order q, and 

&=the partition corresponding to & found 
from the standard (unrestricted) least 
squares analysis. (5.6-10) 

Thus, the alternative form for equation 5.6-7 is 

w= (82-~)*~(x*~x)-‘~~-l(~-~~)lq -- 
s2 (5.6-11) 

If the model is linear, either equation 5.6-7 
or equation 5.6-11 may be used to compute w. 
Both equations:equira an unrestricted regres- 
sion to obtain b and f, but equation 5.6-7 re 
quires, in addition, a restri$ed re-gression using 
equation 5.6-6 to obtain b, and fi Hence, for a 
linear model, equation 5.6-11 is often more ef- 
ficient to use than equation 5.6-7 for practical 
computations. If equation 5.6-l is a linearized 
equation system, derived from a nonlinear 
model, then neither equation 5.6-7 nor equa- 
tions 5.6-8 nor 5.6-11 is exact. However, if 
equation 5.6-l behaves in a way that is close 
enough to being linear, then equations 5.6-7, 
5.6-8, and 5.6-11 are good approximations. 
When working with a nonlinear model, w should 
be computed using both equations 5.6-7 and 
5.6-11. If the conclusions reached by using the 
two different expressions for w are different, 
then the model may be too nonlinear for investi- 
gations using the W statistic. Further investi- 
gation of model nonlinearity may be performed 
by employing the modified Beale’s measure, 
which is discussed in section 6.2. 

In summary, the procedure for testing 

Ho:~2=f2 vs. H1:iJ2fiJ2 

in the model _Y=f,+X(&b,)+g is: 
1. Carry out a reE&sion without any re- 

striction to find 6 for the full model. 
2. When using equation 5.6-7, fix B2 and 

use equation 5.6-6 to find 5, for the 
restricted model. When using equation 
5.6-11, ship this step. 

3. Form the ratio w using equation 5.6-7 or 
equation 5.6-11. 

4. Compare w with the appropriate value of 
FJqwp). 

5.6.2 Joint Confidence Region for & 

Equations 5.6-7 or 5.6-11 also may be used 
to obtain a joint confidence region on e2. The 
confidence region interpretation is based on fix- 
ing a probability of occurrence, P(-WCF,(q,n-p)) 
=1-o, then fkling those vectors @, that would 
yield the specified F or a smaller value. The joint 
confidence region may be written as 
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or 

(e2-~)T~(xTwx)-1HT]-1(~-~2) -- - 
<s2q.Fa(q,n-p) * (5.6-13) 

Equation 5.6-13 plots as a family of q dimen- 
sional ellipsoids (which for q = 1 is a line segment 
bounded by two values for &) in parametyr 
space, and these ellipsoids are centered on &. 
All ellipsoids corresponding to probability levels 
smaller than l-a! lie within the outermost ellip- 
soid, which is defined by strict equality in equa- 
tion 5.6-13. Hence, the specified probability is 
the probability that & lies within the ellipsoid. 
An equivalent statement is that, if many experi- 
ments were conducted, then (l-(r)lOO% of the 
ellipsoids would contain the true parameter set 
e2, Hence, the outermost ellipsoid may be con- 
sidered to be a joint confidence region on &. 

Points (in parameter space) on the edge of the 
confidence region corresponding to the max- 
imum and minimum (or extreme) values that 
some parameter sBi may attain and remain in 
the confidence region are given by 

&& &Fa(q+-p) yb, 
- 

‘bi 
(5.6-14) 

where KT- ‘T-T -/b.,,@2] and I& is the ith column of 
~=(xTux)- ‘s2. 

root Z v;. 
Note that sbi is the square 

Equation i in 5.6-14 gives the extreme values 
of p2i. The parameter vector b computed using 
equation 5.6-14 is the same vector that would 
result if (1) p2i were computed using equaticn 
i in 5.6-14, (2) then the remaining values in & 
were computed to satisfy equation 5.6-13 (with 
strict equality applying to give points on the 
edge of the confidence region), and (3) finally, 
partition bl were computed using equation 
5.6-6. 

Parameter sets computed using equation 

this relationship is not exact for a nonlinear 
model. Therefore, if the regression model is 
nonlinear, the parameter sets computed using 
equation 5.6-14 should be substituted into the 

nonlinear model and (y-tiTwcy-h-(~-~T~(~-~ 
should be computed. If this value is different 
enough from s2qF,(q,n-p) to change any conclu- 
sions, then the model is too nonlinear to use to 
generate linearized confidence regions. The 
modified Beale’s measure discussed in section 
6.2 also can be used to gauge nonlinearity. 

Two end-member cases involving the W 
statistic are often considered separately. In one 
case q=p so that &=@. AlI parameters are thus 
included in any test of HO, and the confidence 
region is on all parameters simultaneously. This 
confidence region is called a joint confidence 
region on all parameters. An example for two 
parameters is diagrammed in figure 5.6-l. In 
the other case, q=l and /3,=/3,. Thus, only 
one parameter is considered in any test of H,,, 
and the confidence region is on only one param- 
eter. The confidence region for this case is 
termed an individual confidence interval on 
parameter Pp. 

Problem 5.6- 1 

a. A method for estimating recharge in 
Nevada is known as the Maxey-Eakin 
method. Using this method, recharge rate 
W in the vicinity of Lake Ohpupu (prob- 
lem 3.2-l) was estimated to be 0.0003 
ftlday. Also, by using specific capacity 
estimates from well-log analysis, T was 
found to be 10 ft2/day. Using these 
estimates, test the null hypothesis that 
there is no significant difference at 
ar=O.O5 between W/T as estimated above 

confidence region 

I 

Figure 5.6- 1 c 
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and the regression estimate of W/T. (Hint: 
Use equation 5.6-11.) Based on the result 
of the hypothesis test, would you consider 
using the prior estimate of W/T as prior 
information in the regression model? 
What other information would you need 
if you did use it? 

b. In addition to asking whether or not 
regression estimate W/T is significantly 
different from another, independent, esti- 
mate, one might ask whether or not W/T 
is even a significant variable in the regres- 
sion model. Set up and conduct a test to 
answer this question, then interpret the 
result. 

c. Using equation 5.6-14, find the bounds of 
the confidence interval on W/T for 
cr=O.O5. (Hint: You need only consider the 
equation corresponding to parameter W/T 
in the system implied by equation 5.6-14.) 

Problem 5.6-2 

Use your Theis equation program (problems 

B 

3.3-l and 5.5-l) and equation 5.6-14 to find the 
sets of parameters corresponding to extreme 
values of T and to extreme values of S, assum- 
ing 4’2. 

Problem 5.6-3 

Using equation 5.6-14 and the results of prob- 
lem 4.2-2, find the sets of parameters cor- 
responding to extreme values of T3 and to 
extreme values of qsl with q=2. 

5.7 Investigation of Predictive 
Reliability 

5.7.1 The yariance-Covariance 
Matrix for f 

Equation 5.1-8 is used to obtain 

Var(~)=Var&~~) +&)I 

=xp-ir(S)XT . (5.7-l) -- 

+n analogous measure for weighted values of 

3 
fis 

varc~MA=var~~~(~-~)+OYsfo] 
=c&Var(~)XTu’/2 . (5.7-2) -- --a 

By using equations 5.3-6 and 5.4-12, equation 
5.7-2 can be written 

Var(~‘/‘~)=~r? . (5.7-3) 

Estimates corresponding to equations 5.7-1, 
5.7-2, and 5.7-3 are 

(5.7-4) 

=R_s2 . (5.7-6) 

The standard error of h is given behe 
square root of the ith diagonal entry of Var(fl. 
This estimateA gives a measurxfA potential 
variability in fi resulting from Var(b). 

It is important to note that equations 5.7-1, 
5.7-2, 5.7-4, and 5.7-5 are valid for prediction 
vectors f having entries that are not necessari- 
ly at observation points. This fact may be 
understood by observing thatprediction equa- 
tion 5.1-8 used to derive Var(fl or Var(%%f) (or 
their estimates) is valid for any set of points, 
not just observation points. However, entries 
in X_ and, if either equation 5.7-2 or 5.7-5 if 
used, 0 must be available fx$I points in fi 
Matrix (XTox)-1s2 used for Var(b) is, of course, 
the stan&rxne based on entries in X only at 
the observation points. 

5.7.2 Confidence Interval for far 

If aI.I parameters are ahowed to vary over the 
confidence region given by equation 5.6-12 or 
equation 5.6-13 with q =p, then the maximum 
and minimum values produced for 5 form a cor- 
responding confidence interval fo: fj. In this 
case, because q=p, e2=@ and fj=foT The 
resulting confidence interval for fj is 

foj=h+ W&-a n-p) Syj (5.7-7) 

where 
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Syj=S J~4~TWX)-‘.X,T (5.7-8) 

and ~j is a row of a sensitivity matrix cor- 
responding to the point j. The point j need not 
correspond to an observation point. 

Equation 5.7-8 gives a simultaneous con- 
fidence interval. That is, the probability is 1-a 
that fsj lies within the interval indicated by 
equation 5.7-7, and that fp for all other possi- 
ble points lies within similar intervals simulta- 
neously. If intervals on a number of consecutive 
points are computed and plotted, the result is 
called a confidence band. 

5.7.3 Prediction Interval for 
Predicted Observation Yr’ 

Equation 5.7-7 gives a confidence interval on 
a computed value f or, in other words, the mean 
of Y, which is a fixed, nonrandom quantity. In 
some instances, a corresponding interval on a 
predicted observation, which is a random quan- 
tity, is desired, and this interval is termed a 
prediction interval. Prediction intervals on k 
predicted values of Y simultaneously can be 
readily computed if o=v-l is diagonal, and 
they are given by Lie%er&m (1961): 

YPred=&JqjGy) J’qTiy, .l 
j=l, 2, . . ..k (5.7-9) 

As in equation 5.7-7, point j need not (and, in 
general, probably would not) correspond to an 
observation point. However, wj for the predic- 
tion point has to be known. 

The term S21wj+S~j is the total variance in 
predicted observation y{. This form resr$ts 
because yd= (~d-~)+l’j. where 4’“d_fi is 
statistically independent of 4, so, that, a? an 
estimate, Var( ~“d)=Var(~d-Q+Var(~) or 
Var(~d)=S21Wj+S~j 

Equation 5.7-9 does not give prediction inter- 
vds on d Gred simultaneously. Furthermore, 
as k increases, the prediction interval increases 
without bound. This result is because the nor- 
mal distribution, which the errors in Y are 
assumed to follow, has infinite tails. Hence, 
even though the probability of an error that is 
large in magnitude is small, as the number of 

values of Y considered simultaneously in- 
creases, the probability of an arbitrarily large 
error in at least one of them increases also. 
Usually the prediction interval is computed 
using k=l. 

Problem 5.7- 1 

a. Write out explicitly the form for general 
entry (ij) of X(XTwX)-lXT, which is used 
in equation T.r 13or’pthis exercise let 
(SwX-l =A and write the result in terms 
z&z sim;lify the expression. Select and 
compute a diagonal entry of this matrix 
at an observation point used for the linear 
regression solution of problem 3.2-l. Note 
that you can replace X_ by g in 
X(XTwx)-‘XT and that this replacement 
GaTes%e rzmt unaltered. Can you show 
this? 

b. Using equation 5.7-4 and the diagonal en- 
try fomputed in part a, determine 
Var(fi), where j is the selected diagonal 
entry. 

c. Using equation 5.7-7 and the results of 
b, find the confidence interval on fpj. c 

5.8 Appendix 

5.8.1 Documentation of Program to 
Compute Vectors _d and g of Section 
5.5.2. 

This program computes vector d of random 
normal deviates, vector g of correlated normal 
deviates as defined by equation 5.5-10, and 
other useful information related to the distribu- 
tions of i and %. Sample and direct prior infor: 
mation are assumed to be given in the form of 
equation 3.4-12. The sensitivity matrix for the 
direct prior information is theoretically of the 
form X,=&OJ. However, matrix &,,g may be 
rearranged to conform with any parameter 
ordering. 

The program ‘was developed using the 
Microsoft Fortran Compiler, Version 3.3, with 
the DOS 2.0 operating system on an IBM 
PC/XT computer with the IBM 8088 Math 
Coprocessor and 256 KB memory. Except for 
the OPEN statements near the beginning of the 

c 
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code, Fortran 66 was used throughout to make 
the code as machine independent as possible, 
The source code is contained in file 
RESAN.FOR in the diskette accompanying 
this report. A random (OJ) number generator 
is employed as a function subroutine. This 
routine assumes an integer computer word 
length equal to at least 1,077,109,141. 

As coded, the contents of data sets B, C, 
and D are assumed to be stored in unformatted 
form on file ITB=& This is so that these sets do 
not have to be input manually. The listing 
appended contains the code (file RESINS.FOR 
on the diskette) and instructions for insertion 
into the program of appendix 4.3.4 so that the 
required data are stored in the proper form 
and order for use in the present program. The 
user will have to supply the job control 
language necessary to store the data and 
retrieve them for use. 

Two variables, NVD and NTD defined near 
the beginning of the program, must be redefined 
each time the dimensions of the program are 
changed. NVD must be set equal to dimensions 
of COV and the first dimension of S, ail three 
of which are at least NVAR, and NTD must be 
set equal to the dimensions of R, which are at 
least NTOT=NOBS+NPRIR. 

Input D&U.-Data Set A. 
Problem size information; one line (format 
515, F1O.O). 

Line colw Variable DdhitiOIl 

1-5 NVAR 

6-10 NOBS 

11-15 NPRIR 

16-20 NSETS 

21-25 NRAN 

26-35 VAR . 

Number of parameters, 
P. 

Number of sample obser- 
vations, nJ. 

Number of regression 
parameters having direct 
prior information, np. 

Number of sets of @ and g 
vectors to be computed. 

Seed for random number 
generator: any odd 
number between 1 and 
1,048,575. 

Error variance, s2. 

Data Set B. 
Covariance matrix, w&)-ls2 (unformatted; 
stored in file ITB). - - 

Variable Dl?fillitiO~ 

COV(l,l) 
COV(2,l) 

COV(NVAR,l) 
COV(2,2) 

Covariance matrix, entered se- 
quentially from the diagonal 
element through NVAR for 
each new regression parameter 
number. Each new diagonal 
element begins a new record. 

COV(NVAR,B) 

COV(NVAR,NVAR) 

Data Set C. 
Weight matrix for sample information, E1 
(unformatted; stored in file ITB). 

Variable DfdhitiO~ 

W(l) 
WC3 

W(NOBSI 

Diagonal weight matrix for 
sample information, entered 
seauentiahv from 1 through 
NdBS. - 

Data Set D. 
Sensitivity matrix for sample information, X, 
(unformatted; stored in file ITB). 

Variable Ddinition 

WJ) 
ww 

X(‘NVAR,l) 
xw4 

X(kVAR.2) 

Sensitivity matrix for sample 
information, entered sequen- 
tialIy 1 through NVAR for 
each observation. Each new 
observation begins a new 
record, for a total of NOBS 
observations. 

X&VAR.NOBS) 

Data Set E. 
Estimated error variance used with prior 
information of known reliability; one line 
(format F1O.O). 

Line columns Variable D&litiOIl 

l-10 EV The initial estimate of s2 used 
in conjunction with prior 
information. 

Omit data set if NPRlR=O. 
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Data Set F. 
Parameter numbers having prior information 
(format 1615). 

Output.-Output is all clearly labeled. It is e 
ordered as follows: 

tine c4hmis Variable DditIitiO~ 

1-5 IPR(1) 
6-10 IPR(2) 

Array subscript numbers 

I;R(NPRIR) 
mation. For use with 
the regression ground- 
water program, the 
array subscript numbers 
must be the subscript 
numbers in the parameter 
vector computed by that 
program. 

Omit data set if NPRIR=O. 

Data Set G. 5. 
Standard deviation matrix for prior informa- 
tion ,V% (format 8FlO.O). 

Diagonal standard devia- 
tion matrix for prior in- 
formation, entered in the 
same order as IPR(1) 
from 1 through NPRIR. 

m data set if NPRIR=O. 

1. 
2. 

3. 

4. 

6. 

7. 

Data sets A through G. 
Set number of vectors $ and g. Data for 
numbers 2 through 5 below are printed 
sequentially for each set. 
Vector & This vector is ordered from 
smallest to largest entry, and each en- 
try is paired with its theoretical frequen- 
cy as computed by using equation 
5.5-11. 
Vector g. Each entry is printed in its 
natural position corresponding to its 
position in a row or column of R,. Rows 
and columns of R are ordered by first 
sample observat%n numbers followed 
by prior information numbers, which are 
the subscripts I of IPR(1). 
Vector g. This vector is ordered and 
paired with its theoretical frequency in 
the same way as @ is. 
Covariance matrix (I-R)s2. This matrix, 
which is an estima& 2 the one defined 
by equation 5.5-3, is for weighted msid- 
uals 12 composed of both sample and 
prior&formation, with the prior infor- 
mation occupying the last np rows and 
cohlmns. 
Correlation matrix for i. This matrix is 
derived from (I-R)s2. w- 

c 

c 
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C RESIDUALS ANALYSIS PROGRAM BY R. L. COOLEY, USGS, DENVER, COLO. 
$LARGE: R 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION X(20,70),C0V(20,20>,W(70),WP(20),1PR(20),R(90,90),D(90) 

l,G(90) ,F(90) 
COMMON/ITP/IIN,IOUT 
COMMON/FLT/X,R 
EQUIVALENCE (X(1,1),D(1>>,(W(1),F(1),wp(1)),(cov(1,1~,~~~~~ 
OPEN (5,FILE='RESAN.DAT',STATUS='OLD',ACCESS='SEQUENTIAL' 

l,FORM='FORMATTED') 
OPEN (6,FILE='RESAN.OUT',STATUS='NEW',ACCESS='SEQUENTIAL' 

~,F~RM='F~RMATTED') 
OPEN (~,FILE='RE~AN.IN',STATUS='~LD',ACCESS='SEQUENTIAL' 

l,FORM='UNFORMATTED') 
C**FORMAT LIST 

1 FORMAT (515,FlO.O) 
2 FORMAT (8FlO.O) 
3 FORMAT (9HlNVAR = ,14/9H NOBS = ,14/9H NPRIR = ,I4 

1/9H NSETS = ,14/9H NRAN = ,14/9H VAR = ,G11.5) 
4 FORMAT (lHO,14X,42HRELIABILITY WEIGHTS FOR SAMPLE INFORMATION 

l/lH ,3X,3(3HNO.,llX,lHW,9X)) 
5 FORMAT (1615) 
6 FORMAT (lHO,14X,43HNO.S OF PARAMETERS HAVING PRIOR INFORMATION 

l/lH ,3X,3(3HN0.,8X,3HIPR,lOX)) 
7 FORMAT (lH0,14X,40HSTANDARD DEVIATIONS OF PRIOR INFORMATION 

l/lH ,3X,3(3HNO.,lOX,2HWP,9X)) 
8 FORMAT (19HO COVARIANCE MATRIX) 
9 FORMAT (38Ho SENSITIVITIES FOR OPTIMUM PARAMETERS) 

10 FORMAT (BHOEV = ,G11.5) 
11 FORMAT (lH0,2oX,31HORDERED, RANDOM NORMAL DEVIATES/lH ,3X,2(3HNO. 

l,8X,lHD,l4X,lHF,lOX)) 
12 FORMAT (lH0,18X,35HORDERED, CORRELATED NORMAL DEVIATES/lH ,3X 

1,2(3HN0.,8X,1HG,14X,lHF,lOX)) 
13 FORMAT (33H0 COVARIANCE MATRIX FOR RESIDUALS) 
14 FORMAT (43HODATA GENERATED FROM RANDOM NUMBER SET NO. ,13) 
15 FORMAT (34H0 CORRELATION MATRIX FOR RESIDUALS) 
16 FORMAT (lH0,22X,,26HCORRELATED NORMAL DEVIATES/lH ,3X,3(3HNO.,llX 

l,lHG,gX)) 
C**DEFINE INPUT FILES, OUTPUT FILE, AND ARRAY DIMENSIONS FOR PRTOT 

IIN= 
ITB=8 
IOUT= 
NVD=20 
NTD=90 

C**READ AND PRINT INPUT DATA THEN CONVERT IT INTO FORMS NEEDED 
C FOR CALCULATIONS 
C**NOTE: NRAN MUST BE ODD AND MUST LIE BETWEEN 1 AND 1048575 

READ(IIN,l) NVAR,NOBS,NPRIR,NSETS,NRAN,VAR 
WRITE(IOUT,3) NVAR,NOBS,NPRIR,NSETS,NRAN,VAR 
DO 25 J=l,NVAR 
READ(ITB) (COV(I,J),I=J,NVAR) 
DO 20 I=J,NVAR 

SET A 

SET B 
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20 COV(J,I)=COV(I,J) 
25 CONTINUE 

WRITE(IOUT,8) 
CALL PRTOT(COV,NVAR,NVAR,NVD) 
READ(ITB) (W(I),I=l,NOBS) 
WRITE(IOUT,4) 
CALL PRTOT(W,NOBS,l,O) 
DO 35 J=l,NOBS 
READ(ITB) (X(I,J),I=l,NVAR) 

35 CONTINUE 
WRITE(IOUT,9) 
CALL PRTOT(X,NVAR,NOBS,NVD) 
DO 45 J=l,NOBS 
WT=W(J)**.5 
DO 40 I=l,NVAR 

40 X(I,J)=X(I,J)*WT 
45 CONTINUE 

IF(NPRIR.LT.l) GO TO 55 
READ(IIN,2) EV 
WRITE(IOUT,lO) EV 
READ(IIN,S) (IPR(I),I=l,NPRIR) 
WRITE(IOUT,6) 
CALL PRTOTC(IPR,NPRIR) 
READ(IIN,2) (WP(I),I=l,NPRIR) 
WRITE(IOUT,7) 
CALL PRTOT(WP,NPRIR,l,O) 
SIGMA=EV**.5 
DO 50 I=l,NPRIR 

50 WP(I)=SIGMA/WP(I) 
C**COMPUTE (I-R)*VAR MATRIX 

55 DO 80 K=l,NOBS 
DO 70 J=l,NVAR 
suM=o. 
DO 60 I=l,NVAR 

60 SUM=SUM+X(I,K)*COV(I,J) 
70 R(J,K)=SUM 
80 CONTINUE 

IF(NPRIR.LT.l) GO TO 90 
DO 84 K=l,NOBS 
DO 82 I=l,NPRIR 
J=IPR(I) 

82 R(I+NOBS,K)=-WP(I)*R(J,K) 
84 CONTINUE 

DO 88 J=l,NPRIR 
L=IPR(J) 
DO 86 I=J,NPRIR 
K=IPR(I) 

86 R(I+NOBS,J+NOBS)=-W(I)*COV(K,L)"'W(J) 
88 CONTINUE 
90 DO 110 K=l,NOBS 

DO 100 J=K,NOBS 
suM=o. 
DO 95 I=l,NVAR 

SET C 

SET D 

SET E 

SET F 

SET G 

c 

c 
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95 SUM=SUM+X(I,K)*R(I,J) 
100 R(J,K)=-SUM 
110 CONTINUE 

NTOT=NOBS+NPRIR 
DO 130 J=l,NTOT 
DO 120 I=J,NTOT 

120 R(J,I)=R(I,J) 
130 R(J,J)=VAR+R(J,J) 

C**COMPUTE THEORETICAL FREQUENCIES FOR DATA SETS 
TMP=NTOT+l 
DO 135 I=l,NTOT 
TEMP=I 

135 F(I)=TEMP/TMP 
SIGMA=VAR**.5 
DO 180 K=l,NSETS 
WRITE(IOlJT,14) K 

C**COMPUTE RANDOM NORMAL DEVIATES D AND CORRELATED NORMAL DEVIATES G 
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140 
150 

D 160 
170 

DO 150 I=l,NTOT 
SUM=-6. 
DO 140 J=1,12 
SUM=SUM+FtANUM(NRAN) 
D(I)=SIGMA*SUM 
DO 170 J=l,NTOT 
suM=o. 
DO 160 I=l,NTOT 
SUM=SUM+R(I,J)*D(I) 
G(J)=SUM/VAR 

C**ORDER AND PRINT RANDOM NORMAL DEVIATES AND CORRELATED NORMAL DEVIATES 
DO 174 I=l,NTOT 
DO 172 J=I,NTOT 
IF(D(J).GE.D(I)) GO TO 172 
TMP=D(I) 
D(I)=D(J) 
D(J)=TMP 

172 CONTINUE 
174 CONTINUE 

WRITE(IOUT,ll) 
CALL PRTOTA(D,F,NTOT) 
WRITE(IOUT,16) 
CALL PRTOT(G,NTOT,l,O) 
DO 178 I=l,NTOT 
DO 176 J=I,NTOT 
IF(G(J).GE.G(I)) GO TO 176 
TMP=G(I) 
G(I)=G(J) 
G(J)=TMP 

176 CONTINUE 
178 CONTINUE 

WRITE(IOUT,12) 
CALL PRTOTA(G,F,NTOT) 

180 CONTINUE 
C**PRINT COVARIANCE MATRIX (I-R)*VAR 

WRITE(IOUT,13) 
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CALL PRTOT(R,NTOT,NTOT,NTD) 
C**COMPUTE AND PRINT CORRELATION MATRIX 

DO 210 I=l,NTOT 
210 D(I)=R(I,I)**.5 

DO 230 J=l,NTOT 
TMP=D(J) 
DO 220 I=J,NTOT 
R(I,J)=R(I,J)/(TMP*D(I)) 

220 R(J,I)=R(I,J) 
230 CONTINUE 

WRITE(IOUT,l5) 
CALL PRTOT(R,NTOT,NTOT,NTD) 
STOP 
END 
SUBROUTINE PRTOT(C,NR,NC,NRD) 

C**PRINT MATRICES AND VECTORS 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION C(1) 
COMMON/ITP/IIN,IOUT 
IF(NC.EQ.l) GO TO 25 
DO 20 L=l,NC,lO 
JlO=L+9 
IF(JlO.GT.NC) JlO=NC 
WRITE(IOUT,~~) (J,J=L,J~~) 
WRITE(IOUT,50) 
KBC=(L-l)*NRD 
KEC=(JlO-l)*NRD 
DO 10 I=l,NR 
KB=KBC+I 
KE=KEC+I 

10 WRITE(IOUT,40) I,(C(K),K=KB,KE,NRD) 
20 CONTINUE 

RETURN 
25 N=NR/3 

IF((3*N).NE.NR) N=N+l 
DO 30 K=l,N 

30 WRITE(IOUT,~O) (L,C(L),L=K,NR,N) 
RETURN 

35 FORMAT (lH0,10(9X,I3)) 
40 FORMAT (1H ,13,1X,lO(lX,G11.5)) 
50 FORMAT (1H > 
80 FORMAT (1H ,2X,3(13,7X,G11.5,3X)) 

END 
SUBROUTINE PRTOTA(VALA,VALB,NO) 

C**PRINT VALUES IN TWO GROUPS OF THREE COLUMNS 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION VALA(NO),VALB(NO) 
COMMON/ITP/IIN,IOUT 
NR=N0/2 
IF(2*NR.NE.N0) NR=NR+l 
DO 10 K=l,NR 
WRITE(IOUT,20) (L,VALA(L),VALB(L),L=K,NO,NR) 

10 CONTINUE 

c 

c 
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RETURN 
20 FORMAT (1H ,2X,2(13,4X,G11.5,4X,Gll.5,4X)) 

END 
SUBROUTINE PRTOTC(IVAL,NO) 

C**PRINT INTEGERS IN THREE GROUPS OF TWO COLUMNS 
DIMENSION IVAL(N0) 
COMMON/ITP/IIN,IOUT 
NR=N0/3 
IF(3"NR.NE.NO) NR=NR+l 
DO lo K=l,NR 
wRITE(IouT,20) (L,IVAL(L),L=K,NO,NR) 

lo CONTINUE 
RETURN 

20 FORMAT (1H ,2X,3(13,8X,14,9X)) 
END 
FUNCTION RANUM(IRAN) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DATA MODU,MULT,NADD/1048576,1027,221589/ 
IRAN=MULT*IRAN+NADD 
IRAN=IRAN-(IRAN/MODU)*MODU 
RANUM=FLOAT(IRAN)/FLOAT(MODU) 
RETURN 
END 

Listing of Inserts to the Regression Ground-Water Flow Program. 

C 
C**INSERT AFTER STATEMENT 480 

OPEN (8,FILE-'RESAN.IN',STATUS-'NEW',ACCESS='SEQUENTIAL' 
l,FORM='UNFORMATTED') 

ITB-8 
REWIND ITB 
DO 1000 J-l,NVAR 

1000 WRITE(ITB) (A(I,J),I=J,NVAR) 
DO 1100 I-1,NOBS 

1100 vL(I)=w(I)*w(I) 
WRITE(ITB) (VL(I),I-1;NOBS) 
DO 1200 J-l,NOBS 

1200 WRITE(ITB) (X(I,J),I-1,NVAR) 
C 
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